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Imperfect information and learning:
Evidence from cotton cultivation in

Pakistan

Amal Ahmad∗

February 2021

Abstract

Information problems are pervasive in developing economies and can hinder pro-
ductivity growth. This paper studies how much rural producers in developing
countries can learn from their own experience to redress important informa-
tion gaps. It builds a model of learning from experience and applies it using a
rich dataset on cotton farmers in Pakistan. I test whether farmers learn from
cultivation experience about the pest resistance of their seeds and use this in-
formation to improve selection and productivity. I find no such learning effect
and this conclusion is robust to several parameters that could signal learning.
The findings document the difficulty of parsing out and processing information
from cultivation experience alone and point to the importance of information
provision to producers by the government or external agencies.

1 Introduction

Economic development is a process characterized by potentially severe and per-

sistent information failures for both private and public agents. Given the salience

∗Department of Economics, University of Massachusetts Amherst. Email: amalah-
mad@umass.edu. I am grateful to Daniele Girardi, James Heintz, Peter Skott, Emily Wang, Ina
Ganguli, Arslan Razmi, Mariam Majd, and two anonymous referees for very helpful comments on
earlier drafts of this paper, as well as the participants of the Analytical Political Economy Work-
shop. I also wish to thank David Spielman of the International Food Policy Research Institute for
graciously answering questions about the dataset. All remaining errors are my own.
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of agricultural production in developing countries, the information failures faced by

farmers are particularly important to understand. A large literature exists on the in-

formation problems that farmers in Africa, South Asia, and other parts of the world

face in securing credit (Ghosh et al, 2000), in managing risk (Poole, 2017), and in

learning and adapting agricultural technologies (Foster and Rosenzweig, 2010).

This paper contributes to the latter literature, on how producers in developing

countries learn to adapt and effectively use technology, with a focus on imperfectly

known seed-based technologies. Seed technologies arise out of mechanical hybridiza-

tion or lab-based genetic engineering and can improve characteristics such as resis-

tance to pests, reduction of spoilage, or nutrient profile. Developing countries account

for the majority of GMO crop production in the world in terms of acreage and pro-

duction (ISAAA, 2017) but regulatory mechanisms in these countries are notoriously

weak including around seed assurance and quality control standards (FAO, 2009).

Combined with the inherent information problem that one cannot deduce the at-

tributes of a seed by physical inspection, and the compounded problem that much

of these technologies originate from non-local expertise, this can create significant

difficulties for farmers in selecting and cultivating high-yield crops.

I investigate whether, amid imperfect information, farmers can discover the “hid-

den” attributes of their seed from cultivation outcomes, since learning from experience

is particularly valuable when sources of external information are limited.

I first provide a simple theoretical model in which an agent can learn about a profit-

maximizing attribute from cultivation experience and uses this to enhance variety

selection in the next period. The model elaborates this strategy and demonstrates the

conditions under which the quality of the crop on the market improves and monetary

benefit to farmers are generated.

After modelling the behavior that results from learning, I use it to derive a speci-
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fication to test empirically for learning and apply it to a rich panel dataset on cotton

cultivation in Pakistan. The difficulty in testing for learning from own experience is

that the information must be inaccessible to the farmer somehow, so that there is

space for learning and discovery, but accessible to the researcher to allow them to

verify whether the right information was learned. This is the opportunity provided

by the unique structure of the dataset I use, the Pakistan Cotton Survey (PCS).

Pakistan’s cotton farming industry is an apt context to study learning about

unknown seed characteristics because farmers have limited information about an im-

portant pest resistance technology of the seed varieties they purchase. Particularly,

while farmers are well aware that some cotton varieties may have “Bacillus thuringien-

sis” (Bt), a gene biotechnology that emits toxins lethal to bollworm pests, they do

not know at purchase point which varieties or packages have Bt. This information

problem is due to issues in technology adoption upstream and to poor labeling of

packages.1

Using a representative sample, the PCS survey team tested the level of the Bt

protein in individual farmers’ plots in 2013 and only revealed the results to them

two years later, enabling me to use farmer behavior and decisions between 2013

and 2014 to study whether farmers learned from cultivation about information that

was unavailable to them ex-ante. I can test whether farmers, after observing the

performance of their 2013 crop, accurately assess the pest resistance of the variety

and whether they respond as predicted by the model, switching varieties next year if

they learned that their variety was lacking in Bt pest resistance and vice versa.

1As explained in Section 2, farmers adopted the Bt gene, which was engineered by Monsanto in
the US in 1996, haphazardly, through unlicensed borrowing of the original variety and mixing with
local varieties (Speilman, 2017). It was this haphazard adoption process, coupled with the weak
capacities of the Pakistani state in tracking and labeling varieties, that generated the information
problem in the market.

3



The results show that farmers are unable to learn about biophysical resistance

by observing cultivation outcome. Specifically, a key finding is that the actual pest

resistance of the seed variety employed in season t by a farmer does not predict the

probability of seeking a different seed variety in t + 1. Additional results show that

lack of learning behavior arises because it is difficult for farmers to distinguish whether

poor pest resistance performance is driven by the biophysical characteristics of the

plant (low Bt) or by unfavorable environmental conditions. Specifically, I find that

the probability of switching seed variety is significantly influenced by the farmer’s

perception of pest resistance, with farmers who assess (post-harvest) resistance as

lower being more likely to switch next period, but that these perceptions of pest

resistance are not correlated with actual Bt resistance. In addition to these results, I

check that farmers do not learn about Bt content but react in ways other than variety

switching, such as increased pesticide use with low Bt varieties.

Since cultivation experience is not sufficient to redress the information gap, the

results suggest that policy, in the form of stronger certification standards by the

government or information provided externally to farmers by agricultural extension

services, might be necessary for farmers to make more informed choices.

A rough back-of-envelope exercise suggests that the lack of learning I document

in this paper leads to large productivity losses. Based on the size of Pakistan’s

cotton cultivation industry and the documented effects of Bt on damage abatement, I

estimate that failing to learn about Bt content and to purchase maximum effectiveness

seeds results in long term losses up to 170 million USD, or 12.5% of industry value

in 2013-2014. Therefore, this paper has implications not only for microeconomic

behavior but also for productivity growth at the industry level.

This study contributes to three related but distinct strands of literature. First it

sheds light, theoretically and empirically, on how producers may use own experience
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to learn under imperfect information. The literature on agricultural producers in de-

veloping countries has more commonly explored learning from external information,

typically from extension services (Murphy, 2017; Emerick et al, 2016; Maertens et al,

2018), or from social networks (Munshi, 2004; Conley and Udry, 2010; Crane-Droesch,

2017). This paper instead focuses on the ability of farmers to uncover information

organically, without the aid of externally verified information and through own ex-

perience. Own experience is important to understand because external information

provision is rare and often expensive,2 and because heterogeneity in growing condi-

tions can mute social learning or peer effects (Foster and Rosenzweig, 2010).

Within the literature on learning from own experience in rural parts of the devel-

oping world, this paper complements the findings of, but is distinct from, Hanna et al

(2014) and Bold et al (2017). In Hanna et al (2014), Indonesian seaweed farmers deal

with a traditional technology, pod size, on which information can be readily available

but which they fail to notice because they do not know the significance of pod size for

yield and because there are many competing demands on their attention. By contrast,

this paper deals with a relatively new biotechnology, whose significance the farmers

(from their survey answers) clearly comprehend but whose facets can be very difficult

to deduce from production experience despite exerting the effort to notice. In Bold

et al (2017), Ugandan maize farmers deal with unknown levels of fertilizer effective-

ness, which they have trouble learning about due to noisy yield signals; the findings

are generated by calibrating a learning model to outcomes from researcher-managed

experimental plots to simulate what farmers would or would not learn. The findings

of my paper also suggest that noisy yield signals can make learning from cultivation

2The lack of focus on extension services is particularly appropriate for this study; the farmers
indicate the near absence of any help from NGOs, farmer cooperatives, or other extension services.
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experience very difficult, but I test for learning by applying theory directly to farmer

behavior in the field.

Second, this study provides insights on consumer learning when goods’ attributes

are hidden or not easily observed. It demonstrates whether key attributes of an im-

portant commodity, agricultural seeds, can be evaluated by the consumer (farmer)

after experience/use or if these attributes cannot be revealed even after use. The lit-

erature on this subject terms the former an experience good and the latter a credence

good (Darby and Karni, 1973; Girard and Dion, 2010). In this paper, genetically

modified seeds that are not properly labeled are either experience goods, if farmers

can learn about their attributes from experience, or credence goods, if they cannot

evaluate said attributes even post-experience.

Therefore, the main question in this paper can be reformulated as an inquiry

into the information-characteristics of a key commodity in rural developing markets.3

Since the government can greatly ameliorate the information problem for consumers if

it provides credible labeling and certification (Dulleck et al, 2006; Dulleck et al, 2011),

the paper also demonstrates the consequences of weak government capacities and high

costs of certification for developing-country agents facing information problems.

Third, the paper contributes to the development literature more broadly by demon-

strating how information problems generated in the technology acquisition stage in

a development context can trickle down and hinder effective use after adoption. The

information problem in this case emerged during the acquisition of the Bt gene, due

to constraints on effective local adaptation and governance.4 Challenges with tech-

3Few studies address the credence goods problem in developing countries; none except Auriol
and Schilizzi (2015) focus on agricultural seeds. Even that paper is a theoretical investigation of the
costs of certification, not an empirical application.

4Agents in developing countries are also innovative and constraints do not imply lack of agency.
The local mixing of the Monsanto protein with the local germplasm, while haphazard, afforded
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nology import and local adoption are widely acknowledged in development economics

(Dosi, 1988; Bardhan and Udry, 1999; Khan, 2010) but it is unclear how much infor-

mation failures generated at that stage persist post-acquisition. This paper’s results

demonstrate high persistence in one such market.

In turn, high persistence can point to potential spillage into other markets and the

deepening of other information problems. For example, in rural financial markets, the

agent, if borrowing to purchase inputs, may face difficulty evaluating input quality

and the ability to pay back the loan. In this case, incentive-compatible mechanisms

to overcome principal-agent problems will not be sufficient to give the lender all

the relevant information. Missing information in developing countries is often not

strategically hidden but unknown, and corrective strategies must operate accordingly.

The paper is organized as follows. Section 2 provides background to the infor-

mation problem in the Pakistani cotton seed market. Section 3 builds a model of

learning from experience and response behavior, and shows the relationship between

information costs, learning, and market outcomes. Section 4 describes the dataset.

Section 5 outlines the econometric methodology derived from the theoretical model

and explains the identification strategy and sample selection. Section 6 presents

and discusses the empirical results. Section 7 considers and rules out alternative ex-

planations of the findings and offers robustness checks. Section 8 summarizes and

concludes.

the farmers stronger pest resistance into their crop that they would not have had otherwise. The
Pakistani state, though it struggled with regulating the seed market, used its power to prevent
Monsanto from pushing for a patent in Pakistan, affording farmers the space to create local hybrids
under legal cover.
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2 Background

Producing around 8 million 500 pound bales per year, Pakistan is the fourth largest

producer of cotton in the world and also its fourth largest exporter after China, the

US, and India. In 2019, it was estimated that over 1.6 million farmers cultivate cotton

in Pakistan, with cotton cultivation accounting for 15% of all arable land during the

Kharif (April-July) season and 26% of all farms in the country. The downstream

textile industry is also integral to the country’s economy, employing about 10 million

people and generating 50% of all foreign exchange (USDA, 2019).

Pakistan’s cotton farmers, based almost completely in the Punjab (75%) or Sindh

(24%) provinces, have increasingly adopted the genetically modified bollworm-resistant5

Bacillus thuringiensis (Bt) cotton over the past fifteen years, and evidence suggests

that Bt use has reduced crop damage and improved yield (Ali and Abdulai, 2010;

Kouser and Qaim, 2013). However, the way in which Bt has been adopted has been

haphazard and largely unregulated. Bt cotton can rely on different cry proteins to

generate toxins that confer the bollworm-resistance criterion, but the majority of Bt

cotton varieties in Pakistan “rely on the cry1Ac gene from the MON-531 event devel-

oped by Monsanto [in 1996].” (Spielman et al, 2017; p.2) In the mid-2000s, lacking a

formal system for proper Bt-variety acquisition due to Monsanto’s iron-clad patents,6

Pakistani farmers began introgressing this specific gene into local germplasm to create

locally specific hybrid Bt varieties. Local Pakistani farmers were hence able to use

trial and error and mixing with local germplasm to “effectively” introduce Bt to their

cotton crop, despite intellectual property barriers.

5A bollworm is a moth larva that attacks cotton and is a major pest concern for producers.
6Monsanto had patents in the US but not Pakistan; it tried very hard to obtain a patent in Pak-

istan after realizing local farmers were introgressing the cry1Ac gene but the Pakistani government
refused to grant it one.
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Since adoption, the release and marketing of Bt cotton has been largely unreg-

ulated in Pakistan. Seed varieties are often missing labels or contain incomplete or

unregulated labelling. There is a lack of “regulatory systems.. [to properly] enforce

rules requiring seed sellers to provide technical information on quality alongside their

product.. [and] the judicial system does not provide sufficient recourse for farmers

defrauded by seed sellers” (Spielman et al, 2015; p.1). Due to the inherent informa-

tion problem in seed markets (a farmer cannot look at a seed and infer its quality),

farmers are subject to a serious information asymmetry when purchasing seeds in the

absence of proper regulatory mechanisms.

Local mixing, which can result in poor breeding methods or improper genetic

checks, and poor regulatory capacities have resulted in the promulgation of low-

quality seed-based technologies in Pakistan’s cotton seed market. In a survey of 20

districts in 2008-2009 with farmers who thought they were planting Bt cotton, Ali

et al (2010) found that 10% of the samples from Punjab did not test positive for

the cry1Ac gene and of those that tested positive, only 36% contained concentrations

sufficiently lethal to kill bollworms; the numbers were 19% and 41% for samples from

Sindh. In a later study on the 2011 season, Ali et al (2012) used different technology

on another sample and found that 30% of all varieties tested were not positive for

any cry gene.7

The survey team that gathered the dataset on which this paper draws, the Pak-

istan Cotton Survey 2013-2014, sheds more light on these issues through two main

papers. In Spielman et al (2017), the authors compare what the farmers are really

planting to what they think they are planting. They find that a large portion of

7These results echo earlier findings about China, with Pemsl (2005) highlighting the lack of
regulation, ubiquity of information imperfections, and subpar Bt effectiveness in China’s Bt cotton
seed market at the time.
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farmers particularly in Punjab believe they are planting Bt when their variety is not

actually Bt effective. They also run a logit model to predict the inaccuracy of belief

and find the only significant predictor is education, with more educated farmer less

likely to hold erroneous beliefs. However, they do not test for learning by linking

Bt content with possible behavioral outcomes in the next season that could signal

learning, as this paper does. In Ma et al (2017) the authors explore the cotton yield

of the sampled farmers and find that, in a nonlinear damage abatement model, Bt

effectiveness as measured by the PCS has a significant positive effect on farmer yield,

when other input use is controlled for.

3 Theoretical model

We expect farmers who learn to behave after discovery in ways that reflect their

knowledge. With seed-based technologies, one possibility is that farmers alter the

variety they purchase next year, with those who discover their variety was high in

that attribute being more likely to repurchase it, other factors constant, and vice

versa. I illustrate this response strategy and how it can be affected by the costs

of gathering and processing the relevant information. I also show the conditions

under which learning improves market outcomes, in terms of the average attribute

level on the market. In Section 5, I use this theoretical model to derive econometric

specifications to test for learning from experience.

Suppose an observable outcome for farmer i at time t, Yit, is a function of the

unknown level of some attribute Bit and of other factors eit, so that Yit = f(Bit, eit).

In this case, for example, Yit could be pest damage. Farmers may discover Bit ex-post

(in t+1) if f is known and eit is easily observable, so that Bit is deduced by exclusion.

Conversely, if it is difficult to know f or observe eit or both, then discovering Bit ex-
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post is less likely. This deduction is not necessarily a costless process, as I discuss

below.

Let there be two periods t = 1, 2 and let Bt denote the price-adjusted level of

a profit-enhancing attribute in period t. In this case Bt is the Bt level in the seed

variety per rupee spent on the variety, but the model can apply more generally to other

markets and attributes. For Pakistani cotton farmers, Bt content as (one) driver of

variety selection is plausible since the farmers cite bollworm-toxicity as important in

their seed selection process. It should be noted that the farmers (from their answers)

do not store cotton seed for use in the next cultivation period; those who report

cultivating the same variety in 2014 bought that variety again in 2014.

I assume there is a market surplus each period, with more seeds available for sale

than being bought. Specifically, there is general excess supply, so that a farmer can

select any variety in either period. Though somewhat stringent, this assumption is

backed by the responses of farmers in the survey, who suggest there is easy access to

seeds and that seed prices are not at all prohibitive.

Excess supply also suggests that demand shifts in the second period can be met

without a large relative change in prices, so that high-yielding varieties do not be-

come too expensive and hence less desirable. Even if the relative price of in-demand

varieties increases, as long as the relative Bt differential is still higher, the qualita-

tive conclusions of the model hold. To simplify, I assume that the relative prices of

different varieties are fixed between the two periods.8

Let the Bt of seeds for sale in the first period B1 be a random variable distributed

8If we relax the assumption of excess supply so that some of the high Bt seeds become less
available next period, the qualitative results of the model hold but the extent of switching and
benefits from learning decreases. The “real-world” would lie somewhere between the scenario of
too-low supply where farmers cannot purchase a better variety if they wanted to, and this opposite
limiting case of general excess supply.
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normally at (E(B1), σ
2). To differentiate between varieties consumed and the wider

supply pool, I will notate the Bt level of varieties consumed with a tilde, as B̃t. Due

to the pervasive information problem, when farmer i purchases a variety in the first

period, they receive a single random realization B̃1i. They cannot identify B̃1i at

purchase point due to poor labeling and certification standards; while on average

the farmer receives the mean level on sale, so that B̃1i = E(B1), what each farmer

actually gets deviates from this amount by a random error component and may be

above or below the market average.

However, while the farmer does not know B̃1i (what they are getting), they have an

expectation, V ∗1 , about it at purchase point. I assume all farmers who think they are

purchasing Bt share the same ex-ante expectation (I address the importance of fixed

expectations in the empirical section). It is possible that expectations correspond to

the mean quality in supply, so that V ∗1 = E(B1), or that there is systemic error in

the farmer’s assessment, V ∗1 = (B1) + γ. In the second period, seeds available for sale

have Bt level B2 which is a random variable with the same distribution as the year

prior, E(B2) = E(B1).
9.

Given the persistent absence of certification standards, producers that switch vari-

eties from t1 to t2 will simply be going back to the supply pool and picking at random

from it once more. Letting s be the switching decision, then:

Ei(B̃2i) = E(B2) [= E(B1)] if si = 1 (3.1)

For those who do not switch varieties, in a perfect market, buying the same variety

again would mean getting exactly the same Bt content again: B̃2i = B̃1i, so that at

9If producers do not offer the varieties that “did not sell” in the previous season, so that E(B2) =
E(B̃1i), this still holds since E(B̃1i) = E(B1)
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least those who“stick” with their old varieties would no longer have an information

problem once they “discover” the Bt content of one package. However, given that

the varieties are poorly labeled and certified, it is possible that something being sold

as the same variety actually has a different level of Bt in the next season. Let p be

the probability that the farmer gets the same Bt content again if they do not switch

(variety integrity), and 1 − p be the probability that they get something completely

random from the overall pool even though the variety is being marketed as the same

one.10 Then for those who do not switch, their expected second-period Bt content

will be

Ei(B̃2i) = pB̃1i + (1− p)(E(B2))

= pB̃1i + (1− p)(E(B1)) if si = 0

(3.2)

To see when producers switch, we note that profit is a positive function of price-

adjusted pest resistance: πt = π(Bt), where π′ > 0. Farmers will only switch va-

rieties if they believe expected content next period with switching, V ∗1 , is greater

than expected content without switching, pB̃1i + (1 − p)(V ∗1 ). So, s = 1 only if

V ∗1 > pB̃1i + (1− p)(V ∗1 ), or V ∗1 > B1i:

si =


0 if B̃1i ≥ V ∗1

1 if B̃1i < V ∗1

(3.3)

Therefore, if farmers are able to discover Bt content from experience, they will switch

varieties next year if Bt content this year fell below expectations and keep the same

variety otherwise. This is represented in Figure 1:

[Figure 1 here]

10The higher p is, the more functioning the market is - variety names are meaningful. In the other
extreme, if p = 0, a packet’s variety name does not reflect a standardized variety at all.
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This setup assumes that farmers can accurately pay attention to, identify, and act

on the difference B̃1i − V ∗1 even when that difference is very small. However, the is

strong evidence that people do not always use or act on available information because

cognitive limitations make it costly to pay attention to, and process, information

(Sims, 2003). This phenomenon of “rational inattention” suggests that optimizing

agents may rationally ignore or not pay attention to information if the benefits are

small relative to the cost of acquiring and processing it, especially when there are

many competing demands on their attention. More concretely, as attention costs

become very large, agents pick deterministically from an option that was best ex-

ante; they do not appear to be optimizing even though they are acting rationally by

taking cognitive costs into account. Only as attention costs go to zero do they pick

the best option in that state, acting as would be expected by classical theory (Dean,

2019).

Farmers have numerous competing demands on their attention and need to make

many decisions. Moreover, the relative cost versus benefit of exerting attention and

processing information to uncover B̃1i and act accordingly may depend on the absolute

difference |B̃1i - V ∗1 |. It is likely that, as B̃1i is “extreme” (very high or very low), it

is more immediately obvious or easier to parse out from other factors that affect pest

damage. It can also be verified (below) that the benefit from subsequent switching

increases as B̃1i is more extreme relative to V ∗1 . Therefore, greater |B̃1i − V ∗1 | would

be accompanied by lower costs and higher benefits of gathering and processing the

relevant information, and vice versa.

This suggests that as |B̃1i− V ∗1 | falls, farmers are less likely to exert the sufficient

(costly) effort to uncover B̃1i and more likely to simply choose an ex-ante best strategy,

which is a tossup between switching or not. Conversely, as |B̃1i − V ∗1 | increases,

farmers are more likely to deduce B̃1i and act according to Equation (3.3). The result
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is that, if learning is possible, farmers are more likely to switch when Bt content is

much lower than expected and more likely to keep the same variety when content is

much higher than expected. Switching becomes probabilistic instead of discrete, and

involves the smoothing of the curve in Figure 1, as shown in Figure 2. This smooth

curve can have a general function for the probability of switching Prob(S), so that

Prob(S) = g(B̃1i − V ∗1 ) where g′ < 0.

[Figure 2 here]

The rational inattention framework can also help explain the absence of learning.

If learning is impossible, the idea is that there are prohibitive cognitive limitations on

the economic agent - that nobody can observe Yit and deduce B̃1i, perhaps because

the effects of other confounding environmental factors are hard to separate out (i.e. eit

is impossible to observe or measure). In this case the attention costs needed to parse

out the relevant information are infinitely large and farmers are unable, at all points,

to discern Bt content and to act accordingly. The slope would be flat and farmers are

most likely to choose the ex-ante best strategy (tossup) at each realization, so g′ = 0,

as shown in Figure 3.11

[Figure 3 here]

This model is useful not only for conceptualizing the learning process, but also

for estimating the benefits to industry from such a process. In Appendix A, I show

that if g takes a simple linear form, then it is easy to calculate how much learning

(or lack thereof) about Bt content helps (or harms) industry revenue.

11This is distinct from the failure to notice that results from misunderstanding the attribute or
its relevance to production, as in Hanna et al (2014). The Pakistani cotton farmers surveyed in
PCS understand what Bt is, know how long they have been purchasing (what they think are) Bt
varieties, and can identify their varieties’ complex titles.
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Specifically, I assume a linear form P (S) = −α(B̃1i − V ∗1 ) + g0, where α > 0;12

the parameter α is the learning (and response) parameter. It measures the extent

to which farmers act, through variety selection in the next period, on the deduced

difference between Bt content and expectations. The intercept g0 captures the rate

of switching when values matches expectations; it can be 0.5 as in Figures 2-3

to generate a tossup, or it can be any other constant capturing the effect of other

variables on switching; this value does not affect any results. I also still allow for a

discrepancy between expectations and true market averages, V ∗1 = E(B1) + γ.

When these functional forms are used to calculate the expected change in Bt

content for each farmer with initial realization B̃1i from t1 to t2 based on their proba-

bilistic switching decision, and to sum across all farmers to find the expected change

in Bt content averaged across the market, it can be shown (detailed calculations in

Appendix A) that:

E(∆B̃) = αpσ2 (3.4)

The model therefore shows that as α, the extent of learning and response, and

p, the extent of variety integrity, increase, average Bt quality consumed rises in the

second period; this improvement is greater the larger the variance of Bt in the popu-

lation. Conversely, if there is no learning, α = 0 (or no variety integrity, p = 0) then

average pest resistance is stagnant. Importantly, these conclusions are not affected

by farmer expectations: as long as the farmers have a uniform ex-ante expectation

V ∗1 it does not matter that this expectation is accurate on average (γ = 0) or not.

The probability of switching may also depend on the standardized deviation from

12The function would be bounded between 0 and 1.
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expected content:

g(x) = −α

[
B̃1i − V ∗1

σ

]
+ 0.5 (3.5)

In that case, Equation (3.4) is amended as follows:

E(∆B̃) = αpσ (3.6)

With the average change in consumed Bt in the market E(∆B̃) in hand, we

can, with additional information on the effect of Bt on yield, estimate the extent

of monetary benefit to farmers from said improvement in average Bt. Appendix

B illustrates how different values of α and p translate to expected Bt improvement

E(∆B̃) for a fixed σ, and how, using evidence-based benchmarks on the effect of Bt on

yield and revenue, this would then translate into sizable revenue gains for Pakistani

cotton farmers in one year.

In Section 5, I use Equation (3.5) to derive an empirical specification to test the

value of α or the negative of the slope of the curve in Figure 2, linearly approximated.

This would allow us to test for the presence of learning. With this estimate, and for

given values of p and σ, we can also infer how much average Bt would improve from

one period of learning and switching, and estimate monetary gains.

There is a qualifier to this approach. If tests show that α is positive (Figure

2), we can conclude that farmers learn from experience and respond accordingly.

However, while absence of learning necessarily generates a zero slope (Figure 3), the

converse is not always true: having a zero slope or null coefficient does not necessarily

imply farmers have not learned. There remains the possibility that farmers are able

to gauge Bt levels from observing the crop’s pest resistance but do not respond with

switching varieties, and this would occur if they believe p = 0.

To see why it is rational for farmers to not respond to learned information through
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seed selection if they believe p = 0, note that the expected content from switching (Eq.

3.1) and from not switching (Eq. 3.2) become equivalent, so the profit maximization

exercise that drives switching is invalidated.

Therefore, the empirical section will also gauge whether farmers believe p = 0 or

not. It is not possible from the data to test actual variety integrity, but it is possible

to gauge whether farmers believe switching varieties in response to low resistance is

an effective strategy i.e. if they believe that p > 0. Only then can we interpret a null

α coefficient (flat slope) as absence of learning.

Finally, I can check the underlying logic of the model and learning more directly.

Farmers learn when attention and information costs are low enough to discern the

effects of the plant’s biophysical properties on resistance performance from the effects

of other factors. A positive α should be accompanied by analysis showing that higher

Bt content improves perceptions of the variety’s bollworm-resistance, while with a

null α we would not expect this relationship.

4 Data

I use data from the Pakistan Cotton Survey, which consists of four sequential

in-person surveys and one biophysical sample survey. The surveys were conducted by

the International Food Policy Research Institute (IFPRI) along with local agricultural

scientists between March 2013 and January 2015, on a random stratified sample

of farmers in Punjab and Sindh. These provinces account for 99% of all cotton

production in the country, and the sample is nationally representative.13

The first survey, Round 1.1, collected preliminary background data on 727 cotton

13The surveys are accessible publicly from the Harvard Dataverse website.
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farmers through face to face interviews in March 2013, prior to the beginning of sowing

for the year. The farmers were asked about their personal and farming background

and history and various plot characteristics.

The second survey, Round 1.2, followed up with the farmers in October 2013 after

seeds were sowed, and only 601 of the farmers ended up sowing cotton for the season,

so this represents the actual “base point” for the possible sample. Farmers were asked,

among other things, about the variety purchased, whether they think their variety is

Bt, cotton cultivation by plot, input use (water, fertilizer, and pesticides), and access

to social networks and to credit.14

The third survey, Round 1.3, followed up in January 2014 and at this time the last

picking for the season (harvest) was complete. The farmers were asked about input

use, quantities harvested and sold, revenue, and perceptions about the performance

of the crop. They were also asked about assets owned, general consumption patterns,

and decision-making by gender.15

The fourth survey, Round 2.1, went back to these farmers in January 2015 and

asked farmers the same questions as in Rounds 1.1-1.3, but this time for the 2014 har-

vest. The number of participants narrows further, as only 501 of those who cultivated

cotton in 2013 also did so in 2014.

The Biophysical Sample Survey took place in July and August of 2013, between

Round 1.1 and Round 1.2. Unlike the above, which were in-person interviews lasting

hours at a time, this survey involved the team first obtaining the farmer’s consent and

then, for those who sowed cotton in 2013, randomly selecting a few cotton leaves and

bolls at 70 and 120 days after sowing. The samples were taken to national laboratories

14Farmer answers show that social networks such as farmer coops are nearly nonexistent and that
the use of cash credit is negligible.

15Nearly all decision makers in the dataset are male.
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where they were tested for the presence of specific genes and toxins that contribute

to Bt expression; the methodology is detailed in Ma et al (2017).

Crucially to this study, the farmers were not made aware of the biophysical sample

results for the 2013 crop until early 2015, by which point the 2014 growing season

was also finished.

Figure 4 illustrates the timeline of the surveys and corresponding cultivation

stages. To my knowledge, this dataset has not been utilized beyond the studies

conducted by the survey teams in Spielman et al (2017) and Ma et al (2017).

[Figure 4 here]

5 Econometric methodology

5.1 Specifications

To measure the extent of learning α, I regress variety switching in the next year

on standardized Bt content, or [(B̃1i − E(B))/σ], in the current year. This derives

directly from the specification in Equation (3.5), and generates a regression coefficient

that is the slope of the linearized function in Figure 3.2. Bt content is seed-price

adjusted by including seed price as a control in the regression. It does not matter

whether or not E(B1) = V ∗1 since subtracting any constant from the numerator does

not affect the value of the regression coefficient. By contrast, a heterogenous V ∗1

would require farmer-specific fixed effects for empirical assessment, untenable in this

dataset because this is not multi-year panel data.

To ensure the assumption of homogenous expectations V ∗1 holds, I principally

use observations on farmers who when they bought the seed said they believe it is

a Bt seed (which is the majority of farmers). This would roughly fix for ex-ante
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expectations. However, I also check that the inclusion of observations from farmers

who thought they were not purchasing Bt and from farmers who did not know, and

controlling for these as two other beliefs using dummy variables, does not change the

results.

The main regression is:

Changei = β0 + β1BtLeveli +
∑

βjControlsji + εi (5.1)

Change takes a value of 1 if farmer i switched varieties in 2014, and 0 otherwise. Bt

level is the (standardized) Bt effectiveness of the farmer’s 2013 variety as measured

by the Biophysical Sample Survey. It is measured in micrograms of the relevant

protein per gram of leaf tissue; a higher level indicates more toxin, therefore higher

effectiveness in targeting and eliminating bollworms.16 Controls are other factors,

occurring in 2013 or beforehand and including seed price, that can affect variety

change in 2014.

I expect β1 < 0 if learning is present, with farmers who discover low Bt con-

tent more likely to switch and vice versa; β1 is equivalent to −α in the theoretical

model. Given that farmers did not have external information about the Bt content

of their variety, any learning about this attribute reflected in an impact on purchase

decisions in the next season would have been uncovered from cultivation experience.

Conversely, if there is no learning, Bt of the 2013 variety would not affect seed choice

the following year and I would expect β1 = 0.

16For each farmer/variety, the survey team randomly collected 2 leaf and 2 boll tissues from
the main plot, at both 70 days after sowing and 120 days after sowing, and measured the toxin
expression for each of these in-lab using the ELISA sandwich test. My variable is an average of
the measurements 70 days after sowing for each variety. The data for 120 days after sowing is less
complete and has more variation per observation, but the results do not change even when I include
it in the analysis.
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Next, to verify that farmers would resort to switching if they learned about Bt

content, I look at farmer perceptions. As explained in Section 3, farmers will only

switch from low-Bt seeds if they believe there is some variety integrity in the market.

In Round 1.3, immediately after the 2013 harvest was complete, farmers were asked

to evaluate the bollworm resistance of their crop as poor, moderate, or very good.

If farmers believe switching is an effective strategy for improving pest resistance (if

they believe p > 0), we expect them to switch varieties in 2014 if they felt their 2013

variety had poor resistance, all else constant. The relevant regression is:

Changei = γ0 + γ1ResistancePerceptioni +
∑

γjControlsji + εi (5.2)

If farmers believe p > 0 we would expect γ1 < 0: farmers who evaluate bollworm

resistance as lower are more likely to change seed variety next year; they do think

switching is an effective strategy for improving seed effectiveness. This would support

the behavior outlined in the theoretical model, so that a null β1 in Equation (5.1)

would signal the absence of learning as opposed to farmer unwillingness to switch.

The perceptions variable can also be used to sharpen the insight on the learning

process. Farmers learn about Bt content if they can distinguish the extent to which

pest resistance performance is driven by the biophysical attributes of the plant versus

environmental and other factors. We can regress perceptions on Bt content and on

those controls:

ResistancePerceptioni = θ0 + θ1BtLeveli +
∑

θjControlsji + εi (5.3)

θ1 > 0 would be a direct indication of learning, since it implies higher Bt content

improves the farmer’s perception of bollworm resistance. Therefore, we expect θ1 > 0

in Equation (5.3) to be associated with β1 < 0 in Equation (5.1). Conversely, if
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learning is difficult, Bt effectiveness remains unknown because it is difficult to discern

the effect of the biophysical attribute of the plant on performance (θ1 = 0). This

would imply no impact of Bt on variety choice (β1 = 0). In both scenarios, however,

I expect γ1 < 0 from Equation (5.2), to signify that farmers believe there is some

market integrity and act as the model predicts.

Finally, it is possible to diverge from the theoretical model in Section 3 and test

whether farmers respond to low Bt content by increasing pesticide use during culti-

vation instead of changing variety. The specification is:

Pesticidei = φ0 + φ1BtLeveli +
∑

φjControlsji + εj (5.4)

Pesticide measures pesticide use per acre in 2013, constructed by adding the quan-

tities of various pesticides and dividing by acres of cotton cultivated.17 Learning would

imply φ1 < 0, since farmers realize that the plant itself is emitting toxins lethal to

pests so that they can use less pesticide. With no learning, φ1 is close to zero and

insignificant.

Table 1 summarizes the possible coefficient combinations and interpretations.

[Table 1 here]

5.2 Controls

In Equation (5.1) and (5.2) I control for other factors that can affect variety selection:

• Farmer characteristics that may influence how the farmer deals with their crop

(education, years of general farming experience, years of experience cultivating

17There is not enough information for most observations to construct an “effective” pesticide
measure that weighs quantities by percent strength.
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what they think is Bt cotton, land owned as proxy for wealth).

• Planting history for the specific 2013 variety.

• Price per unit of the seed variety purchased for the 2013 season.

• Price per unit of post-harvest cotton fetched by the 2013 variety.18

• Input intensity (irrigation, Nitrogen fertilizer, labor, and seeds sowed, all per

acre of cotton cultivated).

• Dummies for geographical district, since the observations belong to 22 districts,

each of which share ecological and cultural properties that very likely affect

cultivation attitudes.

The controls are all measured in 2013 or beforehand, hence predetermined relative

to the dependent variable Change.

In addition to the above controls, for Equation (5.3), exogenous pest intensity

affects resistance performance and should also be controlled for but no reliable infor-

mation on this is available. Since it appears that pest intensity is time- and space-

dependent, I assume that controlling for time-of-sowing and geographical district can

be roughly sufficient. For Equation (5.4), I also control for soil type (since it can

impact pesticide absorption).

Appendix C details how these control variables are constructed. It also illus-

trates their distribution, as well as the distribution of the key dependent variables, in

the data.

18Cotton selling price is distinct from yield performance and captures desirable qualities such as
whiteness of the cotton and quality of the lint.
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5.3 Identification

For Equation (5.1), identification straightforward. First, reverse causation is

ruled out because Bt level is measured for the 2013 variety while the choice to change

varieties is made in 2014. Even without the time lapse, it is not clear how farmer

choice can affect a biological characteristic of the crop which is not known in any

verifiable way to the farmer themself ex-ante.

Second, controlling for farmer characteristics and farming experience enables me

to control for factors that could affect both Bt level in 2013 (if it is not completely

random) and the switching choice in 2014. If there are any unobserved factors that

make farmers who end up with higher quality seeds in one year also be more prone to

information discovery and learning, then the resulting bias would pressure the coeffi-

cient of interest upward. Therefore, a null result from Equation (5.1) is particularly

resilient againt omitted variable bias.

Similary, Equation (5.2) involves measuring a clear directional relationship: the

effect of perceptions formed after the 2013 harvest was completed, on purchase choices

made in the following season. Appropriate controls on farmer characteristics and

experiences help to control for potential confounding factors that could affect both

perception formation and selection choices.

Equation (5.3) also incorporates a key independent variable (Bt level) which pre-

cedes the dependent variable (post-harvest farmer perceptions), as well as controls on

the farmer characteristics, experience, and sowing conditions that may be correlated

with Bt levels and affect post harvest perceptions.

In Equation (5.4) pesticide choices are made during cultivation, during which we

would also expect any learning to take place. Therefore, the specification is only a

valid test for learning if farmers can learn about Bt content before cultivation is over,

so that there is room for adjusting pesticide decisions in the same season. It is not
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clear if this is the case or if input use in that season is predetermined relative to

information learned later in the season about Bt content. Therefore Equation (5.4)

is not the focus of the discussion but used as a supplemental result.

5.4 Sample

As shown above, though the initial pre-cultivation sample of farmers was larger,

only 501 farmers cultivated cotton in both 2013 and 2014. Furthermore, among those,

a number of farmers did not have Bt samples taken from their plots, or did not farm

on the main plot on which sufficient information is available, or did not answer basic

questions including on their farming experience. This narrows the number of farmers

who cultivated cotton in both seasons, and on whom sufficient relevant information

is available, slightly, to 469.

In empirically testing Equations (5.1)-(5.4), I focus the discussion on a majority

subset of these farmers (331) but also confirm the results hold for all farmers (469).

The 331 observations on which I focus are the farmers who (i) believed at the outset

they were purchasing Bt seeds in 2013, answering ‘Yes’ when asked pre-cultivation if

they believed their seed was Bt effective, and who (ii) cultivated only one variety on

the main plot. The first point roughly fixes for ex-ante expectations, in line with the

the theoretical model, and excludes having to deal with the second largest group which

answered ‘I don’t know’, and which it is not clear can be considered a homogenous

group. The second point allows me to exactly match the results from the biophysical

test to the variety purchased; for farmers who cultivated more than one cotton variety

on the plot from which the biophysical sample was taken in 2013 it is impossible to

tell which variety the lab tests correspond to.

However, it is possible that adding farmers who did not believe they were planting

Bt (43 farmers) and those who ‘do not know’ (73 farmers), and roughly fixing for
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these beliefs using dummy variables, can add information that alters the results; this

would be a question of external validity. It is also possible that farmers who planted

more than one variety (23 farmers across 53 observations) are naturally those who

experiment more and learn better from their crop, which would make their exclusion

in the sample bias the results downward.

To address these issues, for each of Equations (5.1)-(5.4), I include a column

in the results that incorporates all 469 farmers across 499 observations.19 I do so by

incorporating all ‘three’ beliefs and using dummies to allow for differences in intercept

and slope across belief, and by constructing a ‘pseudo’ Bt variable for farmers who

cultivated more than one variety, based on the average Bt for that variety found for

the other (one-variety per plot) farmers in the sample. The resulting back-in adding

process incorporates all 469 farmers across 499 observations and serves as a check on

the more focused results.

6 Results and discussion

6.1 Results

Table 2 shows the results from five versions of Equation (5.1). All are linear

probability models to facilitate interpretation, with robust standard errors (adjusted

for heteroskedasticity) including in subsequent tables. The 95% confidence intervals

are noted below each coefficient.

[Table 2 here]

19The number of observations is greater than the number of farmers because of the farmers that
cultivated more than one variety, with each variety counting as an observation.
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Column 1 regresses Change only on standardized Bt level in 2013 and on district

controls. Column 2 also takes into account variables that may be correlated with

Bt level and impact the dependent variable: education, seed purchase price, and

cotton selling price. As argued in the theoretical model, controlling for seed price is

important because Bt content should be price-adjusted. Meanwhile, cotton selling

price must be controlled for if it is correlated to Bt, i.e. if bollworms cause damage

not only to yield but also to quality, which is captured in the cotton selling price

variable.20

Column 3 adds variables which are exogenous to Bt level but may affect variety

choice, whose inclusion therefore improves precision: farmer characteristics such as

farming experience, planting history, and wealth. Column 4 adds the input variables

whose role in the decision making process is more questionable. Farmers that intensify

input use and obtain higher yield may be more inclined to keep the same variety the

next year, or, behaving more rationally, they may distinguish that higher yield is due

to own input choices thereby leaving variety choice unaffected. Yield is not included

in the regressions because it qualifies as a bad control: the effect of Bt content, if

learned, on farmer choice would operate largely through its effect on yield.

Whereas the above focus on the subset of 331 farmers, Column 5 runs the regres-

sion on all expanded 499 observations, by adding dummies for beliefs and interacting

them with Bt level, and by constructing a ‘pseudo’ Bt measurement for farmers with

more than on evariety.

The consistent result is that the Bt level as measured in-lab bears no effect on the

proclivity to keep or change the seed variety in the next year. Point estimates are

20Cotton selling price is exogenous to each farmer’s production since the farmers are small and
therefore price takers.
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very small and close to zero. They indicate that a one standard deviation increase in

Bt level is associated with a change in the probability of variety change of 1.4% to

2.7%, depending on the specification, with no signifiance. A 95% confidence interval

can rule out negative effects larger than 5% in absolute value across all specifications.

Regarding the control variables, the analysis confirms that higher cotton selling

prices reduce the chance that the farmer will change the variety the next year, and

this is almost significant at the 10% level. Seed purchase prices have coefficients that

are significant but at levels very close to zero, confirming the qualitative evidence in

the surveys that seed prices are neither high nor prohibitive in the Pakistani cotton

market. The input coefficients are nearly all close to zero, implying that farmers who

raise yield through input use realize that higher yield is due to input intensity and

not necessarily seed quality, leaving variety choices unaffected.21

Farmer characteristics are evidently important: higher education and general

farming experience increase the rate at which farmers change their varieties, sug-

gesting that these farmers are more informed about different varieties and willing to

experiment. Experience with Bt cotton cultivation and with the 2013 variety reduces

the probability of variety change, suggesting that farmers become more comfortable

with that variety over time and/or know how to cultivate it more efficiently, reducing

the extent of variety change.

Table 3 shows that the results change significantly when we assess the impact of

farmer perceptions of bollworm resistance on variety change. Column 1 regresses the

dependent variable, Change, only on perceptions and district fixed effects, Column 2

adds farmer characteristics, seed purchase price, and cotton sale price as these can

21The exception is seeds sowed which is positive and significant. Possibly, varieties sowed more
intensely were ones failing to grow properly, hence a higher likelihood that the variety is changed.

29



improve precision, and Column 3 adds two variables, pesticide use and yield, which

may affect Change but whose exogeneity to perceptions is not clear.22 Column 4 runs

the last regression on the expanded set of 499 observations.

[Table 3 here]

The result across specifications is that farmers are less likely to change the variety

purchased in 2014 when their perception of bollworm resistance for the 2013 season

is more positive. Depending on the specification, farmers who viewed resistance as

moderate are 11.1 to 15.5% less likely to change variety in the next year than those

who viewed it as poor, and this is significant at the 10% or 5% level. Farmers who

viewed resistance performance as very good are 17.0 to 19.5% less likely to change

variety next year than those who viewed it as poor, and this is consistently significant

at the 5% level. Therefore, farmers do change variety more often when they assess

that the crop has exhibited poor resistance to bollworms. The controls possess similar

signs and interpretations to those in Table 2.

Next, Table 4 explores the role of Bt content in informing farmer perceptions.

From the null result in Table 2, we would expect that farmers are unable to accurately

assess the degree to which perceived resistance is an outcome of biophysical attributes

(Bt), and this is corroborated.

[Table 4 here]

The dependent variable is perception of the farmer about bollworm resistance

in 2013, lumped into Poor/Moderate or Very Good, and taking a binary value of 0

and 1 respectively, and the key independent variable is standardized Bt content. I

22Pesticide use may be driven by resistance perceptions, and yield and perceptions are likely
correlated but it is not clear which affects which.
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lump the dependent variable so I can perform a linear probability model, for ease of

interpretation, but I perform robustness checks with an ordered logit (Section 7).

Column 1 regresses perception on standardized Bt content and on time and dis-

trict controls (omitted). Column 2 adds education and seed purchase price because

they may be correlated with Bt level and perceptions, while Column 3 adds years of

experience and planting history to improve precision. Column 4 adds pesticide whose

exogeneity is not clear: pesticide use may affect perceptions or existing perceptions

may dictate pesticide use, or a combination of the two. Column 5 runs the analysis

on all possible 499 observations.

In all specifications Bt content does not inform perception formation. The coef-

ficients on standardized Bt content are small and insignificant, and positive effects

greater than 2.7% can be ruled out in all specifications at the 95% level. The coeffi-

cients on farmer characteristics, planting history, and input use are also insignificant.

Dummies on sowing time and district controls (omitted) are the only ones carrying

some significance, indicating that perceptions are dictated largely by exogenous (time-

and space- dependent) pest intensity or other unobservable or unmeasured factors.

Column 6 explores the possibility that perceptions of bollworm resistance are

driven by yield outcomes. Yield cannot be included in the other regressions because

it would be a bad control, so I regress the dependent perception variable only on

log of yield per acre and on sowing time and district controls. The association is

positive and significant: a 1% increase in yield per acre is associated with 14% greater

likelihood of viewing resistance as very good instead of poor/moderate. This result

is not causally identified: it is unclear whether yield informs perception or whether

perception drives behavior that affects yield, since both responses were elicited from

farmers during the same survey round. Nonetheless, this correlation result is robust

including when inputs are controlled for.
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Finally, Table 5 examines the possibility that Bt content can be uncovered and

impact not variety choice next season but pesticide use in the same season. Column

1 regresses pesticide use only on standardized Bt content as well as time of sowing,

district, and soil-type controls (omitted). Column 2 adds education which may be

correlated with Bt content and impact pesticide use, while Column 3 adds farmer

characteristics, area cultivated, and the intensity of seeds planted per acre to improve

precision. Column 4 incorporates irrigation and fertilizer use per acre since different

inputs may be used in complementary quantities, though the direction of causation

is not identified. Column 5 runs the second to last regression on the expanded set of

observations.

Across specifications, Bt content does not significantly impact pesticide use. Other

results are that more educated farmers use pesticide more, sowing seeds more inten-

sively needs greater pesticide use, and fertilizer and pesticide use are complementary.

In the final column, farmers who did not think they had Bt, or did not know, were less

likely to use pesticide, suggesting that perhaps they did not believe their crop needed

to be treated heavily for pests whether through biophysical properties or inputs.

[Table 5 here]

6.2 Discussion

The results are consistent and suggest that farmers are unable to learn about an

important attribute of their seeds through cultivation experience, at least after one

round of harvest. They are unable to distinguish the role of the seed itself in resistance

(Table 4) and to switch varieties next year accordingly (Table 2). This is evidence

of lack of learning, and not of unwillingness to switch, precisely because farmers do

use switching to combat what they perceive as poor resistance (Table 3). Inability
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to discover Bt content through cultivation may also be evident in the absence of an

appropriate response through input use (Table 5). The results correspond to row 4

in Table 1, with β1 < 0, γ1 < 0, θ1 = 0, φ1 = 0.

The absence of learning implies that market outcomes are stagnant. Average

Bt content does not improve and farmers do not benefit from gradually enhanced

varieties on the market. To calculate the extent of losses from lack of learning, I

rely on informed estimates of the size of Pakistan’s cotton cultivation industry and

of the effect of Bt on damage abatement, detailed in Appendix B. Those estimates

suggest that if average Bt improves in the long run from the in-sample level of 0.88

µg
g

to the maximum-effectiveness level of 1.59 µg
g

, yield would have improved by up

to $170 million, or 12.5% of industry revenue in 2014.

Of course, these results are market and attribute-specific. Learning about an

unknown attribute that has a clear effect on an observable outcome, because of the

absence of confounding factors eit, would be significantly easier. For example, in

cotton, fiber whiteness is the outcome primarily of the seed’s biophysical property,

so white-fiber varieties could probably be deduced easily ex-post. Such examples

notwithstanding, it is likely that many properties that are important for productivity

are confounded by other factors, and are therefore difficult to deduce from cultivation

experience alone, in the absence of certification standards or information provision.

7 Alternative explanations and robustness checks

The results from the following exercises are all presented in Appendix D.
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7.1 Learning from others

The above assumes that if information is learned about Bt content, it is through

the farmer’s own cultivation experience. Neighbor effects are not included because

for each farmer there are very few other farmers within the same village (smaller unit

than district) who can therefore be possible peers. Also, there is no information about

how far the villagers are, geographically or socially, so it is possible (even likely, with

a stratified sample) that the farmers in each village are far apart and less relevant

to each other than true next-door peers. This makes it very difficult to construct a

measure of peer effects without a large degree of error and without introducing bias

in the regression.

Nonetheless, as a rough attempt, I identify the other farmers in the same village

as potential peers. If there is social learning, we expect a farmer to be more likely

to switch the higher is the Bt of peers who purchased a different variety,23 as well

as expecting the own-Bt coefficient to become negative. The latter is because it is

unclear how farmers can learn from their neighbors, if their neighbors cannot learn

from their own experience.

Table D1 shows the results when such a peer variable (non-standardized) is

integrated into the main regressions (of Table 2). Though in one specification the

coefficient on this variable is significantly positive, it is not clear that this reflects true

peer learning, given the high likelihood of measurement error in variable construction,

the non-robustness of this significance in other specifications, and the fact that the

coefficient on own-Bt remains null throughout.

23For most farmers there are almost no other villagers farming the same variety, making it impos-
sible to construct a measure of Bt of peers who farmed the same variety, on which we would expect
a negative coefficient with learning.
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7.2 Different behavioral responses

It is possible that farmers react to low Bt content by switching suppliers in the

next year instead of changing variety. I do not have data on supplier switching because

suppliers are not named but I construct a best guess estimate for 207 observations (the

others did not answer the questions necessary to construct this estimate). I assume

the supplier changed if the farmer lists a different type of supplier institution in 2014

or if the farmer lists the same type of institution but the commuting time changed

significantly. Based on this, I estimate that two-thirds of the farmers did not change

their supplier. Figure D1 shows no correlation between the change in supplier and

Bt content. It appears unlikely that learning occurred and drove supplier switching.

Another possibility is that the farmers uncovered Bt content but reacted by ex-

iting cotton production altogether. There is insufficient information to control for

factors that influence exit, but, qualitatively, farmers who exited cite predominantly

environmental reasons in the surveys as shown in Figure D2. Additionally, Figure

D3 shows no difference in the mean Bt gene expression between the group that exited

and the one that remained.

7.3 Sample selection bias

The main tables check for sample selection bias by incorporating a column with

all possible 499 observations for each exercise, in part by constructing a pseudo-Bt

measure for farmers who cultivated more than one variety in 2013. Table D2 shows

that the results from the main regression do not change when the pseudo-Bt measure

is used for all farmers,24 including those who farmed one variety, for comparability.

24Selecting on the ‘Yes’ belief.
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More broadly, Table D3 shows that the farmers in the sample’s focus group (331)

and out (396), out of the total 737 farmers surveyed in Round 1.1 (but of whom only

501 finished all rounds), are similar in average age, years of farming experience, the

area of the main plot they operate on, and the total area of land they own. The

exception is education, with in-sample farmers having 0.6 years more of education

on average, and this is significant at the 10% level. Since more educated farmers

are more likely to learn from cultivation experience if learning is possible, this would

push results in the sample to show more-than-average learning, but the results still

demonstrate no learning.25 Hence, the results from the in-sample regressions are likely

representative, at least roughly, of farmers in the survey, who are in turn nationally

representative, and the remaining differences would not drive the null effect.

7.4 Measurement error

It is possible that the behavioral models, empirical specifications, and sampling

methods are sound, but that insignificance is due to attrition bias from measurement

error in the key explanatory variable. The Bt variable is based on a sample of two

random plants from each farmer’s plot, taking a leaf and a boll from each plant.

Whereas leaf values seem to be significantly correlated between the two plants for

each farmer, the boll values seem to be much less correlated. Therefore, it is possible

that that sample does not accurately represent the “true” Bt level of the farmer’s

variety (which can only be known by sampling all plants, destroying the plot).

In Table D4 I redefine Bt content variable to reduce possible measurement error

and rerun the regression in Column 3 in Table 2. In Column 1, I use an average of

25The other significant difference is province: the in-sample group is more heavily skewed toward
Punjab than Sindh.
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the leaf values only instead of leaf and boll. In Column 2, I still use the leaf values

but with one value as an instrument for the other.26 In Column 3, I use a subsample

where the leaf values per farmer are nearly identical. As shown, the results do not

change in any significant way. Therefore, while the size of the biophysical sample

per farmer is small and measurement error may certainly exist, it does not appear

that Bt content, even measured more restrictively, impacts seed choice as expected if

learning is present.

Finally, one point of reassurance about the biophysical samples not being too far

off mark are the findings in Ma et al (2017) that, in a damage abatement model,

Bt content based off of the measurements 70 days after sowing significantly improves

yield, holding all else fixed, for these farmers in the Pakistan Cotton Survey.

7.5 Additional robustness checks

To further check the robustness of the main regression, I focus on Column 3 in

Table 2 and introduce in Table D5: (i) a squared term for Bt level to allow for

nonlinear effects, (ii) an interaction variable of Bt level with education to allow for

differential effects by education level, and (iii) a variation where the variable “years

that variety is grown” is a sequence of dummy variables, to allow for a nonlinear

effect of cultivation years on variety choices. I also (iv) re-estimate the model with a

logistic regression, using Firth’s bias-reduced version of the logit which penalizes to

prevent overfitting and small-sample bias. Therefore, this latter check in particular

is very useful.

To check the effects of clustering the dependent variable in Table 4, I estimate

26The idea is that this will eliminate correlated noise or measurement error; a similar approach is
used in Ashenfelter and Krueger (1994).
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Column 3 as an ordered logit, with perceptions taking all three values and ordered

as such (Table D6).

In all of these, the findings in Section 6 remain robust.

8 Conclusion

In developing countries, information challenges are ubiquitous and pronounced.

It is often difficult to accurately evaluate financial borrowers, to design incentive-

compatible mechanisms, to assess which technologies maximize efficiency, to know

how to best adapt new technical and organizational skills, and to assess which gov-

ernment policies are most likely to support growth.

Agricultural producers in particular face rife information problems, including when

they import and adapt foreign technologies for which local government certification

and standardization are weak or nonexistent. With imported and adapted seed-

based technologies, farmers are likely to not know important attributes if varieties

are not certified, leaving room for potential learning ex-post by observing cultivation

outcomes. In the absence of externally verifiable information and if heterogeneity of

growing conditions mutes learning from peers, such a process of learning from own

experience is particularly valuable. Learning about and plugging information gaps

is not just a question of microeconomic behavior; at the macro level, if it allows

farmers to make more informed choices over time then it improves productivity, with

implications for growth and competitiveness.

Drawing on this context, I model a process whereby farmers can learn about the

variety through cultivation experience and make more informed decisions in the next

season. I then use this model to derive econometric specifications to test for learn-

ing, since whether agents can learn and redress information problems is ultimately
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an empirical question. Using a rich dataset, I apply the empirical exercises to cot-

ton cultivation in Pakistan, where there is imperfect information about an imported

and adapted pest-resistance technology (the Bt gene). I use a number of behavioral

outcomes to evaluate whether farmers can learn about this attribute of their seed on

which they lack prior information.

The results indicate that cultivation experience is not sufficient to redress the

information gap. Farmers are unable to uncover the Bt content of their crop even

after cultivation and harvest are complete, likely because of the existence of other

confounding factors that are difficult to measure or parse out. As a result, Bt content

does not inform farmer perceptions of their crop’s pest resistance nor their choices

about variety purchases in the next season. This impedes gains at the farmer level as

well as wider improvement in crop productivity in the Pakistani cotton market. The

absence of learning is robust across different specifications and behavioral outcomes

that can signal learning, and points to a persistent information failure in the absence

of external policy intervention.

Nonetheless, the prescription of external information provision as a solution is

qualified. In the case of the Pakistani cotton market, information provision by the

government is itself difficult, given that the weak capacities of the Pakistani state

contributed to the proliferation of information failures in the first place. Therefore,

the paper illustrates the dual dilemma in many developing countries, where market

failures must be addressed by potentially equally limited government institutions.

Any policy solution to address information failures must take both private and public

constraints into account to be effective.
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FIGURES
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Figure 1: Discrete switching

Figure 1 shows whether or not producers switch varieties next year if learning about Bt
content is possible. Those who find out Bt content exceeded their expectations do not
switch and vice versa.
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Figure 2: Probabilistic switching

Figure 2 shows switching as a smooth function of Bt content. Learning occurs but is easier
at the extremes; farmers are more likely to switch the further below expectations Bt content
is.
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Figure 3: No learning

Figure 3 shows that if it is impossible to deduce Bt, the probability of switching is constant
for all values (here, a tossup).
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Figure 4: Timeline of surveys and cultivation

Figure 4 describes the structure of the Pakistan Cotton Survey, chronologically and content-
wise. For each survey, I note the date it was taken, its title, and some of the pertinent
questions asked.
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TABLES

Table 1: Coefficient combinations and interpretation

β1 γ1 θ1 φ1 Interpretation

<0 <0 >0 Farmers learn and change variety accordingly.
= 0 = 0 > 0 Farmers learn but do not change variety.
= 0 = 0 > 0 < 0 Farmers learn but respond by changing input.
= 0 < 0 = 0 = 0 Farmers are unable to learn.

Table 1 summarizes the possible meaningful combinations of coefficients and their cor-
responding economic interpretations. The coefficients in Columns 1-4 are derived from
Equations (5.1)-(5.4). β1 measures the effect of an increase of Bt level on the probability
of variety change; γ1 measures the effect of improved perceptions of bollworm resistance on
the probability of variety change; θ1 measures the effect of an increase of Bt level on the
probability of having improved perceptions; and φ1 measures the effect of an increase of Bt
level on the use of pesticides.
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Table 2: Effect of Bt on variety change

Dependent variable:

CHANGED

(1) (2) (3) (4) (5)

Bt (standardized) 0.015 0.014 0.015 0.015 0.027
(−0.048, 0.078) (−0.049, 0.077) (−0.048, 0.078) (−0.049, 0.079) (−0.034, 0.087)

Belief: No 0.111
(−0.076, 0.298)

Belief: Don’t know 0.030
(−0.106, 0.167)

Education 0.006 0.014∗∗ 0.013∗∗ 0.014∗∗∗

(−0.005, 0.017) (0.002, 0.025) (0.001, 0.025) (0.004, 0.024)
Farming Experience 0.006∗∗ 0.006∗∗ 0.005∗∗

(0.001, 0.012) (0.00005, 0.011) (0.0004, 0.009)
Yrs grown variety −0.082∗∗∗ −0.084∗∗∗ −0.062∗∗∗

(−0.132, −0.031) (−0.136, −0.032) (−0.103, −0.020)
Yrs grown Bt −0.040∗∗ −0.037∗∗ −0.011

(−0.072, −0.008) (−0.069, −0.005) (−0.039, 0.017)
Land owned −0.008∗∗ −0.008∗∗∗ −0.007∗∗

(−0.014, −0.002) (−0.014, −0.002) (−0.013, −0.001)
Seed price −0.0004 −0.001∗ −0.0005∗ −0.0004∗

(−0.001, 0.0001) (−0.001, 0.00001) (−0.001, 0.0001) (−0.001, 0.00001)
Cotton selling price −0.020 −0.022 −0.024 −0.013

(−0.048, 0.008) (−0.050, 0.007) (−0.053, 0.005) (−0.036, 0.010)
Irrigation −0.0001∗

(−0.0002, 0.00001)
Fertilizer −0.001

(−0.002, 0.001)
Seed amount 0.025∗∗

(0.001, 0.049)
Labor 0.0002

(−0.0005, 0.001)
Pesticide −0.009

(−0.048, 0.030)
Bt*Belief:No −0.034

(−0.231, 0.163)
Bt*Belief:Don’t know 0.022

(−0.092, 0.137)

District FE Yes Yes Yes Yes Yes

Observations 331 331 331 331 499
R2 0.206 0.218 0.279 0.299 0.211
Adjusted R2 0.143 0.148 0.205 0.213 0.146
Residual Std. Error 0.462 (df = 306) 0.461 (df = 303) 0.445 (df = 299) 0.443 (df = 294) 0.460 (df = 460)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2 demonstrates the results of Equation (5.1). Across specifications, Bt content does not influence variety change next year.
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Table 3: Effect of perceptions on variety change

Dependent variable:

CHANGED

(1) (2) (3) (4)

Moderate −0.137∗ −0.155∗∗ −0.137∗ −0.111
(−0.288, 0.015) (−0.304, −0.006) (−0.290, 0.016) (−0.260, 0.037)

VeryGood −0.195∗∗ −0.193∗∗ −0.170∗∗ −0.172∗∗

(−0.357, −0.033) (−0.350, −0.037) (−0.330, −0.009) (−0.327, −0.018)
Belief: No 0.052

(−0.337, 0.442)
Belief: Don’t know −0.086

(−0.352, 0.180)
Education 0.015∗∗ 0.015∗∗ 0.015∗∗∗

(0.003, 0.026) (0.004, 0.027) (0.005, 0.025)
Farming Experience 0.007∗∗ 0.007∗∗ 0.005∗∗

(0.001, 0.012) (0.001, 0.012) (0.001, 0.009)
Yrs grown variety −0.077∗∗∗ −0.080∗∗∗ −0.060∗∗∗

(−0.127, −0.027) (−0.131, −0.029) (−0.101, −0.019)
Yrs grown Bt −0.042∗∗ −0.043∗∗∗ −0.009

(−0.074, −0.010) (−0.075, −0.010) (−0.038, 0.019)
Land owned −0.008∗∗∗ −0.008∗∗∗ −0.007∗∗

(−0.014, −0.002) (−0.014, −0.002) (−0.013, −0.001)
Seed price −0.001∗∗ −0.001∗∗ −0.0003∗

(−0.001, −0.00002) (−0.001, −0.00000) (−0.001, 0.0001)
Cotton selling price −0.020 −0.019 −0.011

(−0.049, 0.010) (−0.048, 0.011) (−0.035, 0.012)
Pesticide −0.006 −0.0002

(−0.040, 0.028) (−0.011, 0.011)
Log yield −0.058 −0.027

(−0.153, 0.037) (−0.109, 0.055)
Moderate*Belief:No 0.048

(−0.356, 0.453)
Moderate*Belief:Don’t know 0.162

(−0.153, 0.477)
VeryGood*Belief:No 0.123

(−0.342, 0.588)
VeryGood*Belief:Don’t know 0.075

(−0.260, 0.410)

District FE Yes Yes Yes Yes

Observations 331 331 331 499
R2 0.220 0.294 0.297 0.220
Adjusted R2 0.156 0.218 0.216 0.147
Residual Std. Error 0.459 (df = 305) 0.442 (df = 298) 0.442 (df = 296) 0.460 (df = 455)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3 demonstrates the results of Equation (5.2). Across specifications, improved perceptions of bollworm resistance decrease
the probability that the farmer will change varieties next year.
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Table 4: Effect of Bt on farmer perceptions

Dependent variable:

VeryGood

(1) (2) (3) (4) (5) (6)

Bt (standardized) −0.026 −0.027 −0.027 −0.028 −0.035
(−0.079, 0.027) (−0.080, 0.026) (−0.080, 0.025) (−0.081, 0.025) (−0.081, 0.012)

Belief: No −0.067
(−0.246, 0.111)

Belief: Don’t know −0.107
(−0.236, 0.022)

Education 0.003 0.002 0.002 −0.002
(−0.009, 0.015) (−0.010, 0.015) (−0.010, 0.015) (−0.011, 0.007)

Farming Experience 0.001 0.001 0.003
(−0.005, 0.007) (−0.004, 0.007) (−0.001, 0.008)

Yrs grown variety 0.013 0.012 −0.009
(−0.041, 0.066) (−0.041, 0.066) (−0.051, 0.034)

Yrs grown Bt 0.011 0.010 −0.006
(−0.024, 0.046) (−0.025, 0.045) (−0.032, 0.021)

Seed price 0.0001 0.0001 0.0001 0.0002
(−0.0004, 0.001) (−0.0004, 0.001) (−0.0004, 0.001) (−0.0001, 0.001)

Fertilizer −0.0001 −0.00003 0.00003
(−0.002, 0.001) (−0.002, 0.002) (−0.0001, 0.0002)

Pesticide −0.004 0.007∗

(−0.048, 0.040) (−0.001, 0.016)
Log yield 0.140∗∗∗

(0.051, 0.229)
Bt*Belief:No −0.005

(−0.148, 0.138)
Bt*Belief: Don’t know 0.011

(−0.065, 0.087)

District and sowing time FE Yes Yes Yes Yes Yes Yes

Observations 331 331 331 331 499 331
R2 0.276 0.277 0.279 0.279 0.301 0.293
Adjusted R2 0.190 0.185 0.177 0.174 0.224 0.209
Residual Std. Error 0.447 (df = 295) 0.448 (df = 293) 0.451 (df = 289) 0.451 (df = 288) 0.437 (df = 449) 0.441 (df = 295)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4 demonstrates the results of Equation (5.3). In Columns 1-5, Bt content does not systematically influence farmer perceptions
of the bollworm-resistance performance of their crop. Column 6 shows that yield is positively correlated with farmer perceptions.
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Table 5: Effect of Bt on pesticide use

Dependent variable:

Pesticide use

(1) (2) (3) (4) (5)

Bt (standardized) −0.039 −0.045 −0.026 −0.014 −0.040
(−0.273, 0.195) (−0.277, 0.186) (−0.259, 0.207) (−0.220, 0.191) (−0.372, 0.292)

Belief: No −1.343∗∗

(−2.425, −0.261)
Belief: Don’t know −1.234∗∗∗

(−2.006, −0.463)
Education 0.032 0.037∗ 0.029 0.075

(−0.009, 0.074) (−0.006, 0.080) (−0.015, 0.072) (−0.027, 0.178)
Farming Experience 0.008 0.009 0.0003

(−0.010, 0.026) (−0.008, 0.026) (−0.038, 0.039)
Yrs grown variety −0.073 −0.089 −0.251

(−0.214, 0.069) (−0.224, 0.047) (−0.596, 0.093)
Yrs grown Bt −0.094 −0.085 0.415∗∗

(−0.209, 0.020) (−0.192, 0.021) (0.069, 0.761)
Land owned −0.0002 0.006 0.004

(−0.018, 0.017) (−0.010, 0.023) (−0.045, 0.053)
Area cultivated 0.004 0.001 −0.015

(−0.016, 0.023) (−0.018, 0.021) (−0.041, 0.010)
Irrigation 0.0001

(−0.0002, 0.0004)
Fertilizer 0.013∗∗∗

(0.007, 0.018)
Seed amount 0.101∗∗ 0.101∗∗∗ −0.018

(0.023, 0.179) (0.032, 0.170) (−0.167, 0.130)
Bt*Belief: No 0.299

(−0.269, 0.866)
Bt*Belief: Don’t know 0.361

(−0.117, 0.839)

District, sowing time, and soil FE Yes Yes Yes Yes Yes

Observations 331 331 331 331 499
R2 0.342 0.350 0.375 0.438 0.236
Adjusted R2 0.262 0.268 0.281 0.349 0.151
Residual Std. Error 1.392 (df = 294) 1.386 (df = 293) 1.374 (df = 287) 1.307 (df = 285) 4.202 (df = 448)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5 demonstrates the results of Equation (5.4). Across specifications, Bt content does not affect pesticide use.
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Appendix A: Theoretical model details

The expected value of Bt in the next period for each farmer is the expected

outcome for switching or not, Equations (1.1)-(1.2), weighted by that probability:

Ei(B̃2i) = Prob(S) [E(B1)] + (1− Prob(S))
[
pB̃1i + (1− p)E(B1)

]
= E(B1) [1− p(1− Prob(S))] + p(1− Prob(S))B̃

(A1)

To find the expected change in outcome from t = 1 to t = 2 for a farmer with initial

realization B̃1i, we subtract B̃1i from (A1):

Ei(∆B̃i) = Ei(B̃2i)− B̃1i

= E(B1) [1− p(1− Prob(S))] + p(1− Prob(S))B̃1i − B̃1i

=
(
E(B1)− B̃1i

) [
1− p(1− g(B̃1i − V ∗1 ))

] (A2)

Expected change in Bt content across the market is found by taking expected change

for each initial realization B̃1i, (A2), weighing it by the probability of its occurrence

in the first period Prob(B̃1i), and summing across:

E(∆B̃) =
∑
i

Prob(B̃1i) ∗ Ei(∆B̃i)

=
∑
i

Prob(B̃1i) ∗
(
E(B1)− B̃1i

) [
1− p(1− g(B̃1i − V ∗1 ))

] (A3)

A simpler expression can be obtained for (A3) - the expected change in Bt av-

eraged across all farmers - which also allows us to see how it is affected by various

parameters. To see that, assume g takes a specific functional form: a linear form

g = −α(B̃1i − V ∗1 ) + 0.5, where α > 0; the parameter α is the learning parame-

ter. This form guarantees that for values at the expectation switching is a tossup,
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g(0) = 0.5, though having any constant g0 instead of 0.5 does not affect any re-

sults. Furthermore, allowing for a discrepancy between expectations and true market

averages, V ∗1 = E(B1) + γ. Substituting into (A3):

E(∆B̃) =
∑
i

Prob(B̃1i) ∗
(
E(B1)

∗ − B̃1i

) [
1− p(1 + α{B̃1i − [E(B1) + γ]} − 0.5)

]
=
∑
i

Prob(B̃1i) ∗
(
E(B1)− B̃1i

) [
1− 0.5p+ αp(E(B1) + γ − B̃1i)

]
(A4)

(A4) can be written in continuous form. Replacing the summation with integration,

and letting f(B̃1i) be the probability density function, then:

E(∆B̃) =

∫
f(B̃1i)

(
E(B1)− B̃1i

) [
1− 0.5p+ αp(E(B1) + γ − B̃1i)

]
dB̃1i (A5)
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When simplified, (A5) reduces to a very simple expression. To see that:

E(∆x) =

∫
f(x) (E(x)− x) [1− 0.5p+ ap(E(x) + γ − x)] dx

=

∫
f(x)(E(x)− x)dx− 0.5p

∫
f(x)(E(x)− x)dx

+ αp

∫
f(x)(E(x)− x)(E(x) + γ − x)dx

= 0 + 0 + αp

∫
f(x)(E(x)− x)(E(x) + γ − x)dx

= αp

∫
f(x)(E(x)− x)(E(x)− x)dx+ γαp

∫
f(x)(E(x)− x)dx

= αp

∫
f(x)

[
(E(x))2 − 2E(x)x+ x2

]
dx+ 0

= αp

[
(E(x))2

∫
f(x)dx− 2E(x)

∫
f(x)xdx+

∫
f(x)x2dx

]
= αp

[
(E(x))2(1)− 2E(x)E(x) +

∫
f(x)x2dx

]
= αp

[
−(E(x))2 +

∫
f(x)x2dx

]
= αp

[
−E(x)2 + E(x2)

]
= αp

[
E(x2)− (E(x))2

]
= αpV ar(x) ≥ 0

Therefore, by assuming a linear form for g, and since V ar(B̃1) = σ2, we get:

E(∆B̃) = αpσ2 (A6)
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Appendix B: Calculating benefits to farmers

Since Bt imbues resistance to bollworms and improves cotton yield, higher aver-

age Bt quality on the market due to experience-based learning and selection should

improve overall industry performance. How would Bt content improvement translate

into monetary gains for the farmers?

This estimation proceeds in three parts. First, I estimate the size of Pakistan’s

cotton cultivation industry in the 2014-2015 season, the year for which I test learning

and heuristic response by farmers. Second, I estimate the effect of varying levels of

Bt on cotton yield and revenue. Third, I calculate changes in Bt content for different

learning parameters α - with varying ranges of p and σ - and apply the results in

Steps 1-2 to derive monetary benefits to farmers.

1. Calculating the size of the industry is straightforward. According to the Pak-

istani government, cotton production in Pakistan in 2014-2015 totaled 13,960,000

bales, equivalent to about 2.37 billion kg. From my data, the average price, in

Pakistani Rupees, that farmers received for their 2014 crop per 40 kg mound

of cotton was about 2313 PR, or 23 USD. Since 2.37 billion kg is equivalent to

59.3 million (40 kg) mounds, multiplying that amount by the price received per

mound totals 1.364 billion USD, or 0.5% of the country’s GDP for that year.

Of course, this is only what the farmers receive - there is more value added

downstream.

2. Calculating the effect of Bt improvement on yield and revenue is more compli-

cated. Ma et al (2016) suggest the following breakdown of lethality:
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Table B1: Bt content and pest lethality

Bt content (µg/g) Lethal level (% pests killed)

0.60 50
0.70 60
0.88 70
1.06 80
1.34 90
1.59 95

Table B1 can be used to extrapolate differences in lethality based on Bt con-

tent. For example, an improvement in mean Bt content from 0.88 µg
g

to 0.97

µg
g

would raise killing effectiveness from 70% to 75%. The question is how this

corresponds to output gain. Research suggests that Bt can protects half of all

yield from destruction; if a maximum lethal level of 100% effective Bt improves

yield by 50%, then 5% increase in lethal levels improves yield by 2.5%, or, given

the size of the Pakistani cotton cultivation industry, about 34 million USD.

3. In this way, we can translate estimated improvement in average Bt content

in the next year, E(∆B̃) = αpσ, into monetary gains. For example, Figure

B1 below shows monetary gains, on the vertical axis, in millions of USD for

α ∈ [0, 0.2], p ∈ [0, 1], σ = 0.57 (this is the standard deviation in my data). Take

a specific point such as α = 0.1 and p = 0.8. E(∆B̃) = 0.1 ∗ 0.8 ∗ 0.57 = 4.56,

so that average Bt shifts from 0.88 to 0.926 µg
g

. In turn, using the methodology

in Steps 1-2, this would generate monetary gains of about 17.4 million dollars,

shaded in bluish green on the figure. With higher σ the graph would tilt further

up, generating more gains for any combination of learning and variety integrity.

55



Figure B1: Illustrating monetary gains for farmers

Figure B1 plots an example of market-wide monetary gains in one year in millions of USD
as a function of both the learning parameter (axis from 0-0.20) and variety integrity (axis
from 0-1), with σ=0.57.

This method, though based on the short run, also provides a rough back-of-the-

envelope estimate of maximum possible gains from learning in the long-run. If Bt im-

proves in the long run from the in-sample level of 0.88 µg
g

to the maximum-effectiveness

level of 1.59 µg
g

, this 25% improvement in percent of lethal pests killed results in 12.5%

improvement in yield (According to Step 2), and therefore gains of up to 170 million

USD in 2014. Actual long term gains would of course depend on shifts in relative

prices between less and more effective varieties.
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Appendix C: Variable construction and distribution

The personal, price, and input controls are constructed as follows.

Education is the number of years of schooling of the household head by 2013.

Farming experience is the years of general farming experience of the head by 2013.

Years Bt grown is the total number of years that the household has grown (what they

think are) Bt varieties, including and up to 2013. Years variety grown is the number

of years in total that the farmer has grown the specific 2013 variety, including and

up to 2013. Land owned is the amount of land, in acres, owned by the household in

2012.

Seed purchase price is the price, in 2013 Pakistani rupees, at which the farmer

purchased one kilogram of seeds of the target variety in 2013. Selling price is the

price, in 2013 hundreds of Pakistani rupees, at which the farmer sold one 40 kilogram

mound of the variety cultivated and harvested in 2013.

Irrigation is a measure of the total minutes of irrigation per acre of cotton culti-

vated in 2013. Fertilizer measures the extent of nitrogen-fertilizer used, as kilograms

per acre of cotton cultivated in 2013. I calculate it by multiplying the nitrogen percent

of each type of fertilizer with the amount (in kg) used. Seed amount is the amount of

seeds sowed for that variety in kilograms per acre of cotton cultivated in 2013. Labor

measures the total number of labor hours that were reported worked, per acre, during

the 2013 season.

Table C1 provides a summary of the distribution of key variables in the data,

including the dependent variables. Variety change between 2013 and 2014 occurred

in 55.8% of the sample. The average level of Bt expression is 0.877 micrograms of

cry protein per gram of plant tissue. This is only moderately high: a measurement of

0.598 means the plant has 50% chance of killing bollworms at specific conditions while

57



a level of 1.59 offers a 95% chance of doing so. Therefore, on average, the farmers are

not cultivating very effective Bt varieties. 27

The table also shows that the average farmer sampled has 5 years of education,

16 years of general farming experience, 4 years of experience cultivating Bt varieties,

and has cultivated the 2013 variety for 2 years (including 2013); owns 6.5 acres of

agricultural land; purchased seeds for about 280 Pakistani rupees ($1.80) per kilogram

of seeds and sold the crop at 2,700 rupees ($17.30) per 40 kg mound of cotton; irrigated

each acre cultivated for 23 hours total; applied 85 kilograms of fertilizer and 2.4 liters

of pesticide per acre cultivated; sowed 7 kilograms of seeds per acre; and put in 163

hours of labor total per acre.

The histograms in Figure C1 illustrate these distributions.

Table C1: Distribution of Variables

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Changed 331 0.538 0.499 0 0 1 1
Bt level (µg/g) 331 0.88 0.57 0.00 0.48 1.14 3.50
Education 331 5.0 4.8 0 0 9 20
Farming experience 331 16.1 10.7 2 7 22 49
Years variety grown 331 2.1 1.1 1 1 3 7
Years Bt grown 331 4.2 1.6 1 3 5 11
Land owned (acres) 331 6.7 9.3 0.0 2.0 8.0 67.0
Seed price (PR) 331 289.4 126.8 100.0 200.0 350 .0 900.0
Selling price (’00 PR) 331 27.7 2.6 18.0 26.4 29.7 34.0
Irrigation (mts/acre) 331 1,388 776 120 810 1,835 4,620
Fertilizer (kg/acre) 331 85.62 36.77 0 59.80 103.00 236.00
Seed amount (kg/acre) 331 6.94 2.81 2.00 5.00 9.00 16.00
Pesticide (L/acre) 331 2.41 1.62 0.00 1.30 3.20 10.00
Labor (hours/acre) 331 163.4 93.7 36.0 103.6 204.6 500.0

Table C1 summarizes the distribution of the key variables used in the analysis.

27With regard to perception, 18% of farmers rated the bollworm resistance performance as poor,
40% as moderate, and 42% as very good.
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Figure C1: Distribution of Variables

Figure C1 illustrates the distribution of the key variables used in the empirical methodology,
across the 331 farmers who are the focus of analysis. Values are on the x-axis while counts
are on the y-axis. For example, the first plot shows that Bt content ranges between 0 and
3.5 micrograms of the Bt protein per gram, with the most common value (mode) for a
farmer being about 0.5.
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Appendix D: Alternative explanations & robustness

0

1

2

3

4

No Yes

B
tL

ev
el

ChangedSupplier No Yes

Figure D1: Supplier change

Figure D1 considers behavioral responses to learning besides variety switching and shows
it is unlikely that farmers reacted to low Bt level by switching suppliers in the next year.
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Figure D2: Reasons for exit

Figure D2 rules out the possibility that farmers reacted to low Bt levels by exiting cotton
production, by showing the reasons the farmers who exited gave for their decision.
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Figure D3: Correlation between Bt level and exit

Figure D3 complements the result in Figure D.2 and shows no correlation between the
farmer’s Bt level and the decision to exit production.
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Table D1: Learning from others

Dependent variable:

CHANGED

(1) (2) (3) (4)

Bt level (standardized) −0.022 −0.029 −0.032 −0.039
(−0.106, 0.062) (−0.113, 0.056) (−0.118, 0.053) (−0.123, 0.045)

Diff Bt Neighbor (non-st.) 0.129 0.148 0.130 0.221∗∗

(−0.103, 0.361) (−0.089, 0.384) (−0.090, 0.349) (0.001, 0.442)
Education 0.005 0.016∗∗ 0.016∗∗

(−0.007, 0.018) (0.003, 0.029) (0.002, 0.029)
Farming experience 0.008∗∗ 0.007∗∗

(0.002, 0.014) (0.0002, 0.013)
Years variety grown −0.093∗∗∗ −0.101∗∗∗

(−0.155, −0.031) (−0.162, −0.039)
Years Bt grown −0.056∗∗∗ −0.052∗∗∗

(−0.094, −0.019) (−0.089, −0.014)
Land owned −0.010∗∗∗ −0.010∗∗∗

(−0.016, −0.003) (−0.016, −0.004)
Seed price −0.0003 −0.0004 −0.0003

(−0.001, 0.0003) (−0.001, 0.0001) (−0.001, 0.0002)
Cotton selling price −0.023 −0.024 −0.027

(−0.055, 0.009) (−0.057, 0.008) (−0.060, 0.006)
Irrigation −0.0001∗

(−0.0002, 0.00001)
Fertilizer −0.0005

(−0.002, 0.001)
Seed amount 0.038∗∗∗

(0.013, 0.064)
Labor 0.0004

(−0.0003, 0.001)
Pesticide −0.00001

(−0.0001, 0.00003)

District FE Yes Yes Yes Yes

Observations 260 260 260 260
R2 0.124 0.135 0.227 0.266
Adjusted R2 0.066 0.067 0.151 0.176
Residual Std. Error 0.478 (df = 243) 0.478 (df = 240) 0.455 (df = 236) 0.449 (df = 231)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table D1 includes a rough measure of peer effects: the average Bt of farmers who cultivated
a different variety in 2013. With social learning, this coefficient would be positive while
own-Bt would have a negative coefficient.
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Table D2: Using pseudo-Bt measure for all farmers

Dependent variable:

CHANGED

(1) (2) (3) (4)

Pseudo Bt (standardized) −0.017 −0.016 −0.015 −0.019
(−0.079, 0.045) (−0.076, 0.045) (−0.076, 0.046) (−0.080, 0.043)

Education 0.010∗ 0.015∗∗∗ 0.012∗∗

(−0.001, 0.020) (0.004, 0.026) (0.001, 0.023)
Farming experience 0.006∗∗ 0.005∗

(0.001, 0.011) (−0.0005, 0.010)
Yrs grown variety −0.083∗∗∗ −0.083∗∗∗

(−0.131, −0.035) (−0.132, −0.035)
Yrs grown Bt −0.016 −0.018

(−0.047, 0.016) (−0.049, 0.013)
Land owned −0.009∗∗∗ −0.009∗∗∗

(−0.015, −0.003) (−0.015, −0.003)
Seed price −0.0002 −0.0004 −0.0003

(−0.001, 0.0002) (−0.001, 0.0001) (−0.001, 0.0002)
Cotton selling price −0.016 −0.019 −0.020

(−0.042, 0.009) (−0.045, 0.007) (−0.047, 0.006)
Irrigation −0.0001∗

(−0.0002, 0.00000)
Fertilizer 0.0002∗

(−0.00002, 0.0004)
Seed amount 0.025∗∗

(0.001, 0.050)
Labor −0.00001

(−0.0002, 0.0002)
Pesticide −0.00001

(−0.00002, 0.00001)

District FE Yes Yes Yes Yes

Observations 378 378 378 378
R2 0.177 0.189 0.242 0.269
Adjusted R2 0.121 0.127 0.174 0.192
Residual Std. Error 0.467 (df = 353) 0.465 (df = 350) 0.452 (df = 346) 0.448 (df = 341)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table D2 combines single and multiple variety farmers who believed they were purchasing
Bt. It replicates the main regression in Equation (5.1) but with Bt level, including for
single-variety farmers, constructed as an average of the Bt of all other farmers with that
variety. This facilitates comparison with the multiple-variety group.
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Table D3: Farmer characteristics - In sample vs out of sample

Statistic Out of sample, N=396 In sample, N=331 p. overall

Head Age 47.4 (12.1) 46.4 (11.3) 0.250
Head Education 4.37 (4.61) 5.02 (4.75) 0.067
Farming Experience 14.5 (13.1) 15.8 (11.1) 0.150
Main Plot Area 5.73 (6.75) 6.68 (11.0) 0.174
Land Owned 5.78 (10.4) 6.75 (9.27) 0.185
Province: <0.001

PUNJAB 268 (67.7%) 291 (87.9%)
SINDH 128 (32.3%) 40 (12.1%)

Table D3 compares key characteristics of the farmers in the sample, N = 331, to all the
other farmers that were not included in the sample but were part of the Pakistan Cotton
Survey, N = 396 (total N = 727). For the non-region variables, means are provided with the
standard deviation in brackets. The last column reports the p-value for the null hypothesis
that the means are the same for both groups.
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Table D4: Accounting for measurement error

Dependent variable:

CHANGED

OLS IV OLS

(1) (2) (3)

Bt - leafs −0.006
(−0.068, 0.055)

Bt - instrumented −0.034
(−0.180, 0.112)

Bt - correlated −0.067
(−0.203, 0.068)

Education 0.014∗∗ 0.015∗∗ 0.023∗

(0.002, 0.026) (0.003, 0.028) (−0.0003, 0.047)
Farming Experience 0.007∗∗ 0.008∗∗∗ 0.017∗∗∗

(0.001, 0.012) (0.002, 0.014) (0.006, 0.028)
Yrs grown variety −0.081∗∗∗ −0.085∗∗∗ −0.105∗∗

(−0.132, −0.031) (−0.140, −0.031) (−0.200, −0.011)
Yrs grown Bt −0.041∗∗ −0.045∗∗∗ −0.142∗∗∗

(−0.073, −0.009) (−0.079, −0.011) (−0.197, −0.087)
Land owned −0.008∗∗ −0.008∗∗ −0.008

(−0.014, −0.002) (−0.014, −0.002) (−0.018, 0.002)
Seed price −0.001∗ −0.001∗∗ −0.001∗∗

(−0.001, 0.00002) (−0.001, −0.00002) (−0.002, −0.0001)
Cotton selling price −0.022 −0.028∗ −0.032

(−0.051, 0.006) (−0.058, 0.001) (−0.074, 0.010)

District FE Yes Yes Yes

Observations 331 331 74
R2 0.276 0.269 0.634
Adjusted R2 0.200 0.188 0.431
Residual Std. Error 0.447 (df = 299) 0.449 (df = 299) 0.368 (df = 47)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table D4 demonstrates the results from reconstructing the Bt variable to reduce mea-
surement error and re-estimating the effect of Bt content on variety change. Column 1
reconstructs Bt content as an average, for each farmer, of the leaf values only because they
are more strongly correlated with each other than boll values. Column 2 uses one leaf value
as an instrument for the other to eliminate (the correlated) measurement error. Column 3
keeps Bt content as the average of the leaf and boll values but applies it only to a limited
set of observations where the two leaf values are almost identical.
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Table D5: Additional robustness checks

Dependent variable:

CHANGED

(1: LPM) (2: LPM) (3: LPM) (4: Logit)

Bt level (standardized) 0.016 0.007 0.016 0.055
(−0.079, 0.111) (−0.060, 0.073) (−0.047, 0.079) (−0.286, 0.172)

Bt level squared −0.0004
(−0.036, 0.035)

Education 0.014∗∗ 0.013∗∗ 0.015∗∗ 0.067∗∗

(0.002, 0.025) (0.001, 0.025) (0.003, 0.026) (0.009, 0.128)
Bt level*Education 0.003

(−0.007, 0.013)
Farming experience 0.006∗∗ 0.006∗∗ 0.006∗∗ (0.033)∗∗

(0.001, 0.012) (0.001, 0.012) (0.001, 0.011) (0.007, 0.061)
Years variety grown −0.082∗∗∗ −0.082∗∗∗ −0.404∗∗∗

(−0.132, −0.031) (−0.132, −0.031) (−0.662, −0.161)
Years Bt grown −0.040∗∗ −0.040∗∗ −0.041∗∗ −0.202∗∗

(−0.072, −0.008) (−0.072, −0.008) (−0.074, −0.009) (−0.376, −0.035)
Land owned −0.008∗∗ −0.008∗∗ −0.008∗∗ −0.037∗∗

(−0.014, −0.002) (−0.014, −0.002) (−0.014, −0.002) (−0.067, −0.008)
Seed price −0.001∗ −0.001∗ −0.001∗∗ −0.003∗∗

(−0.001, 0.00002) (−0.001, 0.00001) (−0.001, −0.0001) (−0.005, −0.001)
Cotton selling price −0.022 −0.021 −0.015 −0.135∗

(−0.050, 0.007) (−0.050, 0.007) (−0.043, 0.013) (−0.296, 0.020)

Variety grown dummies No No Yes No

District FE Yes Yes Yes Yes

Observations 331 331 331 331
R2 0.279 0.280 0.300
Adjusted R2 0.202 0.203 0.214
Residual Std. Error 0.446 (df = 298) 0.446 (df = 298) 0.443 (df = 294)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table D5 introduces different specifications to Column 3 in Table 2 to test the effect of
Bt content on variety change. Column 1 adds a Bt squared variable to allow for nonlinear
effects, Column 2 adds an interaction term between Bt content and education to allow for
different effects by education, Column 3 uses a sequence of dummy variables the planting
history (omitted from table) to allow for nonlinear effects, and Column 4 uses a bias-reducing
logit instead of a linear probability model

.
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Table D6: Ordered logit to check effect of Bt on perception formation

Dependent variable:

Perception (Ordered)

Logit

Bt level (standardized) −0.022
(−0.302, 0.258)

Education 0.019
(−0.035, 0.072)

Farming experience 0.008
(−0.017, 0.033)

Years variety grown 0.080
(−0.141, 0.302)

Years Bt grown −0.035
(−0.131, 0.192)

Seed price −0.001
(−0.002, 0.002)

District and sowing-time FE Yes

Observations 331

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table D6 estimates the effect of Bt on farmer perceptions by including all three levels
of farmer perceptions in the dependent variable, with an ordered logit. This serves as a
check on the main results in Table 4, which uses a linear probability model and clusters
perceptions into a binary ’poor/moderate’ versus ’very good’ variable..
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