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Bounding Sets for Treatment Effects with

Proportional Selection

Deepankar Basu∗

April 15, 2021

Abstract

In linear econometric models with proportional selection on unobserv-
ables, omitted variable bias in estimated treatment effects are roots
of a cubic equation involving estimated parameters from a short and
intermediate regression, the former excluding and the latter includ-
ing all observable controls. The roots of the cubic are functions of δ,
the degree of proportional selection on unobservables, and Rmax, the
R-squared in a hypothetical long regression that includes the unob-
servable confounder and all observable controls. In this paper a simple
method is proposed to compute roots of the cubic over meaningful re-
gions of the δ-Rmax plane and use the roots to construct bounding sets
for the true treatment effect. The proposed method is illustrated with
both a simulated and an observational data set.
Keywords: treatment effect, omitted variable bias.
JEL Codes: C21.

1 Introduction

Researchers are often interested in estimating treatment effects in models
where there are clear problems of unobserved or unobservable confounders.
To fix ideas, consider the following linear regression model,

Y = βX + Ψω0 +W2 + ε, (1)

where Y is the scalar outcome variable, X is the scalar treatment variable
of interest, ω0 is a J × 1 vector of observed controls, Ψ is 1 × J vector of

∗Department of Economics, University of Massachusetts Amherst. Email:
dbasu@econs.umass.edu. I would like to thank Leila Gautham for comments on an earlier
version of this paper.

1



parameters, and W2 is an unobserved confounder. Suppose a researcher is
interested in consistently estimating β, but is unable to do so because of
the presence of the unobservable confounder, W2 (which can be thought of
as an index of a set of unobservable variables), in the hypothetical ‘long’
regression model.

Faced with this problem, researchers often compare the ordinary least
square (OLS) estimate of β between a ‘short’ and an ‘intermediate’ regres-
sion, where the short regression is given by

Y = β̊X + ε̊, (2)

in which both the observable and unobservable controls, i.e. ω0 and W2, are
missing from the model, and the intermediate regression is given by

Y = β̃X + Ψ̃ω0 + ε̃, (3)

in which only the unobservable control, W2, is missing from the model. If
the numerical magnitude of β̃ and β̊ are roughly similar, i.e. the estimate of
the treatment effect is ‘stable’, researchers conclude that the bias from the
omitted, unobservable confounder is small.

In a recent, innovative contribution, Oster (2019) has demonstrated that
such ‘coefficient stability’ arguments to deal with possible omitted variable
bias is misleading.1 In fact, what is needed to draw conclusions about the
magnitude of possible bias due to the unobservable confounder is not the
raw change in the estimate of the treatment effect, but an R-squared scaled
change in the estimate of the treatment effect between the short and inter-
mediate regressions. This becomes clear when we write the expression for
the omitted variable bias in the OLS estimate of the treatment effect in the
intermediate regression in terms of the R-squared in the short, intermediate
and long regressions, and relevant coefficients in the long regression. A little
algebraic manipulation generates a cubic equation in the bias (of the OLS
estimate of the treatment effect in the intermediate regression).

A cubic equation with real coefficients will have either one or three real
roots. When the cubic equation has a unique real root, the researcher is able
to identify the bias, and hence the bias-adjusted treatment effect, without
any ambiguity. When the cubic equation has three real roots, the researcher
is confronted with the problem of non-uniqueness. Oster (2019) proposes
two approaches to deal with the problem of non-uniqueness.

The first method involves computing the bias-adjusted treatment effect
under the twin assumptions of δ = 1 (equal selection on observables and

1Oster (2019) extends previous work on this issue by Altonji et al. (2000, 2005).
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unobservables) and a sign restriction (which is stated as Assumption 3 in
her paper). In this case, Oster (2019, pp. 194) argues, we can arrive at
a unique solution for the bias in the treatment effect and can therefore
compute a unique bias-adjusted treatment effect.

The second method relies on choosing some value of Rmax (the magni-
tude of R-squared in a hypothetical long regression that includes all vari-
ables, including the unobservable confounder), and calculating the magni-
tude of δ, i.e. degree of selection due to unobservables, that would be con-
sistent with β = 0 (no treatment effect). In this case, Oster (2019) shows
that we are able to find a unique magnitude of proportional selection that
would make the treatment effect vanish.

Both these methods promise to be enormously useful for applied re-
searchers because they provide workable solutions for the pervasive and
rather intractable problem of omitted variable bias (Basu, 2020). That is
why the method proposed by Oster (2019) has been widely cited in eco-
nomics and the social sciences.2 Unfortunately, as I demonstrate in this
paper, both methods suffer from serious problems.

The first method, i.e. computing bias-adjusted treatment effect under
the assumption of equal selection, suffers from many theoretical problems.
First, without additional assumptions, it is not possible to ensure the exis-
tence of a unique solution. But these assumptions cannot be justified either
on theoretical or empirical grounds. Second, once these assumptions are
imposed, there is no leeway for researchers to experiment with different val-
ues of Rmax because a specific value of Rmax gets pinned down. Third,
the method will not work for cases where estimates of the treatment effect
declines with the addition of control variables. Finally, there is a sharp dis-
continuity at δ = 1, i.e. conclusions can change dramatically if δ is perturbed
even slightly from the value of unity.

The second proposal in Oster (2019) is to compute the value of δ that
is consistent with a zero treatment effect. This method suffers from two
problems. First, the method relies on choosing a unique value of Rmax. Since
there is no reliable way to pin down a unique Rmax (the R-squared in the
hypothetical long regression), it reduces robustness of the method. Second,
while this method allows us to compute a unique value of δ = δ∗ (proportion
of selection due to unobservables) that is associated with a zero treatment
effect, there seems to be some misunderstanding about how to interpret this

2On Professor Oster’s google scholar page, the paper shows 1611 citations. Here are
just a few examples: Galor and Ozak (2016); Michalopoulos and Papaioannou (2016);
Goldsmith-Pinkham et al. (2019); Jaschke and Keita (2021). Papers published before
2019 cite different working paper versions of Oster (2019).
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δ∗. Altonji et al. (2005) and Oster (2019) use informal arguments to argue
that δ = 1 should be used as a lower bound. Hence, this method recommends
that if the computed value of δ∗ is higher than unity, then researchers can
conclude that their reported results do not suffer from omitted variable bias
(the larger the δ∗ the better); if the computed value of δ∗ is lower than unity,
then researchers should be worried about omitted variable bias (the smaller
the δ∗ the more serious the problem).

A computed value of δ∗ > 1 means that even if the unobservables are
more strongly correlated to the treatment variable than the observables,
the omitted variable bias cannot wipe out the reported nonzero treatment
effect. Thus, this methodology suggests, a computed value of δ > 1 provides
confidence in the results. This conclusion does not seem to be warranted.
A value of δ∗ > 1 does not tell us anything about the magnitude of bias if
δ < 1. The implicit understanding seems to be that any δ < δ∗ would not
be inimical to the reported result. But this is not true. Even if δ∗ > 1, it is
possible for omitted variable bias to completely nullify the treatment effect
for a value of δ < 1 (I show this in an actual example in section 5.2). In a
similar manner a computed value of δ∗ < 1 does not provide evidence that
the reported result will necessarily be nullified if we take account of omitted
variable bias (I show this in an actual example in section 5.1). Thus, while
the computation of δ∗ is straightforward, it is not very informative, which
goes completely against the grain of the existing literature that has used δ∗

widely.
I propose an alternative method to to quantify the bias in the treatment

effect that significantly improves on Oster’s methodology. To understand
my proposal let us return to the cubic equation that is at the heart of the
bias calculations. The coefficients of the cubic equation are functions of
two unknown parameters: Rmax, the R-squared in the hypothetical long
regression that includes all observable and unobservable variables, and δ,
the relative degree of selection on unobservables.

The first step in my proposal is to choose a meaningful bounded box
in the δ-Rmax plane and divide it into two parts, the first correspond-
ing to unique real roots of the cubic equation and the second correspond-
ing to nonunique real roots. Let us call the first the URR (unique real
root) area and the second the NURR (nonunique real root) area. Both
regions are function of δ and Rmax, i.e. URR = URR (δ,Rmax), and
NURR = NURR (δ,Rmax). On each point in URR (δ,Rmax) one can com-
pute a unique real root of the cubic equation. I do so on a sufficiently
granular N ×N grid of this area, URR, and collect the real roots in a vec-
tor, BU , (whose length is equal to N2, the number of points of the grid).
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Proposition 2 in Oster (2019) shows that the ‘true’ treatment effect is the
difference in the treatment effect estimated from the intermediate regres-
sion, β̃, and the root of the cubic, ν. Thus, the difference between β̃ and
each element of the vector, BU , gives me a consistent estimate of the ‘true’
treatment effect.

In the second step, I compute a bounding set for the ‘true’ treatment
effect as the interval formed by the 2.5-th and the 97.5-th quantile of the
empirical distribution of β∗ = β̃ − ν. This bounding set contains the ‘true’
treatment effect with 95% probability. If this bounding set does not include
zero, a researcher can conclude that the reported treatment effect will not
be wiped out even after we have taken account of possible omitted variable
bias. If this bounding set contains zero, then that raises concerns about the
reported treatment effect.

In the final step, I turn to the NURR area. On each point in the NURR
area, the cubic equation has three real roots. I compute the three roots of
the cubic on a sufficiently granular grid of NURR. Since Proposition 2 in
Oster (2019) shows that one of these three real roots is the true bias in
the treatment effect, I need to choose one of them. Assuming that what is
known - the distribution of the root on the URR area being the true bias
- can provide information about what is not known - the distribution of
the correct root on the NURR area, I choose the root whose distribution is
‘closest’ to the distribution of the root on the URR area - ‘close’ in the sense
of location of the two distribution. There can be many ways to implement
the notion of closeness of the distributions. I choose to use a measure of
central tendency - the median - to choose among the three roots computed
on the NURR area, i.e. I choose the root whose empirical distribution has a
median that is closest to the median of the empirical distribution of the root
computed on the URR area. I recompute the bounding set using the chosen
root from the NURR area and see if my earlier results change. If they do
not, then this provides evidence of robustness. If the results are drastically
different, e.g. one bounding set contains zero while the other does not, then
I conclude that the method proposed in this paper is not applicable for that
particular analysis.

My proposed method has clear advantages over the methodology pro-
posed in Oster (2019). In comparison to the first method of Oster (2019),
my method is free of the theoretical problems that I identify in her method.
My method offers a cleaner, theoretically grounded method of computing
bounds for the ‘true’ treatment effect. In comparison to the second method
proposed by Oster (2019), my method is more robust but also more conser-
vative. Instead of choosing a specific value of Rmax, I compute and then use
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the treatment bias for all possible values of Rmax and δ over a meaningful
area.

After presenting the theoretical results, I use my method on two data sets
to illustrate the methodology. Both these data sets have been used in Oster
(2019) and using these data facilitates easy comparison of our respective
methodologies.3 The first data set contains simulated data on earnings
using the NLSY-79 cohort. I use it to run Mincerian wage regressions and
estimate returns to education. I compare my method with the one used in
Oster (2019, section 4.1). The second data set comes from the Children
and Young Adults sample of the NLSY and is used to study the impact of
maternal behaviour on child outcomes. Using this data set, I highlight the
differences in my methodology from the results reported and discussed in
Oster (2019, section 4.2).

The rest of the paper is organized as follows. In section 2, I discuss
the basic set-up; in section 3, I present my method of analyzing bias; in
section 4, I discuss the disadvantages of working with the assumption of
equal selection; in section 5, I illustrate my method, and contrast my results
with Oster’s method, using two data sets, a simulated data set (NLSY data
set to investigate the returns to education) and an actual data set (NLSY
data set to study the impact of maternal behaviour on child outcomes);
in section 6, I conclude with a summary of my proposed methodology for
applied researchers and highlight a weakness of my proposed methodology.

2 Basic Set-Up

2.1 Three Regression Models

Consider once again the hypothetical ‘long’ regression,

Y = βX + Ψω0 +W2 + ε, (4)

and denote by Rmax, the R-squared from the long regression. Consider the
‘short’ regression,

Y = β̊X + ε̊, (5)

and denote as R̊, the R-squared from the short regression. In a similar
manner, consider an intermediate regression,

Y = β̃X + Ψ̃ω0 + ε̃, (6)

3I would like to thank Emily Oster for making her data set available. I have
downloaded the data sets from her webpage: https://drive.google.com/file/d/

0B1U4uS7GkkxbV0VkZmd0ZVlDVDA/view?usp=sharing
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and denote by R̃, the R-squared from the intermediate regression. Note that
Rmax ≥ R̃ ≥ R̊ (Greene, 2012, Theorem 3.6, pp. 42). Finally, consider an
auxiliary regression,

X = αω0 + u, (7)

and denote by X̃, the residual from this auxiliary regression. Let τ̂X denote
the variance of X̃, σ2X denote the variance of X and σ2Y denote the variance
of Y , and note that σ2X > τX .

2.2 Proportion of Selection

Following Oster (2019), let us define the measure of proportional selection
on unobservables as,

δ =
σ2X/σ

2
2

σ1X/σ21
(8)

where σ1X = cov (W1, X), σ2X = cov (W2, X), σ21 = var (W1), and σ22 =
var(W2), and W1 = Ψω0 (an index of the observable controls). Let us try
to understand the meaning of this parameter, δ?

Consider a linear projection (Wooldridge, 2002, chapter 2) of the treat-
ment variables on the index of the observables, i.e.

X = α0 + α1W1 + u1.

Since u1 is orthogonal to W1 by definition of linear projections, we have

α1 =
σ1X
σ21

. (9)

Now consider another linear projection of the treatment variables on the
index of the unobservables, i.e.

X = δ0 + δ1W2 + u2

and note, once again using the property of linear projections, that

δ1 =
σ2X
σ22

. (10)

Now we see clearly that the measure of proportional selection is just the
ratio of the two coefficients from the two linear projections, i.e.

δ =
δ1
α1
. (11)

We will return to this expression when we try to look critically at the use
of δ = 1 as a lower bound.
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2.3 Solving a Cubic

Let us denote by ν the bias in the treatment effect estimated from the
intermediate regression. Using the well-known formula for omitted variable
bias in the short and intermediate regressions, Oster (2019, Appendix A.4)
shows that, in large samples,(

β̊ − β̃
)

=
σ1X
σ22
− ν

(
σ2X − τX
σ2X

)
. (12)

Recall that R-squared is the ratio of the squared fitted values and the square
of the outcome variable. The fitted value is the product of the estimated
regression coefficient and the regressors. The estimated regression coefficient
in the short and intermediate regressions include the bias, ν. Hence, for the
short and intermediate regressions, the expressions for the R-squared will
have the treatment bias in the numerators. Using this idea, Oster (2019,
Appendix A.4) shows that, in large samples, we will have(

R̃− R̊
)

= σ21 + τXν
2 − 1

σ2X
(σ1X + ντX)2 (13)

and (
Rmax − R̃

)
= ν

(
σ21τX
σ1X

− ντX
)
. (14)

The equations in (12), (13) and (14) constitute a system of 3 equations
in 3 unknowns: σ21, the variance of W1; σ1X , the covariance of W1 and X
(treatment variable); and ν (the bias of the treatment effect in the inter-
mediate regression). Algebraic manipulation can reduce the three equations
into a single cubic equation in ν given by,

aν3 + bν2 + cν + d = 0, (15)

where

a = (δ − 1)
(
τXσ

2
X − τ2X

)
(16)

b = τX

(
β̊ − β̃

)
σ2X (δ − 2) (17)

c = δ
(
Rmax − R̃

)
σ2Y
(
σ2X − τX

)
−
(
R̃− R̊

)
σ2Y τX − σ2XτX

(
β̊ − β̃

)2
(18)

d = δ
(
Rmax − R̃

)
σ2Y

(
β̊ − β̃

)
σ2X (19)
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3 Bounds for the Treatment Effect

3.1 Real Root as Bias

Finding the real roots of the cubic equation in (15) is the key to constructing
proper bounds for the ‘true’ treatment effect. This follows from Proposi-
tion 2 in Oster (2019). In the case when there is only one real root, denote

it by ν1. If β∗ = β̃ − ν1, then β∗
p−→ β, so that ν1 is the asymptotic bias

in the treatment effect estimated by the intermediate regression. Hence, in
large samples, β̃−ν1 is the bias-adjusted treatment effect. In the case when
the cubic equation has three real roots, ν1, ν2, ν3, then only one of these will
give us the asymptotic bias in the treatment effect. Hence, only one of the
following, β̃ − ν1, β̃ − ν2 and β̃ − ν2, will be the bias-adjusted treatment
effect.

Our main task in constructing bounding sets for the true treatment ef-
fect is to identify the relevant real roots of cubic equation in (15). To do
so we note that the coefficients of the cubic equation are composed of all
known quantities other than the following two: Rmax (the R-squared in the
hypothetical long regression), and δ (the measure of proportional selection
on unobservables). Therefore, our primary strategy will be to identify the
area of the (δ,Rmax) plane where the cubic (15) is guaranteed to have a
unique real root, compute all real roots on that area, and use these roots to
define β∗. As a secondary strategy, we will use one of the non-unique real
roots to check for robustness of our results.

3.2 Unique Real Root and the Bounding Set

The nature of the roots of a cubic equation depend on the sign of its dis-
criminant: if the discriminant is positive, there is a unique real root; if the
discriminant is nonpositive, there are three real roots (for details, see the
appendix). For the cubic equation in (15), let

p =
3ac− b2

3a2
, (20)

q =
27a2d+ 2b3 − 9abc

27a3
; (21)

then the discriminant of the cubic equation is given by
(
27q2 + 4p3

)
/108.

Proposition 1. If 27q2 + 4p3 > 0, then the cubic equation in (15) will have
a unique real root.
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Proof. This is a well known result. Please see the appendix for some discus-
sion.

We will first demarcate a bounded box on the (δ,Rmax) plane and then
use the condition in Proposition 1 to identify the URR (unique real root)
area in that box. Figure 1 provides a visual representation of the procedure,
where we measure δ on the x-axis and Rmax on the y-axis. We start by noting
that Rmax lies between R̃ (because the hypothetical long regression has more
regressors than the intermediate regresson) and 1; hence, the bounded box
must have R̃ ≤ Rmax ≤ 1. The next task is to choose a bounded interval on
the δ axis, δmin ≤ δ ≤ δmax. Once the researcher has chosen δmin and δmax,
the bounded box, ABCD is in place.

To make the analysis robust, the researcher must choose δmin to be a
small positive number, and δmax to be a large positive number. Note that
δ = 0 is not interesting because this is the assumption that the omitted
variable (or index of omitted variables is not correlated with the treat-
ment). This seems to be unlikely and hence we must choose δmin to be
a small positive number, e.g. δmin = 0.01. On the other end, δmax cap-
tures the maximum possible strength of relative selection on unobservables.
For robustness, the researcher should choose a large positive number, e.g.
δmax = 5. This would mean that the research will allow for the possibility
that selection on unobservables is up to five times stronger than selection
on observables.

[Figure 1 about here]

Once the bounded box, ABCD, is in place, we will trifurcate it. We
do so for two reasons. First, we need to keep the important point in mind
that at δ = 1, the cubic equation in (15) is no longer a cubic (because the
coefficient on ν3 becomes zero). Hence, the researcher needs to bound the
δ-intervals away from 1. To highlight this, I have indicated the vertical line
at δ = 1 in red in Figure 1. Second, from the expressions for the coefficients
of the cubic, we can see that the sign of b (the coefficient on ν2) changes
sign at δ = 2. Since roots of polynomials are impacted by signs of the
coefficients, we make a further demarcation at δ = 2. Thus, we have three
bounded boxes to work with: ABFE (open on the right), EFGH (open on
the left) and GCDH (closed on both sides).

On each of the three boxes, we can now use the condition in Proposition 1
to demarcate the URR (unique real root) area from the NURR (nonunique
real root) area. This is depicted in Figure 1 by the green curves, which gives
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the combination of δ and Rmax at which 27q2 + 4p3 = 0. The area above
the green curve is the URR area and the area on and below the curve is the
NURR area.

To compute the bounding set for the ‘true’ treatment effect on any of
the bounded boxes, we will create a vector, BU , of size N2. The elements
of this vector will be the roots of the cubic (15) computed at each of the
N2 points of an equally-spaced N × N grid that covers the URR area of
the box. The vector BU contains the set of possible values of treatment
bias, ν. We can now use these values of ν to create compute β∗ = β̃ − ν,
the bias-adjusted treatment effect. Since β∗

p−→ β for each such ν, in large
samples, each of these β∗ are consistent estimates of the ‘true’ treatment
effect. We then define a 95% bounding set for β as the interval defined by
the 2.5-th and 97.5-th percentile of the empirical distribution of β∗. This
interval would contain the ‘true’ treatment effect with 95% probability. To
test whether the ‘true’ treatment effect is different from zero, we could see if
this bounding set contains zero. We carry out the same procedure for each
of the three boxes depicted in Figure 1.

3.3 Non-Unique Real Roots and Robustness

While the URR area allows us to generate credible bounding sets for the
‘true’ treatment effect, we also need to account for the area on the (δ,Rmax)
plane where the cubic (15) has multiple, i.e. three, real roots. To deal with
this issue, let us identify the area of the (δ,Rmax) plane where the cubic has
multiple real roots.

Proposition 2. If 27q2 + 4p3 ≤ 0, then the cubic equation in (15) will have
three real roots.

Proof. This is a well known result. Please see the appendix for some discus-
sion.

The NURR areas are depicted in each of the three boxes in Figure 1.
Following the same steps as in the case of the URR area, we create a equally-
spaced N ×N grid that covers the NURR area in each box. At each point
of this grid, the cubic will have three real roots. Hence, we create three
vectors, B1

NU , B
2
NU , B

3
NU , each of size N2, and store the first, second and

third real root in the vectors, respectively. We know from Proposition 2 in
Oster (2019) that one of these vectors is the ‘true’ bias. To choose among
the three vectors, I will pick the root whose empirical distribution is ‘closest’
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to empirical distribution of the vector BU , i.e. ‘close’ in terms of location.4

A simple way to choose the ‘closest’ distribution to that of BU is to choose
among B1

NU , B
2
NU and B3

NU the one whose median (or any other measure of
central tendency) is nearest to the median (or any other measure of central
tendency) of the empirical distribution of BU . We proceed to compute
the empirical distribution function of β∗ = β̃ − ν using the chosen root
and compare that with the empirical distribution of β∗ = β̃ − ν computed
with the vector BU . If the two distributions are similar, then that provides
robustness to our results. If they are dissimilar, then the method proposed
here might be uninformative.

4 Keep Away from Equal Selection

The method proposed in the previous section to generate bounding sets for
the ‘true’ treatment effect differs significantly from the method proposed by
Oster (2019). In Oster’s proposal, a key role is played by the assumption of
equal selection on observables and unobservables, i.e. δ = 1. In this section,
I show why this assumption leads to serious problems.

4.1 What is the Solution with Equal Solution?

What will be the solution for bias under equal selection? If we impose the
restriction that δ = 1 on the coefficients of the cubic in (15) we get,

a = 0

b = −τX
(
β̊ − β̃

)
σ2X

c =
(
Rmax − R̃

)
σ2Y
(
σ2X − τX

)
−
(
R̃− R̊

)
σ2Y τX − σ2XτX

(
β̊ − β̃

)2
d =

(
Rmax − R̃

)
σ2Y

(
β̊ − β̃

)
σ2X ,

which converts the cubic in (15) to a quadratic equation in ν,

b1ν
2 + c1ν + d1 = 0, (22)

4We are not concerned with the shape of the distributions.
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where the coefficients of this quadratic are given by,

b1 = −τX
(
β̊ − β̃

)
σ2X (23)

c1 =
(
Rmax − R̃

)
σ2Y
(
σ2X − τX

)
−
(
R̃− R̊

)
σ2Y τX − σ2XτX

(
β̊ − β̃

)2
(24)

d1 =
(
Rmax − R̃

)
σ2Y

(
β̊ − β̃

)
σ2X . (25)

The solutions of the quadratic in (22) are given by

ν =
−c1 ±

√
c21 − 4d1b1

2b1
,

which are noted in Corollary 1 in Oster (2019, pp. 193). Our first result is
that the solution of the quadratic equation in (22) is always real.

Proposition 3. The quadratic equation in (22) either has a unique real root
or two distinct real roots. It does not have any complex roots.

Proof. The proof follows by noting that the discriminant of this quadratic
equation is non-negative, i.e. c21 − 4d1b1 ≥ 0, because c21 ≥ 0, and

−4d1b1 = −4
{(
Rmax − R̃

)
σ2Y

(
β̊ − β̃

)
σ2X

}{
−τX

(
β̊ − β̃

)
σ2X

}
= 4

(
Rmax − R̃

)
σ4Xσ

2
Y τX

(
β̊ − β̃

)2
≥ 0

where the last inequality follows because Rmax ≥ R̃.

The implication of this result is that, in general, there will be two real
roots of the quadratic equation in (22). Hence, in general, there will be
two values of the bias in the treatment effect, and hence two values of the
bias-adjusted treatment effect, when there is equal selection on observables
and unobservables. Without further assumptions, it is not possible to arrive
at a unique solution for the bias or the bias-adjusted treatment effect. This
immediately leads to the following question: what conditions are necessary
to give us an unique solution for the quadratic in (22)? The unique root will
arise if and only if the discriminant of the quadratic equation is identically
equal to zero. I now show that the discriminant can be zero only if we
impose additional assumptions. These assumptions are difficult to justify
on either theoretical or empirical grounds.
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4.2 Condition for Unique Solution

For the quadratic equation in (22) to have a unique real solution, the dis-
criminant must be zero, i.e.,{(

Rmax − R̃
)
σ2Y
(
σ2X − τX

)
−
(
R̃− R̊

)
σ2Y τX − σ2XτX

(
β̊ − β̃

)2}2

+ 4
(
Rmax − R̃

)
σ4Y τX

(
β̊ − β̃

)2
= 0. (26)

Defining Z = Rmax − R̃, we can write the above condition as a quadratic
equation in Z,

A2Z2 + (2AB + 4C)Z +B2 = 0, (27)

where

A = σ2Y
(
σ2X − τX

)
> 0 (28)

B = −
[(
R̃− R̊

)
σ2XτX + σ2XτX

(
β̊ − β̃

)2]
< 0 (29)

C = σ2Y

(
β̊ − β̃

)
σ2X . (30)

The two roots of (27) are given by

Z1, Z2 =
− (2AB + 4C)±

√
(2AB + 4C)2 − 4A2B2

2A2
. (31)

Note that the discriminant of the quadratic equation in (27) reduces to
16C2 + 16ABC. Since B < 0, it is possible, though not necessary, for the
discriminant, 16C2 + 16ABC, to be negative.5 Hence, there are two cases
to consider.

Case 1. If the discriminant is negative, then both the roots of (27),
Z1, Z2, are complex numbers. In this case, the uniqueness analysis falls
through. This is because it is meaningless to entertain the possibility that
Z = Rmax − R̃ is a complex number. What does this mean? Since R̃ is
a known real number, this implies that there is no real value of Rmax that
would make the discriminant of the quadratic equation in (22) to be zero.
Hence, in this case, there does not exist a unique magnitude of the bias
in the treatment effect, ν, and hence, it is not possible to find a unique
bias-adjusted treatment effect, β∗.

5Since R̃ ≥ R̊, the term in the square bracket in the definition of B is positive. Hence,
B < 0.
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Case 2. If the discriminant is nonnegative, then both the roots of (27),
Z1, Z2, are real. Thus, there exists real values of Rmax which would give
a unique value of the bias, and hence, the bias-adjusted treatment effect.
But not all possible values of Rmax are permissible. We know that Rmax is
never smaller than R̊. Hence, we need necessary conditions to ensure that
the solutions of (27) are nonnegative. This is given in

Proposition 4. If β̊ < β̃, then then both roots of (27) are real. One of
these roots will be nonnegative only if

σ2Y
(
σ2X − τX

) [(
R̃− R̊

)
σ2XτX + σ2XτX

(
β̊ − β̃

)2]
+ 2σ2Y

(
β̊ − β̃

)
σ2X ≤ 0. (32)

Proof. To see the first part, note that if β̊ < β̃, then C < 0. Hence C2 +
ABC ≥ 0. Hence, the discriminant of (27) is nonnegative. To see the
second part, note that since the denominator of the expression for the roots
in (31) is always positive, the sign of the roots are the same as the sign of
the numerator. If 2AB + 4C > 0, then the numerator is negative because
the expression within the square root in (31) is nonnegative and less than
2AB + 4C. Hence, we have the following: 2AB + 4C > 0 =⇒ Z1 <
0 and Z2 < 0. The contrapositive of this statement gives us: Z1 ≥ 0 or Z2 ≥
0 =⇒ 2AB + 4C ≤ 0. Hence, 2AB + 4C ≤ 0 is the necessary condition for
at least one root being nonnegative. Plugging the expression for A,B and
C, this becomes

σ2Y
(
σ2X − τX

) [(
R̃− R̊

)
σ2XτX + σ2XτX

(
β̊ − β̃

)2]
+ 2σ2Y

(
β̊ − β̃

)
σ2X ≤ 0,

which is the expression in (32).

The above analysis has important implications. If δ = 1, i.e. there is
equal selection on observables and unobservables, and the condition in (32)
is satisfied, then either Rmax − R̃ will be given by the positive root of (27)
when one of the two roots is negative, or Rmax − R̃ will attain two positive
values given by both the roots of (27) when both roots are positive. In
either case, once we choose to impose the restriction that δ = 1, then there
will either be a unique value of Rmax or two possible values of Rmax that
are permissible. The choice of δ = 1 implies these specific values of Rmax.
Researchers are no longer at liberty to choose any other value of Rmax.
There is an additional angle to consider with regard to the analysis of bias
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under the assumption of equal selection and this is highlighted in the next
result.

Corollary 1. If the estimate of the treatment effect declines with the ad-
dition of controls, i.e. if β̊ > β̃, then a meaningful bias-adjusted treatment
effect cannot be computed under the assumption of equal selection.

Proof. Note, first, that if β̊ > β̃, it is no longer guaranteed that (27) will
have real roots. Consider, further, the necessary condition in (32) and note
that if β̊ > β̃, then the condition cannot be satisfied. This is because the
second term

2σ2Y

(
β̊ − β̃

)
σ2X

is positive. Since σ2X > τX and R̃ ≥ R̊, the first term

σ2Y
(
σ2X − τX

) [(
R̃− R̊

)
σ2XτX + σ2XτX

(
β̊ − β̃

)2]
is always positive. Hence the expression on the left hand side of the condi-
tion in (32) is positive. An application of proposition 4 then shows that the
quadratic equation in (27) cannot have meaningful roots. This, in turn, im-
plies that the discriminant of the quadratic equation in (22) cannot be zero.
This implies that the quadratic equation in (22) cannot have a unique root.
Hence, a meaningful bias-adjusted treatment effect cannot be computed.

The implication of this corollary is that in cases where the treatment
effect falls with the addition of controls, i.e. β̊ > β̃, the uniqueness of
the solution is impossible. Thus, if for some research it is found that the
treatment effect decreases with the addition of controls, then we can be
sure that for this particular research a unique bias-adjusted treatment effect
cannot be computed under the assumption of equal selection.

4.3 Equal Selection as Lower Bound

The second method proposed by Oster (2019) to deal with the problem of
nonuniqueness is to choose a value of Rmax and then use it to compute
the value of δ that would make β = 0 (‘true’ treatment effect is zero). In
Proposition 3, Oster (2019) demonstrates that such a δ can be uniquely
computed. While the problem of nonuniqueness is thus solved, it creates its
own problem of interpretation. What should researchers do with the value
of δ thus computed? Following Altonji et al. (2005), the recommendation
made by Oster (2019) is to use δ = 1 as a lower bound. If the computed value
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of δ is higher than unity, researchers are recommended to conclude that the
problem of omitted variable bias is not serious; if the computed value of δ
is lower than unity, then researchers need to be worried about the problem
of omitted variable bias.6 How do we make sense of this recommendation?

Let us return to the expression for δ given in (11): δ = δ1/α1. Thus,
δ is the ratio of the coefficients in two linear projections: the numerator is
the coefficient on the index of unobservables in a linear projection of the
treatment variable on the index of unobservables; the denominator is the
coefficient on the index of observables in a linear projection of the treatment
variable on the index of observables. Altonji et al. (2005) and Oster (2019)
have interpreted δ as the ratio of explanatory power of the unobservables
to the corresponding power of the observables in explaining the variation
in the treatment variable. Using this interpretation, they have argued that
δ = 1 is a sensible lower bound.

When a researcher finds that the value of δ = δ∗ > 1, then that means
that such a value of δ∗ would be needed to wipe out the reported nonzero
treatment effect. That is, if unobservables were δ∗ times more important in
explaining the variation in the treatment variable than the observables then
the treatment effect, which was zero in reality, would be mistakenly reported
as the nonzero β̃. In testing the importance of Catholic school attendance
on student outcomes, when Altonji et al. (2005) find that the computed
value of δ is significantly higher than unity, they draw the conclusion that
the problem of omitted variable bias is not serious.

We find that selection on unobservables would need to be 3.55
times stronger than selection on observables in the case of high
school graduation, which seems highly unlikely. It would have to
be 1.43 times stronger to explain the entire college effect, which
is also unlikely (Altonji et al., 2005, pp. 155).

Oster (2019) has echoed this idea several times in her paper. But is this
justified? Can δ∗ be interpreted in this fashion to draw conclusions about
omitted variable bias? When δ∗ is equal to 3.55, for instance, it does not tell
us anything about the bias at other value of δ. The implicit understanding
seems to be that if δ∗ is larger than unity, then it must mean that an actual
value of δ < 1 would not nullify the reported estimate of the treatment
effect. For instance, in the example quoted above from Altonji et al. (2005),
if it is unlikely that selection on unobservables is “3.55 times stronger than

6This recommendation has been followed by researchers, e.g. see Jaschke and Keita
(2021, Table 3).
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selection on observables”, then the question to ask is this: what would the
the magnitude of bias (of the treatment effect) be if the degree of selection
on unobservables was lower? For instance, can we be sure that a value of
δ < 1 would not wipe out the reported treatment effect? Neither Altonji
et al. (2005) nor Oster (2019) provide any answers to this question. In fact,
they do not even pose this question.

In a similar manner, if a researcher finds that the computed value of
δ∗ is less than unity, she might then conclude that the problem of omitted
variable bias is serious in her study. This is also a premature conclusion
because we do not know anything about bias for other values of δ. Hence,
using the computed value of δ∗ to draw conclusions about the problem of
omitted variable bias is an incomplete exercise, and as I show below, can
lead to misleading results. A better strategy is to use a range of values of
δ and draw conclusions only on the basis of roots computed over a range of
values. I now turn to illustrating my method with actual data, and in doing
so, I will point out how Oster’s methodology often give misleading results.

5 Two Applications

In this section, I report results of applying my method on two data sets.

5.1 Returns to Education

I used a simulated data set created by Oster (2019, section 4.1) from the
NLSY-79 cohort to study the effect of years of education on log wages. The
data set is constructed by regressing log wage on education, experience, sex
and a set of eight demographic and family background variables: region
of residence, race, marital status, mother’s education, father’s education,
mother’s occupation, father’s occupation and number of siblings. Given
these regressors, the fitted value from this regression gives the ‘true’ wage
associated with different levels of education - conditional on demography
and family background. If we were to regress the fitted values on these
same set of regressors, we would get an R-squared of 1. In realistic research,
regressions typically do not give perfect fit. Hence, an orthogonal error term
is added to the fitted value from the above regression to make the true R-
squared from the regression of 0.45 (Oster, 2019, pp. 197). The fitted value
will serve as the outcome variable - let us call this the ‘constructed log wage’
- in two experiments I conduct to quantify omitted variable bias.

In the first experiment (Experiment 1), I regress constructed log wage
on education, experience, sex and six of the demographic and family back-
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ground variables. I drop mother’s education and father’s education from the
set of regressors and know that, by construction, this will produce omitted
variable bias in the estimated returns to education. In the second experiment
(Experiment 2), I regress constructed log wage on education, experience, sex
and mother’s education and father’s education. I drop the other six demo-
graphic and family background variables: region of residence, race, marital
status, mother’s occupation, father’s occupation and number of siblings. In
this case too, I know that, by construction, the estimated returns to educa-
tion will have omitted variable bias. I will compare the results in both cases
to the ‘true’ returns to education that I estimate by the regression of the
constructed log wage on education, experience, sex and all the eight demo-
graphic and family background variables. The ‘true’ returns to education is
estimated as 0.089 (with a standard error of 0.003). The R-squared in this
regression is 0.373.

[Figure 2 about here]

5.1.1 Experiment 1

To begin the investigation of Experiment 1, I first estimate the treatment ef-
fect by regressing the constructed log wage on education, experience, sex and
six of the demographic and family background variables (excluding mother’s
education and father’s education). I find the estimate of β̃ to be 0.093 (stan-
dard error = 0.000, R-squared = 0.355). Thus, leaving out mother’s and
father’s education produces an overestimate of the returns to education, as
would be expected if education is positively correlated with mother’s and
father’s education.

I report results of the bias analysis about Experiment 1 in Figure 2
and Table 1. In the top panel of Figure 2, I identify the unique real root
(URR) and the nonunique real root (NURR) areas associated with the cubic
equation (15) for the following three bounded boxes: the left figure uses what
I will refer to as region 1, 0.50 ≤ δ < 0.99 and R̃ ≤ Rmax ≤ 1; the middle
figure uses region 2, 1.01 ≤ δ < 2.0 and R̃ ≤ Rmax ≤ 1; the right figure
uses region 3, 2.0 ≤ δ < 5.0 and R̃ ≤ Rmax ≤ 1. In each of these plots, the
colored area depicts the NURR area and the white area denotes the URR
area. In the bottom panel, I plot the corresponding empirical distribution
of the bias-adjusted treatment effect, β∗ = β̃− ν, where ν is the unique real
root computed in the corresponding URR area.

In left hand side of panel A of Table 1, I report bounding sets for the
‘true’ treatment effect as the interval formed by the 2.5th and 97.5th per-
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centile of the empirical distribution of the bias-adjusted treatment effect
computed over the URR area (and plotted in the bottom panel of Fig-
ure 2). If we used region 1 for our computation, the bounding set would be
[0.009, 0.093]; if we used region 2, the bounding set would be [0.346, 0.441]; if
we used region 3, the bounding set would be [0.268, 0.375]. In this particular
case, we know that the true treatment effect is 0.089 because we are using
simulated data. Hence, we can see that using region 1 gives us the correct
bounding set.

In research with observational data, the choice of the correct region
would not be so straightforward. If researchers use the method presented
in this paper, they have two options. First, they might be able to use their
knowledge about the omitted variable and how it is likely to be related to
the treatment variable to choose the correct region to use for computing
bias. Since δ is the ratio of the impact of an index of omitted variables to
the impact of an index of the included variables on the treatment variable,
the question will boil down to the sign and magnitude of these effects. If
institutional or historical knowledge of the issue under investigation allows
a researcher to choose the relevant region, that would be the best option.
If that is not be possible, then the next best alternative is to look at the
bounding sets for all meaningful regions and then draw conclusions. For
instance, in panel A, we see that the bounding set for region 1, 2 and 3
all exclude zero. Hence, even if we did not have information to choose the
correct region, we would still be able to say with lot of certainty that the
true treatment effect is different from zero. In many realistic cases, this is
all we might be interested in knowing, i.e. whether the true treatment effect
is different from zero.

For robustness, we can turn to the right hand side of panel A of Table 1.
Here, I report bounding sets using the NURR area. When we used region 1
of the NURR area for computing roots of the cubic, the bounding set for β
contains zero. For the other two cases, the bounding sets do not contain zero.
A researcher might then be justified in concluding that the true treatment
effect is different from zero with lot of certainty (because 5 of the 6 bounding
sets do not include zero).

[Table 1 about here]

Let us now compare the above methodology to the one proposed in Oster
(2019), starting with the computation of the bounding set for the ‘true’
treatment effect. In the left panel of Table 2, I report the magnitude of bias
when δ = 1 (equal selection on observables and unobservables). Recall that
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the magnitude of bias, under the assumption of equal selection, are the roots
of the quadratic in (22). To solve for the roots of the quadratic, we need to
choose values for δ and Rmax. With equal selection, we have δ = 1 and for
Rmax, I choose 20 equally-spaced values between R̃ + 0.01 and 1. This is
justified because we know that 1 ≥ Rmax≥R̃.

The results in the left panel of Table 2 show a striking result: the value
of the discriminant of the quadratic is always positive. This means that
the quadratic has two real roots for these values of Rmax. These two roots
are reported in columns 3 and 4, respectively. At the bottom of Table 2,
I report the values of Rmax which would ensure a unique real root. These
values of Rmax are -0.048 and -24.498, both meaningless quantities (because
R-squared is always a fraction lying between 0 and 1). Thus, if a researcher
were to use the assumption of equal selection, she would not be able to
estimate a unique magnitude of bias or a unique bias-adjusted treatment
effect - other than if she were to use meaningless values of Rmax. This raises
serious questions about the bias-adjusted treatment effect whose distribution
is displayed in Figure 3(a) in Oster (2019). I will return to this question
about uniqueness once again when I discuss bias-adjusted treatment effects
in the investigation of maternal behaviour and child outcomes in the next
sub-section.

[Table 2 about here]

Let us now turn to the second method proposed in Oster (2019): for a
chosen value of Rmax, computing the value of δ that is consistent with a
‘true’ treatment effect of zero. Once we impose the condition that the ‘true’
treatment effect is zero, i.e. β = 0, then Proposition 3 in Oster (2019) shows
that there is a negatively-sloped functional relationship between Rmax and
δ. If the researcher were to choose any value of Rmax, she would get the
associated value of δ. For instance, if she chose Rmax = 0.45, which we
know to be the true R-squared, she would get δ∗ = 3.374. She would then
conclude, rightly in this case, that the true treatment effect is different from
zero.

There are two difficulties of this method. First, in research with obser-
vation data, there is no way to choose a sensible value of Rmax. Instead
of relying on a particular magnitude of Rmax it seems better to work with
a range, which is what my method does. Second, it is not clear how to
interpret a given value of the computed δ∗ so far as it can give us any in-
formation about the severity of the omitted variable bias problem. What
does the value of δ = 3.374 tell us about the problem of omitted variable
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bias? It tells us that if Rmax = 0.45 and δ = 3.374, then β = 0. But it does
not tell us anything about β for other values of δ and Rmax, not even in the
neighbourhood of this chosen (δ,Rmax) point. Can we say anything about
β if Rmax = 0.45 and δ = 2, or Rmax = 0.45 and δ = 0.75? We cannot.
Hence, it seems that a more robust strategy should use information on a
region rather than a single point, which is what my method does.

5.1.2 Experiment 2

For Experiment 2, I estimate the treatment effect by regressing the con-
structed log wage on education, experience, sex, mother’s education and
father’s education (excluding the other six of the demographic and family
background variables). I find the estimate of β̃ to be 0.098 (standard error
= 0.000, R-squared = 0.177). Thus, leaving out the other six demographic
and family background variables, even when we include mother’s and fa-
ther’s education, produces an overestimate of the returns to education. The
magnitude of the overestimate is larger than in Experiment 1, where we
had left out mother’s and father’s education (but had included these demo-
graphic variables).

[Figure 3 about here]

Results of the bias analysis for Experiment 2 are reported in Figure 3
and Table 1. Figure 3 presents plots of the URR and NURR areas and the
empirical distribution of the bias-adjusted treatment effect, β∗. For all the
three regions, the distribution of β∗ is overwhelmingly to the right of zero.
Turning to the bounding sets in panel B of Table 1, we see that other than
in the case of region 1, the bounding sets do not contain zero. Taking the
evidence in bottom panel of Figure 3 and panel B of Table 1, we might be
justified in concluding the the ‘true’ treatment effect is different from zero.

To compare the above methodology with the one proposed in Oster
(2019), we again start with the computation of the bounding set for the
‘true’ treatment effect. In the right panel of Table 2, I report the magnitude
of bias that I get when I impose the restriction that δ = 1 (equal selection
on observables and unobservables). Just like in the case of Experiment 1,
if a researcher were to use the assumption of equal selection, she would not
be able to compute any meaningful bias-adjusted estimate of the ‘true’ re-
turns to education - because there is no unique root. Turning to the second
method proposed in Oster (2019), I have reported the value of δ∗ at the
bottom of panel B in Table 1: if we choose Rmax = 0.45 (which we know
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is the true R-squared), she would get δ∗ = 0.736. If the researcher followed
Oster’s methodology, she would incorrectly conclude that the ‘true’ treat-
ment effect is zero. Here we have a case where the method of computing δ∗

gives misleading results.

5.2 Impact of Maternal Behaviour on Child Outcomes

Now I turn to an illustration of my method using observational data. The
substantive issue under investigation in this example is the impact of ma-
ternal behaviour on child outcomes. In particular two child outcomes are
studied: a child’s standardized IQ score and a child’s birth weight. In the
study of child IQ, three treatment variables are used in turn: months of
breastfeeding, any drinking of alcohol in pregnancy, and an indicator for be-
ing low birthweight and preterm. In studying child birthweight, two treat-
ment variables are used, one by one: maternal smoking during pregnancy,
and maternal drinking during pregnancy. The following control variables
are used for both studies: child race, maternal age, maternal education, ma-
ternal income, maternal marital status. The question of interest is whether
the treatment variables, each on their own, have any causal impact on the
outcome variables.

5.2.1 Analysis of Bias and Bounding Sets

In Table 3, I present the estimates of the treatment effect from the short and
intermediate regressions. These results replicate the corresponding results in
Table 3 in Oster (2019). For instance, if we look at the first row of Table 3,
we see that the effect of (months of) breastfeeding on child IQ is 0.044
(column 1) in the short regression and 0.017 (column 3) in the intermediate
regression. Moving from the short to the intermediate regression, the R-
squared increases from 0.008 (column 2) to 0.249 (column 4). We can read
all the other numbers in columns 1 through 4 in a similar manner. Since
these models are likely to have omitted variables, we would like to quantify
the effect of the omitted variable bias.

[Figure 3 about here]

I begin the analysis of bias by constructing the relevant cubic equation
and identifying the URR and NURR areas and plotting the empirical dis-
tribution of the bias-adjusted treatment effect, β∗, that arises from solving
the cubic equation over the URR area. Figure 4 presents the results about
the regions and the empirical distribution plots of β∗ corresponding the first
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three rows in Table 3, i.e. in cases where the outcome variable is a child’s
standardized IQ score (IQ). For the figure in the top panel, the treatment is
months of breastfeeding; in the middle panel, the treatment is drinking dur-
ing pregnancy; and in the bottom panel, the treatment is low birth weight
and premature birth.

The figures can be interpreted exactly as we did in Figure 2 and 3: it
depicts the URR/NURR areas, and below the colored area plots, we have a
plot of the empirical distribution of the bias-adjusted treatment effect, β∗.
One thing that requires comment are the spots that are missing figures. If
we look at the plot for region 2 (0.01 ≤ δ ≤ 0.99) in the middle panel, we
see that there is no URR area (the whole area is violet). This means that
a unique real root of the cubic equation cannot be computed in this case
in the bounded box of region 2. Hence, β∗ = β̃ − ν cannot be computed,
because there is no ν to use. That is why there is no empirical distribution
plot of β∗. The same comment applies to region 2 (1.01 ≤ δ ≤ 2.00) and
region 3 (2.00 ≤ δ ≤ 5.00) in the bottom panel of Figure 4.

Figure 5 presents results about the regions and the empirical distribution
of β∗ corresponding to row 4 and 5 in Table 3, i.e. where the outcome
variable is birth weight of the child (BW). The top panel has smoking during
pregnancy as the treatment variable; in the bottom panel, drinking during
pregnancy is the treatment variable. For each analysis, we have nonzero
URR area. Hence, we do not have any missing plots in Figure 5.

We can turn to Table 4 to find estimates of bounding sets correspond-
ing to the relevant empirical distributions of β∗. The top panel of Table 4
presents bounding sets for the ‘true’ effect of breastfeeding on a child’s stan-
dardized IQ score. If we consider the URR area, region 2 and region 3 give
bounding sets that do not include zero, the former being [0.301, 0.318] and
the latter being [0.275, 0.304], but region 1’s bounding set, [−0.038, 0.017],
does include zero.

In observational studies like these, we do not have the luxury of knowing
which is the correct region to use. What we can say, therefore, on the
basis of this analysis, is only a conditional statement: if relative selection on
unobservables, δ, lies between 0 and 1, then the ‘true’ treatment effect might
be zero; if, on the other hand, the relative selection on unobservables, δ, is
larger than unity, then the ‘true’ treatment effect is certainly different from
zero. In the latter case, the treatment effect estimated from the intermediate
regression, 0.017 (row 1, column 3, Table 3), is unlikely to be wiped out
even after we take account of possible omitted variable bias. Our conclusion
would not change if we also used the NURR area (right side of top panel
in Table 4).
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The panels in Table 4 present results corresponding to those same rows
in Table 3. Thus the second panel in Table 4 corresponds to the second
row in Table 3, and so on. For rows where bounding sets are missing, it
is the case that the area of the URR region is zero. Hence, no unique real
roots exist. Thus, the bias-adjusted treatment effect could not be computed.
Hence, there is no bounding set. This means that for these cases, the method
proposed in this paper does not provide any guidance about the magnitude
of bias.

[Figure 4 about here]

5.2.2 Oster’s Identified Set is Misleading

The conclusions one would draw from the use of my method will be very
different from those that would emerge from using Oster’s method. One of
the key differences relate to the bounding set (what Oster calls the ‘identified
set’). Oster has reported bounding sets for the ‘true’ treatment effect in
column 5 in Table 3 in Oster (2019). To compute the bounding set according
to Oster’s methodology, one would need to find the roots of the quadratic
in (22) for a chosen value of δ and Rmax. Following Oster (2019), I choose
δ = 1 and Rmax = 0.61 – because these are the parameter values used
in panel A in Table 3 in Oster (2019). For these parameter values, I get
positive values of the discriminant. Hence, one cannot get a unique value
of the root for these parameter values and so, one cannot compute a unique
magnitude of β∗(δ = 1, Rmax = 0.61). This means that a unique identified
set cannot be computed. To highlight this difficulty, I report the values of
Rmax that would be necessary to make the discriminant 0 - the condition
that is stated in (26). As can be seen from columns 5 and 6 in Table 3,
the values of Rmax are largely meaningless. Only in row 4, do the values of
Rmax have meaningful magnitudes. But, then, there is no reason to choose
these particular values of Rmax for computing the bias. Hence, even these
meaningful magnitudes in row 4 are difficult to justify. The conclusion must
be that the ‘identified set’ reported in column 5 in Table 3 in Oster (2019)
are not meaningful.

If the quadratic in (22) does not have a unique root for δ = 1 and
Rmax = 0.61, then how can Oster (2019, column 5, Table 3) compute an
identified set? She does not explain this in the paper and so I can only
venture a guess. It seems that she has taken recourse to Assumption 3 to
generate a unique root. Assumption 3, in Oster (2019), states that the sign
of the covariance between the treatment variable and the actual index of
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observables is the same as the sign of the covariance between the treatment
variable and the predicted index of observables. The meaning and import
of this assumption is explained thus.

Effectively, this assumes that the bias from the unobservables is
not so large that it biases the direction of the covariance between
the observable index and the treatment. Under Assumption 3, if
δ = 1, there is a unique solution (Oster, 2019, pp. 194, emphasis
in original).

It is not clear how the sign restriction on the covariance between the treat-
ment variable and the index of observables can generate a unique root of
the quadratic equation in (22). Oster (2019) does not provide a proof of
this important claim. If we turn to the condition for a unique root given
in (26), we see that all variables in that equation, other than Rmax, are
given. This implies that the necessary and sufficient condition for a unique
root is a specific magnitude of Rmax - the magnitude that solves (26). A
sign restriction on the covariance between the treatment and the index of
observables cannot guarantee its existence.7

5.3 Does δ∗ Provide Useful Information?

Let us consider the second strategy proposed in Oster (2019), i.e. computing
and using δ∗ (the relative selection on unobservables that is consistent with
a zero treatment effect). In column 7 in Table 4, I have reported the values
of δ∗. The proposal in Oster (2019) is to use a value of δ∗ < 1 as evidence
that omitted variable bias is serious, and a value of δ∗ > 1 as evidence that
the problem of omitted variable bias can be ignored. The bounding sets
I have computed, and presented in Table 4, suggest that such conclusions
might be misleading.

In row 1, Table 3, the value of δ∗ is 0.366. If we followed Oster’s method-
ology, we would conclude that the reported estimate of the treatment effect
(0.017) is not reliable. Once we take account of omitted variable bias, the
true treatment effect is likely to be zero - this is what Oster’s method would
suggest. If we turn to the bounding sets reported in the top panel of Ta-
ble 4, we see that this conclusion is not wholly warranted. We see that

7In the STATA code that implements her method, she uses the condition that sign of
β̊ − β̃ must be the same as the sign of β̃ − β to choose one of the roots. Quite apart from
the fact that this is an ad hoc assumption, even this will not ensure that the condition in
(26) holds. Hence, even this ad hoc assumption, whose relationship to Assumption 3 is
itself not clear, will not guarantee a unique solution. Thus, the STATA code is incorrectly
picking up one of the solutions and artificially solving the problem of nonuniqueness.
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if δ > 1, the bounding set will not include zero. For instance, if one (or
several) of the omitted variables is such that it is strongly correlated with
the treatment variable (breastfeeding), then the relative degree of selection
on unobservables might very well be larger than unity. In that case, the
conclusion drawn on the basis of δ∗ = 0.366 would be incorrect.8

Let us contrast the above analysis with the analysis of row 3 in Table 3.
In this case, the treatment variable is LBW+preterm (low birth weight and
preterm birth). From column 7, we see that δ∗ = 1.36. If we followed Oster’s
methodology, we would conclude that the problem of omitted variable bias
is not serious. Turning to the third panel in Table 4, we see that such a
conclusion might not be warranted. To see why, let us think about how we
interpret the finding that δ∗ = 1.36. We interpret this to mean only a high
degree of selection on unobservables, i.e. δ = 1.36, could completely nullify
the reported treatment effect (-172.51) and make it zero. Underlying such
an argument is the implicit understanding that a lower degree of selection on
unobservables would not cause any problem. The results in the third panel
in Table 4 shows that if 0.01 ≤ δ ≤ 0.99, the bounding set for the ‘true’
treatment effect contains zero. Thus, even with a lower degree of selection on
unobservables, it is possible that the true treatment effect vanish. Hence,
if we use the computed value of δ∗ = 1.36 to conclude that the problem
of omitted variable bias is not serious, we would be drawing an incorrect
conclusion.

6 Concluding Comments

Omitted variable bias is an ubiquitous problem in applied econometric work.
Quantifying the magnitude of bias and computing bias-adjusted treatment
effects is an important area of research. Building on earlier work by Altonji
et al. (2005), in a recent contribution, Oster (2019) has proposed a novel
methodology to compute bias-adjusted treatment effect when there is pro-
portional selection on observables and unobservables. In this paper, I have
argued that while Oster (2019) posed the problem correctly, her proposed
solutions are problematic. I have instead proposed an alternative method-
ology to compute bounding sets for the true treatment effect. To conclude
the discussion, let me give a quick summary of the proposed methodology
for the benefit of applied researchers.

• Estimate the short regression by regressing the outcome variable on

8Recall that in Experiment 2, we have already seen a case where a δ∗ < 1 led to an
incorrect conclusion.
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the treatment variable (and exclude all controls). Store the coefficient
as β̊ and the R-squared as R̊.

• Estimate the intermediate regression by regressing the outcome vari-
able on the treatment variable and all the controls. Store the coefficient
as β̃ and the R-squared as R̃.

• Estimate an auxiliary regression by regressing the treatment variable
on all the controls. Store the variance of the residual as τX .

• Store the variance of the outcome variable as σ2y and the variance of
the control variable as σ2X .

• Form the cubic equation in (15).

• Choose δmin and δmax and construct the three bounded boxed depicted
in Figure 1. Identify the URR (unique real root) area and the NURR
areas in each box using the condition in Proposition 1.

• For each box, choose a N ×N grid to cover the URR area and solve
the cubic at each point on the grid. Collect the N2 × 1 vector of real
roots, ν, of the cubic equation. This gives the empirical distribution
of the treatment bias.

• Define β∗ = β̃ − ν and find the empirical distribution of the bias-
adjusted treatment effect. Use the empirical distribution of β∗ to
define bounding sets for the ‘true’ treatment effect.

The method outlined above will give bounding sets for three different
ranges of the magnitude of selection, 0 < δ < 1, 1 < δ < 2, and 2 < δ < 5. If
zero is not contained in any of these three bounding sets, then the researcher
can conclude with lot of confidence that the true treatment effect is different
from zero. If, on the other hand, zero is contained in each of the three
bounding sets, then the researcher would be sure that the problem of omitted
variable is serious enough to completely nullify whatever results she has
found.

In many cases, this happy outcome will not occur and researchers will
face ambiguity. This will arise when some of the bounding sets will and some
will not include zero. In such cases, a researcher will have to draw on knowl-
edge of the institutional details of the substantive issue under investigation
in identifying a correct range of δ. For instance, if a particular research
question has an omitted variable that is understood to be very important,
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then it might be justified to use δ > 1. If, on the other hand, the researcher
is sure that all important variables have been included in the model, and
hence, that the omitted variable is relatively less important, then a range of
δ < 1 might be justified.

I would like to end by pointing out a weakness of the method proposed
in this paper. The main drawback is that the method is conservative. The
bounds that are produced by this method are not sharp, they are expansive.
Of course this cannot be avoided unless we have more information about the
true value of δ. If we knew the true value of δ we would have been able to
produce a very sharp bounding set for the true β. Since we lack knowledge
about the true value of δ, we have to experiment with meaningful ranges
of values. No wonder, the bounding sets produced by this method are very
wide and conservative. This suggests that one fruitful direction for future
research to extend this methodology is to think of ways of forming relatively
precise estimates of δ (the degree of selection on unobservables). The more
precise values of δ we generate, the tighter bounds we can generate for the
true treatment effect, β.
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Table 1: Estimates of Bounding Set of the ‘True’ Treatment Effect in Ex-
periment 1 and Experiment 2

URR Region NURR Region
Lower Bound Upper Bound Lower Bound Upper Bound

(1) (2) (3) (4)

Panel A: Experiment 1

Region 1 0.009 0.093 -0.035 0.089
Region 2 0.346 0.441 0.419 0.812
Region 3 0.268 0.375 0.326 0.432
Memo: δ∗=3.374

Panel B: Experiment 2

Region 1 -0.011 0.097 -0.305 0.080
Region 2 0.252 0.279 0.262 0.318
Region 3 0.246 0.267 0.264 0.281
Memo: δ∗=0.736

Notes: This table reports the bounding set for the true treatment effect in
Experiment 1 and Experiment 2, both of which estimate the returns to edu-
cation by regressing log wage on education and a set of controls (for details
see section 5.1). In Experiment 1, I include 6 demographic variables but drop
mother’s education and father’s education from the baseline wage regression; in
Experiment 2, I include mother’s education and father’s education but drop the
other 6 demographic variables from the baseline wage regression. The value of
δ∗ is computed according to Proposition 3 in Oster (2019) using Rmax = 0.45.
URR region = unique real root region; NURR region = nonunique real root
region. See figure 1 for details.
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Table 2: Estimates of Bias with Equal Selection

Experiment 1 Experiment 2

(1) (2) (3) (4) (5) (6) (7) (8)

Rmax Disc Root1 Root2 Rmax Disc Root1 Root2

0.365 0.019 -0.961 0.001 0.187 0.001 -0.236 0.005
0.399 0.018 -0.936 0.005 0.230 0.001 -0.224 0.026
0.432 0.017 -0.910 0.010 0.273 0.001 -0.214 0.049
0.465 0.016 -0.886 0.015 0.315 0.001 -0.206 0.074
0.499 0.016 -0.861 0.020 0.358 0.001 -0.199 0.101
0.532 0.015 -0.837 0.025 0.401 0.001 -0.194 0.128
0.566 0.014 -0.813 0.030 0.444 0.002 -0.189 0.156
0.599 0.014 -0.789 0.036 0.487 0.002 -0.185 0.185
0.633 0.013 -0.766 0.042 0.529 0.002 -0.181 0.215
0.666 0.013 -0.743 0.049 0.572 0.002 -0.178 0.245
0.699 0.012 -0.720 0.056 0.615 0.003 -0.176 0.276
0.733 0.012 -0.698 0.063 0.658 0.003 -0.174 0.306
0.766 0.011 -0.676 0.071 0.701 0.003 -0.172 0.337
0.800 0.011 -0.655 0.079 0.743 0.004 -0.170 0.369
0.833 0.011 -0.634 0.088 0.786 0.004 -0.168 0.400
0.866 0.010 -0.614 0.097 0.829 0.005 -0.167 0.432
0.900 0.010 -0.594 0.107 0.872 0.005 -0.166 0.464
0.933 0.010 -0.575 0.118 0.914 0.006 -0.164 0.496
0.967 0.009 -0.556 0.129 0.957 0.006 -0.163 0.528

1 0.009 -0.538 0.140 1 0.007 -0.163 0.560

Memo: Rmax necessary for Disc=0

Experiment 1: -0.048 -24.498
Experiment 2: -0.002 -42.152

Notes: This table reports the magnitude of the discriminant (Disc)
and roots of the quadratic equation (Root1, Root2) that defines treat-
ment bias under equal selection (equation 26). The roots are computed
for 20 values of Rmax in the interval R̃+ 0.01 ≤ Rmax ≤ 1. For details
of Experiment 1 and Experiment 2, see section 5.1 and the footnote to
Table 1.
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Table 4: Bounding Set for True Treatment Effect in the Study of the
Impact of Maternal Behaviour on Child Outcomes

URR Region NURR Region
Lower Upper Lower Upper
Bound Bound Bound Bound

(1) (2) (3) (4)

IQ˜Breastfeed:R1 -0.038 0.017 -0.08 0.014
IQ˜Breastfeed:R2 0.301 0.318 0.315 0.379
IQ˜Breastfeed:R3 0.275 0.304 0.283 0.316

IQ˜Drink in Preg:R1 -0.218 0.048 -0.332 0.038
IQ˜Drink in Preg:R2 NA NA NA NA
IQ˜Drink in Preg:R3 4.788 5.316 4.87 5.811

IQ˜LBW+Preterm:R1 -0.124 0.017 -0.119 0.056
IQ˜LBW+Preterm:R2 NA NA NA NA
IQ˜LBW+Preterm:R3 NA NA NA NA

BW˜Smoking in Preg:R1 -171.086 525.835 -1873.559 -442.629
BW˜Smoking in Preg:R2 -884.723 -344.41 -166.342 519.094
BW˜Smoking in Preg:R3 -634.045 -310.65 -162.711 13.65

BW˜Drink in Preg:R1 -13.842 37.712 51.143 59.743
BW˜Drink in Preg:R2 -582.457 -477.48 -2350.762 -580.96
BW˜Drink in Preg:R3 -481.99 -224.473 -671.087 -385.222

Notes: This table reports the bounds for the ‘true’ treatment ef-
fect of maternal behaviour on child outcomes. Each panel in this
table corresponds to the same row in Table 3. The estimated treat-
ment effects are reported in Table 3 and in Oster (2019, Table 3).
IQ=standardized IQ score; BW=birthweight. For further details see
section 5.2. To estimate bias, the roots of the cubic in (15) are com-

puted over the following regions: R1=
{

0.01 ≤ δ ≤ 0.99; R̃ ≤ Rmax ≤ 1
}

;

R2=
{

1.01 ≤ δ ≤ 2.00; R̃ ≤ Rmax ≤ 1
}

; R3=
{

2.01 ≤ δ ≤ 5.00; R̃ ≤ Rmax ≤ 1
}

.
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Figure 1: The construction of a bounded box defined by δmin ≤ δ ≤ δmax and
R̃ ≤ Rmax ≤ 1, and its demarcation into the URR (unique real root) and
NURR (nonunique real root) area by the equation denoting the discriminant
of a cubic equation being zero (depicted by the green curves). The bounded
box is trifurcated by δmin ≤ δ < 1, 1 < δ ≤ 2 and 2 ≤ δ ≤ δmax.
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Figure 2: The figure identifies the region of unique real root (top panel) and
plots the histogram and empirical density function (red solid line) of β∗ (bot-
tom panel) for Experiment 1 (for details see section 5.1). In the top panel,
the white region identifies all the possible combinations of (δ,Rmax) such
that the cubic equation defining the treatment effect has a unique real root;
the violet region identifies the area where a unique real root does not exist.
In Experiment 1, I include 6 demographic and family background variables
but drop mother’s education and father’s education from the baseline wage
regression.
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Figure 3: The figure identifies the region of unique real root (top panel)
and plots the histogram and empirical density function (red solid line) of
β∗ (bottom panel) for Experiment 2 (for details see section 5.1). In the top
panel, the white region identifies all the possible combinations of (δ,Rmax)
such that the cubic equation defining the treatment effect has a unique real
root; the violet region identifies the area where a unique real root does not
exist. In Experiment 2, I include mother’s education and father’s education
but drop the other 6 demographic and family background variables from the
baseline wage regression.
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Figure 4: The figure identifies the region of unique real root (top panel) and
plots the histogram and empirical density function (red solid line) of β∗ (bot-
tom panel) for impact of maternal behaviour on IQ score of the child (for
details, see section 5.2). In the top panel, the treatment is months of breast-
feeding, in the middle panel, the treatment is drinking during pregnancy, and
in the bottom panel, the treatment is low birth weight and premature. The
color coding is the same as in Figure 2.
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Figure 5: The figure identifies the region of unique real root (top panel)
and plots the histogram and empirical density function (red solid line) of β∗

(bottom panel) for impact of maternal behaviour on birthweight of the child
(for details, see section 5.2). In the top panel, the treatment is smoking
during pregnancy, and in the bottom panel, the treatment is drinking during
pregnancy. The color coding is the same as in Figure 2.
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A Unique Real Root of a Cubic Equation

Solving cubic equations is common in the engineering literature and for this
presentation I draw partly on Hellesland et al. (2013, Appendix 1). Consider
the cubic equation in t,

at3 + bt2 + ct+ d = 0, (33)

where a 6= 0. Divide through by a to get

t3 +
b

a
t2 +

c

a
t+

d

a
= 0. (34)

A change of variable,

x = t+
b

3a
,

can convert this into a ‘depressed’ cubic,

x3 + px+ q = 0, (35)

where,

p =
3ac− b2

3a2

q =
27a2d+ 2b3 − 9abc

27a3
.

To solve (35), we will express x as the difference of two numbers, i.e. x =
a− b. Since,

(a− b)3 + 3ab (a− b)−
(
a3 − b3

)
= 0, (36)

we will get back (35) from (36), where x = a − b, if the following two
conditions are satisfied:

ab =
p

3
(37)

and
a3 − b3 = −q. (38)

Thus, if we are able to solve for a and b in terms of p and q, we will be able
to get x = a − b, and from that we will be able to finally get the value of
t = x− (b/3a).

Note that the above two conditions, (37) and (38), show that the sum
and product of a3 and (−b)3 are −q and −p3/27, respectively. But this
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means that a3 and (−b)3 are the roots of the following quadratic equation
in y,

y2 + qy − p3

27
= 0. (39)

Denoting one of the roots of the quadratic as a3, we have,

a3 = −q
2

+

√
q2

4
+
p3

27
= U1

and denoting the other root as −b3, we get

−b3 = −q
2
−
√
q2

4
+
p3

27
,

so that

b3 =
q

2
+

√
q2

4
+
p3

27
= U2.

The solutions of the cubic equation (33) will depend on the sign of the
discriminant

D3 =
q2

4
+
p3

27
=

27q2 + 4p3

108
. (40)

Proposition 5. If D3 > 0, then the cubic equation has one real root and
two complex roots. The unique real root is given by

t1 =
3

√
−q

2
+

√
q2

4
+
p3

27
−

3

√
q

2
+

√
q2

4
+
p3

27
− b

3a
,

and the complex roots are given by

t2 = ω
3

√
−q

2
+

√
q2

4
+
p3

27
− ω2 3

√
q

2
+

√
q2

4
+
p3

27
− b

3a
,

and

t3 = ω2 3

√
−q

2
+

√
q2

4
+
p3

27
− ω

3

√
q

2
+

√
q2

4
+
p3

27
− b

3a
,

where ω is the cube root of unity given by

ω = ei
2π
3 = −1

2
+

√
2

3
i

and i =
√
−1.
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Proof. To see this, note that the possible pairs of (a, b) that will satisfy (37)
and (38) are(

3
√
U1,

3
√
U2

)
,
(
ω 3
√
U1, ω

2 3
√
U2

)
,
(
ω2 3
√
U1, ω

3
√
U2

)
.

Since D3 > 0, U1 and U2 are real numbers. Hence, the unique real value of
x is given by

x = a− b = 3
√
U1 − 3

√
U2 =

3

√
−q

2
+

√
q2

4
+
p3

27
−

3

√
q

2
+

√
q2

4
+
p3

27

and the corresponding unique real root of the original cubic equation (33)
is given by

t =
3

√
−q

2
+

√
q2

4
+
p3

27
−

3

√
q

2
+

√
q2

4
+
p3

27
− b

3a
.

The other two roots will be complex conjugate numbers because they involve
ω.

An immediate corollary follows. Cubic equations with real coefficients
can have either one or three real roots. Complex roots occur in conjugate
pairs. Thus, when the cubic has only real roots, i.e. three real roots, it will
be the case that D3 ≤ 0.
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