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Abstract

Reanalyzing 12 experiments on the repeated prisoner’s dilemma (PD), we robustly ob-
serve three distinct subject types: defectors, cautious cooperators and strong coopera-
tors. The strategies used by these types are surprisingly stable across experiments and
uncorrelated with treatment parameters, but their population shares are highly correlated
with treatment parameters. As the discount factor increases, the shares of defectors de-
crease and the relative shares of strong cooperators increase. Structurally analyzing be-
havior, we next find that subjects have limited foresight and assign values to all states of
the supergame, which relate to the original stage-game payoffs in a manner compatible
with inequity aversion. This induces the structure of coordination games and approxi-
mately explains the strategies played using Schelling’s focal points: after (c,c) subjects
play according to the coordination game’s cooperative equilibrium, after (d,d) they play
according to its defective equilibrium, and after (c,d) or (d,c) they play according to its
mixed equilibrium.
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1 Introduction

One of the most dynamic research fields over the last two decades has been behavioral game
theory, i.e. the econometric and theoretical analysis of laboratory games to align observed
behavior with game-theoretical concepts. How should we think of beliefs, utilities, and sub-
jects’ choices, and is it possible to explain choices as responses to incentives? In some classes
of games, most notably auctions, behavior shows to be reasonably consistent with theory af-
ter simply accounting for risk aversion (Bajari and Hortacsu, 2005) or biased beliefs (Eyster
and Rabin, 2005). In generic normal-form games involving dominated strategies, behavior
is captured after relaxing rational expectations (Costa-Gomes et al., 2001); in games without
dominated strategies, behavior tends to mainly reflect logistic errors in choice (Weizsäcker,
2003; Brunner et al., 2011); and in games involving the distribution of monetary benefits,
preference interdependence seems to organize behavior (Fehr and Schmidt, 1999; Charness
and Rabin, 2002). Particular behavioral models tend to be disputed, but overall, there has
been substantial progress in aligning observed behavior and theoretical predictions across
many classes of games.

One class of games that has experienced less progress in aligning behavior and predic-
tions is the large class of repeated games. Repeated games are the main approach toward
modeling long-run interactions, in particular to study cooperation and defection, and they
have been a core object of game-theoretic analyses at least since the folk theorem for repeated
games with discounting (Fudenberg and Maskin, 1986). Regarding behavior in experiments,
however, there is no consensus on what subjects actually do—not even whether they play
pure, mixed or behavior strategies—and there is not a single analysis relating round-by-
round decisions to beliefs and expected utilities despite its common practice in structural
analyses of behavior in static games.

The purpose of this paper is to re-analyze a large data set comprising 12 experiments to
robustly estimate strategies and structurally analyze them similar to previous work on static
games. We seek to answer three questions: Which strategies do subjects actually play? Are
the strategies played and the shares of them predictable across conditions? How do the strate-
gies align with expected utilities, and to what extent is individual behavior consistent with
existing models of behavior in games? Regarding the first question, much of the existing
literature restricts attention to strategies that are pure (with some noise), but recent evidence
suggests that behavior strategies might better explain behavior (reviewed below). Regarding
the second question, existing evidence suggests that the type shares playing specific coop-
erative strategies fluctuate fairly erratically between treatments, which is puzzling but may
reflect inadequate constraints to pure strategies that we shall relax in our analysis. The third
question is novel in the analysis of repeated games and has been left unexplored in previous
work, but it is a central question in many behavioral papers and of major relevance in order
to link behavior in repeated games to other literature.

Our main results can be summarized as follows. Estimating the individual strategies
without restrictions to pure or otherwise known strategies, and across 145,000 decisions
from 12 experiments, we find that both the bottom-up and the top-down approach toward
behavioral modeling imply that there are three subject types robustly observed across all
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treatments and experiments. Type 1 plays a slightly perturbed version of always defect. We
refer to subjects of type 1 as defectors. Types 2 and 3 both play behavior strategies predicting
nearly pure behavior after (c,c) and (d,d) (cooperation and defection, respectively), and
they both randomize after (c,d) and (d,c). In round 1, however, type 2 cooperates with
intermediate probability and type 3 with high probability. We refer to subjects of types 2
and 3 as cautious and strong cooperators, respectively. The states will be abbreviated as
cc,cd,dc,dd in the following. We obtain these results from an unrestricted estimation of
memory-1 strategies, i.e. an estimation of strategies without imposing restrictions to say pure
strategies that characterize previous work, and we examine robustness to memory-2 in the
appendix. This unrestricted estimation is a first major novelty of our analysis and addresses
the first question above.

Further, as a second major novelty, we use data-mining techniques to obtain an upper
bound for the goodness-of-fit that could be obtained assuming all subjects play versions of
pure strategies. We relax many assumptions made in the literature, grant many degrees of
freedom “for free”, and allow for either no switching, random switching, or Markov switch-
ing of strategies between supergames. This generality notwithstanding, the upper bound for
pure strategies is significantly lower than the goodness-of-fit of the simple three-type model
described above identified by unrestricted estimation—which rules out that cooperating sub-
jects (i.e. the ones not playing always defect) are well-described as playing pure strategies.

Across treatments, the three types of strategies used are largely uncorrelated with treat-
ment parameters or other known predictors of cooperation, while the distribution of types
is highly correlated with the discount factor δ: As δ approaches the Blonski et al. (2011)
(BOS) threshold of cooperation δ∗, the share of defectors decreases relative to cooperators,
and as δ is raised further, the strong cooperators start to outnumber the cautious cooperators.
That is, as a third major novelty, the unrestricted estimation implies that the distribution of
the strategies becomes predictable—addressing the second question above—but the types of
strategies they play are all the more puzzling. Specifically, we have no prior explanation for
the observation that type shares are correlated with δ (in relation to the BOS threshold δ∗, see
Figure 4), which suggests that subjects are aware of δ and other parameters when choosing
their strategy, while the actual strategies are largely uncorrelated with δ (Figure 3).

To resolve this puzzle, and the third question above, we use techniques developed for
the estimation of static games (McKelvey and Palfrey, 1995; Bajari and Hortacsu, 2005) and
dynamic games (Aguirregabiria and Mira, 2007) in order to understand the individual mo-
tivation behind the strategies of cooperative types across treatments. In this way, we also
seek to resolve a second puzzle that the above results highlight: Cooperating subjects in our
unrestricted analysis, and indeed in all previous work, cooperate with a probability close to 1
if both subjects had cooperated in the previous round. They do so even if the expected payoff
of cooperating (in the next round) is substantially below the expected payoff of defecting, as
we demonstrate below, and even if Grim is not a subgame perfect equilibrium. The latter im-
plies that behavior cannot be explained just by relaxing beliefs about the opponent’s strategy.
By estimating the dynamic games, we try to understand subjects’ preferences in a manner
similar to previous behavioral analyses of cooperative subjects in one-shot games, which is
the fourth major novelty of our analysis.
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We find that the strategies of cooperators are consistent with false consensus beliefs
about the opponent’s type, i.e. that each subject believes their opponent to be of the same type
as they are (as in symmetric equilibrium), that subjects display severely limited foresight
(as if the discount factor was zero, discussed shortly), and that their preferences are well
described by Fehr-Schmidt inequity aversion. The limited foresight implies that subjects do
not look beyond the outcome of the present round and do not explicitly consider sums of
discounted payoffs. Instead, subjects associate utility values with each of the four possible
outcomes of the present round (cc,dc,cd,dd) that encode the subject’s value of reaching
the respective state. We estimate that these state values induce a coordination game played
round-by-round, that is with one round of foresight, and that these state values can be derived
from the stage game payoffs using inequity aversion.

As usual, this coordination game has three Nash equilibria: a cooperative one, a de-
fective one, and a mixed one. Our analysis indicates that, reminiscent of Schelling’s focal
points, after cc subjects expect cooperation (i.e. believe the opponent to cooperate) and play
the cooperative equilibrium of the coordination game, after dd they expect defection and play
the defective equilibrium, and after mixed histories (cd or dc) they play the mixed equilib-
rium. Our results indicate a similar line of reasoning in round 1: Given the actual treatment
parameters, some subjects focus on the cooperative equilibrium (the “strong cooperators”),
some focus on the defective equilibrium (the “defectors”), and some seem “unsure” playing
the mixed equilibrium in round 1 (the “cautious cooperators”). The respective subject shares
are predictable using the distance of discount factor δ to the BOS-threshold δ∗ derived by
Blonski et al. (2011).

We thus obtain a closed behavioral foundation of the strategies played in the repeated
PD. In contrast to previous work, this model explains the strategies that we estimated without
restrictions beyond standard memory-1, rather than merely estimating strategy weights under
non-validated restrictions to certain pure strategies. Further, our results bear many relations
to previous work in behavioral economics.

Figure 1: Decomposition of behavior into model components
(second halves of sessions, based on 79.892 observations)

Uniform
Random

23 %

63 % 74 % 93 %

Perfect
Fit

Actual Incentives and Bayesian Bel Consensus Belie Limited ForesightInequity Aversion

Note: This plot summarizes the results of our structural analyses (Table 5) of the strategies played. Here we
focus on the strategies of subjects not classified as playing always defect. The clairvoyance model explaining
the strategies of cooperating subjects perfectly across treatments obtains the “perfect fit” (100%), while the
model predicting uniform randomization obtains 0%. The remaining percentages are computed proportionally
to these two benchmarks. First, the model assuming that subjects play logit responses to Bayesian beliefs over
their opponent’s strategy obtains 23%, additionally allowing for inequity aversion increases the score to 63%,
next adopting consensus beliefs increases the explained variance to 74%, and allowing for a flexible discount
factor δ (leading to limited foresight as an estimation result) captures an additional 19% for a total of 93%.
Figure 6 provides information also for behavior in the first halves of sessions and on robustness with respect to
modeling assumptions.
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Quantitatively, using just four parameters for the 80.000 observations of “experienced
subjects” (in their second halves of sessions), the resulting model captures 93% of observed
variance across 32 treatments from 12 experiments. Figure 1 briefly summarizes the ob-
tained decomposition of behavior using our structural estimates. Our finding that behavior
in the repeated PD is characterized by false consensus beliefs relates to a central concept in
psychology (Ross et al., 1977) implying symmetric equilibrium; limited foresight relates to
a central concept in computer science and behavioral game theory (Jehiel, 2001; Kübler and
Weizsäcker, 2004); and inequity aversion is a central concept in behavioral economics (Fehr
and Schmidt, 1999).1 Further, the idea that a repeated PD resembles a coordination game
in round 1, and iteratively in any subsequent round, has been discussed at least since Ra-
bin (1993). We provide the first empirical confirmation, by demonstrating that this implicit
coordination game is endogeneously obtained as an estimation result using econometric tech-
niques known from static games, and by the findings that this coordination game is highly
predictable using inequity aversion and that its equilibria are highly predictive of behavior
across treatments and experiments. This yields a first explanation for behavior in repeated
games and a first set of precise behavioral predictions for future work on repeated games
generalizing the repeated PD—a very encouraging step to bridge the gap between behavioral
analyses of repeated games and behavioral analyses of static games.

2 Background information

Definitions The prisoner’s dilemma (PD) involves two players choosing whether to coop-
erate (c) or defect (d). In the normalized PD, each player’s payoff is 1 if both cooperate and 0
if both defect. If exactly one player cooperates, the cooperating player’s payoff is −l (l > 0)
and the defecting player’s payoff is 1+ g (g > 0). An infinite repetition of this constituent
game is strategically equivalent to an indefinitely repeated one that is terminated with prob-
ability 1−δ after each round, assuming players are risk neutral and discount future payoffs
exponentially (using factor δ < 1). We will refer to these games jointly as repeated PD (or,
supergame). Given g, l > 0, cooperation is dominated in the one-shot game but may be sus-
tained along the path of play in subgame-perfect equilibria of the repeated PD (depending
on δ).

A strategy σ in the repeated PD maps all finite histories to probabilities of cooperation
in the next round. The strategy has memory-1 if it prescribes the same cooperation probabil-
ity for any two histories not differing in the actions chosen in their respective last rounds. It
has memory-2 if the same holds for the last two rounds. We denote memory-1 strategies as
σ = (σ /0,σcc,σcd,σdc,σdd) corresponding to the five memory-1 histories { /0,cc,cd,dc,dd},
called states in the following. For example, σcd , denotes the probability of cooperation
when a player’s most recent action is c and her opponent’s most recent action is d. A strat-

1Interestingly, our results shed new light on the findings of Dreber et al. (2014), who found that inequity
aversion does not help explain behavior in the repeated PD. The difference in our analysis is that we do not
attempt to explain so-called standard strategies, i.e. pure strategies, but behavior strategies estimated without
restrictions to purity. Further, inequity aversion in our analysis is closely interlinked with limited foresight,
which Dreber et al. (2014) did not include in their analysis, and we allow for α and β to be free parameters.
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egy is a pure strategy if it prescribes degenerate cooperation probabilities after all histories
(σ ∈ {0,1}5), and it is a behavior strategy otherwise. It is a mixed strategy, when a player
randomizes over the set of pure strategies prior to the start of each supergame, but sticks
to the drawn pure strategy throughout the supergame. In contrast, when playing a behavior
strategy, she randomizes during the supergame.2

Table 1: Overview of most commonly analyzed strategies (see Table 12 in the appendix for
a more comprehensive list)

Strategy Abbreviation Description (σ /0,σcc,σcd ,σdc,σdd)

Always Defect AD Always defects (0,0,0,0,0)
Always Cooperate AC Always cooperates (1,1,1,0,0)
Grim G Only cooperate in R1 and after cc (1,1,0,0,0)
Tit-for-Tat TFT Start with c, then copy opponent (1,1,0,1,0)
Suspicious TFT STFT, D-TFT Start with d, then copy opponent (0,1,0,1,0)
Win-Stay-Lose-Shift WSLS Cooperate in R1, cc and dd (1,1,0,0,1)
Semi-Grim SG Behavior strategy satisfying . . . σcd = σdc

Note: The conventional definition of AC is (1,1,1,1,1), which is behaviorally equivalent to (1,1,1,0,0). The
definition used above implies that any memory-1 behavior strategy that might be observed on average can be
rebuilt using some combination of AD, AC, Grim, TFT and WSLS.

Related behavioral literature We will keep the literature review short and focused due to
the availability of an excellent recent survey by Dal Bó and Fréchette (2018). The modern
experimental research on the repeated PD started with Dal Bó (2005), who criticized earlier
experiments for implementing experimental designs that let subjects play against computer-
ized opponents. The first wave of experiments following Dal Bó (2005) includes Dreber et al.
(2008), Duffy and Ochs (2009), Blonski et al. (2011) and Kagel and Schley (2013), and fo-
cuses on analyzing first-round and total cooperation rates. A second wave comprising Dal Bó
and Fréchette (2011, 2015), Bruttel and Kamecke (2012), Camera et al. (2012), Fudenberg
et al. (2012), Sherstyuk et al. (2013), Breitmoser (2015), and Fréchette and Yuksel (2017)
analyzes the strategies actually chosen by players. The general theme in the reported results
is that initial cooperation rates depend on the strategic environment. More specifically, the
results indicate that subgame perfection of Grim is necessary but not sufficient for coopera-
tion to emerge (first reported in Dal Bó, 2005), and that subsequent cooperation of subjects
depends on their opponent’s actions, primarily on those in the previous round. The central
importance of initial cooperation is also demonstrated in Fudenberg and Karreskog (2020).
Many of the second-wave analyses classify individual subjects’ strategies into varying sets of
pre-selected strategies. Even allowing for noise, these analyses clearly show that subjects do
not homogeneously follow a given pure strategy across all supergames. The studies differ in
their assumptions of what subjects might be doing instead—whether they are playing pure,
mixed, or behavior strategies—and consequently in their conclusions about behavior.

Most analyses assume that decisions are made only prior to the first supergame of a
session, with subjects then sticking to a pure strategy for the rest of the session. Given this

2Including the case when she would switch between pure strategies within a supergame.
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restriction to pure strategies, these analyses typically conclude that the majority of subjects
play either AD, TFT, or Grim, with each being attributed weights around 20–30%. For
example, Result 6 of Dal Bó and Fréchette (2018, DF18) states that these three strategies
account for “most of the data”, specifically they “account for 70 percent of strategies in
most treatments”, but importantly, this result is obtained after a-priori restricting attention
to (a subset of) pure strategies without further validating this restriction. We refer to this
statement as the pure-strategy conjecture.

A second, less common approach is based on the assumption that subjects switch pure
strategies between supergames, which we refer to as mixed strategies in the game-theoretical
sense. For example, DF18 report that 84 percent of choices in supergames lasting more than
one round are accounted for by five pure strategies (now also including AC and suspicious
TFT) when they allow for strategy switching between supergames (DF18, Footnote 38).3

The difficulty now is to explain this strategy switching; otherwise, the impression of a per-
fect fit, not requiring a complicated analysis allowing for noise, is intriguing, but it is only
true in a post-hoc sense. Ex-ante, the strategy chosen by a given subject is not perfectly
predictable, and the game-theoretical concept closest to such a random choice over varying
pure strategies over time is that of a mixed strategy. The probabilities of choosing different
pure strategies over time may be path dependent, given the path-dependency they may be de-
generate, and they may be heterogeneous between subjects. Below, we shall explicitly allow
for these possibilities by considering Markov-switching models to capture strategy switching
that contain pure, mixed, and path-dependent mixtures as special cases. This will be one of
the major novelties of our analysis and will enable us to determine an upper bound for the
goodness-of-fit of pure and mixed strategies.

A third and growing group of studies challenges the pure-strategy conjecture by al-
lowing subjects to randomize in each round of each supergame, as in the game-theoretical
concept of behavior strategies. Relaxing the restriction to pure strategies, Breitmoser (2015)
observed that cooperating subjects play a semi-grim behavior strategy (σ /0,σcc,σcd,σdc,σdd)
satisfying σcc > σcd ≈ σdc > σdd and σ /0 ∈ [0,1] (behavior-strategy conjecture).4 Addition-
ally, semi-grim behavior strategies are found to better capture behavior than mixtures of pure
memory-1 strategies.5 Recently, Fudenberg and Karreskog (2020) report evidence highlight-
ing the predictive power of semi-grim strategies in repeated PDs with perfect monitoring,
and the behavioral assumption that decisions are made in each round, instead of say once at
the start of a session (as in the pure-strategy conjecture), seems intuitive.6 However, there

3Specifically, DF18’s observation states that subjects’ behavior is described “exactly” even if one “does not
allow for any mistakes” .

4Specifically, a behavior strategy satisfying (σcc,σcd ,σdc,σdd) = (0.9,0.3,0.3,0.1), with varying σ /0, is
approximately played in all treatments of a data set comprising four experiments.

5The only other studies investigating a behavior strategy seem to be Fudenberg et al. (2012), who include the
strategy "generous TFT" which randomizes (only) after opponent’s defection, and more recently Dvorak and
Fehrler (2018). A recent study by Romero and Rosokha (2019) indicates that subjects consider randomizing
over single choices even ex-ante.

6Here follow the interpretation of behavior in repeated matching pennies games (e.g. Goeree et al., 2003),
whereby the description of subjects randomizing say 50-50 each round is simply the best-possible description
for the outside observer. Subjects themselves typically do perceive their decisions to be deliberate each round.
Similarly, we consider a behavior strategy implying randomization each round to be the best-possible descrip-
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are several concerns about Breitmoser’s results that might explain why the behavior-strategy
conjecture faces skepticism: the data set might be fortunately selected in Breitmoser (2015),
behavior might be more complex than memory-1 admits, strategies may be behavior strate-
gies other than semi-grim, subjects might switch strategies as the session progresses, and
round-1 behavior was not included in the estimation of strategies. In the next two sections,
we address all of these concerns and report arguably conclusive answers to the following
questions whose answers then serve as foundation for the structural analysis of preferences
and beliefs:

Question 1. Do subjects play pure, mixed, or behavior strategies?

Question 2. Is there heterogeneity in subject types and which strategies are played?

The case for memory-2 strategies had been made by Fudenberg et al. (2012), who an-
alyze the repeated PD with imperfect monitoring and show that if we assume subjects play
pure strategies, then there must be subjects with memory-2, based on evidence for 2TFT and
"lenient" Grim2 strategies. Similar ideas are expressed in Aoyagi and Frechette (2009) and
Bruttel and Kamecke (2012). Our analysis will allow for memory-2, but in addition, we will
relax the restriction to pure strategies, which seems critical since behavior strategies also
generate decision patterns resembling memory-2 or -3.

The data We re-analyze the exact same set of experiments reviewed in Dal Bó and Fréchette
(2018). This set comprises most of the modern experiments on repeated Prisoner’s Dilem-
mas with perfect monitoring, i.e. those published since Dal Bó (2005), and consists in total
of data from 12 experiments, 32 treatments, more than 1900 subjects, and almost 145,000
decisions. The set of experiments equates with the experiments listed in Table 2. A brief
review and an overview table is in Appendix B, but for a detailed discussion, see DF18. Due
to its enormous size, the wide range of experiments covered (from different experimenters in
various universities and various countries), and its comprehensive character with respect to
the recent list of experiments on the repeated PD, this data set appears to be optimal for our
purposes. In addition, by sticking exactly to the list of experiments reviewed by Dal Bó and
Fréchette (2018), we can rule out the notion that data selection biases the results in favor of
any of the hypotheses we intend to test.

Econometric approach Our econometric approach is standard, building on finite-mixture
and Markov-switching analyses generalizing the strategy frequency estimation method of
Dal Bó and Fréchette (2018) as we simultaneously estimate strategies and their frequencies.
All details, including a simulation analysis of validity given the finite data sets considered
here, are provided in the Appendix, Section A.

tion available to observers of seemingly random but subjectively deliberate (memory-1) decisions that subjects
make each round.
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3 A model-free overview of behavior

In order to provide a foundation for the subsequent analysis and discussion, let us first pro-
vide an overview of behavior in the repeated PD without imposing restrictions reflecting any
of the above stated three conjectures. To this end, we simply report average cooperation
rates in both the first and second halves of sessions of all experiments and discuss how these
average strategies align with expected payoffs across states.

Average behavior Table 2 reports the average cooperation rates across experiments in each
of the four memory-1 states after round 1 and tests for significant differences. For brevity, we
aggregate across all treatments per experiment here but provide results by treatment in Table
15 in the appendix, then also including round-1 behavior. Initially, we skip round-1 behavior
as it varies substantially across treatments, as discussed below, but the cooperation rates in
the remaining states are fairly similar across treatments and indeed across experiments, as
Table 2 shows. In state cc, cooperation rates are above 0.9, in state dd they are mostly at
or below 0.1 (with the sole exception of Aoyagi and Frechette, 2009), and after the mixed
histories cd and dc, cooperation rates fluctuate somewhat in the range [0.2,0.5]. Further,
the differences between inexperienced and experienced subjects are very minor overall, the
aggregate cooperation probabilities shift by at most five percentage points. This observation
notwithstanding, it is customary to distinguish experienced and inexperienced behavior, by
first and second halves of sessions, which we maintain also for this paper.

Re-analyzing four experiments, Breitmoser (2015) made the observation that average
memory-1 strategies have a “semi-grim” pattern. A behavior strategy is called semi-grim
if σcc > σcd ≈ σdc > σdd . Based on the vastly extended data set analyzed here, we can
scrutinize whether this somewhat surprising observation was the result of a selection effect.
We test for differences in the cooperation rates using bootstrapped p-values, resampling at
the subject level, and distinguishing two levels of significance: the conventional level 0.05
and the tighter level 0.002 ≈ 0.05/24. The latter implements the Bonferroni correction for
tests across 12 experiments and the two session halves. Naturally, we shall focus on this
corrected level of significance, but for clarity we also report the conventional level that does
not correct for multiple testing.7

Out of all the 24 observations, considering first and second halves separately, only
one observation, based on one session half in one experiment (Dreber et al., 2008), indi-
cates a significant violation of the key restriction σcd ≈ σdc, while the other two restrictions
σcc > σcd,dc and σcd,dc > σdd are never violated significantly. In 45/48 cases they are even
confirmed significantly at the tight 0.002 level surviving the Bonferroni correction. Pooling
all observations from all experiments, σcd ≈ σdc is not rejected in the first halves of sessions
but at the 0.05 level it is rejected in the second halves of sessions. The difference of σcd and
σdc remains small, however, and is not significant at the 0.025 level surviving the Bonferroni
correction considering that we run two simultaneous tests for the pooled data (one for the
first halves of sessions and one for the second halves). Given this range of observations on a

7In Table 2, <,> indicate significance at the conventional level and�,� indicate significance surviving
the Bonferroni correction (see the table notes for details).
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vastly extended data set, we conclude that Breitmoser’s observation passed the out-of-sample
test on non-selected data, i.e. that average behavior indeed exhibits the semi-grim pattern.

We want to emphasize that, if there is subject heterogeneity, mean cooperation rates
provide unbiased estimates of the true cooperation rates but are not necessarily unbiased es-
timates of the mean strategies (e.g. due to selection effects after round 1). Yet, the behavior-
strategy conjecture postulates that this semi-grim pattern does not only characterize the be-
havior on average but also the strategies of individual subjects. Otherwise, the observation
that this pattern recurs across all treatments and experiments would appear to be a striking
coincidence—for, if used at all, pure strategies are estimated to be played in strikingly vary-
ing weights across treatments (Dal Bó and Fréchette, 2018), which seems incompatible with
the observation that mean cooperation rates always exhibit the semi-grim pattern—but our
objective is to test this conjecture directly.

The results of a first simple test of this hypothesis are reported in the last four columns of
Table 2. These columns list the number of subjects (per experiment) that deviate significantly
from randomizing 50-50 in the four memory-1 states. We focus on subjects with at least five
observations per state, which is sufficient to trigger significance in two-sided Fisher tests if
subjects play a pure strategy. The results are fairly clear: In state cd, i.e. after unilateral
defection of the opponent, all standard pure strategies (except AC, which is rarely observed
though) agree on the (pure) prediction that one should defect. This state is unique with
respect to the unanimity of the prediction. For this state, however, we find the lowest number
of subjects significantly deviating from randomizing 50-50—only around a quarter of the
subjects do so, putting a rather tight bound on the number of subjects potentially playing
pure strategies.

To further illustrate this bound, assume that subjects do use pure strategies: On one
hand, given that the semi-grim pattern results on average, there have to be subjects that
systematically cooperate after unilateral defection of opponents (state cd). These subjects
are rarely found in analyses, as indicated most clearly by the aforementioned Result 6 of
Dal Bó and Fréchette (2018), stating that “always defect” (AD), Grim, and tit-for-tat (TFT)
are the “three strategies [that] account for most of the data”. This directly contradicts the
observation that σcd ≈ σdc > σdd , unless in addition to the strategies accounting for most of
the data a substantial number of subjects systematically cooperate in state cd. However, the
strategies predicting at least occasional cooperation after cd, such as always-cooperate and
tit-for-2-tats, were found to fit behavior of only very few subjects in Dal Bó and Fréchette
(2018). This contradiction foreshadows what we will find below: even allowing for drastic
data mining, pure strategies cannot be pushed to fit behavior as well as a simple behavior
strategy does.

Relation to monetary incentives Complementing the model-free description of behavior,
let us look at what subjects should be doing under rational expectations. While relating the
decisions “cooperate” and “defect” to expected payoffs in each state is a standard behavioral
piece of information in analyses of static games, it is novel in analyses of repeated games.
The underlying question, whether the actions chosen are at least qualitatively plausible, is of
obvious relevance in any attempt to understand behavior.
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Table 2: Few subjects play pure strategies and assuming pure strategies yields a striking bias even in large mixture models

Actual cooperation rates Number of subjects not randomizing 50-50
Experiment σ̂cc σ̂cd σ̂dc σ̂dd (c,c) (c,d) (d,c) (d,d)

First halves per session
Aoyagi and Frechette (2009) 0.917 � 0.45 ≈ 0.408 ≈ 0.336 32/38 1/23 3/20 7/21
Blonski et al. (2011) 0.89 � 0.279 ≈ 0.193 � 0.034 13/17 1/5 3/3 124/135
Bruttel and Kamecke (2012) 0.91 � 0.286 ≈ 0.228 � 0.08 12/18 6/23 8/21 32/36
Dal Bó (2005) 0.922 � 0.212 < 0.342 � 0.089 13/13 0/3 2/2 42/54
Dal Bó and Fréchette (2011) 0.951 � 0.334 ≈ 0.331 � 0.063 94/106 28/117 51/128 218/253
Dal Bó and Fréchette (2015) 0.94 � 0.297 ≈ 0.335 � 0.057 216/243 37/137 62/147 404/474
Dreber et al. (2008) 0.904 � 0.217 ≈ 0.213 � 0.036 15/25 3/19 12/18 45/48
Duffy and Ochs (2009) 0.904 � 0.301 ≈ 0.33 � 0.111 43/57 4/25 10/24 61/82
Fréchette and Yuksel (2017) 0.943 � 0.141 ≈ 0.266 ≈ 0.091 21/28 0/0 2/2 5/8
Fudenberg et al. (2012) 0.982 � 0.4 ≈ 0.427 � 0.066 38/43 1/6 5/11 20/25
Kagel and Schley (2013) 0.935 � 0.263 ≈ 0.295 � 0.051 71/81 20/71 32/60 98/111
Sherstyuk et al. (2013) 0.945 � 0.328 ≈ 0.371 � 0.117 37/44 10/36 12/34 41/52

Pooled 0.938 � 0.304 ≈ 0.322 � 0.065 605/713 111/465 202/470 1097/1299

Second halves per session
Aoyagi and Frechette (2009) 0.958 � 0.398 ≈ 0.517 ≈ 0.375 33/37 0/12 1/12 5/9
Blonski et al. (2011) 0.923 � 0.287 ≈ 0.231 � 0.02 26/32 10/25 11/16 172/178
Bruttel and Kamecke (2012) 0.947 � 0.221 ≈ 0.297 � 0.041 13/15 8/17 9/12 31/35
Dal Bó (2005) 0.92 � 0.242 < 0.388 � 0.064 18/27 0/3 0/1 50/65
Dal Bó and Fréchette (2011) 0.979 � 0.376 ≈ 0.362 � 0.041 132/137 34/89 62/100 196/215
Dal Bó and Fréchette (2015) 0.976 � 0.315 < 0.402 � 0.035 340/365 52/162 77/146 448/497
Dreber et al. (2008) 0.917 � 0.128 � 0.39 � 0.009 14/18 6/11 6/12 41/43
Duffy and Ochs (2009) 0.977 � 0.367 ≈ 0.391 � 0.082 80/87 5/35 16/43 60/68
Fréchette and Yuksel (2017) 0.97 � 0.233 ≈ 0.398 � 0.069 33/37 1/6 2/10 20/25
Fudenberg et al. (2012) 0.971 � 0.487 ≈ 0.412 � 0.083 41/44 2/8 4/10 14/17
Kagel and Schley (2013) 0.966 � 0.262 ≈ 0.332 � 0.025 87/90 16/56 30/46 91/97
Sherstyuk et al. (2013) 0.973 � 0.482 ≈ 0.437 � 0.078 44/48 7/24 17/23 23/29

Pooled 0.971 � 0.327 < 0.376 � 0.039 861/937 141/448 235/431 1151/1278

Note: The “actual cooperation rates” are the relative frequencies estimated directly from the data. The relation signs encode bootstrapped p-values (resampling at the subject level with 10,000 repetitions) where
<,> indicate rejection of the Null of equality at p < .05 and�,� indicating p < .002. Following Wright (1992), we accommodate for the multiplicity of comparisons within data sets by adjusting p-values
using the Holm-Bonferroni method (Holm, 1979). As a result, if a data set is considered in isolation, the .05-level indicated by “>,<” is appropriate. If all 24 treatments are considered simultaneously, the
corresponding Bonferroni correction requires to further reduce the threshold to .002 ≈ .05/24, which corresponds with “�,�”. Note that all econometric details here exactly replicate Breitmoser (2015), i.e.
the statistical tests are not adapted post-hoc. The “number of subjects not randomizing 50-50” indicates the number of subjects with cooperation rates in the various states differing significantly from 50-50 (in
subject-level two-sided binomial tests), conditioning on subjects having moved at least five times in the respective state. The required level of significance is set at p = 0.0625 such that five observations are
sufficient to trigger statistical significance if the subject plays a pure strategy.



For this initial model-free exposition, we will estimate the expected payoffs of coop-
erate and defect, in each state, from the perspective of an agent who assumes continuation
play follows the average relative frequencies of cooperation observed above. These relative
frequencies are denoted as the behavior strategy σ = (σ /0,σcc,σcd,σdc,σdd). Given σ, the
expected payoff in state ω ∈ { /0,cc,cd,dc,dd} is denoted as πω, with

πω = σωπω(c)+(1−σω)πω(d), (1)

where πω(c) and πω(d) denote the expected payoffs of playing c and d in state ω,

πω(c) = σω′
(
δπcc +(1−δ)×1

)
+(1−σω′)

(
δπcd +(1−δ)× (−l)

)
, (2)

πω(d) = σω′
(
δπdc +(1−δ)× (1+g)

)
+(1−σω′)

(
δπdd +(1−δ)×0

)
, (3)

with continuation probability δ and ω′ the state ω from the opponent’s point of view, such
that σω′ is the probability of cooperation by the opponent. By inserting the treatment-specific
average behavior strategies σ from above, we can solve the linear equation system, Eqs. 1–3
for all ω, and obtain the expected payoffs πω(c) and πω(d).

The monetary incentive to cooperate is πω(c)−πω(d), for each ω. Figure 2 provides
an overview of the results: We plot the relative frequencies of cooperation across treatments
against the respective monetary incentives to cooperate for each state, separately for first and
second halves of sessions. The states cd and dc are pooled for simplicity. Figure 2 addi-
tionally shows the best-fitting logistic curve, estimated without intercept such that neutral
incentives πω(c)−πω(d) = 0 yield a predicted cooperation probability of 0.50. The pseudo-
R2 of the logistic curves indicate how much of the null deviance is explained by allowing for
logistic errors in utility maximization.

The observations can be summarized as follows: For each state, we have observations
from treatments with net incentives ranging from around −0.5 to +1, i.e. from cases where
πω(c)−πω(d) is highly negative to cases where it is highly positive. Essentially, the former
obtains in treatments where Grim is not a subgame-perfect equilibrium strategy and the latter
obtains in treatments where the discount factor δ is substantially above the threshold for
Grim to be a subgame-perfect equilibrium strategy. Despite this range of induced monetary
incentives, relative probabilities of cooperation and monetary incentives are highly correlated
only in round 1 (state /0). They are statistically close to independent in all states after round
1. For example, in second halves of sessions, when subjects have gained experience, the
Pseudo-R2 of the logit model is above 0.8 in round 1 and below 0.2 in all states afterwards.
Obviously, this model-free analysis has the drawback of neglecting subject heterogeneity,
which we will address below, but it seems that behavior in states cc and dd may be difficult
to align with monetary incentives. For this reason, we raise the following set of questions.

Question 3. Do subjects act rationally and with rational expectations in round 1 but ir-
rationally follow some automaton or heuristic afterwards? How do strategies relate to
treatment parameters? Can we rationalize choices after round 1? And are the strategies
predictable?
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Figure 2: Relation of monetary incentives and cooperation rates across states (naive beliefs)

(a) State /0, first halves of session
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(b) State /0, second halves of session
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(c) State cc, first halves of session
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(d) State cc, second halves of session
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(e) State cd,dc, first halves of session
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(f) State cd,dc, second halves of session
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(g) State dd, first halves of session
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(h) State dd, second halves of session
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Note: For further information, set Tables 52–59 in the supplement.
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4 Estimating the strategies used by subjects

This section consists of two parts. In the first part, we data mine for the best possible (post-
hoc) mixtures of (generalized) pure strategies for each treatment. We will not penalize the
model for data mining best mixtures but treat the resulting mixtures treatment-by-treatment
as if they had been hypothesized ex-ante. As we discuss below, this provides us with an
upper bound for the goodness-of-fit of pure and mixed strategies, which we will compare to
a simple model that contains only defectors playing AD and cooperators playing semi-grim
behavior strategies (as previously defined in Breitmoser, 2015) in all treatments. Due to the
one-sided data mining, this analysis is heavily lopsided in favor of modeling behavior using
pure and mixed strategies, and in this sense, we give the pure- and mixed-strategy conjectures
the best possible chance.

In the second part, we provide the results of an unrestricted estimation of memory-1
strategies, and then estimate the number of subject types and the strategies played in both a
top-down and a bottom-up approach towards model selection. The top-down approach starts
with the general model and iteratively eliminates insignificant components, while the bottom-
up approach starts with a basic model and iteratively adds model components identified as
significant.

Both parts of this section will converge to the same model distinguishing defectors play-
ing AD from cautious and strong cooperators playing semi-grim strategies. Their behavior
will be further analyzed in the next section. Section B in the appendix demonstrates robust-
ness to longer memory lengths by demonstrating that model adequacy does not improve by
equipping subjects with memory-2, neither for (generalizations of) pure strategies nor for
semi-grim. That is, while increasing memory length slightly improves the goodness-of-fit,
this increase does not make up for the increased complexity of strategies as evaluated using
the Bayesian information criterion.

Pure, mixed or behavior strategies? In order to outline our approach towards estimat-
ing an upper bound of the goodness-of-fit of pure strategies, recall that the pure memory-1
strategies AD, TFT, and Grim had been conjectured to capture the behavior of most subjects
across treatments. For reasons discussed shortly, we add AC and WSLS to obtain a set of
baseline strategies. We then extend this set of strategies in two ways. On one hand, we add
generalized versions of these strategies by introducing a free parameter per strategy to relax
assumptions on first-round cooperation rates σ /0, thus allowing subjects’ first-round coopera-
tion rates to be different from 0 in AD, and different from 1 in all other strategies. The defini-
tion of the continuation behavior remains unchanged, such that (σcc,σcd,σdc,σdd) ∈ {0,1}4

for all pure strategies. We refer to these strategies as generalized pure strategies of type I.
On the other hand, in the set of generalized pure strategies of type II, we introduce a free
parameter to allow for randomization within supergames to relax assumptions about behav-
ior after histories such as cd or dc, where the pure strategies tend to fit poorly. Using the
notation introduced above, defining strategies as quintuple (σ /0,σcc,σcd,σdc,σdd), general-
ized TFT is defined as (1,1,0,θT FT ,0), generalized Grim as (1,1,θG,θG,θG), and general-
ized WSLS as (1,1,0,0,θWSLS). Generalized AC and AD are defined as behavior strategies
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(1,θAC,θAC,0,0) and (0,θAD,θAD,θAD,θAD), respectively, with all θ∗ ∈ [0,1].8 The advan-
tage of defining generalized strategies this way is that linear combinations of these gener-
alized strategies, or of the original pure strategies, can reproduce the aggregate semi-grim
patterns we observed above. In addition, we will of course consider the pure strategies in
their original form, thereby covering the possibility that in at least some treatments neither
of the generalizations improves the goodness-of-fit, allowing us to post-hoc save parameters.
In addition to all of this, we allow for trembling-hand noise, i.e. that subjects may deviate
from the assumed (generalized) pure strategy with probability ε ∈ [0,1] in any given round,
to then randomize uniformly.

With this set of strategies in hand, our approach toward data mining the mixtures across
treatments is as follows.

First, we evaluate independently for each treatment which mixture of pure or general-
ized pure strategies best captures behavior. That is, we determine for each treatment, which
combination of pure strategies fits best, which combination of generalized pure strategies of
type I fits best, which of type II, and which of the three best combinations fits best. Following
the pure-strategy conjecture, we assume the best combination always contains at least TFT,
AD, and Grim. We add the remaining strategies when this improves the goodness-of-fit.
Thus, we choose the best out of 13 as promising conjectured memory-1 mixtures, for each
of the 32 treatments and each of the two half-sessions independently.9 In total, we there-
fore evaluate 1332 models per level of experience and afterwards pick the best-fitting model
in terms of ICL-BIC (see Appendix A). Second, we do all of this separately for the three
“switching models” designed to capture the three possibilities of strategy switching between
supergames: "No Switching" (pure strategy), "Random Switching" (mixed strategy), and
"Markov Switching" (strategy switching between supergames follows a Markov process),
see Appendix A.1 for details.

The results for each of the three switching models are reported in columns 2-5 of Table
3. The leftmost column contains the results for the baseline model comprising AC, AD,
TFT, Grim, and WSLS without data mining, which can serve as a reference for how much
of the goodness-of-fit is due to data mining. For the sake of readability, we report ICL-BICs
aggregated by experiment.10

The random switching model in column 3 of Table 3 capturing mixed strategies gener-
ally fits worst, by the enormous amount of more than 2000 points on the log-likelihood scale.

8Allowing for more than one free parameter per generalized pure strategy would be unreasonable since
they would not be similar enough to their name giving pure strategy anymore. In addition, the penalty for free
parameters would increase strongly.

9For each of the three classes of strategies (pure, generalized type I, generalized type II), we consider
mixtures containing AD, TFT and Grim and in addition either (i) no other strategy, (ii) AD, (iii) WSLS, and
(iv) AD + WSLS. This makes 12 combinations in total. In addition, in the case of pure strategies, we allow for
a mixture containing noise players (randomizing 50-50 in all states) as type besides AC, TFT and Grim, which
are otherwise contained as special case in generalized strategies of type II.

10Treatment-wise ICL-BICs are provided in the Appendix E, after Table 21. Each entry in the aggregated
table represents the sum of ICL-BICs of the best out of 13 models for each respective treatment. Tables 20 and
21 in the appendix contain additional details regarding the intermediate results obtained during data mining for
the best model.
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This shows that subjects are reasonably consistent in their strategy choice. The no-switching
model capturing pure strategies (column 2) fits worse than the Markov-switching model (col-
umn 4) in the first halves of sessions, but weakly better in the second halves of sessions. If
these models captured behavior well, this could suggest that subjects initially experiment
with different pure strategies, though not randomly, as in mixed strategies, but systemati-
cally, as in a stochastic Markov process, to then converge to individual choices for strategies
as the session progresses. Additionally, Table 20 (in the appendix) shows that continuation
strategies of the generalized pure type II (excluding round-1 behavior) perform much bet-
ter than their counterparts without generalization. The differences in model fit are large,
amounting in total to more than 1000 points on the log-likelihood scale, which suggests that
randomization within supergames is indeed a behavioral facet.

However, the arguably most relevant observation at this point concerns the aggregate
effect achieved by data mining for the best-fitting combination of pure strategies and switch-
ing model. Modeling the behavior of inexperienced subjects (first halves of sessions), our
generalizations and data mining combined yield a gain of 2000 points on the log-likelihood
scale, comparing the baseline model to the best-fitting Markov switching models, and mod-
eling experienced subjects (second halves), generalization and data mining combined yield
a gain of 2500 points compared to the baseline model. Since these scores do not account for
the degrees of freedom inherent in the model selection during data mining, they do not imply
that the baseline model has to be rejected, but they clearly show that our approach yields an
enormous improvement in fit over the standard memory-1 mixtures typically proposed in the
literature. Further, since we attempted to include all specifications that may be considered
compatible with either the pure- or the mixed-strategy conjecture, and picked the best one for
each treatment, we can consider this data-mined specification to be a generous upper bound
of the adequacy of these memory-1 models to describe behavior.

Second, this upper bound, reported in column 5 (“Best Switching”) of Table 3, allows
us to test the pure- and mixed-strategy conjectures against the behavior-strategy conjecture.
Since the behavior-strategy conjecture regards the behavior of cooperating subjects, we com-
plete the model by allowing for AD players next to semi-grim players to capture the behavior
of defecting subjects (in a no-switching model).

Note that we compare this simple and constant two-type model defined prior to the
analysis, with 5 free parameters per treatment,11 to the “Best Switching” model that was
post-hoc picked from 3× 1332 models, after estimating 438 parameters for each of the 32
treatments but without accounting for the degrees of freedom used in the model selection
process (solely accounting for the 3–10 parameters of the best-fitting model that is finally
used in line with the data mining ideal). The results are reported in column 6 (“AD + SG”).
Despite this abuse of statistical power, the simple AD+SG model fits significantly better than
the mined mixture of generalized pure or mixed strategies: it improves on the data-mined
model by another 400 points in the first-halves of sessions and even by 750 points in the
second halves of sessions. Since AD players are contained in all models, this demonstrates
that the behavior of subjects not playing AD—i.e. behavior of cooperating subjects—is much

11Three parameters for the semi-grim strategy (θSG
1 ,θSG

2 ,θSG
3 ,θSG

3 ,1−θSG
2 ), one for the share of AD players,

and one to capture noise of the AD players.
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Table 3: Best mixtures of pure or generalized strategies in relation to semi-grim. Strategy mixtures are estimated treatment-by-treatment. The
resulting ICL-BICs are pooled for experiments and overall (less is better, relation signs point to better models)

Best mixture of pure or generalized strategies Best Mixture
Baseline No Random Markov Best Best Switching
Model Switching Switching Switching Switching AD + SG AD + 2SG By Treatment

Specification
# Models evaluated 1 1332 1332 1332 3×1332 1 1 3932 ≈ 1051

# Pars estimated (by treatment) 5 80 80 278 438 5 9 438
# Parameters accounted for 5 3–10 3–10 12-35 3–30 5 9 3–30

First halves per session
Aoyagi and Frechette (2009) 886.44 � 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 777.3 ≈ 755.97
Blonski et al. (2011) 1114.69 � 1069.58 ≈ 1104.85 � 1225.35 1225.35 � 1069.28 < 1134.96 > 1069.39
Bruttel and Kamecke (2012) 845.41 ≈ 817.89 ≈ 835.6 > 785.49 785.49 ≈ 800.12 > 762.83 ≈ 785.49
Dal Bó (2005) 666.1 > 635.04 < 674.57 ≈ 648.75 648.75 ≈ 629.17 ≈ 600.26 < 631.2
Dal Bó and Fréchette (2011) 7423.23 � 6904.79 � 7456.12 � 6388.49 6388.49 < 6597.93 � 6304.97 ≈ 6388.49
Dal Bó and Fréchette (2015) 8880.62 � 8434.93 � 9166.72 � 8158.31 8158.31 > 8017.59 � 7810.7 � 8138.61
Dreber et al. (2008) 871.32 � 787.71 < 863.7 � 752.16 752.16 ≈ 782.37 ≈ 763.52 ≈ 752.16
Duffy and Ochs (2009) 1448.71 ≈ 1395.4 < 1461.01 > 1372.99 1372.99 ≈ 1372.97 ≈ 1320.71 ≈ 1372.99
Fréchette and Yuksel (2017) 321.32 ≈ 300.87 < 337.5 > 298.53 298.53 ≈ 299.62 ≈ 284.11 ≈ 298.53
Fudenberg et al. (2012) 454.09 ≈ 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 370.01 < 425.54
Kagel and Schley (2013) 2735.02 ≈ 2685.4 � 2993.4 � 2439.06 2439.06 ≈ 2561.76 � 2421.27 ≈ 2439.06
Sherstyuk et al. (2013) 1389.33 ≈ 1322.6 � 1450 � 1296.85 1296.85 ≈ 1303.8 � 1200.28 < 1296.85

Pooled 27218.66 � 25758.38 � 27754.81 � 25166.24 25166.24 > 24779.85 � 24079.18 � 24863.15

Second halves per session
Aoyagi and Frechette (2009) 534.29 � 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 422.24 ≈ 416.51
Blonski et al. (2011) 1503.41 � 1398.5 � 1509.09 < 1593.01 1398.5 > 1346.79 ≈ 1385.91 ≈ 1394.16
Bruttel and Kamecke (2012) 588.33 > 538.17 < 611.91 � 516.71 538.17 ≈ 536.77 > 478.23 ≈ 516.71
Dal Bó (2005) 751.82 ≈ 732.27 < 786.21 > 739.59 732.27 > 699.05 ≈ 679.04 < 729.48
Dal Bó and Fréchette (2011) 6065.93 � 5195.88 � 6378.16 � 5007.24 5195.88 ≈ 5128.69 � 4545.08 � 4964.77
Dal Bó and Fréchette (2015) 9085.4 � 8177.46 � 9401.19 � 7910.83 8177.46 � 7825.98 � 7310.27 � 7893.79
Dreber et al. (2008) 656.38 ≈ 619.9 ≈ 662.24 > 581.94 619.9 ≈ 589.84 > 541.83 ≈ 581.94
Duffy and Ochs (2009) 2010.01 > 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 > 1602.93 � 1850.35
Fréchette and Yuksel (2017) 469.85 ≈ 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 381.63 � 427.79
Fudenberg et al. (2012) 530.3 ≈ 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 > 414.24 < 514.87
Kagel and Schley (2013) 1866.19 ≈ 1751.81 � 2336.29 � 1678.7 1751.81 ≈ 1775.62 � 1541.38 < 1678.7
Sherstyuk et al. (2013) 1027.43 > 955.73 � 1137.49 � 958.99 955.73 ≈ 951.34 � 823.06 � 955.73

Pooled 25271.72 � 22848.49 � 26409.44 � 22927.9 22848.49 � 22097.67 � 20454.13 � 22422.07

Note: Results treatment-by-treatment are in the appendix. Relation signs encode p-values of Schennach-Wilhelm likelihood-ratio tests where <,> indicate rejection of the Null
of equality at p < .05 and�,� indicating p < .002, which implements the Bonferroni correction of 24 simultaneous tests per hypothesis. “No Switching” assumes that subjects
chooses a strategy prior to the first supergame and plays this strategy constantly for the entire half session. “Random Switching” assumes that subjects randomly chooses a
strategy prior to each supergame (by i.i.d. draws), and “Markov Switching” allows that these switches follow a Markov process.



better described by the semi-grim behavior strategy than using any mixture of received or
generalized pure strategies. This is substantial and perhaps surprising, but in the end, it
is simply a reflection of the deficiency of deterministic choice rules in capturing behavior
discussed above. A robustness check clarifying that this observation also holds true after
accounting for memory-2 is reported in the appendix.

Third, the AD+SG model provides an estimate of the lower bound of the goodness-of-fit
that can be achieved when we give up the restriction to pure strategies and allow subjects to
play behavior strategies. To provide a first indication of the heterogeneity of cooperating
subjects, we also report the results for a model (“AD + 2SG” in column 7) that allows for
two different cooperating subject types, each playing a semi-grim strategy, alongside AD
players. This specification turns out to improve goodness-of-fit significantly for both expe-
rience levels, by another 700 points in first halves and even 1600 points in second halves of
sessions. The heterogeneity of cooperating subjects will be investigated below in the unre-
stricted analysis.

Fourth, we evaluate the arguably extreme model, which identifies the best-fitting com-
bination of (generalized) pure strategies (out of 13 combinations) and the best-fitting switch-
ing model (out of 3) treatment by treatment without any consistency requirement. Thus, we
choose the best-fitting model from 39 models for each treatment, amounting to the enormous
selection of the best out of 3932 models across all experiments. Note that such analysis with-
out imposing consistency requirements across treatments does not yield economically useful
estimates, but if anything, this provides an even more generous upper bound on the economic
content of pure and generalized pure strategies of memory-1. The results are reported in the
right-most column (“Best Switching By Treatment”). In total, this exhaustively mined model
still fits weakly worse than the AD+SG model predicted by the behavior-strategy conjecture
and it fits highly significantly worse (by more than 2000 log-likelihood points for experienced
subjects) than the “AD+2SG” model that allows for heterogeneity of cooperating subjects.12

We summarize these observations as follows.

Result 1 (Question 1). Cooperating subjects seem to use memory-1 behavior strategies. The
upper bound of behavior that can be captured with received pure or mixed strategies is
significantly lower than the adequacy of a model assuming all cooperating subjects play the
same (semi-grim) behavior strategy.

Heterogeneity of cooperators and unrestricted estimation Let us now examine to what
extent the cooperating subjects are heterogeneous and indeed play semi-grim strategies. In
order to test this joint hypothesis of heterogeneity and semi-grim, let us start with a general
model allowing for four different subject types (per treatment), one of which plays AD and
three that play general memory-1 behavior strategies without imposing restrictions such as
semi-grim.13 In Table 4, we refer to this model as “3×P5+AD”, where P5 indicates use
of an unrestricted five-parameter behavior strategy. Table 4 provides detailed information

12Section B in the appendix demonstrates that this result is robust to allowing for memory-2, where we find
that memory-2 is overall insignificant.

13As a reminder, these restrictions are σcd = σcd and σcc = 1−σdd .
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on a range of models that distinguish either up to three cooperating types playing general
behavior strategies or up to three types playing semi-grim strategies. This will allow us to
directly test the joint hypothesis.

Before doing so, let us point to an arguably important observation. Table 4 reports on
a large range of models where cooperating subjects always are assumed to play behavior
strategies. All of these models improve on the best of the 1051 models assuming subjects
play pure or generalized pure strategies (“Best Mixture, Best Switching” in the left-most
column of Table 4). That is, our earlier result on the inadequacy of pure and generalized
pure strategies is confirmed very robustly: whatever specification we use, allowing cooper-
ating subjects to play behavior strategies fits behavior much better. That is, the best of the
1051 models assuming pure or generalized pure strategies fits at least weakly worse than the
worst of the seven models assigning cooperating subjects behavior strategies, and signifi-
cantly worse than all of the five models allowing for at least two distinct types of cooperating
subjects. Notably, this would not be observed if the pure-strategy conjecture was empirically
valid: The unrestricted analysis allows cooperating subjects to play, besides AD, the cooper-
ative strategies TFT, Grim and say WSLS or AC depending on treatment (in 3×P5+AD),
and if they actually did so, then the pure strategy mixture would fit substantially better with-
out using as many free parameters.

Now, using “3×P5+AD” as the baseline, we can analyze which form of heterogene-
ity is most suitable for describing behavior. Starting with four subject types seems to be
sufficient ex-ante, and will turn out to be sufficient ex-post. In Table 4, the two right-most
columns report on the adequacy of nested models that distinguish only two types or one type
of cooperating subjects (besides the AD type). It turns out that distinguishing just two types
of cooperating subjects (“2× P5 + AD”) weakly improves on distinguishing three types,
while models with just one cooperating type (“P5+AD”) fit significantly worse. The lat-
ter corresponds with our finding above (prior to Result 1) that cooperating subjects are not
homogeneous.

To the left of column “3×P5+AD”, Table 4 details information on models assuming the
cooperating subjects play semi-grim strategies rather than unrestricted memory-1 strategies.
To be exhaustive, we consider models distinguishing three semi-grim types (“3×SG+AD”),
two semi-grim types (“2×SG+AD”), one semi-grim type (“SG+AD”) and 1.5 semi-grim
types (“1.5× SG+AD”). Slightly abusing notation, 1.5 semi-grim types indicates that the
two cooperating types have different cooperation probabilities in round 1 of each supergame
but equivalent continuation strategies. At this point, the discussion can be kept rather short
as the results are fairly clear: All models distinguishing at least two types of cooperating
subjects, regardless of which strategy they are assumed to be playing, fit about equally well.
The differences between these models are at best weakly significant, while all of them fit
significantly better than the two models assuming cooperating subjects are homogeneous
(“SG+AD” and “P5+AD”).

Thus, we find strong evidence for heterogeneity and the behavior-strategy conjecture,
though we need additional guidance for or against modeling the behavior strategy as semi-
grim. For additional guidance, we can rely on either the top-down or the bottom-up approach
towards model selection. By the top-down approach, we start with the most general model
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Table 4: Examining heterogeneity of cooperating subjects and semi-grim structure of their strategies

Best Mixture
Best Switching SG + AD 1.5×SG+AD 2×SG+AD 3×SG+AD 3×P5+AD 2×P5+AD P5+AD

Specification
# Models evaluated 3932 ≈ 1051 1 1 1 1 1 1 1
# Pars estimated (by treatment) 438 5 7 9 13 19 17 11
# Parameters accounted for 3-30 5 7 9 13 19 17 11

First halves per session
Aoyagi and Frechette (2009) 755.97 ≈ 781.86 ≈ 792.51 ≈ 777.3 ≈ 782.13 > 741.95 ≈ 744.86 ≈ 744.06
Blonski et al. (2011) 1069.39 ≈ 1069.28 ≈ 1104.6 ≈ 1134.96 � 1232.97 � 1332.48 � 1205.47 � 1106.01
Bruttel and Kamecke (2012) 785.49 ≈ 800.12 ≈ 771.14 ≈ 762.83 ≈ 748.06 ≈ 751.86 ≈ 759.45 ≈ 803.58
Dal Bó (2005) 631.2 ≈ 629.17 ≈ 618.39 ≈ 600.26 � 626.56 ≈ 639.8 > 609.1 ≈ 620.38
Dal Bó and Fréchette (2011) 6388.49 < 6597.93 > 6352.59 ≈ 6304.97 ≈ 6198.12 ≈ 6216.22 < 6295.32 � 6553.25
Dal Bó and Fréchette (2015) 8138.61 ≈ 8017.59 � 7830.12 ≈ 7810.7 ≈ 7828.38 ≈ 7829.74 ≈ 7775.7 � 7969.32
Dreber et al. (2008) 752.16 ≈ 782.37 ≈ 764.44 ≈ 763.52 ≈ 766.77 ≈ 765.81 ≈ 767.32 ≈ 783.45
Duffy and Ochs (2009) 1372.99 ≈ 1372.97 ≈ 1361.15 ≈ 1320.71 ≈ 1297.84 ≈ 1291.42 < 1345.16 ≈ 1361.86
Fréchette and Yuksel (2017) 298.53 ≈ 299.62 ≈ 289.54 ≈ 284.11 ≈ 289.88 ≈ 294.05 ≈ 285.33 ≈ 291.69
Fudenberg et al. (2012) 425.54 > 381.01 ≈ 377.96 ≈ 370.01 ≈ 380.86 ≈ 381.34 ≈ 372.32 ≈ 377.33
Kagel and Schley (2013) 2439.06 ≈ 2561.76 � 2450.24 ≈ 2421.27 ≈ 2385.02 ≈ 2354.05 ≈ 2398.74 � 2551.68
Sherstyuk et al. (2013) 1296.85 ≈ 1303.8 ≈ 1234.52 ≈ 1200.28 ≈ 1184.82 ≈ 1177.24 ≈ 1186.92 � 1286.14

Pooled 24863.15 ≈ 24779.85 � 24202.51 ≈ 24079.18 ≈ 24195.57 < 24468.99 > 24219.87 � 24704.09

Second halves per session
Aoyagi and Frechette (2009) 416.51 ≈ 423.68 ≈ 421.21 ≈ 422.24 ≈ 423.63 > 404.95 ≈ 408.59 ≈ 409.04
Blonski et al. (2011) 1394.16 ≈ 1346.79 ≈ 1370.16 ≈ 1385.91 < 1442.85 � 1555.48 � 1453.1 � 1379.87
Bruttel and Kamecke (2012) 516.71 ≈ 536.77 � 480.47 ≈ 478.23 ≈ 470.25 ≈ 443.83 ≈ 471.73 < 528.54
Dal Bó (2005) 729.48 > 699.05 ≈ 677.24 ≈ 679.04 < 697.21 ≈ 707.25 ≈ 687.86 ≈ 696.41
Dal Bó and Fréchette (2011) 4964.77 ≈ 5128.69 � 4565.93 ≈ 4545.08 ≈ 4426.48 ≈ 4461.98 ≈ 4493.1 � 5045.34
Dal Bó and Fréchette (2015) 7893.79 ≈ 7825.98 � 7306.25 ≈ 7310.27 > 7170.25 ≈ 7089.56 ≈ 7151.84 � 7683.76
Dreber et al. (2008) 581.94 ≈ 589.84 > 544.66 ≈ 541.83 ≈ 539.47 ≈ 519.28 ≈ 518.82 < 562.99
Duffy and Ochs (2009) 1850.35 ≈ 1761.6 � 1656.55 ≈ 1602.93 > 1518.65 ≈ 1509.7 < 1598.04 � 1715.88
Fréchette and Yuksel (2017) 427.79 ≈ 423.34 ≈ 422.61 ≈ 381.63 ≈ 375.03 ≈ 384.11 ≈ 382.16 < 409.93
Fudenberg et al. (2012) 514.87 ≈ 452.6 ≈ 433.74 ≈ 414.24 ≈ 405.22 ≈ 410.69 ≈ 421.81 ≈ 448.37
Kagel and Schley (2013) 1678.7 ≈ 1775.62 � 1572.95 ≈ 1541.38 > 1488.49 ≈ 1477.87 ≈ 1527.47 � 1748.01
Sherstyuk et al. (2013) 955.73 ≈ 951.34 � 834.74 ≈ 823.06 ≈ 799.39 ≈ 801.53 ≈ 815.26 � 935.01

Pooled 22422.07 ≈ 22097.67 � 20541.83 ≈ 20454.13 > 20231.09 < 20459.26 ≈ 20403.95 � 21818.45

Note: This table verifies a number of possible mixtures involving semi-grim types as a robustness check for the sufficiency of focussing on the mixtures examined
above. E.g. “3× SG refers to a model containing three different versions of memory-1 semi-grim with allowing for heterogeneity of randomization parameters
across subjects.
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(3×P5+AD) and successively reduce its complexity until such reductions dampen its ad-
equacy significantly. The simplest model that we reach this way without a significantly
negative impact on adequacy is 1.5× SG+AD. In turn, by the bottom-up approach, we
start with the simplest model (SG+AD) and successively increase its complexity as long
as these increments significantly improve model adequacy. Starting with SG+ AD, ade-
quacy improves significantly by allowing for subject types differing in their round-1 behav-
ior (1.5× SG+AD), in both the first and the second halves of sessions, but beyond that,
further increments again are not significant in a manner surviving the Bonferroni correction
(indicated by� or� in Table 4).

That is, both the top-down and the bottom-up approach converge to the same conclusion
that we need to distinguish two types of cooperating subjects, whose behavior differs only
in round 1 of each supergame. On average, the less cooperative type cooperates with proba-
bilities in [0.2,0.5] in round 1, similar to the cooperation probabilities after mixed histories
cd/dc, and the more cooperative type cooperates with probabilities above 0.9 in most treat-
ments, similar to cooperation probabilities after cc. Table 9 in the appendix provides detailed
results.

Result 2 (Question 2). The analysis identifies two types of cooperating subjects playing
the same semi-grim continuation strategy but different cooperation probabilities in round 1
(cautious cooperators and bold cooperators) and a subject type playing a strategy close to
always defect (defectors).

The model with this subject composition, and any other model allowing for two types of
cooperating subjects playing behavior strategies, fits significantly better than all 1051 models
assuming pure or generalized pure strategies.

5 How do strategies relate to supergame parameters?

Having estimated the number of subject types and their strategies, we can revisit Question
3 and ask to what extent the subjects’ strategies are functions of treatment parameters, to
what extent they are rationalizable, and to what extent they may be predictable. In light of
the above results, we distinguish defecting and cooperating subjects. The defecting subjects
play slightly perturbed strategies close to AD, which are essentially invariant to treatment
parameters and rationalizable to the extent that AD is rationalizable (note that AD is a best
response to itself in all supergames considered here). For this reason, we shall focus on the
strategies played by cooperating subjects. By Result 2, there are two types of cooperating
subjects, both identified as playing semi-grim supergame strategies with significant differ-
ences found in the probability of cooperation in round 1.

Overview Recall that Figure 2 plotted the average cooperation rates across states against
the expected payoffs from cooperation, which suggested that subjects act highly rationally
in round 1 but ignore expected payoffs afterwards. We suspected confounds due to look-
ing at raw cooperation rates, most notably possible selection effects, and our estimates of
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Figure 3: Relation of δ (left) and monetary incentives (right) to cooperation rates (second
halves of sessions)
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Figure 4: Relation of δ−δ∗ to shares of cooperators (second halves of sessions)
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Note: This figure shows how the ratios of the three strategies – defectors, cautious cooperators, and strong
cooperators change with the distance of δ to the BOS cooperation threshold δ∗ across treatments. The solid
line represents the best fitting logistic curve estimated without intercept such that the share is 0.5 for δ = δ∗.
Panel (a) displays the total share of both cooperators, panel (b) the relative share of cautious cooperators among
cooperators, panel (c) the share of cautious cooperators overall, panel (d) the share of strong cooperators overall.

the strategies of (cooperating) subject types allow us to resolve these concerns. Figure 3
now plots the cooperation probabilities according to the estimated strategies of cooperating
subjects against two predictors of cooperation (expected payoffs and δ−δ∗). In the left col-
umn of plots, we see how the cooperation probabilities across states relate to the difference
of discount factor δ and BOS threshold δ∗. In the right column of plots, we see how the
probability of cooperation relates to the monetary incentive to cooperate, πω(c)−πω(d) as
defined above, Eqs. 1–3, for each state ω. For these plots, we assume that subjects hold
“false consensus” beliefs that their opponent plays the same strategy that they play. That is,
strong cooperators believe they face strong cooperators and weak cooperators believe they
face weak cooperators. In comparison to Figure 2, the results do not change substantially:
Behavior is still close to being independent of the predictors of cooperation in most states
(bottom three panels), arguably with the exception of strong cooperators in round 1 (top two
panels).

Recall that we know from Dal Bó (2005) and subsequent work that average cooperation
rates change as payoff parameters change, and above we have seen that most of these changes
can be reduced to changes in round 1. Yet, as just seen, the type strategies are largely inde-
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pendent of the payoff parameters. To illuminate this further, we next test the complementary
statistic and examine how the shares of the three subject types change as parameters change.
Figure 4 plots the shares of cooperators as a function of the discount factor δ in relation to
the BOS-threshold δ∗. We see two relatively strong effects: As δ approaches δ∗, the over-
all share of cooperators increases, i.e. defectors become cooperators, and at the same time,
the relative share of cautious cooperators declines, i.e. cautious cooperators turn into strong
cooperators.

Result 3 (Question 3 – part 1). The shares of subjects playing either of the three strategies
change highly predictably. As δ increases defectors are replaced by cooperators and as it
passes the BOS-threshold δ∗ the strong cooperators start to outweigh the cautious cooper-
ators (R̃2 ≥ 0.2 in all cases). The strategies themselves are largely invariant to treatment
parameters and monetary incentives. The only exception satisfying R̃2 ≥ 0.2 are strong co-
operators in round 1, whose strategies correlate with treatment parameters (δ− δ∗) but not
with monetary incentives, and only in round 1.

That is, the behavioral changes observed in the literature are mainly transitions from de-
fection to cautious cooperation and from cautious cooperation to strong cooperation. These
transitions are neatly predictable, being logistic functions of δ− δ∗, which is a substantial
result in relation to previous work that found no reliable association between strategies used
and payoff parameters (Dal Bó and Fréchette, 2018). This result directly follows from the
unrestricted estimation of strategies, which thus not only fits better but also renders type
shares predictable. In turn, the actual strategies associated with these seemingly archetypical
behavioral types are largely invariant of payoff parameters, which also is a novel result that
we further investigate next.

Structural analysis of preferences and beliefs The above observations suggest that it
seems straightforward to explain the shares of subject types across treatments, as they are
simple functions of payoff parameters (i.e. of δ−δ∗), but it is not immediately obvious how
to explain the largely invariant strategies chosen by these subject types. Should we think of
cooperating subjects as choosing automata, as first described by Rubinstein (1986), or are
these strategies predictable and rationalizable in some way? This question can be answered in
a structural analysis of behavior, a standard approach in behavioral analyses of normal-form
games, but novel in analyses of the repeated PD. Thanks to the existing work on behavior
in normal-form games, we can build on central ideas from three literatures. First, regarding
belief formation and relating to the above discussion, much of the pychological literature
emphasizes that people overestimate the extent to which others are similar to themselves. In
analyses of games, this basic psychological observation has been analyzed as projection of
information (Madarász, 2012) and projection of types or strategies (Breitmoser, 2019). By
our results above, the types are defined in terms of strategy, and in this sense, projection
of types equates with projection of strategies, and both correspond with the false consensus
beliefs discussed above. We will contrast these consensus beliefs about opponents’ strategies
with naive beliefs and Bayesian beliefs in order to test the above suggestion that consensus
beliefs best capture behavior (for formal definitions, see Appendix C).
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The above results imply, however, that relaxing assumptions on belief formation is in-
sufficient to comprehensively explain behavior. To see this, recall that subjects cooperate
after cc and cd/dc even in many treatments where Grim is not a SPE, and if Grim is not a
SPE, a strategy involving cooperation is not rationalizable in any state (i.e. never a best re-
sponse to any belief in any state). Thus, the behavior of cooperating subjects is in general not
rationalizable in the classical sense—by varying beliefs—but it may be rationalizable after
(also) relaxing assumptions on preferences. A standard approach towards explaining coop-
erative behavior in the absence of strategic incentives, e.g. if Grim is not a SPE, is to allow
for interdependence of preferences. This has been observed in several other literatures, most
prominently in finitely repeated public goods games, where such behavior seems related to
a preference for conditional cooperation, concerns of inequity aversion, or concerns for fair-
ness and altruism (see for example Keser and Van Winden, 2000, and Fischbacher et al.,
2001). Building on this existing evidence, and seeking to avoid post-hoc experimentation,
we will only consider these four standard models in our analysis (the standard definitions are
provided in Appendix C).

In addition, we allow for the possibility that subjects misperceive the discount factor
δ. Such misunderstanding might arise if subjects are used to engaging in repeated interac-
tions with discount factors close to 1 or 0, for example because the most prominent real-life
interactions (with say family members and colleagues) have low break-up probability and
occur with high frequency, implying that discounting is negligible. Specifically, we allow
the perceived discount factor δ̃ to be a function of the true discount factor as in δ̃ = δx. If
x = 1, subjects correctly perceive the discount factor (or, break-up probability), for x < 1
they underestimate it, with the limiting case x→ 0 where they simply disregard the break-up
probabibility and play the game as if it had an infinite time horizon (without impatience, in
the laboratory). In turn, if x > 1, subjects overestimate the break-up probability, and in the
limiting case x→ ∞, subjects seem “myopic” and play a sequence of one-shot games. Such
limitations of foresight characterize many approaches towards long-run interactions, most
notably perhaps chess. In the extreme case δ→ ∞, agents simply evaluate the resulting out-
come of the present round, i.e. cc, dc, cd or dd, which implicitly encodes the continuation
payoff expected from the subsequent rounds.

Regarding the econometric implementation of the analysis, we use standard specifica-
tions of structural analyses of games, following McKelvey and Palfrey (1995), Costa-Gomes
et al. (2001), Bajari and Hortacsu (2005), as extended to analyses of dynamic games by
Aguirregabiria and Mira (2007). All details of these overall standard definitions are pro-
vided in Appendix C. In order to quantify to what extent the different approaches allow us
to capture behavior, we also estimate two standard benchmark models. First, we provide
results for the lower-bound benchmark of uniform randomization, i.e. the goodness-of-fit of
predicting 50-50 randomization in all states. Second, we consider the upper-bound bench-
mark clairvoyance predicting the actually estimated probabilities of cooperation for the two
cooperating types by treatment in all states. Additionally, as a presumably trivial benchmark
model, we examine the possibility that subjects play the actual stage game (without inter-
dependent preferences) but misunderstand δ as captured by x 6= 1. By design, all models of
interdependent preferences allowing for x 6= 1 should improve on this benchmark, as it is al-
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ways contained as a special case for interdependence weights equal to zero. This benchmark
allows us to understand how much can be explained by allowing for misperception of δ on
its own. In the estimation x is limited to an upper bound of 100 for viability.

The results are presented in Table 5 and summarized in Figure 1 above. Table 5 distin-
guishes, for each model, three sets of estimates. This gives us a sense of the robustness of the
results. In the right-most columns (“Fit to each treatment”), we allow for treatment-specific
parameters. Since the behavior of cooperating subjects in each treatment is described by
five parameters (round-1 behavior of each type and three parameters capturing continuation
behavior), the four free parameters per model, when allowed to be treatment specific, should
capture behavior close to “clairvoyance” (i.e., perfectly). This is indeed the case for models
allowing for false-consensus beliefs but not for the other belief models, as discussed shortly.

In the the middle set of columns (“Heterogeneous variance”), we allow for treatment-
specific variance of noise but now invoke the standard assumption that the preference param-
eters are constant across all treatments and experiments, while the clairvoyance benchmark
model remains unchanged (aside from a change in the penalty term to reflect the change in
the number of free parameters of the models for which it is the upper bound). This informs
us to what extent interdependence of preferences actually captures behavior, rather than be-
ing able to fit behavior post-hoc treatment by treatment. In the left-most set of columns
(“Homogeneous variance”), we additionally assume that the noise variance (as captured by
the precision parameter λ in the logistic specification) is constant across treatments. This
yields a very parsimonious model of behavior, using four parameters to describe the strate-
gies used of both cooperative types across all 32 treatments analyzed here—which may not
be expected to fit exactly. Explaining behavior across treatments and experiments with one
set of parameters gives us a sense of how robust (and thus predictable) behavior is, however.

As indicated, for each belief model, we evaluate the aforementioned four models of
social preferences with potentially misperceived δ, and a benchmark of inequity aversion
assuming the correct δ. Two observations stand out: First, for each of the models with
interdependent preferences, and each of the three measures for the goodness-of-fit, false
consensus beliefs best fit behavior—that is, cautious cooperators seem to believe they play
against cautious cooperators and strong ones seem to believe they play against strong ones.
In all cases, the distance to other belief models is on the order of 5000 likelihood points,
which is highly significant and corresponds to about 20% of the total score, implying that it
is behaviorally also highly relevant.

To understand this first observation, let us assume that subjects update beliefs following
Bayes’ Rule after each round, most notably perhaps after round 1—which could explain
the poor fit of actions in relations to expected payoffs after round 1. Since all cooperating
subjects are estimated to play the same continuation strategy, their differences in round 1
cannot be in preferences but must be in the beliefs they hold, and specifically in the beliefs
about behavior in round 1, as the behavioral differences are observed in round 1. False
consensus about strategies directly predicts this intuition— that cautious cooperators expect
to play with cautious cooperators and that strong ones expect to play with strong ones—and
it also reflects the standard theoretical assumption that agents play symmetric equilibrium
strategies.
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Table 5: Testing interdependence of preferences (second halves; see also Tables 10 and 11 for analyses of first halves and both halves)

Fit to pooled data
Homogeneous variance Heterogeneous variance Fit to each treatment

Model (free parameters) BIC Estimates BIC Estimates BIC Average Estimates

Upper bound BIC (Clairvoyance) 20460.6 20692.6 21388.8
Lower bound BIC (Uniform Random) 51487.3 51719.4 52415.6

False Consensus Beliefs
True supergame (g, l,δ), no free par (−) 45115.4 (−,−,−) 42523.4 (−,−,−) 43219.6 (−,−,−)
True stage game g, l, free (δX ,−,−) 45096.6 (1.08,−,−) 42134 (1.32,−,−) 39948.6 (8.79,−,−)
True δ, inequity aversion (−,α,β) 28542.4 (−,0.96,0.6) 29407.7 (−,1.6,0.66) 27950.4 (−,−100,0.52)
Inequity Aversion (δX ,α,β) 22607.6 (100,0.82,0.14) 22330.2 (18.44,0.77,0.11) 21452.4 (17.05,0.37,−0.01)
Cond Cooperation (δX ,α,β) 27159.5 (100,1.61,−0.27) 25680.3 (5.91,1.7,−0.01) 21767.4 (16.79,1.79,−0.06)
Altruism (δX ,α,β) 24309.4 (68.15,1.45,−0.32) 23419.6 (19.92,1.38,−0.24) 21451.1 (4.17,0.98,0.12)
Gen Fairness Equilibrium (δX ,α,β) 28525.3 (6.53,6.66,0.22) 26864.2 (6.75,26.51,0.21) 22067.6 (11.03,24.23,0.07)

Naive Beliefs
True supergame (g, l,δ), no free par (−) 44692.6 (−,−,−) 43458.3 (−,−,−) 44154.5 (−,−,−)
True stage game g, l, free (δX ,−,−) 44638.9 (1.08,−,−) 43310.6 (1.14,−,−) 41986.3 (2.53,−,−)
True δ, inequity aversion (−,α,β) 31003 (−,−100,−3.27) 31175.5 (−,−100,−2.18) 30032.2 (−,−100,−2.34)
Inequity Aversion (δX ,α,β) 27869.8 (100,6.99,0.98) 27782.3 (100,4.57,0.98) 28007.6 (100,8.48,0.81)
Cond Cooperation (δX ,α,β) 34743.7 (100,5.88,0.03) 31846.3 (4.73,3.3,0.28) 28008.3 (99.06,4.76,−0.12)
Altruism (δX ,α,β) 29473.8 (100,33.58,−0.8) 28683.2 (20.19,4.48,−0.7) 28008.3 (100,12.53,−0.54)
Gen Fairness Equilibrium (δX ,α,β) 29630.5 (4.64,−8.1,0.53) 28729.9 (4.11,−5.92,0.53) 28008.3 (34.26,−10.75,0.54)

Bayesian Beliefs
True supergame (g, l,δ), no free par (−) 44424.9 (−,−,−) 42421.6 (−,−,−) 43117.8 (−,−,−)
True stage game g, l, free (δX ,−,−) 44022 (0.78,−,−) 42342 (0.89,−,−) 41036.3 (10.09,−,−)
True δ, inequity aversion (−,α,β) 31871.5 (−,2.15,0.93) 33302.6 (−,2,0.65) 33004.8 (−,100,100)
Inequity Aversion (δX ,α,β) 28095.3 (100,5.71,0.81) 28091.1 (74.82,16.36,0.79) 28508.4 (30.89,15.78,0.87)
Cond Cooperation (δX ,α,β) 35378.4 (100,3.53,−0.11) 32160.8 (3.85,2.04,0.12) 28501.6 (1,5.66,−0.3)
Altruism (δX ,α,β) 29162 (100,−50.45,5.08) 28915.4 (14.07,−17.8,4.89) 28505.3 (34.72,54.88,−0.3)
Gen Fairness Equilibrium (δX ,α,β) 34577.4 (5.58,11.59,0.17) 32527 (5.69,11.59,0.15) 28505.3 (23.52,100,−0.11)

Note: This table shows the estimates and BICs for the estimated models including benchmarks. In the rightmost column (“Fit to each treatment”) parameters
are estimated by treatment – the BICs are aggregated, the reported parameter estimates are averages. In the columns (“Fit to pooled data”) parameter sets are
estimated to be constant across all experiments with homogeneous variance and heterogeneous variance by treatment, respectively. The upper bound and lower
bound BIC are based on the same “Clairvoyance” and “Uniform Random” model in all three columns, with treatment specific strategies for the clairvoyance
model, but the BICs take into account the differences in parameter numbers of the interdependent-preferences models across the three columns to make them
comparable.
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Second, between the four well-known models of interdependent preferences (detailed
in the Appendix C), there is a clear ranking when applied to the range of experiments we
re-analyze here. Whatever assumption we impose on the belief model, capturing interde-
pendence by inequity aversion fits substantially and significantly better than capturing inter-
dependence by any other model. That is, we observe very robust rankings of models with
respect to both dimensions, beliefs and preferences. We attribute this to the comprehensive
data set re-analyzed here, which reduces the impact of single observations and allows the
law of large numbers to take effect.

Result 4 (Question 3 – part 2). Subjects’ behavior is best described by false consensus beliefs
(i.e. symmetric equilibrium) and inequity aversion. Indeed, false consensus fits substantially
better than other belief models for all models of interdependent preferences, and inequity
aversion equally fits substantially better than other interdependence models for all belief
models.

Next, let us look at the extent of misperception of δ. In total, we consider four models
of interdependent preferences, three models of belief formation, and three specifications
of treatment dependence of parameters. Between these 36 = 4× 3× 3 sets of estimates,
we obtain 35 times an estimate indicating x > 1, i.e. δx < δ, and in particular, this is true
for the identified specifications where subjects either hold false consensus beliefs or exhibit
inequity aversion. Indeed, when we allow subjects to both hold false consensus beliefs and
exhibit inequity aversion, and in many other cases, we estimate the upper bound x = 100,
implying δx ≈ 0. Thus, subjects are clearly best described by limited foresight, similar to
(but much more extreme than) the chess players referenced above: Given δx ≈ 0, subjects in
the repeated PD do not seem to look beyond the current round. They capture the expected
payoffs from continuation play by the values they associate with each of the four possible
outcomes (cc,dc,cd,dd) of play in the current round, and these values relate to the stage
game payoffs via inequity aversion.

Result 5 (Question 3 – part 3). Subjects are estimated to not look ahead beyond the present
round, and the state values they associate with the outcome of play in the present round relate
to the stage game payoffs via inequity aversion.

So, which types of games are induced by the state values perceived by the subjects?
The answer depends on the stage game payoffs in the respective treatments, but to give some
sense, let us look at two well-known examples.

c d

c 2,2 0,3

d 3,0 1,1

 
α=0.82,β=0.14

c d

c 2,2 −0.42,0.54

d 0.54,−0.42 1,1

c d

c 3,3 0,4

d 4,0 1,1

 
α=0.82,β=0.14

c d

c 3,3 −0.56,0.72

d 0.72,−0.56 1,1
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It is easy to verify that for a wide range of stage game payoffs, inequity aversion with
the estimated parameters (0.82,0.14) induces a coordination game. Formally, a coordina-
tion game is obtained if g < α ∗ (1+ g+ l), and using α = 0.82, this holds true whenever
g ≤ 4, which includes all of the experimental games we analyze. That is, in terms of the
continuation payoffs, subjects generally seem to perceive the repeated PD as a coordination
game. Being a coordination game, there exist three Nash equilibria – the defective equi-
librium (d,d), the cooperative equilibrium (c,c), and a mixed equilibrium corresponding to
Pr(c) = 0.49 in the upper game and to Pr(c) = 0.41 in the lower game. So, how does the
econometric model align subjects’ behavior with play this coordination game? After round
1, subjects play the “Schelling points” of the coordination game (Schelling, 1960), i.e. the
focal point given by the previous round’s choices, and they correspondingly play the coop-
erative, defective or mixed equilibrium after cc, dd, and cd/dc, respectively. In round 1,
there is no such focal point, and subjects focus on either the cooperative, or the mixed, or the
defective equilibrium, depending on subjective beliefs and yielding the three subject types
observed above (strong cooperators, cautious cooperators, and defectors, respectively). As
demonstrated, the type shares (i.e. the subjective beliefs) depend in a clear-cut way on the
game parameters, and as we also saw by the significance of the type distinction, at the sub-
ject level the focus is robust. To clarify, if it were not robust at the subject level, then the
distinction of say cautiously and strongly cooperative subjects would not have been found to
be significant.

6 Conclusion

We summarize our main results as follows.

Re-analyzing 12 experiments, we robustly identify three different types of subjects:
defectors, playing a strategy close to AD, and cautious and strong cooperators who play
semi-grim strategies that differ in their first-round cooperation probability. The strategies are
largely independent of treatment parameters but the shares of subjects picking either of the
three strategies depend strikingly on the continuation probability δ in relation to the BOS-
threshold δ∗ (Blonski et al., 2011). Following rounds where at least one player cooperated,
subjects cooperate systematically even in supergames where Grim is not a subgame-perfect
equilibrium, which is rationalizable after allowing for interdependent preferences. Testing
different belief and interdependent preference models in a structural analysis, we find that the
observed behavior can be explained by subjects holding false-consensus beliefs, and having
limited foresight as well as inequity-averse preferences.

Specifically, subjects are estimated to play each round of the repeated PD based on sub-
jective valuations of the states that will result from the current round’s choices. These state
values relate to the original stage game payoffs in a manner compatible with inequity aver-
sion and induce coordination games for the experimental games we consider. The defectors
play according to the defective equilibrium in round 1 and thereafter. Some of the cooper-
ating subjects systematically play according to the cooperative equilibrium in round 1 and
are identified as strong cooperators, while the others systematically playing according to the
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mixed equilibrium and are identified as cautious cooperators. This focus in round 1 is persis-
tent at the subject level. In the subsequent rounds, both types of cooperative subjects play the
Schelling points, i.e. according to the cooperative equilibrium after (c,c), according to the
defective equilibrium after (d,d), and according to the mixed equilibrium after (c,d)/(d,c).

This description of behavior in the repeated PD is the result of a flexible structural
analysis of 12 experiments, it closely relates to a wide range of previous results in behavioral
economics, and it fits behavior very well also quantitatively (see Figure 1). Using merely
four parameters to explain 65.910 and 79.892 observations of inexperienced and experienced
subjects (respectively), it captures 89% of the variance in behavior of inexperienced subjects
and 93% of behavior of experienced subjects from 32 treatments. The results also connect
with key results in several large strands of the literature. False consensus is a central concept
in psychology (Ross et al., 1977), the idea that the actions in the previous round serve as
focal point for the actions in the present round is (informally) predicted by the focal point
theory (Schelling, 1960), limited foresight and state recognition/evaluation are central ideas
in games with indefinite time-horizon in computer science (Levy and Newborn, 1982), in
economics (Jehiel, 2001; Kübler and Weizsäcker, 2004), and even for grand-master chess
players (Gobet and Simon, 1996), and inequity aversion (Fehr and Schmidt, 1999) is a central
concept of interdependent preferences. Further, we can rule out many potential confounds
related to overfitting when a model with four parameters explains 93% of variance from close
to 80.000 observations that were taken in a wide range of conditions.

The observations that subjects assign values to future states and that the state values
closely relate to stage game payoffs in a manner compatible with inequity aversion are very
encouraging for future work, and perhaps most importantly, they represent a first behavioral
foundation of play in repeated games—i.e. a formally closed explanation of behavior that
enables predictions for all repeated games. Experimental work on repeated games other than
the repeated PD is needed to evaluate these predictions, but the observation that closed be-
havioral models, and structural analyses such as those known from static games, are possible
also for repeated games demonstrate that it is feasible and important to move beyond strat-
egy estimation in attempts towards understanding behavior. In addition, our results raise a
number of novel and interesting questions with respect to analyses of the repeated PD. We
considered inequity aversion mainly because it is a well-established model of interdependent
preferences used to explain cooperative behavior in prior work. Thinking of state values,
should we not also include the true discount factor δ as a relevant factor? Is it a coincidence
that the recurring semi-grim strategies are specific instances of belief-free equilibria (Ely
et al., 2005)? Is their apparent invariance after round 1 not reminiscent also of analogical
reasoning (Samuelson, 2001)? Over time, behavior in round 1 seems to somewhat change
as subjects gain experience (Fudenberg and Karreskog, 2020)—though the changes cancel
out across treatments (see Table 2)—does the “precision” λ change, do beliefs change, or
do preferences change? Following the approach towards structurally analyzing behavior in
repeated games developed above, it will be possible to ask and answer these and many more
such questions in exciting future work.
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Online appendix
Inequity Aversion and Limited Foresight

in the Repeated Prisoner’s Dilemma

A Econometric approach toward strategy estimation

Recall that a subject using a pure strategy acts equivalently whenever a given state is reached
and she uses the same pure strategy across all supergames. A subject using a mixed strat-
egy uses a pure strategy within supergames but randomizes over pure strategies prior to
supergames. A subject using a behavior strategy may randomize each round and thus deviate
from pure strategies even within supergames. These definitions provide a basis for identifica-
tion, but identification is made difficult by the standard assumption that choice is stochastic.
For example, a single deviation from a given pure strategy, over say 20 observations, is intu-
itively not considered sufficient evidence against purity of strategies. Otherwise, the case for
behavior strategies would be trivial, but how can this intuition be made formally precise—in
a manner that allows us to econometrically distinguish “noisy” pure, mixed, and behavior
strategies?

The distinction is achieved efficiently using the Markov-switching models known from
empirical finance and empirical macroeconomics in conjunction with the robust likelihood-
ratio tests of Schennach and Wilhelm (2017). Markov-switching models generalize the
finite-mixture and random-switching models used in previous analyses of repeated game
strategies.14 They allow us to capture a potentially heterogeneous group of agents (in our
case, subjects potentially playing different strategies), where each agent is characterized by
a “state of mind” (the strategy to be played), and agents may change their states of mind over
the course of time, but both states and transitions are latent and thus not directly observable.
Let us refer to Ansari et al. (2012), Breitmoser et al. (2014) and Shachat et al. (2015) for
earlier applications in behavioral analyses. The identifying assumption is that state transi-
tions follow a Markov process. This generalizes the finite mixture model, with degenerate
transition probabilities, and the random switching model, with constant choice probabilities
for the strategies. Given this, estimation proceeds by maximum likelihood using an EM al-
gorithm. Model adequacy is evaluated using ICL-BIC (Biernacki et al., 2000), and model
differences are evaluated using the Schennach-Wilhelm test, which captures that all models
may be arbitrarily nested and misspecified. Finally, we allow for stochastic choice in the
form of trembles (after all histories of play) following Harless and Camerer (1994), i.e. in

14The approach of using mixture models in order to uncover decision rules in experimental data has been
established by Stahl and Wilson (1994) and El-Gamal and Grether (1995) and subsequently used in many
analyses of level-k reasoning and stochastic choice, see e.g. Houser and Winter (2004) and Houser et al.
(2004), to unravel individual decision rules. A special case of finite mixture modeling is the Strategy Frequency
Estimation Method (SFEM) employed by Dal Bó and Fréchette (2011), Fudenberg et al. (2012), Rand et al.
(2015), Dal Bó and Fréchette (2015), Fréchette and Yuksel (2017).
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each round the minimal probability of any action is equal to γ ≥ 0 where γ is a free (noise)
parameter in the estimation.

A.1 Markov-Switching Models and ICL-BIC

The Markov-switching model builds on the simpler and more restrictive finite mixture model,
which has been established in the experimental literature by Stahl and Wilson (1994) and can
be used to empirically identify a finite number K of strategies with parameter vectors θk. The
log-likelihood function to be maximized for the finite mixture model is

lnL(θ,ρ|O) = log

(
∏
s∈S

p(os|θ,ρ)

)
= ∑

s∈S
ln ∑

k∈K
ρk pk(os|θk), (4)

with observations O, ρk denoting the relative frequency of strategy k, and pk(os|θk) denoting
the probability that player s chooses action os given he plays strategy k 15.

A way to model regime switches is to replace the implicit latent indicator variable in
finite mixture models (indicating the discrete types) with a hidden Markov chain (Frühwirth-
Schnatter, 2006). The central assumption characterizing the learning process in Markov
models is that the type of a player (or its strategy in our context) in the next period can
only depend on its type in this period. More precisely if kt is the type in period t then:
Pr(kt+1|kt ,kt−1,kt−2, ...,k1) = Pr(kt+1|kt), where the type is hidden and cannot be observed
directly.16 What we do observe is the action ot , which in turn depends on the type kt in t only:
Pr(ot |kt ,ot−1,kt−1, ...,k1,o1) = Pr(ot |kt) (c.f Bilmes et al. (1998)). It implies that transitions
between states are independent of time t. This assumption might be quite restrictive. For ex-
ample if we want to assume that the probability of switching to a new strategy is more likely
later in the game than at the beginning. Nevertheless, we can use memory-2 or memory-3
strategies if we define the state ω as a history of more than one past outcome and condition
the strategy on this history of outcomes. Moreover, it is possible to interact time dependent
components with switching probabilities.

Let Kt denote the state at time t ∈ 1,2, ...,T and σkk′ = Pr(Kt+1 = k′|Kt = k) define the
transition probability from k to k′ which is independent from t, as pointed. So σ is a (K×K)
transition matrix containing transition probabilities for every pair of states, where all entries
are positive and each row sums up to 1. Moreover, the state-paths are denoted by κ ∈ KT

with Pr(κ) conditional on initial weights ρ and transition probabilities σ. The probability
of observing os,t conditional on subject s being type k in this period is Pr(os,t |θ,k). The
likelihood function is:

lnL(ρ,σ,θ|O) = ∑
s∈S

ln ∑
κ∈KT

Pr(κ)∏
t≤T

Pr(os,t |θ,κ(t), t) (5)

15For the memory-1 case pk(os|θk) = ∏t(σωs,t (k))
os,t (1−σωs,t (k))

1−os,t with strategy σωs,t (k)
os,t for state

ωs,t(k)1−os,t .
16Therefore also known as the Hidden Markov Model (HMM).
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Due to the introduction of the transition matrix σ the number of parameters to be estimated
increases dramatically. Moreover, with a naive estimation approach we would have to con-
sider all possible state paths and be very time consuming. Therefore we choose to apply a
backward-forward algorithm to calculate posteriors for estimation with the expectation max-
imization (EM) algorithm.

The idea of the EM-algorithm is to conduct two steps the E-step and the M-step it-
eratively. This way we split up every optimization step into many steps which simplifies
complexity and consequently speeds up computations. In the E-step we evaluate the condi-
tional expectation of the log-likelihood given our data O and the current parameter vector and
then maximize over a reduced set of free parameters in the M-Step. The number of possible
types k is pre-defined as well as the structure of their mixing parameters θk.

In the E-step we need to compute for all subjects for all time periods the posterior prob-
ability of component inclusion (being a specific type) and the probability to switch between
two types. An efficient way to calculate those posterior probabilities is to built up on the
backward-forward. First, we have the forward procedure, where we define the (joint) proba-
bility of observing the partial sequence os1, ...,ost and ending up with type k at time t:

αsk(t) = Pr(Os1 = os1, ...,Ost = ost ,Kt = k) (6)

Recursively, we can then define:

1. αsk(1) = ρkPr(os1|θ,k) (7)

2. αsk′(t +1) =

[
∑
k

αsk(t)σkk′

]
Pr(ost+1|θ,k′)

3. Pr(os) = ∑
k∈K

αsk(T )

Second, for the backward procedure we define the probability of ending in the partial se-
quence ost+1, ...osT given that we have started at type k at time t.

βsk(t) = Pr(Ost+1 = ost+1, ...,OT = oT |Kt = k) (8)

Again we can define βsk(t) efficiently (Bilmes et al., 1998)

1. βsk(T ) = 1 (9)

2. βsk(t) = ∑
k′∈K

σkk′Pr(ost+1|θ,k′)βsk′(t +1)

3. Pr(os) = ∑
k∈K

βsk(1)ρkPr(os1|θ,k)

We then take advantage of the fact that the unconditional probability Pr(os) can be
defined using αsk(t) or βsk(t) to calculate the posterior probabilities γsk and ζskk′ . The former
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is the conditional probability of being type k at time t given observations os:

γsk(t) = Pr(Kt = k|os) =
Pr(os,Kt = k)

Pr(os)
=

Pr(os,Kt = k)
∑k′∈K Pr(os,Kt = k)

=
αsk(t)βsk(t)

∑k′∈K αsk′(t)βsk′(t)
,

(10)

Using γsk we can define the probability of having type k in t and type k′ in t +1 conditional
on our observations as

ζskk′(t) = Pr(Kt = k,Kt+1 = k′|os) =
Pr(Kt = k|os)Pr(ot+1,...,T ,Kt+1 = k′|Kt = k′)

Pr(ot+1,...,T |Kt = k)
(11)

=
γsk(t)σkk′Pr(os,t+1|θ,k′)βsk′(t +1)

βsk(t)

(cf. Bilmes et al. (1998)).

In the M-step we maximize for each k and t ≤ T the function

LLkt(θ
′
k) = ∑

s∈S
γsk(t) lnPr(ost |θ′)→max

θ′kt

! (12)

to yield the updated θ+1 when assuming that θkt does not affect the likelihood of other
components k. If it does, we need to maximize ∑k′∈K LLkt(θ

′)→ max
θ′

! and yield θ+1.17

Moreover, we update ρ and σ using the posteriors from above and yield

ρ
+1
k =

1
n ∑

s∈S
γsk(1) and σ

+1
kk′ =

∑s∈S ∑t<T ζskk′(t)
∑s∈S ∑t<T γsk(t)

(13)

The two steps are iterated until the distance between (θ,ρ,σ) and (θ+1,ρ+1,σ+1) gets small.

Estimation proceeds by a maximum likelihood, as usual, but as is well-known, the larger
the number of parameters, the larger a model’s capacity to fit data—and implicitly, the larger
its fallacy to overfit the data. This is conventionally captured by evaluating model adequacy
based on information criteria such as BIC, which penalize for the degrees of freedom in a
theoretically adequate manner. Mixture and switching models additionally contain freedom
in defining the components of the subject pool, i.e. the number of subject types, which pro-
vides an additional source for overfitting aside from the number of parameters used. Follow-
ing (Biernacki et al., 2000), these concerns are addressed using the information-classification
likelihood Bayes-information criterion (ICL-BIC), a criterion that penalizes both model com-
plexity and the failure of the mixture model to provide a classification in well-separated strat-
egy clusters. We address the observation that modeling mixtures of pure, mixed, and behav-
ior strategies induces sophisticated nesting structures, and the concern that indeed all models
may be misspecified by evaluating model differences using the novel Schennach-Wilhelm
likelihood ratio tests (Schennach and Wilhelm, 2017). Finally, we capture the intuition that

17θ may depend on t but does not have to.
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choice is stochastic by allowing for trembles in the sense of Selten (1975): Each agent of
a player picks any given action with probability no less than e > 0. This approach follows
(Breitmoser, 2015) and, in relation to the logistic-error approach proposed by (Dal Bó and
Fréchette, 2011), it has the advantage that it does not perturb choice probabilities of subjects
that originally randomize already.

A.2 Validity

To demonstrate the validity of our approach to distinguish pure, mixed, and behavior strate-
gies, we first run it on different sets of simulated data: For each of the three conjectures,
we simulate corresponding data sets and verify if we can identify the underlying conjecture
based on model-fit evaluations using ICL-BIC. As for pure strategies, we consider a popu-
lation where AD, Grim, and TFT have share 0.25 each, AC has share 0.15, and WSLS has
share 0.1.18 Drawing from this population, we simulate for three different discount factors
δ = 0.6, δ = 0.75, and δ = 0.9 each 100 data-sets with 50 subjects19 and enough supergames
to have 40 decisions per subject past round 1.

Here, δ= 0.75 corresponds to the average supergame in our sample, δ= 0.6 and δ= 0.9
serve as robustness check approaching the upper and lower bound of δ in our data. The
tremble parameter is γ = 0.1, which is of the proportion typically estimated in the literature.
Then we determine the average ICL-BICs of the three basic econometric models, finite-
mixture, random-switching, and semi-grim20, across those 100 data-sets and compare their
performance using simple matched-pairs Wilcoxon tests of the ICL-BICs. Table 6 reports
the results.

Under the pure-strategy conjecture, the true model of the population is the finite-mixture
model. Our analysis should therefore identify it as the best fitting model if and only if the
simulated subjects play pure strategies. The first three rows of Table 6 show, that this is
clearly the case: We obtain significantly (at α = 0.01) lower ICL-BICs for the finite-mixture
model than for the other two models for all three values of δ. We can therefore identify pure
strategies with our approach.

We repeat the same exercise for simulated subject pools playing mixed strategies and
pools playing semi-grim strategies. The mixed strategy population is based on the same
pure strategies and prior probabilities as above but assuming subjects redraw a pure strategy
prior to each supergame. The semi-grim strategy is of the form (0.4,0.9,0.3,0.3,0.1), which
approximates the average cooperation probabilities across all experiments in our data set.

The results displayed in the bottom rows of Table 6 indicate that distinguishing be-
tween mixed-strategy and semi-grim populations is more difficult. When analyzing long
supergames (δ = 0.9), there appears be to a bias towards detecting semi-grim, and analyzing

18We include WSLS here and in the analysis below, as a number of studies established its evolutionary
robustness, see Nowak and Sigmund (1993) and Imhof et al. (2007), indicating that it should be considered a
promising candidate.

19Robustness-checks with 100 and 200 subjects are provided in Table 7.
20In this case, without allowing for subject heterogeneity, the semi-grim model simply determines the aver-

age cooperation rates in each state.
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Table 6: Can we econometrically distinguish pure, mixed and behavior strategies?

Model fitted to the data
Finite Random

Mixture Switching Semi-Grim

Pure-Strategy Conjecture
δ = 0.6 1227.92 � 1706.67 � 1862.09
δ = 0.75 1045.68 � 1329.11 � 1412.36
δ = 0.9 950.68 � 1061.13 � 1011.52

Mixed-Strategy Conjecture
δ = 0.6 1842.11 � 1725.16 � 1875.59
δ = 0.75 1472.24 � 1334.32 � 1415.32
δ = 0.9 1228.48 � 1073.86 � 1023.88

Behavior-Strategy Conjecture
δ = 0.6 2068.31 � 1720.06 ≈ 1728.46
δ = 0.75 1521.77 � 1262.84 � 1202.79
δ = 0.9 1049.64 � 944.11 � 732.88

Note: Analysis based on simulated data sets comprising 50 subjects and 40 observations (past round 1) per
subject, reporting the average ICL-BIC of the classes of fitted models. Here, �,� indicate significance of
differences (in Wilcoxon matched-pairs tests of the simulated ICL-BICs) at α = 0.01 and >,< indicate signif-
icance at α = 0.05.

short supergames (δ = 0.6) there appears to be a bias towards the random-switching model
(mixed strategies). Our data set contains more observations for short supergames satisfying
δ ≤ 0.6 than for long supergames satisfying δ ≥ 0.9, see Tables 14 and 15 in the appendix.
Moreover, the average δ weighed by individual observations is around 0.73 in the first halves
of sessions and 0.74 in the second halves, approximating the case where all conjectures are
well-identified. Thus, in aggregate there may be a slight bias against semi-grim in the anal-
ysis, but aggregating across a large number of subject pools with δ = 0.75 on average, our
method seems suitable to reliably identify the correct model.
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Table 7: Can we econometrically distinguish pure, mixed and behavior strategies? Robust-
ness check for larger data

(a) Intermediate data set: 100 subjects

Model fitted to the data
Finite Random

Mixture Switching Semi-Grim

Pure-Strategy Conjecture
δ = 0.6 2450.06 � 3430.25 � 3746.59
δ = 0.75 2093.11 � 2669.43 � 2841.81
δ = 0.9 1891.42 � 2120.93 � 2042.6

Mixed-Strategy Conjecture
δ = 0.6 3693.23 � 3454.03 � 3762.16
δ = 0.75 2948.44 � 2673.63 � 2835.13
δ = 0.9 2457.96 � 2146.63 � 2058.91

Behavior-Strategy Conjecture
δ = 0.6 4132.82 � 3436.66 � 3463.7
δ = 0.75 3047.1 � 2521.5 � 2406.99
δ = 0.9 2105.78 � 1888.58 � 1468.14

(b) Large data set: around 200 subjects

Model fitted to the data
Finite Random

Mixture Switching Semi-Grim

Pure-Strategy Conjecture
δ = 0.6 4908.54 � 6870.11 � 7498.08
δ = 0.75 4175.89 � 5329.73 � 5675.49
δ = 0.9 3791.25 � 4252.75 � 4103.17

Mixed-Strategy Conjecture
δ = 0.6 7385.62 � 6909.42 � 7521.3
δ = 0.75 5923.99 � 5371.1 � 5693.22
δ = 0.9 4926.83 � 4298.72 � 4120.77

Behavior-Strategy Conjecture
δ = 0.6 8266.47 � 6877.24 � 6927.44
δ = 0.75 6092.37 � 5037.9 � 4805.57
δ = 0.9 4220.99 � 3787.16 � 2938.41

Note: Analysis based on simulated data sets comprising 50 subjects and 40 observations (past round
1) per subject, reporting the average ICL-BIC of the classes of fitted models. Here, �,� indicate
significance of differences (in Wilcoxon matched-pairs tests of the simulated ICL-BICs) at α = 0.01
and >,< indicate significance at α = 0.05.
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B Robustness check: Memory-2

We investigate memory length using a data mining approach similar to above. To this end, we
extend the set of pure strategies to capture possible interdependence of actions with choices
in t − 2 and determine the best-fitting specification for each treatment. We then evaluate
these best fitting specifications, treatment by treatment, against the above memory-1 model
AD+SG, i.e. against the conjecture that all cooperating subjects homogeneously play a sim-
ple behavior strategy.

Specifically, we allow for two alternative approaches of extending the set of memory-1 strate-
gies to memory-2. One approach follows Fudenberg et al. (2012), who introduced lenient
and resilient variants of the pure memory-1 strategies, i.e., strategies that punish only af-
ter the second deviation or that punish for two rounds instead of one, respectively. Let us
note that such variations in punishment behavior also follow if punishment is random as in
memory-1 behavior strategies, which were not considered by Fudenberg et al. (2012). This
first approach is applicable in particular to generalize pure memory-1 strategies, by providing
a specific list of memory-2 generalizations. The other approach is novel and more generally
allows the cooperation probabilities in round t to depend on the behavior of one or both play-
ers in t−2. Here, we allow for three different specifications: cooperation probabilities may
be a function of the opponent’s choice in t − 2 (TFT-Scheme), a function of whether both
players cooperated in t− 2 or not (Grim-Scheme), or a function of the entire choice profile
in t− 2 (General scheme). This approach is parametric and suitable in particular to extend
generalized pure strategies of type II (or, behavior strategies) from memory-1 to memory-2.
As indicated, we set up this deliberately large number of ways to model memory-2 only to
post-hoc pick the best of them for an evaluation against the memory-1 semi-grim specifica-
tion.

Table 8 summarizes the results. First, we mine for mixtures of pure strategies, based on
the list of 10 strategies21 of Fudenberg et al. (2012). Given the above results, we assume
that subjects do not switch strategies within half-sessions, as this comes without loss of de-
scriptive adequacy for experienced subjects and only little loss for inexperienced subjects
(for whom, however, memory-2 will turn out to be of negligible relevance). For each treat-
ment, we determine the most adequate combination of strategies from a list of five possible
combinations of Fudenberg et al.’s strategies, thus providing a selection of the best of 532

models overall. The resulting model (Column “Best Pure M1&M2” in Table 8) fits highly
significantly worse than the selection of pure and generalized-pure strategies with memory-1
defined above (“M1” in Table 8). We may therefore discard the possibility that subjects play
pure strategies (with noise) of either memory-1 or memory-2, in favor of the possibility that
they play generalized-pure strategies allowing for non-trivial randomization in at least one
state.

Second, we take the above memory-1 model (“M1” in Table 8) as our benchmark and ask
if equipping the pure or generalized pure strategies of type II with memory-2 improves
goodness-of-fit. Again, we do so treatment by treatment. That is, for each treatment, we

21These strategies are TFT, Grim, AD, Grim2, TF2T, T2, 2TFT, 2PTFT as defined in Fudenberg et al. (2012)
and also in Table 12 in the Online Appendix.
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Table 8: Memory-1 or Memory-2, and semi-grim, pure or generalized pure? Strategy mixtures are estimated treatment-by-treatment. The
resulting ICL-BICs are pooled within experiments and overall (less is better, relation signs point to better models)

Memory-2 Generalizations of Semi-Grim + AD Best Mixtures of Generalized Pure Strategies Best Pure
M2“General” M2“TFT” M2“Grim” AD+SG M1+M2“TFT” M1+M2“Grim” M1 M1 & M2

Specification
# Models evaluated 1 1 1 1 2232 2232 1332 532

# Pars estimated (by treatment) 12 6 6 5 160 160 80 32
# Parameters accounted for 12 6 6 5 6–15 6–15 6–10 3–8

First halves per session
Aoyagi and Frechette (2009) 756.04 ≈ 764.13 ≈ 749.99 ≈ 781.86 ≈ 756.95 ≈ 756.95 ≈ 756.95 � 884.86
Blonski et al. (2011) 1244.76 � 1121.17 ≈ 1120.87 � 1069.28 ≈ 1069.56 ≈ 1069.56 ≈ 1069.58 ≈ 1105.98
Bruttel and Kamecke (2012) 807.47 ≈ 802.89 ≈ 804.16 ≈ 800.12 ≈ 817.89 ≈ 817.89 ≈ 817.89 ≈ 839.97
Dal Bó (2005) 660.68 > 641.34 ≈ 642.26 ≈ 629.17 ≈ 635.04 ≈ 635.04 ≈ 635.04 ≈ 653.05
Dal Bó and Fréchette (2011) 6671.28 ≈ 6616.44 ≈ 6604.7 ≈ 6597.93 � 6904.79 ≈ 6904.79 ≈ 6904.79 � 7391.89
Dal Bó and Fréchette (2015) 8068.37 ≈ 8028.83 ≈ 8031.59 ≈ 8017.59 � 8423.8 ≈ 8431.51 ≈ 8434.93 � 8893.78
Dreber et al. (2008) 805.74 > 785.48 ≈ 785.6 ≈ 782.37 ≈ 787.71 ≈ 787.71 ≈ 787.71 < 863.47
Duffy and Ochs (2009) 1361.84 ≈ 1377.17 ≈ 1369.86 ≈ 1372.97 ≈ 1395.4 ≈ 1395.4 ≈ 1395.4 ≈ 1426.34
Fréchette and Yuksel (2017) 305.9 ≈ 299.72 ≈ 296.93 ≈ 299.62 ≈ 300.87 ≈ 300.87 ≈ 300.87 ≈ 317.35
Fudenberg et al. (2012) 387.8 ≈ 379.84 ≈ 378.07 ≈ 381.01 < 432.32 ≈ 432.32 ≈ 432.32 ≈ 463.4
Kagel and Schley (2013) 2542.02 ≈ 2556.45 ≈ 2552.09 ≈ 2561.76 ≈ 2679.23 ≈ 2685.4 ≈ 2685.4 ≈ 2730.66
Sherstyuk et al. (2013) 1311.64 ≈ 1307.45 ≈ 1303.94 ≈ 1303.8 ≈ 1322.6 ≈ 1322.6 ≈ 1322.6 < 1398.69

Pooled 25434.21 � 24972.71 ≈ 24931.86 ≈ 24779.85 � 25750.84 ≈ 25757.44 ≈ 25758.38 � 27115.39

Second halves per session
Aoyagi and Frechette (2009) 415.47 ≈ 421.18 > 409.19 ≈ 423.68 ≈ 416.51 ≈ 416.51 ≈ 416.51 � 540.47
Blonski et al. (2011) 1518.54 � 1395.94 ≈ 1393.41 � 1346.79 ≈ 1398.5 ≈ 1398.5 ≈ 1398.5 < 1564.48
Bruttel and Kamecke (2012) 536.19 ≈ 532.08 ≈ 529.47 ≈ 536.77 ≈ 538.17 ≈ 538.17 ≈ 538.17 ≈ 567.99
Dal Bó (2005) 727.25 ≈ 710.88 ≈ 708.32 ≈ 699.05 ≈ 726.04 ≈ 731.81 ≈ 732.27 ≈ 741.2
Dal Bó and Fréchette (2011) 5201.05 ≈ 5137.82 ≈ 5132.96 ≈ 5128.69 ≈ 5195.88 ≈ 5195.88 ≈ 5195.88 � 5960.78
Dal Bó and Fréchette (2015) 7840.87 ≈ 7829.51 ≈ 7808.63 ≈ 7825.98 � 8172.63 ≈ 8177.46 ≈ 8177.46 � 9143.98
Dreber et al. (2008) 597.17 ≈ 580.63 ≈ 570.33 ≈ 589.84 ≈ 618.5 ≈ 618.89 ≈ 619.9 ≈ 648.55
Duffy and Ochs (2009) 1706.1 ≈ 1753.41 ≈ 1719.86 ≈ 1761.6 ≈ 1857.06 ≈ 1876.72 ≈ 1883.52 ≈ 2003.41
Fréchette and Yuksel (2017) 422.32 ≈ 424.41 ≈ 419.44 ≈ 423.34 ≈ 433.18 ≈ 433.18 ≈ 433.18 < 464.23
Fudenberg et al. (2012) 452.64 ≈ 450.08 ≈ 447.25 ≈ 452.6 < 484.5 ≈ 477.91 ≈ 514.87 ≈ 534.47
Kagel and Schley (2013) 1782.43 ≈ 1777.83 ≈ 1773.55 ≈ 1775.62 ≈ 1751.81 ≈ 1751.81 ≈ 1751.81 ≈ 1830.26
Sherstyuk et al. (2013) 959.21 ≈ 952.56 ≈ 949.46 ≈ 951.34 ≈ 955.73 ≈ 955.73 ≈ 955.73 ≈ 1023.43

Pooled 22669.91 � 22258.14 ≈ 22153.69 ≈ 22097.67 � 22811.34 ≈ 22828.13 ≈ 22848.49 � 25177.57

Note: Results treatment-by-treatment are in the appendix. The main body contains ICL-BICs aggregated at paper level. Relation signs and p-values are exactly as above, see
Table 3. “M2” (“M1”) denotes strategies, whose actions may depend on actions in t− 2 and t− 1 (t− 1 only). The supplements “General”, “TFT”, “Grim” indicate whether
parameters of behavior strategies may depend on: all four possible histories in t− 2 (M2 “General”), whether the opponent cooperated in t− 2 (M2 “TFT”), or whether there
was joint cooperation in t−2 (M2 “Grim”). Pure M2 strategies do not have such free parameters. Columns 1-3 contain one memory-2 version of semi-grim each. Column 4 is
memory-1 semi-grim. Columns 5-7 are memory-2 and memory-1 versions of generalized prototypical strategies. The last column contains the best fitting combinations of a set
of pure memory-1 and memory-2 strategies from the literature (TFT, Grim, AD, Grim2, TF2T, T2, 2TFT, 2PTFT) for definitions see Table 12 in the Online Appendix.



take the best-fitting of the 13 memory-1 models discussed above, the best of the five pure
memory-2 strategy combinations following Fudenberg et al. (2012), and the best of the four
generalized pure strategies (type II) after allowing for them to be of memory-2 following
either the TFT scheme or the Grim scheme, and then take the best of these 22 models over-
all. The results are provided in the columns M1+M2”TFT” and M1+M2”Grim” of Table
8: After allowing for generalized pure strategies as done here, allowing for memory-2 has
virtually zero impact for inexperienced subjects and some but only insignificant impact for
experienced subjects.22 This indicates that the appearance of memory-2 is indistinguishable
from the parametrically simpler notion of randomization as in generalized-pure strategies.
Further, all of these data-mined models still fit significantly worse than the simple AD+SG
that stays free from post-hoc modeling choices (column 4 of Table 8). Considering that the
best of 2232 models, comprising all of the key ideas expressed in behavioral analyses of re-
peated games, does not improve on this single model now strongly indicates that subjects
actually play behavior strategies.

Third, we evaluate whether these behavior strategies possibly have memory-2. That is, we
compare the simple AD+SG memory-1 version with the three generalizations to memory-2
introduced above. The TFT-scheme allows the cooperation probabilities to be functions of
the opponent’s action in t−2, the Grim-scheme allows them to be functions of whether both
subjects cooperated in t−2, and the General scheme of all four possible states in t−2. The
results are report in the three left-most columns of Table 8 and appear clear-cut: None of
the memory-2 extensions improves on describing behavior by the simple memory-1 semi-
grim strategy. Indeed, the finer the memory-2 ramifications, the worse the model adequacy
(after accounting for the additional degrees of freedom). These results are additionally com-
patible with a result of Breitmoser (2015) who verified the Markov assumption by testing
whether subjects systematically deviate from memory-1 strategies after particular histories
in memory-2. We summarize these observations as follows.

Result 6 (Memory-2). Model adequacy does not improve by equipping subjects with memory-
2, neither for (generalizations of) pure strategies nor for semi-grim.

C Further details and results on the structural analysis of
preferences and beliefs

Our objective is to examine to what extent received models are compatible with the observa-
tion that the (sub-)population of cooperating subjects consists of two components, cautious
cooperators and strong cooperators, who play the mildly treatment-dependent strategies esti-
mated above. For clarity, the estimated strategies are listed in Table 9. In the structural anal-
ysis, we do not include defecting subjects, as their behavior is easily rationalizable across
treatments. Further, we do not seek to model the relative shares of cautious cooperators and

22One reason for the good performance of generalized memory-1 strategies compared to the generalized
memory-2 strategies is that allowing for first round randomization seems essential. However, when we abstract
from first rounds, as done in an earlier draft (available from the authors), we obtained a similarly bad fit for
generalized memory-2 strategies compared to generalized memory-1 strategies (both type-II generalization).
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strong cooperators, since the shares seem closely related to existing predictors of coopera-
tion. The actual strategies leave us with the remaining part of our original research question
to understand behavior in the repeated PD: How can we rationalize this behavior?

In order to introduce the requisite notation in a general setting, let us consider a player using
strategy σ (as above, a mapping from memory-1 states to probabilities of cooperation) with
initially arbitrary beliefs about the possibly types of opponents. The set of opponents’ types
is K, and opponents of type k ∈ K play strategy τk. The prior belief of facing opponent
type k ∈ K is denoted ρk, and given history h, the posterior belief that the opponent is of
type k ∈ K is denoted as Pr(k|h). Obviously, this posterior is a function of the prior belief
(K,ρ,τ), which we shall make explicit in the notation below. Define τ= {τk}k. The expected
payoff of playing a ∈ {c,d} after history h, over the present and all subsequent rounds of
the indefinitely repeated game, given one’s own continuation strategy σ and the opponent’s
strategy τk, is denoted as Π(a|h,σ,τk). Holding the belief Pr(k|h) fixed, the expected payoff
of playing a ∈ {c,d}, given σ and τ, can be written as

Π
0(a|h,σ,K,ρ,τ) = ∑

k∈K
Pr(k|h,K,ρ,τ) ·Π(a|h,σ,τk). (14)

Assuming logistic errors and precision λ≥ 0, the probability of observing action a ∈ {c,d}
in state ω is thus

Pr(a,ω|σ,K,ρ,τ) =
exp{λ ·Π0(a|ω,σ,K,ρ,τ)}

exp{λ ·Π0(c|ω,σ,K,ρ,τ)}+ exp{λ ·Π0(d|ω,σ,K,ρ,τ)}
. (15)

Now, let the estimated population be described by the two types (ρ̂cautious, σ̂cautious) and
(ρ̂strong, σ̂strong), and let the underlying data set consist of n(a,ω) observations of action a in
state ω. Allowing cautious and strong cooperators to hold different beliefs, the log-likelihood
of a belief model (ρ,τ,K) with respect is

LL(ρ,τ,K) = ρ̂cautious ∑
ω

∑
a∈{c,d}

n(a,ω) · logPr(a,ω|σ̂cautious,Kc,ρc,τc)

+ ρ̂strong ∑
ω

∑
a∈{c,d}

n(a,ω) · logPr(a,ω|σ̂strong,Ks,ρs,τs).

We maximize this log-likelihood using the same algorithms as above (first NEWUOA and
Newton-Raphson), where the free parameters are those of the utility models described below.

Modeling prior beliefs We consider the following three types of prior beliefs. The “naive”
prior assumes that opponents are homogeneous and play an average strategy, the “correct”
prior assumes that all three types of opponents exist, and the “consensus” prior assumes that
opponents are of the same type as oneself. Using (K̃, ρ̃, τ̃) to denote the true type distribu-
tions, the beliefs (K,ρ,τ) of the two playe types (c,s), i.e. cautious and strong cooperators,
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Table 9: Estimated cooperation probabilities and shares of the identified player types

Defectors Cautious Coop. Strong Coop. Continuation of Coop.
Experiment/Treatment δ−δ∗ Share ε Share σ /0 Share σ /0 σcc σcd/dc σdd

First halves per session
DF11–6 -0.32 0.487 0.016 0.47 0.181 0.05 0.887 0.922 0.398 0.078
DF15–4 -0.32 0.591 0.026 0.39 0.263 0.02 0.99 0.895 0.356 0.105
BOS11–9 -0.3 0.366 0 0.59 0.304 0.05 0.99 0.946 0.201 0.054
BOS11–15 -0.15 0.839 0.008 0.08 0.196 0.08 0.197 0.999 0.224 0.001
DF11–7 -0.11 0.308 0.018 0.4 0.123 0.29 0.43 0.894 0.324 0.106
DF11–22 -0.07 0.316 0.013 0.42 0.212 0.27 0.568 0.916 0.383 0.084
DF15–20 -0.07 0.276 0.01 0.61 0.247 0.11 0.882 0.921 0.322 0.079
BOS11–14 -0.05 0.189 0.203 0.73 0.069 0.08 0.478 0.991 0.123 0.009
BOS11–26 -0.05 0.174 0.222 0.62 0.112 0.21 0.831 0.984 0.171 0.016
DRFN08–10 -0.05 0.188 0.036 0.62 0.438 0.19 0.965 0.948 0.178 0.052
BOS11–30 0.07 0.648 0.062 0.21 0.484 0.14 0.99 1 0 0
BOS11–31 0.07 0.33 0.027 0.27 0.256 0.4 0.895 0.977 0.512 0.023
BOS11–16 0.08 0.051 0.5 0.49 0.251 0.46 0.898 0.95 0.178 0.05
BOS11–27 0.08 0.502 0.01 0.35 0.373 0.15 0.99 0.887 0.448 0.113
D05–18 0.08 0.096 0.045 0.36 0.144 0.55 0.782 0.86 0.286 0.14
D05–19 0.08 0.233 0.01 0.44 0.289 0.33 0.956 0.914 0.335 0.086
DF15–33 0.08 0.279 0.025 0.55 0.291 0.17 0.898 0.929 0.368 0.071
DRFN08–11 0.08 0.271 0.052 0.39 0.468 0.34 0.908 0.931 0.329 0.069
DF11–8 0.11 0.251 0.01 0.32 0.204 0.43 0.699 0.906 0.419 0.094
DF15–5 0.11 0.296 0.095 0.31 0.458 0.39 0.947 0.933 0.309 0.067
BK12–28 0.13 0.143 0.077 0.47 0.262 0.39 0.867 0.916 0.289 0.084
DF15–35 0.13 0.169 0.167 0.3 0.076 0.54 0.833 0.972 0.417 0.028
DF11–23 0.14 0.21 0.08 0.25 0.288 0.54 0.817 0.951 0.458 0.049
KS13–12 0.15 0.224 0.022 0.31 0.431 0.47 0.911 0.932 0.335 0.068
BOS11–17 0.18 0.569 0.298 0.14 0.036 0.29 0.75 1 0.383 0
STS13–13 0.19 0.152 0.074 0.33 0.275 0.52 0.892 0.919 0.409 0.081
DO09–32 0.23 0.22 0.1 0.31 0.283 0.47 0.905 0.901 0.373 0.099
FY17–25 0.31 0.119 0.01 0.32 0.581 0.56 0.984 0.926 0.245 0.074
DF11–24 0.36 0.112 0.189 0.37 0.597 0.51 0.948 0.949 0.356 0.051
DF15–21 0.36 0.186 0.088 0.24 0.407 0.58 0.926 0.942 0.467 0.058
FRD12–29 0.48 0.062 0.023 0.3 0.417 0.63 0.983 0.97 0.469 0.03
AF09–34 0.59 0.15 0.5 0.53 0.648 0.32 0.988 0.911 0.41 0.089

Second halves per session
DF11–6 -0.32 0.687 0.01 0.27 0.093 0.05 0.643 0.937 0.553 0.063
DF15–4 -0.32 0.635 0.009 0.28 0.102 0.08 0.72 0.94 0.234 0.06
BOS11–9 -0.3 0.166 0.074 0.53 0.01 0.3 0.718 0.999 0.129 0.001
BOS11–15 -0.15 0.008 0.007 0.9 0.001 0.09 0.001 0.998 0.001 0.002
DF11–7 -0.11 0.399 0.009 0.41 0.178 0.19 0.615 0.864 0.473 0.136
DF11–22 -0.07 0.313 0.01 0.46 0.158 0.23 0.818 0.963 0.465 0.037
DF15–20 -0.07 0.392 0.01 0.4 0.179 0.21 0.856 0.943 0.42 0.057
BOS11–14 -0.05 0.002 0.01 0.95 0 0.05 0.491 0.987 0.3 0.013
BOS11–26 -0.05 0.43 0.008 0.39 0.365 0.18 0.748 0.935 0.291 0.065
DRFN08–10 -0.05 0.455 0.01 0.4 0.342 0.14 0.908 0.968 0.252 0.032
BOS11–30 0.07 0.339 0.01 0.57 0.356 0.09 0.99 0.963 0.201 0.037
BOS11–31 0.07 0.449 0.017 0.23 0.139 0.33 0.88 0.979 0.484 0.021
BOS11–16 0.08 0.11 0.371 0.43 0.271 0.46 0.977 0.966 0.208 0.034
BOS11–27 0.08 0.355 0.01 0.34 0.109 0.3 0.887 0.951 0.495 0.049
D05–18 0.08 0.071 0.009 0.38 0.048 0.55 0.83 0.878 0.396 0.122
D05–19 0.08 0.21 0.018 0.16 0.051 0.63 0.825 0.947 0.295 0.053
DF15–33 0.08 0.219 0.01 0.38 0.159 0.4 0.841 0.964 0.476 0.036
DRFN08–11 0.08 0.091 0.01 0.3 0.309 0.61 0.92 0.951 0.327 0.049
DF11–8 0.11 0.37 0.01 0.24 0.231 0.39 0.896 0.971 0.446 0.029
DF15–5 0.11 0.291 0.021 0.3 0.345 0.41 0.948 0.963 0.322 0.037
BK12–28 0.13 0.236 0.015 0.42 0.275 0.34 0.969 0.948 0.323 0.052
DF15–35 0.13 0.156 0.01 0.31 0.127 0.53 0.93 0.967 0.51 0.033
DF11–23 0.14 0.079 0.01 0.16 0.151 0.76 0.967 0.956 0.508 0.044
KS13–12 0.15 0.165 0.01 0.12 0.175 0.71 0.954 0.964 0.359 0.036
BOS11–17 0.18 0.311 0.009 0.53 0.504 0.16 0.908 0.95 0.256 0.05
STS13–13 0.19 0.125 0.021 0.25 0.237 0.63 0.925 0.953 0.55 0.047
DO09–32 0.23 0.047 0.01 0.3 0.173 0.66 0.953 0.954 0.392 0.046
FY17–25 0.31 0.139 0.024 0.14 0.514 0.73 0.956 0.957 0.352 0.043
DF11–24 0.36 0 0.053 0.11 0.647 0.89 0.99 0.98 0.334 0.02
DF15–21 0.36 0.089 0.01 0.16 0.337 0.75 0.958 0.965 0.373 0.035
FRD12–29 0.48 0.083 0.06 0.09 0.119 0.83 0.967 0.965 0.536 0.035
AF09–34 0.59 0.133 0.498 0.05 0.259 0.81 0.984 0.968 0.461 0.032
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are formally defined as follows.

Naive: Kc = Ks = {A} ρA = 1 τA = ∑
k∈K̃

ρ̃kτ̃k

Correct: Kc = Ks = K̃ ρk = ρ̃k τk = τ̃k ∀k ∈ K̃
Consensus: Kc = {c} ρc = 1 τc = τ̃cautious

Ks = {s} ρs = 1 τs = τ̃strong

Bayesian updating of beliefs Players with correct beliefs understand that subjects are not
homogeneous and therefore update their beliefs given their observations. Using Bayes’ rule,
the posterior belief after history h is

Pr(k|h,K,ρ,τ) =
ρk Pr(h|σ,τk)

∑k′∈K ρk′ Pr(h|σ,τk′)
,

where Pr(h|σ,τk), with k ∈ {A,B}, denotes the probability that history h is reached if the
own strategy is σ and the opponent’s strategy is τk. As estimated above, subjects in ex-
periments seem to condition their actions on memory-1 Markov states, as opposed to more
complex subsets of the history or even entire histories. This form of bounded rationality (i.e.,
imperfect recall) needs to be acknowledged, but can be expressed straightforwardly also in
belief formation. Given the own strategy σ and the two opponent types’ strategies τk, the
memory-1 posterior that the opponent’s type is k ∈ K given memory-1 state ω is

Pr(k|ω,K,ρ,τ) =
ρk ∑h∈H(ω)Pr(h|σ,τk)

∑k′∈K ρk′∑h∈H(ω)Pr(h|σ,τk′)
,

where H(ω) is the set of histories leading to the memory-1 state ω.

Interdependent preferences As discussed above, we also examine to what extent received
models of interdependent preferences allow us to capture behavior—having observed that
pure payoff concerns are inevitably insufficient to capture behavior across treatments. The
extension of the above definitions from expected payoffs to expected utilities is straightfor-
ward using the following definitions of stage game utilities. To begin with, all models of
interdependent preferences are defined such that they allow for two free parameters. In al-
truism, we allow for the payoff of the other player to be relevant, and to obtain two free
parameters as in other models, the other payoff’s weight is allowed to depend on the relation
of the own payoff to any reference point in [0,1]. In inequity aversion, we use a standard
implementation of Fehr-Schmidt preferences. In conditional cooperation, we allow the
utility to express an aversion against unilateral cooperation and unilateral defection (i.e. a
preference for matching the opponent’s action). In generalized fairness, we generalize the
parameter-free fairness concerns fo Rabin (1993) to contain two free parameters just like the
other models.
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Altruism: u(π1,π2,a1,a2) = π1 + Iπ1≥0.5 ·απ2 + Iπ1<0.5 ·βπ2

Inequity aversion: u(π1,π2,a1,a2) = π1− Iπ1≥π2 ·απ2− Iπ1<π2 ·βπ2

Cond. cooperation: u(π1,π2,a1,a2) = π1− Ia1=d∧a2=c ·αg− Ia1=c∧a2=d ·βl

Our definition of generalized fairness concerns requires additional notation. Recall that Ra-
bin (1993) definitions imply that in a one-shot PD with probabilities of cooperation (s1,s2)∈
[0,1]2, player i’s utility is

Ui(si,s j) = πi(si,s j)+ f j(s j,si) · fi(si,s j)

= s j · (1+g)− si · l− sis j · (g− l)+(s j−1/2)(si−1/2).

We generalize this towards

Ui(si,s j) = s j · (1+g)− si · l− sis j · (g− l)+α(s j−β)(si−β) (16)

and as for the implicit stage game payoffs, this implies

Ui(1,1) = 1+α(1−β)2 = 1+α(1−2β+β
2) =̂1+α(1−2β)

Ui(1,0) =−l−αβ(1−β) =−l−αβ+αβ
2 =̂− l−αβ

Ui(0,1) = 1+g−αβ(1−β) = 1+g−αβ+αβ
2 =̂1+g−αβ

Ui(0,0) = αβ
2 =̂0,

i.e. that the players play a constituent game resembling a “PD” with the parameters l∗ =
l+αβ

1+α(1−2β) and g∗ = 1+g−αβ

1+α(1−2β) −1.

Discounting We allow for the perceived discount factor δ̃ to be a function of the true
discount factor as in δ̃ = δx. If x = 1, subjects correctly perceive the discount factor (or,
break-up probability), for x < 1 they underestimate it, with the limiting case x→ 0 where
they simply disregard the break-up probabibility and simply play the game as if it had an
infinite time horizon (or, without impatience). In turn, if x > 1, subjects overestimate the
break-up probability, and in the limiting case x→∞, subjects are myopic and play a sequence
of one-shot games. In the estimation x is limited to 100 for viability.

Parametrization Overall, all models thus have up to three parameters, exponent X char-
acterizing the perceived discount factor δX and (α,β) characterizing the extent of social
preferences.

Benchmarks We provide results for the standard benchmark of uniform randomization,
i.e. the goodness-of-fit of predicting 50-50 randomization in all states, and for the benchmark
clairvoyance predicting the actually estimated probabilities of cooperation in all states. The
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first one is a lower bound of the goodness-of-fit and the second one is an upper bound, and
in relation to those we can estimate the extent to which behavior is explained by the various
model components.

LLRandom(ρ,τ,K) = ρ̂cautious ∑
ω

∑
a∈{c,d}

n(a,ω) · log1/2+ ρ̂strong ∑
ω

∑
a∈{c,d}

n(a,ω) · log1/2

LLClairvoyance(ρ,τ,K) = ρ̂cautious ∑
ω

∑
a∈{c,d}

n(a,ω) · log σ̂cautious(a,ω)

+ ρ̂strong ∑
ω

∑
a∈{c,d}

n(a,ω) · log σ̂strong(a,ω).

BIC Instead of looking at the pure log-likelihoods, we evaluate models based on their
Bayes information criteria BIC =−LL+#pars · log#obs/2, reported in Tables 5 in the paper,
and Tables 10 and 11 in the appendix. As for the two benchmark models, whose specification
remains the same across the three column sets, we evaluate the BIC using the numbers of pa-
rameters and observations for the models that are compared to the respective benchmark.This
way, we obtain upper and lower bounds for the reported BIC.
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Figure 5: Relation of observed and predicted probabilities of cooperation (second halves of
sessions)
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Figure 6: Decomposition of the structural model components
Top graph in each half: with constant preference parameters and constant variance of noise;
Middle graph in each half: with constant preference parameters and treatment-dependent variance of
noise;
Bottom graph in each half: with treatment-dependent preference parameters and variance of noise
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Table 10: Testing interdependence of preferences (both halves)

Fit to pooled data
Homogeneous variance Heterogeneous variance Fit to each treatment

Model (free parameters) BIC Estimates BIC Estimates BIC Average Estimates

Upper bound BIC (Clairvoyance) 45129.7 45361.8 46058
Lower bound BIC (Uniform Random) 94380.8 94612.8 95309.1

False Consensus Beliefs
True supergame (g, l,δ), no free par (−) 83654.6 (−,−,−) 79175.3 (−,−,−) 79871.6 (−,−,−)
True stage game g, l, free (δX ,−,−) 83455 (1.19,−,−) 78282.6 (1.35,−,−) 74836.7 (1.3,−,−)
True δ, inequity aversion (−,α,β) 61047.3 (−,1.01,0.5) 60561.3 (−,1.28,0.6) 55375.4 (−,15.44,0.43)
Inequity Aversion (δX ,α,β) 49685.8 (100,0.79,0.12) 48920.5 (19.85,0.75,0.1) 46200.5 (46.62,0.7,−0.05)
Cond Cooperation (δX ,α,β) 55923 (100,1.48,−0.37) 54269.2 (5.96,1.6,−0.05) 46599.6 (20.26,2.01,−0.03)
Altruism (δX ,α,β) 53154.9 (74.75,1.37,−0.27) 51208.9 (21.84,1.33,−0.22) 46187.8 (9.72,0.89,0.24)
Gen Fairness Equilibrium (δX ,α,β) 57075.3 (7.4,38.23,0.22) 54040.5 (6.57,43.25,0.22) 47108.2 (9.12,33.11,0.02)

Naive Beliefs
True supergame (g, l,δ), no free par (−) 83743.8 (−,−,−) 81266.6 (−,−,−) 81962.8 (−,−,−)
True stage game g, l, free (δX ,−,−) 83437 (1.14,−,−) 80676.1 (1.21,−,−) 77696.3 (3.62,−,−)
True δ, inequity aversion (−,α,β) 61994.4 (−,−100,−3.67) 62929.2 (−,−100,−2.69) 60135 (−,−100,−2.36)
Inequity Aversion (δX ,α,β) 56552 (100,26.11,1.09) 56390.1 (87.42,3.36,1.09) 56398.5 (49.69,14.98,0.82)
Cond Cooperation (δX ,α,β) 67945.9 (100,30.4,0.22) 63489.7 (4.24,8.45,0.47) 56398.5 (100,20.26,−0.05)
Altruism (δX ,α,β) 59484.3 (87.42,15.46,−0.96) 58236.5 (19.53,44.06,−0.8) 56398.5 (34.4,15.85,−0.59)
Gen Fairness Equilibrium (δX ,α,β) 59345.5 (4.13,−6.15,0.53) 57955.1 (3.93,−6.09,0.54) 56398.5 (40.1,9.13,0.41)

Bayesian Beliefs
True supergame (g, l,δ), no free par (−) 83891.8 (−,−,−) 80092.5 (−,−,−) 80788.7 (−,−,−)
True stage game g, l, free (δX ,−,−) 83746 (0.9,−,−) 80091.6 (1.01,−,−) 77163.4 (1.39,−,−)
True δ, inequity aversion (−,α,β) 62553.9 (−,11.84,1.21) 65804.6 (−,2.23,0.86) 65085.3 (−,100,100)
Inequity Aversion (δX ,α,β) 56374.2 (100,9.72,0.98) 56319.6 (87.42,11.68,0.95) 56706 (6.83,100,0.9)
Cond Cooperation (δX ,α,β) 68640.9 (100,100,0.11) 63818.6 (3.69,14.65,0.33) 56704.2 (22.88,5.08,−0.22)
Altruism (δX ,α,β) 58022.9 (100,−100,5.74) 57485.5 (11.32,−100,5.53) 56704.8 (20.47,100,−0.7)
Gen Fairness Equilibrium (δX ,α,β) 66459.5 (5.83,17.42,0.21) 63148 (5.52,7.93,0.2) 56704.1 (9.02,81.49,−0.26)
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Table 11: Testing interdependence of preferences (first halves)

Fit to pooled data
Homogeneous variance Heterogeneous variance Fit to each treatment

Model (free parameters) BIC Estimates BIC Estimates BIC Average Estimates

Upper bound BIC (Clairvoyance) 22650.9 22883 23579.2
Lower bound BIC (Uniform Random) 42075.3 42307.3 43003.5

False Consensus Beliefs
True supergame (g, l,δ), no free par (−) 38037.9 (−,−,−) 36156.8 (−,−,−) 36853 (−,−,−)
True stage game g, l, free (δX ,−,−) 37892.6 (1.28,−,−) 35739.7 (1.36,−,−) 34543.1 (0.4,−,−)
True δ, inequity aversion (−,α,β) 29429.8 (−,1.02,0.49) 28878 (−,1.32,0.66) 27879.8 (−,11.37,0.54)
Inequity Aversion (δX ,α,β) 24738.5 (100,0.81,0.14) 24486.5 (24.6,0.76,0.12) 23632.4 (57.13,0.61,−0.02)
Cond Cooperation (δX ,α,β) 27236.5 (100,1.48,−0.32) 26859.8 (100,1.55,−0.32) 23848.4 (2.8,2.04,0)
Altruism (δX ,α,β) 26204.3 (77.34,1.32,−0.27) 25520.2 (28.27,1.29,−0.23) 23633.4 (10.43,3.43,0.12)
Gen Fairness Equilibrium (δX ,α,β) 27087.2 (8.91,2.95,0.22) 25933.4 (6.24,3.07,0.24) 24047.4 (5.89,6.9,0.04)

Naive Beliefs
True supergame (g, l,δ), no free par (−) 39017.8 (−,−,−) 37922 (−,−,−) 38618.3 (−,−,−)
True stage game g, l, free (δX ,−,−) 38910.2 (1.14,−,−) 37674 (1.22,−,−) 36580.1 (0.6,−,−)
True δ, inequity aversion (−,α,β) 30817.9 (−,−87.62,−3.64) 31187.3 (−,−87.77,−2.91) 30333.6 (−,−69.79,−2.46)
Inequity Aversion (δX ,α,β) 28610.8 (100,8.31,1.04) 28622.1 (87.42,4.61,1.04) 28969.7 (55.54,100,0.72)
Cond Cooperation (δX ,α,β) 33552.7 (100,26.39,0.31) 31888 (3.34,4.55,0.57) 28967.9 (62.27,9.96,−0.08)
Altruism (δX ,α,β) 29758.9 (100,17.51,−0.95) 29435.6 (22.6,46.57,−0.77) 28969.7 (40.36,34.44,−0.47)
Gen Fairness Equilibrium (δX ,α,β) 29944.2 (3.81,−7.36,0.53) 29358.2 (3.64,−6.03,0.53) 28967.6 (100,100,0.29)

Bayesian Beliefs
True supergame (g, l,δ), no free par (−) 38912.9 (−,−,−) 37205.4 (−,−,−) 37901.7 (−,−,−)
True stage game g, l, free (δX ,−,−) 38784.8 (0.84,−,−) 37202.4 (0.98,−,−) 36329.7 (1.27,−,−)
True δ, inequity aversion (−,α,β) 30829.4 (−,2.04,1.16) 32096.1 (−,2,0.92) 32411.5 (−,10.71,0.84)
Inequity Aversion (δX ,α,β) 28534.6 (100,60.49,0.99) 28609.6 (58.38,14.71,0.97) 29106.3 (2.13,64.75,0.83)
Cond Cooperation (δX ,α,β) 33762.8 (100,1.91,0.15) 32161.8 (2.88,2.04,0.5) 29106 (11.55,14.75,−0.18)
Altruism (δX ,α,β) 29003.9 (100,−10.62,5.7) 29047.6 (17.9,−9.93,5.6) 29105.4 (100,−51.77,−0.37)
Gen Fairness Equilibrium (δX ,α,β) 32044.4 (6.93,2.96,0.2) 30760.7 (4.79,2.91,0.22) 29105.3 (27.06,100,0.28)
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D Information on the experiments re-analyzed

This section provides some background information on the experiments re-analyzed in this
paper. Table 12 summarizes and defines the strategies considered by previous studies. Table
13 reviews focus and main results (in terms of identified strategies) of these studies. Table
14 reviews the numbers of subjects and observations, average parameters, and average coop-
eration rates for all experiments, and Table 15 provides the detailed overview by treatments.
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Table 12: Pure strategies considered in behavioral analyses

Strategy Abbreviation Description (σcc,σcd ,σdc,σdd)
† References

Pure Strategies Non-responsive or Memory-1
Always Defect AD Always defects independent (0,0,0,0) DF11, DF15, FRD12,

of previous outcome FY17, STS13
Always Cooperate AC Always cooperates inde- (1,1,1,1) DF11, DF15, FRD12,

(1,1,0,0) B15
pendent of previous outcome FY17, STS13

Grim G Only cooperates after cc (1,0,0,0) AF09, DF11, DF15
was last outcome FRD12, FY17, STS13

Tit-for-Tat TFT Only plays C if opponent (1,0,1,0) AF09, DF11, DF15
did last period FRD12, FY17, STS13

Win-stay-Lose-Shift WSLS Plays same strategy if it (1,0,0,1) DF11, DF15, FRD12,
(aka Perfect TFT) was successful, otherwise shifts FY17

False cooperator C-to-AD Play c in first round – FRD12, FY17
then AD

Explorative TFT D-TFT Play d in first round then TFT – DF15, FRD12, FY17
Alternator DC-Alt Play d in first round – FRD12, FY17

then alternate c and d
Trigger-with-Reversion GwR Like Grim but revert (1,0,0,0) STS13

to cooperation after cc‡

Pure Strategies Memory-2/3
Trigger 2 periods T2 Player punishes defection for max. 2 (1,0,θ∗1, 0) DF11, FY17

periods, otherwise cooperates
Tit-for-2(3)-Tats TF2T Defects after 2 (1,θ2,1,θ2) FRD12, FY17

defections
2-Tits-for-2-Tats 2TF2T Defects twice after (1,θ3,θ3,θ3) FRD12, FY17

2 defections
2-Tits-for-1-Tats 2TFT Defects twice after (1,0,θ4,0) FRD12, FY17

each defections
Grim2(3/4) G2(3) After 2(3) defections (1,θ5,0,0) FRD12, FY17, STS13

will play D forever
Win-stay-Lose-Shift-2 WSLS2 cooperate after (dd,dd),(cc,cc), – FRD12

(dd,cc) otherwise defect
Explorative TF2(3)T D-TF2(3)T Play D in first round then – FRD12, FY17

TF2(3)T
Explorative Grim2(3) D-Grim2(3) Play D in first round then Grim2(3) – FRD12, FY17

Behavior Strategies
Semi-Grim∗∗ SG Similar to Grim but may (1,θSG,θSG,0) B15

cooperate after CD or DC.
Generous TFT GTFT Like TFT but cooperate (1,θGT ,1,θGT ) FRD12, B15

with prob α after CD or DD

† σ assigns cooperation probabilities after joint cooperation (cc), unilateral defection by opponent (cd), unilateral defection (dc), and joint
defection (dd).
‡ possible if players make mistakes.
∗ Vector assigning cooperation probabilities ∈ {0,1} depending on the state 2 periods ahead.
∗∗ θSG and θGT are mixing parameters ∈ (0,1).

References: AF09 (Aoyagi and Frechette, 2009), B15 (Breitmoser, 2015), DF11 (Dal Bó and Fréchette, 2011), DF15 (Dal Bó and Fréchette,
2015), FRD12 (Fudenberg et al., 2012), FY17 (Fréchette and Yuksel, 2017), STS13 (Sherstyuk et al., 2013)
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Table 13: Overview literature

Reference Focus Investigation of Strategies Strategies found

Aoyagi and Frechette (2009) Imperfect public Mainly avg. coop. rates Threshold strat S0
monitoring in PD Mem-1, Mem-2, Threshold (same threshold

in state 1 & 0)

Blonski et al. (2011) New δ∗ with Avg. coop rates –
sucker’s payoff

Bruttel and Kamecke (2012) Endgame effects Elicitation of pure strategies – ∗

discuss avg. coop. rates

Camera et al. (2012) Player’s strat using All possible pure mem-1 large share play
finite automata unconditional

Dal Bó (2005) Finitely vs infinitely Avg. cooperation rates –
repeated PD

Dal Bó and Fréchette (2011) Players’ strategies selected mem-1 strategies AC, AD, TFT
learning model SFEM

Dal Bó and Fréchette (2015) Players’ strategies SFEM, elicitation, pure Mem-1, AD, TFT, Grim
upd (2017) Mem-2 mainly preselected

Dreber et al. (2008) PD extended with Agg. cooperation behavior (AD, Grim, TFT)∗∗

punishment option

Duffy and Ochs (2009) Fixed matching of Round 1 and avg. coop. –
players in PD rates

Fréchette and Yuksel (2017) De-coupling of expected Avg. coop. rates, SFEM Grim, TFT
length of game and Mem-1, Mem2/3 preselected
discount factor

Fudenberg et al. (2012) Effect of noise/ Avg. coop. rate, SFEM, AC, AD, Grim,
uncertainty on leniency 20 pure Mem-1, Mem-2(3) (D)-TFT, 2TFT, Grim2

Kagel and Schley (2013) Linear payoff Fist round coop. rates –
transformations

Sherstyuk et al. (2013) Payment schemes Avg. cooperation rates, share AD, TFT, GwR
of correctly predicted actions
by selected pure strats

Dal Bó and Fréchette (2018) Determinants of Mainly first round coop –
cooperation (meta)

∗ Table 4 column "Strategy" in their study indicating SG in coefficients for cdt−1 & cdt−2.
∗∗ Reported by Fudenberg et al. (2012).
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Table 14: Overview of the data sets used in the analysis

Logistics Parameters Average cooperation rates
Experiment #Subj #Dec δ g l σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd

First halves per session
Aoyagi and Frechette (2009) 38 1650 0.9 0.333 0.111 0.465 0.917 � 0.45 ≈ 0.408 ≈ 0.336
Blonski et al. (2011) 200 3040 0.756 1.345 2.602 0.295 0.89 � 0.279 ≈ 0.193 � 0.034
Bruttel and Kamecke (2012) 36 1920 0.8 1.167 0.833 0.481 0.91 � 0.286 ≈ 0.228 � 0.08
Dal Bó (2005) 102 1320 0.75 0.939 1.061 0.342 0.922 � 0.212 < 0.342 � 0.089
Dal Bó and Fréchette (2011) 266 17772 0.622 1.062 1.072 0.31 0.951 � 0.334 ≈ 0.331 � 0.063
Dal Bó and Fréchette (2015) 672 22112 0.743 1.579 1.341 0.451 0.94 � 0.297 ≈ 0.335 � 0.057
Dreber et al. (2008) 50 2064 0.75 1.488 1.488 0.488 0.904 � 0.217 ≈ 0.213 � 0.036
Duffy and Ochs (2009) 102 3128 0.9 1 1 0.53 0.904 � 0.301 ≈ 0.33 � 0.111
Fréchette and Yuksel (2017) 50 800 0.75 0.4 0.4 0.737 0.943 � 0.141 ≈ 0.266 ≈ 0.091
Fudenberg et al. (2012) 48 1452 0.875 0.333 0.333 0.756 0.982 � 0.4 ≈ 0.427 � 0.066
Kagel and Schley (2013) 114 7600 0.75 1 0.5 0.573 0.935 � 0.263 ≈ 0.295 � 0.051
Sherstyuk et al. (2013) 56 3052 0.75 1 0.25 0.56 0.945 � 0.328 ≈ 0.371 � 0.117

Pooled 1734 65910 0.728 1.207 1.083 0.389 0.938 � 0.304 ≈ 0.322 � 0.065

Second halves per session
Aoyagi and Frechette (2009) 38 1400 0.9 0.333 0.111 0.424 0.958 � 0.398 ≈ 0.517 ≈ 0.375
Blonski et al. (2011) 200 5460 0.766 1.282 2.554 0.279 0.923 � 0.287 ≈ 0.231 � 0.02
Bruttel and Kamecke (2012) 36 1632 0.8 1.167 0.833 0.447 0.947 � 0.221 ≈ 0.297 � 0.041
Dal Bó (2005) 102 1650 0.75 0.961 1.039 0.297 0.92 � 0.242 < 0.388 � 0.064
Dal Bó and Fréchette (2011) 266 19270 0.62 1.122 1.103 0.355 0.979 � 0.376 ≈ 0.362 � 0.041
Dal Bó and Fréchette (2015) 672 29480 0.766 1.666 1.386 0.469 0.976 � 0.315 < 0.402 � 0.035
Dreber et al. (2008) 50 1838 0.75 1.533 1.533 0.461 0.917 � 0.128 � 0.39 � 0.009
Duffy and Ochs (2009) 102 6018 0.9 1 1 0.684 0.977 � 0.367 ≈ 0.391 � 0.082
Fréchette and Yuksel (2017) 50 1568 0.75 0.4 0.4 0.763 0.97 � 0.233 ≈ 0.398 � 0.069
Fudenberg et al. (2012) 48 1800 0.875 0.333 0.333 0.829 0.971 � 0.487 ≈ 0.412 � 0.083
Kagel and Schley (2013) 114 7172 0.75 1 0.5 0.704 0.966 � 0.262 ≈ 0.332 � 0.025
Sherstyuk et al. (2013) 56 2604 0.75 1 0.25 0.646 0.973 � 0.482 ≈ 0.437 � 0.078

Pooled 1734 79892 0.744 1.271 1.172 0.404 0.971 � 0.327 < 0.376 � 0.039

Note: The “average cooperation rates” are the relative frequencies estimated directly from the data. The relation signs encode bootstrapped p-values (resampling at the subject
level with 10,000 repetitions) where <,> indicate rejection of the Null of equality at p < .05 and �,� indicating p < .002. Following Wright (1992), we accommodate for
the multiplicity of comparisons within data sets by adjusting p-values using the Holm-Bonferroni method (Holm, 1979). Note that all details here exactly replicate Breitmoser
(2015). As a result, if a data set is considered in isolation, the .05-level indicated by “>,<” is appropriate. If all 24 treatments are considered simultaneously, the corresponding
Bonferroni correction requires to further reduce the threshold to .002≈ .05/24, which corresponds with “�,�”.
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Table 15: Table 14 by treatments – Overview of the data sets used in the analysis

(a) First halves per session

Logistics Parameters Average cooperation rates
Treatment #Subj #Dec δ g l σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd

Aoyagi and Frechette (2009)
AF09–34 38 1650 0.9 0.333 0.111 0.729 0.917 � 0.45 ≈ 0.408 ≈ 0.336

Blonski et al. (2011)
BOS11–9 20 220 0.5 2 2 0.23 - 0.182 0.182 0.031

BOS11–14 20 340 0.75 0.5 3.5 0.16 - 0.188 0.062 0.029
BOS11–15 20 320 0.75 1 8 0.04 - 0.167 0 0.005
BOS11–16 20 400 0.75 0.75 1.25 0.56 0.915 � 0.206 ≈ 0.206 > 0.073
BOS11–17 20 180 0.75 0.833 0.5 0.42 0.5 ≈ 0.235 ≈ 0.471 ≈ 0.125
BOS11–26 40 760 0.75 2 2 0.285 0.833 � 0.235 ≈ 0.196 � 0.03
BOS11–27 20 240 0.75 1 1 0.28 0.917 > 0.316 ≈ 0.211 > 0.056
BOS11–30 20 140 0.875 0.5 3.5 0.275 - 0 0 0.058
BOS11–31 20 440 0.875 2 2 0.437 0.968 � 0.513 ≈ 0.154 > 0.023

BOS11–All 200 3040 0.756 1.345 2.602 0.295 0.89 � 0.279 ≈ 0.193 � 0.034

Bruttel and Kamecke (2012)
BK12–28 36 1920 0.8 1.167 0.833 0.481 0.91 � 0.286 ≈ 0.228 � 0.08

Dal Bó (2005)
D05–18 42 420 0.75 1.167 0.833 0.484 0.806 � 0.239 ≈ 0.304 > 0.114
D05–19 60 900 0.75 0.833 1.167 0.443 0.958 � 0.2 < 0.36 � 0.074

D05–All 102 1320 0.75 0.939 1.061 0.342 0.922 � 0.212 < 0.342 � 0.089

Dal Bó and Fréchette (2011)
DF11–6 44 2748 0.5 2.571 1.857 0.134 0.792 � 0.32 ≈ 0.272 � 0.036
DF11–7 50 3290 0.5 0.667 0.867 0.18 0.673 � 0.299 ≈ 0.258 � 0.061
DF11–8 46 3092 0.5 0.087 0.565 0.365 0.973 � 0.421 > 0.263 � 0.081

DF11–22 44 2842 0.75 2.571 1.857 0.248 0.891 � 0.303 ≈ 0.355 � 0.05
DF11–23 38 2656 0.75 0.667 0.867 0.511 0.965 � 0.39 ≈ 0.386 � 0.073
DF11–24 44 3144 0.75 0.087 0.565 0.74 0.961 � 0.266 ≈ 0.399 � 0.11

DF11–All 266 17772 0.622 1.062 1.072 0.31 0.951 � 0.334 ≈ 0.331 � 0.063

Dal Bó and Fréchette (2015)
DF15–4 50 1438 0.5 2.571 1.857 0.137 0.562 > 0.164 < 0.327 � 0.031
DF15–5 140 4094 0.5 0.087 0.565 0.58 0.921 � 0.254 ≈ 0.241 � 0.082

DF15–20 114 4054 0.75 2.571 1.857 0.25 0.912 � 0.223 < 0.336 � 0.052
DF15–21 164 4740 0.75 0.087 0.565 0.658 0.952 � 0.388 ≈ 0.369 � 0.083
DF15–33 168 6438 0.9 2.571 1.857 0.307 0.928 � 0.297 ≈ 0.344 � 0.054
DF15–35 36 1348 0.95 2.571 1.857 0.5 0.974 � 0.324 ≈ 0.432 � 0.05

DF15–All 672 22112 0.743 1.579 1.341 0.451 0.94 � 0.297 ≈ 0.335 � 0.057

Dreber et al. (2008)
DRFN08–10 28 1008 0.75 2 2 0.468 0.888 � 0.188 ≈ 0.139 � 0.02
DRFN08–11 22 1056 0.75 1 1 0.507 0.917 � 0.245 ≈ 0.283 � 0.051

DRFN08–All 50 2064 0.75 1.488 1.488 0.488 0.904 � 0.217 ≈ 0.213 � 0.036

Duffy and Ochs (2009)
DO09–32 102 3128 0.9 1 1 0.53 0.904 � 0.301 ≈ 0.33 � 0.111

Fréchette and Yuksel (2017)
FY17–25 50 800 0.75 0.4 0.4 0.737 0.943 � 0.141 ≈ 0.266 ≈ 0.091

Fudenberg et al. (2012)
FRD12–29 48 1452 0.875 0.333 0.333 0.756 0.982 � 0.4 ≈ 0.427 � 0.066

Kagel and Schley (2013)
KS13–12 114 7600 0.75 1 0.5 0.573 0.935 � 0.263 ≈ 0.295 � 0.051

Sherstyuk et al. (2013)
STS13–13 56 3052 0.75 1 0.25 0.56 0.945 � 0.328 ≈ 0.371 � 0.117

Pooled 1734 65910 0.728 1.207 1.083 0.389 0.938 � 0.304 ≈ 0.322 � 0.065

(b) Second halves per session

Logistics Parameters Average cooperation rates
Treatment #Subj #Dec δ g l σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd

Aoyagi and Frechette (2009)
AF09–34 38 1400 0.9 0.333 0.111 0.873 0.958 � 0.398 ≈ 0.517 ≈ 0.375

Blonski et al. (2011)
BOS11–9 20 300 0.5 2 2 0.233 0.917 > 0.062 ≈ 0.188 ≈ 0.007

BOS11–14 20 280 0.75 0.5 3.5 0.025 - 0.2 0.4 0.013
BOS11–15 20 640 0.75 1 8 0 - 0 0 0.002
BOS11–16 20 340 0.75 0.75 1.25 0.633 0.846 � 0.2 ≈ 0.233 � 0.024
BOS11–17 20 680 0.75 0.833 0.5 0.417 0.917 � 0.182 ≈ 0.255 � 0.026
BOS11–26 40 1100 0.75 2 2 0.283 0.959 � 0.241 ≈ 0.203 � 0.032
BOS11–27 20 800 0.75 1 1 0.308 0.875 � 0.447 ≈ 0.318 � 0.023
BOS11–30 20 560 0.875 0.5 3.5 0.3 0.8 ≈ 0.167 ≈ 0.139 ≈ 0.02
BOS11–31 20 760 0.875 2 2 0.338 1 � 0.423 ≈ 0.173 > 0.021

BOS11–All 200 5460 0.766 1.282 2.554 0.279 0.923 � 0.287 ≈ 0.231 � 0.02

Bruttel and Kamecke (2012)
BK12–28 36 1632 0.8 1.167 0.833 0.447 0.947 � 0.221 ≈ 0.297 � 0.041

Dal Bó (2005)
D05–18 42 630 0.75 1.167 0.833 0.476 0.86 � 0.274 < 0.476 � 0.098
D05–19 60 1020 0.75 0.833 1.167 0.533 0.952 � 0.21 ≈ 0.296 � 0.046

D05–All 102 1650 0.75 0.961 1.039 0.297 0.92 � 0.242 < 0.388 � 0.064

Dal Bó and Fréchette (2011)
DF11–6 44 2988 0.5 2.571 1.857 0.064 1 � 0.352 ≈ 0.477 � 0.022
DF11–7 50 3614 0.5 0.667 0.867 0.194 0.922 � 0.377 ≈ 0.364 � 0.078
DF11–8 46 3398 0.5 0.087 0.565 0.414 1 � 0.409 > 0.189 � 0.027

DF11–22 44 3606 0.75 2.571 1.857 0.264 0.96 � 0.357 ≈ 0.408 � 0.024
DF11–23 38 2524 0.75 0.667 0.867 0.708 0.974 � 0.405 ≈ 0.5 � 0.088
DF11–24 44 3140 0.75 0.087 0.565 0.957 0.984 � 0.302 ≈ 0.372 � 0.083

DF11–All 266 19270 0.62 1.122 1.103 0.355 0.979 � 0.376 ≈ 0.362 � 0.041

Dal Bó and Fréchette (2015)
DF15–4 50 1638 0.5 2.571 1.857 0.101 0.833 > 0.067 < 0.267 > 0.017
DF15–5 140 4656 0.5 0.087 0.565 0.539 0.976 � 0.27 ≈ 0.231 � 0.038

DF15–20 114 4370 0.75 2.571 1.857 0.24 0.948 � 0.305 ≈ 0.37 � 0.03
DF15–21 164 6090 0.75 0.087 0.565 0.775 0.98 � 0.313 ≈ 0.313 � 0.062
DF15–33 168 9718 0.9 2.571 1.857 0.384 0.975 � 0.314 � 0.542 � 0.032
DF15–35 36 3008 0.95 2.571 1.857 0.539 0.981 � 0.478 ≈ 0.427 � 0.039

DF15–All 672 29480 0.766 1.666 1.386 0.469 0.976 � 0.315 < 0.402 � 0.035

Dreber et al. (2008)
DRFN08–10 28 980 0.75 2 2 0.269 0.75 � 0.121 < 0.276 � 0.002
DRFN08–11 22 858 0.75 1 1 0.653 0.942 � 0.133 � 0.47 � 0.028

DRFN08–All 50 1838 0.75 1.533 1.533 0.461 0.917 � 0.128 � 0.39 � 0.009

Duffy and Ochs (2009)
DO09–32 102 6018 0.9 1 1 0.684 0.977 � 0.367 ≈ 0.391 � 0.082

Fréchette and Yuksel (2017)
FY17–25 50 1568 0.75 0.4 0.4 0.763 0.97 � 0.233 ≈ 0.398 � 0.069

Fudenberg et al. (2012)
FRD12–29 48 1800 0.875 0.333 0.333 0.829 0.971 � 0.487 ≈ 0.412 � 0.083

Kagel and Schley (2013)
KS13–12 114 7172 0.75 1 0.5 0.704 0.966 � 0.262 ≈ 0.332 � 0.025

Sherstyuk et al. (2013)
STS13–13 56 2604 0.75 1 0.25 0.646 0.973 � 0.482 ≈ 0.437 � 0.078

Pooled 1734 79892 0.744 1.271 1.172 0.404 0.971 � 0.327 < 0.376 � 0.039
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Table 16: Expected and observed realizations in two round 2s per subject after outcome CD
in round 1

Cooperators Defectors
iid observed difference iid observed difference

Half 1 (Obs 518 ) (Obs 108 )
Defecting twice 0.557 0.627 -0.07 0.522 0.583 -0.061
One of each 0.379 0.237 0.142 0.401 0.278 0.123
Cooperating twice 0.064 0.135 -0.071 0.077 0.139 -0.062

Half 2 (Obs 455 ) (Obs 84 )
Defecting twice 0.557 0.684 -0.116 0.545 0.631 -0.086
One of each 0.379 0.141 0.23 0.387 0.214 0.173
Cooperating twice 0.064 0.176 -0.115 0.069 0.155 -0.086

Note: “Cooperators” and “Defectors” are determined by their average cooperation rate in round 1. If above median, they
are cooperators. Average cooperation behavior in round 2 if the state is CD of the last two supergames with such an
observation by halves and round1-cooperation rates.
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Table 17: Overview of cooperation rates in the data

Cooperators Defectors
Average cooperation rates Average cooperation rates

Experiment #Subj #Dec σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd #Subj #Dec σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd

First halves per session
Aoyagi and Frechette (2009) 35 1509 0.783 0.936 0.45 0.402 0.313 3 141 0.143 0.575 0.444 0.441 0.486
Blonski et al. (2011) 74 1145 0.685 0.896 0.31 0.356 0.056 126 1895 0.066 0.714 0.192 0.123 0.027
Bruttel and Kamecke (2012) 20 1062 0.75 0.926 0.253 0.267 0.113 16 858 0.144 0.806 0.375 0.198 0.055
Dal Bó (2005) 52 675 0.807 0.947 0.21 0.37 0.133 50 645 0.087 0.762 0.22 0.326 0.064
Dal Bó and Fréchette (2011) 108 7382 0.699 0.969 0.337 0.415 0.113 158 10390 0.108 0.807 0.328 0.28 0.045
Dal Bó and Fréchette (2015) 311 10133 0.819 0.954 0.326 0.499 0.084 361 11979 0.124 0.87 0.239 0.239 0.048
Dreber et al. (2008) 31 1272 0.711 0.909 0.189 0.245 0.05 19 792 0.129 0.846 0.326 0.181 0.022
Duffy and Ochs (2009) 63 1886 0.807 0.913 0.302 0.403 0.14 39 1242 0.097 0.866 0.298 0.25 0.087
Fréchette and Yuksel (2017) 41 652 0.886 0.941 0.133 0.394 0.136 9 148 0.056 1 0.25 0.129 0.039
Fudenberg et al. (2012) 39 1185 0.905 0.985 0.418 0.518 0.06 9 267 0.091 0.947 0.316 0.333 0.077
Kagel and Schley (2013) 76 5066 0.814 0.939 0.262 0.419 0.069 38 2534 0.089 0.872 0.268 0.168 0.033
Sherstyuk et al. (2013) 34 1920 0.828 0.968 0.33 0.518 0.119 22 1132 0.152 0.78 0.323 0.266 0.115

Pooled 884 33887 0.778 0.951 0.312 0.43 0.098 850 32023 0.111 0.843 0.283 0.242 0.049

Second halves per session
Aoyagi and Frechette (2009) 34 1245 0.959 0.968 0.382 0.578 0.328 4 155 0.211 0.75 0.448 0.371 0.469
Blonski et al. (2011) 66 1761 0.75 0.926 0.322 0.398 0.036 134 3699 0.049 0.91 0.189 0.164 0.015
Bruttel and Kamecke (2012) 15 656 0.893 0.954 0.136 0.613 0.031 21 976 0.129 0.922 0.351 0.211 0.044
Dal Bó (2005) 60 974 0.838 0.927 0.24 0.434 0.063 42 676 0.042 0.852 0.25 0.348 0.065
Dal Bó and Fréchette (2011) 111 7984 0.892 0.982 0.358 0.579 0.055 155 11286 0.081 0.948 0.406 0.286 0.038
Dal Bó and Fréchette (2015) 319 14330 0.897 0.978 0.312 0.585 0.067 353 15150 0.089 0.965 0.322 0.315 0.024
Dreber et al. (2008) 22 830 0.847 0.929 0.1 0.479 0.027 28 1008 0.125 0.833 0.195 0.344 0.002
Duffy and Ochs (2009) 69 4206 0.943 0.978 0.376 0.408 0.083 33 1812 0.124 0.968 0.348 0.373 0.081
Fréchette and Yuksel (2017) 42 1322 0.909 0.973 0.227 0.507 0.115 8 246 0 0.8 0.333 0.194 0.014
Fudenberg et al. (2012) 41 1542 0.957 0.969 0.465 0.456 0.106 7 258 0.065 1 0.6 0.325 0.053
Kagel and Schley (2013) 82 5176 0.949 0.968 0.242 0.505 0.035 32 1996 0.067 0.937 0.426 0.194 0.015
Sherstyuk et al. (2013) 37 1674 0.907 0.978 0.489 0.558 0.124 19 930 0.123 0.946 0.456 0.382 0.053

Pooled 898 41700 0.898 0.974 0.318 0.525 0.063 836 38192 0.084 0.954 0.347 0.292 0.03

Note: “Cooperators” and “Defectors” are determined by their average cooperation rate in round 1. If above median, they are cooperators. The “average cooperation rates” are
the relative frequencies estimated directly from the data. The relation signs encode bootstrapped p-values (resampling at the subject level with 10,000 repetitions) where <,>
indicate rejection of the Null of equality at p < .05 and�,� indicating p < .002. Following Wright (1992), we accommodate for the multiplicity of comparisons within data
sets by adjusting p-values using the Holm-Bonferroni method (Holm, 1979). Note that all details here exactly replicate Breitmoser (2015). As a result, if a data set is considered
in isolation, the .05-level indicated by “>,<” is appropriate. If all 24 treatments are considered simultaneously, the corresponding Bonferroni correction requires to further reduce
the threshold to .002≈ .05/24, which corresponds with “�,�”.
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E Robustness checks for Section 4

The tables in this section replicate the tables presented in the Section 3, provide a number of
robustness checks and additionally present the results treatment-by-treatment.

• Table 18 compares the “best mixtures” analyzed in the main text to the models allow-
ing for all 1-memory types that correspond with those analyzed in the literature, e.g.
Dal Bó and Fréchette (2011). Recall that the 2-memory strategies analyzed in other
strings of literature are examined in Section 4. This table clarifies that focussing on
the “best mixtures” for each treatment improves the goodness-of-fit of these models
substantially (i.e. by at least 100 likelihood points).

• Table 21 compares the best mixtures of pure and generalized pure strategies as dis-
cussed in the main text.

• Table 23 is similar to Table 3 in the main text but focussing on the prototypical strate-
gies in their pure form only.

• Table 25 is similar to Table 3 in the main text but focussing on the prototypical strate-
gies in their generalized form only.

• Table 27 is equivalent to Table 3 in the main text.

• Table 29 is equivalent to Table 8 in the main text.

• Table 31 reports on a robustness check for Table 8 by focussing on continuation strate-
gies.

• Table 32 is equivalent to Table 4 in the main text.

• Table 34 shows aggregate state-wise cooperation rates for different lagged histories
(cooperation or defection of the opponent in t−2) TFT-Scheme.

• Table 35 shows aggregate state-wise cooperation rates for different lagged histories
(joint cooperation or not in t−2) Grim-Scheme.

• Table 37 compares different models containing semi-grim to models containing pure
strategies assuming no-switching behavior.

• Table 39 compares different models containing semi-grim to models containing pure
strategies assuming random-switching behavior.

• Table 41 compares different models containing modifications of semi-grim.

• Table 43 compares different models containing prototypical strategies derived from
strategies discussed in previous literature in a No-Switching model.

• Table 45 compares different two parameter versions of semi-grim with models contain-
ing prototypical strategies. The memory-2 level follows a Grim-Scheme if applicable
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• Table 46 compares different two parameter versions of semi-grim with models contain-
ing prototypical strategies. The memory-2 level follows a TFT-Scheme if applicable

• Table 47 examines all mixtures of Semi-Grim with pure or generalized pure strategies
as secondary components.
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Table 18: Pure, mixed, or switching strategies? (ICL-BIC of the models, less is better and relation signs point toward better models)

Best w/o SG All but SG
No Random Markov No Random Markov

Switching Switching Switching Switching Switching Switching

Specification
# Models evaluated 532 532 532 1 1 1
# Pars estimated (by treatment) 16 16 82 5 5 30
# Parameters accounted for 3–5 3–5 12–30 5 5 30

First halves per session
Aoyagi and Frechette (2009) 843.08 ≈ 834.4 ≈ 845.51 886.44 ≈ 866.95 ≈ 892.7
Blonski et al. (2011) 1069.58 ≈ 1104.85 � 1221.28 1114.69 ≈ 1157.02 � 1615.75
Bruttel and Kamecke (2012) 845.41 ≈ 845.05 > 785.49 845.41 ≈ 846.82 > 811.17
Dal Bó (2005) 651.88 < 689.58 > 652.36 666.1 < 702.56 ≈ 729
Dal Bó and Fréchette (2011) 7164.32 � 7557.8 � 6422.83 7423.23 < 7705.11 � 6913.83
Dal Bó and Fréchette (2015) 8756.15 � 9253.62 � 8275.74 8880.62 � 9330.5 � 8571.44
Dreber et al. (2008) 863.26 ≈ 864.49 � 752.16 871.32 ≈ 880.55 � 809.71
Duffy and Ochs (2009) 1396.68 < 1467.36 � 1372.99 1448.71 < 1497.48 > 1444.51
Fréchette and Yuksel (2017) 313.03 ≈ 337.5 > 301.74 321.32 ≈ 337.5 ≈ 332.73
Fudenberg et al. (2012) 451.47 ≈ 435.83 ≈ 435.86 454.09 ≈ 437.74 ≈ 455.21
Kagel and Schley (2013) 2685.4 � 3010.1 � 2439.06 2735.02 � 3041.29 � 2581.96
Sherstyuk et al. (2013) 1346.41 < 1481.65 � 1296.85 1389.33 < 1483.17 � 1333.21

Pooled 26525.91 � 28023.06 � 25411.21 27218.66 � 28469.06 � 27585.46

Second halves per session
Aoyagi and Frechette (2009) 492.28 ≈ 484.05 ≈ 482.82 534.29 ≈ 514.94 ≈ 547.48
Blonski et al. (2011) 1462.41 ≈ 1513.92 < 1604.87 1503.41 ≈ 1554.93 � 1973.56
Bruttel and Kamecke (2012) 561.63 ≈ 627.74 � 516.71 588.33 ≈ 632.75 > 584.4
Dal Bó (2005) 741.2 < 790.21 > 743.74 751.82 � 814.54 ≈ 823.78
Dal Bó and Fréchette (2011) 5646.38 � 6634.92 � 5110.1 6065.93 � 6783.93 � 5634.97
Dal Bó and Fréchette (2015) 8951.57 � 9835.77 � 8264.26 9085.4 � 9876.09 � 8601.02
Dreber et al. (2008) 648.55 ≈ 681.35 > 588.62 656.38 ≈ 702.27 ≈ 672.66
Duffy and Ochs (2009) 1925.24 ≈ 1992.71 � 1883.22 2010.01 ≈ 2038.28 > 1977.9
Fréchette and Yuksel (2017) 433.18 < 474.93 > 427.79 469.85 ≈ 493.4 ≈ 474.8
Fudenberg et al. (2012) 528.36 ≈ 545.76 ≈ 529.88 530.3 ≈ 547.36 ≈ 549.27
Kagel and Schley (2013) 1751.81 � 2365.94 � 1678.7 1866.19 � 2375.6 � 1777.72
Sherstyuk et al. (2013) 1025.32 � 1177.96 � 1008.49 1027.43 � 1180.11 � 1025.75

Pooled 24301.45 � 27269.48 � 23494.22 25271.72 � 27696.6 � 25737.55

Note: Relation signs are used as defined above (Table 14). “No Switching”, “Random Switching” and “Markov Switching” are as defined in the text, but briefly:
“No Switching” assumes that each subject randomly chooses a strategy prior to the first supergame and plays this strategy constantly for the entire half session.
“Random Switching” assumes that each subject randomly chooses a strategy prior to each supergame (by i.i.d. draws), and “Markov Switching” allows that these
switches follow a Markov process. “All but SG” allows subjects to play either AD, Grim, TFT, AC or WSLS, and “Best w/o SG” picks the best mixture model
after eliminating AC or WSLS, or both or none of these.



Table 19: Table 18 by treatments – Pure, mixed, or switching strategies?

(a) First halves per session

Best w/o SG All but SG
No Random Markov No Random Markov

Switching Switching Switching Switching Switching Switching

Specification
# Models evaluated 532 532 532 1 1 1
# Pars estimated (by treatment) 16 16 82 5 5 30
# Parameters accounted for 3–5 3–5 12–30 5 5 30

AF09–34 843.08 ≈ 834.4 ≈ 845.51 886.44 ≈ 866.95 ≈ 892.7
BOS11–9 83.42 ≈ 83.96 ≈ 88.41 85.17 ≈ 86.21 � 112.66
BOS11–14 97.73 ≈ 90 ≈ 92.94 100.72 ≈ 93 � 119.36
BOS11–15 34.3 ≈ 32.69 � 43.18 37.29 ≈ 35.69 � 69.59
BOS11–16 167.3 ≈ 169.38 ≈ 170.57 176.55 ≈ 180.23 < 197.16
BOS11–17 110.57 ≈ 118.71 ≈ 121.05 113.57 ≈ 121.87 � 147.65
BOS11–26 256.88 ≈ 262.33 ≈ 257.54 260.57 ≈ 270.79 ≈ 286.48
BOS11–27 102.11 ≈ 112.76 ≈ 111.44 103.61 ≈ 114.26 ≈ 132.37
BOS11–30 56.81 ≈ 65.61 ≈ 64.33 59.81 ≈ 68.31 < 91.33
BOS11–31 125.82 ≈ 135.1 ≈ 142.43 127.32 ≈ 136.59 < 158.7
BK12–28 845.41 ≈ 845.05 > 785.49 845.41 ≈ 846.82 > 811.17
D05–18 235.84 ≈ 234.95 ≈ 235.63 241.39 ≈ 243.54 < 266.02
D05–19 413.65 < 452.05 � 408.22 421.17 < 455.47 ≈ 441.71
DF11–6 810.5 < 925.1 > 770.36 880.04 ≈ 949.19 ≈ 847.92
DF11–7 1349.47 ≈ 1364.07 � 1132.04 1423.93 ≈ 1388.73 � 1227.66
DF11–8 1496.25 � 1712.65 � 1279.8 1515.51 < 1714.28 � 1316.15
DF11–22 1154.93 ≈ 1122.94 ≈ 1066.33 1192.92 ≈ 1161.02 ≈ 1141.85
DF11–23 1142.96 ≈ 1217.02 � 1020.09 1144.78 ≈ 1218.9 � 1066.21
DF11–24 1188.68 ≈ 1194.48 � 1046.5 1239.14 ≈ 1246.06 > 1152.48
DF15–4 431.07 ≈ 467.36 > 395.89 460.23 ≈ 478.56 ≈ 441.94
DF15–5 1763.19 � 2211.16 � 1646.78 1808.3 � 2212.37 � 1686.31
DF15–20 1569.49 ≈ 1543.46 � 1439.66 1588.62 ≈ 1571.15 > 1501.57
DF15–21 2012.6 � 2221.98 � 1943.68 2015.1 � 2224.97 � 1960.65
DF15–33 2552.94 > 2400.56 ≈ 2336.73 2573.89 > 2423.22 ≈ 2389.72
DF15–35 403.53 ≈ 385.77 ≈ 396.36 405.32 ≈ 391.08 � 416.29
DRFN08–10 410.24 ≈ 390.77 > 334.73 413.58 ≈ 400.1 > 362.2
DRFN08–11 450.5 ≈ 470.91 � 405.73 454.24 ≈ 476.95 � 426.5
DO09–32 1396.68 < 1467.36 � 1372.99 1448.71 < 1497.48 > 1444.51
FY17–25 313.03 ≈ 337.5 > 301.74 321.32 ≈ 337.5 ≈ 332.73
FRD12–29 451.47 ≈ 435.83 ≈ 435.86 454.09 ≈ 437.74 ≈ 455.21
KS13–12 2685.4 � 3010.1 � 2439.06 2735.02 � 3041.29 � 2581.96
STS13–13 1346.41 < 1481.65 � 1296.85 1389.33 < 1483.17 � 1333.21
Aoyagi and Frechette (2009) 843.08 ≈ 834.4 ≈ 845.51 886.44 ≈ 866.95 ≈ 892.7
Blonski et al. (2011) 1069.58 ≈ 1104.85 � 1221.28 1114.69 ≈ 1157.02 � 1615.75
Bruttel and Kamecke (2012) 845.41 ≈ 845.05 > 785.49 845.41 ≈ 846.82 > 811.17
Dal Bó (2005) 651.88 < 689.58 > 652.36 666.1 < 702.56 ≈ 729
Dal Bó and Fréchette (2011) 7164.32 � 7557.8 � 6422.83 7423.23 < 7705.11 � 6913.83
Dal Bó and Fréchette (2015) 8756.15 � 9253.62 � 8275.74 8880.62 � 9330.5 � 8571.44
Dreber et al. (2008) 863.26 ≈ 864.49 � 752.16 871.32 ≈ 880.55 � 809.71
Duffy and Ochs (2009) 1396.68 < 1467.36 � 1372.99 1448.71 < 1497.48 > 1444.51
Fréchette and Yuksel (2017) 313.03 ≈ 337.5 > 301.74 321.32 ≈ 337.5 ≈ 332.73
Fudenberg et al. (2012) 451.47 ≈ 435.83 ≈ 435.86 454.09 ≈ 437.74 ≈ 455.21
Kagel and Schley (2013) 2685.4 � 3010.1 � 2439.06 2735.02 � 3041.29 � 2581.96
Sherstyuk et al. (2013) 1346.41 < 1481.65 � 1296.85 1389.33 < 1483.17 � 1333.21

Pooled 26525.91 � 28023.06 � 25411.21 27218.66 � 28469.06 � 27585.46

(b) Second halves per session

Best w/o SG All but SG
No Random Markov No Random Markov

Switching Switching Switching Switching Switching Switching

Specification
# Models evaluated 532 532 532 1 1 1
# Pars estimated (by treatment) 16 16 82 5 5 30
# Parameters accounted for 3–5 3–5 12–30 5 5 30

AF09–34 492.28 ≈ 484.05 ≈ 482.82 534.29 ≈ 514.94 ≈ 547.48
BOS11–9 84.22 ≈ 96.42 ≈ 88.85 87.22 ≈ 99.64 ≈ 115.59
BOS11–14 40.82 ≈ 40.83 < 50.24 43.82 ≈ 43.83 � 77.2
BOS11–15 15.52 ≈ 15.52 � 29.01 18.52 ≈ 18.52 � 55.98
BOS11–16 157.48 ≈ 165.09 ≈ 157.84 160.48 ≈ 169.38 ≈ 183.26
BOS11–17 229.75 ≈ 225.64 ≈ 219.73 232.75 ≈ 230.42 ≈ 245.01
BOS11–26 366.88 ≈ 365.76 ≈ 350.94 369.98 ≈ 367.47 ≈ 374.89
BOS11–27 226.92 ≈ 255.26 ≈ 243.72 228.41 ≈ 256.76 ≈ 258.15
BOS11–30 146.49 ≈ 137.43 ≈ 145.96 149.49 ≈ 143.16 < 172.77
BOS11–31 161.17 ≈ 174.2 ≈ 173.52 162.67 ≈ 175.69 ≈ 190.25
BK12–28 561.63 ≈ 627.74 � 516.71 588.33 ≈ 632.75 > 584.4
D05–18 350.59 ≈ 359.16 ≈ 351.93 355.62 ≈ 361.11 < 383.77
D05–19 388.49 < 428.21 � 383.3 392.65 � 449.88 > 418.75
DF11–6 633.6 ≈ 693.84 ≈ 557.16 751.56 ≈ 723.62 ≈ 654.48
DF11–7 1427.15 < 1645.34 � 1268.34 1571.76 ≈ 1692.09 � 1428.39
DF11–8 1139.15 � 1646.78 � 960.35 1142.1 � 1648.58 � 978.71
DF11–22 1196.64 ≈ 1160.77 � 1018.52 1198.53 ≈ 1190.83 > 1068.63
DF11–23 723.5 � 970.63 � 737.29 842.37 < 979.34 > 820.55
DF11–24 504.8 ≈ 496.02 ≈ 460.73 532.68 ≈ 522.54 ≈ 522.66
DF15–4 331.12 ≈ 402.51 ≈ 339.15 345.97 ≈ 407.07 ≈ 379.36
DF15–5 1666.6 � 2234.36 � 1438.87 1686.18 � 2235.53 � 1466.72
DF15–20 1572.51 ≈ 1548.84 � 1339.13 1572.51 ≈ 1558.84 � 1379.3
DF15–21 1664.01 � 1914.7 � 1504.63 1754.13 < 1914.7 � 1620.64
DF15–33 2913.27 ≈ 2919.03 � 2735.52 2915.83 ≈ 2936.72 � 2771.7
DF15–35 779.84 ≈ 792.29 ≈ 790.32 781.64 ≈ 794.07 ≈ 808.34
DRFN08–10 301.08 ≈ 289.13 ≈ 251.55 304.41 ≈ 303.62 ≈ 287.94
DRFN08–11 345.37 ≈ 389.41 > 323.06 348.47 ≈ 395.16 ≈ 363.7
DO09–32 1925.24 ≈ 1992.71 � 1883.22 2010.01 ≈ 2038.28 > 1977.9
FY17–25 433.18 < 474.93 > 427.79 469.85 ≈ 493.4 ≈ 474.8
FRD12–29 528.36 ≈ 545.76 ≈ 529.88 530.3 ≈ 547.36 ≈ 549.27
KS13–12 1751.81 � 2365.94 � 1678.7 1866.19 � 2375.6 � 1777.72
STS13–13 1025.32 � 1177.96 � 1008.49 1027.43 � 1180.11 � 1025.75
Aoyagi and Frechette (2009) 492.28 ≈ 484.05 ≈ 482.82 534.29 ≈ 514.94 ≈ 547.48
Blonski et al. (2011) 1462.41 ≈ 1513.92 < 1604.87 1503.41 ≈ 1554.93 � 1973.56
Bruttel and Kamecke (2012) 561.63 ≈ 627.74 � 516.71 588.33 ≈ 632.75 > 584.4
Dal Bó (2005) 741.2 < 790.21 > 743.74 751.82 � 814.54 ≈ 823.78
Dal Bó and Fréchette (2011) 5646.38 � 6634.92 � 5110.1 6065.93 � 6783.93 � 5634.97
Dal Bó and Fréchette (2015) 8951.57 � 9835.77 � 8264.26 9085.4 � 9876.09 � 8601.02
Dreber et al. (2008) 648.55 ≈ 681.35 > 588.62 656.38 ≈ 702.27 ≈ 672.66
Duffy and Ochs (2009) 1925.24 ≈ 1992.71 � 1883.22 2010.01 ≈ 2038.28 > 1977.9
Fréchette and Yuksel (2017) 433.18 < 474.93 > 427.79 469.85 ≈ 493.4 ≈ 474.8
Fudenberg et al. (2012) 528.36 ≈ 545.76 ≈ 529.88 530.3 ≈ 547.36 ≈ 549.27
Kagel and Schley (2013) 1751.81 � 2365.94 � 1678.7 1866.19 � 2375.6 � 1777.72
Sherstyuk et al. (2013) 1025.32 � 1177.96 � 1008.49 1027.43 � 1180.11 � 1025.75

Pooled 24301.45 � 27269.48 � 23494.22 25271.72 � 27696.6 � 25737.55

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table 14.



Table 20: Pure, mixed, or switching strategies? Best mixtures of continuation strategies (not including round 1) without Semi-Grim
(ICL-BIC of the models, less is better and relation signs point toward better models)

Best mixture of pure strategies Best mixture of generalized pure strategies (type II)
No Random Markov No Random Markov

Switching Switching Switching Switching Switching Switching

Specification
# Models evaluated 432 432 432 432 432 432

# Pars estimated (by treatment) (by treatment) 16 16 82 32 32 98
# Parameters accounted for (by treatment) 3–5 3–5 12–30 6–10 6–10 15–35

First halves per session
Aoyagi and Frechette (2009) 744.79 ≈ 733.65 ≈ 746.14 645.31 ≈ 646.53 ≈ 649.53
Blonski et al. (2011) 669.18 � 621.56 � 843 713.8 � 670.62 � 875.74
Bruttel and Kamecke (2012) 590.68 ≈ 581 ≈ 590.89 585.42 ≈ 570.56 ≈ 570.87
Dal Bó (2005) 390.88 � 363.41 � 393 407.86 � 378.95 < 404.78
Dal Bó and Fréchette (2011) 3719.86 ≈ 3729.53 ≈ 3670.79 3536.73 ≈ 3589.36 ≈ 3524.77
Dal Bó and Fréchette (2015) 5494.71 � 5264.13 ≈ 5303.29 5259.64 � 5037.82 ≈ 5057.54
Dreber et al. (2008) 455.55 ≈ 461.78 ≈ 481.64 478.09 ≈ 466.13 ≈ 482.86
Duffy and Ochs (2009) 1069.16 ≈ 1076.16 ≈ 1069.38 1047.59 ≈ 1053.04 ≈ 1049.79
Fréchette and Yuksel (2017) 181.98 � 158.34 � 176.5 188.5 ≈ 183.48 ≈ 175.59
Fudenberg et al. (2012) 356.73 > 331.44 < 347.07 319.45 ≈ 308.6 ≈ 320.55
Kagel and Schley (2013) 1776.53 ≈ 1837.93 � 1715.12 1761.98 ≈ 1780.97 > 1694.94
Sherstyuk et al. (2013) 926.9 ≈ 953.91 > 912.67 865.67 ≈ 907.14 > 858.65

Pooled 16515.74 > 16251.31 � 16837.05 16077.95 > 15853.82 � 16335.33

Second halves per session
Aoyagi and Frechette (2009) 448.52 ≈ 431.35 ≈ 432.41 363.58 ≈ 368.23 ≈ 368.89
Blonski et al. (2011) 967.16 � 914.28 � 1140.5 992.44 ≈ 993.71 � 1154.56
Bruttel and Kamecke (2012) 342.17 ≈ 361.38 ≈ 348.88 344.88 ≈ 358.12 ≈ 347.08
Dal Bó (2005) 462.39 ≈ 445.5 � 474.71 475.11 ≈ 456.4 ≈ 469.98
Dal Bó and Fréchette (2011) 2957.24 ≈ 3076.88 ≈ 2979.53 2737.11 < 2875.64 > 2721.88
Dal Bó and Fréchette (2015) 5537.83 > 5419.19 ≈ 5438.75 5164.78 ≈ 5105.6 ≈ 5116.42
Dreber et al. (2008) 287.58 ≈ 285.34 < 303.79 295.06 ≈ 297.88 ≈ 303.03
Duffy and Ochs (2009) 1555.1 ≈ 1599.27 ≈ 1561.56 1381.01 ≈ 1416.71 ≈ 1392.49
Fréchette and Yuksel (2017) 333.32 ≈ 309.06 ≈ 325.58 309.63 ≈ 304.7 ≈ 308.78
Fudenberg et al. (2012) 443.13 ≈ 439.28 ≈ 444.41 373.44 ≈ 395.32 ≈ 376.62
Kagel and Schley (2013) 1191.45 < 1301.1 � 1187.17 1170.12 ≈ 1224.37 > 1143.67
Sherstyuk et al. (2013) 587.45 < 640.1 > 597.28 527.09 ≈ 590.16 ≈ 567.63

Pooled 15249.49 ≈ 15361.1 � 15841.93 14387.48 < 14656.93 ≈ 14961.61

Note: Relation signs are used as defined above (Table 14). “No Switching”, “Random Switching” and “Markov Switching” are as defined in the text, but briefly: “No Switching”
assumes that each subject randomly chooses a strategy prior to the first supergame and plays this strategy constantly for the entire half session. “Random Switching” assumes that
each subject randomly chooses a strategy prior to each supergame (by i.i.d. draws), and “Markov Switching” allows that these switches follow a Markov process. “Best mixture
of pure strategies” starts with the general mixture model allowing subjects to play AD, Grim, TFT, AC or WSLS and picks the best-fitting model after eliminating AC or WSLS,
or both or none of these. The “Best mixture of generalized strategies” additionally allows for randomization based on these proto-typical strategies as defined in the main text.



Table 21: Pure, mixed, or switching strategies? Best mixtures without Semi-Grim, including first round behavior.
(ICL-BIC of the models, less is better and relation signs point toward better models)

Best mixture of pure strategies Best mixture of generalized pure strategies
Baseline No Random Markov No Random Markov
Model Switching Switching Switching Switching Switching Switching

Specification
# Models evaluated 1 532 532 532 832 832 832

# Pars estimated (by treatment) 5 16 16 82 64 64 196
# Parameters accounted for 5 3–5 3–5 12–30 6–10 6–10 15–35

First halves per session
Aoyagi and Frechette (2009) 886.44 ≈ 843.08 ≈ 834.4 ≈ 845.51 756.95 ≈ 763.11 ≈ 755.97
Blonski et al. (2011) 1114.69 � 1069.58 ≈ 1104.85 � 1221.28 1134.67 ≈ 1173.15 � 1272.13
Bruttel and Kamecke (2012) 845.41 ≈ 845.41 ≈ 845.05 > 785.49 817.89 ≈ 835.6 > 787.63
Dal Bó (2005) 666.1 ≈ 651.88 < 689.58 > 652.36 641.98 < 674.57 ≈ 653.11
Dal Bó and Fréchette (2011) 7423.23 > 7164.32 � 7557.8 � 6422.83 6921.58 � 7467.72 � 6465.99
Dal Bó and Fréchette (2015) 8880.62 > 8756.15 � 9253.62 � 8275.74 8446 � 9183.55 � 8168.2
Dreber et al. (2008) 871.32 ≈ 863.26 ≈ 864.49 � 752.16 787.71 < 865.64 � 763.43
Duffy and Ochs (2009) 1448.71 ≈ 1396.68 < 1467.36 � 1372.99 1395.4 < 1461.01 > 1394.31
Fréchette and Yuksel (2017) 321.32 ≈ 313.03 ≈ 337.5 > 301.74 300.87 < 345.74 > 298.53
Fudenberg et al. (2012) 454.09 ≈ 451.47 ≈ 435.83 ≈ 435.86 432.32 ≈ 432.38 ≈ 425.54
Kagel and Schley (2013) 2735.02 ≈ 2685.4 � 3010.1 � 2439.06 2709.95 � 2993.4 � 2539.99
Sherstyuk et al. (2013) 1389.33 ≈ 1346.41 < 1481.65 � 1296.85 1322.6 � 1450 � 1298.37

Pooled 27218.66 � 26525.91 � 28023.06 � 25411.21 25933.42 � 27915.32 � 25504.76

Second halves per session
Aoyagi and Frechette (2009) 534.29 ≈ 492.28 ≈ 484.05 ≈ 482.82 416.51 ≈ 437.8 ≈ 423.05
Blonski et al. (2011) 1503.41 � 1462.41 ≈ 1513.92 < 1604.87 1414.39 � 1553.12 ≈ 1609.79
Bruttel and Kamecke (2012) 588.33 ≈ 561.63 ≈ 627.74 � 516.71 538.17 < 611.91 � 525.5
Dal Bó (2005) 751.82 ≈ 741.2 < 790.21 > 743.74 737.05 < 786.21 > 741.54
Dal Bó and Fréchette (2011) 6065.93 > 5646.38 � 6634.92 � 5110.1 5220.17 � 6378.16 � 5069.04
Dal Bó and Fréchette (2015) 9085.4 > 8951.57 � 9835.77 � 8264.26 8205.77 � 9401.19 � 7947.33
Dreber et al. (2008) 656.38 ≈ 648.55 ≈ 681.35 > 588.62 619.9 ≈ 662.24 > 596.78
Duffy and Ochs (2009) 2010.01 ≈ 1925.24 ≈ 1992.71 � 1883.22 1883.52 ≈ 1914.83 > 1850.35
Fréchette and Yuksel (2017) 469.85 ≈ 433.18 < 474.93 > 427.79 438.55 < 478.2 ≈ 434.61
Fudenberg et al. (2012) 530.3 ≈ 528.36 ≈ 545.76 ≈ 529.88 514.87 ≈ 516.12 ≈ 515.97
Kagel and Schley (2013) 1866.19 ≈ 1751.81 � 2365.94 � 1678.7 1808.21 � 2336.29 � 1718.07
Sherstyuk et al. (2013) 1027.43 ≈ 1025.32 � 1177.96 � 1008.49 955.73 � 1137.49 � 958.99

Pooled 25271.72 � 24301.45 � 27269.48 � 23494.22 23009.84 � 26479.73 � 23143.38

Note: Relation signs are used as defined above (Table 14). “No Switching”, “Random Switching” and “Markov Switching” are as defined in the text, but briefly: “No Switching”
assumes that each subject randomly chooses a strategy prior to the first supergame and plays this strategy constantly for the entire half session. “Random Switching” assumes that
each subject randomly chooses a strategy prior to each supergame (by i.i.d. draws), and “Markov Switching” allows that these switches follow a Markov process. “Best mixture
of pure strategies” starts with the general mixture model allowing subjects to play AD, Grim, TFT, AC or WSLS and picks the best-fitting model after eliminating AC or WSLS,
or both or none of these. The “Best mixture of generalized strategies” additionally allows for randomization in the first round.



Table 22: Table 21 by treatments – Pure, mixed, or switching strategies? Best mixtures without Semi-Grim

(a) First halves per session

Best mixture of pure strategies Best mixture of generalized pure strategies
Baseline No Random Markov No Random Markov
Model Switching Switching Switching Switching Switching Switching

Specification
# Models evaluated 1 532 532 532 832 832 832

# Pars estimated (by treatment) 5 16 16 82 64 64 196
# Parameters accounted for 5 3–5 3–5 12–30 6–10 6–10 15–35

AF09–34 886.44 ≈ 843.08 ≈ 834.4 ≈ 845.51 756.95 ≈ 763.11 ≈ 755.97
BOS11–9 85.17 ≈ 83.42 ≈ 83.96 ≈ 88.41 89.7 ≈ 87.81 ≈ 91.36
BOS11–14 100.72 ≈ 97.73 ≈ 90 ≈ 92.94 102.27 ≈ 94.44 ≈ 96.5
BOS11–15 37.29 ≈ 34.3 ≈ 32.69 � 43.18 38.79 ≈ 37.18 ≈ 44.74
BOS11–16 176.55 ≈ 167.3 ≈ 169.38 ≈ 170.57 168.92 ≈ 176.43 ≈ 174.73
BOS11–17 113.57 ≈ 110.57 ≈ 118.71 ≈ 121.05 115.07 ≈ 123.19 ≈ 123.74
BOS11–26 260.57 ≈ 256.88 ≈ 262.33 ≈ 257.54 257.82 ≈ 269.17 ≈ 256.37
BOS11–27 103.61 ≈ 102.11 ≈ 112.76 ≈ 111.44 103.44 ≈ 114.9 ≈ 110.81
BOS11–30 59.81 > 56.81 ≈ 65.61 ≈ 64.33 60.42 ≈ 68.55 ≈ 68.16
BOS11–31 127.32 ≈ 125.82 ≈ 135.1 ≈ 142.43 129.65 ≈ 137.48 ≈ 145.13
BK12–28 845.41 ≈ 845.41 ≈ 845.05 > 785.49 817.89 ≈ 835.6 > 787.63
D05–18 241.39 ≈ 235.84 ≈ 234.95 ≈ 235.63 241.44 ≈ 230.66 ≈ 238.66
D05–19 421.17 ≈ 413.65 < 452.05 � 408.22 396.28 � 439.65 > 403.81
DF11–6 880.04 ≈ 810.5 < 925.1 > 770.36 823.69 ≈ 909.31 > 772.55
DF11–7 1423.93 > 1349.47 ≈ 1364.07 � 1132.04 1297.64 < 1370.65 � 1181.36
DF11–8 1515.51 ≈ 1496.25 � 1712.65 � 1279.8 1422.73 � 1668.83 � 1284.25
DF11–22 1192.92 ≈ 1154.93 ≈ 1122.94 ≈ 1066.33 1080.23 ≈ 1110.68 ≈ 1056.77
DF11–23 1144.78 ≈ 1142.96 ≈ 1217.02 � 1020.09 1082.68 < 1185.69 � 1027.3
DF11–24 1239.14 ≈ 1188.68 ≈ 1194.48 � 1046.5 1171.57 ≈ 1179.6 � 1022.62
DF15–4 460.23 > 431.07 ≈ 467.36 > 395.89 439.54 ≈ 474.37 ≈ 412.27
DF15–5 1808.3 ≈ 1763.19 � 2211.16 � 1646.78 1762.23 � 2211.09 � 1638.92
DF15–20 1588.62 ≈ 1569.49 ≈ 1543.46 � 1439.66 1463.03 < 1547.14 � 1433.87
DF15–21 2015.1 ≈ 2012.6 � 2221.98 � 1943.68 1974.94 � 2184.97 � 1902.95
DF15–33 2573.89 ≈ 2552.94 > 2400.56 ≈ 2336.73 2379.17 ≈ 2350.87 ≈ 2296.41
DF15–35 405.32 ≈ 403.53 ≈ 385.77 ≈ 396.36 384.6 ≈ 372.62 ≈ 382.07
DRFN08–10 413.58 ≈ 410.24 ≈ 390.77 > 334.73 374.3 ≈ 391.56 > 339.73
DRFN08–11 454.24 ≈ 450.5 ≈ 470.91 � 405.73 408.63 < 468.48 � 413.19
DO09–32 1448.71 ≈ 1396.68 < 1467.36 � 1372.99 1395.4 < 1461.01 > 1394.31
FY17–25 321.32 ≈ 313.03 ≈ 337.5 > 301.74 300.87 < 345.74 > 298.53
FRD12–29 454.09 ≈ 451.47 ≈ 435.83 ≈ 435.86 432.32 ≈ 432.38 ≈ 425.54
KS13–12 2735.02 ≈ 2685.4 � 3010.1 � 2439.06 2709.95 � 2993.4 � 2539.99
STS13–13 1389.33 ≈ 1346.41 < 1481.65 � 1296.85 1322.6 � 1450 � 1298.37
Aoyagi and Frechette (2009) 886.44 ≈ 843.08 ≈ 834.4 ≈ 845.51 756.95 ≈ 763.11 ≈ 755.97
Blonski et al. (2011) 1114.69 � 1069.58 ≈ 1104.85 � 1221.28 1134.67 ≈ 1173.15 � 1272.13
Bruttel and Kamecke (2012) 845.41 ≈ 845.41 ≈ 845.05 > 785.49 817.89 ≈ 835.6 > 787.63
Dal Bó (2005) 666.1 ≈ 651.88 < 689.58 > 652.36 641.98 < 674.57 ≈ 653.11
Dal Bó and Fréchette (2011) 7423.23 > 7164.32 � 7557.8 � 6422.83 6921.58 � 7467.72 � 6465.99
Dal Bó and Fréchette (2015) 8880.62 > 8756.15 � 9253.62 � 8275.74 8446 � 9183.55 � 8168.2
Dreber et al. (2008) 871.32 ≈ 863.26 ≈ 864.49 � 752.16 787.71 < 865.64 � 763.43
Duffy and Ochs (2009) 1448.71 ≈ 1396.68 < 1467.36 � 1372.99 1395.4 < 1461.01 > 1394.31
Fréchette and Yuksel (2017) 321.32 ≈ 313.03 ≈ 337.5 > 301.74 300.87 < 345.74 > 298.53
Fudenberg et al. (2012) 454.09 ≈ 451.47 ≈ 435.83 ≈ 435.86 432.32 ≈ 432.38 ≈ 425.54
Kagel and Schley (2013) 2735.02 ≈ 2685.4 � 3010.1 � 2439.06 2709.95 � 2993.4 � 2539.99
Sherstyuk et al. (2013) 1389.33 ≈ 1346.41 < 1481.65 � 1296.85 1322.6 � 1450 � 1298.37

Pooled 27218.66 � 26525.91 � 28023.06 � 25411.21 25933.42 � 27915.32 � 25504.76

(b) Second halves per session

Best mixture of pure strategies Best mixture of generalized pure strategies
Baseline No Random Markov No Random Markov
Model Switching Switching Switching Switching Switching Switching

Specification
# Models evaluated 1 532 532 532 832 832 832

# Pars estimated (by treatment) 5 16 16 82 64 64 196
# Parameters accounted for 5 3–5 3–5 12–30 6–10 6–10 15–35

AF09–34 534.29 ≈ 492.28 ≈ 484.05 ≈ 482.82 416.51 ≈ 437.8 ≈ 423.05
BOS11–9 87.22 ≈ 84.22 ≈ 96.42 ≈ 88.85 78.84 < 103.47 ≈ 83.98
BOS11–14 43.82 ≈ 40.82 ≈ 40.83 < 50.24 45.31 ≈ 42.43 ≈ 48.97
BOS11–15 18.52 ≈ 15.52 ≈ 15.52 � 29.01 20.01 ≈ 20.01 � 33.5
BOS11–16 160.48 ≈ 157.48 ≈ 165.09 ≈ 157.84 148.98 ≈ 168.12 ≈ 158.84
BOS11–17 232.75 ≈ 229.75 ≈ 225.64 ≈ 219.73 211.59 ≈ 225.1 ≈ 216.6
BOS11–26 369.98 ≈ 366.88 ≈ 365.76 ≈ 350.94 327.16 ≈ 352.05 ≈ 338.09
BOS11–27 228.41 ≈ 226.92 ≈ 255.26 ≈ 243.72 224.85 ≈ 254.56 ≈ 233.57
BOS11–30 149.49 > 146.49 ≈ 137.43 ≈ 145.96 139.46 ≈ 139.47 ≈ 146.9
BOS11–31 162.67 ≈ 161.17 ≈ 174.2 ≈ 173.52 151.87 < 179.31 ≈ 171.15
BK12–28 588.33 ≈ 561.63 ≈ 627.74 � 516.71 538.17 < 611.91 � 525.5
D05–18 355.62 ≈ 350.59 ≈ 359.16 ≈ 351.93 340.33 ≈ 355.81 ≈ 346.45
D05–19 392.65 ≈ 388.49 < 428.21 � 383.3 392.47 < 426.15 > 384.46
DF11–6 751.56 ≈ 633.6 ≈ 693.84 ≈ 557.16 579.84 ≈ 628.84 ≈ 565.43
DF11–7 1571.76 > 1427.15 < 1645.34 � 1268.34 1359.89 � 1582.11 � 1299.86
DF11–8 1142.1 ≈ 1139.15 � 1646.78 � 960.35 1028.93 � 1600.86 � 904.89
DF11–22 1198.53 ≈ 1196.64 ≈ 1160.77 � 1018.52 1012.26 < 1102.07 � 973.62
DF11–23 842.37 ≈ 723.5 � 970.63 � 737.29 743.89 < 943.35 � 739.29
DF11–24 532.68 ≈ 504.8 ≈ 496.02 ≈ 460.73 450.61 ≈ 477.85 ≈ 455.62
DF15–4 345.97 ≈ 331.12 ≈ 402.51 ≈ 339.15 301.69 < 385.5 ≈ 307.03
DF15–5 1686.18 ≈ 1666.6 � 2234.36 � 1438.87 1581.28 � 2217.39 � 1435.63
DF15–20 1572.51 ≈ 1572.51 ≈ 1548.84 � 1339.13 1273.14 � 1441.16 � 1270.1
DF15–21 1754.13 ≈ 1664.01 � 1914.7 � 1504.63 1688.09 < 1878.92 � 1544.66
DF15–33 2915.83 ≈ 2913.27 ≈ 2919.03 � 2735.52 2582.61 < 2690.87 � 2541.5
DF15–35 781.64 ≈ 779.84 ≈ 792.29 ≈ 790.32 733.28 ≈ 742.93 ≈ 723.78
DRFN08–10 304.41 ≈ 301.08 ≈ 289.13 ≈ 251.55 276.61 ≈ 285.26 ≈ 243.71
DRFN08–11 348.47 ≈ 345.37 ≈ 389.41 > 323.06 339.09 ≈ 371.38 ≈ 339.95
DO09–32 2010.01 ≈ 1925.24 ≈ 1992.71 � 1883.22 1883.52 ≈ 1914.83 > 1850.35
FY17–25 469.85 ≈ 433.18 < 474.93 > 427.79 438.55 < 478.2 ≈ 434.61
FRD12–29 530.3 ≈ 528.36 ≈ 545.76 ≈ 529.88 514.87 ≈ 516.12 ≈ 515.97
KS13–12 1866.19 ≈ 1751.81 � 2365.94 � 1678.7 1808.21 � 2336.29 � 1718.07
STS13–13 1027.43 ≈ 1025.32 � 1177.96 � 1008.49 955.73 � 1137.49 � 958.99
Aoyagi and Frechette (2009) 534.29 ≈ 492.28 ≈ 484.05 ≈ 482.82 416.51 ≈ 437.8 ≈ 423.05
Blonski et al. (2011) 1503.41 � 1462.41 ≈ 1513.92 < 1604.87 1414.39 � 1553.12 ≈ 1609.79
Bruttel and Kamecke (2012) 588.33 ≈ 561.63 ≈ 627.74 � 516.71 538.17 < 611.91 � 525.5
Dal Bó (2005) 751.82 ≈ 741.2 < 790.21 > 743.74 737.05 < 786.21 > 741.54
Dal Bó and Fréchette (2011) 6065.93 > 5646.38 � 6634.92 � 5110.1 5220.17 � 6378.16 � 5069.04
Dal Bó and Fréchette (2015) 9085.4 > 8951.57 � 9835.77 � 8264.26 8205.77 � 9401.19 � 7947.33
Dreber et al. (2008) 656.38 ≈ 648.55 ≈ 681.35 > 588.62 619.9 ≈ 662.24 > 596.78
Duffy and Ochs (2009) 2010.01 ≈ 1925.24 ≈ 1992.71 � 1883.22 1883.52 ≈ 1914.83 > 1850.35
Fréchette and Yuksel (2017) 469.85 ≈ 433.18 < 474.93 > 427.79 438.55 < 478.2 ≈ 434.61
Fudenberg et al. (2012) 530.3 ≈ 528.36 ≈ 545.76 ≈ 529.88 514.87 ≈ 516.12 ≈ 515.97
Kagel and Schley (2013) 1866.19 ≈ 1751.81 � 2365.94 � 1678.7 1808.21 � 2336.29 � 1718.07
Sherstyuk et al. (2013) 1027.43 ≈ 1025.32 � 1177.96 � 1008.49 955.73 � 1137.49 � 958.99

Pooled 25271.72 � 24301.45 � 27269.48 � 23494.22 23009.84 � 26479.73 � 23143.38

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table 14.



Table 23: Best mixtures of pure strategies in relation to a Semi-Grim behavior strategy
(ICL-BIC of the models, less is better and relation signs point toward better models)

Best mixture of pure strategies
No Random Markov Best

Switching Switching Switching Switching Semi-Grim AD + SG

Specification
# Models evaluated 532 532 532 1 1
# Pars estimated (by treatment) 16 16 82 3 5
# Parameters accounted for 3–5 3–5 12–35 3 5

First halves per session
Aoyagi and Frechette (2009) 843.08 ≈ 834.4 ≈ 845.51 845.51 � 781.86 ≈ 792.51
Blonski et al. (2011) 1069.58 ≈ 1104.85 � 1221.28 1221.28 � 1069.28 ≈ 1104.6
Bruttel and Kamecke (2012) 845.41 ≈ 845.05 > 785.49 785.49 ≈ 800.12 ≈ 771.14
Dal Bó (2005) 651.88 < 689.58 > 652.36 652.36 ≈ 629.17 ≈ 618.39
Dal Bó and Fréchette (2011) 7164.32 � 7557.8 � 6422.83 6422.83 < 6597.93 > 6352.59
Dal Bó and Fréchette (2015) 8756.15 � 9253.62 � 8275.74 8275.74 > 8017.59 � 7830.12
Dreber et al. (2008) 863.26 ≈ 864.49 � 752.16 752.16 ≈ 782.37 ≈ 764.44
Duffy and Ochs (2009) 1396.68 < 1467.36 � 1372.99 1372.99 ≈ 1372.97 ≈ 1361.15
Fréchette and Yuksel (2017) 313.03 ≈ 337.5 > 301.74 301.74 ≈ 299.62 ≈ 289.54
Fudenberg et al. (2012) 451.47 ≈ 435.83 ≈ 435.86 435.86 > 381.01 ≈ 377.96
Kagel and Schley (2013) 2685.4 � 3010.1 � 2439.06 2439.06 ≈ 2561.76 � 2450.24
Sherstyuk et al. (2013) 1346.41 < 1481.65 � 1296.85 1296.85 ≈ 1303.8 ≈ 1234.52

Pooled 26525.91 � 28023.06 � 25411.21 25411.21 � 24779.85 � 24202.51

Second halves per session
Aoyagi and Frechette (2009) 492.28 ≈ 484.05 ≈ 482.82 492.28 � 423.68 ≈ 421.21
Blonski et al. (2011) 1462.41 ≈ 1513.92 < 1604.87 1462.41 � 1346.79 ≈ 1370.16
Bruttel and Kamecke (2012) 561.63 ≈ 627.74 � 516.71 561.63 ≈ 536.77 � 480.47
Dal Bó (2005) 741.2 < 790.21 > 743.74 741.2 > 699.05 ≈ 677.24
Dal Bó and Fréchette (2011) 5646.38 � 6634.92 � 5110.1 5646.38 � 5128.69 � 4565.93
Dal Bó and Fréchette (2015) 8951.57 � 9835.77 � 8264.26 8951.57 � 7825.98 � 7306.25
Dreber et al. (2008) 648.55 ≈ 681.35 > 588.62 648.55 > 589.84 > 544.66
Duffy and Ochs (2009) 1925.24 ≈ 1992.71 � 1883.22 1925.24 > 1761.6 � 1656.55
Fréchette and Yuksel (2017) 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 422.61
Fudenberg et al. (2012) 528.36 ≈ 545.76 ≈ 529.88 528.36 � 452.6 ≈ 433.74
Kagel and Schley (2013) 1751.81 � 2365.94 � 1678.7 1751.81 ≈ 1775.62 � 1572.95
Sherstyuk et al. (2013) 1025.32 � 1177.96 � 1008.49 1025.32 ≈ 951.34 � 834.74

Pooled 24301.45 � 27269.48 � 23494.22 24301.45 � 22097.67 � 20541.83

Note: This table extends Table 18 by picking the best switching model per half-session, after picking the best-fitting mixture involving the pure forms of AD,
Grim, TFT, AC and WSLS (as above) for each treatment independently, and examining its goodness-of-fit in relation to Semi-Grim and mixtures involving
Semi-Grim. The model "AD+SG2" has the same number of degrees of freedom as the Semi-Grim model. In contrast to "Semi-Grim", SG2 has only two decrees
of freedom including the noise term.



Table 24: Table 23 by treatments – Best mixtures of pure strategies in relation to a Semi-Grim behavior strategy

(a) First halves per session

Best mixture of pure strategies
No Random Markov Best

Switching Switching Switching Switching Semi-Grim AD + SG

Specification
# Models evaluated 532 532 532 1 1
# Pars estimated (by treatment) 16 16 82 3 5
# Parameters accounted for 3–5 3–5 12–35 3 5

AF09–34 843.08 ≈ 834.4 ≈ 845.51 845.51 � 781.86 ≈ 792.51
BOS11–9 83.42 ≈ 83.96 ≈ 88.41 88.41 ≈ 86.56 ≈ 88.35
BOS11–14 97.73 ≈ 90 ≈ 92.94 92.94 ≈ 93.88 ≈ 98.01
BOS11–15 34.3 ≈ 32.69 � 43.18 43.18 > 37.73 < 43.07
BOS11–16 167.3 ≈ 169.38 ≈ 170.57 170.57 ≈ 167.42 ≈ 157.13
BOS11–17 110.57 ≈ 118.71 ≈ 121.05 121.05 > 115.02 ≈ 119.79
BOS11–26 256.88 ≈ 262.33 ≈ 257.54 257.54 ≈ 244.5 ≈ 246.46
BOS11–27 102.11 ≈ 112.76 ≈ 111.44 111.44 > 92.83 ≈ 92.07
BOS11–30 56.81 ≈ 65.61 ≈ 64.33 64.33 > 55.74 < 61.12
BOS11–31 125.82 ≈ 135.1 ≈ 142.43 142.43 ≈ 125.52 ≈ 128.49
BK12–28 845.41 ≈ 845.05 > 785.49 785.49 ≈ 800.12 ≈ 771.14
D05–18 235.84 ≈ 234.95 ≈ 235.63 235.63 ≈ 230.57 ≈ 238.35
D05–19 413.65 < 452.05 � 408.22 408.22 ≈ 395.06 ≈ 375.07
DF11–6 810.5 < 925.1 > 770.36 770.36 ≈ 794.44 ≈ 748.9
DF11–7 1349.47 ≈ 1364.07 � 1132.04 1132.04 < 1256.83 ≈ 1229.61
DF11–8 1496.25 � 1712.65 � 1279.8 1279.8 < 1389.06 ≈ 1286.68
DF11–22 1154.93 ≈ 1122.94 ≈ 1066.33 1066.33 > 965.96 ≈ 961.58
DF11–23 1142.96 ≈ 1217.02 � 1020.09 1020.09 ≈ 1019.57 ≈ 972.17
DF11–24 1188.68 ≈ 1194.48 � 1046.5 1046.5 < 1145.15 ≈ 1115.95
DF15–4 431.07 ≈ 467.36 > 395.89 395.89 ≈ 436.57 ≈ 422.43
DF15–5 1763.19 � 2211.16 � 1646.78 1646.78 < 1738.77 � 1649.1
DF15–20 1569.49 ≈ 1543.46 � 1439.66 1439.66 ≈ 1405.3 > 1366.09
DF15–21 2012.6 � 2221.98 � 1943.68 1943.68 > 1872.47 > 1827.37
DF15–33 2552.94 > 2400.56 ≈ 2336.73 2336.73 > 2186.26 ≈ 2178.12
DF15–35 403.53 ≈ 385.77 ≈ 396.36 396.36 > 349.06 ≈ 346.18
DRFN08–10 410.24 ≈ 390.77 > 334.73 334.73 < 367.86 ≈ 359.04
DRFN08–11 450.5 ≈ 470.91 � 405.73 405.73 ≈ 411.01 ≈ 400.49
DO09–32 1396.68 < 1467.36 � 1372.99 1372.99 ≈ 1372.97 ≈ 1361.15
FY17–25 313.03 ≈ 337.5 > 301.74 301.74 ≈ 299.62 ≈ 289.54
FRD12–29 451.47 ≈ 435.83 ≈ 435.86 435.86 > 381.01 ≈ 377.96
KS13–12 2685.4 � 3010.1 � 2439.06 2439.06 ≈ 2561.76 � 2450.24
STS13–13 1346.41 < 1481.65 � 1296.85 1296.85 ≈ 1303.8 ≈ 1234.52
Aoyagi and Frechette (2009) 843.08 ≈ 834.4 ≈ 845.51 845.51 � 781.86 ≈ 792.51
Blonski et al. (2011) 1069.58 ≈ 1104.85 � 1221.28 1221.28 � 1069.28 ≈ 1104.6
Bruttel and Kamecke (2012) 845.41 ≈ 845.05 > 785.49 785.49 ≈ 800.12 ≈ 771.14
Dal Bó (2005) 651.88 < 689.58 > 652.36 652.36 ≈ 629.17 ≈ 618.39
Dal Bó and Fréchette (2011) 7164.32 � 7557.8 � 6422.83 6422.83 < 6597.93 > 6352.59
Dal Bó and Fréchette (2015) 8756.15 � 9253.62 � 8275.74 8275.74 > 8017.59 � 7830.12
Dreber et al. (2008) 863.26 ≈ 864.49 � 752.16 752.16 ≈ 782.37 ≈ 764.44
Duffy and Ochs (2009) 1396.68 < 1467.36 � 1372.99 1372.99 ≈ 1372.97 ≈ 1361.15
Fréchette and Yuksel (2017) 313.03 ≈ 337.5 > 301.74 301.74 ≈ 299.62 ≈ 289.54
Fudenberg et al. (2012) 451.47 ≈ 435.83 ≈ 435.86 435.86 > 381.01 ≈ 377.96
Kagel and Schley (2013) 2685.4 � 3010.1 � 2439.06 2439.06 ≈ 2561.76 � 2450.24
Sherstyuk et al. (2013) 1346.41 < 1481.65 � 1296.85 1296.85 ≈ 1303.8 ≈ 1234.52

Pooled 26525.91 � 28023.06 � 25411.21 25411.21 � 24779.85 � 24202.51

(b) Second halves per session

Best mixture of pure strategies
No Random Markov Best

Switching Switching Switching Switching Semi-Grim AD + SG

Specification
# Models evaluated 532 532 532 1 1
# Pars estimated (by treatment) 16 16 82 3 5
# Parameters accounted for 3–5 3–5 12–35 3 5

AF09–34 492.28 ≈ 484.05 ≈ 482.82 492.28 � 423.68 ≈ 421.21
BOS11–9 84.22 ≈ 96.42 ≈ 88.85 84.22 ≈ 75.1 ≈ 80.12
BOS11–14 40.82 ≈ 40.83 < 50.24 40.82 ≈ 35.58 ≈ 35.86
BOS11–15 15.52 ≈ 15.52 � 29.01 15.52 ≈ 19.23 < 24.71
BOS11–16 157.48 ≈ 165.09 ≈ 157.84 157.48 ≈ 150.95 ≈ 138.89
BOS11–17 229.75 ≈ 225.64 ≈ 219.73 229.75 > 196.25 ≈ 201.03
BOS11–26 366.88 ≈ 365.76 ≈ 350.94 366.88 > 299.85 ≈ 309.63
BOS11–27 226.92 ≈ 255.26 ≈ 243.72 226.92 ≈ 235.88 ≈ 223.91
BOS11–30 146.49 ≈ 137.43 ≈ 145.96 146.49 ≈ 129.86 ≈ 132.45
BOS11–31 161.17 ≈ 174.2 ≈ 173.52 161.17 ≈ 154.02 ≈ 153.45
BK12–28 561.63 ≈ 627.74 � 516.71 561.63 ≈ 536.77 � 480.47
D05–18 350.59 ≈ 359.16 ≈ 351.93 350.59 ≈ 334.18 > 312.74
D05–19 388.49 < 428.21 � 383.3 388.49 > 361.33 ≈ 359.54
DF11–6 633.6 ≈ 693.84 ≈ 557.16 633.6 > 526.15 ≈ 489.74
DF11–7 1427.15 < 1645.34 � 1268.34 1427.15 ≈ 1316.79 ≈ 1250.02
DF11–8 1139.15 � 1646.78 � 960.35 1139.15 ≈ 1078.24 > 871.84
DF11–22 1196.64 ≈ 1160.77 � 1018.52 1196.64 � 930.3 > 858.03
DF11–23 723.5 � 970.63 � 737.29 723.5 ≈ 767.04 > 608.87
DF11–24 504.8 ≈ 496.02 ≈ 460.73 504.8 ≈ 483.25 ≈ 449.72
DF15–4 331.12 ≈ 402.51 ≈ 339.15 331.12 ≈ 320.02 ≈ 299.49
DF15–5 1666.6 � 2234.36 � 1438.87 1666.6 ≈ 1606.96 � 1407.26
DF15–20 1572.51 ≈ 1548.84 � 1339.13 1572.51 � 1232.33 � 1145.96
DF15–21 1664.01 � 1914.7 � 1504.63 1664.01 ≈ 1591.27 � 1453.74
DF15–33 2913.27 ≈ 2919.03 � 2735.52 2913.27 � 2405.23 ≈ 2331.38
DF15–35 779.84 ≈ 792.29 ≈ 790.32 779.84 � 641.02 ≈ 627.6
DRFN08–10 301.08 ≈ 289.13 ≈ 251.55 301.08 > 244.91 ≈ 234.76
DRFN08–11 345.37 ≈ 389.41 > 323.06 345.37 ≈ 341.42 > 305
DO09–32 1925.24 ≈ 1992.71 � 1883.22 1925.24 > 1761.6 � 1656.55
FY17–25 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 422.61
FRD12–29 528.36 ≈ 545.76 ≈ 529.88 528.36 � 452.6 ≈ 433.74
KS13–12 1751.81 � 2365.94 � 1678.7 1751.81 ≈ 1775.62 � 1572.95
STS13–13 1025.32 � 1177.96 � 1008.49 1025.32 ≈ 951.34 � 834.74
Aoyagi and Frechette (2009) 492.28 ≈ 484.05 ≈ 482.82 492.28 � 423.68 ≈ 421.21
Blonski et al. (2011) 1462.41 ≈ 1513.92 < 1604.87 1462.41 � 1346.79 ≈ 1370.16
Bruttel and Kamecke (2012) 561.63 ≈ 627.74 � 516.71 561.63 ≈ 536.77 � 480.47
Dal Bó (2005) 741.2 < 790.21 > 743.74 741.2 > 699.05 ≈ 677.24
Dal Bó and Fréchette (2011) 5646.38 � 6634.92 � 5110.1 5646.38 � 5128.69 � 4565.93
Dal Bó and Fréchette (2015) 8951.57 � 9835.77 � 8264.26 8951.57 � 7825.98 � 7306.25
Dreber et al. (2008) 648.55 ≈ 681.35 > 588.62 648.55 > 589.84 > 544.66
Duffy and Ochs (2009) 1925.24 ≈ 1992.71 � 1883.22 1925.24 > 1761.6 � 1656.55
Fréchette and Yuksel (2017) 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 422.61
Fudenberg et al. (2012) 528.36 ≈ 545.76 ≈ 529.88 528.36 � 452.6 ≈ 433.74
Kagel and Schley (2013) 1751.81 � 2365.94 � 1678.7 1751.81 ≈ 1775.62 � 1572.95
Sherstyuk et al. (2013) 1025.32 � 1177.96 � 1008.49 1025.32 ≈ 951.34 � 834.74

Pooled 24301.45 � 27269.48 � 23494.22 24301.45 � 22097.67 � 20541.83

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table 14.



Table 25: Best mixtures of generalized strategies in relation to a Semi-Grim strategy
(ICL-BIC of the models, less is better and relation signs point toward better models)

Best mixture of generalized strategies
No Random Markov Best

Switching Switching Switching Switching Semi-Grim AD + SG

Specification
# Models evaluated 832 832 832 1 1
# Pars estimated (by treatment) 64 64 196 3 5
# Parameters accounted for 6–10 6–10 15-35 3 5

First halves per session
Aoyagi and Frechette (2009) 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 792.51
Blonski et al. (2011) 1134.67 ≈ 1173.15 � 1272.13 1272.13 � 1069.28 ≈ 1104.6
Bruttel and Kamecke (2012) 817.89 ≈ 835.6 > 787.63 787.63 ≈ 800.12 ≈ 771.14
Dal Bó (2005) 641.98 < 674.57 ≈ 653.11 653.11 ≈ 629.17 ≈ 618.39
Dal Bó and Fréchette (2011) 6921.58 � 7467.72 � 6465.99 6465.99 ≈ 6597.93 > 6352.59
Dal Bó and Fréchette (2015) 8446 � 9183.55 � 8168.2 8168.2 > 8017.59 � 7830.12
Dreber et al. (2008) 787.71 < 865.64 � 763.43 763.43 ≈ 782.37 ≈ 764.44
Duffy and Ochs (2009) 1395.4 < 1461.01 > 1394.31 1394.31 ≈ 1372.97 ≈ 1361.15
Fréchette and Yuksel (2017) 300.87 < 345.74 > 298.53 298.53 ≈ 299.62 ≈ 289.54
Fudenberg et al. (2012) 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 377.96
Kagel and Schley (2013) 2709.95 � 2993.4 � 2539.99 2539.99 ≈ 2561.76 � 2450.24
Sherstyuk et al. (2013) 1322.6 � 1450 � 1298.37 1298.37 ≈ 1303.8 ≈ 1234.52

Pooled 25933.42 � 27915.32 � 25504.76 25504.76 � 24779.85 � 24202.51

Second halves per session
Aoyagi and Frechette (2009) 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 421.21
Blonski et al. (2011) 1414.39 � 1553.12 ≈ 1609.79 1414.39 > 1346.79 ≈ 1370.16
Bruttel and Kamecke (2012) 538.17 < 611.91 � 525.5 538.17 ≈ 536.77 � 480.47
Dal Bó (2005) 737.05 < 786.21 > 741.54 737.05 > 699.05 ≈ 677.24
Dal Bó and Fréchette (2011) 5220.17 � 6378.16 � 5069.04 5220.17 ≈ 5128.69 � 4565.93
Dal Bó and Fréchette (2015) 8205.77 � 9401.19 � 7947.33 8205.77 � 7825.98 � 7306.25
Dreber et al. (2008) 619.9 ≈ 662.24 > 596.78 619.9 ≈ 589.84 > 544.66
Duffy and Ochs (2009) 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 � 1656.55
Fréchette and Yuksel (2017) 438.55 < 478.2 ≈ 434.61 438.55 ≈ 423.34 ≈ 422.61
Fudenberg et al. (2012) 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 ≈ 433.74
Kagel and Schley (2013) 1808.21 � 2336.29 � 1718.07 1808.21 ≈ 1775.62 � 1572.95
Sherstyuk et al. (2013) 955.73 � 1137.49 � 958.99 955.73 ≈ 951.34 � 834.74

Pooled 23009.84 � 26479.73 � 23143.38 23009.84 � 22097.67 � 20541.83

Note: This table extends Table 21 by picking the best switching model per half-session, after picking the best-fitting mixture involving the generalized forms of
AD, Grim, TFT, AC and WSLS (as above) for each treatment independently, and examining its goodness-of-fit in relation to Semi-Grim and mixtures involving
Semi-Grim.



Table 26: Table 25 by treatments – Best mixtures of generalized strategies in relation to a Semi-Grim strategy

(a) First halves per session

Best mixture of generalized strategies
No Random Markov Best

Switching Switching Switching Switching Semi-Grim AD + SG

Specification
# Models evaluated 832 832 832 1 1
# Pars estimated (by treatment) 64 64 196 3 5
# Parameters accounted for 6–10 6–10 15-35 3 5

AF09–34 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 792.51
BOS11–9 89.7 ≈ 87.81 ≈ 91.36 91.36 ≈ 86.56 ≈ 88.35
BOS11–14 102.27 ≈ 94.44 ≈ 96.5 96.5 ≈ 93.88 ≈ 98.01
BOS11–15 38.79 ≈ 37.18 ≈ 44.74 44.74 ≈ 37.73 < 43.07
BOS11–16 168.92 ≈ 176.43 ≈ 174.73 174.73 ≈ 167.42 ≈ 157.13
BOS11–17 115.07 ≈ 123.19 ≈ 123.74 123.74 > 115.02 ≈ 119.79
BOS11–26 257.82 ≈ 269.17 ≈ 256.37 256.37 ≈ 244.5 ≈ 246.46
BOS11–27 103.44 ≈ 114.9 ≈ 110.81 110.81 > 92.83 ≈ 92.07
BOS11–30 60.42 ≈ 68.55 ≈ 68.16 68.16 � 55.74 < 61.12
BOS11–31 129.65 ≈ 137.48 ≈ 145.13 145.13 ≈ 125.52 ≈ 128.49
BK12–28 817.89 ≈ 835.6 > 787.63 787.63 ≈ 800.12 ≈ 771.14
D05–18 241.44 ≈ 230.66 ≈ 238.66 238.66 ≈ 230.57 ≈ 238.35
D05–19 396.28 � 439.65 > 403.81 403.81 ≈ 395.06 ≈ 375.07
DF11–6 823.69 ≈ 909.31 > 772.55 772.55 ≈ 794.44 ≈ 748.9
DF11–7 1297.64 < 1370.65 � 1181.36 1181.36 < 1256.83 ≈ 1229.61
DF11–8 1422.73 � 1668.83 � 1284.25 1284.25 < 1389.06 ≈ 1286.68
DF11–22 1080.23 ≈ 1110.68 ≈ 1056.77 1056.77 > 965.96 ≈ 961.58
DF11–23 1082.68 < 1185.69 � 1027.3 1027.3 ≈ 1019.57 ≈ 972.17
DF11–24 1171.57 ≈ 1179.6 � 1022.62 1022.62 � 1145.15 ≈ 1115.95
DF15–4 439.54 ≈ 474.37 ≈ 412.27 412.27 ≈ 436.57 ≈ 422.43
DF15–5 1762.23 � 2211.09 � 1638.92 1638.92 � 1738.77 � 1649.1
DF15–20 1463.03 < 1547.14 � 1433.87 1433.87 ≈ 1405.3 > 1366.09
DF15–21 1974.94 � 2184.97 � 1902.95 1902.95 ≈ 1872.47 > 1827.37
DF15–33 2379.17 ≈ 2350.87 ≈ 2296.41 2296.41 > 2186.26 ≈ 2178.12
DF15–35 384.6 ≈ 372.62 ≈ 382.07 382.07 > 349.06 ≈ 346.18
DRFN08–10 374.3 ≈ 391.56 > 339.73 339.73 ≈ 367.86 ≈ 359.04
DRFN08–11 408.63 < 468.48 � 413.19 413.19 ≈ 411.01 ≈ 400.49
DO09–32 1395.4 < 1461.01 > 1394.31 1394.31 ≈ 1372.97 ≈ 1361.15
FY17–25 300.87 < 345.74 > 298.53 298.53 ≈ 299.62 ≈ 289.54
FRD12–29 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 377.96
KS13–12 2709.95 � 2993.4 � 2539.99 2539.99 ≈ 2561.76 � 2450.24
STS13–13 1322.6 � 1450 � 1298.37 1298.37 ≈ 1303.8 ≈ 1234.52
Aoyagi and Frechette (2009) 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 792.51
Blonski et al. (2011) 1134.67 ≈ 1173.15 � 1272.13 1272.13 � 1069.28 ≈ 1104.6
Bruttel and Kamecke (2012) 817.89 ≈ 835.6 > 787.63 787.63 ≈ 800.12 ≈ 771.14
Dal Bó (2005) 641.98 < 674.57 ≈ 653.11 653.11 ≈ 629.17 ≈ 618.39
Dal Bó and Fréchette (2011) 6921.58 � 7467.72 � 6465.99 6465.99 ≈ 6597.93 > 6352.59
Dal Bó and Fréchette (2015) 8446 � 9183.55 � 8168.2 8168.2 > 8017.59 � 7830.12
Dreber et al. (2008) 787.71 < 865.64 � 763.43 763.43 ≈ 782.37 ≈ 764.44
Duffy and Ochs (2009) 1395.4 < 1461.01 > 1394.31 1394.31 ≈ 1372.97 ≈ 1361.15
Fréchette and Yuksel (2017) 300.87 < 345.74 > 298.53 298.53 ≈ 299.62 ≈ 289.54
Fudenberg et al. (2012) 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 377.96
Kagel and Schley (2013) 2709.95 � 2993.4 � 2539.99 2539.99 ≈ 2561.76 � 2450.24
Sherstyuk et al. (2013) 1322.6 � 1450 � 1298.37 1298.37 ≈ 1303.8 ≈ 1234.52

Pooled 25933.42 � 27915.32 � 25504.76 25504.76 � 24779.85 � 24202.51

(b) Second halves per session

Best mixture of generalized strategies
No Random Markov Best

Switching Switching Switching Switching Semi-Grim AD + SG

Specification
# Models evaluated 832 832 832 1 1
# Pars estimated (by treatment) 64 64 196 3 5
# Parameters accounted for 6–10 6–10 15-35 3 5

AF09–34 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 421.21
BOS11–9 78.84 < 103.47 ≈ 83.98 78.84 ≈ 75.1 ≈ 80.12
BOS11–14 45.31 ≈ 42.43 ≈ 48.97 45.31 ≈ 35.58 ≈ 35.86
BOS11–15 20.01 ≈ 20.01 � 33.5 20.01 ≈ 19.23 < 24.71
BOS11–16 148.98 ≈ 168.12 ≈ 158.84 148.98 ≈ 150.95 ≈ 138.89
BOS11–17 211.59 ≈ 225.1 ≈ 216.6 211.59 ≈ 196.25 ≈ 201.03
BOS11–26 327.16 ≈ 352.05 ≈ 338.09 327.16 ≈ 299.85 ≈ 309.63
BOS11–27 224.85 ≈ 254.56 ≈ 233.57 224.85 ≈ 235.88 ≈ 223.91
BOS11–30 139.46 ≈ 139.47 ≈ 146.9 139.46 ≈ 129.86 ≈ 132.45
BOS11–31 151.87 < 179.31 ≈ 171.15 151.87 ≈ 154.02 ≈ 153.45
BK12–28 538.17 < 611.91 � 525.5 538.17 ≈ 536.77 � 480.47
D05–18 340.33 ≈ 355.81 ≈ 346.45 340.33 ≈ 334.18 > 312.74
D05–19 392.47 < 426.15 > 384.46 392.47 > 361.33 ≈ 359.54
DF11–6 579.84 ≈ 628.84 ≈ 565.43 579.84 ≈ 526.15 ≈ 489.74
DF11–7 1359.89 � 1582.11 � 1299.86 1359.89 ≈ 1316.79 ≈ 1250.02
DF11–8 1028.93 � 1600.86 � 904.89 1028.93 ≈ 1078.24 > 871.84
DF11–22 1012.26 < 1102.07 � 973.62 1012.26 ≈ 930.3 > 858.03
DF11–23 743.89 < 943.35 � 739.29 743.89 ≈ 767.04 > 608.87
DF11–24 450.61 ≈ 477.85 ≈ 455.62 450.61 ≈ 483.25 ≈ 449.72
DF15–4 301.69 < 385.5 ≈ 307.03 301.69 ≈ 320.02 ≈ 299.49
DF15–5 1581.28 � 2217.39 � 1435.63 1581.28 ≈ 1606.96 � 1407.26
DF15–20 1273.14 � 1441.16 � 1270.1 1273.14 ≈ 1232.33 � 1145.96
DF15–21 1688.09 < 1878.92 � 1544.66 1688.09 ≈ 1591.27 � 1453.74
DF15–33 2582.61 < 2690.87 � 2541.5 2582.61 > 2405.23 ≈ 2331.38
DF15–35 733.28 ≈ 742.93 ≈ 723.78 733.28 � 641.02 ≈ 627.6
DRFN08–10 276.61 ≈ 285.26 ≈ 243.71 276.61 > 244.91 ≈ 234.76
DRFN08–11 339.09 ≈ 371.38 ≈ 339.95 339.09 ≈ 341.42 > 305
DO09–32 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 � 1656.55
FY17–25 438.55 < 478.2 ≈ 434.61 438.55 ≈ 423.34 ≈ 422.61
FRD12–29 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 ≈ 433.74
KS13–12 1808.21 � 2336.29 � 1718.07 1808.21 ≈ 1775.62 � 1572.95
STS13–13 955.73 � 1137.49 � 958.99 955.73 ≈ 951.34 � 834.74
Aoyagi and Frechette (2009) 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 421.21
Blonski et al. (2011) 1414.39 � 1553.12 ≈ 1609.79 1414.39 > 1346.79 ≈ 1370.16
Bruttel and Kamecke (2012) 538.17 < 611.91 � 525.5 538.17 ≈ 536.77 � 480.47
Dal Bó (2005) 737.05 < 786.21 > 741.54 737.05 > 699.05 ≈ 677.24
Dal Bó and Fréchette (2011) 5220.17 � 6378.16 � 5069.04 5220.17 ≈ 5128.69 � 4565.93
Dal Bó and Fréchette (2015) 8205.77 � 9401.19 � 7947.33 8205.77 � 7825.98 � 7306.25
Dreber et al. (2008) 619.9 ≈ 662.24 > 596.78 619.9 ≈ 589.84 > 544.66
Duffy and Ochs (2009) 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 � 1656.55
Fréchette and Yuksel (2017) 438.55 < 478.2 ≈ 434.61 438.55 ≈ 423.34 ≈ 422.61
Fudenberg et al. (2012) 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 ≈ 433.74
Kagel and Schley (2013) 1808.21 � 2336.29 � 1718.07 1808.21 ≈ 1775.62 � 1572.95
Sherstyuk et al. (2013) 955.73 � 1137.49 � 958.99 955.73 ≈ 951.34 � 834.74

Pooled 23009.84 � 26479.73 � 23143.38 23009.84 � 22097.67 � 20541.83

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table 14.



Table 27: Best mixtures of pure or generalized strategies in relation to Semi-Grim
(ICL-BIC of the models, less is better and relation signs point toward better models)

Best mixture of pure or generalized strategies Best Mixture
Baseline No Random Markov Best Best Switching
Model Switching Switching Switching Switching AD + SG AD + 2SG By Treatment

Specification
# Models evaluated 1 1332 1332 1332 3×1332 1 1 3932 ≈ 1051

# Pars estimated (by treatment) 5 80 80 278 438 5 9 438
# Parameters accounted for 5 3–10 3–10 12-35 3–30 5 9 3–30

First halves per session
Aoyagi and Frechette (2009) 886.44 � 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 777.3 ≈ 755.97
Blonski et al. (2011) 1114.69 � 1069.58 ≈ 1104.85 � 1225.35 1225.35 � 1069.28 < 1134.96 > 1069.39
Bruttel and Kamecke (2012) 845.41 ≈ 817.89 ≈ 835.6 > 785.49 785.49 ≈ 800.12 > 762.83 ≈ 785.49
Dal Bó (2005) 666.1 > 635.04 < 674.57 ≈ 648.75 648.75 ≈ 629.17 ≈ 600.26 < 631.2
Dal Bó and Fréchette (2011) 7423.23 � 6904.79 � 7456.12 � 6388.49 6388.49 < 6597.93 � 6304.97 ≈ 6388.49
Dal Bó and Fréchette (2015) 8880.62 � 8434.93 � 9166.72 � 8158.31 8158.31 > 8017.59 � 7810.7 � 8138.61
Dreber et al. (2008) 871.32 � 787.71 < 863.7 � 752.16 752.16 ≈ 782.37 ≈ 763.52 ≈ 752.16
Duffy and Ochs (2009) 1448.71 ≈ 1395.4 < 1461.01 > 1372.99 1372.99 ≈ 1372.97 ≈ 1320.71 ≈ 1372.99
Fréchette and Yuksel (2017) 321.32 ≈ 300.87 < 337.5 > 298.53 298.53 ≈ 299.62 ≈ 284.11 ≈ 298.53
Fudenberg et al. (2012) 454.09 ≈ 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 370.01 < 425.54
Kagel and Schley (2013) 2735.02 ≈ 2685.4 � 2993.4 � 2439.06 2439.06 ≈ 2561.76 � 2421.27 ≈ 2439.06
Sherstyuk et al. (2013) 1389.33 ≈ 1322.6 � 1450 � 1296.85 1296.85 ≈ 1303.8 � 1200.28 < 1296.85

Pooled 27218.66 � 25758.38 � 27754.81 � 25166.24 25166.24 > 24779.85 � 24079.18 � 24863.15

Second halves per session
Aoyagi and Frechette (2009) 534.29 � 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 422.24 ≈ 416.51
Blonski et al. (2011) 1503.41 � 1398.5 � 1509.09 < 1593.01 1398.5 > 1346.79 ≈ 1385.91 ≈ 1394.16
Bruttel and Kamecke (2012) 588.33 > 538.17 < 611.91 � 516.71 538.17 ≈ 536.77 > 478.23 ≈ 516.71
Dal Bó (2005) 751.82 ≈ 732.27 < 786.21 > 739.59 732.27 > 699.05 ≈ 679.04 < 729.48
Dal Bó and Fréchette (2011) 6065.93 � 5195.88 � 6378.16 � 5007.24 5195.88 ≈ 5128.69 � 4545.08 � 4964.77
Dal Bó and Fréchette (2015) 9085.4 � 8177.46 � 9401.19 � 7910.83 8177.46 � 7825.98 � 7310.27 � 7893.79
Dreber et al. (2008) 656.38 ≈ 619.9 ≈ 662.24 > 581.94 619.9 ≈ 589.84 > 541.83 ≈ 581.94
Duffy and Ochs (2009) 2010.01 > 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 > 1602.93 � 1850.35
Fréchette and Yuksel (2017) 469.85 ≈ 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 381.63 � 427.79
Fudenberg et al. (2012) 530.3 ≈ 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 > 414.24 < 514.87
Kagel and Schley (2013) 1866.19 ≈ 1751.81 � 2336.29 � 1678.7 1751.81 ≈ 1775.62 � 1541.38 < 1678.7
Sherstyuk et al. (2013) 1027.43 > 955.73 � 1137.49 � 958.99 955.73 ≈ 951.34 � 823.06 � 955.73

Pooled 25271.72 � 22848.49 � 26409.44 � 22927.9 22848.49 � 22097.67 � 20454.13 � 22422.07

Note: This table extends Table 21 by picking the best switching model per half-session, after picking the best-fitting mixture involving either the pure or
generalized forms of AD, Grim, TFT, AC and WSLS (as above) for each treatment independently, and examining its goodness-of-fit in relation to Semi-Grim and
mixtures involving Semi-Grim. The model "AD+SG2" has the same number of degrees of freedom as the Semi-Grim model.



Table 28: Table 27 by treatments – Best mixtures of pure or generalized strategies in relation to Semi-Grim

(a) First halves per session
Best mixture of pure or generalized strategies Best Mixture

Baseline No Random Markov Best Best Switching
Model Switching Switching Switching Switching AD + SG AD + 2SG By Treatment

Specification
# Models evaluated 1 1332 1332 1332 3×1332 1 1 3932 ≈ 1051

# Pars estimated (by treatment) 5 80 80 278 438 5 9 438
# Parameters accounted for 5 3–10 3–10 12-35 3–30 5 9 3–30

AF09–34 886.44 � 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 777.3 ≈ 755.97
BOS11–9 85.17 ≈ 83.42 ≈ 83.96 ≈ 88.41 88.41 ≈ 86.56 ≈ 85.71 ≈ 83.42
BOS11–14 100.72 ≈ 97.73 ≈ 90 ≈ 92.94 92.94 ≈ 93.88 ≈ 95.87 ≈ 90
BOS11–15 37.29 ≈ 34.3 ≈ 32.69 � 43.18 43.18 > 37.73 � 53.61 � 32.69
BOS11–16 176.55 ≈ 167.3 ≈ 169.38 ≈ 170.57 170.57 ≈ 167.42 ≈ 157.72 ≈ 167.3
BOS11–17 113.57 ≈ 110.57 ≈ 118.71 ≈ 121.05 121.05 > 115.02 < 122.41 > 110.57
BOS11–26 260.57 ≈ 256.88 ≈ 262.33 ≈ 256.37 256.37 ≈ 244.5 ≈ 249.78 ≈ 256.37
BOS11–27 103.61 ≈ 102.11 ≈ 112.76 ≈ 110.81 110.81 > 92.83 ≈ 93.42 ≈ 102.11
BOS11–30 59.81 > 56.81 ≈ 65.61 ≈ 64.33 64.33 > 55.74 � 64.33 > 56.81
BOS11–31 127.32 ≈ 125.82 ≈ 135.1 ≈ 142.43 142.43 ≈ 125.52 ≈ 121.98 ≈ 125.82
BK12–28 845.41 ≈ 817.89 ≈ 835.6 > 785.49 785.49 ≈ 800.12 > 762.83 ≈ 785.49
D05–18 241.39 ≈ 235.84 ≈ 230.66 ≈ 235.63 235.63 ≈ 230.57 ≈ 229.01 ≈ 230.66
D05–19 421.17 > 396.28 � 439.65 > 403.81 403.81 ≈ 395.06 > 364.87 < 396.28
DF11–6 880.04 ≈ 810.5 ≈ 909.31 > 770.36 770.36 ≈ 794.44 ≈ 752.56 ≈ 770.36
DF11–7 1423.93 > 1297.64 ≈ 1364.07 � 1132.04 1132.04 < 1256.83 ≈ 1238 > 1132.04
DF11–8 1515.51 > 1422.73 � 1668.83 � 1279.8 1279.8 < 1389.06 ≈ 1289.21 ≈ 1279.8
DF11–22 1192.92 > 1080.23 ≈ 1110.68 ≈ 1056.77 1056.77 > 965.96 ≈ 944.2 � 1056.77
DF11–23 1144.78 ≈ 1082.68 < 1185.69 � 1020.09 1020.09 ≈ 1019.57 > 941.73 ≈ 1020.09
DF11–24 1239.14 > 1171.57 ≈ 1179.6 � 1022.62 1022.62 � 1145.15 ≈ 1090.82 ≈ 1022.62
DF15–4 460.23 > 431.07 ≈ 467.36 > 395.89 395.89 ≈ 436.57 ≈ 425 > 395.89
DF15–5 1808.3 > 1762.23 � 2211.09 � 1638.92 1638.92 � 1738.77 � 1639.52 ≈ 1638.92
DF15–20 1588.62 � 1463.03 < 1543.46 � 1433.87 1433.87 ≈ 1405.3 > 1364.37 ≈ 1433.87
DF15–21 2015.1 > 1974.94 � 2184.97 � 1902.95 1902.95 ≈ 1872.47 > 1811.11 < 1902.95
DF15–33 2573.89 � 2379.17 ≈ 2350.87 ≈ 2296.41 2296.41 > 2186.26 ≈ 2174.56 � 2296.41
DF15–35 405.32 ≈ 384.6 ≈ 372.62 ≈ 382.07 382.07 > 349.06 ≈ 343.65 < 372.62
DRFN08–10 413.58 > 374.3 ≈ 390.77 > 334.73 334.73 < 367.86 ≈ 358.63 ≈ 334.73
DRFN08–11 454.24 > 408.63 < 468.48 � 405.73 405.73 ≈ 411.01 ≈ 398.59 ≈ 405.73
DO09–32 1448.71 ≈ 1395.4 < 1461.01 > 1372.99 1372.99 ≈ 1372.97 ≈ 1320.71 ≈ 1372.99
FY17–25 321.32 ≈ 300.87 < 337.5 > 298.53 298.53 ≈ 299.62 ≈ 284.11 ≈ 298.53
FRD12–29 454.09 ≈ 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 370.01 < 425.54
KS13–12 2735.02 ≈ 2685.4 � 2993.4 � 2439.06 2439.06 ≈ 2561.76 � 2421.27 ≈ 2439.06
STS13–13 1389.33 ≈ 1322.6 � 1450 � 1296.85 1296.85 ≈ 1303.8 � 1200.28 < 1296.85
Aoyagi and Frechette (2009) 886.44 � 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 777.3 ≈ 755.97
Blonski et al. (2011) 1114.69 � 1069.58 ≈ 1104.85 � 1225.35 1225.35 � 1069.28 < 1134.96 > 1069.39
Bruttel and Kamecke (2012) 845.41 ≈ 817.89 ≈ 835.6 > 785.49 785.49 ≈ 800.12 > 762.83 ≈ 785.49
Dal Bó (2005) 666.1 > 635.04 < 674.57 ≈ 648.75 648.75 ≈ 629.17 ≈ 600.26 < 631.2
Dal Bó and Fréchette (2011) 7423.23 � 6904.79 � 7456.12 � 6388.49 6388.49 < 6597.93 � 6304.97 ≈ 6388.49
Dal Bó and Fréchette (2015) 8880.62 � 8434.93 � 9166.72 � 8158.31 8158.31 > 8017.59 � 7810.7 � 8138.61
Dreber et al. (2008) 871.32 � 787.71 < 863.7 � 752.16 752.16 ≈ 782.37 ≈ 763.52 ≈ 752.16
Duffy and Ochs (2009) 1448.71 ≈ 1395.4 < 1461.01 > 1372.99 1372.99 ≈ 1372.97 ≈ 1320.71 ≈ 1372.99
Fréchette and Yuksel (2017) 321.32 ≈ 300.87 < 337.5 > 298.53 298.53 ≈ 299.62 ≈ 284.11 ≈ 298.53
Fudenberg et al. (2012) 454.09 ≈ 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 370.01 < 425.54
Kagel and Schley (2013) 2735.02 ≈ 2685.4 � 2993.4 � 2439.06 2439.06 ≈ 2561.76 � 2421.27 ≈ 2439.06
Sherstyuk et al. (2013) 1389.33 ≈ 1322.6 � 1450 � 1296.85 1296.85 ≈ 1303.8 � 1200.28 < 1296.85

Pooled 27218.66 � 25758.38 � 27754.81 � 25166.24 25166.24 > 24779.85 � 24079.18 � 24863.15

(b) Second halves per session
Best mixture of pure or generalized strategies Best Mixture

Baseline No Random Markov Best Best Switching
Model Switching Switching Switching Switching AD + SG AD + 2SG By Treatment

Specification
# Models evaluated 1 1332 1332 1332 3×1332 1 1 3932 ≈ 1051

# Pars estimated (by treatment) 5 80 80 278 438 5 9 438
# Parameters accounted for 5 3–10 3–10 12-35 3–30 5 9 3–30

AF09–34 534.29 � 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 422.24 ≈ 416.51
BOS11–9 87.22 ≈ 78.84 ≈ 96.42 ≈ 83.98 78.84 ≈ 75.1 ≈ 76.06 ≈ 78.84
BOS11–14 43.82 ≈ 40.82 ≈ 40.83 ≈ 48.97 40.82 ≈ 35.58 ≈ 38.21 ≈ 40.82
BOS11–15 18.52 ≈ 15.52 ≈ 15.52 � 29.01 15.52 ≈ 19.23 � 30.15 � 15.52
BOS11–16 160.48 ≈ 148.98 ≈ 165.09 ≈ 157.84 148.98 ≈ 150.95 ≈ 149.71 ≈ 148.98
BOS11–17 232.75 > 211.59 ≈ 225.1 ≈ 216.6 211.59 ≈ 196.25 ≈ 198.59 ≈ 211.59
BOS11–26 369.98 � 327.16 ≈ 352.05 ≈ 338.09 327.16 ≈ 299.85 ≈ 295.25 < 327.16
BOS11–27 228.41 ≈ 224.85 ≈ 254.56 ≈ 233.57 224.85 ≈ 235.88 ≈ 224.21 ≈ 224.85
BOS11–30 149.49 ≈ 139.46 ≈ 137.43 ≈ 145.96 139.46 ≈ 129.86 ≈ 133.81 ≈ 137.43
BOS11–31 162.67 ≈ 151.87 ≈ 174.2 ≈ 171.15 151.87 ≈ 154.02 ≈ 149.77 ≈ 151.87
BK12–28 588.33 > 538.17 < 611.91 � 516.71 538.17 ≈ 536.77 > 478.23 ≈ 516.71
D05–18 355.62 ≈ 340.33 ≈ 355.81 ≈ 346.45 340.33 ≈ 334.18 ≈ 315.38 < 340.33
D05–19 392.65 ≈ 388.49 < 426.15 > 383.3 388.49 > 361.33 ≈ 357.27 < 383.3
DF11–6 751.56 > 579.84 ≈ 628.84 ≈ 557.16 579.84 ≈ 526.15 ≈ 509.84 ≈ 557.16
DF11–7 1571.76 � 1359.89 � 1582.11 � 1268.34 1359.89 ≈ 1316.79 > 1246.93 ≈ 1268.34
DF11–8 1142.1 > 1028.93 � 1600.86 � 904.89 1028.93 ≈ 1078.24 > 872.45 ≈ 904.89
DF11–22 1198.53 > 1012.26 < 1102.07 � 973.62 1012.26 ≈ 930.3 > 860.39 < 973.62
DF11–23 842.37 ≈ 723.5 < 943.35 > 737.29 723.5 ≈ 767.04 > 582.24 < 723.5
DF11–24 532.68 � 450.61 ≈ 477.85 ≈ 455.62 450.61 ≈ 483.25 > 424.76 ≈ 450.61
DF15–4 345.97 > 301.69 < 385.5 ≈ 307.03 301.69 ≈ 320.02 ≈ 306.89 ≈ 301.69
DF15–5 1686.18 > 1581.28 � 2217.39 � 1435.63 1581.28 ≈ 1606.96 � 1409.52 ≈ 1435.63
DF15–20 1572.51 � 1273.14 � 1441.16 � 1270.1 1273.14 ≈ 1232.33 � 1141.29 < 1270.1
DF15–21 1754.13 ≈ 1664.01 � 1878.92 � 1504.63 1664.01 ≈ 1591.27 � 1422.87 ≈ 1504.63
DF15–33 2915.83 � 2582.61 < 2690.87 � 2541.5 2582.61 > 2405.23 ≈ 2349.48 � 2541.5
DF15–35 781.64 > 733.28 ≈ 742.93 ≈ 723.78 733.28 � 641.02 ≈ 627.73 < 723.78
DRFN08–10 304.41 ≈ 276.61 ≈ 285.26 ≈ 243.71 276.61 > 244.91 ≈ 236.44 ≈ 243.71
DRFN08–11 348.47 ≈ 339.09 ≈ 371.38 ≈ 323.06 339.09 ≈ 341.42 � 299.09 ≈ 323.06
DO09–32 2010.01 > 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 > 1602.93 � 1850.35
FY17–25 469.85 ≈ 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 381.63 � 427.79
FRD12–29 530.3 ≈ 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 > 414.24 < 514.87
KS13–12 1866.19 ≈ 1751.81 � 2336.29 � 1678.7 1751.81 ≈ 1775.62 � 1541.38 < 1678.7
STS13–13 1027.43 > 955.73 � 1137.49 � 958.99 955.73 ≈ 951.34 � 823.06 � 955.73
Aoyagi and Frechette (2009) 534.29 � 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 422.24 ≈ 416.51
Blonski et al. (2011) 1503.41 � 1398.5 � 1509.09 < 1593.01 1398.5 > 1346.79 ≈ 1385.91 ≈ 1394.16
Bruttel and Kamecke (2012) 588.33 > 538.17 < 611.91 � 516.71 538.17 ≈ 536.77 > 478.23 ≈ 516.71
Dal Bó (2005) 751.82 ≈ 732.27 < 786.21 > 739.59 732.27 > 699.05 ≈ 679.04 < 729.48
Dal Bó and Fréchette (2011) 6065.93 � 5195.88 � 6378.16 � 5007.24 5195.88 ≈ 5128.69 � 4545.08 � 4964.77
Dal Bó and Fréchette (2015) 9085.4 � 8177.46 � 9401.19 � 7910.83 8177.46 � 7825.98 � 7310.27 � 7893.79
Dreber et al. (2008) 656.38 ≈ 619.9 ≈ 662.24 > 581.94 619.9 ≈ 589.84 > 541.83 ≈ 581.94
Duffy and Ochs (2009) 2010.01 > 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 > 1602.93 � 1850.35
Fréchette and Yuksel (2017) 469.85 ≈ 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 381.63 � 427.79
Fudenberg et al. (2012) 530.3 ≈ 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 > 414.24 < 514.87
Kagel and Schley (2013) 1866.19 ≈ 1751.81 � 2336.29 � 1678.7 1751.81 ≈ 1775.62 � 1541.38 < 1678.7
Sherstyuk et al. (2013) 1027.43 > 955.73 � 1137.49 � 958.99 955.73 ≈ 951.34 � 823.06 � 955.73

Pooled 25271.72 � 22848.49 � 26409.44 � 22927.9 22848.49 � 22097.67 � 20454.13 � 22422.07

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table 14.



Table 29: Memory-1 or Memory-2, and semi-grim, pure or generalized pure? Strategy mixtures are estimated treatment-by-treatment. The
resulting ICL-BICs are pooled within experiments and overall (less is better, relation signs point to better models)

Memory-2 Generalizations of Semi-Grim + AD Best Mixtures of Generalized Pure Strategies Best Pure
M2“General” M2“TFT” M2“Grim” AD+SG M1+M2“TFT” M1+M2“Grim” M1 M1 & M2

Specification
# Models evaluated 1 1 1 1 2232 2232 1332 532

# Pars estimated (by treatment) 12 6 6 5 160 160 80 32
# Parameters accounted for 12 6 6 5 6–15 6–15 6–10 3–8

First halves per session
Aoyagi and Frechette (2009) 756.04 ≈ 764.13 ≈ 749.99 ≈ 781.86 ≈ 756.95 ≈ 756.95 ≈ 756.95 � 884.86
Blonski et al. (2011) 1244.76 � 1121.17 ≈ 1120.87 � 1069.28 ≈ 1069.56 ≈ 1069.56 ≈ 1069.58 ≈ 1105.98
Bruttel and Kamecke (2012) 807.47 ≈ 802.89 ≈ 804.16 ≈ 800.12 ≈ 817.89 ≈ 817.89 ≈ 817.89 ≈ 839.97
Dal Bó (2005) 660.68 > 641.34 ≈ 642.26 ≈ 629.17 ≈ 635.04 ≈ 635.04 ≈ 635.04 ≈ 653.05
Dal Bó and Fréchette (2011) 6671.28 ≈ 6616.44 ≈ 6604.7 ≈ 6597.93 � 6904.79 ≈ 6904.79 ≈ 6904.79 � 7391.89
Dal Bó and Fréchette (2015) 8068.37 ≈ 8028.83 ≈ 8031.59 ≈ 8017.59 � 8423.8 ≈ 8431.51 ≈ 8434.93 � 8893.78
Dreber et al. (2008) 805.74 > 785.48 ≈ 785.6 ≈ 782.37 ≈ 787.71 ≈ 787.71 ≈ 787.71 < 863.47
Duffy and Ochs (2009) 1361.84 ≈ 1377.17 ≈ 1369.86 ≈ 1372.97 ≈ 1395.4 ≈ 1395.4 ≈ 1395.4 ≈ 1426.34
Fréchette and Yuksel (2017) 305.9 ≈ 299.72 ≈ 296.93 ≈ 299.62 ≈ 300.87 ≈ 300.87 ≈ 300.87 ≈ 317.35
Fudenberg et al. (2012) 387.8 ≈ 379.84 ≈ 378.07 ≈ 381.01 < 432.32 ≈ 432.32 ≈ 432.32 ≈ 463.4
Kagel and Schley (2013) 2542.02 ≈ 2556.45 ≈ 2552.09 ≈ 2561.76 ≈ 2679.23 ≈ 2685.4 ≈ 2685.4 ≈ 2730.66
Sherstyuk et al. (2013) 1311.64 ≈ 1307.45 ≈ 1303.94 ≈ 1303.8 ≈ 1322.6 ≈ 1322.6 ≈ 1322.6 < 1398.69

Pooled 25434.21 � 24972.71 ≈ 24931.86 ≈ 24779.85 � 25750.84 ≈ 25757.44 ≈ 25758.38 � 27115.39

Second halves per session
Aoyagi and Frechette (2009) 415.47 ≈ 421.18 > 409.19 ≈ 423.68 ≈ 416.51 ≈ 416.51 ≈ 416.51 � 540.47
Blonski et al. (2011) 1518.54 � 1395.94 ≈ 1393.41 � 1346.79 ≈ 1398.5 ≈ 1398.5 ≈ 1398.5 < 1564.48
Bruttel and Kamecke (2012) 536.19 ≈ 532.08 ≈ 529.47 ≈ 536.77 ≈ 538.17 ≈ 538.17 ≈ 538.17 ≈ 567.99
Dal Bó (2005) 727.25 ≈ 710.88 ≈ 708.32 ≈ 699.05 ≈ 726.04 ≈ 731.81 ≈ 732.27 ≈ 741.2
Dal Bó and Fréchette (2011) 5201.05 ≈ 5137.82 ≈ 5132.96 ≈ 5128.69 ≈ 5195.88 ≈ 5195.88 ≈ 5195.88 � 5960.78
Dal Bó and Fréchette (2015) 7840.87 ≈ 7829.51 ≈ 7808.63 ≈ 7825.98 � 8172.63 ≈ 8177.46 ≈ 8177.46 � 9143.98
Dreber et al. (2008) 597.17 ≈ 580.63 ≈ 570.33 ≈ 589.84 ≈ 618.5 ≈ 618.89 ≈ 619.9 ≈ 648.55
Duffy and Ochs (2009) 1706.1 ≈ 1753.41 ≈ 1719.86 ≈ 1761.6 ≈ 1857.06 ≈ 1876.72 ≈ 1883.52 ≈ 2003.41
Fréchette and Yuksel (2017) 422.32 ≈ 424.41 ≈ 419.44 ≈ 423.34 ≈ 433.18 ≈ 433.18 ≈ 433.18 < 464.23
Fudenberg et al. (2012) 452.64 ≈ 450.08 ≈ 447.25 ≈ 452.6 < 484.5 ≈ 477.91 ≈ 514.87 ≈ 534.47
Kagel and Schley (2013) 1782.43 ≈ 1777.83 ≈ 1773.55 ≈ 1775.62 ≈ 1751.81 ≈ 1751.81 ≈ 1751.81 ≈ 1830.26
Sherstyuk et al. (2013) 959.21 ≈ 952.56 ≈ 949.46 ≈ 951.34 ≈ 955.73 ≈ 955.73 ≈ 955.73 ≈ 1023.43

Pooled 22669.91 � 22258.14 ≈ 22153.69 ≈ 22097.67 � 22811.34 ≈ 22828.13 ≈ 22848.49 � 25177.57

Note: Results treatment-by-treatment are in the appendix. The main body contains ICL-BICs aggregated at paper level. Relation signs and p-values are exactly as above, see
Table 3. “M2” (“M1”) denotes strategies, whose actions may depend on actions in t− 2 and t− 1 (t− 1 only). The supplements “General”, “TFT”, “Grim” indicate whether
parameters of behavior strategies may depend on: all four possible histories in t− 2 (M2 “General”), whether the opponent cooperated in t− 2 (M2 “TFT”), or whether there
was joint cooperation in t−2 (M2 “Grim”). Pure M2 strategies do not have such free parameters. Columns 1-3 contain one memory-2 version of semi-grim each. Column 4 is
memory-1 semi-grim. Columns 5-7 are memory-2 and memory-1 versions of generalized prototypical strategies. The last column contains the best fitting combinations of a set
of pure memory-1 and memory-2 strategies from the literature (TFT, Grim, AD, Grim2, TF2T, T2, 2TFT, 2PTFT) for definitions see Table 12 in the Online Appendix.



Table 30: Table 8 by treatments – Memory-1 or Memory-2, and semi-grim, pure or generalized pure?

(a) First halves per session
Memory-2 Generalizations of Semi-Grim + AD Best Mixtures of Generalized Pure Strategies Best Pure

M2“General” M2“TFT” M2“Grim” AD+SG M1+M2“TFT” M1+M2“Grim” M1 M1 & M2

Specification
# Models evaluated 1 1 1 1 2232 2232 1332 532

# Pars estimated (by treatment) 12 6 6 5 160 160 80 32
# Parameters accounted for 12 6 6 5 6–15 6–15 6–10 3–8

AF09–34 756.04 ≈ 764.13 ≈ 749.99 ≈ 781.86 ≈ 756.95 ≈ 756.95 ≈ 756.95 � 884.86
BOS11–9 91.44 ≈ 87.24 ≈ 90.13 ≈ 86.56 ≈ 83.42 ≈ 83.42 ≈ 83.42 ≈ 85.2
BOS11–14 103.75 ≈ 98.34 ≈ 97.69 ≈ 93.88 ≈ 97.73 ≈ 97.73 ≈ 97.73 ≈ 97.73
BOS11–15 50.59 � 41.48 ≈ 41.64 > 37.73 ≈ 34.3 ≈ 34.3 ≈ 34.3 ≈ 34.3
BOS11–16 175.94 > 168.96 ≈ 168.84 ≈ 167.42 ≈ 167.3 ≈ 167.3 ≈ 167.3 ≈ 174.26
BOS11–17 128.36 � 118.65 ≈ 119.18 ≈ 115.02 ≈ 110.57 ≈ 110.57 ≈ 110.57 ≈ 110.57
BOS11–26 253.27 ≈ 244.2 ≈ 242.92 ≈ 244.5 ≈ 256.88 ≈ 256.88 ≈ 256.88 ≈ 256.88
BOS11–27 100.21 > 94.88 ≈ 93.66 ≈ 92.83 ≈ 100.97 ≈ 100.97 ≈ 102.11 ≈ 100.97
BOS11–30 69.22 � 60.24 ≈ 60.24 � 55.74 ≈ 56.77 ≈ 56.77 ≈ 56.81 ≈ 56.77
BOS11–31 131.77 ≈ 127.07 ≈ 126.46 ≈ 125.52 ≈ 125.82 ≈ 125.82 ≈ 125.82 ≈ 156.95
BK12–28 807.47 ≈ 802.89 ≈ 804.16 ≈ 800.12 ≈ 817.89 ≈ 817.89 ≈ 817.89 ≈ 839.97
D05–18 241.79 ≈ 235.57 ≈ 236.43 ≈ 230.57 ≈ 235.84 ≈ 235.84 ≈ 235.84 ≈ 235.84
D05–19 408.97 ≈ 400.1 ≈ 400.16 ≈ 395.06 ≈ 396.28 ≈ 396.28 ≈ 396.28 ≈ 415.08
DF11–6 806.97 ≈ 797.22 ≈ 798.57 ≈ 794.44 ≈ 810.5 ≈ 810.5 ≈ 810.5 < 877.78
DF11–7 1252.93 ≈ 1248.87 ≈ 1249.66 ≈ 1256.83 ≈ 1297.64 ≈ 1297.64 ≈ 1297.64 < 1424.78
DF11–8 1403.92 ≈ 1393.05 ≈ 1393.09 ≈ 1389.06 ≈ 1422.73 ≈ 1422.73 ≈ 1422.73 < 1501.88
DF11–22 973.99 ≈ 965.39 ≈ 969.46 ≈ 965.96 � 1080.23 ≈ 1080.23 ≈ 1080.23 � 1188.65
DF11–23 1026.82 ≈ 1024.62 ≈ 1022.57 ≈ 1019.57 ≈ 1082.68 ≈ 1082.68 ≈ 1082.68 ≈ 1148.16
DF11–24 1131.28 ≈ 1144.21 ≈ 1128.27 ≈ 1145.15 ≈ 1171.57 ≈ 1171.57 ≈ 1171.57 < 1224.49
DF15–4 442.4 ≈ 439.96 ≈ 437.41 ≈ 436.57 ≈ 431.07 ≈ 431.07 ≈ 431.07 ≈ 456.32
DF15–5 1752.09 ≈ 1739.69 ≈ 1739.11 ≈ 1738.77 ≈ 1751.2 ≈ 1756.46 ≈ 1762.23 ≈ 1817.09
DF15–20 1408.72 ≈ 1403.6 ≈ 1408.86 ≈ 1405.3 ≈ 1463.03 ≈ 1463.03 ≈ 1463.03 < 1585.91
DF15–21 1871.42 ≈ 1871.98 ≈ 1864.48 ≈ 1872.47 < 1971.78 ≈ 1974.94 ≈ 1974.94 ≈ 2022.58
DF15–33 2154.98 ≈ 2176.37 ≈ 2184.09 ≈ 2186.26 � 2379.17 ≈ 2379.17 ≈ 2379.17 � 2575.64
DF15–35 357.11 ≈ 350.57 ≈ 350.98 ≈ 349.06 < 384.6 ≈ 384.6 ≈ 384.6 ≈ 411.07
DRFN08–10 375.03 ≈ 366.4 ≈ 367.62 ≈ 367.86 ≈ 374.3 ≈ 374.3 ≈ 374.3 ≈ 410.24
DRFN08–11 420.9 ≈ 413.48 ≈ 412.38 ≈ 411.01 ≈ 408.63 ≈ 408.63 ≈ 408.63 ≈ 451.13
DO09–32 1361.84 ≈ 1377.17 ≈ 1369.86 ≈ 1372.97 ≈ 1395.4 ≈ 1395.4 ≈ 1395.4 ≈ 1426.34
FY17–25 305.9 ≈ 299.72 ≈ 296.93 ≈ 299.62 ≈ 300.87 ≈ 300.87 ≈ 300.87 ≈ 317.35
FRD12–29 387.8 ≈ 379.84 ≈ 378.07 ≈ 381.01 < 432.32 ≈ 432.32 ≈ 432.32 ≈ 463.4
KS13–12 2542.02 ≈ 2556.45 ≈ 2552.09 ≈ 2561.76 ≈ 2679.23 ≈ 2685.4 ≈ 2685.4 ≈ 2730.66
STS13–13 1311.64 ≈ 1307.45 ≈ 1303.94 ≈ 1303.8 ≈ 1322.6 ≈ 1322.6 ≈ 1322.6 < 1398.69
Aoyagi and Frechette (2009) 756.04 ≈ 764.13 ≈ 749.99 ≈ 781.86 ≈ 756.95 ≈ 756.95 ≈ 756.95 � 884.86
Blonski et al. (2011) 1244.76 � 1121.17 ≈ 1120.87 � 1069.28 ≈ 1069.56 ≈ 1069.56 ≈ 1069.58 ≈ 1105.98
Bruttel and Kamecke (2012) 807.47 ≈ 802.89 ≈ 804.16 ≈ 800.12 ≈ 817.89 ≈ 817.89 ≈ 817.89 ≈ 839.97
Dal Bó (2005) 660.68 > 641.34 ≈ 642.26 ≈ 629.17 ≈ 635.04 ≈ 635.04 ≈ 635.04 ≈ 653.05
Dal Bó and Fréchette (2011) 6671.28 ≈ 6616.44 ≈ 6604.7 ≈ 6597.93 � 6904.79 ≈ 6904.79 ≈ 6904.79 � 7391.89
Dal Bó and Fréchette (2015) 8068.37 ≈ 8028.83 ≈ 8031.59 ≈ 8017.59 � 8423.8 ≈ 8431.51 ≈ 8434.93 � 8893.78
Dreber et al. (2008) 805.74 > 785.48 ≈ 785.6 ≈ 782.37 ≈ 787.71 ≈ 787.71 ≈ 787.71 < 863.47
Duffy and Ochs (2009) 1361.84 ≈ 1377.17 ≈ 1369.86 ≈ 1372.97 ≈ 1395.4 ≈ 1395.4 ≈ 1395.4 ≈ 1426.34
Fréchette and Yuksel (2017) 305.9 ≈ 299.72 ≈ 296.93 ≈ 299.62 ≈ 300.87 ≈ 300.87 ≈ 300.87 ≈ 317.35
Fudenberg et al. (2012) 387.8 ≈ 379.84 ≈ 378.07 ≈ 381.01 < 432.32 ≈ 432.32 ≈ 432.32 ≈ 463.4
Kagel and Schley (2013) 2542.02 ≈ 2556.45 ≈ 2552.09 ≈ 2561.76 ≈ 2679.23 ≈ 2685.4 ≈ 2685.4 ≈ 2730.66
Sherstyuk et al. (2013) 1311.64 ≈ 1307.45 ≈ 1303.94 ≈ 1303.8 ≈ 1322.6 ≈ 1322.6 ≈ 1322.6 < 1398.69

Pooled 25434.21 � 24972.71 ≈ 24931.86 ≈ 24779.85 � 25750.84 ≈ 25757.44 ≈ 25758.38 � 27115.39

(b) Second halves per session
Memory-2 Generalizations of Semi-Grim + AD Best Mixtures of Generalized Pure Strategies Best Pure

M2“General” M2“TFT” M2“Grim” AD+SG M1+M2“TFT” M1+M2“Grim” M1 M1 & M2

Specification
# Models evaluated 1 1 1 1 2232 2232 1332 532

# Pars estimated (by treatment) 12 6 6 5 160 160 80 32
# Parameters accounted for 12 6 6 5 6–15 6–15 6–10 3–8

AF09–34 415.47 ≈ 421.18 > 409.19 ≈ 423.68 ≈ 416.51 ≈ 416.51 ≈ 416.51 � 540.47
BOS11–9 88.57 > 79.59 ≈ 79.59 ≈ 75.1 ≈ 78.84 ≈ 78.84 ≈ 78.84 ≈ 84.22
BOS11–14 58.78 � 40.08 ≈ 39.03 ≈ 35.58 ≈ 40.82 ≈ 40.82 ≈ 40.82 ≈ 40.82
BOS11–15 33.32 � 19.62 ≈ 19.63 > 19.23 ≈ 15.52 ≈ 15.52 ≈ 15.52 ≈ 15.52
BOS11–16 158.81 ≈ 153.59 ≈ 150.12 ≈ 150.95 ≈ 148.98 ≈ 148.98 ≈ 148.98 ≈ 157.48
BOS11–17 205.77 ≈ 197.54 ≈ 199.15 ≈ 196.25 ≈ 211.59 ≈ 211.59 ≈ 211.59 ≈ 228.36
BOS11–26 309.39 ≈ 304.57 ≈ 304.15 ≈ 299.85 ≈ 327.16 ≈ 327.16 ≈ 327.16 < 374.79
BOS11–27 227.82 ≈ 231.03 ≈ 234.28 ≈ 235.88 ≈ 224.85 ≈ 224.85 ≈ 224.85 ≈ 281.24
BOS11–30 138.28 > 133.27 ≈ 131.54 ≈ 129.86 ≈ 139.46 ≈ 139.46 ≈ 139.46 ≈ 146.49
BOS11–31 157.58 ≈ 156.52 ≈ 155.81 ≈ 154.02 ≈ 151.87 ≈ 151.87 ≈ 151.87 ≈ 196.99
BK12–28 536.19 ≈ 532.08 ≈ 529.47 ≈ 536.77 ≈ 538.17 ≈ 538.17 ≈ 538.17 ≈ 567.99
D05–18 350.65 > 338.4 ≈ 337.77 ≈ 334.18 ≈ 340.33 ≈ 340.33 ≈ 340.33 ≈ 350.59
D05–19 366.67 ≈ 366.81 ≈ 364.88 ≈ 361.33 ≈ 380.66 ≈ 386.44 ≈ 388.49 ≈ 388.49
DF11–6 532.38 ≈ 524.97 ≈ 526.02 ≈ 526.15 ≈ 579.84 ≈ 579.84 ≈ 579.84 < 747.77
DF11–7 1316.59 ≈ 1310.02 ≈ 1309.99 ≈ 1316.79 ≈ 1359.89 ≈ 1359.89 ≈ 1359.89 � 1566.58
DF11–8 1092.7 ≈ 1082.36 ≈ 1082.77 ≈ 1078.24 ≈ 1028.93 ≈ 1028.93 ≈ 1028.93 < 1153.72
DF11–22 928.2 ≈ 926.45 ≈ 928.99 ≈ 930.3 ≈ 1012.26 ≈ 1012.26 ≈ 1012.26 ≈ 1152.14
DF11–23 776.48 ≈ 771.57 ≈ 770.87 ≈ 767.04 ≈ 723.5 ≈ 723.5 ≈ 723.5 ≈ 782.51
DF11–24 479.3 ≈ 479.38 ≈ 471.25 ≈ 483.25 ≈ 450.61 ≈ 450.61 ≈ 450.61 < 530.97
DF15–4 329.82 ≈ 322.21 ≈ 323.22 ≈ 320.02 ≈ 301.69 ≈ 301.69 ≈ 301.69 < 342.05
DF15–5 1610.1 ≈ 1602.79 ≈ 1599.28 ≈ 1606.96 ≈ 1581.28 ≈ 1581.28 ≈ 1581.28 < 1712.9
DF15–20 1222.77 ≈ 1231.06 ≈ 1229.59 ≈ 1232.33 ≈ 1273.14 ≈ 1273.14 ≈ 1273.14 � 1582.66
DF15–21 1575.91 ≈ 1587.09 ≈ 1571.12 ≈ 1591.27 ≈ 1664.01 ≈ 1664.01 ≈ 1664.01 < 1754.9
DF15–33 2378.58 ≈ 2399.8 ≈ 2401.15 ≈ 2405.23 < 2582.61 ≈ 2582.61 ≈ 2582.61 � 2935.81
DF15–35 642.04 ≈ 639.91 ≈ 637.62 ≈ 641.02 < 722.6 ≈ 733.28 ≈ 733.28 ≈ 789.09
DRFN08–10 232.84 ≈ 233.55 ≈ 223.78 < 244.91 < 276.61 ≈ 276.61 ≈ 276.61 ≈ 301.08
DRFN08–11 354.52 ≈ 341.48 ≈ 340.95 ≈ 341.42 ≈ 336.45 ≈ 336.84 ≈ 339.09 ≈ 345.37
DO09–32 1706.1 ≈ 1753.41 ≈ 1719.86 ≈ 1761.6 ≈ 1857.06 ≈ 1876.72 ≈ 1883.52 ≈ 2003.41
FY17–25 422.32 ≈ 424.41 ≈ 419.44 ≈ 423.34 ≈ 433.18 ≈ 433.18 ≈ 433.18 < 464.23
FRD12–29 452.64 ≈ 450.08 ≈ 447.25 ≈ 452.6 < 484.5 ≈ 477.91 ≈ 514.87 ≈ 534.47
KS13–12 1782.43 ≈ 1777.83 ≈ 1773.55 ≈ 1775.62 ≈ 1751.81 ≈ 1751.81 ≈ 1751.81 ≈ 1830.26
STS13–13 959.21 ≈ 952.56 ≈ 949.46 ≈ 951.34 ≈ 955.73 ≈ 955.73 ≈ 955.73 ≈ 1023.43
Aoyagi and Frechette (2009) 415.47 ≈ 421.18 > 409.19 ≈ 423.68 ≈ 416.51 ≈ 416.51 ≈ 416.51 � 540.47
Blonski et al. (2011) 1518.54 � 1395.94 ≈ 1393.41 � 1346.79 ≈ 1398.5 ≈ 1398.5 ≈ 1398.5 < 1564.48
Bruttel and Kamecke (2012) 536.19 ≈ 532.08 ≈ 529.47 ≈ 536.77 ≈ 538.17 ≈ 538.17 ≈ 538.17 ≈ 567.99
Dal Bó (2005) 727.25 ≈ 710.88 ≈ 708.32 ≈ 699.05 ≈ 726.04 ≈ 731.81 ≈ 732.27 ≈ 741.2
Dal Bó and Fréchette (2011) 5201.05 ≈ 5137.82 ≈ 5132.96 ≈ 5128.69 ≈ 5195.88 ≈ 5195.88 ≈ 5195.88 � 5960.78
Dal Bó and Fréchette (2015) 7840.87 ≈ 7829.51 ≈ 7808.63 ≈ 7825.98 � 8172.63 ≈ 8177.46 ≈ 8177.46 � 9143.98
Dreber et al. (2008) 597.17 ≈ 580.63 ≈ 570.33 ≈ 589.84 ≈ 618.5 ≈ 618.89 ≈ 619.9 ≈ 648.55
Duffy and Ochs (2009) 1706.1 ≈ 1753.41 ≈ 1719.86 ≈ 1761.6 ≈ 1857.06 ≈ 1876.72 ≈ 1883.52 ≈ 2003.41
Fréchette and Yuksel (2017) 422.32 ≈ 424.41 ≈ 419.44 ≈ 423.34 ≈ 433.18 ≈ 433.18 ≈ 433.18 < 464.23
Fudenberg et al. (2012) 452.64 ≈ 450.08 ≈ 447.25 ≈ 452.6 < 484.5 ≈ 477.91 ≈ 514.87 ≈ 534.47
Kagel and Schley (2013) 1782.43 ≈ 1777.83 ≈ 1773.55 ≈ 1775.62 ≈ 1751.81 ≈ 1751.81 ≈ 1751.81 ≈ 1830.26
Sherstyuk et al. (2013) 959.21 ≈ 952.56 ≈ 949.46 ≈ 951.34 ≈ 955.73 ≈ 955.73 ≈ 955.73 ≈ 1023.43

Pooled 22669.91 � 22258.14 ≈ 22153.69 ≈ 22097.67 � 22811.34 ≈ 22828.13 ≈ 22848.49 � 25177.57

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table 14.



Table 31: Continuation strategies: Memory-1 or Memory-2, and semi-grim, pure or generalized pure? Strategy mixtures are estimated
treatment-by-treatment. The resulting ICL-BICs are pooled within experiments and overall (less is better, relation signs point to better models)

Memory-2 Generalizations of Semi-Grim + AD Best Mixtures of Generalized Pure Strategies Best Pure
M2“General” M2“TFT” M2“Grim” AD+SG M1+M2“TFT” M1+M2“Grim” M1 M1 & M2

Specification
# Models evaluated 1 1 1 1 2232 2232 1332 532

# Pars estimated (by treatment) 12 6 6 5 160 160 80 32
# Parameters accounted for 12 6 6 5 6–15 6–15 6–10 3–8

First halves per session
Aoyagi and Frechette (2009) 692.5 ≈ 690.85 ≈ 686.2 ≈ 694.72 > 649.38 ≈ 646.7 ≈ 645.31 � 791.38
Blonski et al. (2011) 714 � 601.67 ≈ 601.95 � 549.45 � 760.28 ≈ 768.65 � 713.8 ≈ 703.06
Bruttel and Kamecke (2012) 572.14 ≈ 566.75 ≈ 567.58 ≈ 567.86 ≈ 569.25 ≈ 576.94 ≈ 585.42 ≈ 588.54
Dal Bó (2005) 385.61 > 367.94 ≈ 366.48 ≈ 358.51 � 404.24 ≈ 402.79 ≈ 407.86 ≈ 389.05
Dal Bó and Fréchette (2011) 3596.64 ≈ 3542.28 ≈ 3538.64 ≈ 3533.99 ≈ 3481.93 ≈ 3517.82 ≈ 3536.73 � 3835.73
Dal Bó and Fréchette (2015) 5017.27 ≈ 4974.8 ≈ 4988.94 ≈ 4991.74 � 5193.81 ≈ 5218.03 ≈ 5259.64 � 5538.35
Dreber et al. (2008) 464.84 > 444.11 ≈ 444.71 ≈ 437.17 ≈ 474.89 ≈ 483.06 ≈ 478.09 ≈ 462.72
Duffy and Ochs (2009) 1060.26 ≈ 1063.66 ≈ 1074.9 ≈ 1090.22 ≈ 1039.24 ≈ 1045.68 ≈ 1047.59 ≈ 1102.63
Fréchette and Yuksel (2017) 174.64 ≈ 167.06 ≈ 164.75 ≈ 161.45 � 182.7 ≈ 188.04 ≈ 188.5 ≈ 181.98
Fudenberg et al. (2012) 301.76 ≈ 293.52 ≈ 294.4 ≈ 291.43 < 319.76 ≈ 322.89 ≈ 319.45 < 366.77
Kagel and Schley (2013) 1746.26 ≈ 1749.95 ≈ 1753.68 ≈ 1782.82 > 1651.6 ≈ 1679.19 < 1761.98 ≈ 1805.96
Sherstyuk et al. (2013) 917.07 ≈ 907.95 ≈ 913.52 ≈ 912.8 ≈ 857.56 ≈ 870.11 ≈ 865.67 < 941.92

Pooled 16080.69 � 15589.39 ≈ 15614.59 > 15481.59 � 15948.02 < 16109.87 ≈ 16077.95 � 16858.76

Second halves per session
Aoyagi and Frechette (2009) 396.32 ≈ 391.42 > 387.48 ≈ 389.24 ≈ 368.08 ≈ 365.6 ≈ 363.58 � 484.41
Blonski et al. (2011) 1012.48 � 919.29 ≈ 922.48 � 867.87 < 1007.71 ≈ 1021.03 > 992.44 ≈ 1055.98
Bruttel and Kamecke (2012) 333.51 ≈ 337.12 ≈ 329.73 ≈ 347.4 ≈ 318.55 ≈ 328.38 ≈ 344.88 ≈ 316.37
Dal Bó (2005) 449.03 ≈ 434.38 ≈ 433.82 ≈ 424.44 < 451.25 < 471.53 ≈ 475.11 ≈ 463.53
Dal Bó and Fréchette (2011) 2854.52 ≈ 2801.46 ≈ 2800.71 ≈ 2817.31 > 2619.87 ≈ 2643.97 < 2737.11 < 2885.4
Dal Bó and Fréchette (2015) 5006.3 ≈ 5013.49 ≈ 5012.99 ≈ 5043.81 ≈ 5034.8 ≈ 5099.68 ≈ 5164.78 � 5575.88
Dreber et al. (2008) 272.94 ≈ 258.88 ≈ 253.47 ≈ 264.94 ≈ 287.55 ≈ 288.95 ≈ 295.06 ≈ 287.58
Duffy and Ochs (2009) 1375.43 ≈ 1367.68 ≈ 1389.92 ≈ 1403.03 ≈ 1339.22 ≈ 1359.29 ≈ 1381.01 � 1617.76
Fréchette and Yuksel (2017) 308.21 ≈ 304.2 ≈ 306.93 ≈ 313.5 ≈ 311.03 ≈ 311.99 ≈ 309.63 � 356.11
Fudenberg et al. (2012) 384.37 ≈ 382.32 ≈ 378.59 ≈ 380.75 ≈ 367.2 ≈ 364.46 ≈ 373.44 < 447.18
Kagel and Schley (2013) 1204.38 ≈ 1202.61 ≈ 1197.19 ≈ 1211.37 > 1088.27 ≈ 1122.98 ≈ 1170.12 ≈ 1169.32
Sherstyuk et al. (2013) 598.79 ≈ 590.65 ≈ 591.38 ≈ 586.72 > 503.98 ≈ 517.77 ≈ 527.09 ≈ 583.8

Pooled 14633.97 � 14222.35 ≈ 14223.53 ≈ 14159.8 ≈ 14059.75 < 14267.75 ≈ 14387.48 � 15400.68

Note: Results treatment-by-treatment are in the appendix. The main body contains ICL-BICs aggregated at paper level. Relation signs and p-values are exactly as above, see
Table 3. “M2” (“M1”) denotes strategies, whose actions may depend on actions in t− 2 and t− 1 (t− 1 only). The supplements “General”, “TFT”, “Grim” indicate whether
parameters of behavior strategies may depend on: all four possible histories in t− 2 (M2 “General”), whether the opponent cooperated in t− 2 (M2 “TFT”), or whether there
was joint cooperation in t−2 (M2 “Grim”). Pure M2 strategies do not have such free parameters. Columns 1-3 contain one memory-2 version of semi-grim each. Column 4 is
memory-1 semi-grim. Columns 5-7 are memory-2 and memory-1 versions of generalized prototypical strategies. The last column contains the best fitting combinations of a set
of pure memory-1 and memory-2 strategies from the literature (TFT, Grim, AD, Grim2, TF2T, T2, 2TFT, 2PTFT) for definitions see Table 12 in the Online Appendix.



Table 32: Is there a single “semi grim” type? Mixture models involving SG

Best Mixture
Best Switching SG + AD 1.5×SG+AD 2×SG+AD 3×SG+AD 3×P5+AD 2×P5+AD P5+AD

Specification
# Models evaluated 3932 ≈ 1051 1 1 1 1 1 1 1
# Pars estimated (by treatment) 438 5 7 9 13 19 17 11
# Parameters accounted for 3-30 5 7 9 13 19 17 11

First halves per session
Aoyagi and Frechette (2009) 755.97 ≈ 781.86 ≈ 792.51 ≈ 777.3 ≈ 782.13 > 741.95 ≈ 744.86 ≈ 744.06
Blonski et al. (2011) 1069.39 ≈ 1069.28 ≈ 1104.6 ≈ 1134.96 � 1232.97 � 1332.48 � 1205.47 � 1106.01
Bruttel and Kamecke (2012) 785.49 ≈ 800.12 ≈ 771.14 ≈ 762.83 ≈ 748.06 ≈ 751.86 ≈ 759.45 ≈ 803.58
Dal Bó (2005) 631.2 ≈ 629.17 ≈ 618.39 ≈ 600.26 � 626.56 ≈ 639.8 > 609.1 ≈ 620.38
Dal Bó and Fréchette (2011) 6388.49 < 6597.93 > 6352.59 ≈ 6304.97 ≈ 6198.12 ≈ 6216.22 < 6295.32 � 6553.25
Dal Bó and Fréchette (2015) 8138.61 ≈ 8017.59 � 7830.12 ≈ 7810.7 ≈ 7828.38 ≈ 7829.74 ≈ 7775.7 � 7969.32
Dreber et al. (2008) 752.16 ≈ 782.37 ≈ 764.44 ≈ 763.52 ≈ 766.77 ≈ 765.81 ≈ 767.32 ≈ 783.45
Duffy and Ochs (2009) 1372.99 ≈ 1372.97 ≈ 1361.15 ≈ 1320.71 ≈ 1297.84 ≈ 1291.42 < 1345.16 ≈ 1361.86
Fréchette and Yuksel (2017) 298.53 ≈ 299.62 ≈ 289.54 ≈ 284.11 ≈ 289.88 ≈ 294.05 ≈ 285.33 ≈ 291.69
Fudenberg et al. (2012) 425.54 > 381.01 ≈ 377.96 ≈ 370.01 ≈ 380.86 ≈ 381.34 ≈ 372.32 ≈ 377.33
Kagel and Schley (2013) 2439.06 ≈ 2561.76 � 2450.24 ≈ 2421.27 ≈ 2385.02 ≈ 2354.05 ≈ 2398.74 � 2551.68
Sherstyuk et al. (2013) 1296.85 ≈ 1303.8 ≈ 1234.52 ≈ 1200.28 ≈ 1184.82 ≈ 1177.24 ≈ 1186.92 � 1286.14

Pooled 24863.15 ≈ 24779.85 � 24202.51 ≈ 24079.18 ≈ 24195.57 < 24468.99 > 24219.87 � 24704.09

Second halves per session
Aoyagi and Frechette (2009) 416.51 ≈ 423.68 ≈ 421.21 ≈ 422.24 ≈ 423.63 > 404.95 ≈ 408.59 ≈ 409.04
Blonski et al. (2011) 1394.16 ≈ 1346.79 ≈ 1370.16 ≈ 1385.91 < 1442.85 � 1555.48 � 1453.1 � 1379.87
Bruttel and Kamecke (2012) 516.71 ≈ 536.77 � 480.47 ≈ 478.23 ≈ 470.25 ≈ 443.83 ≈ 471.73 < 528.54
Dal Bó (2005) 729.48 > 699.05 ≈ 677.24 ≈ 679.04 < 697.21 ≈ 707.25 ≈ 687.86 ≈ 696.41
Dal Bó and Fréchette (2011) 4964.77 ≈ 5128.69 � 4565.93 ≈ 4545.08 ≈ 4426.48 ≈ 4461.98 ≈ 4493.1 � 5045.34
Dal Bó and Fréchette (2015) 7893.79 ≈ 7825.98 � 7306.25 ≈ 7310.27 > 7170.25 ≈ 7089.56 ≈ 7151.84 � 7683.76
Dreber et al. (2008) 581.94 ≈ 589.84 > 544.66 ≈ 541.83 ≈ 539.47 ≈ 519.28 ≈ 518.82 < 562.99
Duffy and Ochs (2009) 1850.35 ≈ 1761.6 � 1656.55 ≈ 1602.93 > 1518.65 ≈ 1509.7 < 1598.04 � 1715.88
Fréchette and Yuksel (2017) 427.79 ≈ 423.34 ≈ 422.61 ≈ 381.63 ≈ 375.03 ≈ 384.11 ≈ 382.16 < 409.93
Fudenberg et al. (2012) 514.87 ≈ 452.6 ≈ 433.74 ≈ 414.24 ≈ 405.22 ≈ 410.69 ≈ 421.81 ≈ 448.37
Kagel and Schley (2013) 1678.7 ≈ 1775.62 � 1572.95 ≈ 1541.38 > 1488.49 ≈ 1477.87 ≈ 1527.47 � 1748.01
Sherstyuk et al. (2013) 955.73 ≈ 951.34 � 834.74 ≈ 823.06 ≈ 799.39 ≈ 801.53 ≈ 815.26 � 935.01

Pooled 22422.07 ≈ 22097.67 � 20541.83 ≈ 20454.13 > 20231.09 < 20459.26 ≈ 20403.95 � 21818.45

Note: This table verifies a number of possible mixtures involving Semi-Grim types as a robustness check for the sufficiency of focussing on the mixtures examined
above. E.g. “3× SG refers to a model containing three different versions of memory-1 semi-grim with allowing for heterogeneity of randomization parameters
across subjects.



Table 33: Table 32 by treatments – Is there a single “semi grim” type? Mixture models involving SG

(a) First halves per session
Best Mixture

Best Switching SG + AD 1.5×SG+AD 2×SG+AD 3×SG+AD 3×P5+AD 2×P5+AD P5+AD

Specification
# Models evaluated 3932 ≈ 1051 1 1 1 1 1 1 1
# Pars estimated (by treatment) 438 5 7 9 13 19 17 11
# Parameters accounted for 3-30 5 7 9 13 19 17 11

AF09–34 755.97 ≈ 781.86 ≈ 792.51 ≈ 777.3 ≈ 782.13 > 741.95 ≈ 744.86 ≈ 744.06
BOS11–9 83.42 ≈ 86.56 ≈ 88.35 ≈ 85.71 < 92 < 97.71 ≈ 91.58 ≈ 89.57
BOS11–14 90 ≈ 93.88 ≈ 98.01 ≈ 95.87 � 105.42 < 113.81 � 99.92 ≈ 96.86
BOS11–15 32.69 ≈ 37.73 < 43.07 � 53.61 � 61.19 � 72.34 � 60.83 � 42.63
BOS11–16 167.3 ≈ 167.42 ≈ 157.13 ≈ 157.72 ≈ 162.97 ≈ 171.76 ≈ 165.4 ≈ 169.7
BOS11–17 110.57 ≈ 115.02 ≈ 119.79 ≈ 122.41 ≈ 129.42 ≈ 123.86 ≈ 124.68 > 112.95
BOS11–26 256.37 ≈ 244.5 ≈ 246.46 ≈ 249.78 ≈ 248.26 ≈ 247.15 ≈ 245.48 ≈ 245.83
BOS11–27 102.11 ≈ 92.83 ≈ 92.07 ≈ 93.42 < 103.66 ≈ 106.06 � 93.17 ≈ 91.86
BOS11–30 56.81 ≈ 55.74 < 61.12 ≈ 64.33 < 73.55 � 82.55 � 70.18 � 58.74
BOS11–31 125.82 ≈ 125.52 ≈ 128.49 ≈ 121.98 ≈ 126.3 ≈ 126.95 ≈ 124.03 ≈ 127.75
BK12–28 785.49 ≈ 800.12 ≈ 771.14 ≈ 762.83 ≈ 748.06 ≈ 751.86 ≈ 759.45 ≈ 803.58
D05–18 230.66 ≈ 230.57 ≈ 238.35 ≈ 229.01 < 241.65 ≈ 249.85 ≈ 238.41 ≈ 233.85
D05–19 396.28 ≈ 395.06 ≈ 375.07 ≈ 364.87 ≈ 375.69 ≈ 376.48 ≈ 361.48 < 381.57
DF11–6 770.36 ≈ 794.44 ≈ 748.9 ≈ 752.56 ≈ 730.86 ≈ 734.21 ≈ 753.19 ≈ 793.66
DF11–7 1132.04 < 1256.83 ≈ 1229.61 ≈ 1238 ≈ 1219.19 ≈ 1214.51 ≈ 1243.2 ≈ 1256.83
DF11–8 1279.8 < 1389.06 ≈ 1286.68 ≈ 1289.21 ≈ 1255.59 ≈ 1249.19 < 1279.81 � 1379.72
DF11–22 1056.77 > 965.96 ≈ 961.58 ≈ 944.2 ≈ 934.1 ≈ 934.68 ≈ 945.32 ≈ 963.43
DF11–23 1020.09 ≈ 1019.57 ≈ 972.17 ≈ 941.73 ≈ 921.62 ≈ 919.31 ≈ 937.03 ≈ 1003.42
DF11–24 1022.62 � 1145.15 ≈ 1115.95 ≈ 1090.82 ≈ 1066.75 ≈ 1062.01 ≈ 1066.78 ≈ 1118.5
DF15–4 395.89 ≈ 436.57 ≈ 422.43 ≈ 425 ≈ 433.05 ≈ 423.74 ≈ 421.84 ≈ 426.78
DF15–5 1638.92 � 1738.77 � 1649.1 ≈ 1639.52 ≈ 1632.23 ≈ 1637.48 ≈ 1637.39 � 1735.05
DF15–20 1433.87 ≈ 1405.3 > 1366.09 ≈ 1364.37 ≈ 1365.64 ≈ 1341.25 ≈ 1352.57 ≈ 1392.99
DF15–21 1902.95 ≈ 1872.47 > 1827.37 ≈ 1811.11 ≈ 1806.23 ≈ 1811.27 ≈ 1792.58 ≈ 1852.64
DF15–33 2296.41 > 2186.26 ≈ 2178.12 ≈ 2174.56 ≈ 2165.14 ≈ 2158.49 ≈ 2161.68 ≈ 2179.74
DF15–35 372.62 ≈ 349.06 ≈ 346.18 ≈ 343.65 ≈ 350.27 ≈ 346.71 ≈ 333.83 ≈ 341.3
DRFN08–10 334.73 < 367.86 ≈ 359.04 ≈ 358.63 ≈ 358.23 ≈ 357.95 ≈ 359.19 ≈ 367.27
DRFN08–11 405.73 ≈ 411.01 ≈ 400.49 ≈ 398.59 ≈ 399.43 ≈ 394.56 ≈ 399.03 ≈ 411.28
DO09–32 1372.99 ≈ 1372.97 ≈ 1361.15 ≈ 1320.71 ≈ 1297.84 ≈ 1291.42 < 1345.16 ≈ 1361.86
FY17–25 298.53 ≈ 299.62 ≈ 289.54 ≈ 284.11 ≈ 289.88 ≈ 294.05 ≈ 285.33 ≈ 291.69
FRD12–29 425.54 > 381.01 ≈ 377.96 ≈ 370.01 ≈ 380.86 ≈ 381.34 ≈ 372.32 ≈ 377.33
KS13–12 2439.06 ≈ 2561.76 � 2450.24 ≈ 2421.27 ≈ 2385.02 ≈ 2354.05 ≈ 2398.74 � 2551.68
STS13–13 1296.85 ≈ 1303.8 ≈ 1234.52 ≈ 1200.28 ≈ 1184.82 ≈ 1177.24 ≈ 1186.92 � 1286.14
Aoyagi and Frechette (2009) 755.97 ≈ 781.86 ≈ 792.51 ≈ 777.3 ≈ 782.13 > 741.95 ≈ 744.86 ≈ 744.06
Blonski et al. (2011) 1069.39 ≈ 1069.28 ≈ 1104.6 ≈ 1134.96 � 1232.97 � 1332.48 � 1205.47 � 1106.01
Bruttel and Kamecke (2012) 785.49 ≈ 800.12 ≈ 771.14 ≈ 762.83 ≈ 748.06 ≈ 751.86 ≈ 759.45 ≈ 803.58
Dal Bó (2005) 631.2 ≈ 629.17 ≈ 618.39 ≈ 600.26 � 626.56 ≈ 639.8 > 609.1 ≈ 620.38
Dal Bó and Fréchette (2011) 6388.49 < 6597.93 > 6352.59 ≈ 6304.97 ≈ 6198.12 ≈ 6216.22 < 6295.32 � 6553.25
Dal Bó and Fréchette (2015) 8138.61 ≈ 8017.59 � 7830.12 ≈ 7810.7 ≈ 7828.38 ≈ 7829.74 ≈ 7775.7 � 7969.32
Dreber et al. (2008) 752.16 ≈ 782.37 ≈ 764.44 ≈ 763.52 ≈ 766.77 ≈ 765.81 ≈ 767.32 ≈ 783.45
Duffy and Ochs (2009) 1372.99 ≈ 1372.97 ≈ 1361.15 ≈ 1320.71 ≈ 1297.84 ≈ 1291.42 < 1345.16 ≈ 1361.86
Fréchette and Yuksel (2017) 298.53 ≈ 299.62 ≈ 289.54 ≈ 284.11 ≈ 289.88 ≈ 294.05 ≈ 285.33 ≈ 291.69
Fudenberg et al. (2012) 425.54 > 381.01 ≈ 377.96 ≈ 370.01 ≈ 380.86 ≈ 381.34 ≈ 372.32 ≈ 377.33
Kagel and Schley (2013) 2439.06 ≈ 2561.76 � 2450.24 ≈ 2421.27 ≈ 2385.02 ≈ 2354.05 ≈ 2398.74 � 2551.68
Sherstyuk et al. (2013) 1296.85 ≈ 1303.8 ≈ 1234.52 ≈ 1200.28 ≈ 1184.82 ≈ 1177.24 ≈ 1186.92 � 1286.14

Pooled 24863.15 ≈ 24779.85 � 24202.51 ≈ 24079.18 ≈ 24195.57 < 24468.99 > 24219.87 � 24704.09

(b) Second halves per session
Best Mixture

Best Switching SG + AD 1.5×SG+AD 2×SG+AD 3×SG+AD 3×P5+AD 2×P5+AD P5+AD

Specification
# Models evaluated 3932 ≈ 1051 1 1 1 1 1 1 1
# Pars estimated (by treatment) 438 5 7 9 13 19 17 11
# Parameters accounted for 3-30 5 7 9 13 19 17 11

AF09–34 416.51 ≈ 423.68 ≈ 421.21 ≈ 422.24 ≈ 423.63 > 404.95 ≈ 408.59 ≈ 409.04
BOS11–9 78.84 ≈ 75.1 ≈ 80.12 ≈ 76.06 < 81.99 ≈ 86.75 > 77.82 ≈ 78.45
BOS11–14 40.82 ≈ 35.58 ≈ 35.86 � 38.21 � 44.97 � 61.2 � 51.58 ≈ 43.6
BOS11–15 15.52 ≈ 19.23 < 24.71 � 30.15 � 37.6 � 53.63 � 36.89 � 18.77
BOS11–16 148.98 ≈ 150.95 ≈ 138.89 ≈ 149.71 ≈ 144.32 ≈ 145.7 ≈ 143.01 ≈ 151.37
BOS11–17 211.59 ≈ 196.25 ≈ 201.03 ≈ 198.59 ≈ 205.53 ≈ 205.55 ≈ 199.44 ≈ 196.67
BOS11–26 327.16 ≈ 299.85 ≈ 309.63 ≈ 295.25 ≈ 301.95 ≈ 305.72 ≈ 300.57 ≈ 301.47
BOS11–27 224.85 ≈ 235.88 ≈ 223.91 ≈ 224.21 ≈ 212.63 ≈ 212.04 ≈ 222.13 ≈ 234.53
BOS11–30 137.43 ≈ 129.86 ≈ 132.45 ≈ 133.81 ≈ 137.88 ≈ 146.11 � 134.06 ≈ 130.39
BOS11–31 151.87 ≈ 154.02 ≈ 153.45 ≈ 149.77 ≈ 145.78 ≈ 148.5 ≈ 157.41 ≈ 154.5
BK12–28 516.71 ≈ 536.77 � 480.47 ≈ 478.23 ≈ 470.25 ≈ 443.83 ≈ 471.73 < 528.54
D05–18 340.33 ≈ 334.18 > 312.74 ≈ 315.38 ≈ 323.23 ≈ 323.92 ≈ 314.03 ≈ 330.79
D05–19 383.3 ≈ 361.33 ≈ 359.54 ≈ 357.27 ≈ 364.76 ≈ 369.86 ≈ 364.62 ≈ 360.66
DF11–6 557.16 ≈ 526.15 ≈ 489.74 ≈ 509.84 ≈ 495.28 ≈ 492.63 ≈ 484.7 ≈ 516.27
DF11–7 1268.34 ≈ 1316.79 ≈ 1250.02 ≈ 1246.93 ≈ 1197.33 ≈ 1212.7 ≈ 1235.02 ≈ 1305.98
DF11–8 904.89 � 1078.24 > 871.84 ≈ 872.45 ≈ 834.02 < 852.42 < 869.39 � 1065.6
DF11–22 973.62 ≈ 930.3 > 858.03 ≈ 860.39 ≈ 848.36 ≈ 832.44 ≈ 844.82 < 918.07
DF11–23 723.5 ≈ 767.04 > 608.87 ≈ 582.24 ≈ 556.55 ≈ 545.64 ≈ 564.18 < 741.18
DF11–24 450.61 ≈ 483.25 ≈ 449.72 ≈ 424.76 ≈ 424.94 ≈ 423.85 ≈ 424.99 ≈ 460.55
DF15–4 301.69 ≈ 320.02 ≈ 299.49 ≈ 306.89 ≈ 301.34 ≈ 299.43 ≈ 295.28 ≈ 318.1
DF15–5 1435.63 � 1606.96 � 1407.26 ≈ 1409.52 ≈ 1395.3 ≈ 1409.68 ≈ 1407.43 � 1596.73
DF15–20 1270.1 ≈ 1232.33 � 1145.96 ≈ 1141.29 ≈ 1113.17 ≈ 1107.65 ≈ 1121.22 < 1215.9
DF15–21 1504.63 ≈ 1591.27 � 1453.74 ≈ 1422.87 ≈ 1390.81 ≈ 1367.29 ≈ 1403.53 � 1559.69
DF15–33 2541.5 > 2405.23 ≈ 2331.38 ≈ 2349.48 > 2265.94 > 2184.74 < 2237.97 < 2318.99
DF15–35 723.78 > 641.02 ≈ 627.6 ≈ 627.73 ≈ 627.87 ≈ 609.97 ≈ 610.6 ≈ 633.52
DRFN08–10 243.71 ≈ 244.91 ≈ 234.76 ≈ 236.44 ≈ 234.24 ≈ 218.82 ≈ 218.68 ≈ 225.25
DRFN08–11 323.06 ≈ 341.42 > 305 ≈ 299.09 ≈ 296.13 ≈ 287.15 ≈ 291.03 ≈ 332.84
DO09–32 1850.35 ≈ 1761.6 � 1656.55 ≈ 1602.93 > 1518.65 ≈ 1509.7 < 1598.04 � 1715.88
FY17–25 427.79 ≈ 423.34 ≈ 422.61 ≈ 381.63 ≈ 375.03 ≈ 384.11 ≈ 382.16 < 409.93
FRD12–29 514.87 ≈ 452.6 ≈ 433.74 ≈ 414.24 ≈ 405.22 ≈ 410.69 ≈ 421.81 ≈ 448.37
KS13–12 1678.7 ≈ 1775.62 � 1572.95 ≈ 1541.38 > 1488.49 ≈ 1477.87 ≈ 1527.47 � 1748.01
STS13–13 955.73 ≈ 951.34 � 834.74 ≈ 823.06 ≈ 799.39 ≈ 801.53 ≈ 815.26 � 935.01
Aoyagi and Frechette (2009) 416.51 ≈ 423.68 ≈ 421.21 ≈ 422.24 ≈ 423.63 > 404.95 ≈ 408.59 ≈ 409.04
Blonski et al. (2011) 1394.16 ≈ 1346.79 ≈ 1370.16 ≈ 1385.91 < 1442.85 � 1555.48 � 1453.1 � 1379.87
Bruttel and Kamecke (2012) 516.71 ≈ 536.77 � 480.47 ≈ 478.23 ≈ 470.25 ≈ 443.83 ≈ 471.73 < 528.54
Dal Bó (2005) 729.48 > 699.05 ≈ 677.24 ≈ 679.04 < 697.21 ≈ 707.25 ≈ 687.86 ≈ 696.41
Dal Bó and Fréchette (2011) 4964.77 ≈ 5128.69 � 4565.93 ≈ 4545.08 ≈ 4426.48 ≈ 4461.98 ≈ 4493.1 � 5045.34
Dal Bó and Fréchette (2015) 7893.79 ≈ 7825.98 � 7306.25 ≈ 7310.27 > 7170.25 ≈ 7089.56 ≈ 7151.84 � 7683.76
Dreber et al. (2008) 581.94 ≈ 589.84 > 544.66 ≈ 541.83 ≈ 539.47 ≈ 519.28 ≈ 518.82 < 562.99
Duffy and Ochs (2009) 1850.35 ≈ 1761.6 � 1656.55 ≈ 1602.93 > 1518.65 ≈ 1509.7 < 1598.04 � 1715.88
Fréchette and Yuksel (2017) 427.79 ≈ 423.34 ≈ 422.61 ≈ 381.63 ≈ 375.03 ≈ 384.11 ≈ 382.16 < 409.93
Fudenberg et al. (2012) 514.87 ≈ 452.6 ≈ 433.74 ≈ 414.24 ≈ 405.22 ≈ 410.69 ≈ 421.81 ≈ 448.37
Kagel and Schley (2013) 1678.7 ≈ 1775.62 � 1572.95 ≈ 1541.38 > 1488.49 ≈ 1477.87 ≈ 1527.47 � 1748.01
Sherstyuk et al. (2013) 955.73 ≈ 951.34 � 834.74 ≈ 823.06 ≈ 799.39 ≈ 801.53 ≈ 815.26 � 935.01

Pooled 22422.07 ≈ 22097.67 � 20541.83 ≈ 20454.13 > 20231.09 < 20459.26 ≈ 20403.95 � 21818.45

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table 14.



Table 34: Strategies as a function of behavior in t−2 (TFT scheme)

Cooperation after /0,(c,c),(d,c) in t−2 Cooperation after (c,d),(d,d) in t−2
Experiment σ̂cc σ̂cd σ̂dc σ̂dd σ̂cc σ̂cd σ̂dc σ̂dd

First halves per session
Aoyagi and Frechette (2009) 0.93 � 0.439 ≈ 0.388 ≈ 0.434 0.789 � 0.463 ≈ 0.44 > 0.291
Blonski et al. (2011) 0.901 � 0.27 ≈ 0.146 � 0.053 0.667 ≈ 0.296 ≈ 0.321 � 0.027
Bruttel and Kamecke (2012) 0.908 � 0.312 ≈ 0.218 ≈ 0.151 0.944 � 0.247 ≈ 0.247 � 0.063
Dal Bó (2005) 0.93 � 0.232 ≈ 0.31 > 0.126 0.833 > 0.147 ≈ 0.413 � 0.071
Dal Bó and Fréchette (2011) 0.955 � 0.352 ≈ 0.298 � 0.086 0.885 � 0.291 ≈ 0.41 � 0.048
Dal Bó and Fréchette (2015) 0.944 � 0.301 ≈ 0.277 � 0.098 0.847 � 0.288 ≈ 0.44 � 0.044
Dreber et al. (2008) 0.902 � 0.213 ≈ 0.189 � 0.061 1 > 0.233 ≈ 0.302 � 0.025
Duffy and Ochs (2009) 0.927 � 0.316 ≈ 0.304 ≈ 0.232 0.691 � 0.277 ≈ 0.361 � 0.08
Fréchette and Yuksel (2017) 0.943 � 0.153 ≈ 0.241 ≈ 0.1 1 ≈ ≈ 0.4 ≈ 0.086
Fudenberg et al. (2012) 0.984 � 0.394 ≈ 0.347 � 0.05 0.895 � 0.41 ≈ 0.579 � 0.069
Kagel and Schley (2013) 0.94 � 0.29 ≈ 0.25 � 0.125 0.787 � 0.196 ≈ 0.402 � 0.032
Sherstyuk et al. (2013) 0.951 � 0.329 ≈ 0.341 > 0.186 0.844 � 0.328 ≈ 0.424 � 0.09

Pooled 0.944 � 0.312 > 0.279 � 0.106 0.826 � 0.287 ≈ 0.41 � 0.05

Second halves per session
Aoyagi and Frechette (2009) 0.961 � 0.408 ≈ 0.567 ≈ 0.447 0.867 � 0.381 ≈ 0.451 ≈ 0.328
Blonski et al. (2011) 0.922 � 0.224 ≈ 0.195 � 0.029 0.944 � 0.402 ≈ 0.324 � 0.018
Bruttel and Kamecke (2012) 0.948 � 0.239 ≈ 0.214 ≈ 0.118 0.923 > 0.167 ≈ 0.5 � 0.018
Dal Bó (2005) 0.919 � 0.264 ≈ 0.39 � 0.113 0.938 � 0.175 ≈ 0.383 � 0.047
Dal Bó and Fréchette (2011) 0.979 � 0.391 ≈ 0.29 � 0.075 0.975 � 0.334 ≈ 0.547 � 0.022
Dal Bó and Fréchette (2015) 0.977 � 0.304 ≈ 0.328 � 0.064 0.927 � 0.343 ≈ 0.532 � 0.028
Dreber et al. (2008) 0.917 � 0.111 < 0.311 � 0.005 0.909 > 0.5 ≈ 0.629 � 0.01
Duffy and Ochs (2009) 0.98 � 0.408 ≈ 0.371 > 0.232 0.849 � 0.316 ≈ 0.415 � 0.058
Fréchette and Yuksel (2017) 0.973 � 0.213 ≈ 0.286 ≈ 0.214 0.818 ≈ 0.286 ≈ 0.575 � 0.038
Fudenberg et al. (2012) 0.974 � 0.5 ≈ 0.41 � 0.111 0.84 > 0.463 ≈ 0.417 � 0.075
Kagel and Schley (2013) 0.967 � 0.281 ≈ 0.263 � 0.061 0.872 � 0.188 ≈ 0.527 � 0.018
Sherstyuk et al. (2013) 0.973 � 0.503 ≈ 0.417 � 0.12 0.968 � 0.431 ≈ 0.5 � 0.062

Pooled 0.973 � 0.325 ≈ 0.315 � 0.076 0.917 � 0.332 ≈ 0.499 � 0.028

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 2, with the obvious adaptation that the Holm-Bonferroni correction
now applies to all eight tests per data set.



Table 35: Strategies as a function of behavior in t−2 (Grim scheme)

Cooperation after /0,(c,c) in t−2 Cooperation after (c,d),(d,c),(d,d) in t−2
Experiment σ̂cc σ̂cd σ̂dc σ̂dd σ̂cc σ̂cd σ̂dc σ̂dd

First halves per session
Aoyagi and Frechette (2009) 0.939 � 0.39 ≈ 0.439 ≈ 0.556 0.782 � 0.485 ≈ 0.39 > 0.32
Blonski et al. (2011) 0.903 � 0.248 ≈ 0.174 � 0.045 0.714 > 0.318 ≈ 0.216 > 0.031
Bruttel and Kamecke (2012) 0.919 � 0.296 ≈ 0.245 ≈ 0.179 0.833 � 0.278 ≈ 0.213 � 0.071
Dal Bó (2005) 0.926 � 0.184 ≈ 0.31 ≈ 0.143 0.889 � 0.254 ≈ 0.39 � 0.074
Dal Bó and Fréchette (2011) 0.961 � 0.342 ≈ 0.307 � 0.081 0.849 � 0.324 ≈ 0.364 � 0.054
Dal Bó and Fréchette (2015) 0.95 � 0.265 ≈ 0.301 � 0.081 0.843 � 0.328 ≈ 0.369 � 0.052
Dreber et al. (2008) 0.901 � 0.154 ≈ 0.217 � 0.062 1 � 0.359 ≈ 0.203 � 0.031
Duffy and Ochs (2009) 0.932 � 0.218 ≈ 0.301 ≈ 0.208 0.748 � 0.361 ≈ 0.35 � 0.102
Fréchette and Yuksel (2017) 0.942 � 0.132 ≈ 0.245 � 0 1 ≈ 0.182 ≈ 0.364 ≈ 0.111
Fudenberg et al. (2012) 0.985 � 0.429 ≈ 0.408 � 0 0.921 � 0.377 ≈ 0.443 � 0.068
Kagel and Schley (2013) 0.947 � 0.236 ≈ 0.288 � 0.133 0.763 � 0.298 ≈ 0.305 � 0.042
Sherstyuk et al. (2013) 0.953 � 0.312 ≈ 0.395 � 0.172 0.875 � 0.343 ≈ 0.349 � 0.107

Pooled 0.949 � 0.278 ≈ 0.3 � 0.091 0.825 � 0.333 ≈ 0.346 � 0.059

Second halves per session
Aoyagi and Frechette (2009) 0.965 � 0.438 ≈ 0.625 ≈ 0.333 0.846 � 0.371 < 0.443 ≈ 0.378
Blonski et al. (2011) 0.922 � 0.157 ≈ 0.232 � 0.027 0.941 � 0.425 ≈ 0.23 � 0.019
Bruttel and Kamecke (2012) 0.946 � 0.156 ≈ 0.233 ≈ 0.173 0.958 � 0.327 ≈ 0.4 � 0.019
Dal Bó (2005) 0.918 � 0.178 < 0.4 > 0.131 0.937 � 0.32 ≈ 0.373 � 0.052
Dal Bó and Fréchette (2011) 0.981 � 0.373 ≈ 0.323 � 0.077 0.95 � 0.38 ≈ 0.416 � 0.025
Dal Bó and Fréchette (2015) 0.98 � 0.264 < 0.366 � 0.058 0.904 � 0.369 ≈ 0.44 � 0.031
Dreber et al. (2008) 0.913 � 0.029 � 0.314 � 0.007 0.955 � 0.417 ≈ 0.611 � 0.009
Duffy and Ochs (2009) 0.981 � 0.362 ≈ 0.433 ≈ 0.226 0.889 � 0.369 ≈ 0.368 � 0.077
Fréchette and Yuksel (2017) 0.976 � 0.173 ≈ 0.308 ≈ 0.222 0.75 > 0.294 ≈ 0.49 � 0.06
Fudenberg et al. (2012) 0.976 � 0.473 ≈ 0.509 ≈ 0.2 0.854 � 0.5 ≈ 0.328 � 0.077
Kagel and Schley (2013) 0.969 � 0.218 ≈ 0.293 > 0.098 0.868 � 0.332 ≈ 0.394 � 0.02
Sherstyuk et al. (2013) 0.974 � 0.465 ≈ 0.486 � 0.107 0.952 � 0.505 ≈ 0.369 � 0.072

Pooled 0.975 � 0.282 � 0.351 � 0.07 0.908 � 0.378 ≈ 0.404 � 0.033

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 2, with the obvious adaptation that the Holm-Bonferroni correction
now applies to all eight tests per data set.



Table 36: Table 35 by treatments – Strategies as a function of behavior in t−2 (Grim scheme)

(a) First halves per session
Equality Cooperation after (d,c),(c,d),(d,d) in t−2 Cooperation after ../tex-r1/ext-grim-tab2.tex in t−2

Treatment p-value σ̂cc σ̂cd σ̂dc σ̂dd σ̂cc σ̂cd σ̂dc σ̂dd

Aoyagi and Frechette (2009)
AF09–34 0 0.939 � 0.39 ≈ 0.439 ≈ 0.556 0.782 � 0.485 ≈ 0.39 > 0.32

Blonski et al. (2011)
BOS11–9 0.23 - 0.182 0.182 0.031

BOS11–14 0.16 - 0.188 0.062 0.029
BOS11–15 0.04 - 0.167 0 0.005
BOS11–16 0 0.934 � 0.136 ≈ 0.136 ≈ 0.056 0.667 ≈ 0.333 ≈ 0.333 > 0.076
BOS11–17 1 0.5 ≈ 0.231 ≈ 0.462 ≈ 0.115 NA ≈ 0.25 ≈ 0.5 ≈ 0.167
BOS11–26 0.005 0.857 > 0.258 ≈ 0.097 ≈ 0.07 0.5 ≈ 0.2 ≈ 0.35 � 0.02
BOS11–27 0.18 0.875 ≈ 0.556 ≈ 0.333 ≈ 0.091 1 ≈ 0.1 ≈ 0.1 ≈ 0.044
BOS11–30 0.275 - 0 0 0.058
BOS11–31 0 0.983 � 0.385 ≈ 0.231 ≈ 0.091 0.5 ≈ 0.577 ≈ 0.115 ≈ 0.015

BOS11–All 0 0.903 � 0.248 ≈ 0.174 � 0.045 0.714 > 0.318 ≈ 0.216 > 0.031

Bruttel and Kamecke (2012)
BK12–28 0 0.919 � 0.296 ≈ 0.245 ≈ 0.179 0.833 � 0.278 ≈ 0.213 � 0.071

Dal Bó (2005)
D05–18 0 0.821 � 0.208 ≈ 0.25 ≈ 0.091 0.75 ≈ 0.273 ≈ 0.364 ≈ 0.118
D05–19 0 0.954 � 0.175 ≈ 0.333 ≈ 0.158 1 � 0.243 ≈ 0.405 � 0.044

D05–All 0 0.926 � 0.184 ≈ 0.31 ≈ 0.143 0.889 � 0.254 ≈ 0.39 � 0.074

Dal Bó and Fréchette (2011)
DF11–6 0.059 0.667 ≈ 0.294 ≈ 0.235 � 0.038 0.917 � 0.375 ≈ 0.35 � 0.034
DF11–7 0.002 0.632 > 0.254 ≈ 0.254 � 0.089 0.786 > 0.391 ≈ 0.266 � 0.029
DF11–8 0 0.979 � 0.446 ≈ 0.28 � 0.105 0.923 � 0.361 ≈ 0.222 � 0.06

DF11–22 0 0.922 � 0.34 ≈ 0.381 � 0.06 0.833 � 0.279 ≈ 0.338 � 0.048
DF11–23 0 0.976 � 0.448 ≈ 0.321 � 0.16 0.859 � 0.325 ≈ 0.462 � 0.054
DF11–24 0 0.967 � 0.228 ≈ 0.366 > 0.135 0.813 � 0.308 ≈ 0.436 � 0.107

DF11–All 0 0.961 � 0.342 ≈ 0.307 � 0.081 0.849 � 0.324 ≈ 0.364 � 0.054

Dal Bó and Fréchette (2015)
DF15–4 0.017 0.571 > 0.073 ≈ 0.268 > 0.018 0.5 ≈ 0.429 ≈ 0.5 � 0.044
DF15–5 0 0.92 � 0.223 ≈ 0.219 � 0.076 0.95 � 0.369 ≈ 0.323 � 0.086

DF15–20 0 0.933 � 0.222 ≈ 0.335 � 0.073 0.825 � 0.225 ≈ 0.337 � 0.046
DF15–21 0 0.959 � 0.325 ≈ 0.329 � 0.129 0.873 � 0.455 > 0.411 � 0.077
DF15–33 0 0.953 � 0.313 ≈ 0.322 � 0.111 0.802 � 0.288 ≈ 0.356 � 0.047
DF15–35 0 0.98 � 0.276 ≈ 0.448 ≈ 0.214 0.882 � 0.356 ≈ 0.422 � 0.042

DF15–All 0 0.95 � 0.265 ≈ 0.301 � 0.081 0.843 � 0.328 ≈ 0.369 � 0.052

Dreber et al. (2008)
DRFN08–10 0 0.885 � 0.143 ≈ 0.13 > 0.031 1 > 0.333 ≈ 0.167 > 0.018
DRFN08–11 0 0.914 � 0.167 ≈ 0.318 > 0.091 1 > 0.375 ≈ 0.225 � 0.043

DRFN08–All 0 0.901 � 0.154 ≈ 0.217 � 0.062 1 � 0.359 ≈ 0.203 � 0.031

Duffy and Ochs (2009)
DO09–32 0 0.932 � 0.218 ≈ 0.301 ≈ 0.208 0.748 � 0.361 ≈ 0.35 � 0.102

Fréchette and Yuksel (2017)
FY17–25 0 0.942 � 0.132 ≈ 0.245 � 0 1 ≈ 0.182 ≈ 0.364 ≈ 0.111

Fudenberg et al. (2012)
FRD12–29 0 0.985 � 0.429 ≈ 0.408 � 0 0.921 � 0.377 ≈ 0.443 � 0.068

Kagel and Schley (2013)
KS13–12 0 0.947 � 0.236 ≈ 0.288 � 0.133 0.763 � 0.298 ≈ 0.305 � 0.042

Sherstyuk et al. (2013)
STS13–13 0 0.953 � 0.312 ≈ 0.395 � 0.172 0.875 � 0.343 ≈ 0.349 � 0.107

Pooled 0 0.949 � 0.278 ≈ 0.3 � 0.091 0.825 � 0.333 ≈ 0.346 � 0.059

(b) Second halves per session
Equality Cooperation after (d,c),(c,d),(d,d) in t−2 Cooperation after ../tex-r1/ext-grim-tab3.tex in t−2

Treatment p-value σ̂cc σ̂cd σ̂dc σ̂dd σ̂cc σ̂cd σ̂dc σ̂dd

Aoyagi and Frechette (2009)
AF09–34 0 0.965 � 0.438 ≈ 0.625 ≈ 0.333 0.846 � 0.371 ≈ 0.443 ≈ 0.378

Blonski et al. (2011)
BOS11–9 0.006 0.917 > 0 ≈ 0.154 ≈ 0.021 NA ≈ 0.333 ≈ 0.333 ≈ 0

BOS11–14 0.025 - 0.2 0.4 0.013
BOS11–15 0 - 0 0 0.002
BOS11–16 0 0.855 � 0.12 ≈ 0.24 > 0 0.5 ≈ 0.6 ≈ 0.2 ≈ 0.03
BOS11–17 0 0.912 � 0.161 ≈ 0.194 ≈ 0.048 1 ≈ 0.208 ≈ 0.333 � 0.024
BOS11–26 0 0.955 � 0.171 ≈ 0.195 � 0.022 1 > 0.316 ≈ 0.211 � 0.033
BOS11–27 0.01 0.867 > 0.31 ≈ 0.414 > 0.109 0.9 � 0.518 ≈ 0.268 > 0.014
BOS11–30 0.099 0.75 ≈ 0.083 ≈ 0.083 ≈ 0 1 ≈ 0.333 ≈ 0.25 ≈ 0.022
BOS11–31 0.004 1 > 0.143 ≈ 0.286 ≈ 0.062 1 > 0.613 ≈ 0.097 > 0.018

BOS11–All 0 0.922 � 0.157 ≈ 0.232 � 0.027 0.941 � 0.425 ≈ 0.23 � 0.019

Bruttel and Kamecke (2012)
BK12–28 0 0.946 � 0.156 ≈ 0.233 ≈ 0.173 0.958 � 0.327 ≈ 0.4 � 0.019

Dal Bó (2005)
D05–18 0 0.85 � 0.227 < 0.523 ≈ 0.194 0.9 � 0.325 ≈ 0.425 � 0.076
D05–19 0 0.949 � 0.13 ≈ 0.283 ≈ 0.083 1 � 0.314 ≈ 0.314 � 0.04

D05–All 0 0.918 � 0.178 < 0.4 > 0.131 0.937 � 0.32 ≈ 0.373 � 0.052

Dal Bó and Fréchette (2011)
DF11–6 0.006 1 > 0.267 ≈ 0.378 � 0.031 1 � 0.442 ≈ 0.581 � 0.012
DF11–7 0 0.903 � 0.36 ≈ 0.346 � 0.12 0.95 � 0.4 ≈ 0.389 � 0.042
DF11–8 0 1 � 0.395 > 0.163 � 0.047 1 � 0.453 ≈ 0.266 � 0.02

DF11–22 0 0.971 � 0.462 ≈ 0.387 � 0.056 0.903 � 0.265 ≈ 0.426 � 0.018
DF11–23 0 0.974 � 0.387 ≈ 0.6 ≈ 0.314 0.98 � 0.425 ≈ 0.397 � 0.036
DF11–24 0 0.984 � 0.192 ≈ 0.25 ≈ 1 0.9 > 0.471 ≈ 0.559 � 0.073

DF11–All 0 0.981 � 0.373 ≈ 0.323 � 0.077 0.95 � 0.38 ≈ 0.416 � 0.025

Dal Bó and Fréchette (2015)
DF15–4 0.034 0.75 > 0.059 ≈ 0.176 ≈ 0.007 1 ≈ 0.091 ≈ 0.545 > 0.024
DF15–5 0 0.981 � 0.226 ≈ 0.218 � 0.031 0.846 � 0.411 ≈ 0.274 � 0.041

DF15–20 0 0.958 � 0.348 ≈ 0.402 � 0.069 0.889 � 0.255 ≈ 0.333 � 0.02
DF15–21 0 0.981 � 0.234 ≈ 0.288 > 0.133 0.929 � 0.424 ≈ 0.348 � 0.058
DF15–33 0 0.981 � 0.273 � 0.517 � 0.077 0.911 � 0.34 < 0.557 � 0.028
DF15–35 0 0.986 � 0.362 ≈ 0.569 ≈ 0.375 0.887 � 0.533 ≈ 0.358 � 0.032

DF15–All 0 0.98 � 0.264 < 0.366 � 0.058 0.904 � 0.369 ≈ 0.44 � 0.031

Dreber et al. (2008)
DRFN08–10 0 0.667 � 0.02 ≈ 0.18 ≈ 0 1 ≈ 0.75 ≈ 0.875 � 0.002
DRFN08–11 0 0.943 � 0.036 � 0.436 > 0.031 0.929 � 0.321 ≈ 0.536 � 0.028

DRFN08–All 0 0.913 � 0.029 � 0.314 � 0.007 0.955 � 0.417 ≈ 0.611 � 0.009

Duffy and Ochs (2009)
DO09–32 0 0.981 � 0.362 ≈ 0.433 ≈ 0.226 0.889 � 0.369 ≈ 0.368 � 0.077

Fréchette and Yuksel (2017)
FY17–25 0 0.976 � 0.173 ≈ 0.308 ≈ 0.222 0.75 > 0.294 ≈ 0.49 � 0.06

Fudenberg et al. (2012)
FRD12–29 0 0.976 � 0.473 ≈ 0.509 ≈ 0.2 0.854 � 0.5 ≈ 0.328 � 0.077

Kagel and Schley (2013)
KS13–12 0 0.969 � 0.218 ≈ 0.293 > 0.098 0.868 � 0.332 ≈ 0.394 � 0.02

Sherstyuk et al. (2013)
STS13–13 0 0.974 � 0.465 ≈ 0.486 � 0.107 0.952 � 0.505 ≈ 0.369 � 0.072

Pooled 0 0.975 � 0.282 � 0.351 � 0.07 0.908 � 0.378 ≈ 0.404 � 0.033



Table 37: 1- and 2-memory SG behavior strategies versus best mixtures (by treatment) of 1- and 2-memory pure strategies (No
switching) (ICL-BIC of the models, less is better and relation signs point toward better models)

SG+ SG M2“General” SG M2“General” Semi-Grim Best Pure Pure M1+G2,T2 Pure M1

Specification
# Models evaluated 1 1 1 5 1 1
# Pars estimated (by treatment) 7 3 3 32 5 3
# Parameters accounted for 7 3 3 3-8 5 3

First halves per session
Aoyagi and Frechette (2009) 855.34 ≈ 847.81 ≈ 835.89 ≈ 891.63 ≈ 891.63 ≈ 897.8
Blonski et al. (2011) 2337.47 � 2188.04 � 1089.36 � 1241.55 � 1367.4 � 1239.58
Bruttel and Kamecke (2012) 1025.99 ≈ 1021.23 � 817.24 ≈ 861.15 ≈ 861.15 ≈ 862.58
Dal Bó (2005) 968.96 � 907.92 � 653.33 ≈ 678.73 � 713.82 > 678.73
Dal Bó and Fréchette (2011) 14795.82 ≈ 14789.67 � 7282.65 < 7668.25 ≈ 7725.56 ≈ 7670.28
Dal Bó and Fréchette (2015) 13772.1 � 13479.92 � 8887.67 ≈ 9096.12 � 9276.23 � 9116.67
Dreber et al. (2008) 1176.51 ≈ 1165.17 � 838.33 ≈ 875.56 < 905.5 > 875.56
Duffy and Ochs (2009) 1670.22 ≈ 1650.03 � 1437.86 ≈ 1449.33 ≈ 1459.86 ≈ 1449.33
Fréchette and Yuksel (2017) 393.16 ≈ 372.41 ≈ 335.07 ≈ 319.92 � 344.74 � 319.92
Fudenberg et al. (2012) 466.79 ≈ 452.21 � 398.38 � 474.56 ≈ 474.56 ≈ 479.33
Kagel and Schley (2013) 3526.46 ≈ 3570.33 � 2912.53 > 2739.66 ≈ 2760.67 ≈ 2739.66
Sherstyuk et al. (2013) 1685.47 ≈ 1691.71 � 1413 ≈ 1421.45 ≈ 1421.45 ≈ 1428.6

Pooled 42929.62 � 42318.82 � 27010.74 � 27851.71 � 28384.93 � 27867.48

Second halves per session
Aoyagi and Frechette (2009) 515.26 > 500.7 ≈ 494.93 ≈ 548.36 ≈ 548.36 ≈ 553.46
Blonski et al. (2011) 3075.21 � 2951.31 � 1441.28 � 1757.39 � 1863.15 � 1757.39
Bruttel and Kamecke (2012) 833.83 ≈ 838.57 � 595.23 ≈ 583.12 ≈ 583.12 ≈ 594.04
Dal Bó (2005) 1041.04 � 975.62 � 748.55 ≈ 747.84 � 785.02 � 747.84
Dal Bó and Fréchette (2011) 13878.91 ≈ 13949.42 � 6160.5 ≈ 6250.91 ≈ 6306.7 ≈ 6430.56
Dal Bó and Fréchette (2015) 14391.56 ≈ 14280.59 � 9015.88 < 9477.45 ≈ 9544.21 ≈ 9552.41
Dreber et al. (2008) 1118.6 ≈ 1106.62 � 665.13 ≈ 664.79 � 690.58 ≈ 664.79
Duffy and Ochs (2009) 2016.24 ≈ 1993.56 � 1794.26 � 2016.45 ≈ 2016.45 ≈ 2042.07
Fréchette and Yuksel (2017) 561.78 > 528.38 ≈ 481.62 ≈ 474.69 � 502.3 > 474.69
Fudenberg et al. (2012) 532.03 ≈ 530.32 > 485.43 < 551 ≈ 551 ≈ 571.98
Kagel and Schley (2013) 2648.79 ≈ 2676.25 � 2261.67 � 1919.9 ≈ 1919.9 ≈ 1971.47
Sherstyuk et al. (2013) 1248.54 ≈ 1293.11 > 1087.07 ≈ 1029.75 ≈ 1029.75 < 1127.23

Pooled 42117.12 > 41806.84 � 25340.99 < 26159.81 � 26522.89 ≈ 26597.37

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 2. Pure M1 refers to TFT, Grim, and AD. G2 denotes Grim2. For
definitions of the strategies see Table 12.



Table 38: Table 37 by treatments – 1- and 2-memory SG behavior strategies versus best mixtures (by treatment) of 1- and 2-memory
pure strategies (No switching)

(a) First halves per session

SG+ SG M2“General” SG M2“General” Semi-Grim Best Pure Pure M1+G2,T2 Pure M1

Specification
# Models evaluated 1 1 1 5 1 1
# Pars estimated (by treatment) 7 3 3 32 5 3
# Parameters accounted for 7 3 3 3-8 5 3

AF09–34 855.34 ≈ 847.81 ≈ 835.89 ≈ 891.63 ≈ 891.63 ≈ 897.8
BOS11–9 228.81 � 213.06 � 82.26 ≈ 99.25 � 112.53 � 99.25
BOS11–14 260.4 ≈ 249.04 � 87.7 � 114.56 � 127.38 � 114.56
BOS11–15 273.29 > 256.51 � 31.07 � 72.06 � 85.01 � 72.06
BOS11–16 225 > 210.23 > 170.96 ≈ 176.25 < 188.95 > 176.25
BOS11–17 165.97 � 148.89 > 119.9 ≈ 123.55 � 139.81 � 123.55
BOS11–26 509.26 > 483.9 � 254.14 ≈ 275.47 � 293.71 > 275.47
BOS11–27 227.67 > 217.47 � 108.51 ≈ 116.34 ≈ 116.34 ≈ 116.68
BOS11–30 173.13 � 156.27 � 63.02 ≈ 64.25 � 77.67 � 64.25
BOS11–31 203.85 ≈ 202.6 > 141.75 ≈ 167.46 ≈ 175.92 > 167.46
BK12–28 1025.99 ≈ 1021.23 � 817.24 ≈ 861.15 ≈ 861.15 ≈ 862.58
D05–18 305.64 � 281.91 � 224.25 ≈ 240.35 � 263.72 � 240.35
D05–19 658.37 � 622.47 � 426.95 ≈ 436.26 ≈ 446.55 ≈ 436.26
DF11–6 3212.26 ≈ 3201.72 � 894.35 ≈ 929.98 ≈ 939.5 ≈ 929.98
DF11–7 3939.04 ≈ 3932.55 � 1369.26 < 1498.06 ≈ 1530.47 ≈ 1498.06
DF11–8 3028.46 ≈ 3058.62 � 1648.75 ≈ 1568.94 ≈ 1568.94 ≈ 1571.62
DF11–22 1830.58 ≈ 1822.78 � 1042.26 � 1226.5 ≈ 1236.62 ≈ 1226.5
DF11–23 1453.39 ≈ 1461.14 � 1117.42 ≈ 1176.02 ≈ 1176.02 ≈ 1181.42
DF11–24 1294.39 ≈ 1285.94 > 1194.45 ≈ 1246.18 ≈ 1247.07 ≈ 1246.54
DF15–4 1783.05 ≈ 1749.99 � 477.13 ≈ 494.11 � 523.98 � 494.11
DF15–5 3031.87 > 2953.98 � 2194.38 � 1845.7 ≈ 1889.41 ≈ 1845.7
DF15–20 2763.46 ≈ 2713.19 � 1481.46 < 1642.7 ≈ 1670.78 > 1642.7
DF15–21 2460.51 ≈ 2433.58 � 2111.65 ≈ 2058.02 ≈ 2058.02 ≈ 2079.98
DF15–33 3248.44 > 3172.27 � 2256.38 � 2613.59 < 2676.03 > 2613.59
DF15–35 443.95 ≈ 427.76 � 349.17 < 423.09 ≈ 428.84 ≈ 423.09
DRFN08–10 569.36 ≈ 559.43 � 382.91 ≈ 415.65 < 432.45 ≈ 415.65
DRFN08–11 602.25 ≈ 602.24 > 453.32 ≈ 457.81 ≈ 469.55 ≈ 457.81
DO09–32 1670.22 ≈ 1650.03 � 1437.86 ≈ 1449.33 ≈ 1459.86 ≈ 1449.33
FY17–25 393.16 ≈ 372.41 ≈ 335.07 ≈ 319.92 � 344.74 � 319.92
FRD12–29 466.79 ≈ 452.21 � 398.38 � 474.56 ≈ 474.56 ≈ 479.33
KS13–12 3526.46 ≈ 3570.33 � 2912.53 > 2739.66 ≈ 2760.67 ≈ 2739.66
STS13–13 1685.47 ≈ 1691.71 � 1413 ≈ 1421.45 ≈ 1421.45 ≈ 1428.6
Aoyagi and Frechette (2009) 855.34 ≈ 847.81 ≈ 835.89 ≈ 891.63 ≈ 891.63 ≈ 897.8
Blonski et al. (2011) 2337.47 � 2188.04 � 1089.36 � 1241.55 � 1367.4 � 1239.58
Bruttel and Kamecke (2012) 1025.99 ≈ 1021.23 � 817.24 ≈ 861.15 ≈ 861.15 ≈ 862.58
Dal Bó (2005) 968.96 � 907.92 � 653.33 ≈ 678.73 � 713.82 > 678.73
Dal Bó and Fréchette (2011) 14795.82 ≈ 14789.67 � 7282.65 < 7668.25 ≈ 7725.56 ≈ 7670.28
Dal Bó and Fréchette (2015) 13772.1 � 13479.92 � 8887.67 ≈ 9096.12 � 9276.23 � 9116.67
Dreber et al. (2008) 1176.51 ≈ 1165.17 � 838.33 ≈ 875.56 < 905.5 > 875.56
Duffy and Ochs (2009) 1670.22 ≈ 1650.03 � 1437.86 ≈ 1449.33 ≈ 1459.86 ≈ 1449.33
Fréchette and Yuksel (2017) 393.16 ≈ 372.41 ≈ 335.07 ≈ 319.92 � 344.74 � 319.92
Fudenberg et al. (2012) 466.79 ≈ 452.21 � 398.38 � 474.56 ≈ 474.56 ≈ 479.33
Kagel and Schley (2013) 3526.46 ≈ 3570.33 � 2912.53 > 2739.66 ≈ 2760.67 ≈ 2739.66
Sherstyuk et al. (2013) 1685.47 ≈ 1691.71 � 1413 ≈ 1421.45 ≈ 1421.45 ≈ 1428.6

Pooled 42929.62 � 42318.82 � 27010.74 � 27851.71 � 28384.93 � 27867.48

(b) Second halves per session

SG+ SG M2“General” SG M2“General” Semi-Grim Best Pure Pure M1+G2,T2 Pure M1

Specification
# Models evaluated 1 1 1 5 1 1
# Pars estimated (by treatment) 7 3 3 32 5 3
# Parameters accounted for 7 3 3 3-8 5 3

AF09–34 515.26 > 500.7 ≈ 494.93 ≈ 548.36 ≈ 548.36 ≈ 553.46
BOS11–9 262.26 ≈ 252.38 � 92.34 ≈ 100.69 � 111.7 � 100.69
BOS11–14 316.89 > 301.99 � 35.25 � 74.75 � 86.28 � 74.75
BOS11–15 357.64 > 340.78 � 11.86 � 93.99 � 106.45 � 93.99
BOS11–16 206.46 > 194.41 ≈ 162.19 ≈ 166.7 < 179.74 > 166.7
BOS11–17 327 ≈ 313.44 � 212.8 ≈ 232.04 ≈ 237.43 ≈ 232.04
BOS11–26 635.75 ≈ 617.18 � 333.39 < 391.24 ≈ 404.11 > 391.24
BOS11–27 388.11 ≈ 384.8 > 262.85 ≈ 292.85 ≈ 296.91 ≈ 292.85
BOS11–30 246.9 > 231.15 � 131.11 < 161.56 ≈ 173.63 � 161.56
BOS11–31 264.1 ≈ 265.11 > 169.45 < 213.53 ≈ 216.82 ≈ 213.53
BK12–28 833.83 ≈ 838.57 � 595.23 ≈ 583.12 ≈ 583.12 ≈ 594.04
D05–18 450.68 � 424.87 � 336.26 ≈ 353.97 ≈ 364.98 ≈ 353.97
D05–19 585.4 � 547.21 � 410.17 ≈ 391.74 � 416.49 � 391.74
DF11–6 3524.22 ≈ 3504.27 � 610.65 < 807.87 ≈ 830.4 ≈ 807.87
DF11–7 4029.73 ≈ 4054.52 � 1566.15 ≈ 1638.56 ≈ 1655.2 ≈ 1638.56
DF11–8 2783 ≈ 2835.26 � 1570.36 � 1172.76 ≈ 1172.76 < 1228.26
DF11–22 1884.84 ≈ 1904.65 � 1031.86 ≈ 1173.61 ≈ 1173.61 ≈ 1229.35
DF11–23 1003.64 ≈ 1024.22 > 885.87 ≈ 792.63 ≈ 792.63 ≈ 866.55
DF11–24 615.76 ≈ 599.58 > 479.46 � 643.83 ≈ 655.18 ≈ 643.83
DF15–4 1896.41 ≈ 1863.03 � 384.53 ≈ 417.63 � 441.51 � 417.63
DF15–5 3236.45 ≈ 3202.05 � 2172.99 � 1735.14 ≈ 1764.47 ≈ 1735.14
DF15–20 2796.05 ≈ 2784.9 � 1393.96 < 1646.2 ≈ 1646.2 ≈ 1663.73
DF15–21 2061.25 ≈ 2051.69 � 1826.53 ≈ 1832.26 ≈ 1840.23 ≈ 1832.26
DF15–33 3542.83 ≈ 3534.1 � 2550.95 � 3002.88 ≈ 3002.88 ≈ 3026.08
DF15–35 817.74 ≈ 815.66 � 669.42 � 819.77 ≈ 819.77 ≈ 860.08
DRFN08–10 664.97 ≈ 653.29 � 288.29 ≈ 315.7 < 330.73 ≈ 315.7
DRFN08–11 448.73 ≈ 449.83 ≈ 374.74 ≈ 346.99 ≈ 356.35 ≈ 346.99
DO09–32 2016.24 ≈ 1993.56 � 1794.26 � 2016.45 ≈ 2016.45 ≈ 2042.07
FY17–25 561.78 > 528.38 ≈ 481.62 ≈ 474.69 � 502.3 > 474.69
FRD12–29 532.03 ≈ 530.32 > 485.43 < 551 ≈ 551 ≈ 571.98
KS13–12 2648.79 ≈ 2676.25 � 2261.67 � 1919.9 ≈ 1919.9 ≈ 1971.47
STS13–13 1248.54 ≈ 1293.11 > 1087.07 ≈ 1029.75 ≈ 1029.75 < 1127.23
Aoyagi and Frechette (2009) 515.26 > 500.7 ≈ 494.93 ≈ 548.36 ≈ 548.36 ≈ 553.46
Blonski et al. (2011) 3075.21 � 2951.31 � 1441.28 � 1757.39 � 1863.15 � 1757.39
Bruttel and Kamecke (2012) 833.83 ≈ 838.57 � 595.23 ≈ 583.12 ≈ 583.12 ≈ 594.04
Dal Bó (2005) 1041.04 � 975.62 � 748.55 ≈ 747.84 � 785.02 � 747.84
Dal Bó and Fréchette (2011) 13878.91 ≈ 13949.42 � 6160.5 ≈ 6250.91 ≈ 6306.7 ≈ 6430.56
Dal Bó and Fréchette (2015) 14391.56 ≈ 14280.59 � 9015.88 < 9477.45 ≈ 9544.21 ≈ 9552.41
Dreber et al. (2008) 1118.6 ≈ 1106.62 � 665.13 ≈ 664.79 � 690.58 ≈ 664.79
Duffy and Ochs (2009) 2016.24 ≈ 1993.56 � 1794.26 � 2016.45 ≈ 2016.45 ≈ 2042.07
Fréchette and Yuksel (2017) 561.78 > 528.38 ≈ 481.62 ≈ 474.69 � 502.3 > 474.69
Fudenberg et al. (2012) 532.03 ≈ 530.32 > 485.43 < 551 ≈ 551 ≈ 571.98
Kagel and Schley (2013) 2648.79 ≈ 2676.25 � 2261.67 � 1919.9 ≈ 1919.9 ≈ 1971.47
Sherstyuk et al. (2013) 1248.54 ≈ 1293.11 > 1087.07 ≈ 1029.75 ≈ 1029.75 < 1127.23

Pooled 42117.12 > 41806.84 � 25340.99 < 26159.81 � 26522.89 ≈ 26597.37

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table 14.



Table 39: 1- and 2-memory SG behavior strategies versus best mixtures (by treatment) of 1- and 2-memory pure strategies (Random
switching) (ICL-BIC of the models, less is better and relation signs point toward better models)

SG+SG M2“General” SG M2“General” Semi-Grim Best Pure Pure 1+G2,T2 Pure 1

Specification
# Models evaluated 1 1 1 5 1 1
# Pars estimated (by treatment) 7 3 3 32 5 3
# Parameters accounted for 7 3 3 3-8 5 3

First halves per session
Aoyagi and Frechette (2009) 846.9 ≈ 846.43 ≈ 835.89 ≈ 862.48 ≈ 862.48 ≈ 891.2
Blonski et al. (2011) 1938.36 � 1807.07 � 1089.36 < 1141.74 < 1168.97 ≈ 1147.53
Bruttel and Kamecke (2012) 986.56 ≈ 969.46 � 817.24 ≈ 837.88 ≈ 837.88 ≈ 857.62
Dal Bó (2005) 810.96 ≈ 798.82 � 653.33 � 690.17 ≈ 693.14 ≈ 692.19
Dal Bó and Fréchette (2011) 9041.66 > 8900.69 � 7282.65 � 7638.05 ≈ 7645.17 < 7825.68
Dal Bó and Fréchette (2015) 11458.55 � 11208.45 � 8887.67 � 9301.85 ≈ 9306.74 < 9460.02
Dreber et al. (2008) 1104.74 ≈ 1080.21 � 838.33 ≈ 871.6 ≈ 871.39 ≈ 879
Duffy and Ochs (2009) 1613.97 ≈ 1588.23 � 1437.86 ≈ 1488.29 ≈ 1488.29 ≈ 1507.66
Fréchette and Yuksel (2017) 400.09 � 363.06 > 335.07 < 349.53 ≈ 354.74 ≈ 352.99
Fudenberg et al. (2012) 442.4 ≈ 440.73 > 398.38 < 445.18 ≈ 445.18 ≈ 466.32
Kagel and Schley (2013) 3481.07 ≈ 3490.59 � 2912.53 ≈ 2979.94 ≈ 2979.94 ≈ 3059.61
Sherstyuk et al. (2013) 1626.21 ≈ 1601.7 � 1413 < 1483.72 ≈ 1483.75 ≈ 1503.01

Pooled 34006.81 � 33277.82 � 27010.74 � 28272.53 ≈ 28320.03 � 28752.26

Second halves per session
Aoyagi and Frechette (2009) 498.98 ≈ 498.38 ≈ 494.93 ≈ 521.74 ≈ 531.13 ≈ 537.76
Blonski et al. (2011) 2648.18 � 2535.71 � 1441.28 � 1609.58 ≈ 1637.46 > 1613.11
Bruttel and Kamecke (2012) 802.05 ≈ 798.92 � 595.23 ≈ 620.35 ≈ 620.35 ≈ 632.85
Dal Bó (2005) 915.79 ≈ 904.46 � 748.55 � 793.71 ≈ 796.01 ≈ 807.66
Dal Bó and Fréchette (2011) 8212.23 ≈ 8185.18 � 6160.5 � 6655.07 ≈ 6655.57 � 6955.42
Dal Bó and Fréchette (2015) 12150.58 > 12016.88 � 9015.88 � 9880.99 ≈ 9886.61 � 10178.06
Dreber et al. (2008) 1002.39 ≈ 994.93 � 665.13 ≈ 694.37 ≈ 699.01 ≈ 694.37
Duffy and Ochs (2009) 1970.43 ≈ 1973.39 � 1794.26 � 2010.69 ≈ 2010.69 ≈ 2083.26
Fréchette and Yuksel (2017) 560.37 > 526.45 ≈ 481.62 ≈ 500.54 ≈ 503.62 ≈ 500.54
Fudenberg et al. (2012) 514.64 ≈ 510.99 ≈ 485.43 � 546.56 ≈ 548.09 < 591.31
Kagel and Schley (2013) 2680.42 ≈ 2675.61 � 2261.67 ≈ 2312.35 ≈ 2312.35 < 2399.2
Sherstyuk et al. (2013) 1256.5 ≈ 1261.23 � 1087.07 < 1167.39 ≈ 1167.39 < 1245.55

Pooled 33467.87 � 33064.51 � 25340.99 � 27480.48 ≈ 27550.66 � 28348.53

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 2. Pure M1 refers to TFT, Grim, and AD. G2 denotes Grim2. For
definitions of the strategies see Table 12.



Table 40: Table 39 by treatments – 1- and 2-memory SG behavior strategies versus best mixtures (by treatment) of 1- and 2-memory
pure strategies (Random switching)

(a) First halves per session

SG+SG M2“General” SG M2“General” Semi-Grim Best Pure Pure 1+G2,T2 Pure 1

Specification
# Models evaluated 1 1 1 5 1 1
# Pars estimated (by treatment) 7 3 3 32 5 3
# Parameters accounted for 7 3 3 3-8 5 3

AF09–34 846.9 ≈ 846.43 ≈ 835.89 ≈ 862.48 ≈ 862.48 ≈ 891.2
BOS11–9 168.61 � 153.78 � 82.26 ≈ 83.96 ≈ 86.52 ≈ 83.96
BOS11–14 210.98 ≈ 207.95 � 87.7 ≈ 90.01 ≈ 92.44 ≈ 90.01
BOS11–15 221.49 � 204.63 � 31.07 ≈ 32.69 ≈ 33.3 ≈ 32.69
BOS11–16 212.6 > 199.27 > 170.96 ≈ 176.09 ≈ 177.8 ≈ 176.09
BOS11–17 142.08 � 125.22 ≈ 119.9 ≈ 118.75 ≈ 121.83 ≈ 118.75
BOS11–26 458.54 � 427.81 � 254.14 ≈ 259.54 ≈ 259.54 ≈ 267.51
BOS11–27 167.95 ≈ 164.96 > 108.51 ≈ 109.62 ≈ 109.62 ≈ 113.56
BOS11–30 90.04 � 73.18 > 63.02 ≈ 65.48 ≈ 68.48 ≈ 65.48
BOS11–31 195.97 ≈ 200.2 > 141.75 ≈ 169.35 ≈ 169.35 ≈ 169.44
BK12–28 986.56 ≈ 969.46 � 817.24 ≈ 837.88 ≈ 837.88 ≈ 857.62
D05–18 262.83 ≈ 256.79 > 224.25 < 238.03 ≈ 240.12 ≈ 238.03
D05–19 543.17 ≈ 538.48 � 426.95 < 449.48 ≈ 449.48 ≈ 452.03
DF11–6 1030.71 ≈ 998.16 � 894.35 < 951.32 ≈ 951.32 ≈ 965.47
DF11–7 1482.77 ≈ 1460.6 > 1369.26 ≈ 1396.1 ≈ 1396.1 ≈ 1405.07
DF11–8 2145.02 ≈ 2117.53 � 1648.75 < 1707.55 ≈ 1707.55 ≈ 1768.61
DF11–22 1643.66 ≈ 1622.27 � 1042.26 � 1139.78 ≈ 1140.58 ≈ 1162.24
DF11–23 1388.55 ≈ 1392.28 � 1117.42 ≈ 1185.74 ≈ 1185.74 ≈ 1246
DF11–24 1313.25 ≈ 1282.93 > 1194.45 ≈ 1227.04 ≈ 1236.96 ≈ 1262.13
DF15–4 550.04 � 511.86 ≈ 477.13 ≈ 475.23 ≈ 477.75 ≈ 475.23
DF15–5 2545.46 � 2459.44 � 2194.38 ≈ 2214.8 ≈ 2214.8 ≈ 2235.3
DF15–20 2434.72 � 2354.53 � 1481.46 < 1548.72 ≈ 1548.72 ≈ 1572.04
DF15–21 2359.09 ≈ 2351.69 � 2111.65 � 2225.46 ≈ 2225.46 < 2291.78
DF15–33 3090.18 ≈ 3078.85 � 2256.38 � 2420.93 ≈ 2421.39 < 2469.21
DF15–35 438.24 ≈ 422.92 � 349.17 < 389.46 ≈ 389.46 ≈ 398.96
DRFN08–10 538.54 ≈ 517.1 � 382.91 ≈ 395.82 ≈ 395.82 ≈ 398.11
DRFN08–11 561.29 ≈ 559.61 > 453.32 ≈ 471.86 ≈ 472.06 ≈ 478.79
DO09–32 1613.97 ≈ 1588.23 � 1437.86 ≈ 1488.29 ≈ 1488.29 ≈ 1507.66
FY17–25 400.09 � 363.06 > 335.07 < 349.53 ≈ 354.74 ≈ 352.99
FRD12–29 442.4 ≈ 440.73 > 398.38 < 445.18 ≈ 445.18 ≈ 466.32
KS13–12 3481.07 ≈ 3490.59 � 2912.53 ≈ 2979.94 ≈ 2979.94 ≈ 3059.61
STS13–13 1626.21 ≈ 1601.7 � 1413 < 1483.72 ≈ 1483.75 ≈ 1503.01
Aoyagi and Frechette (2009) 846.9 ≈ 846.43 ≈ 835.89 ≈ 862.48 ≈ 862.48 ≈ 891.2
Blonski et al. (2011) 1938.36 � 1807.07 � 1089.36 < 1141.74 < 1168.97 ≈ 1147.53
Bruttel and Kamecke (2012) 986.56 ≈ 969.46 � 817.24 ≈ 837.88 ≈ 837.88 ≈ 857.62
Dal Bó (2005) 810.96 ≈ 798.82 � 653.33 � 690.17 ≈ 693.14 ≈ 692.19
Dal Bó and Fréchette (2011) 9041.66 > 8900.69 � 7282.65 � 7638.05 ≈ 7645.17 < 7825.68
Dal Bó and Fréchette (2015) 11458.55 � 11208.45 � 8887.67 � 9301.85 ≈ 9306.74 < 9460.02
Dreber et al. (2008) 1104.74 ≈ 1080.21 � 838.33 ≈ 871.6 ≈ 871.39 ≈ 879
Duffy and Ochs (2009) 1613.97 ≈ 1588.23 � 1437.86 ≈ 1488.29 ≈ 1488.29 ≈ 1507.66
Fréchette and Yuksel (2017) 400.09 � 363.06 > 335.07 < 349.53 ≈ 354.74 ≈ 352.99
Fudenberg et al. (2012) 442.4 ≈ 440.73 > 398.38 < 445.18 ≈ 445.18 ≈ 466.32
Kagel and Schley (2013) 3481.07 ≈ 3490.59 � 2912.53 ≈ 2979.94 ≈ 2979.94 ≈ 3059.61
Sherstyuk et al. (2013) 1626.21 ≈ 1601.7 � 1413 < 1483.72 ≈ 1483.75 ≈ 1503.01

Pooled 34006.81 � 33277.82 � 27010.74 � 28272.53 ≈ 28320.03 � 28752.26

(b) Second halves per session

SG+SG M2“General” SG M2“General” Semi-Grim Best Pure Pure 1+G2,T2 Pure 1

Specification
# Models evaluated 1 1 1 5 1 1
# Pars estimated (by treatment) 7 3 3 32 5 3
# Parameters accounted for 7 3 3 3-8 5 3

AF09–34 498.98 ≈ 498.38 ≈ 494.93 ≈ 521.74 ≈ 531.13 ≈ 537.76
BOS11–9 213.11 � 196.77 � 92.34 ≈ 96.65 ≈ 99.64 ≈ 96.65
BOS11–14 59.94 � 43.82 ≈ 35.25 < 40.83 < 43.83 ≈ 40.83
BOS11–15 334.66 > 317.8 � 11.86 ≈ 15.52 � 18.52 � 15.52
BOS11–16 196.1 � 180.84 ≈ 162.19 ≈ 166.4 ≈ 168.97 ≈ 166.4
BOS11–17 322.09 ≈ 307.49 � 212.8 ≈ 224.02 ≈ 224.02 ≈ 227.57
BOS11–26 577.71 ≈ 570.16 � 333.39 < 375.4 ≈ 375.72 ≈ 375.4
BOS11–27 375.08 ≈ 375.07 > 262.85 ≈ 304.34 ≈ 304.34 ≈ 308.69
BOS11–30 231.84 ≈ 228.65 � 131.11 ≈ 141.22 ≈ 144.11 ≈ 141.22
BOS11–31 267.55 ≈ 265.05 > 169.45 ≈ 208.24 ≈ 208.24 ≈ 210.78
BK12–28 802.05 ≈ 798.92 � 595.23 ≈ 620.35 ≈ 620.35 ≈ 632.85
D05–18 390.84 ≈ 385.35 > 336.26 < 360.28 ≈ 361.7 ≈ 360.28
D05–19 519.98 ≈ 515.56 � 410.17 < 430.77 ≈ 430.77 < 445.25
DF11–6 855.84 ≈ 852.06 � 610.65 < 719.86 ≈ 719.86 ≈ 737.29
DF11–7 1807.16 ≈ 1803.16 � 1566.15 � 1683.6 ≈ 1683.6 ≈ 1710.18
DF11–8 2192.09 ≈ 2193.11 � 1570.36 < 1641.29 ≈ 1641.29 < 1736.37
DF11–22 1811.46 ≈ 1810.44 � 1031.86 < 1120.33 ≈ 1120.33 < 1218.47
DF11–23 1024.7 ≈ 1020.39 > 885.87 ≈ 946.29 ≈ 948.73 ≈ 1000.66
DF11–24 483.28 ≈ 479.09 ≈ 479.46 < 514.84 ≈ 514.84 ≈ 536.29
DF15–4 475.49 � 438.92 > 384.53 ≈ 403.13 ≈ 405.76 ≈ 403.13
DF15–5 2818.99 � 2728.87 � 2172.99 < 2253.42 ≈ 2253.42 ≈ 2284.97
DF15–20 2476.53 ≈ 2470 � 1393.96 < 1532.28 ≈ 1532.28 ≈ 1606.34
DF15–21 2052.8 ≈ 2046.05 � 1826.53 � 1939.3 ≈ 1940.01 < 1995.85
DF15–33 3515.78 ≈ 3532.97 � 2550.95 � 2910.55 ≈ 2911.64 < 3012.62
DF15–35 770.16 ≈ 770.91 > 669.42 � 814.34 ≈ 814.34 ≈ 857.65
DRFN08–10 565.43 ≈ 561.61 � 288.29 ≈ 300.31 ≈ 301.48 ≈ 300.31
DRFN08–11 432.06 ≈ 429.82 > 374.74 ≈ 391.96 ≈ 394.02 ≈ 391.96
DO09–32 1970.43 ≈ 1973.39 � 1794.26 � 2010.69 ≈ 2010.69 ≈ 2083.26
FY17–25 560.37 > 526.45 ≈ 481.62 ≈ 500.54 ≈ 503.62 ≈ 500.54
FRD12–29 514.64 ≈ 510.99 ≈ 485.43 � 546.56 ≈ 548.09 < 591.31
KS13–12 2680.42 ≈ 2675.61 � 2261.67 ≈ 2312.35 ≈ 2312.35 < 2399.2
STS13–13 1256.5 ≈ 1261.23 � 1087.07 < 1167.39 ≈ 1167.39 < 1245.55
Aoyagi and Frechette (2009) 498.98 ≈ 498.38 ≈ 494.93 ≈ 521.74 ≈ 531.13 ≈ 537.76
Blonski et al. (2011) 2648.18 � 2535.71 � 1441.28 � 1609.58 ≈ 1637.46 > 1613.11
Bruttel and Kamecke (2012) 802.05 ≈ 798.92 � 595.23 ≈ 620.35 ≈ 620.35 ≈ 632.85
Dal Bó (2005) 915.79 ≈ 904.46 � 748.55 � 793.71 ≈ 796.01 ≈ 807.66
Dal Bó and Fréchette (2011) 8212.23 ≈ 8185.18 � 6160.5 � 6655.07 ≈ 6655.57 � 6955.42
Dal Bó and Fréchette (2015) 12150.58 > 12016.88 � 9015.88 � 9880.99 ≈ 9886.61 � 10178.06
Dreber et al. (2008) 1002.39 ≈ 994.93 � 665.13 ≈ 694.37 ≈ 699.01 ≈ 694.37
Duffy and Ochs (2009) 1970.43 ≈ 1973.39 � 1794.26 � 2010.69 ≈ 2010.69 ≈ 2083.26
Fréchette and Yuksel (2017) 560.37 > 526.45 ≈ 481.62 ≈ 500.54 ≈ 503.62 ≈ 500.54
Fudenberg et al. (2012) 514.64 ≈ 510.99 ≈ 485.43 � 546.56 ≈ 548.09 < 591.31
Kagel and Schley (2013) 2680.42 ≈ 2675.61 � 2261.67 ≈ 2312.35 ≈ 2312.35 < 2399.2
Sherstyuk et al. (2013) 1256.5 ≈ 1261.23 � 1087.07 < 1167.39 ≈ 1167.39 < 1245.55

Pooled 33467.87 � 33064.51 � 25340.99 � 27480.48 ≈ 27550.66 � 28348.53

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table 14.



Table 41: 1-memory or 2-memory Semi-Grim strategies, complexity of memory, mixtures of 1-memory and 2-memory SG (no switch-
ing) (ICL-BIC of the models, less is better and relation signs point toward better
models)

SG M2“General” SG M2“Semi-Grim” SG M2“Grim” Semi-Grim SG M1 + M2“Grim” SG M1 + M2“General”

Specification
# Models evaluated 1 1 1 1 1 1
# Pars estimated (by treatment) 5 4 3 3 5 7
# Parameters accounted for 5 4 3 3 5 7

First halves per session
Aoyagi and Frechette (2009) 865.91 ≈ 864.19 ≈ 843.09 ≈ 835.89 < 906.78 � 848.86
Blonski et al. (2011) 1421.49 > 1397.85 > 1375.08 � 1089.36 � 1555.38 < 1591.37
Bruttel and Kamecke (2012) 969.35 ≈ 967.88 ≈ 966.75 � 817.24 � 968.22 ≈ 968.68
Dal Bó (2005) 798.82 ≈ 794.23 ≈ 791.74 � 653.33 � 939.56 > 849.06
Dal Bó and Fréchette (2011) 8512.04 ≈ 8495.44 ≈ 8479.3 � 7282.65 � 8625.51 ≈ 8659.2
Dal Bó and Fréchette (2015) 11283.53 ≈ 11282.42 ≈ 11280.81 � 8887.67 � 11725.16 ≈ 11671.5
Dreber et al. (2008) 1177.21 ≈ 1173.36 ≈ 1170.29 � 838.33 � 1199.59 ≈ 1202.45
Duffy and Ochs (2009) 1588.23 ≈ 1587.59 ≈ 1586.14 � 1437.86 � 1610.06 ≈ 1629.09
Fréchette and Yuksel (2017) 362.68 ≈ 360.88 ≈ 359.65 ≈ 335.07 < 365.5 ≈ 369.6
Fudenberg et al. (2012) 440.73 ≈ 442.18 ≈ 440.31 > 398.38 � 452.14 ≈ 455.2
Kagel and Schley (2013) 3490.59 ≈ 3488.45 ≈ 3478.42 � 2912.53 � 3438.64 ≈ 3435.84
Sherstyuk et al. (2013) 1601.7 ≈ 1602.31 ≈ 1600.41 � 1413 � 1596.66 ≈ 1598.4

Pooled 32694.65 ≈ 32602.68 ≈ 32481.42 � 27010.74 � 33565.57 ≈ 33534.58

Second halves per session
Aoyagi and Frechette (2009) 498.38 ≈ 496.59 ≈ 495.48 ≈ 494.93 ≈ 501.5 ≈ 503.4
Blonski et al. (2011) 2277.26 > 2253.69 > 2230.87 � 1441.28 � 2411.7 ≈ 2458.66
Bruttel and Kamecke (2012) 1013.73 ≈ 1011.93 ≈ 1010.14 � 595.23 � 1038.68 ≈ 1040.33
Dal Bó (2005) 904.41 ≈ 900.53 ≈ 902.58 � 748.55 � 969.26 ≈ 951.14
Dal Bó and Fréchette (2011) 8322.63 ≈ 8300.39 ≈ 8283.81 � 6160.5 � 8428.76 ≈ 8461.64
Dal Bó and Fréchette (2015) 14925.81 ≈ 14915.3 ≈ 14901.44 � 9015.88 � 15226.83 ≈ 15283.12
Dreber et al. (2008) 827.1 ≈ 824.75 ≈ 820.93 � 665.13 � 843.61 ≈ 848.54
Duffy and Ochs (2009) 1973.39 ≈ 1971.08 ≈ 1968.89 � 1794.26 � 1988.35 ≈ 1988.91
Fréchette and Yuksel (2017) 526.45 ≈ 527.58 ≈ 525.79 ≈ 481.62 < 546.95 < 559.74
Fudenberg et al. (2012) 510.99 ≈ 509.24 ≈ 507.45 ≈ 485.43 ≈ 507.15 ≈ 509.35
Kagel and Schley (2013) 2675.61 ≈ 2674.59 ≈ 2673.64 � 2261.67 � 2637.36 ≈ 2623.98
Sherstyuk et al. (2013) 1261.23 ≈ 1260.86 ≈ 1259.78 � 1087.07 < 1219.58 ≈ 1228.3

Pooled 35899.35 ≈ 35792.43 ≈ 35690.23 � 25340.99 � 36502.1 ≈ 36712.43

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above.



Table 42: Table 41 by treatments – 1-memory or 2-memory Semi-Grim strategies, complexity of memory, mixtures of 1-memory and
2-memory SG (no switching)

(a) First halves per session
SG M2“General” SG M2“Semi-Grim” SG M2“Grim” Semi-Grim SG M1 + M2“Grim” SG M1 + M2“General”

Specification
# Models evaluated 1 1 1 1 1 1
# Pars estimated (by treatment) 5 4 3 3 5 7
# Parameters accounted for 5 4 3 3 5 7

AF09–34 865.91 ≈ 864.19 ≈ 843.09 ≈ 835.89 < 906.78 � 848.86
BOS11–9 95.12 ≈ 93.62 ≈ 92.12 > 82.26 � 108.85 ≈ 111.63
BOS11–14 99.31 ≈ 97.81 ≈ 96.32 ≈ 87.7 � 112.69 ≈ 114.94
BOS11–15 37.29 ≈ 35.79 ≈ 34.3 ≈ 31.07 � 50.93 < 53.92
BOS11–16 199.22 ≈ 197.93 ≈ 197.5 > 170.96 < 211.68 ≈ 203.65
BOS11–17 125.22 ≈ 123.72 ≈ 122.22 ≈ 119.9 � 139.08 ≈ 142.08
BOS11–26 335.64 ≈ 333.79 ≈ 331.95 > 254.14 � 363.18 ≈ 366.9
BOS11–27 135.45 ≈ 133.95 ≈ 132.45 > 108.51 � 149.17 ≈ 152.18
BOS11–30 73.18 ≈ 71.68 ≈ 70.18 ≈ 63.02 � 87.04 ≈ 90.04
BOS11–31 270.99 ≈ 269.49 ≈ 267.99 � 141.75 � 282.68 ≈ 285.92
BK12–28 969.35 ≈ 967.88 ≈ 966.75 � 817.24 � 968.22 ≈ 968.68
D05–18 256.79 ≈ 254.92 ≈ 253.12 > 224.25 � 301.43 ≈ 288.42
D05–19 538.48 ≈ 536.47 ≈ 536.5 � 426.95 � 634.58 > 555.67
DF11–6 998.16 ≈ 996.27 ≈ 994.37 � 894.35 � 1027.52 ≈ 1032.2
DF11–7 1460.6 ≈ 1458.64 ≈ 1456.69 > 1369.26 � 1494.99 ≈ 1499
DF11–8 1990.14 ≈ 1988.22 ≈ 1986.31 � 1648.75 � 2021.5 ≈ 2025.23
DF11–22 1367.84 ≈ 1365.95 ≈ 1364.06 � 1042.26 � 1398.28 ≈ 1401.94
DF11–23 1385.44 ≈ 1383.73 ≈ 1381.92 � 1117.42 � 1379.96 ≈ 1386.38
DF11–24 1282.93 ≈ 1281.09 ≈ 1279.8 > 1194.45 < 1276.35 ≈ 1276.77
DF15–4 511.86 ≈ 509.91 ≈ 507.95 ≈ 477.13 � 546.28 ≈ 549.97
DF15–5 2459.45 ≈ 2458.01 ≈ 2456.99 � 2194.38 � 2557.48 ≈ 2547.91
DF15–20 1939.87 ≈ 1937.5 ≈ 1935.13 � 1481.46 � 2018.71 ≈ 2021.82
DF15–21 2351.69 ≈ 2365.28 ≈ 2379.17 � 2111.65 � 2462.49 � 2387.65
DF15–33 3568.57 ≈ 3566.01 ≈ 3563.45 � 2256.38 � 3682.71 ≈ 3689.45
DF15–35 422.92 ≈ 422.38 ≈ 420.63 � 349.17 � 428.33 ≈ 433.87
DRFN08–10 614.11 ≈ 612.45 ≈ 610.78 � 382.91 � 633.52 ≈ 635.7
DRFN08–11 559.59 ≈ 558.11 ≈ 557.41 > 453.32 < 562.57 ≈ 561.85
DO09–32 1588.23 ≈ 1587.59 ≈ 1586.14 � 1437.86 � 1610.06 ≈ 1629.09
FY17–25 362.68 ≈ 360.88 ≈ 359.65 ≈ 335.07 < 365.5 ≈ 369.6
FRD12–29 440.73 ≈ 442.18 ≈ 440.31 > 398.38 � 452.14 ≈ 455.2
KS13–12 3490.59 ≈ 3488.45 ≈ 3478.42 � 2912.53 � 3438.64 ≈ 3435.84
STS13–13 1601.7 ≈ 1602.31 ≈ 1600.41 � 1413 � 1596.66 ≈ 1598.4
Aoyagi and Frechette (2009) 865.91 ≈ 864.19 ≈ 843.09 ≈ 835.89 < 906.78 � 848.86
Blonski et al. (2011) 1421.49 > 1397.85 > 1375.08 � 1089.36 � 1555.38 < 1591.37
Bruttel and Kamecke (2012) 969.35 ≈ 967.88 ≈ 966.75 � 817.24 � 968.22 ≈ 968.68
Dal Bó (2005) 798.82 ≈ 794.23 ≈ 791.74 � 653.33 � 939.56 > 849.06
Dal Bó and Fréchette (2011) 8512.04 ≈ 8495.44 ≈ 8479.3 � 7282.65 � 8625.51 ≈ 8659.2
Dal Bó and Fréchette (2015) 11283.53 ≈ 11282.42 ≈ 11280.81 � 8887.67 � 11725.16 ≈ 11671.5
Dreber et al. (2008) 1177.21 ≈ 1173.36 ≈ 1170.29 � 838.33 � 1199.59 ≈ 1202.45
Duffy and Ochs (2009) 1588.23 ≈ 1587.59 ≈ 1586.14 � 1437.86 � 1610.06 ≈ 1629.09
Fréchette and Yuksel (2017) 362.68 ≈ 360.88 ≈ 359.65 ≈ 335.07 < 365.5 ≈ 369.6
Fudenberg et al. (2012) 440.73 ≈ 442.18 ≈ 440.31 > 398.38 � 452.14 ≈ 455.2
Kagel and Schley (2013) 3490.59 ≈ 3488.45 ≈ 3478.42 � 2912.53 � 3438.64 ≈ 3435.84
Sherstyuk et al. (2013) 1601.7 ≈ 1602.31 ≈ 1600.41 � 1413 � 1596.66 ≈ 1598.4

Pooled 32694.65 ≈ 32602.68 ≈ 32481.42 � 27010.74 � 33565.57 ≈ 33534.58

(b) Second halves per session
SG M2“General” SG M2“Semi-Grim” SG M2“Grim” Semi-Grim SG M1 + M2“Grim” SG M1 + M2“General”

Specification
# Models evaluated 1 1 1 1 1 1
# Pars estimated (by treatment) 5 4 3 3 5 7
# Parameters accounted for 5 4 3 3 5 7

AF09–34 498.38 ≈ 496.59 ≈ 495.48 ≈ 494.93 ≈ 501.5 ≈ 503.4
BOS11–9 132.55 ≈ 131.06 ≈ 129.56 > 92.34 � 144.91 ≈ 147.93
BOS11–14 43.82 ≈ 42.32 ≈ 40.82 ≈ 35.25 � 57.68 < 60.61
BOS11–15 14.95 > 13.45 > 11.95 ≈ 11.86 � 28.81 < 31.81
BOS11–16 180.41 ≈ 179.18 ≈ 178.71 ≈ 162.19 < 193.95 ≈ 196.03
BOS11–17 366.29 ≈ 364.79 ≈ 363.3 � 212.8 � 380.12 ≈ 383.08
BOS11–26 521.64 ≈ 519.8 ≈ 517.95 � 333.39 � 549.32 ≈ 552.16
BOS11–27 390.6 ≈ 389.1 ≈ 387.61 > 262.85 < 403.67 ≈ 407.41
BOS11–30 178.29 ≈ 176.8 ≈ 175.3 > 131.11 < 192.09 ≈ 194.6
BOS11–31 398.63 ≈ 397.13 ≈ 395.63 � 169.45 � 411.07 ≈ 414.92
BK12–28 1013.73 ≈ 1011.93 ≈ 1010.14 � 595.23 � 1038.68 ≈ 1040.33
D05–18 385.3 ≈ 383.77 ≈ 382.42 > 336.26 � 409.23 ≈ 410.57
D05–19 515.56 ≈ 513.92 ≈ 518.04 � 410.17 � 556.49 > 535.61
DF11–6 852.06 ≈ 850.17 ≈ 848.28 � 610.65 � 882.56 ≈ 886.33
DF11–7 1803.16 ≈ 1801.21 ≈ 1799.25 � 1566.15 � 1837.54 ≈ 1841.44
DF11–8 2239.88 ≈ 2237.97 ≈ 2236.05 � 1570.36 � 2271.07 ≈ 2274.87
DF11–22 1895.06 ≈ 1893.17 ≈ 1891.28 � 1031.86 � 1924.73 ≈ 1927.87
DF11–23 1026.45 ≈ 1018.73 ≈ 1017.07 > 885.87 < 998.41 ≈ 999.98
DF11–24 479.09 ≈ 477.61 ≈ 475.73 ≈ 479.46 ≈ 487.52 ≈ 493.46
DF15–4 438.92 ≈ 436.97 ≈ 435.01 > 384.53 � 473.58 ≈ 477.38
DF15–5 2723.35 ≈ 2723.7 ≈ 2723.94 � 2172.99 � 2795.2 ≈ 2819.55
DF15–20 2389.9 ≈ 2387.53 ≈ 2385.16 � 1393.96 � 2468.89 ≈ 2473.66
DF15–21 2046.05 ≈ 2044.63 ≈ 2042.29 � 1826.53 � 2052.9 ≈ 2051.25
DF15–33 6527.52 ≈ 6524.96 ≈ 6522.39 � 2550.95 � 6637.01 ≈ 6648.75
DF15–35 770.91 ≈ 774.19 ≈ 775.14 � 669.42 < 770.1 ≈ 771.71
DRFN08–10 393.77 ≈ 392.11 ≈ 390.44 � 288.29 � 411.68 ≈ 415.01
DRFN08–11 429.82 ≈ 429.84 ≈ 428.39 > 374.74 ≈ 428.43 ≈ 428.63
DO09–32 1973.39 ≈ 1971.08 ≈ 1968.89 � 1794.26 � 1988.35 ≈ 1988.91
FY17–25 526.45 ≈ 527.58 ≈ 525.79 ≈ 481.62 < 546.95 < 559.74
FRD12–29 510.99 ≈ 509.24 ≈ 507.45 ≈ 485.43 ≈ 507.15 ≈ 509.35
KS13–12 2675.61 ≈ 2674.59 ≈ 2673.64 � 2261.67 � 2637.36 ≈ 2623.98
STS13–13 1261.23 ≈ 1260.86 ≈ 1259.78 � 1087.07 < 1219.58 ≈ 1228.3
Aoyagi and Frechette (2009) 498.38 ≈ 496.59 ≈ 495.48 ≈ 494.93 ≈ 501.5 ≈ 503.4
Blonski et al. (2011) 2277.26 > 2253.69 > 2230.87 � 1441.28 � 2411.7 ≈ 2458.66
Bruttel and Kamecke (2012) 1013.73 ≈ 1011.93 ≈ 1010.14 � 595.23 � 1038.68 ≈ 1040.33
Dal Bó (2005) 904.41 ≈ 900.53 ≈ 902.58 � 748.55 � 969.26 ≈ 951.14
Dal Bó and Fréchette (2011) 8322.63 ≈ 8300.39 ≈ 8283.81 � 6160.5 � 8428.76 ≈ 8461.64
Dal Bó and Fréchette (2015) 14925.81 ≈ 14915.3 ≈ 14901.44 � 9015.88 � 15226.83 ≈ 15283.12
Dreber et al. (2008) 827.1 ≈ 824.75 ≈ 820.93 � 665.13 � 843.61 ≈ 848.54
Duffy and Ochs (2009) 1973.39 ≈ 1971.08 ≈ 1968.89 � 1794.26 � 1988.35 ≈ 1988.91
Fréchette and Yuksel (2017) 526.45 ≈ 527.58 ≈ 525.79 ≈ 481.62 < 546.95 < 559.74
Fudenberg et al. (2012) 510.99 ≈ 509.24 ≈ 507.45 ≈ 485.43 ≈ 507.15 ≈ 509.35
Kagel and Schley (2013) 2675.61 ≈ 2674.59 ≈ 2673.64 � 2261.67 � 2637.36 ≈ 2623.98
Sherstyuk et al. (2013) 1261.23 ≈ 1260.86 ≈ 1259.78 � 1087.07 < 1219.58 ≈ 1228.3

Pooled 35899.35 ≈ 35792.43 ≈ 35690.23 � 25340.99 � 36502.1 ≈ 36712.43

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table 14.



Table 43: Mixtures of 1- and 2-memory pure and generalized strategies (no switching)
(ICL-BIC of the models, less is better and relation signs point toward better models)

Gen M2 Gen M1 Best Pure M2 Pure M1 + G2, TFT2, T2 + 2TFT

Specification
# Models evaluated 1 1 5 1 1 1
# Pars estimated (by treatment) 9 6 32 3 6 7
# Parameters accounted for 9 6 3–8 3 6 7

First halves per session
Aoyagi and Frechette (2009) 764.25 ≈ 757.68 � 884.86 ≈ 892.99 ≈ 890.72 ≈ 892.49
Blonski et al. (2011) 1167.82 ≈ 1208.25 > 1105.96 ≈ 1105.89 � 1169.27 < 1195.88
Bruttel and Kamecke (2012) 827.89 ≈ 853.09 ≈ 839.97 ≈ 851.01 ≈ 841.77 ≈ 843.55
Dal Bó (2005) 667.03 ≈ 655.4 ≈ 653.05 ≈ 653.05 ≈ 667.82 ≈ 672.66
Dal Bó and Fréchette (2011) 7378.08 ≈ 7433.78 ≈ 7391.89 ≈ 7453.78 ≈ 7410.56 ≈ 7426.49
Dal Bó and Fréchette (2015) 8826.62 ≈ 8852.04 ≈ 8893.78 ≈ 8946.72 ≈ 8929.45 ≈ 8959.61
Dreber et al. (2008) 888.62 ≈ 876.1 ≈ 863.47 ≈ 863.47 ≈ 875.14 ≈ 879.91
Duffy and Ochs (2009) 1414.26 ≈ 1407.43 ≈ 1426.34 ≈ 1446.74 ≈ 1429.36 ≈ 1440.65
Fréchette and Yuksel (2017) 322.84 ≈ 324.71 ≈ 317.35 ≈ 317.35 < 330.66 ≈ 334.41
Fudenberg et al. (2012) 433.05 ≈ 432.32 ≈ 463.4 ≈ 469.22 ≈ 465.31 ≈ 467.27
Kagel and Schley (2013) 2710.64 ≈ 2739.15 ≈ 2730.66 ≈ 2737.32 ≈ 2733.03 ≈ 2737.72
Sherstyuk et al. (2013) 1386.14 ≈ 1369.48 ≈ 1398.69 ≈ 1416.84 ≈ 1400.69 ≈ 1403.5

Pooled 27115.51 ≈ 27128.29 ≈ 27115.38 ≈ 27263.8 ≈ 27362.62 ≈ 27509.48

Second halves per session
Aoyagi and Frechette (2009) 417.68 ≈ 416.51 � 540.47 ≈ 543.34 ≈ 546.38 ≈ 544.96
Blonski et al. (2011) 1601.27 ≈ 1588.79 ≈ 1564.48 ≈ 1567.21 ≈ 1614.81 ≈ 1640.42
Bruttel and Kamecke (2012) 575.98 ≈ 592.59 ≈ 567.99 ≈ 587.38 ≈ 569.78 ≈ 571.6
Dal Bó (2005) 739.07 < 756.94 ≈ 741.2 ≈ 741.2 ≈ 756.26 ≈ 761.39
Dal Bó and Fréchette (2011) 5926.01 < 6059.85 ≈ 5960.78 � 6189.93 > 5983.61 ≈ 5994.24
Dal Bó and Fréchette (2015) 8955.93 < 9139.62 ≈ 9143.98 < 9333.86 > 9170.84 ≈ 9204.77
Dreber et al. (2008) 645.2 ≈ 656.58 ≈ 648.55 ≈ 648.55 < 660.03 ≈ 663.65
Duffy and Ochs (2009) 1888.67 ≈ 1914.18 ≈ 2003.41 ≈ 2034.56 ≈ 2005.7 ≈ 2009.16
Fréchette and Yuksel (2017) 444.26 ≈ 438.55 < 464.23 ≈ 464.23 ≈ 472.21 ≈ 474.13
Fudenberg et al. (2012) 477.91 ≈ 514.87 ≈ 534.47 ≈ 562.1 ≈ 536.37 ≈ 537.09
Kagel and Schley (2013) 1806.93 � 1923.93 > 1830.26 < 1924.38 > 1832.61 ≈ 1835.1
Sherstyuk et al. (2013) 1029.88 < 1249.12 � 1023.43 < 1109.62 > 1025.44 ≈ 1027.45

Pooled 24837.07 � 25470.38 ≈ 25177.57 � 25815.79 � 25392.89 ≈ 25519.27

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 2. Pure M1 refers to TFT, Grim, and AD. G2 denotes Grim2. For
definitions of pure strategies see Table 12. Gen M1 refers to generalized versions of TFT, Grim, and AD with memory-1. “+ G2, TFT2, T2” adds those strategies
to the set of “Pure M1”. “+2TFT” adds this strategy on top of the former.



Table 44: Table 43 by treatments – Mixtures of 1- and 2-memory pure and generalized strategies (no switching)

(a) First halves per session

Gen M2 Gen M1 Best Pure M2 Pure M1 + G2, TFT2, T2 + 2TFT

Specification
# Models evaluated 1 1 5 1 1 1
# Pars estimated (by treatment) 9 6 32 3 6 7
# Parameters accounted for 9 6 3–8 3 6 7

AF09–34 764.25 ≈ 757.68 � 884.86 ≈ 892.99 ≈ 890.72 ≈ 892.49
BOS11–9 86.93 ≈ 89.7 ≈ 85.2 ≈ 85.2 ≈ 89.33 ≈ 90.83
BOS11–14 103.76 ≈ 102.27 ≈ 97.73 ≈ 97.73 ≈ 102.22 ≈ 103.88
BOS11–15 41.19 ≈ 38.79 > 34.3 ≈ 34.3 � 38.79 ≈ 40.29
BOS11–16 173.13 ≈ 169.08 ≈ 174.24 ≈ 174.24 ≈ 178.7 ≈ 180.69
BOS11–17 119.24 ≈ 115.07 ≈ 110.57 ≈ 110.57 ≈ 115.16 ≈ 116.89
BOS11–26 259.69 ≈ 262.42 ≈ 256.88 ≈ 256.88 ≈ 259.48 ≈ 261.42
BOS11–27 102.01 ≈ 107.7 ≈ 100.97 ≈ 103.2 ≈ 102.47 ≈ 103.97
BOS11–30 65.81 � 60.42 > 56.77 ≈ 56.77 < 61.29 ≈ 64.59
BOS11–31 125.92 � 202.72 ≈ 156.95 ≈ 156.95 ≈ 161.73 ≈ 163.21
BK12–28 827.89 ≈ 853.09 ≈ 839.97 ≈ 851.01 ≈ 841.77 ≈ 843.55
D05–18 246.67 ≈ 241.44 ≈ 235.84 ≈ 235.84 ≈ 242.03 ≈ 243.88
D05–19 413.98 ≈ 409.7 ≈ 415.08 ≈ 415.08 ≈ 421.53 ≈ 423.82
DF11–6 883.72 ≈ 881.9 ≈ 877.78 ≈ 885.43 ≈ 879.67 ≈ 881.56
DF11–7 1436.53 ≈ 1432.97 ≈ 1424.78 ≈ 1424.78 ≈ 1430.65 ≈ 1432.61
DF11–8 1503.83 ≈ 1543.89 ≈ 1501.88 ≈ 1538.15 ≈ 1502.59 ≈ 1504.5
DF11–22 1178.2 ≈ 1185.37 ≈ 1188.65 ≈ 1189.26 ≈ 1190.54 ≈ 1191.58
DF11–23 1137.85 ≈ 1155.41 ≈ 1148.16 ≈ 1166.13 ≈ 1150.31 ≈ 1152.13
DF11–24 1189.48 ≈ 1201.92 ≈ 1224.49 ≈ 1233.88 ≈ 1224.49 ≈ 1226.42
DF15–4 468.06 ≈ 462.19 ≈ 456.32 ≈ 456.32 ≈ 462.19 ≈ 464.14
DF15–5 1756.46 ≈ 1762.23 ≈ 1817.09 ≈ 1818.32 ≈ 1819.54 ≈ 1821.88
DF15–20 1586.29 ≈ 1594.81 ≈ 1585.91 ≈ 1592.93 ≈ 1588.28 ≈ 1594.48
DF15–21 2002.93 ≈ 2003.37 ≈ 2022.58 ≈ 2069.89 ≈ 2025.12 ≈ 2029.73
DF15–33 2558.85 ≈ 2563.96 ≈ 2575.64 ≈ 2575.64 ≈ 2585.4 ≈ 2592.83
DF15–35 401.54 ≈ 430.5 ≈ 411.07 ≈ 416.14 ≈ 413.93 ≈ 415.7
DRFN08–10 424.56 ≈ 416.07 ≈ 410.24 ≈ 410.24 ≈ 415.24 ≈ 416.93
DRFN08–11 457.75 ≈ 455.83 ≈ 451.13 ≈ 451.13 ≈ 455.7 ≈ 458.08
DO09–32 1414.26 ≈ 1407.43 ≈ 1426.34 ≈ 1446.74 ≈ 1429.36 ≈ 1440.65
FY17–25 322.84 ≈ 324.71 ≈ 317.35 ≈ 317.35 < 330.66 ≈ 334.41
FRD12–29 433.05 ≈ 432.32 ≈ 463.4 ≈ 469.22 ≈ 465.31 ≈ 467.27
KS13–12 2710.64 ≈ 2739.15 ≈ 2730.66 ≈ 2737.32 ≈ 2733.03 ≈ 2737.72
STS13–13 1386.14 ≈ 1369.48 ≈ 1398.69 ≈ 1416.84 ≈ 1400.69 ≈ 1403.5
Aoyagi and Frechette (2009) 764.25 ≈ 757.68 � 884.86 ≈ 892.99 ≈ 890.72 ≈ 892.49
Blonski et al. (2011) 1167.82 ≈ 1208.25 > 1105.96 ≈ 1105.89 � 1169.27 < 1195.88
Bruttel and Kamecke (2012) 827.89 ≈ 853.09 ≈ 839.97 ≈ 851.01 ≈ 841.77 ≈ 843.55
Dal Bó (2005) 667.03 ≈ 655.4 ≈ 653.05 ≈ 653.05 ≈ 667.82 ≈ 672.66
Dal Bó and Fréchette (2011) 7378.08 ≈ 7433.78 ≈ 7391.89 ≈ 7453.78 ≈ 7410.56 ≈ 7426.49
Dal Bó and Fréchette (2015) 8826.62 ≈ 8852.04 ≈ 8893.78 ≈ 8946.72 ≈ 8929.45 ≈ 8959.61
Dreber et al. (2008) 888.62 ≈ 876.1 ≈ 863.47 ≈ 863.47 ≈ 875.14 ≈ 879.91
Duffy and Ochs (2009) 1414.26 ≈ 1407.43 ≈ 1426.34 ≈ 1446.74 ≈ 1429.36 ≈ 1440.65
Fréchette and Yuksel (2017) 322.84 ≈ 324.71 ≈ 317.35 ≈ 317.35 < 330.66 ≈ 334.41
Fudenberg et al. (2012) 433.05 ≈ 432.32 ≈ 463.4 ≈ 469.22 ≈ 465.31 ≈ 467.27
Kagel and Schley (2013) 2710.64 ≈ 2739.15 ≈ 2730.66 ≈ 2737.32 ≈ 2733.03 ≈ 2737.72
Sherstyuk et al. (2013) 1386.14 ≈ 1369.48 ≈ 1398.69 ≈ 1416.84 ≈ 1400.69 ≈ 1403.5

Pooled 27115.51 ≈ 27128.29 ≈ 27115.38 ≈ 27263.8 ≈ 27362.62 ≈ 27509.48

(b) Second halves per session

Gen M2 Gen M1 Best Pure M2 Pure M1 + G2, TFT2, T2 + 2TFT

Specification
# Models evaluated 1 1 5 1 1 1
# Pars estimated (by treatment) 9 6 32 3 6 7
# Parameters accounted for 9 6 3–8 3 6 7

AF09–34 417.68 ≈ 416.51 � 540.47 ≈ 543.34 ≈ 546.38 ≈ 544.96
BOS11–9 96.6 ≈ 92.33 > 84.22 ≈ 84.22 < 88.72 ≈ 90.22
BOS11–14 49.8 > 45.31 ≈ 40.82 ≈ 40.82 � 45.31 ≈ 46.81
BOS11–15 24.51 ≈ 20.01 ≈ 15.52 ≈ 15.52 ≈ 20.01 ≈ 21.51
BOS11–16 173.27 ≈ 162.81 ≈ 157.48 ≈ 157.48 ≈ 161.97 ≈ 163.73
BOS11–17 240.94 ≈ 234.24 ≈ 228.36 ≈ 229.75 ≈ 229.86 ≈ 231.36
BOS11–26 374.59 ≈ 375.35 ≈ 374.79 ≈ 375.99 ≈ 376.63 ≈ 379.73
BOS11–27 243.46 ≈ 290.73 ≈ 281.24 ≈ 286.24 ≈ 282.74 ≈ 284.24
BOS11–30 147.13 ≈ 148.34 ≈ 146.49 ≈ 146.49 ≈ 150.98 ≈ 152.47
BOS11–31 160.84 ≈ 159.57 ≈ 196.99 ≈ 200.65 ≈ 198.49 ≈ 200.23
BK12–28 575.98 ≈ 592.59 ≈ 567.99 ≈ 587.38 ≈ 569.78 ≈ 571.6
D05–18 346.26 ≈ 356.38 ≈ 350.59 ≈ 350.59 ≈ 354.41 ≈ 356.81
D05–19 386.44 ≈ 396.31 ≈ 388.48 ≈ 388.48 ≈ 397.6 ≈ 399.62
DF11–6 755.12 ≈ 752.32 ≈ 747.77 ≈ 747.77 ≈ 753.45 ≈ 755.34
DF11–7 1571.64 ≈ 1591.36 ≈ 1566.58 ≈ 1585.49 ≈ 1568.54 ≈ 1570.53
DF11–8 1140.35 < 1223.57 ≈ 1153.72 < 1217.82 ≈ 1155.64 ≈ 1157.54
DF11–22 1171.84 ≈ 1224.33 ≈ 1152.14 ≈ 1218.65 ≈ 1154.03 ≈ 1153.84
DF11–23 776.24 ≈ 785.37 ≈ 782.51 ≈ 863.26 > 786.34 ≈ 782.51
DF11–24 462.37 ≈ 450.61 < 530.97 ≈ 540.78 ≈ 533.31 ≈ 536.77
DF15–4 352.57 ≈ 347.64 ≈ 342.05 ≈ 342.05 ≈ 346.85 ≈ 348.81
DF15–5 1688.11 ≈ 1688.45 ≈ 1712.9 ≈ 1722.43 ≈ 1715.36 ≈ 1723.94
DF15–20 1563.94 ≈ 1628.58 ≈ 1582.66 ≈ 1622.15 ≈ 1585.03 ≈ 1587.38
DF15–21 1684.16 ≈ 1692.13 ≈ 1754.9 ≈ 1796.63 ≈ 1761.1 ≈ 1769.78
DF15–33 2856.1 < 2973.69 ≈ 2935.81 ≈ 2990.83 ≈ 2936.64 ≈ 2941.36
DF15–35 758.55 ≈ 774.14 ≈ 789.09 ≈ 842.27 > 790.87 ≈ 792.66
DRFN08–10 302.05 ≈ 303.34 ≈ 301.08 ≈ 301.08 ≈ 306.08 ≈ 307.74
DRFN08–11 336.84 ≈ 349.04 ≈ 345.37 ≈ 345.37 ≈ 349.75 ≈ 351
DO09–32 1888.67 ≈ 1914.18 ≈ 2003.41 ≈ 2034.56 ≈ 2005.7 ≈ 2009.16
FY17–25 444.26 ≈ 438.55 < 464.23 ≈ 464.23 ≈ 472.21 ≈ 474.13
FRD12–29 477.91 ≈ 514.87 ≈ 534.47 ≈ 562.1 ≈ 536.37 ≈ 537.09
KS13–12 1806.93 � 1923.93 > 1830.26 < 1924.38 > 1832.61 ≈ 1835.1
STS13–13 1029.88 < 1249.12 � 1023.43 < 1109.62 > 1025.44 ≈ 1027.45
Aoyagi and Frechette (2009) 417.68 ≈ 416.51 � 540.47 ≈ 543.34 ≈ 546.38 ≈ 544.96
Blonski et al. (2011) 1601.27 ≈ 1588.79 ≈ 1564.48 ≈ 1567.21 ≈ 1614.81 ≈ 1640.42
Bruttel and Kamecke (2012) 575.98 ≈ 592.59 ≈ 567.99 ≈ 587.38 ≈ 569.78 ≈ 571.6
Dal Bó (2005) 739.07 < 756.94 ≈ 741.2 ≈ 741.2 ≈ 756.26 ≈ 761.39
Dal Bó and Fréchette (2011) 5926.01 < 6059.85 ≈ 5960.78 � 6189.93 > 5983.61 ≈ 5994.24
Dal Bó and Fréchette (2015) 8955.93 < 9139.62 ≈ 9143.98 < 9333.86 > 9170.84 ≈ 9204.77
Dreber et al. (2008) 645.2 ≈ 656.58 ≈ 648.55 ≈ 648.55 < 660.03 ≈ 663.65
Duffy and Ochs (2009) 1888.67 ≈ 1914.18 ≈ 2003.41 ≈ 2034.56 ≈ 2005.7 ≈ 2009.16
Fréchette and Yuksel (2017) 444.26 ≈ 438.55 < 464.23 ≈ 464.23 ≈ 472.21 ≈ 474.13
Fudenberg et al. (2012) 477.91 ≈ 514.87 ≈ 534.47 ≈ 562.1 ≈ 536.37 ≈ 537.09
Kagel and Schley (2013) 1806.93 � 1923.93 > 1830.26 < 1924.38 > 1832.61 ≈ 1835.1
Sherstyuk et al. (2013) 1029.88 < 1249.12 � 1023.43 < 1109.62 > 1025.44 ≈ 1027.45

Pooled 24837.07 � 25470.38 ≈ 25177.57 � 25815.79 � 25392.89 ≈ 25519.27

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table 14.



Table 45: Comparison of 1- and 2-memory Semi-Grim with two and three parameters, pure and generalized strategies (no switching,
Grim scheme) (ICL-BIC of the models, less is better and relation signs point toward better models)

SGs M2“General” SGs M2 “Grim” Semi-Grim Gen M2“Grim” Gen M1 Best Pure M2

Specification
# Models evaluated 1 1 1 1 1 5
# Pars estimated (by treatment) 5 3 3 9 6 32
# Parameters accounted for 5 3 3 9 6 3–8

First halves per session
Aoyagi and Frechette (2009) 865.91 > 843.09 ≈ 835.89 > 764.25 ≈ 757.68 � 884.86
Blonski et al. (2011) 1421.49 � 1375.08 � 1089.36 < 1167.82 ≈ 1208.25 > 1105.96
Bruttel and Kamecke (2012) 969.35 ≈ 966.75 � 817.24 ≈ 827.89 ≈ 853.09 ≈ 839.97
Dal Bó (2005) 798.82 ≈ 791.74 � 653.33 ≈ 667.03 ≈ 655.4 ≈ 653.05
Dal Bó and Fréchette (2011) 8512.04 ≈ 8479.3 � 7282.65 ≈ 7378.08 ≈ 7433.78 ≈ 7391.89
Dal Bó and Fréchette (2015) 11283.53 ≈ 11280.81 � 8887.67 ≈ 8826.62 ≈ 8852.04 ≈ 8893.78
Dreber et al. (2008) 1177.21 ≈ 1170.29 � 838.33 ≈ 888.62 ≈ 876.1 ≈ 863.47
Duffy and Ochs (2009) 1588.23 ≈ 1586.14 � 1437.86 ≈ 1414.26 ≈ 1407.43 ≈ 1426.34
Fréchette and Yuksel (2017) 362.68 ≈ 359.65 ≈ 335.07 ≈ 322.84 ≈ 324.71 ≈ 317.35
Fudenberg et al. (2012) 440.73 ≈ 440.31 > 398.38 ≈ 433.05 ≈ 432.32 ≈ 463.4
Kagel and Schley (2013) 3490.59 ≈ 3478.42 � 2912.53 > 2710.64 ≈ 2739.15 ≈ 2730.66
Sherstyuk et al. (2013) 1601.7 ≈ 1600.41 � 1413 ≈ 1386.14 ≈ 1369.48 ≈ 1398.69

Pooled 32694.65 > 32481.42 � 27010.74 ≈ 27115.51 ≈ 27128.29 ≈ 27115.38

Second halves per session
Aoyagi and Frechette (2009) 498.38 ≈ 495.48 ≈ 494.93 > 417.68 ≈ 416.51 � 540.47
Blonski et al. (2011) 2277.26 � 2230.87 � 1441.28 < 1601.27 ≈ 1588.79 ≈ 1564.48
Bruttel and Kamecke (2012) 1013.73 ≈ 1010.14 � 595.23 ≈ 575.98 ≈ 592.59 ≈ 567.99
Dal Bó (2005) 904.41 ≈ 902.58 � 748.55 ≈ 739.07 < 756.94 ≈ 741.2
Dal Bó and Fréchette (2011) 8322.63 ≈ 8283.81 � 6160.5 ≈ 5926.01 < 6059.85 ≈ 5960.78
Dal Bó and Fréchette (2015) 14925.81 ≈ 14901.44 � 9015.88 ≈ 8955.93 < 9139.62 ≈ 9143.98
Dreber et al. (2008) 827.1 ≈ 820.93 � 665.13 ≈ 645.2 ≈ 656.58 ≈ 648.55
Duffy and Ochs (2009) 1973.39 ≈ 1968.89 � 1794.26 ≈ 1888.67 ≈ 1914.18 ≈ 2003.41
Fréchette and Yuksel (2017) 526.45 ≈ 525.79 ≈ 481.62 ≈ 444.26 ≈ 438.55 < 464.23
Fudenberg et al. (2012) 510.99 ≈ 507.45 ≈ 485.43 ≈ 477.91 ≈ 514.87 ≈ 534.47
Kagel and Schley (2013) 2675.61 ≈ 2673.64 � 2261.67 � 1806.93 � 1923.93 > 1830.26
Sherstyuk et al. (2013) 1261.23 ≈ 1259.78 � 1087.07 ≈ 1029.88 < 1249.12 � 1023.43

Pooled 35899.35 > 35690.23 � 25340.99 ≈ 24837.07 � 25470.38 ≈ 25177.57

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 2. Pure M1 refers to TFT, Grim, and AD. For definitions of
pure strategies see Table 12. Gen M1 refers to generalized versions of TFT, Grim, and AD with memory-1. SGs refers to a two parameter version of SG
(1−θ1,θ2,θ2,θ1). “Gen M2” refers to memory-2 versions of the generalized strategies that allow parameters to depend on the prevalence of joint cooperation in
t−2 (Grim Scheme).



Table 46: Comparison of 1- and 2-memory Semi-Grim, pure and generalized strategies (no switching, TFT scheme)
(ICL-BIC of the models, less is better and relation signs point toward better models)

SGs M2“General” SGs M2 “TFT” Semi-Grim Gen M2“TFT” Gen M1 Best Pure M2

Specification
# Models evaluated 1 1 1 1 1 5
# Pars estimated (by treatment) 5 3 3 9 6 32
# Parameters accounted for 5 3 3 9 6 3–8

First halves per session
Aoyagi and Frechette (2009) 846.43 ≈ 842.85 ≈ 835.89 > 761.5 ≈ 757.68 � 884.86
Blonski et al. (2011) 1806.09 > 1764.42 � 1089.36 < 1166.9 ≈ 1208.25 > 1105.98
Bruttel and Kamecke (2012) 969.46 ≈ 966.85 � 817.24 ≈ 830.04 ≈ 853.09 ≈ 839.97
Dal Bó (2005) 798.82 ≈ 792.19 � 653.33 ≈ 670.93 ≈ 655.4 ≈ 653.05
Dal Bó and Fréchette (2011) 8766.46 ≈ 8857.14 � 7282.65 ≈ 7356.81 ≈ 7433.78 ≈ 7391.89
Dal Bó and Fréchette (2015) 11201.12 ≈ 11195.82 � 8887.67 ≈ 8772.73 ≈ 8852.04 ≈ 8893.78
Dreber et al. (2008) 1080.21 ≈ 1074.01 � 838.33 ≈ 885.14 ≈ 876.1 ≈ 863.47
Duffy and Ochs (2009) 1588.23 ≈ 1589.78 � 1437.86 ≈ 1408.4 ≈ 1407.43 ≈ 1426.34
Fréchette and Yuksel (2017) 362.68 ≈ 359.82 ≈ 335.07 ≈ 317.71 ≈ 324.71 ≈ 317.35
Fudenberg et al. (2012) 440.73 ≈ 438.77 > 398.38 ≈ 434.18 ≈ 432.32 ≈ 463.4
Kagel and Schley (2013) 3482.28 ≈ 3478.98 � 2912.53 > 2679.23 ≈ 2739.15 ≈ 2730.66
Sherstyuk et al. (2013) 1601.7 ≈ 1599.88 � 1413 ≈ 1361.19 ≈ 1369.48 ≈ 1398.69

Pooled 33126.57 ≈ 33069.94 � 27010.74 ≈ 26973 ≈ 27128.29 ≈ 27115.39

Second halves per session
Aoyagi and Frechette (2009) 498.38 ≈ 496.8 ≈ 494.93 > 420.25 ≈ 416.51 � 540.47
Blonski et al. (2011) 2534.05 ≈ 2515.52 � 1441.28 < 1585.85 ≈ 1588.79 ≈ 1564.48
Bruttel and Kamecke (2012) 798.72 ≈ 802.37 � 595.23 ≈ 565.54 ≈ 592.59 ≈ 567.99
Dal Bó (2005) 904.46 ≈ 903.44 � 748.55 ≈ 736.51 < 756.94 ≈ 741.2
Dal Bó and Fréchette (2011) 8180.26 ≈ 8163 � 6160.5 ≈ 5907.5 < 6059.85 ≈ 5960.78
Dal Bó and Fréchette (2015) 12011.36 ≈ 12036.08 � 9015.88 ≈ 8931.28 < 9139.62 ≈ 9143.98
Dreber et al. (2008) 994.91 ≈ 990.52 � 665.13 ≈ 640.2 ≈ 656.58 ≈ 648.55
Duffy and Ochs (2009) 1973.39 ≈ 1969 � 1794.26 ≈ 1866.23 ≈ 1914.18 ≈ 2003.41
Fréchette and Yuksel (2017) 526.45 ≈ 524.04 ≈ 481.62 ≈ 442.91 ≈ 438.55 < 464.23
Fudenberg et al. (2012) 510.99 ≈ 508.14 ≈ 485.43 ≈ 503.36 ≈ 514.87 ≈ 534.47
Kagel and Schley (2013) 2675.61 ≈ 2675.31 � 2261.67 � 1786.55 � 1923.93 > 1830.26
Sherstyuk et al. (2013) 1261.23 ≈ 1260.14 � 1087.07 ≈ 1015.79 � 1249.12 � 1023.43

Pooled 33052.2 ≈ 32953.79 � 25340.99 > 24730.23 � 25470.38 ≈ 25177.57

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 2. Pure M1 refers to TFT, Grim, and AD. For definitions of
pure strategies see Table 12. “Gen M1” refers to generalized versions of TFT, Grim, and AD with memory-1. SGs refers to a two parameter version of SG
(1− θ1,θ2,θ2,θ1). “Gen M2” refers to memory-2 versions of the generalized strategies that allow parameters to depend on opponent’s behavior in t− 2 (TFT
Scheme).



Table 47: Examining all mixtures of Semi-Grim with pure or generalized pure strategies as secondary components

Component 1 First component is always Semi-Grim
Component 2 Gen WSLS Gen TFT Gen Grim Gen AD/AC AD Grim TFT WSLS

Specification
# Models evaluated 1 1 1 1 1 1 1 1
# Pars estimated (by treatment) 5 5 5 5 4 4 4 4
# Parameters accounted for 5 5 5 5 4 4 4 4

First halves per session
Aoyagi and Frechette (2009) 833.07 ≈ 827.61 > 781.52 ≈ 781.72 ≈ 781.86 ≈ 836.15 ≈ 839.39 ≈ 838.34
Blonski et al. (2011) 1104.67 � 1205.21 � 1078.98 ≈ 1077.49 ≈ 1069.28 ≈ 1078.78 ≈ 1084.91 ≈ 1116.68
Bruttel and Kamecke (2012) 788.3 ≈ 774.29 ≈ 781.67 ≈ 801.91 ≈ 800.12 ≈ 785.63 ≈ 791.16 ≈ 805.34
Dal Bó (2005) 626.71 ≈ 615.03 ≈ 618.81 ≈ 633.79 ≈ 629.17 ≈ 622.09 ≈ 620.42 � 665.94
Dal Bó and Fréchette (2011) 6792.73 ≈ 6741.75 ≈ 6717.88 ≈ 6613.74 ≈ 6597.93 < 6776.33 ≈ 6768.78 � 7019.27
Dal Bó and Fréchette (2015) 8296.9 > 8219.32 ≈ 8146.3 ≈ 8032.68 ≈ 8017.59 � 8282.13 ≈ 8244.33 � 8578.97
Dreber et al. (2008) 783.18 ≈ 778.8 ≈ 780.25 ≈ 786.29 ≈ 782.37 ≈ 779.27 ≈ 801.73 ≈ 840.26
Duffy and Ochs (2009) 1400.27 ≈ 1392.67 ≈ 1378.77 ≈ 1375.28 ≈ 1372.97 ≈ 1398.16 ≈ 1427.86 ≈ 1368.08
Fréchette and Yuksel (2017) 296.99 ≈ 288.62 ≈ 291.8 ≈ 301.54 ≈ 299.62 ≈ 295.03 ≈ 301.61 < 341.67
Fudenberg et al. (2012) 407.24 ≈ 393.68 ≈ 396.2 ≈ 382.94 ≈ 381.01 ≈ 408.96 ≈ 391.66 ≈ 403.85
Kagel and Schley (2013) 2707.66 > 2615.48 ≈ 2659.78 ≈ 2564.13 ≈ 2561.76 < 2705.29 ≈ 2737.96 < 2909.82
Sherstyuk et al. (2013) 1344.97 ≈ 1288.49 ≈ 1290.74 ≈ 1305.81 ≈ 1303.8 ≈ 1342.96 ≈ 1322.1 < 1417.88

Pooled 25601.53 > 25359.79 > 25141.55 ≈ 24876.16 ≈ 24779.85 � 25493.16 ≈ 25514.29 � 26488.47

Second halves per session
Aoyagi and Frechette (2009) 479.98 > 446.87 > 418.99 ≈ 425.42 ≈ 423.68 ≈ 479.95 ≈ 455.1 ≈ 485.31
Blonski et al. (2011) 1439.96 > 1403.78 ≈ 1398.73 ≈ 1366.99 ≈ 1346.79 ≈ 1416.3 ≈ 1397.1 ≈ 1449.29
Bruttel and Kamecke (2012) 515.73 ≈ 492.41 ≈ 512.72 ≈ 538.57 ≈ 536.77 ≈ 513.93 ≈ 503.46 � 590.69
Dal Bó (2005) 693.22 > 673 ≈ 697.25 ≈ 710.27 ≈ 699.05 ≈ 688.6 ≈ 707.82 < 761.12
Dal Bó and Fréchette (2011) 5253.2 ≈ 5114.49 ≈ 5119.08 < 5500.38 > 5128.69 ≈ 5239.33 ≈ 5098.31 � 5730.27
Dal Bó and Fréchette (2015) 7980.76 � 7744.75 ≈ 7753.44 ≈ 7873.59 ≈ 7825.98 ≈ 8016.72 ≈ 7886.32 � 8545.26
Dreber et al. (2008) 568.76 ≈ 551.89 ≈ 565.89 ≈ 593.75 ≈ 589.84 ≈ 564.85 ≈ 573.93 < 672.96
Duffy and Ochs (2009) 1647.29 ≈ 1715.88 ≈ 1710.22 ≈ 1661.28 ≈ 1761.6 ≈ 1747.49 ≈ 1755.26 ≈ 1795.33
Fréchette and Yuksel (2017) 464.38 ≈ 437.79 ≈ 431.82 ≈ 425.29 ≈ 423.34 ≈ 462.62 ≈ 457.07 < 487.74
Fudenberg et al. (2012) 463.31 ≈ 473.75 ≈ 481.89 ≈ 470.44 ≈ 452.6 ≈ 461.37 ≈ 483.91 ≈ 487.78
Kagel and Schley (2013) 1902.37 � 1730.68 ≈ 1791.78 ≈ 1777.99 ≈ 1775.62 ≈ 1900 ≈ 1881.46 � 2265.03
Sherstyuk et al. (2013) 1015.02 ≈ 969.34 ≈ 915.62 ≈ 953.35 ≈ 951.34 ≈ 1013.01 ≈ 986.2 < 1079.05

Pooled 22642.83 � 21973.48 ≈ 22016.28 < 22516.18 > 22097.67 < 22686.55 > 22368.31 � 24532.19

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 2. For definitions of pure strategies see Table 12. For definitions
of generalized strategies see Section 3 main text.



Appendix E: Robustness checks for Section 5

Figure 7: Relation of actual and estimated treatment parameters: Comparison of estimates
based on regular and belief-free semi-grim MPEs (first halves of sessions)

(a) RegSG: Actual vs. Estimated Delta
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(b) BFSG: Actual vs. Estimated Delta
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(c) RegSG: Actual vs. Estimated g
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(d) BFSG: Actual vs. Estimated g
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(e) RegSG: Actual vs. Estimated l
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(f) BFSG: Actual vs. Estimated l
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Figure 8: Relation of actual and estimated treatment parameters: Comparison of estimates
based on regular and belief-free semi-grim MPEs (second halves of sessions)

(a) RegSG: Actual vs. Estimated Delta
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(b) BFSG: Actual vs. Estimated Delta
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(c) RegSG: Actual vs. Estimated g
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(d) BFSG: Actual vs. Estimated g
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(e) RegSG: Actual vs. Estimated l
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(f) BFSG: Actual vs. Estimated l
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Table 48: Distance to Semi-Grim MPEs (first halves of sessions)

Empirical Closest Reg-SG MPE Closest BF-SG MPE
Treatment SG-Strategy Game (δ,g, l) MAD in game (δ,g, l) MAD in game (δ,g, l)

AF09–34 ( 0.91,0.41,0.41,0.09 ) ( 0.9,0.33,0.11 ) 0.18 ( 0.65,1,0.79 ) 0 ( 0.7,0.84,0.54 )
BOS11–9 ( 0.95,0.2,0.2,0.05 ) ( 0.5,2,2 ) 0 ( 0.75,0.9,0.79 ) 0 ( 0.62,1.02,0.2 )
BOS11–14 ( 0.99,0.12,0.12,0.01 ) ( 0.75,0.5,3.5 ) 0 ( 0.84,1,0.81 ) 0 ( 0.55,1.03,0.17 )
BOS11–15 ( 1,0.22,0.22,0 ) ( 0.75,1,8 ) 0 ( 0.76,0.87,0.96 ) 0 ( 0.58,1.05,0.3 )
BOS11–16 ( 0.95,0.18,0.18,0.05 ) ( 0.75,0.75,1.25 ) 0.1 ( 0.77,0.92,0.77 ) 0 ( 0.61,1.04,0.17 )
BOS11–17 ( 1,0.38,0.38,0 ) ( 0.75,0.83,0.5 ) 0 ( 0.65,1,0.8 ) 0 ( 0.62,1,0.62 )
BOS11–26 ( 0.98,0.17,0.17,0.02 ) ( 0.75,2,2 ) 0.03 ( 0.79,0.78,0.81 ) 0.05 ( 0.58,1.03,0.24 )
BOS11–27 ( 0.89,0.45,0.45,0.11 ) ( 0.75,1,1 ) 0.23 ( 0.55,1,0.71 ) 0 ( 0.77,0.84,0.64 )
BOS11–30 ( 1,0,0,0 ) ( 0.88,0.5,3.5 ) 0 ( 1,0.5,1.1 ) 0 ( 0.57,1.03,0.01 )
BOS11–31 ( 0.98,0.51,0.51,0.02 ) ( 0.88,2,2 ) 0.05 ( 0.56,0.84,0.91 ) 0 ( 0.69,0.95,1 )
BK12–28 ( 0.92,0.29,0.29,0.08 ) ( 0.8,1.17,0.83 ) 0.17 ( 0.73,1,0.99 ) 0 ( 0.69,1.01,0.33 )
D05–18 ( 0.86,0.29,0.29,0.14 ) ( 0.75,1.17,0.83 ) 0.28 ( 0.73,1,0.99 ) 0 ( 0.77,1.01,0.26 )
D05–19 ( 0.91,0.34,0.34,0.09 ) ( 0.75,0.83,1.17 ) 0.17 ( 0.67,1,0.81 ) 0 ( 0.72,1.02,0.44 )
DF11–6 ( 0.92,0.4,0.4,0.08 ) ( 0.5,2.57,1.86 ) 0.16 ( 0.65,1,0.8 ) 0 ( 0.7,0.89,0.54 )
DF11–7 ( 0.89,0.32,0.32,0.11 ) ( 0.5,0.67,0.87 ) 0.21 ( 0.68,1,0.81 ) 0 ( 0.74,1.02,0.39 )
DF11–8 ( 0.91,0.42,0.42,0.09 ) ( 0.5,0.09,0.57 ) 0.19 ( 0.64,1,0.78 ) 0 ( 0.73,0.86,0.58 )
DF11–22 ( 0.92,0.38,0.38,0.08 ) ( 0.75,2.57,1.86 ) 0.17 ( 0.65,1,0.8 ) 0 ( 0.7,0.89,0.5 )
DF11–23 ( 0.95,0.46,0.46,0.05 ) ( 0.75,0.67,0.87 ) 0.1 ( 0.56,1.03,0.78 ) 0 ( 0.72,1.01,0.84 )
DF11–24 ( 0.95,0.36,0.36,0.05 ) ( 0.75,0.09,0.57 ) 0.1 ( 0.66,0.99,0.8 ) 0 ( 0.67,1,0.52 )
DF15–4 ( 0.9,0.36,0.36,0.1 ) ( 0.5,2.57,1.86 ) 0.21 ( 0.66,0.99,0.8 ) 0 ( 0.75,0.99,0.46 )
DF15–5 ( 0.93,0.31,0.31,0.07 ) ( 0.5,0.09,0.57 ) 0.14 ( 0.72,0.98,1 ) 0 ( 0.67,1.01,0.39 )
DF15–20 ( 0.92,0.32,0.32,0.08 ) ( 0.75,2.57,1.86 ) 0.16 ( 0.68,0.96,0.85 ) 0 ( 0.71,1.05,0.43 )
DF15–21 ( 0.94,0.47,0.47,0.06 ) ( 0.75,0.09,0.57 ) 0.12 ( 0.54,1.03,0.85 ) 0 ( 0.73,0.98,0.85 )
DF15–33 ( 0.93,0.37,0.37,0.07 ) ( 0.9,2.57,1.86 ) 0.14 ( 0.66,1,0.81 ) 0 ( 0.7,1,0.53 )
DF15–35 ( 0.97,0.42,0.42,0.03 ) ( 0.95,2.57,1.86 ) 0.06 ( 0.64,1,0.79 ) 0 ( 0.67,1.03,0.72 )
DRFN08–10 ( 0.95,0.18,0.18,0.05 ) ( 0.75,2,2 ) 0.11 ( 0.77,0.91,0.79 ) 0.02 ( 0.61,1.03,0.18 )
DRFN08–11 ( 0.93,0.33,0.33,0.07 ) ( 0.75,1,1 ) 0.14 ( 0.67,1,0.8 ) 0 ( 0.69,1.03,0.44 )
DO09–32 ( 0.9,0.37,0.37,0.1 ) ( 0.9,1,1 ) 0.2 ( 0.65,0.99,0.79 ) 0 ( 0.73,0.93,0.48 )
FY17–25 ( 0.93,0.25,0.25,0.07 ) ( 0.75,0.4,0.4 ) 0.15 ( 0.76,0.94,1 ) 0 ( 0.66,1.03,0.26 )
FRD12–29 ( 0.97,0.47,0.47,0.03 ) ( 0.88,0.33,0.33 ) 0.06 ( 0.58,0.95,0.76 ) 0 ( 0.7,1.01,0.88 )
KS13–12 ( 0.93,0.33,0.33,0.07 ) ( 0.75,1,0.5 ) 0.14 ( 0.67,1,0.81 ) 0 ( 0.69,1.02,0.46 )
STS13–13 ( 0.92,0.41,0.41,0.08 ) ( 0.75,1,0.25 ) 0.16 ( 0.65,1,0.79 ) 0 ( 0.7,0.86,0.55 )

Means 0.123 ( 0.69,0.95,0.84 ) 0.002 ( 0.68,0.98,0.47 )

Note: “SG-Strategy” is the SG-continuation strategy estimated in the “1.5× SG + AD” model
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Table 49: Distance to Semi-Grim MPEs: closest equilibria (first halves of sessions)

Empirical Closest Reg-SG MPE Closest BF-SG MPE
Treatment SG-Strategy Game Strategy Strategy

AF09–34 ( 0.91,0.41,0.41,0.09 ) ( 0.9,0.33,0.11 ) ( 1,0.41,0.41,0 ) ( 0.91,0.41,0.41,0.09 )
BOS11–9 ( 0.95,0.2,0.2,0.05 ) ( 0.5,2,2 ) ( 1,0.2,0.2,0 ) ( 0.95,0.2,0.2,0.05 )
BOS11–14 ( 0.99,0.12,0.12,0.01 ) ( 0.75,0.5,3.5 ) ( 1,0.12,0.12,0 ) ( 1,0.15,0.15,0 )
BOS11–15 ( 1,0.22,0.22,0 ) ( 0.75,1,8 ) ( 1,0.22,0.22,0 ) ( 1,0.22,0.22,0 )
BOS11–16 ( 0.95,0.18,0.18,0.05 ) ( 0.75,0.75,1.25 ) ( 1,0.18,0.18,0 ) ( 0.95,0.18,0.18,0.05 )
BOS11–17 ( 1,0.38,0.38,0 ) ( 0.75,0.83,0.5 ) ( 1,0.38,0.38,0 ) ( 1,0.38,0.38,0 )
BOS11–26 ( 0.98,0.17,0.17,0.02 ) ( 0.75,2,2 ) ( 1,0.17,0.17,0 ) ( 0.98,0.2,0.2,0.02 )
BOS11–27 ( 0.89,0.45,0.45,0.11 ) ( 0.75,1,1 ) ( 1,0.45,0.45,0 ) ( 0.89,0.45,0.45,0.11 )
BOS11–30 ( 1,0,0,0 ) ( 0.88,0.5,3.5 ) ( 1,0,0,0 ) ( 0.95,0.06,0.06,0.05 )
BOS11–31 ( 0.98,0.51,0.51,0.02 ) ( 0.88,2,2 ) ( 1,0.51,0.51,0 ) ( 0.98,0.51,0.51,0.02 )
BK12–28 ( 0.92,0.29,0.29,0.08 ) ( 0.8,1.17,0.83 ) ( 1,0.29,0.29,0 ) ( 0.92,0.29,0.29,0.08 )
D05–18 ( 0.86,0.29,0.29,0.14 ) ( 0.75,1.17,0.83 ) ( 1,0.29,0.29,0 ) ( 0.86,0.29,0.29,0.14 )
D05–19 ( 0.91,0.34,0.34,0.09 ) ( 0.75,0.83,1.17 ) ( 1,0.34,0.34,0 ) ( 0.91,0.34,0.34,0.09 )
DF11–6 ( 0.92,0.4,0.4,0.08 ) ( 0.5,2.57,1.86 ) ( 1,0.4,0.4,0 ) ( 0.92,0.4,0.4,0.08 )
DF11–7 ( 0.89,0.32,0.32,0.11 ) ( 0.5,0.67,0.87 ) ( 1,0.32,0.32,0 ) ( 0.89,0.32,0.32,0.11 )
DF11–8 ( 0.91,0.42,0.42,0.09 ) ( 0.5,0.09,0.57 ) ( 1,0.42,0.42,0 ) ( 0.91,0.42,0.42,0.09 )
DF11–22 ( 0.92,0.38,0.38,0.08 ) ( 0.75,2.57,1.86 ) ( 1,0.38,0.38,0 ) ( 0.92,0.38,0.38,0.08 )
DF11–23 ( 0.95,0.46,0.46,0.05 ) ( 0.75,0.67,0.87 ) ( 1,0.46,0.46,0 ) ( 0.95,0.46,0.46,0.05 )
DF11–24 ( 0.95,0.36,0.36,0.05 ) ( 0.75,0.09,0.57 ) ( 1,0.36,0.36,0 ) ( 0.95,0.36,0.36,0.05 )
DF15–4 ( 0.9,0.36,0.36,0.1 ) ( 0.5,2.57,1.86 ) ( 1,0.36,0.36,0 ) ( 0.9,0.36,0.36,0.1 )
DF15–5 ( 0.93,0.31,0.31,0.07 ) ( 0.5,0.09,0.57 ) ( 1,0.31,0.31,0 ) ( 0.93,0.31,0.31,0.07 )
DF15–20 ( 0.92,0.32,0.32,0.08 ) ( 0.75,2.57,1.86 ) ( 1,0.32,0.32,0 ) ( 0.92,0.32,0.32,0.08 )
DF15–21 ( 0.94,0.47,0.47,0.06 ) ( 0.75,0.09,0.57 ) ( 1,0.47,0.47,0 ) ( 0.94,0.47,0.47,0.06 )
DF15–33 ( 0.93,0.37,0.37,0.07 ) ( 0.9,2.57,1.86 ) ( 1,0.37,0.37,0 ) ( 0.93,0.37,0.37,0.07 )
DF15–35 ( 0.97,0.42,0.42,0.03 ) ( 0.95,2.57,1.86 ) ( 1,0.42,0.42,0 ) ( 0.97,0.42,0.42,0.03 )
DRFN08–10 ( 0.95,0.18,0.18,0.05 ) ( 0.75,2,2 ) ( 1,0.18,0.18,0 ) ( 0.95,0.19,0.19,0.05 )
DRFN08–11 ( 0.93,0.33,0.33,0.07 ) ( 0.75,1,1 ) ( 1,0.33,0.33,0 ) ( 0.93,0.33,0.33,0.07 )
DO09–32 ( 0.9,0.37,0.37,0.1 ) ( 0.9,1,1 ) ( 1,0.37,0.37,0 ) ( 0.9,0.37,0.37,0.1 )
FY17–25 ( 0.93,0.25,0.25,0.07 ) ( 0.75,0.4,0.4 ) ( 1,0.25,0.25,0 ) ( 0.93,0.25,0.25,0.07 )
FRD12–29 ( 0.97,0.47,0.47,0.03 ) ( 0.88,0.33,0.33 ) ( 1,0.47,0.47,0 ) ( 0.97,0.47,0.47,0.03 )
KS13–12 ( 0.93,0.33,0.33,0.07 ) ( 0.75,1,0.5 ) ( 1,0.33,0.33,0 ) ( 0.93,0.33,0.33,0.07 )
STS13–13 ( 0.92,0.41,0.41,0.08 ) ( 0.75,1,0.25 ) ( 1,0.41,0.41,0 ) ( 0.92,0.41,0.41,0.08 )

Note: “SG-Strategy” is the SG-continuation strategy estimated in the “1.5× SG + AD” model
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Table 50: Distance to Semi-Grim MPEs (second halves of sessions)

Empirical Closest Reg-SG MPE Closest BF-SG MPE
Treatment SG-Strategy Game (δ,g, l) MAD in game (δ,g, l) MAD in game (δ,g, l)

AF09–34 ( 0.97,0.46,0.46,0.03 ) ( 0.9,0.33,0.11 ) 0.06 ( 0.55,1.02,0.8 ) 0 ( 0.68,0.97,0.82 )
BOS11–9 ( 1,0.13,0.13,0 ) ( 0.5,2,2 ) 0 ( 0.83,1,0.8 ) 0 ( 0.54,1.03,0.15 )
BOS11–14 ( 0.99,0.3,0.3,0.01 ) ( 0.75,0.5,3.5 ) 0 ( 0.72,0.99,0.99 ) 0 ( 0.61,1.02,0.43 )
BOS11–15 ( 1,0,0,0 ) ( 0.75,1,8 ) 0 ( 1,0.99,1 ) 0 ( 0.59,1.03,0.01 )
BOS11–16 ( 0.97,0.21,0.21,0.03 ) ( 0.75,0.75,1.25 ) 0.07 ( 0.75,1,0.8 ) 0.06 ( 0.61,1.03,0.29 )
BOS11–17 ( 0.95,0.26,0.26,0.05 ) ( 0.75,0.83,0.5 ) 0.1 ( 0.75,1,1 ) 0.07 ( 0.64,1.04,0.38 )
BOS11–26 ( 0.94,0.29,0.29,0.06 ) ( 0.75,2,2 ) 0.13 ( 0.73,1,1 ) 0.03 ( 0.66,1.04,0.38 )
BOS11–27 ( 0.95,0.5,0.5,0.05 ) ( 0.75,1,1 ) 0.1 ( 0.51,0.86,0.83 ) 0 ( 0.73,0.97,0.95 )
BOS11–30 ( 0.96,0.2,0.2,0.04 ) ( 0.88,0.5,3.5 ) 0.08 ( 0.75,0.89,0.78 ) 0.02 ( 0.6,1.03,0.22 )
BOS11–31 ( 0.98,0.48,0.48,0.02 ) ( 0.88,2,2 ) 0.04 ( 0.54,0.89,0.81 ) 0 ( 0.69,0.99,0.93 )
BK12–28 ( 0.95,0.32,0.32,0.05 ) ( 0.8,1.17,0.83 ) 0.1 ( 0.68,0.98,0.82 ) 0 ( 0.66,1.02,0.44 )
D05–18 ( 0.88,0.4,0.4,0.12 ) ( 0.75,1.17,0.83 ) 0.24 ( 0.65,1,0.8 ) 0 ( 0.78,0.91,0.52 )
D05–19 ( 0.95,0.3,0.3,0.05 ) ( 0.75,0.83,1.17 ) 0.11 ( 0.72,1,0.98 ) 0 ( 0.66,1.03,0.38 )
DF11–6 ( 0.94,0.55,0.55,0.06 ) ( 0.5,2.57,1.86 ) 0.13 ( 0.56,0.67,0.97 ) 0 ( 0.73,0.79,1.01 )
DF11–7 ( 0.86,0.47,0.47,0.14 ) ( 0.5,0.67,0.87 ) 0.27 ( 0.53,1,0.86 ) 0 ( 0.81,0.78,0.67 )
DF11–8 ( 0.97,0.45,0.45,0.03 ) ( 0.5,0.09,0.57 ) 0.06 ( 0.56,0.99,0.69 ) 0 ( 0.68,1.01,0.8 )
DF11–22 ( 0.96,0.47,0.47,0.04 ) ( 0.75,2.57,1.86 ) 0.08 ( 0.55,1,0.81 ) 0 ( 0.7,1,0.86 )
DF11–23 ( 0.96,0.51,0.51,0.04 ) ( 0.75,0.67,0.87 ) 0.09 ( 0.56,0.83,0.87 ) 0 ( 0.72,0.95,0.98 )
DF11–24 ( 0.98,0.33,0.33,0.02 ) ( 0.75,0.09,0.57 ) 0.04 ( 0.67,1,0.79 ) 0 ( 0.63,1.02,0.5 )
DF15–4 ( 0.94,0.23,0.23,0.06 ) ( 0.5,2.57,1.86 ) 0.12 ( 0.75,1.14,0.87 ) 0 ( 0.63,1.01,0.25 )
DF15–5 ( 0.96,0.32,0.32,0.04 ) ( 0.5,0.09,0.57 ) 0.08 ( 0.68,0.96,0.85 ) 0 ( 0.64,1.01,0.45 )
DF15–20 ( 0.94,0.42,0.42,0.06 ) ( 0.75,2.57,1.86 ) 0.12 ( 0.64,0.99,0.77 ) 0 ( 0.71,0.99,0.69 )
DF15–21 ( 0.97,0.37,0.37,0.03 ) ( 0.75,0.09,0.57 ) 0.07 ( 0.66,1,0.81 ) 0 ( 0.66,1.01,0.58 )
DF15–33 ( 0.96,0.48,0.48,0.04 ) ( 0.9,2.57,1.86 ) 0.07 ( 0.55,1,0.87 ) 0 ( 0.7,1,0.9 )
DF15–35 ( 0.97,0.51,0.51,0.03 ) ( 0.95,2.57,1.86 ) 0.07 ( 0.54,0.82,0.87 ) 0 ( 0.7,0.91,0.95 )
DRFN08–10 ( 0.97,0.25,0.25,0.03 ) ( 0.75,2,2 ) 0.07 ( 0.75,1,1 ) 0.03 ( 0.61,1.03,0.34 )
DRFN08–11 ( 0.95,0.33,0.33,0.05 ) ( 0.75,1,1 ) 0.1 ( 0.67,1,0.8 ) 0 ( 0.66,1.02,0.45 )
DO09–32 ( 0.95,0.39,0.39,0.05 ) ( 0.9,1,1 ) 0.09 ( 0.65,1,0.8 ) 0 ( 0.68,1,0.62 )
FY17–25 ( 0.96,0.35,0.35,0.04 ) ( 0.75,0.4,0.4 ) 0.09 ( 0.66,0.99,0.79 ) 0 ( 0.66,1,0.51 )
FRD12–29 ( 0.96,0.54,0.54,0.04 ) ( 0.88,0.33,0.33 ) 0.07 ( 0.53,0.82,1 ) 0 ( 0.68,0.8,0.93 )
KS13–12 ( 0.96,0.36,0.36,0.04 ) ( 0.75,1,0.5 ) 0.07 ( 0.66,0.99,0.81 ) 0 ( 0.65,1.01,0.54 )
STS13–13 ( 0.95,0.55,0.55,0.05 ) ( 0.75,1,0.25 ) 0.09 ( 0.59,0.61,0.9 ) 0.01 ( 0.73,0.88,1.08 )

Means 0.088 ( 0.65,0.95,0.86 ) 0.007 ( 0.67,0.98,0.59 )

Note: “SG-Strategy” is the SG-continuation strategy estimated in the “1.5× SG + AD” model
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Table 51: Distance to Semi-Grim MPEs: closest equilibria (second halves of sessions)

Empirical Closest Reg-SG MPE Closest BF-SG MPE
Treatment SG-Strategy Game Strategy Strategy

AF09–34 ( 0.97,0.46,0.46,0.03 ) ( 0.9,0.33,0.11 ) ( 1,0.46,0.46,0 ) ( 0.97,0.46,0.46,0.03 )
BOS11–9 ( 1,0.13,0.13,0 ) ( 0.5,2,2 ) ( 1,0.13,0.13,0 ) ( 1,0.13,0.13,0 )
BOS11–14 ( 0.99,0.3,0.3,0.01 ) ( 0.75,0.5,3.5 ) ( 1,0.3,0.3,0 ) ( 0.99,0.3,0.3,0.01 )
BOS11–15 ( 1,0,0,0 ) ( 0.75,1,8 ) ( 1,0,0,0 ) ( 0.93,0.08,0.08,0.07 )
BOS11–16 ( 0.97,0.21,0.21,0.03 ) ( 0.75,0.75,1.25 ) ( 1,0.21,0.21,0 ) ( 0.97,0.24,0.24,0.03 )
BOS11–17 ( 0.95,0.26,0.26,0.05 ) ( 0.75,0.83,0.5 ) ( 1,0.26,0.26,0 ) ( 0.96,0.29,0.29,0.04 )
BOS11–26 ( 0.94,0.29,0.29,0.06 ) ( 0.75,2,2 ) ( 1,0.29,0.29,0 ) ( 0.94,0.29,0.29,0.06 )
BOS11–27 ( 0.95,0.5,0.5,0.05 ) ( 0.75,1,1 ) ( 1,0.5,0.5,0 ) ( 0.95,0.5,0.5,0.05 )
BOS11–30 ( 0.96,0.2,0.2,0.04 ) ( 0.88,0.5,3.5 ) ( 1,0.2,0.2,0 ) ( 0.97,0.2,0.2,0.03 )
BOS11–31 ( 0.98,0.48,0.48,0.02 ) ( 0.88,2,2 ) ( 1,0.48,0.48,0 ) ( 0.98,0.48,0.48,0.02 )
BK12–28 ( 0.95,0.32,0.32,0.05 ) ( 0.8,1.17,0.83 ) ( 1,0.32,0.32,0 ) ( 0.95,0.32,0.32,0.05 )
D05–18 ( 0.88,0.4,0.4,0.12 ) ( 0.75,1.17,0.83 ) ( 1,0.4,0.4,0 ) ( 0.88,0.4,0.4,0.12 )
D05–19 ( 0.95,0.3,0.3,0.05 ) ( 0.75,0.83,1.17 ) ( 1,0.3,0.3,0 ) ( 0.95,0.3,0.3,0.05 )
DF11–6 ( 0.94,0.55,0.55,0.06 ) ( 0.5,2.57,1.86 ) ( 1,0.55,0.55,0 ) ( 0.94,0.55,0.55,0.06 )
DF11–7 ( 0.86,0.47,0.47,0.14 ) ( 0.5,0.67,0.87 ) ( 1,0.47,0.47,0 ) ( 0.86,0.47,0.47,0.14 )
DF11–8 ( 0.97,0.45,0.45,0.03 ) ( 0.5,0.09,0.57 ) ( 1,0.45,0.45,0 ) ( 0.97,0.45,0.45,0.03 )
DF11–22 ( 0.96,0.47,0.47,0.04 ) ( 0.75,2.57,1.86 ) ( 1,0.47,0.47,0 ) ( 0.96,0.47,0.47,0.04 )
DF11–23 ( 0.96,0.51,0.51,0.04 ) ( 0.75,0.67,0.87 ) ( 1,0.51,0.51,0 ) ( 0.96,0.51,0.51,0.04 )
DF11–24 ( 0.98,0.33,0.33,0.02 ) ( 0.75,0.09,0.57 ) ( 1,0.33,0.33,0 ) ( 0.98,0.33,0.33,0.02 )
DF15–4 ( 0.94,0.23,0.23,0.06 ) ( 0.5,2.57,1.86 ) ( 1,0.23,0.23,0 ) ( 0.94,0.23,0.23,0.06 )
DF15–5 ( 0.96,0.32,0.32,0.04 ) ( 0.5,0.09,0.57 ) ( 1,0.32,0.32,0 ) ( 0.96,0.32,0.32,0.04 )
DF15–20 ( 0.94,0.42,0.42,0.06 ) ( 0.75,2.57,1.86 ) ( 1,0.42,0.42,0 ) ( 0.94,0.42,0.42,0.06 )
DF15–21 ( 0.97,0.37,0.37,0.03 ) ( 0.75,0.09,0.57 ) ( 1,0.37,0.37,0 ) ( 0.97,0.37,0.37,0.03 )
DF15–33 ( 0.96,0.48,0.48,0.04 ) ( 0.9,2.57,1.86 ) ( 1,0.48,0.48,0 ) ( 0.96,0.48,0.48,0.04 )
DF15–35 ( 0.97,0.51,0.51,0.03 ) ( 0.95,2.57,1.86 ) ( 1,0.51,0.51,0 ) ( 0.97,0.51,0.51,0.03 )
DRFN08–10 ( 0.97,0.25,0.25,0.03 ) ( 0.75,2,2 ) ( 1,0.25,0.25,0 ) ( 0.98,0.26,0.26,0.02 )
DRFN08–11 ( 0.95,0.33,0.33,0.05 ) ( 0.75,1,1 ) ( 1,0.33,0.33,0 ) ( 0.95,0.33,0.33,0.05 )
DO09–32 ( 0.95,0.39,0.39,0.05 ) ( 0.9,1,1 ) ( 1,0.39,0.39,0 ) ( 0.95,0.39,0.39,0.05 )
FY17–25 ( 0.96,0.35,0.35,0.04 ) ( 0.75,0.4,0.4 ) ( 1,0.35,0.35,0 ) ( 0.96,0.35,0.35,0.04 )
FRD12–29 ( 0.96,0.54,0.54,0.04 ) ( 0.88,0.33,0.33 ) ( 1,0.54,0.54,0 ) ( 0.96,0.54,0.54,0.04 )
KS13–12 ( 0.96,0.36,0.36,0.04 ) ( 0.75,1,0.5 ) ( 1,0.36,0.36,0 ) ( 0.96,0.36,0.36,0.04 )
STS13–13 ( 0.95,0.55,0.55,0.05 ) ( 0.75,1,0.25 ) ( 1,0.55,0.55,0 ) ( 0.95,0.55,0.55,0.05 )

Note: “SG-Strategy” is the SG-continuation strategy estimated in the “1.5× SG + AD” model
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Table 52: Incentives in state /0 (second halves of sessions)

Observation Fit
Treatment Game σ̂0 π̂(c) π̂(d) σ∗0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.94 7.7 6.46 0.99 -0.05
BOS11–9 ( 0.5,2,2 ) 0.27 0.75 1.18 0.19 0.08
BOS11–14 ( 0.75,0.5,3.5 ) 0.03 0.75 1 0.3 -0.27
BOS11–15 ( 0.75,1,8 ) 0 0.75 1 0.3 -0.3
BOS11–16 ( 0.75,0.75,1.25 ) 0.63 1.32 1.28 0.53 0.1
BOS11–17 ( 0.75,0.83,0.5 ) 0.6 1.69 1.5 0.66 -0.06
BOS11–26 ( 0.75,2,2 ) 0.49 0.99 1.12 0.39 0.1
BOS11–27 ( 0.75,1,1 ) 0.47 1.27 1.23 0.53 -0.06
BOS11–30 ( 0.88,0.5,3.5 ) 0.45 0.95 1 0.46 -0.01
BOS11–31 ( 0.88,2,2 ) 0.58 1.11 1.09 0.52 0.06
BK12–28 ( 0.8,1.17,0.83 ) 0.58 1.44 1.36 0.57 0.01
D05–18 ( 0.75,1.17,0.83 ) 0.51 1.5 1.59 0.42 0.09
D05–19 ( 0.75,0.83,1.17 ) 0.67 1.3 1.26 0.53 0.14
DF11–6 ( 0.5,2.57,1.86 ) 0.17 0.76 1.07 0.26 -0.09
DF11–7 ( 0.5,0.67,0.87 ) 0.32 0.98 1.24 0.29 0.03
DF11–8 ( 0.5,0.09,0.57 ) 0.64 1.53 1.43 0.58 0.06
DF11–22 ( 0.75,2.57,1.86 ) 0.38 1.08 1.18 0.42 -0.04
DF11–23 ( 0.75,0.67,0.87 ) 0.83 1.79 1.61 0.65 0.18
DF11–24 ( 0.75,0.09,0.57 ) 0.95 2.54 1.73 0.94 0.01
DF15–4 ( 0.5,2.57,1.86 ) 0.24 0.68 1.1 0.19 0.05
DF15–5 ( 0.5,0.09,0.57 ) 0.69 1.65 1.52 0.61 0.08
DF15–20 ( 0.75,2.57,1.86 ) 0.42 1.06 1.17 0.41 0.01
DF15–21 ( 0.75,0.09,0.57 ) 0.85 2.19 1.56 0.89 -0.04
DF15–33 ( 0.9,2.57,1.86 ) 0.51 1.22 1.18 0.53 -0.02
DF15–35 ( 0.95,2.57,1.86 ) 0.63 1.27 1.21 0.55 0.08
DRFN08–10 ( 0.75,2,2 ) 0.49 0.98 1.11 0.39 0.1
DRFN08–11 ( 0.75,1,1 ) 0.72 1.52 1.44 0.57 0.15
DO09–32 ( 0.9,1,1 ) 0.71 1.53 1.36 0.64 0.07
FY17–25 ( 0.75,0.4,0.4 ) 0.89 2.66 1.95 0.92 -0.03
FRD12–29 ( 0.88,0.33,0.33 ) 0.89 3.18 2.41 0.93 -0.04
KS13–12 ( 0.75,1,0.5 ) 0.84 2.29 1.93 0.77 0.07
STS13–13 ( 0.75,1,0.25 ) 0.73 3.87 3.39 0.84 -0.11
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed relative
frequency of cooperation (in state /0 in second halves of sessions), the expected payoff cooperating in that state
π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability of cooperation based on
the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c), and the absolute deviation of
that prediction.
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Table 53: Incentives in state cc (second halves of sessions)

Observation Fit
Treatment Game σ̂cc π̂(c) π̂(d) σ∗0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.97 7.86 6.61 0.98 -0.01
BOS11–9 ( 0.5,2,2 ) 1 1.46 1.75 0.28 0.72
BOS11–14 ( 0.75,0.5,3.5 ) 0.99 1.25 1.1 0.62 0.37
BOS11–15 ( 0.75,1,8 ) 1 1.12 1.06 0.55 0.45
BOS11–16 ( 0.75,0.75,1.25 ) 0.97 1.59 1.42 0.63 0.34
BOS11–17 ( 0.75,0.83,0.5 ) 0.95 2.57 2.03 0.85 0.1
BOS11–26 ( 0.75,2,2 ) 0.94 1.35 1.37 0.48 0.46
BOS11–27 ( 0.75,1,1 ) 0.95 1.8 1.62 0.64 0.31
BOS11–30 ( 0.88,0.5,3.5 ) 0.96 1.15 1.03 0.59 0.37
BOS11–31 ( 0.88,2,2 ) 0.98 1.38 1.23 0.62 0.36
BK12–28 ( 0.8,1.17,0.83 ) 0.95 1.9 1.65 0.69 0.26
D05–18 ( 0.75,1.17,0.83 ) 0.88 1.83 1.9 0.44 0.44
D05–19 ( 0.75,0.83,1.17 ) 0.95 1.64 1.43 0.66 0.29
DF11–6 ( 0.5,2.57,1.86 ) 0.94 1.42 1.85 0.2 0.74
DF11–7 ( 0.5,0.67,0.87 ) 0.86 1.81 1.9 0.43 0.43
DF11–8 ( 0.5,0.09,0.57 ) 0.97 2.61 2 0.88 0.09
DF11–22 ( 0.75,2.57,1.86 ) 0.96 1.46 1.56 0.42 0.54
DF11–23 ( 0.75,0.67,0.87 ) 0.96 1.96 1.74 0.67 0.29
DF11–24 ( 0.75,0.09,0.57 ) 0.98 2.59 1.75 0.94 0.04
DF15–4 ( 0.5,2.57,1.86 ) 0.94 1.41 1.87 0.19 0.75
DF15–5 ( 0.5,0.09,0.57 ) 0.96 2.57 1.97 0.87 0.09
DF15–20 ( 0.75,2.57,1.86 ) 0.94 1.42 1.52 0.42 0.52
DF15–21 ( 0.75,0.09,0.57 ) 0.97 2.47 1.68 0.93 0.04
DF15–33 ( 0.9,2.57,1.86 ) 0.96 1.4 1.34 0.55 0.41
DF15–35 ( 0.95,2.57,1.86 ) 0.97 1.36 1.29 0.56 0.41
DRFN08–10 ( 0.75,2,2 ) 0.97 1.4 1.37 0.52 0.45
DRFN08–11 ( 0.75,1,1 ) 0.95 1.79 1.62 0.63 0.32
DO09–32 ( 0.9,1,1 ) 0.95 1.67 1.45 0.67 0.28
FY17–25 ( 0.75,0.4,0.4 ) 0.96 3.03 2.15 0.94 0.02
FRD12–29 ( 0.88,0.33,0.33 ) 0.96 3.38 2.57 0.93 0.03
KS13–12 ( 0.75,1,0.5 ) 0.96 2.71 2.25 0.81 0.15
STS13–13 ( 0.75,1,0.25 ) 0.95 4.54 4.32 0.67 0.28
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed relative
frequency of cooperation (in state cc in second halves of sessions), the expected payoff cooperating in that state
π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability of cooperation based on
the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c), and the absolute deviation of
that prediction.
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Table 54: Incentives in state cd,dc (second halves of sessions)

Observation Fit
Treatment Game σ̂cd,dc π̂(c) π̂(d) σ∗0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.46 6.66 5.49 0.63 -0.17
BOS11–9 ( 0.5,2,2 ) 0.13 0.64 1.1 0.45 -0.32
BOS11–14 ( 0.75,0.5,3.5 ) 0.3 0.9 1.02 0.49 -0.19
BOS11–15 ( 0.75,1,8 ) 0 0.75 1 0.47 -0.47
BOS11–16 ( 0.75,0.75,1.25 ) 0.21 1.06 1.15 0.49 -0.28
BOS11–17 ( 0.75,0.83,0.5 ) 0.26 1.42 1.33 0.51 -0.25
BOS11–26 ( 0.75,2,2 ) 0.29 0.99 1.12 0.48 -0.19
BOS11–27 ( 0.75,1,1 ) 0.5 1.41 1.33 0.51 -0.01
BOS11–30 ( 0.88,0.5,3.5 ) 0.2 0.92 1 0.49 -0.29
BOS11–31 ( 0.88,2,2 ) 0.48 1.15 1.11 0.5 -0.02
BK12–28 ( 0.8,1.17,0.83 ) 0.32 1.31 1.27 0.5 -0.18
D05–18 ( 0.75,1.17,0.83 ) 0.4 1.44 1.52 0.49 -0.09
D05–19 ( 0.75,0.83,1.17 ) 0.3 1.09 1.15 0.49 -0.19
DF11–6 ( 0.5,2.57,1.86 ) 0.55 1.11 1.49 0.46 0.09
DF11–7 ( 0.5,0.67,0.87 ) 0.47 1.31 1.51 0.48 -0.01
DF11–8 ( 0.5,0.09,0.57 ) 0.45 1.57 1.45 0.51 -0.06
DF11–22 ( 0.75,2.57,1.86 ) 0.47 1.19 1.28 0.49 -0.02
DF11–23 ( 0.75,0.67,0.87 ) 0.51 1.56 1.43 0.52 -0.01
DF11–24 ( 0.75,0.09,0.57 ) 0.33 1.57 1.29 0.53 -0.2
DF15–4 ( 0.5,2.57,1.86 ) 0.23 0.79 1.22 0.45 -0.22
DF15–5 ( 0.5,0.09,0.57 ) 0.32 1.26 1.32 0.49 -0.17
DF15–20 ( 0.75,2.57,1.86 ) 0.42 1.13 1.24 0.49 -0.07
DF15–21 ( 0.75,0.09,0.57 ) 0.37 1.58 1.29 0.53 -0.16
DF15–33 ( 0.9,2.57,1.86 ) 0.48 1.24 1.2 0.5 -0.02
DF15–35 ( 0.95,2.57,1.86 ) 0.51 1.27 1.21 0.51 0
DRFN08–10 ( 0.75,2,2 ) 0.25 0.95 1.1 0.48 -0.23
DRFN08–11 ( 0.75,1,1 ) 0.33 1.23 1.25 0.5 -0.17
DO09–32 ( 0.9,1,1 ) 0.39 1.38 1.27 0.51 -0.12
FY17–25 ( 0.75,0.4,0.4 ) 0.35 1.83 1.49 0.54 -0.19
FRD12–29 ( 0.88,0.33,0.33 ) 0.54 2.74 2.06 0.58 -0.04
KS13–12 ( 0.75,1,0.5 ) 0.36 1.73 1.51 0.53 -0.17
STS13–13 ( 0.75,1,0.25 ) 0.55 3.64 3.07 0.57 -0.02
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed relative
frequency of cooperation (in states cd,dc in second halves of sessions), the expected payoff cooperating in that
state π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability of cooperation based
on the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c), and the absolute deviation of
that prediction.
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Table 55: Incentives in state dd (second halves of sessions)

Observation Fit
Treatment Game σ̂dd π̂(c) π̂(d) σ∗0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.03 5.71 4.6 0.64 -0.61
BOS11–9 ( 0.5,2,2 ) 0 0.54 1.02 0.44 -0.44
BOS11–14 ( 0.75,0.5,3.5 ) 0.01 0.75 1 0.47 -0.46
BOS11–15 ( 0.75,1,8 ) 0 0.75 1 0.47 -0.47
BOS11–16 ( 0.75,0.75,1.25 ) 0.03 0.91 1.08 0.48 -0.45
BOS11–17 ( 0.75,0.83,0.5 ) 0.05 1.06 1.12 0.49 -0.44
BOS11–26 ( 0.75,2,2 ) 0.06 0.85 1.03 0.48 -0.42
BOS11–27 ( 0.75,1,1 ) 0.05 1.04 1.06 0.5 -0.45
BOS11–30 ( 0.88,0.5,3.5 ) 0.04 0.87 0.99 0.48 -0.44
BOS11–31 ( 0.88,2,2 ) 0.02 0.99 1.03 0.49 -0.47
BK12–28 ( 0.8,1.17,0.83 ) 0.05 1.06 1.11 0.49 -0.44
D05–18 ( 0.75,1.17,0.83 ) 0.12 1.21 1.3 0.49 -0.37
D05–19 ( 0.75,0.83,1.17 ) 0.05 0.89 1.05 0.48 -0.43
DF11–6 ( 0.5,2.57,1.86 ) 0.06 0.73 1.03 0.46 -0.4
DF11–7 ( 0.5,0.67,0.87 ) 0.14 0.82 1.12 0.46 -0.32
DF11–8 ( 0.5,0.09,0.57 ) 0.03 0.77 1.03 0.47 -0.44
DF11–22 ( 0.75,2.57,1.86 ) 0.04 0.95 1.05 0.49 -0.45
DF11–23 ( 0.75,0.67,0.87 ) 0.04 1.14 1.1 0.51 -0.47
DF11–24 ( 0.75,0.09,0.57 ) 0.02 1.07 1.06 0.5 -0.48
DF15–4 ( 0.5,2.57,1.86 ) 0.06 0.61 1.04 0.44 -0.38
DF15–5 ( 0.5,0.09,0.57 ) 0.04 0.71 1.05 0.46 -0.42
DF15–20 ( 0.75,2.57,1.86 ) 0.06 0.93 1.05 0.48 -0.42
DF15–21 ( 0.75,0.09,0.57 ) 0.03 1.07 1.07 0.5 -0.47
DF15–33 ( 0.9,2.57,1.86 ) 0.04 1.1 1.08 0.5 -0.46
DF15–35 ( 0.95,2.57,1.86 ) 0.03 1.17 1.12 0.51 -0.48
DRFN08–10 ( 0.75,2,2 ) 0.03 0.82 1.02 0.47 -0.44
DRFN08–11 ( 0.75,1,1 ) 0.05 0.97 1.08 0.49 -0.44
DO09–32 ( 0.9,1,1 ) 0.05 1.2 1.16 0.51 -0.46
FY17–25 ( 0.75,0.4,0.4 ) 0.04 1.24 1.16 0.51 -0.47
FRD12–29 ( 0.88,0.33,0.33 ) 0.04 2.1 1.55 0.57 -0.53
KS13–12 ( 0.75,1,0.5 ) 0.04 1.2 1.12 0.51 -0.47
STS13–13 ( 0.75,1,0.25 ) 0.05 2.54 1.55 0.63 -0.58
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Pseudo − R2 = 0.082

Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed relative
frequency of cooperation (in state dd in second halves of sessions), the expected payoff cooperating in that
state π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability of cooperation based
on the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c), and the absolute deviation of
that prediction.
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Table 56: Incentives in state 0 (first halves of sessions)

Observation Fit
Treatment Game σ̂ /0 π̂(c) π̂(d) σ∗0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.78 6.24 5.51 0.87 -0.09
BOS11–9 ( 0.5,2,2 ) 0.36 0.76 1.18 0.26 0.1
BOS11–14 ( 0.75,0.5,3.5 ) 0.11 0.78 0.99 0.37 -0.26
BOS11–15 ( 0.75,1,8 ) 0.2 0.76 1 0.35 -0.15
BOS11–16 ( 0.75,0.75,1.25 ) 0.57 1.26 1.25 0.51 0.06
BOS11–17 ( 0.75,0.83,0.5 ) 0.52 1.7 1.83 0.42 0.1
BOS11–26 ( 0.75,2,2 ) 0.29 0.96 1.14 0.39 -0.1
BOS11–27 ( 0.75,1,1 ) 0.56 1.17 1.2 0.48 0.08
BOS11–30 ( 0.88,0.5,3.5 ) 0.69 0.95 0.99 0.47 0.22
BOS11–31 ( 0.88,2,2 ) 0.64 1.18 1.14 0.53 0.11
BK12–28 ( 0.8,1.17,0.83 ) 0.54 1.43 1.44 0.49 0.05
D05–18 ( 0.75,1.17,0.83 ) 0.53 1.43 1.54 0.43 0.1
D05–19 ( 0.75,0.83,1.17 ) 0.58 1.21 1.24 0.48 0.1
DF11–6 ( 0.5,2.57,1.86 ) 0.24 0.77 1.15 0.27 -0.03
DF11–7 ( 0.5,0.67,0.87 ) 0.25 0.89 1.22 0.3 -0.05
DF11–8 ( 0.5,0.09,0.57 ) 0.48 1.41 1.43 0.49 -0.01
DF11–22 ( 0.75,2.57,1.86 ) 0.35 1.04 1.19 0.41 -0.06
DF11–23 ( 0.75,0.67,0.87 ) 0.65 1.51 1.42 0.56 0.09
DF11–24 ( 0.75,0.09,0.57 ) 0.8 2.04 1.6 0.75 0.05
DF15–4 ( 0.5,2.57,1.86 ) 0.3 0.75 1.16 0.26 0.04
DF15–5 ( 0.5,0.09,0.57 ) 0.73 1.68 1.59 0.56 0.17
DF15–20 ( 0.75,2.57,1.86 ) 0.34 1.02 1.18 0.4 -0.06
DF15–21 ( 0.75,0.09,0.57 ) 0.78 1.94 1.56 0.73 0.05
DF15–33 ( 0.9,2.57,1.86 ) 0.43 1.13 1.16 0.48 -0.05
DF15–35 ( 0.95,2.57,1.86 ) 0.56 1.24 1.21 0.52 0.04
DRFN08–10 ( 0.75,2,2 ) 0.56 1.08 1.2 0.42 0.14
DRFN08–11 ( 0.75,1,1 ) 0.67 1.34 1.35 0.49 0.18
DO09–32 ( 0.9,1,1 ) 0.66 1.35 1.32 0.52 0.14
FY17–25 ( 0.75,0.4,0.4 ) 0.84 2.43 1.87 0.81 0.03
FRD12–29 ( 0.88,0.33,0.33 ) 0.8 3.06 2.18 0.9 -0.1
KS13–12 ( 0.75,1,0.5 ) 0.72 1.99 1.81 0.61 0.11
STS13–13 ( 0.75,1,0.25 ) 0.65 3.33 3.09 0.65 0
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed relative
frequency of cooperation (in state /0 in first halves of sessions), the expected payoff cooperating in that state
π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability of cooperation based on
the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c), and the absolute deviation of
that prediction.
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Table 57: Incentives in state cc (first halves of sessions)

Observation Fit
Treatment Game σ̂cc π̂(c) π̂(d) σ∗0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.91 6.53 5.77 0.85 0.06
BOS11–9 ( 0.5,2,2 ) 0.95 1.41 1.71 0.33 0.62
BOS11–14 ( 0.75,0.5,3.5 ) 0.99 1.09 1.07 0.51 0.48
BOS11–15 ( 0.75,1,8 ) 1 1.05 1.03 0.51 0.49
BOS11–16 ( 0.75,0.75,1.25 ) 0.95 1.55 1.39 0.59 0.36
BOS11–17 ( 0.75,0.83,0.5 ) 1 2.08 2.21 0.43 0.57
BOS11–26 ( 0.75,2,2 ) 0.98 1.33 1.39 0.47 0.51
BOS11–27 ( 0.75,1,1 ) 0.89 1.6 1.52 0.55 0.34
BOS11–30 ( 0.88,0.5,3.5 ) 1 1.2 1.03 0.6 0.4
BOS11–31 ( 0.88,2,2 ) 0.98 1.39 1.26 0.57 0.41
BK12–28 ( 0.8,1.17,0.83 ) 0.92 1.79 1.7 0.55 0.37
D05–18 ( 0.75,1.17,0.83 ) 0.86 1.74 1.8 0.47 0.39
D05–19 ( 0.75,0.83,1.17 ) 0.91 1.56 1.43 0.57 0.34
DF11–6 ( 0.5,2.57,1.86 ) 0.92 1.4 1.88 0.25 0.67
DF11–7 ( 0.5,0.67,0.87 ) 0.89 1.84 1.92 0.45 0.44
DF11–8 ( 0.5,0.09,0.57 ) 0.91 2.38 2 0.71 0.2
DF11–22 ( 0.75,2.57,1.86 ) 0.92 1.39 1.53 0.42 0.5
DF11–23 ( 0.75,0.67,0.87 ) 0.95 1.89 1.67 0.62 0.33
DF11–24 ( 0.75,0.09,0.57 ) 0.95 2.32 1.73 0.8 0.15
DF15–4 ( 0.5,2.57,1.86 ) 0.9 1.33 1.81 0.25 0.65
DF15–5 ( 0.5,0.09,0.57 ) 0.93 2.36 1.95 0.72 0.21
DF15–20 ( 0.75,2.57,1.86 ) 0.92 1.39 1.52 0.43 0.49
DF15–21 ( 0.75,0.09,0.57 ) 0.94 2.3 1.75 0.78 0.16
DF15–33 ( 0.9,2.57,1.86 ) 0.93 1.31 1.29 0.51 0.42
DF15–35 ( 0.95,2.57,1.86 ) 0.97 1.33 1.28 0.53 0.44
DRFN08–10 ( 0.75,2,2 ) 0.95 1.37 1.38 0.49 0.46
DRFN08–11 ( 0.75,1,1 ) 0.93 1.69 1.57 0.57 0.36
DO09–32 ( 0.9,1,1 ) 0.9 1.48 1.4 0.55 0.35
FY17–25 ( 0.75,0.4,0.4 ) 0.93 2.78 2.06 0.84 0.09
FRD12–29 ( 0.88,0.33,0.33 ) 0.97 3.4 2.43 0.9 0.07
KS13–12 ( 0.75,1,0.5 ) 0.93 2.52 2.23 0.66 0.27
STS13–13 ( 0.75,1,0.25 ) 0.92 4.13 3.96 0.6 0.32
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed relative
frequency of cooperation (in state cc in first halves of sessions), the expected payoff cooperating in that state
π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability of cooperation based on
the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c), and the absolute deviation of
that prediction.
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Table 58: Incentives in state cd,dc (first halves of sessions)

Observation Fit
Treatment Game σ̂cd,dc π̂(c) π̂(d) σ∗0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.41 5.62 4.94 0.69 -0.28
BOS11–9 ( 0.5,2,2 ) 0.2 0.73 1.15 0.38 -0.18
BOS11–14 ( 0.75,0.5,3.5 ) 0.12 0.8 1 0.44 -0.32
BOS11–15 ( 0.75,1,8 ) 0.22 0.79 1 0.44 -0.22
BOS11–16 ( 0.75,0.75,1.25 ) 0.18 0.99 1.12 0.46 -0.28
BOS11–17 ( 0.75,0.83,0.5 ) 0.38 1.63 1.76 0.46 -0.08
BOS11–26 ( 0.75,2,2 ) 0.17 0.91 1.1 0.44 -0.27
BOS11–27 ( 0.75,1,1 ) 0.45 1.27 1.28 0.5 -0.05
BOS11–30 ( 0.88,0.5,3.5 ) 0 0.88 0.98 0.47 -0.47
BOS11–31 ( 0.88,2,2 ) 0.51 1.18 1.14 0.51 0
BK12–28 ( 0.8,1.17,0.83 ) 0.29 1.27 1.32 0.49 -0.2
D05–18 ( 0.75,1.17,0.83 ) 0.29 1.26 1.4 0.46 -0.17
D05–19 ( 0.75,0.83,1.17 ) 0.34 1.13 1.19 0.48 -0.14
DF11–6 ( 0.5,2.57,1.86 ) 0.4 0.97 1.38 0.38 0.02
DF11–7 ( 0.5,0.67,0.87 ) 0.32 1.07 1.36 0.42 -0.1
DF11–8 ( 0.5,0.09,0.57 ) 0.42 1.5 1.49 0.5 -0.08
DF11–22 ( 0.75,2.57,1.86 ) 0.38 1.11 1.25 0.46 -0.08
DF11–23 ( 0.75,0.67,0.87 ) 0.46 1.41 1.35 0.52 -0.06
DF11–24 ( 0.75,0.09,0.57 ) 0.36 1.49 1.35 0.54 -0.18
DF15–4 ( 0.5,2.57,1.86 ) 0.36 0.89 1.32 0.38 -0.02
DF15–5 ( 0.5,0.09,0.57 ) 0.31 1.15 1.32 0.45 -0.14
DF15–20 ( 0.75,2.57,1.86 ) 0.32 1.06 1.21 0.46 -0.14
DF15–21 ( 0.75,0.09,0.57 ) 0.47 1.65 1.42 0.57 -0.1
DF15–33 ( 0.9,2.57,1.86 ) 0.37 1.14 1.16 0.49 -0.12
DF15–35 ( 0.95,2.57,1.86 ) 0.42 1.2 1.19 0.5 -0.08
DRFN08–10 ( 0.75,2,2 ) 0.18 0.89 1.09 0.44 -0.26
DRFN08–11 ( 0.75,1,1 ) 0.33 1.16 1.23 0.48 -0.15
DO09–32 ( 0.9,1,1 ) 0.37 1.27 1.27 0.5 -0.13
FY17–25 ( 0.75,0.4,0.4 ) 0.25 1.51 1.39 0.53 -0.28
FRD12–29 ( 0.88,0.33,0.33 ) 0.47 2.6 1.85 0.71 -0.24
KS13–12 ( 0.75,1,0.5 ) 0.33 1.64 1.54 0.53 -0.2
STS13–13 ( 0.75,1,0.25 ) 0.41 2.93 2.64 0.58 -0.17
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed relative
frequency of cooperation (in state cd,dc in first halves of sessions), the expected payoff cooperating in that
state π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability of cooperation based
on the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c), and the absolute deviation of
that prediction.
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Table 59: Incentives in state dd (first halves of sessions)

Observation Fit
Treatment Game σ̂dd π̂(c) π̂(d) σ∗0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.09 5 4.39 0.87 -0.78
BOS11–9 ( 0.5,2,2 ) 0.05 0.58 1.03 0.2 -0.15
BOS11–14 ( 0.75,0.5,3.5 ) 0.01 0.74 0.99 0.32 -0.31
BOS11–15 ( 0.75,1,8 ) 0 0.75 1 0.32 -0.32
BOS11–16 ( 0.75,0.75,1.25 ) 0.05 0.87 1.06 0.36 -0.31
BOS11–17 ( 0.75,0.83,0.5 ) 0 1.46 1.59 0.4 -0.4
BOS11–26 ( 0.75,2,2 ) 0.02 0.83 1.04 0.34 -0.32
BOS11–27 ( 0.75,1,1 ) 0.11 0.98 1.07 0.43 -0.32
BOS11–30 ( 0.88,0.5,3.5 ) 0 0.87 0.98 0.42 -0.42
BOS11–31 ( 0.88,2,2 ) 0.02 1.02 1.04 0.48 -0.46
BK12–28 ( 0.8,1.17,0.83 ) 0.08 1.11 1.21 0.42 -0.34
D05–18 ( 0.75,1.17,0.83 ) 0.14 1.13 1.29 0.38 -0.24
D05–19 ( 0.75,0.83,1.17 ) 0.09 0.92 1.07 0.39 -0.3
DF11–6 ( 0.5,2.57,1.86 ) 0.08 0.69 1.06 0.24 -0.16
DF11–7 ( 0.5,0.67,0.87 ) 0.11 0.75 1.12 0.24 -0.13
DF11–8 ( 0.5,0.09,0.57 ) 0.09 0.85 1.11 0.31 -0.22
DF11–22 ( 0.75,2.57,1.86 ) 0.08 0.94 1.09 0.39 -0.31
DF11–23 ( 0.75,0.67,0.87 ) 0.05 1.08 1.14 0.45 -0.4
DF11–24 ( 0.75,0.09,0.57 ) 0.05 1.16 1.2 0.47 -0.42
DF15–4 ( 0.5,2.57,1.86 ) 0.1 0.67 1.07 0.22 -0.12
DF15–5 ( 0.5,0.09,0.57 ) 0.07 0.8 1.14 0.26 -0.19
DF15–20 ( 0.75,2.57,1.86 ) 0.08 0.91 1.08 0.37 -0.29
DF15–21 ( 0.75,0.09,0.57 ) 0.06 1.21 1.19 0.52 -0.46
DF15–33 ( 0.9,2.57,1.86 ) 0.07 1.06 1.1 0.47 -0.4
DF15–35 ( 0.95,2.57,1.86 ) 0.03 1.15 1.16 0.49 -0.46
DRFN08–10 ( 0.75,2,2 ) 0.05 0.82 1.04 0.34 -0.29
DRFN08–11 ( 0.75,1,1 ) 0.07 0.97 1.11 0.39 -0.32
DO09–32 ( 0.9,1,1 ) 0.1 1.18 1.21 0.48 -0.38
FY17–25 ( 0.75,0.4,0.4 ) 0.07 1.16 1.21 0.46 -0.39
FRD12–29 ( 0.88,0.33,0.33 ) 0.03 1.92 1.37 0.85 -0.82
KS13–12 ( 0.75,1,0.5 ) 0.07 1.24 1.22 0.52 -0.45
STS13–13 ( 0.75,1,0.25 ) 0.08 2.23 1.88 0.75 -0.67
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed relative
frequency of cooperation (in state dd in first halves of sessions), the expected payoff cooperating in that state
π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability of cooperation based on
the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c), and the absolute deviation of
that prediction.
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