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Bias-Adjusted Treatment Effects Under Equal

Selection

Deepankar Basu∗

February 28, 2021

Abstract

In a recent contribution, Oster (2019) has proposed a method to gen-
erate bounds on treatment effects in the presence of unobservable con-
founders. The method can only be implemented if a crucial problem of
non-uniqueness is addressed. In this paper I demonstrate that one of
the proposed methods to address non-uniqueness that relies on com-
puting bias-adjusted treatment effects under the assumption of equal
selection on observables and unobservables, is problematic on several
counts. First, additional assumptions, which cannot be justified on the-
oretical grounds, are needed to ensure a unique solution; second, the
method will not work when estimate of the treatment effect declines
with the addition of controls; and third, the solution, and therefore
conclusions about bias, can change dramatically if we deviate from
equal selection even by a small magnitude.
Keywords: treatment effect, omitted variable bias.
JEL Codes: C21.

1 Introduction

Researchers are often interested in estimating treatment effect in models

where there are clear problems of unobserved or unobservable confounders.

∗Department of Economics, University of Massachusetts Amherst. Email:
dbasu@econs.umass.edu
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To fix ideas, consider the following model,

Y = βX + Ψω0 +W2 + ε, (1)

where Y is the outcome variable, X is the treatment variable of interest, ω0

is a J × 1 vector of observed controls, and W2 is an unobserved confounder.

Suppose a researcher is interested in consistently estimating β, but is unable

to do so because of the presence of the unobservable confounder, W2 (which

can be thought of as an index of a set of unobservable variables), int his

hypothetical ‘long’ regression model.

Faced with this problem, researchers often compare the ordinary least

square (OLS) estimate of β between a ‘short’ and an ‘intermediate’ regres-

sion, where the short regression is given by

Y = β̄X + ε̄, (2)

in which both the observable and unobservable controls, i.e. ω0 and W2, are

missing from the model, and the intermediate regression is given by

Y = β̃X + Ψ̃ω0 + ε̃, (3)

in which only the unobservable control, W2, is missing from the model. If

the numerical magnitude of β̃ and β̄ are roughly similar, i.e. the estimate of

the treatment effect is ‘stable’, researchers conclude that the bias from the

omitted, unobservable confounder is small.

In a recent, innovative contribution, Oster (2019) has demonstrated that
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such ‘coefficient stability’ arguments to deal with possible omitted variable

bias is misleading.1 In fact, what is needed to draw conclusions about the

magnitude of possible bias due to the unobservable confounder is not the

raw change in the estimate of the treatment effect, but an R-squared scaled

change in the estimate of the treatment effect between the short and inter-

mediate regressions. This becomes clear when we write the expression for

the omitted variable bias in the OLS estimate of the treatment effect in the

intermediate regression in terms of the R-squared in the short, intermediate

and long regressions, and relevant coefficients in the long regression. A little

algebraic manipulation generates a cubic equation in the bias (of the OLS

estimate of the treatment effect in the intermediate regression).

A cubic equation with real coefficients will have either one or three real

roots. When the cubic equation has a unique real root, the researcher is able

to identify the bias, and hence the bias-adjusted treatment effect, without

any ambiguity. When the cubic equation has three real roots, the researcher

is confronted with the problem of non-uniqueness. She will need a reliable,

theoretically valid method to choose between the multiple solutions. If there

is no way of choosing between the multiple solutions, then the proposed

methodology will not work.

Oster (2019, pp. 193) is aware of this issue and proposes two approaches

to deal with the problem of non-uniqueness. To understand her proposals, let

us denote by δ, a measure of proportional selection, i.e. a suitably defined

ratio of the importance of the unobservable confounder and the observed

controls in explaining the variation of the treatment variable. Oster (2019)

1Oster (2019) extends previous work by Altonji et al. (2005).
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argues that there are two scenarios under which we will get unique solutions.

She recommends researchers to use either of these methods to pin down

the unique solution and make informed statements about the magnitude of

omitted variable bias.

The first method involves computing the bias-adjusted treatment effect

under the twin assumptions of δ = 1 (equal selection on observables and un-

observables) and a sign restriction (which is stated as Assumption 3 in her

paper). In this case, Oster (2019, pp. 194) argues, we can arrive at a unique

solution for the bias in the treatment effect and can therefore compute a

unique bias-adjusted treatment effect. In actual examples, Oster (2019)

shows how this can be useful for putting bounds on the ‘true’ treatment

effect. For instance, if moving from the short to the intermediate regression,

a researcher notes that the estimate of the treatment effect moves towards

zero, then an interesting question would be to see if the interval formed by

the estimate from the intermediate regression and the bias-adjusted esti-

mate of the treatment effect includes zero. If it does, then that would raise

questions about any research that reports a non-zero treatment effect.

The second method relies on choosing some value of Rmax (the magni-

tude of R-squared in the hypothetical long regression), and calculating the

magnitude of δ, i.e. proportion of selection due to unobservables, that would

be consistent with β = 0 (no treatment effect). In this case, Oster (2019)

shows that we are able to find a unique magnitude of proportional selection

that would make the treatment effect vanish. For instance, if the computed

magnitude of δ is 2, it means that a reported non-zero treatment effect

would, in reality, be zero only if the unobservable confounder was twice as
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important as the observed controls in explaining the variation in the treat-

ment variable. In many cases, it might be possible to rule out such large

effects for unobservable confounders on intuitive grounds and thus assert the

robustness of the reported results.

Both these methods promise to be enormously useful for applied re-

searchers because they provide workable solutions for the pervasive and

rather intractable problem of omitted variable bias (Basu, 2020). That is

why the method proposed by Oster (2019) has been widely noted in eco-

nomics and the social sciences.2 Unfortunately, as I demonstrate in this

note, the first method to deal with non-uniqueness, i.e. computation of

bias-adjusted treatment effect under the assumption of equi-proportional

selection, δ = 1, is fraught with serious problems. First, without additional

assumptions, it is not possible to ensure the existence of a unique solution.

But these assumptions cannot be justified either on theoretical or empirical

grounds. Second, once these assumptions are imposed, there is no leeway for

researchers to experiment with different values of Rmax because a specific

value of Rmax gets pinned down. Third, the method will not work for cases

where estimates of the treatment effect declines with the addition of control

variables. Finally, there is a sharp discontinuity at δ = 1, i.e. conclusions

can change dramatically if δ is perturbed even slightly from the value of

unity.

Given these problems, my conclusion is that if researchers wish to use

2On Professor Oster’s google scholar page, the paper shows 1611 citations. Here are
just a few examples: Galor and Ozak (2016); Michalopoulos and Papaioannou (2016);
Goldsmith-Pinkham et al. (2019); Jaschke and Keita (2021). Papers published before
2019 cite different working paper versions of Oster (2019).
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the methodology proposed by Oster (2019) to address the problem of bias

in treatment effect they should avoid computing bias-adjusted treatment

effect under equal selection. Instead, they should use one of the following

alternatives: (a) compute roots of the cubic equation for a plausible range of

combinations of Rmax (R-squared in the hypothetical long regression) and δ

(measure of proportional selection between unobservables and observables),

keeping δ bounded away from unity, see if a unique real root emerges, and

investigate robustness using the set of unique real roots; (b) use the second

method proposed in Oster (2019), i.e. compute δ that is consistent with

β = 0 (treatment effect is zero) for a plausible range of values of Rmax, and

argue on intuitive or theoretical grounds about the plausibility of such a δ.

When they use this second method, it is important that they do not use

δ = 1 as a benchmark.

The rest of the paper is organized as follows. In the next section, I

discuss the basic set-up; in the following section I investigate the case of

equi-proportional selection; in the final section I conclude with some sugges-

tions for applied researchers who intend to use the innovative methodology

proposed by Oster (2019).

2 Basic Set-Up

Consider once again the hypothetical ‘long’ regression,

Y = βX + Ψω0 +W2 + ε, (4)
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and denote by Rmax, the R-squared from the long regression. Consider the

‘short’ regression,

Y = β̄X + ε̄, (5)

and denote as R̄, the R-squared from the short regression. In a similar

manner, consider an intermediate regression,

Y = β̃X + Ψ̃ω0 + ε̃, (6)

and denote by R̃, the R-squared from the intermediate regression. Note that

Rmax ≥ R̃ ≥ R̄ (Greene, 2012, Theorem 3.6, pp. 42). Finally, consider an

auxiliary regression,

X = αω0 + u, (7)

and denote by X̃, the residual from this auxiliary regression. Let τ̂X denote

the variance of X̃, σ2X denote the variance of X and σ2Y denote the variance

of Y , and note that σ2X > τX . Following Oster (2019), let us define the

measure of proportional selection as,

δ =
σ2X/σ

2
2

σ1X/σ21
(8)

where σ1X = cov (W1, X), σ2X = cov (W2, X), σ21 = var (W1), and σ22 =

var(W2), and W1 = Ψω0 (an index of the observable controls).

Using the well-known formula for omitted variable bias in the short and

intermediate regressions, we can write expressions for the asymptotic bias

in β̄ and β̃ in terms of coefficients in the hypothetical long regression and

7



coefficients in several auxiliary regressions. The innovation introduced by

Oster (2019) is to rewrite the expression for the bias in the intermediate re-

gression using the R-squared in the short, intermediate and long regressions.

A little algebraic manipulation then generates a system of 3 equations in 3

unknowns: σ21, the variance of W1; σ1X , the covariance of W1 and X (treat-

ment variable); and ν (the bias of the treatment effect in the intermediate

regression). Finally, we can reduce the three equations into a single cubic

equation in ν given by,

aν3 + bν2 + cν + d = 0, (9)

where

a = (δ − 1)
(
τXσ

2
X − τ2X

)
(10)

b = τX

(
β̄ − β̃

)
σ2X (δ − 2) (11)

c = δ
(
Rmax − R̃

)
σ2Y
(
σ2X − τX

)
−
(
R̃− R̄

)
σ2Y τX − σ2XτX

(
β̄ − β̃

)2
(12)

d = δ
(
Rmax − R̃

)
σ2Y

(
β̄ − β̃

)
σ2X (13)

The cubic equation in (9) will have either one real root or three real

roots.3 In the case when there is only one real root, denote it by ν1. If

β∗ = β̃−ν1, then β∗
p−→ β, so that ν1 is the asymptotic bias in the treatment

effect estimated by the intermediate regression. Hence, β̃ − ν1 is the bias-

3In any specific analysis, both Rmax and δ are unobserved. All other parameters
that determine the coefficients of the cubic will come from the output of the short and
intermediate regressions. Hence, researchers will have to choose specific values of Rmax

and δ to compute the roots of the cubic.
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adjusted treatment effect (which will converge in probability to the true

treatment effect, as proved in Proposition 2 in Oster (2019)). In the case

when the cubic equation has three real roots, ν1, ν2, ν3, then only one of

these will give us the asymptotic bias in the treatment effect. Hence, only

one of the following, β̃ − ν1, β̃ − ν2 and β̃ − ν2, will be the bias-adjusted

treatment effect. Without more information or assumptions, a researcher

will not be able to unambiguously find the bias-adjusted treatment effect

or develop a meaningful bounding argument (because there will be multiple

bounding sets to choose from and the union of all these sets is likely to be

too large to be informative).

Oster (2019, pp. 194) proposes two approaches to deal with the problem

of non-uniqueness. First, if we calculate the magnitude of δ that would be

consistent with β = 0, we would be able to find a unique magnitude of

proportional selection that would make the treatment effect vanish. This

result is proved in Proposition 3 in Oster (2019). The second approach asks

us to compute the bias-adjusted treatment effect, i.e. β∗ = β̃ − ν1, under

the assumption that δ = 1 and the additional sign restriction that,

sign
(
cov

(
X, Ŵ1

))
= sign (cov (X,W1)) , (14)

where Ŵ1 is the estimated value of W1. Oster (2019, pp. 194) argues that

we will arrive at a unique solution following this second approach, i.e. there

will be a unique solution ν1, so that β̃ − ν1 will be the unique bias-adjusted

treatment effect. The paper does not offer a proof of this important claim.

So, let us investigate it in detail.
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3 Equi-Proportional Selection

3.1 What is the Solution?

When there is equal selection on observables and unobservables, we will

have δ = 1. What will be the solution for bias under equal selection? If we

impose the restriction that δ = 1 on the coefficients of the cubic in (9) we

get,

a = 0

b = −τX
(
β̄ − β̃

)
σ2X

c =
(
Rmax − R̃

)
σ2Y
(
σ2X − τX

)
−
(
R̃− R̄

)
σ2Y τX − σ2XτX

(
β̄ − β̃

)2
d =

(
Rmax − R̃

)
σ2Y

(
β̄ − β̃

)
σ2X ,

which converts the cubic in (9) to a quadratic equation in ν,

b1ν
2 + c1ν + d1 = 0, (15)

where the coefficients of this quadratic are given by,

b1 = −τX
(
β̄ − β̃

)
σ2X (16)

c1 =
(
Rmax − R̃

)
σ2Y
(
σ2X − τX

)
−
(
R̃− R̄

)
σ2Y τX − σ2XτX

(
β̄ − β̃

)2
(17)

d1 =
(
Rmax − R̃

)
σ2Y

(
β̄ − β̃

)
σ2X . (18)
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The solutions of the quadratic in (15) are given by

ν =
−c1 ±

√
c21 − 4d1b1

2b1
,

which are noted in Corollary 1 in Oster (2019, pp. 193). Our first result is

that the solution of the quadratic equation in (15) is always real.

Proposition 1. The quadratic equation in (15) either has a unique real root

or two distinct real roots. It does not have any complex roots.

Proof. The proof follows by noting that the discriminant of this quadratic

equation is non-negative, i.e. c21 − 4d1b1 ≥ 0, because c21 ≥ 0, and

−4d1b1 = −4
{(
Rmax − R̃

)
σ2Y

(
β̄ − β̃

)
σ2X

}{
−τX

(
β̄ − β̃

)
σ2X

}
= 4

(
Rmax − R̃

)
σ4Xσ

2
Y τX

(
β̄ − β̃

)2
≥ 0

where the last inequality follows because Rmax ≥ R̃.

The implication of this result is that, in general, there will be two real

roots of the quadratic equation in (15). Hence, in general, there will be

two values of the bias in the treatment effect, and hence two values of the

bias-adjusted treatment effect, when there is equal selection on observables

and unobservables. Without further assumptions, it is not possible to arrive

at a unique solution for the bias or the bias-adjusted treatment effect. So,

we need to investigate the following question: what conditions are necessary

to give us an unique solution for the quadratic in (15)? The unique root will

11



arise if and only if the discriminant of the quadratic equation is identically

equal to zero. I now show that the discriminant can be zero only if we impose

additional assumptions. These assumptions are difficult to justify on either

theoretical or empirical grounds, and therefore raise questions about the

logic of the bounding argument.

3.2 Condition for Unique Solution

For the quadratic equation in (15) to have a unique real solution, the dis-

criminant must be zero, i.e.,

{(
Rmax − R̃

)
σ2Y
(
σ2X − τX

)
−
(
R̃− R̄

)
σ2Y τX − σ2XτX

(
β̄ − β̃

)2}2

+ 4
(
Rmax − R̃

)
σ4Y τX

(
β̄ − β̃

)2
= 0.

Defining Z = Rmax − R̃, we can write the above condition as a quadratic

equation in Z,

A2Z2 + (2AB + 4C)Z +B2 = 0, (19)

where

A = σ2Y
(
σ2X − τX

)
> 0 (20)

B = −
[(
R̃− R̄

)
σ2XτX + σ2XτX

(
β̄ − β̃

)2]
< 0 (21)

C = σ2Y

(
β̄ − β̃

)
σ2X . (22)
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The two roots of (19) are given by

Z1, Z2 =
− (2AB + 4C)±

√
(2AB + 4C)2 − 4A2B2

2A2
. (23)

Note that the discriminant of the quadratic equation in (19) reduces to

16C2 + 16ABC. Since B < 0, it is possible, though not necessary, for the

discriminant, 16C2 + 16ABC, to be negative.4 Hence, there are two cases

to consider.

Case 1. If the discriminant is negative, then both the roots of (19),

Z1, Z2, are complex numbers. In this case, the uniqueness analysis falls

through. This is because it is meaningless to entertain the possibility that

Z = Rmax − R̃ is a complex number. What does this mean? Since R̃ is

a known real number, this implies that there is no real value of Rmax that

would make the discriminant of the quadratic equation in (15) to be zero.

Hence, in this case, there does not exist a unique magnitude of the bias

in the treatment effect, ν, and hence, it is not possible to find a unique

bias-adjusted treatment effect, β∗.

Case 2. If the discriminant is nonnegative, then both the roots of (19),

Z1, Z2, are real. Thus, there exists real values of Rmax which would give

a unique value of the bias, and hence, the bias-adjusted treatment effect.

But not all possible values of Rmax are permissible. We know that Rmax is

never smaller than R̄. Hence, we need necessary conditions to ensure that

the solutions of (19) are nonnegative. This is given in

4Since R̃ ≥ R̄, the term in the square bracket in the definition of B is positive. Hence,
B < 0.

13



Proposition 2. If β̄ < β̃, then then both roots of (19) are real. One of

these roots will be nonnegative only if

σ2Y
(
σ2X − τX

) [(
R̃− R̄

)
σ2XτX + σ2XτX

(
β̄ − β̃

)2]
+ 2σ2Y

(
β̄ − β̃

)
σ2X ≤ 0. (24)

Proof. To see the first part, note that if β̄ < β̃, then C < 0. Hence C2 +

ABC ≥ 0. Hence, the discriminant of (19) is nonnegative. To see the

second part, note that since the denominator of the expression for the roots

in (23) is always positive, the sign of the roots are the same as the sign of

the numerator. If 2AB + 4C > 0, then the numerator is negative because

the expression within the square root in (23) is nonnegative and less than

2AB + 4C. Hence, we have the following: 2AB + 4C > 0 =⇒ Z1 <

0 and Z2 < 0. The contrapositive of this statement gives us: Z1 ≥ 0 or Z2 ≥

0 =⇒ 2AB + 4C ≤ 0. Hence, 2AB + 4C ≤ 0 is the necessary condition for

at least one root being nonnegative. Plugging the expression for A,B and

C, this becomes

σ2Y
(
σ2X − τX

) [(
R̃− R̄

)
σ2XτX + σ2XτX

(
β̄ − β̃

)2]
+ 2σ2Y

(
β̄ − β̃

)
σ2X ≤ 0,

which is the expression in (24).

The above analysis has important implications. If δ = 1, i.e. there is

equal selection on observables and unobservables, and the condition in (24)

is satisfied, then either Rmax − R̃ will be given by the positive root of (19)

when one of the two roots is negative, or Rmax − R̃ will attain two positive
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values given by both the roots of (19) when both roots are positive. In

either case, once we choose to impose the restriction that δ = 1, then there

will either be a unique value of Rmax or two possible values of Rmax that

are permissible. The choice of δ = 1 implies these specific values of Rmax.

Researchers are no longer at liberty to choose any other value of Rmax.

This raises questions about some of the examples discussed in Oster

(2019). For instance, in section 4.2, the bounding argument about treat-

ment effects is explained through a discussion of the impact of maternal

behaviour on child outcomes. The results reported in Table 3 include, in

column 5, computations of β∗ (Rmax, 1), where Rmax is chosen as 0.61 in

panel A and as 0.53 in panel B. These specific values of Rmax are chosen

from existing studies that have reported regressions with sibling fixed effects

when investigating the effect of maternal behaviour on child outcomes. In

a similar manner, the discussion in section 5 computes bias-adjusted treat-

ment effects for δ = 1 under different choices of Rmax. For instance, the

results reported in Table 5 use two different values of Rmax. In column 3,

Rmax = R̃+
(
R̃− R̄

)
, and in column 4, Rmax = 1.3R̃.

The results reported in this paper in proposition 1 and proposition 2

show that researchers cannot choose values for Rmax arbitrarily once they

choose to fix the value of δ at 1. Meaningful values of Rmax can only arise

from using the positive, real roots of the quadratic equation in (15). It is not

clear that the choice of Rmax used by Oster (2019) respects this restriction.

This raises questions about the conclusions of the paper.

There is an additional angle to consider with regard to the analysis of

bias under the assumption of equal selection and this is highlighted in the
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next result.

Corollary 1. If the estimate of the treatment effect declines with the ad-

dition of controls, i.e. if β̄ > β̃, then a meaningful bias-adjusted treatment

effect cannot be computed under the assumption of equal selection.

Proof. Note, first, that if β̄ > β̃, it is no longer guaranteed that (19) will

have real roots. Consider, further, the necessary condition in (24) and note

that if β̄ > β̃, then the condition cannot be satisfied. This is because the

second term

2σ2Y

(
β̄ − β̃

)
σ2X

is positive. Since σ2X > τX and Rmax ≥ R̃, the first term

σ2Y
(
σ2X − τX

) [(
R̃− R̄

)
σ2XτX + σ2XτX

(
β̄ − β̃

)2]

is always positive. Hence the expression on the left hand side of the condi-

tion in (24) is positive. An application of proposition 2 then shows that the

quadratic equation in (19) cannot have meaningful roots. This, in turn, im-

plies that the discriminant of the quadratic equation in (15) cannot be zero.

This implies that the quadratic equation in (15) cannot have a unique root.

Hence, a meaningful bias-adjusted treatment effect cannot be computed.

The implication of this corollary is that other than in cases where the

treatment effect falls with the addition of controls, i.e. β̄ > β̃, the uniqueness

of the solution is impossible. Thus, if for some research it is found that the

treatment effect decreases with the addition of controls, for instance from

0.75 to 0.15, then we can be sure that for this particular research a unique
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bias-adjusted treatment effect cannot be computed under the assumption

of equal selection. It is interesting to note that in all the cases reported in

Table 5 in Oster (2019, pp. 202), β̄ < β̃. That is why the reported bias-

adjusted treatment effects are meaningful. If instead, we had β̄ > β̃, then

those results would break down.

3.3 Discontinuity at Equal Selection

There is a further problem in using equal selection on observables and un-

observables that I would like to highlight. To see this, let us explicitly write

the solutions of the cubic equation in (9) using Cardano’s formulas,5

ν =
3

√√√√( −b3
27a3

+
bc

6a2
− d

2a

)
+

√(
−b3
27a3

+
bc

6a2
− d

2a

)2

+

(
c

3a
− b2

9a2

)3

+
3

√√√√( −b3
27a3

+
bc

6a2
− d

2a

)
−

√(
−b3
27a3

+
bc

6a2
− d

2a

)2

+

(
c

3a
− b2

9a2

)3

− b

3a
, (25)

where the expressions for a, b, c and d are given in (10), (11), (12) and (13).

Returning to the quadratic equation in (15), we note that its solutions are

given by

ν =
−c1 ±

√
c21 − 4d1b1

2b1
, (26)

where b1, c1 and d1 are given by (16), (17), and (18).

The roots in (25) and (26) are very different because they come from two

different equation systems. If a researcher works with the cubic equation

5See https://math.vanderbilt.edu/schectex/courses/cubic/
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and uses values of δ close to unity the roots she finds will be very different

from those that will arise if she works with the quadratic equation, where

δ = 1. Both the magnitude and sign of the real roots can be different

when the researcher perturbs δ by a very small magnitude starting from a

value of unity. Hence there is a discontinuity in the root of the equation

system at δ = 1. Since the root of the equation system, whether cubic

or quadratic, gives us the treatment bias, researchers will arrive at very

different conclusions depending on whether they use δ = 1 or δ = 1± ε, for

a small ε > 0. This raises serious questions about the usefulness or validity

of using the condition of equal selection at all in the analysis, and especially

using it as a useful benchmark.

To illustrate this point, let me present an example with the following

values of the parameters: β̄ = 1.907, β̃ = 0.964, R̄ = 0.196, R̃ = 0.497,

σ2X = 0.209, τX = 0.401, σ2Y = 3.809. I choose to use Rmax = 0.85. Using

these parameter values, when I calculate the roots for the case of δ = 1, I get

two real roots: −22.137 and 2.414. Using the same parameter values, when

I calculate the roots for the case of δ = 1.01, I get one real root, −1.406,

and two complex roots, 2.810−10.713i and 2.810 + 10.713i. Using the same

parameter values, once again, when I calculate the roots for the case of

δ = 0.99, I get three real roots, −62.834, 16.987 and −1.454. This shows

how moving from δ = 0.99 to δ = 1.00 to δ = 1.01 change the conclusions

about the magnitude and sign of bias dramatically, raising serious questions

about the robustness of the procedure.
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4 Concluding Comments

There are four points to take away from the analysis in this paper. First,

the claim in Oster (2019, pp. 194) that the sign restriction in (14) and

the assumption of δ = 1 together give a unique solution for the bias in

the treatment effect is unlikely to be true. To generate a unique solution

under the assumption of δ = 1 requires a precise quantitative relationship

between Rmax and a host of other parameters like R̄, R̃, σ2X , τX , β̄, and β̃.

The precise quantitative relationship is given by the roots of (19) and the

additional condition captured by (24) that needs to be imposed to ensure a

meaningful solution. On its own, a sign restriction like (14) cannot ensure

these quantitative relationships. Hence, the claim in Oster (2019) that “...

calculating the bias-adjusted effect under the assumption of δ = 1, with

Assumption 3 active ... will provide a unique solution” seems to be false.6

The second point to note is that under the assumption of δ = 1, there

will, in general, be two real magnitudes of the bias in the treatment ef-

fect, as demonstrated in Proposition 1. Since there is no unique magnitude

of the bias-adjusted treatment effect, researchers cannot construct unique

bounding intervals and investigate whether zero is contained in the bound-

ing interval. If a researcher wants to generate a unique magnitude for the

bias of the treatment effect under the assumption of equal selection, i.e.

δ = 1, then additional assumptions will need to be imposed. But once

these assumptions are imposed they imply very specific values of Rmax, viz.

those that are captured by the roots of (19), assuming that they are real

6In Oster (2019), Assumption 3 refers to what we have expressed in this paper as the
assumption in (14).
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and positive (captured by the condition in proposition 2). There are no

theoretical or empirical reasons to assume that the choice of Rmax by any

researcher in any specific analysis would satisfy this specific condition. More

importantly, researchers are not at liberty to choose other values of Rmax to

conduct robustness analyses. This seriously restricts the usefulness of the

bounds argument if we impose the condition of equal selection on unobserv-

ables and observable, i.e. δ = 1.

The third point to note is that the method, with all its restrictive fea-

tures, will work when the estimate of the treatment effect declines with the

addition of controls to the regression model. This is because if β̄ > β̃, then

it is no longer possible to compute a meaningful and unique magnitude of

bias (see corollary 1). This rules out the usefulness of this method for a

large subset of existing and future studies. The final point to note is that

there is a sharp discontinuity at δ = 1. This means that the conclusions of

the analysis can change dramatically even when researchers change δ by a

very small magnitude around the value of δ = 1. The drastic change can

manifest itself either in a change in the magnitude of the bias or in a rever-

sal of sign of the bias. Taken together, the second, third and fourth points

suggest that researchers should not use equal selection on observables and

unobservables, i.e. δ = 1, when studying the problem of bias in treatment

effects due to unobserved confounders.

The upshot is that when researchers use the methodology proposed by

Oster (2019) to deal with omitted variable bias, they should not use the

method of computing bias-adjusted treatment effects under the assumption

of equi-proportional selection, i.e. δ = 1. The theoretical justification for
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this method is weak and it is likely to lead to misleading conclusions. In-

stead, applied researchers can do one of the following two things. First, they

can compute the roots of the cubic equation in (9) for a range of plausible

combinations of Rmax and δ and see if they arrive at unique real roots. If

they do, then they will be able to compute unique bias-adjusted treatment

effects for each such combination. If the results do not change qualitatively

across these combinations, e.g. if zero is excluded from all the bounding

sets, then their results are robust to the omitted variable bias. Second, if

they do not get unique real roots, they might instead use the method of

computing δ (magnitude of proportional selection), as proposed by Oster

(2019), that makes the treatment effect zero for a range of plausible values

of Rmax and argue why or why not such a δ is unrealistic. When using this

second method, it is necessary for researchers to avoid any reference to the

case of δ = 1 as a benchmark. It is not a meaningful benchmark to use.
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