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Abstract 

We designed an experiment to explore the extent of measurement error in body mass 
index (BMI), when based on self-reported body weight and height. We find that there 
is a systematic age gradient in the reporting error in BMI, while there is limited 
evidence of systematic associations with gender, education and income. This is 
reassuring evidence for the use of self-reported BMI in studies that use it as an 
outcome, for example, to analyse socioeconomic gradients in obesity. However, our 
results suggest a complex structure of non-classical measurement error in BMI, 
depending on both individuals’ and within-household peers’ true BMI. This may bias 
studies that use BMI based on self-reported data as a regressor. Common methods to 
mitigate reporting error in BMI using predictions from corrective equations do not 
fully eliminate reporting heterogeneity associated with individual and within-
household true BMI. Overall, the presence of non-classical error in BMI highlights 
the importance of collecting measured body weight and height data in large social 
science datasets. 
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1     Introduction 
 
Obesity is associated with increased risks of morbidity and mortality. This has led to a 
plethora of studies on the socio-economic consequences of obesity, such as labour market 
outcomes (Cawley, 2015). Because of the absence of measured anthropometric data in 
large-scale datasets, many existing studies are based on self-reports (Cawley, 2015; 
Cawley et al., 2015; Gil and Mora, 2011). The reliability of these measures in social 
science datasets is therefore of critical importance for obesity research. 
 
We designed an experiment to explore the extent of measurement error in body mass 
index (BMI), when based on self-reported body weight and height, in the context of a 
multi-purpose survey. We collected information on self-reported body weight and height 
data immediately before the relevant physical measurements were taken.1 The limited 
number of existing econometric analyses that examine measurement errors in 
anthropometrics mostly compare self-reports and measured anthropometric data that 
were collected with a considerable time difference and/or respondents were informed 
about the subsequent physical measurements (Cawley et al., 2015; Gil and Mora, 2011); 
these are also studies that are based on selected population samples (O’Neill and 
Sweetman, 2013).  
 
The implications of measurement error are different depending on whether BMI is to be 
used as an outcome or as an explanatory variable. We explore whether the implied 
measurement error in BMI is systematically associated with socio-economic variables 
used in inequalities research. This is relevant for studies that use BMI as an outcome, 
modelled as a function of socioeconomic status (SES), and where measurement error 
contributes to the error term of the BMI regression equation. In addition, we explore 
whether the measurement error in BMI is non-classical, i.e., systematically associated 
with the measured values, and whether this association varies depending on the BMI of 
other household members. Non-classical measurement error may cause bias in 
regression models for other outcomes (e.g., earnings, health care costs) that use BMI as 
a regressor, even when instrumental variable methods are used to deal with 
endogeneity or errors-in-variables (O’Neill and Sweetman, 2013; Cawley et al., 2015).  
 
As an extension, we revisit existing practices on using corrective equations2 to partially 
address reporting error in weight and height in the absence of measured data (Cawley et 
al., 2015).  We show that the predicted BMI values from these corrective equations still 
suffer from measurement error that depends on an individual’s own and within 
household peer’s measured BMI.  
 
																																																													
1 The questionnaire design is structured so that respondents’ consent on the measurement 
followed their self-reports of weight/height and, thus, the latter is not contaminated by their 
informed consent to have their anthropometric measured.	
2 Corrective equations for self-reported body weight and height data rely on the external validity 
of the association between measured and reported weight/height values from one dataset to 
another. Corrections are based on the association in an external dataset that is translated to the 
main analysis dataset (“transferability” assumption).   
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2      Data 
 
Understanding Society is a UK nationally representative household panel survey. One 
of its features is a sub-panel, the Innovation Panel (UKHLS-IP), reserved for 
experimental work.3  
 
As part of the UKHLS-IP wave 12, we designed an experiment on the survey 
measurement of anthropometrics. Respondents were first asked for their self-reported 
body weight and height, followed by physical measurements4.The respondents gave their 
informed consent for these measurements (that follow conventional best practices on 
measurement of anthropometrics) at the point they were collected, which follows their 
self-reports of body weight/height. We focus on adults (aged 20+) here to eliminate any 
puberty-related body-size changes5.  
 
Two BMI measures are calculated, as the body weight (Kg) divided by the square of 
height (metres), separately for the measured and the self-reported data. To facilitate 
interpretation of results, the absolute differences between the BMI based on self-reports 
and measured body weight and height data is used in our analysis (Cawley et al., 2015; 
Gil and Mora, 2011)6. 
 
Our regression models for the absolute reporting error account for gender and age 
polynomials (in years divided by 10). Our SES measures are collected at UKHLS-IP 
wave 11: educational attainment degree/post-secondary; A-level/equivalent; 
GCSE/equivalent; basic/no qualification) and household income (equivalised and log 
transformed). To explore the role of within-household peer effects, we use a dummy 
variable for being part of a household with low/moderate BMI levels (“low_hh_BMI”), 
defined as having an average BMI for all other adult household members, apart from 
the respondent, that is below the obesity threshold (<30kg/m2)7.      

																																																													
3 The UKHLS-IP sample covers England, Wales and Scotland south of the Caledonian Canal. 
4 Households were randomly allocated to two different survey modes to collect self-reports of body 
weight and height: a self-completion and an open interview mode. As we found no differences in 
reporting error by interview mode, these samples are pooled for our analysis. 
5 To allow the results to be generalised to the population of Great Britain, we use sample weights 
that account for differential nonresponse, unequal selection during the sampling and non-
response to our experiment. These weights are calculated by adjusting the UKHLS-IP wave 11 
weights using a backward stepwise probit model on predictors from UKHLS-IP wave 12.	
6 A limitation of raw reporting error is that under- and over-reports may cancel each out and, 
thus, creating a misleading impression on the error’s magnitude. One may argue that under-
reporting in BMI may be more important for a public health perspective as it may have more 
serious health consequences and result in an underestimation of the true overweight and obesity 
prevalence. However, the main scope of our analysis is to explore whether measurement error is 
non-classical. Given that the presence of non-classical error matters for models that use BMI as 
an explanatory variable (for example, wage equations, health care demand and costs), both 
under-reports and over-reports are of equal importance to get an unbiased estimate of the effect 
of adiposity on the outcome of interest.  
7 Children are excluded here as (age and gender-specific) BMI in childhood should be interpreted 
differently than adult obesity. Our results are robust to a sensitivity analysis restricting our 
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3    Methods  
 
Absolute reporting error is modelled by linear regression. Regression models are first 
estimated using the set of demographics and SES. To explore whether measurement 
error is non-classical, we add an individual’s own BMI based on their measured data. 
This specification is augmented by adding BMI information for the other household 
members and its interaction with an individual’s own (measured) BMI8.   
 
As an extension, we test whether the conventional method of using corrective equations 
for self-reports of body weight/height is sufficient to mitigate reporting error and, more, 
importantly its systematic association with covariates (Cawley, 2015).9 Availability of 
self-reported and measured data allow us to estimate analogous corrective equations by 
regressing measured weight and height data on self-reports and a vector of 
demographics. To mimic correction procedures for self-reported anthropometrics in the 
existing studies, the predictions from these equations are used to calculate self-reports 
of body weight and height that are corrected for reporting error. To explore the 
remaining reporting error following this correction procedure we compute the absolute 
difference between the corrected and measured BMI. This measure of the remaining 
reporting error is regressed on our set of demographics, SES and individual’s own and 
within-household peer’s (measured) BMI to explore whether there are still systematic 
associations with these factors.  
 
 
4     Results  
 
Figure 1 shows that there is a high correlation between reported and measured BMI 
data. However, there is not a perfect match ─ reporting error is more likely to result in 
under-reporting of BMI than over-reporting; more of the data points are concentrated 
above, rather than below, the 45-degree equality line. Despite the small differences that 
initial visualisation in Figure 1 shows, obesity prevalence is systematically higher when 
based on measured (36% and 32% for females and males) as opposed to self-reported 
data (32% and 26% for females and males); this is evident in Table A1 (Appendix).  
 

																																																																																																																																																																																													
sample to those households with two and more household members (results available upon 
request). BMI values above the obesity threshold may be of particular interest here as they are 
more visible in people’s silhouettes and, thus, more likely to exert peer-effects on reporting 
behaviour (Lønnebotn et al., 2018). 
 
9 In the existing economic studies of obesity that rely on self-reports only, corrective equations ─ 
based on the relationship between measured and self-reported body weight and height data ─ are 
estimated using alternative, rather than the main analysis, data source. Then, the coefficients 
from these equations are transferred to the analysis sample and, after multiplying the 
coefficients by the self-report values, they obtain measures of weight and height corrected for the 
reporting error (Cawley, 2015). 
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To further quantify the magnitude of reporting error, the mean of raw reporting errors 
(defined as reported minus measured BMI) show that, on average, respondents over-
report their height (by 1.196 cm), under-report their weight (by 0.941 kg) and, 
consequently, BMI is underestimated by 0.738kg/m2 (Tables 1 and Table A.2, Appendix). 
Our absolute measure of the reporting error shows that both under- and over-reports 
result in an average total error in BMI of 1.3kg/m2, i.e., 4.4% of  measured BMI (Table 
1). Graphs of the distributions of reporting error in weight, height and BMI are 
presented in Figure A.1 (Appendix). 
 
 

Figure 1. Scatter plots of measured versus reported BMI. 

  
Notes: Markers are scaled to reflect sample weights. Darker regions representing more concentrated data 
points. The black line is a 45-degree line.  

 
 

 
Table 1. Summary statistics for measurement 

error in BMI(kg/m2). 
 Mean Std. Dev. 

Raw error -0.738 1.541 
Absolute error 1.266 1.147 

Absolute error (%measured) 4.418  3.927 
 

 
 
4.1. Regression analysis 

 
Table 2 presents regression analyses of the absolute BMI reporting error. We find a non-
linear and systematic association between age and the absolute reporting error in BMI 
across all model specifications, which increases steeply for those aged 70 and above 
(Figure 2). No systematic associations are evident for gender and SES. If BMI is the 
outcome of interest, for example, in an analysis of socioeconomic inequality, then we do 
not find systematic reporting error by SES. 
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Specification 2 shows that measurement error in BMI is non-classical, with the 
respondent’s own measured BMI being positively associated with the absolute error in 
BMI. Conditional on the individuals’ own BMI, their within-household peers BMI also 
plays an important role (specification 3). Specifically, as illustrated in Figure 3, 
although the predicted absolute error in self-reported BMI increases in magnitude for 
every unit increase in an individual’s measured BMI ceteris paribus, there is 
heterogeneity related to household-peer effects as suggested by the interaction term 
(Table 2). Respondents with measured BMI of around 31 and above, which coincides 
with the obesity threshold, reported anthropometrics more accurately (lower reporting 
error in BMI) when living in households with other members having low or moderate 
BMI values as opposed to those living in households with excess BMI levels.10.  
 
Sensitivity analysis shows that the time of anthropometric measurement during the day 
does not affect our results in Table 2; main effect of the time of the day and its 
interaction terms with measured BMI are not statistically significant (p-values>0.10).11 
 

 

4.2. Correction equations 

Table 3 presents regression analysis on the absolute difference between BMI based on 
predictions from the corrective equations (Table A.3, Appendix) and measured BMI. 
Measured BMI still plays a systematic role in the remaining error in BMI (after the 
correction). Moreover, we observe similar patterns (but with lower magnitude of 
predicted errors) for the heterogenous role of individuals’ measured BMI (on the 
remaining reporting error in BMI) related to household-peer effects to those observed in 
Figure 3, without adjustments using the corrective equations.  

 

 

 

 
 
																																																													
10 Overall, this suggests the presence of another source of non-classical measurement error, 
known as differential measurement error (O’Neill and Sweetman, 2013). Typically, differential 
measurement error is defined as another type of non-classical measurement error that arises 
when the reported measurement error in BMI is correlated with the error term in econometric 
models for which BMI is the independent variable of interest (O’Neill and Sweetman, 2013). For 
example, assume that the within-household peers’ BMI matters for the reporting error in 
individual’s BMI, as we will explore here. If the within-household peers’ BMI is directly or 
indirectly correlated with the outcome of interest (often, in our case, labour marker outcomes, 
healthcare demand etc.) and, thus, captured by the regressions’ residuals, then, differential 
reporting error exists. 
11 Additional sensitivity analysis shows that our results on the role of within-household peer 
effects on the absolute measurement error in BMI are robust to conditioning for the number of 
household members responded and provided body weight and height data. 
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Table 2. Regression analysis of absolute BMI reporting error. 
 Specification 1 Specification 2 Specification 3 
Age 1.040 

(0.651) 
0.860 

(0.703) 
1.067 

(0.686) 
Age2 -0.247** 

(0.126) 
-0.216 
(0.133) 

-0.257** 
(0.130) 

Age3 0.018** 
(0.008) 

0.017** 
(0.008) 

0.019** 
(0.008) 

Male -0.019 
(0.090) 

0.007 
(0.086) 

0.006 
(0.085) 

Degree/post-secondary  -0.277* 
(0.156) 

-0.208 
(0.156) 

-0.232 
(0.156) 

A-level/equivalent  -0.023 
(0.185) 

0.018 
(0.182) 

0.011 
(0.180) 

GCSE/equivalent -0.109 
(0.165) 

-0.161 
(0.160) 

-0.170 
(0.157) 

Income -0.003 
(0.076) 

-0.024 
(0.074) 

-0.021  
(0.074) 

BMI measured   0.049*** 
(0.010) 

0.066*** 
(0.011) 

Low_hh_BMI  
 

1.586** 
(0.621) 

BMI measured*Low_hh_BMI  
 

-0.051** 
(0.022) 

R-squared 0.049 0.117 0.137 
*p<0.10;**p<0.05;***p<0.001. 

 
 
 

Figure 2. Prediction (based on specification 3, Table 2) of the 
absolute BMI error by age. 
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Figure 3. Prediction (based on specification 3, Table 2) of the 
absolute error in self-reported BMI by measured BMI values and 

household BMI levels. 

 
 

Table 3. Regression analysis of the absolute 
remaining BMI measurement error following 

adjustments from corrective equations. 
 Coeff. 

(std. error) 
Age 0.285 

(0.615) 
Age2 -0.061 

(0.119) 
Age3 0.004 

(0.007) 
Male 0.026 

(0.078) 
Degree/post-secondary  -0.098 

(0.140) 
A-level/equivalent  0.105 

(0.156) 
GCSE/equivalent -0.054 

(0.138) 
Income -0.106 

(0.070) 
BMI measured  0.043*** 

(0.010) 
Low_hh_BMI 1.157** 

(0.584) 
BMI measured*Low_hh_BMI -0.036* 

(0.020) 
R-squared 0.061 
*p<0.10;**p<0.05;***p<0.001. 
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Figure 4. Prediction (based on Table 3) of the remaining BMI 
error by measured BMI values and household BMI levels. 

 
    
 
5  Conclusion  
 

We designed an experiment to measure reporting error in BMI. We find a systematic 
age gradient in the reporting error in BMI, while there is limited evidence of systematic 
associations with gender and SES. This is reassuring evidence for the use of self-
reported BMI in studies that use it as an outcome, for example, to analyse socioeconomic 
gradients in obesity. 

Reporting error in BMI is associated with individual’s measured BMI. The role of an 
individual’s measured BMI on reporting error varies as a result of within-household 
peer-effects: for individual’s with measured BMI values above the obesity threshold, 
measurement error is higher for those living in households with other members having 
high BMI levels. The latter is broadly consistent with the role of social norms on health 
reporting (Gil and Mora, 2011) and challenges the between-households (or and above 
between-individuals) reliability of the self-reported data. This complex structure of non-
classical measurement error may be an issue in studies that use self-reported BMI as an 
explanatory variable. 

Common methods to mitigate reporting error in BMI using corrective equations not to 
fully eliminate systematic associations with individual and within-household BMI. 
Overall, as the error in anthropometrics is non-classical our results highlight the 
importance of collecting measured body weight and height data in large social science 
datasets.  
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Appendix 
 

Table A.1 Classification of obesity using self-reported and 
measured BMI. 

 
 Females Males 
Obesity prevalence (measured BMI) 36.43 32.16 
Obesity prevalence (reported BMI) 32.42 26.10 
P-value (difference) 0.003 0.000 
Percentage classified as:   

True positive 30.51 24.37 
False positive 1.92 1.73 
True negative 61.65 66.11 

False negative 5.93 7.79 
Total 100.0 100.0 

Sensitivity 83.7 75.8 
Specificity 97.0 97.4 
 

 

 
Table A.2 Reporting error in body weight and 

height. 
 

 Mean Std. Dev. 
Body height (in cm)   
Raw error 1.196 2.767 
Absolute error 2.243 2.013 
Absolute error (% of measured) 1.344 1.228 
Body weight (in kg)   
Raw error -0.941  3.440 
Absolute error 2.310 2.715 
Absolute error (% of measured) 2.889  3.380 
Sample size 873 
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Table A.3 Prediction equation for measured body weight and 

height. 
 

 Body weight 
(measured) 

Body height 
(measured) 

Body weight reported 1.008*** 
(0.012) ─ 

Body height reported ─ 0.889*** 
(0.017) 

Age† -2.590 
(2.691) 

0.983*** 
(0.333) 

Age2† 0.371 
(0.509) 

-0.143*** 
(0.031) 

Age3† -0.015 
(0.030) ─ 

Male -18.293** 
(7.176) 

0.898*** 
(0.323) 

Male*Age 10.102** 
(4.449) ─ 

Male* Age2 -1.772** 
(0.872) ─ 

Male*Age3 0.098* 
(0.054) ─ 

Constant 5.814 
(4.463) 

16.453*** 
(3.018) 

R-squared  0.969 0.937 
Notes: Robust standard errors in parentheses.  
†Age is divided by 10. 
*p<0.10; **p<0.05; ***p<0.001. 
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Figure A1. Raw reporting error in weight, height, and BMI. 

	 	

	

	

Notes: The red lines show the distribution of the raw reporting error in height, weight and BMI. Superimposed in each 
histogram is the corresponding normal distribution (black lines). In each graph, the vertical axis is the percentage of the 
sample and the horizontal axis represents units of raw measurement error.    

 

 

 

 

 


