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Abstract

We estimate spatial German land price effects using the county-level residential land prices from
2014 to 2018. We show that county-level spatial agglomeration effects play a large and significant
role in explaining the cross-county variations in land prices. For example, a 1 % increase in the
median income has an increase of 3.45 % in land prices, whereas a 1 % increase in the population
density accounts for an increase of 5.47 % increase in land prices. We find that similar empirical
patterns also hold for house prices but less so for the seven major German cities. Moreover,
housing supply factors such as the available land to build and housing stocks are crucial factors
in explaining land and house prices. Furthermore, we show that the land price spillover effects
are among the dominating factors in the formation of regional house prices. These results suggest
that changes in agglomeration variables such as median income (productivity) and population
density cannot completely explain disparate local land and house prices. Lastly, estimating two
different land price measurements for Germany shows that direct and indirect agglomeration
spillover effects can explain more variation in residential land prices than vacant land prices.
(JEL: RO; R11; R14; R21; R31)

Keywords: German Land prices; Land values; German Housing prices; Housing values; Spatial
Effects.

E-mail: stefanie.braun@ur.de (Braun); gabriel.lee@ur.de (Lee)



Braun and Lee 2

1. Introduction

Figure [I] shows robust growth in house and land prices for the seven biggest German

citied!] that outpaced both New York and London since 2014.
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FIGURE 1. Development of house prices (2014-2020) and land prices (2014-2018) - Selected
German and international cities

Surrounding areas for these seven cities have also experienced a similar growth
pattern in house and land prices from 2014 to 2018E| The average real house
price appreciation for these German cities’ first contiguous surrounding areas ranges
between 11 percent and 34 percent. For the same surroundings, the land prices
appreciated between 12 percent to 31 percent, whereby both the house and land
prices for Munich had the highest and Leipzig had the lowest growthﬂ Figure
which plots the Moran scatterplots that measure spatial correlation for house and
land prices in 2014, shows clear positive spatial correlations for 378 German counties
including these cities and their surrounding areas: the first order contiguity spatial

correlations for house and land prices are 0.66 and 0.58, respectively.

1. We use the Big 8 cities that are also chosen by |Grobel et al.| (2020]) as the biggest residential
markets. But, given their spatial proximity, we combine Cologne and Diisseldorf to represent the
biggest German agglomeration. Consequently, we either speak of Top 7 cities or agglomerations in
this paper.

2. German house prices have been appreciating at a much faster rate than both New York and
London since 2010. However, the analysis starts from 2014 as we use the German land price dataset

from [Braun and Lee| (2021)) at the county level that begins from 2014 to 2018.

3. Tables and in the Appendix show house and land price development for the first three
tiers of the seven cities from 2014 to 2018.



Braun and Lee 3

Moran Scatterplot Land Price, 2014 (Moran's | = 0.58) Moran Scatterplot House Price, 2014 (Moran's | = 0.66)
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FIGURE 2. Moran scatterplot for land and house prices - First order contiguity matrix

These apparent regional house price spatial spillover effects are well documented
for various geographical regionsﬂ The main take-away message from the spatial
correlation literature is clear: the spatial spillover effects matter in understanding
real estate markets. Yet, the economic causes for these spillovers in house prices are
less understood as most of the studies focus on the mechanisms of the spatial and
temporal lags on housing prices.

The objective of this paper is to analyze the impact of agglomeration effects on
spatial price variations for German real estate markets in 378 administrative counties
and cities from 2014 to 2018E| While most spatial correlation literature focuses on
the spatial interaction effects in house prices, the focus of this paper is on the
spatial spillovers in land prices affected by the clustering of production and workers,
also known as agglomeration economies. Consequently, one of the distinguishing

characteristics of this papers’ framework is the role played by land prices. We focus on

land prices as recent studies on the U.S. land prices such as [Ahlfeldt and McMillen|
(2020), |Albouy et al. (2018), Davis et al. (2021), and Braun and Lee| (2021)), on

German land prices, with different objectives in mind, have shown that most of the

variations in house prices are due to the underlying land values and shares. For the

international evidence, Knoll et al| (2017) also document that rising land values and

shares mainly drive house price increases for many developed economies since World
War II. For example, Figure[3|that plots the quarterly time series for housing, imputed
land, and construction cost indexes for Germany, the U.K., and the U.S., from 2000 to
2020:q3 also informally shows the importance of land price development for housing

markets.

4. For example, among others, |Ott0 and Schmid| (|2018|) and |Mt')ller| (|2009|) for Germany,
let al] (2020) and |Guo and Qu| (2019) for China, [Fingleton| (2008)) and [Baltagi et al|(2014]) for the
U.K., and |Brady| (I2014|) and |Cohen et al.l (I2016|)7 |Pijnenburg| (|2017|) for the U.S.

5. The official number of administrative counties in Germany is 401 as of 2019. Given the territorial

boundaries from 2016, we use 378 counties due to the lack of data for the rest.
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[Knoll et al| (2017) with o = 0.5.

We use the German residential land price dataset from Braun and Lee (2021))

for two reasons. First, Figure [3| shows that although German housing prices have
been sharply increasing since 2010, the residential land share in total wealth has
increased but the structure share in total wealth has been steadily decreasing.
Moreover, it shows that residential land prices have increased significantly more than

the structure costs and house prices in most of the German counties from 2014 to

2018. Consequently, the findings from Braun and Lee| (2021) imply that cycles in the

German land values are more likely to affect house prices in the future. Second,
(2021)), that construct the German residential land prices at a county level,
provides the first and only publicly available dataset. Previously available land price
datasets are from the Federal Statistical Office, which only provides the vacant land
prices on a national level from 2010 and from the Statistical Offices of the Federal
and State Governments, which provide the vacant land prices on a county level from

19950

6. Appraiser assessed land values are available from regional Independent Surveyor Commissions
at costs. However, these Surveyor Commissions use independent appraisal methods. Despite being

based on detailed guidelines, these existing land price valuations rely on surveyors’ knowledge and

expertise. For more details on German land price measurements see |Braun and Leel (I2021|).
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The other main focus is the impact of spatial agglomeration effects on real
estate markets. Well established empirical evidence that supports the existence of
agglomeration economies are the positive relationships between population density
and productivity (wages) as well as between population density and real estate prices.
Figure 4] shows positive relationships between the log of population density versus the
log of GDP per capita (0.59), the log of median income (0.60), the log of house price

index (0.55), and the log of land price per square meter (0.60) for German counties

in 2014.
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FIGURE 4. Measuring agglomeration - German counties in 2014

These positive relationships informally indicate the well-documented density-

productivity relationship in the United States by |Ciccone and Halll (1996) and in

Europe by (2002). Consequently, the spatial equilibrium framework by
(1979) and Roback| (1982) suggests that these positive correlations between density

and real estate prices can either mean that dense places have become more pleasant
over time or that dense places have become more productive. The literature on land

value estimation also lend an indirect support for the existence of agglomeration

effects in house and land markets. For example, |Ahlfeldt and McMillen| (2020) report

that variation in land shares is likely influenced by demand-side factors that are

exogenous to the production function of housing and less by inelasticities in housing

supply. |Albouy et al.| (2018)) further provide indirect evidence of agglomeration effects
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on land prices by showing that monocentric cities have spatially varying negative land
price gradients with increasing distance to the city center.

This paper estimates spatial land price and agglomeration spillovers using a
standard spatial econometrics framework that accounts for the effects of localization
and network externalities as well as spatial spillovers in house and land prices. We first
estimate panel data with fixed effects as a benchmark. Then, the analysis is extended
using a spatial framework that accounts for spatial lags of dependent (house and
land prices) and agglomeration variables, the so-called Spatial Durbin Model (SDM).
We also estimate the Spatial Lag of X Model (SLX) and the Spatial Autoregressive
Model (SAR) that account for either only exogenous spillovers or endogenous
spillovers, respectively. More specifically, we address the following questions: First, can
cross-county agglomeration spillovers explain variation in land and house prices for
Germany, including the seven largest German cities and their surrounding counties?E]
Second, to what extent can clustering patterns in house prices be attributed to spatial
variations in land prices? Lastly, how do spillover effects on house price variations
differ between the residential land prices and the land prices on vacant land, which
are provided from the Statistical Offices of the Federal Government and the German
States?

One of the main results is that there are large and significant local and spatial
agglomeration effects on land and house prices. For example, if there is an one percent
increase in the median income the land price changes by 2.6 percent, ceteris paribus.
A corresponding one percent increase in median income of the neighboring counties
raises land prices by 0.85 percent in the county of interest. A one percent change in
the population density of the county itself and its neighboring counties has a similar
effect on land prices, with land price increases of 3.48 percent and 1.99 percent,
respectively. We find that comparable empirical patterns also hold for house prices,
but less so for the seven major German cities. This result suggests, unlike |Gyourko
et al. (2013)), that the Big 7 German cities do not exhibit the characteristics of the
so-called Superstar Cities. Although the direct median income and population density
effects are significant for all seven cities, the indirect (spatial) effects for the variables
are significant for only four out of seven cities.

Moreover, housing supply factors such as the available land to build and a proxy
for the restrictiveness of housing supply also significantly affect land and house prices
on county and city levels. Furthermore, we show that the land price spillover effects

are among the dominating factors in the formation of regional house prices. These

7. Figureshows those seven cities (Tier 1) as well as their surrounding counties that we assigned
into Tier 2 and 3. The upper right map highlights the new German Federal States (Former ”East
Germany” and before 1990, part of the German Democratic Republic (GDR).).
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results, as in|Gyourko et al.| (2013)), suggest that disparate local land and house prices
can be driven by other housing variables and cannot be explained entirely by the
agglomeration effects such as median income (productivity) and population density
levels in those areas. Lastly, estimation on two different land price measurements for
Germany shows that direct and indirect agglomeration spillover effects can explain
more variation in residential land values than in vacant land prices from the Statistical
Offices of the Federal Government and the German States.

The rest of this paper is organized as follows. In Section 2, we overview the
literature on spatial effects in housing prices. Section 3 outlines a simple baseline
framework on network spillovers in housing and land prices across counties for the
empirical analysis. Section 4 presents the empirical model specifications and outlines
the data sources. In Section 5, we present the empirical findings that include various

robustness analysis. Section 6 concludes, followed by the Appendix.

2. Previous Literature on Spatial Spillovers in House Prices,

Agglomeration, and Land Prices

This paper combines three strands of literature: Literature on spatial spillovers in
house prices, agglomeration effects on real estate prices, and land prices. This section,
thus, provides a literature review on the significance of spatial correlation in regional
housing markets, the agglomeration effects on real estate markets, and the upward
trend in land prices.

The literature on spatial interaction in real estate markets is clear in the
importance of spatial correlation in determining property values. These so-called
spatial spillover effects in house prices are widely studied in the literature using spatial
econometric methods for different countries and different geographic aggregation
levels.

Prior to 2007, spatial econometrics mostly focused on models that contained
one type of spatial spillover effect. These models that contain either an endogenous
interaction effect (i.e., a spatially lagged dependent variable) or correlated effects (i.e.,
spatially autocorrelated error terms were introduced in the seminal work by [Anselin
(1988)). After 2007, the literature includes model estimation with several types of
interaction effects. [Kelejian and Pruchal (1998); Kelejian et al.| (2004) and [Kelejian
and Pruchal (1999)) developed estimation techniques for models that contain both
spatially lagged dependent variables and autocorrelated error terms. Whereas, LeSage
and Pace| (2009) introduced the Spatial Durbin Model (SDM) that incorporates both
endogenous as well as exogenous interaction effects, where a exogenous interaction
effect supposes that the house price of a region depends on other regions’ explanatory

variables (Elhorst] 2010).
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Many studies use hedonic house price analysis that incorporates spatial interaction
effects to investigate mechanisms for spillovers between prices of neighboring houses.
On the least aggregated (MSA) level, |Can| (1990} 1992) shows that for Columbus,
Ohio, USA, accounting for different spatial effects using spatial econometric models
is superior to simple hedonic pricing models. Dubin (1988]) examines spatial
autocorrelation in hedonic house price residuals using a Maximum Likelihood
procedure for data on 221 property transactions of homes in Baltimore sold in 1978.
She extends her earlier work in [Dubin| (1992) by presenting an alternative approach
to model spatial autocorrelation in hedonic house price residuals. Based on structural
characteristics of properties and the average of hedonic residuals of nearby properties,
she predicts market values for homes by Kriging. Other studies that examine spatial
autocorrelation in house prices within Metropolitan areas using similar methodologies
to |Can| (1990, [1992) and [Dubin| (1988, 1992) are for example Basu and Thibodeau
(1998)) that use transaction data of home sales in Dallas 1991:4-1993:1 and |Clapp and
Tirtiroglu (1994) that use data for the Hartford area, 1982-1988. Helbich et al. (2014)
and |Pijnenburg| (2017) emphasize the importance of comparing different estimation
techniques (parametric, non-parametric, and non-linear spatial effects) to account for
the presence of spatial heterogeneity in hedonic house prices in Austria and the U.S.

Spatial interactions of house prices, however, do not only occur within urban
housing markets. They also appear between aggregated housing markets, such as
between different counties, cities, or states. Many studies used spatial autoregressive
models that include endogenous interaction effects to investigate house price
interaction effects. |[Fingleton| (2008) motivates this type of interaction by displacement
effects in supply and demand. [Fingleton| (2008) finds evidence for endogenous house
price spillovers among 353 districts in the U.K. estimating a spatial autoregressive
model (SAR) model in 2001. Also for the U.K., Baltagi et al. (2014) support this
finding even after using random nested error terms with panel data from 2000-2007 for
the 353 districts. |Gong et al.| (2020) also show endogenous cross-region spillover effects
for the Chinese housing markets. Another mechanism that a SAR model empirically
estimates is yardstick competition, which assumes that participants of the demand
and supply side of a housing market take actions of neighboring housing markets into
account when forming their buying and selling strategies (Brady, 2014} |Gong et al.,
2020)). For the U.S., Brady| (2014, [2011) find persistent spatial diffusion processes by
estimating spatial impulse response functions based on a SAR model for California
counties for the period, 1995-2002 and across the U.S. States for the period, 1975-
2011. Similarly, using a spatial-temporal model Holly et al.| (2010) examine to what
extent movements in house prices can be explained by fundamentals for the States

of the U.S. For regions in the U.K., Holly et al.| (2011 analyze spatial and temporal
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diffusion processes of shocks in a dominant region (London) in a spatial-temporal
setting.

For Germany, |Otto and Schmid| (2018) find evidence for the existence of cross-
county house price spillovers estimating dynamic spatial panel data models for their
dataset on German real estate prices in 412 counties. The found ripple effect is
timely delayed and diminishes with distance to the region a shock occurred. Moller
(2009) also finds similar spatial effects for vacant land ready for development when
analyzing the relationship between the regional German labor market and the market
for building land.

Endogenous spillover effects are not the only cause of cross-county interactions
considered in the literature. Cross-county spillovers can also emerge due to exogenous
interaction mechanisms such as network effects in a county or city grid. The presence
of agglomeration effects between counties, was first implemented by [Krugman| (1991))
in the new economic geography theory (NEG). The existence of this type of spatial
spillover effects is, for example, supported by |Gong et al. (2020) who applies the
spatial lag of X model (SLX) using cross-sectional housing market data on an
urban network in eastern China. They also find common shocks to cause cross-
city dependence of housing prices, estimating the Spatial Durbin Error Model
(SDEM). Some other studies that show evidence for network spillover effects in
housing markets use different market potential measures. For 136 European large
urban zones, [Camagni et al.| (2017) find a significant impact of static and dynamic
agglomeration economies on house prices. For U.S. counties, Partridge et al.| (2009)
analyze the impact of hierarchical geographic proximity and market potential on
median earnings and housing costs. They find especially housing costs to be higher
with closer proximity to higher-tier urban cores.

While most of this literature focuses on spatial interaction effects in house prices,
this papers’ goal is to analyze spatial spillovers in land prices. The literature on
land prices shows the upward trend in land prices and large land shares in housing
wealth for many developed economies. Most of these studies equate house prices to
the cost of putting up the structure plus the value of land, where the latter is often
seen as pricing any geographical and regulatory barriers to housing supply, as well as
amenities accessible at a given location (Glaeser et al. [2006; [Davis and Heathcote,
2007; [Davis and Palumbo, [2008)). Studies such as Davis and Heathcote (2007)), Davis
and Palumbo| (2008), and Davis et al.| (2017)), Davis et al. (2021) have shown, for
the U.S., that most of the variations in house prices are due to the underlying land
value. In [Braun and Lee| (2021]), we argue that movements in the land - and structure
values are crucial for understanding the development of German housing markets and
policy measures that accompany these movements. Studies that estimate land values

and shares via spatial transaction based approaches such as|Albouy et al.| (2018)) and
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Ahlfeldt and McMillen| (2020) support the presence of network externalities in land
values. For example, |Albouy et al.| (2018)’s land value estimates indirectly support the
monocentric city theory as they increase with decreasing distance to the center of an
agglomeration. [Ahlfeldt and McMillen| (2020) argue that the factors to the demand
side that are exogenous to the housing production function such as higher income
and larger preferences for certain amenities are positively correlated with high land

values.

3. Baseline Model

The main empirical interest lies in the spatial interaction patterns of land prices both
of endogenous and exogenous nature and the clustering patterns in house prices that
can be contributed to spatial variations in land prices. Rather than simply presenting
spatial lag models for the empirical analysis, we present a simple reduced form of the
spatial housing market which captures variables that affect both supply and demand
functions.

As in [Fingleton and Le Gallo| (2008]), consider an economy with n counties. In this
economy, the determination process of house price within a region ¢ may not assume
to be only a function of demand and supply factors of that region but also of regions
within commuting distance from county i. Consequently, we assume that demand for
real estate (g;) reacts to changes in income (w;) of both region i and surrounding
regions to reflect the travel-to-work patterns that require to cross county borders.
Moreover, I assume that demand for real estate depends on natural attributes of
a county (F;) such as green coverage as well as two types of externalities: 1) local
externalities formed by agglomeration economies (I;) and 2) network externalities
from cross-county connections (Wl;, where W is a spatial weighting matrix). A
prime example for agglomeration economies is that higher population density counties
can increase the likelihood of enjoyable social contacts and meet like-minded peers,
especially attracting young single people. Also, so-called higher-order amenities, such
as opera, expensive restaurants that require substantial scales of economies to be
sustained, can mostly be found in higher population density places. We also include
the size of land (Combes et al., |2010) and median income (Ciccone and Hall [1996;
Combes and Gobillon, 2015|) to measure the agglomeration effect.

One can further link the local externality to its agglomeration level in economic
activities. Mechanisms that support this connection are, for example, a shared
and larger labor pool that improves firm-worker matching and knowledge spillovers
through shared information during face-to-face meetings (Glaeser et al., |2001}; |Gong

et al., 2020; |O’sullivan, 2007). Switching from the single county to a network of
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countiesﬁ the previously mentioned connection can cause the same benefits resulting
from agglomeration economies within such a network. For example, higher-order
amenities can be used by people from less dense populated nearby counties in order for
them to complement their shopping and entertainment facilities. But these amenities
also need to be demanded by those people in order to support and maintain the
higher population density counties’ functionality and local externalities (Gong et al.,
2020; Meijers et al., 2016; Meijers and Burger) 2017)E| Finally, while demand in
region 7 is assumed to negatively depend on the region’s house price p;, this reduced
demand spills over to neighboring regions (displaced demand effect: ZZ& j Wi;ip;)-
Consequently, the demand function for housing iﬂ

n
q = ao+aiw; +EZ Wijwj + asE; 4+ asl; +Eiz Wijli (1)
1]

n
—aspi + @y _ Wijpj +wi,
i#£j
where W;; spatially links counties with each other. w; is the error term that
contains other unmodelled demand factors.

The corresponding supply function for housing takes the following form

n

¢i = bo +bipi + baH; —b Y Wijp; +mi, (2)

i#]

where 7); is the unobserved supply error term. The supply of housing is assumed
to increase in the price level of housing in region ¢. High real estate prices attract
real estate developers and it may be more likely that homeowners are offering
their properties for sale. However, this also means that high property prices in
neighboring counties ”steal” away supply of housing from region i (displaced supply
effect: Z;;j Wi;p;). As in |Gong et al.| (2020), supply is assumed to depend on the

restrictiveness of housing supply, H;.

8. We focus on network connections between counties located in geographical proximity to each
other. As mentioned in |Camagni et al.| (2017), network externalities can, however, also emerge
between regions located far from each other but linked through a horizontal, non-hierarchical

network given a similar size.

9. The productivity of counties with smaller urban cores can be increased given the so-called
”borrowed size” effect, when located next to counties with major urban cores, by borrowing their
technological externalities. Moreover, proximity to larger consumer and supplier markets increases
productivity by saving transportation costs and often correlates with higher wage levels (Gong
et al., [2020).

10. In the empirical analysis, we also include unemployment, housing stock, and open

accommodation as control variables.
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Rewriting the supply function by solving for p;, we have

bo 1 < i
—q; — — — —H; + —b Wiin: — —. 3
1(] by + by ; iPj by ( )

Substituting for ¢; yields

n n n
pi =cC1 |ag + ar1w; +EZ Wijw; + as By + asl; +az Wijli — a4p; +6Z Wiipj + w;
i#£] i£] i#£]

n
—co—c2H; +c3 Z Wijpj — v
1#]
(4)
Simplifying the equation further gives the empirical form that includes spatial effects

as

pi = do + diw; +Ez Wijwj + do Ey + dsl; + C?Z Wijli+
i#j i
+dsH; + JZ Wijpj + s,
i#]
where u; = ciw; + v;.

Since the focus is on land prices, we modify Equation by including construction
costs. As |Davis and Heathcote| (2007) and Davis and Palumbo) (2008)), (Glaeser et al.
(2006) argue that the determination of house price is more complex in a sense, that
the costs of new construction consist of the cost of putting up the structure in addition
to any geographical or regulatory barriers to housing supply. While the former can
be assumed to be supplied highly elastically, the latter can cause housing supply to
be highly inelastic depending on locations. Following the residual approach in [Braun
and Lee (2021)E, we decompose house value into a physical cost of construction
and the land value. Therefore, from the housing supply perspective, the price of
housing will be determined by the cost of new construction, defined above as the
sum of construction cost and land value, in places where demand is sufficiently large
to justify new construction. Incorporating this decomposition into Equation , the
land value is defined as:

Ip; = do + dyw; + (ZZ Wijw; + doE; + d3l;+
i

Ciz Wz’jlj + d4H; + (iz Wijpj + Ace; + uy
J#i J#i

11. The two-step residual approach has been used in |Davis and Heathcote (2007)); |Davis and
Palumbo] (2008) and |Braun and Lee| (2021)
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where [p; is the land value per m?

in county i, cc; is a county-specific construction
cost factor and A measures the effect of county-specific construction cost on land

value. In the next section we outline the empirical methodology.

4. Empirical Framework and Data

We are interested in two types of spatial spillover effects in land and house
prices: First, exogenous interaction effects within the explanatory variables. Second,
endogenous interaction effects within the dependent variable.

There are different types of spatial regression model specifications that include
spatial lags of the dependent variable. But |Anselin| (1988); |[LeSage and Pace| (2009)
argue that one specification, the spatial Durbin model (SDM), stands out as superior
in a vast number of applied situations. The SDM is shown in Equation @ It includes

a spatial lag of the dependent variable (In(P)) as well as agglomeration variables in
(0):
In(P) = pMin(P) + apgl + X+ Wif +¢c,e ~ N (0,07) (7)

where, P, «1 is the vector of land values or house prices, X, x, incorporates the
county-specific characteristics and agglomeration economies and W1, ., represents
the network externalities. In the empirical analysis, we use the same weight matrix
for M, »,, and W, (Anselin, [1988; [LeSage and Pace, [2009). W (M) is the spatial
weight matrix that defines how counties are spatially connected. This matrix allows for
local externalities 1 to spillover between spatially linked counties and hence spillover
effects can be modeled as W1.

Apart from estimating the model in Equation @, we also estimate three other
models. We first start with a panel fixed effects model (p = 01x, = 0), and then add
two other spatial lagged models, namely the Spatial Autoregressive Model (SAR:
6 = 0) and the Spatial Lag of X Model (SLX: p =0).

The latter is seen as more appropriate for applied studies and superior to SAR-
type specifications as it does not suffer from identification problems (Halleck Vega
and Elhorst] 2015; |[Gibbons and Overman, [2012; |Gong et al.; |2020). Also, next to
the SDM, this model provides a flexible way to model exogenous interaction effects
among the explanatory variables.

However, for economic reasons we use the SDM as the main model of interest
as the likelihood of displacement effects in land and house prices causing cross-
county spillovers being present in the process of house price determination is pretty
high. For example, high house prices in one region cause demand for housing to
decrease. However, this demand is likely to be displaced to regions nearby. Another

mechanism that can explain this type of spillover effect is ”yardstick competition”.
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For example, house sellers and buyers might take into account price signals from
house price transactions in a neighboring county, spatially linking house prices with

each other (Bradyl [2014; Gong et al., [2020).

Note that a significant estimate of p could either be attributed to pure spatial

spillover effects in house prices or reflect information picked up from omitted variables

such as network externalities (Corrado and Fingleton| 2012; |Gibbons and Overman),

2012} |Gong et al.,[2020)). However, one can statistically justify estimating Equation (7))

by evaluating the role of network externalities when testing the SDM model against

the SAR model with the restriction 6 = 012
4.1. Direct vs. Indirect Effects

In spatial econometrics, due to the presence of the spatial weights matrix, the

interpretation of point estimates as spatial spillover effects is misleading in some

models (Elhorst, [2010; LeSage and Pacel 2009). To circumvent delusive conclusions

from hypothesis tests based on point estimates, LeSage and Pace| (2009) present

the partial derivative approach for finding the impact of a change in variables for
different model specification as being more valid. Given this approach, the direct
effect represents the effect of a change in a county-specific variable on that counties’
land value. We however, interested in cross-county spillovers. By definition this refers
to the indirect effect, the impact of a change in a county-specific variable on land

values of other counties (Gong et al., 2020; [LeSage and Pace, 2009; Elhorst|, 2010).

We briefly outline the direct and indirect effects below, but the interested reader

may refer to LeSage and Pace| (2009) and Elhorst| (2010) for more details. Equation

@ can be written as
In(P) = (I —pM) " (XB+WI0+R), (8)

where R includes intercept and the error terms. The marginal effect of agglomeration
on the land or house prices can be clearly seen by taking the derivatives of In(P) with
respect to the rth [ :

dln(P)
81 nxr

= (I - pM)_l (lnxl/ler + annlnxlelxr) .

For the SDM, the diagonal elements of (prM)_1 (Inx1B1ixr + Waxnlnx161xr)
represent direct effect and the off-diagonal elements are the indirect effects. For the
SLX, Bix, and 01«, are the direct and indirect effects, respectively. Lastly, for the
SAR, the diagonal elements of (I — pM )71 (15,181 xr) represent direct effect and the

off-diagonal elements are the indirect effects.

12. For more details on the spatial econometric models outlined in this section the reader may

refer for example to |Anselin| (I1988|) and |LeSage and Pacel (I2009|).
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4.2. Data

We use the annual (2014-2018) land value per square meter of lot size estimates for
German counties and county-free cities from [Braun and Lee| (2021) as a measure for
residential land price. Since one of the main focuses of this paper rests on land prices,
the data from [Braun and Leg| (2021) is briefly summarized here. It estimates changes
in the value and price of residential land for the 379 German counties (”Landkreise”)
from 2014 to 2018 by combining data from several publicly available sources for
academic researchers. In doing so, a database for the cost of housing structures and
residential land values at the county-level is built. The framework of the approach
used is that of |Davis and Heathcote| (2007)), who decompose house value into the
value of the structure and land value on the aggregate level for the U.S. Some of the
results from [Braun and Lee| (2021)) lend support to this papers’ spatial analysis. For
example, it shows that residential land price has become relatively more expensive in
the majority of German counties. Moreover, the counties around urban centers such as
Munich, Stuttgart, Berlin, Hamburg, Dresden, and the Ruhr area cities experienced
the highest land price increases. However, we also note that, in general, an upward
shift in home values, land values, and residential land share occurred in almost every
state.

We use annual house price indexes for single- and double-family houses from
vdpResearch at the county and independent city level available for the years 2007-
2018 based on transaction data. I control for several county-level characteristics in
different model specifications (Table . First, we use the following variables to
measure the agglomeration economies of each county that are known to generate
local and network externalities: the counties’ land area in km?, its median income, and
population density (Gong et al., |2020). The latter is calculated by dividing county’s
population by its land area in km? in a given year. That is, population density is
equal to 100 in a county with 100 individuals per kaE Second, we include county-
specific natural and economic characteristics in different model specifications. As an
indicator for the environmental amenities of a city, we include the green residential
area that is used for recreational purposes divided by a county’s land area in km?
(green coverage). We measure amenities of a county in terms of history and culture
with the number of available accommodation facilities in that county (e.g., hotels,
etc.). Moreover, we include the housing stock of single and double family housing as
a measure of housing supply and the arable land per km? of land area to measure

for the restrictiveness of housing supply (Gyourko et al., 2013} |Gong et al., 2020).

13. As land values(/house prices) and population are usually determined simultaneously,
population density could cause endogeneity. To circumvent this problem, we use one-year lagged

population density.
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Mean  Std.Dev. Min Max

House price index 117.5 14.33 88.64  189.5
Land value per m? (Braun and Lee, [2021) 252.2 255.3 0.987 2184.2
Land value per m? (Vacant land ready for 175.3 231.3 8.960  2737.8
construction)

Population density (person per km2) 516.0 702.0 35.78  4736.1
Median incomd™| 3012.5  455.1 1961.8  4896.9
Unemployment rate 5.605 2.629 1.300 15.40
Housing start{"| 310.1  255.2 10 2708
Open accomodation facilities 131.3 152.0 5 1398
Green coverage (percent of 'green’ recreation 0.0150  0.0207 0 0.121
area within residential areas)

Land area (km?) 931.5 7224 40.02  5495.6
Total housing stock 48924.3 32291.1 6977 326882
Housing stock (Single family houses) 32650.8 20562.1 4235 169251
Housing stock (Double family houses) 8081.0  5250.1 762 30681
Construction cost index 101.3 10.74 65.20 160.3

TABLE 1. Descriptive statistics

Finally, we use the construction cost, income, and unemployment rate as measures for
a counties’ economic situation as control variables. The data and sources are described

in detail in the Appendix in Table Descriptive statistics are provided in Table

5. Estimation Results

We focus on the first-order contiguity matri™| estimation results for land values
as spatial baseline results. We estimate the models outlined in Section {4 for the
total of 378 counties, 314 counties in the old Federal States, 64 counties in the new
Federal States, and the Big 7 German cities, including their surrounding counties.
For expositional purpose, we present Figure [5| that shows the counties assigned to
each Tier and Table [2] that presents the number of total counties within Tiers 1-3]77]

As we use an annual panel data set for German counties from 2014-2018 we need

to consider both time and cross effects in the estimation methods. However, we only

15. Median of gross financial wages of full-time workers with compulsory social insurance.

16. Construction permits of new residential buildings and apartments in residential buildings,

annual sum.

16. To construct spatial weight matrices and maps in this paper, the shape files with coordinates
on German states and counties from [Bundesamt fir Kartographie und Geodasie, Frankfurt am

Main (GeoBasis-DE / BKG)| (2019) are used.

17. The states highlighted in red in the map in the upper right corner of Figure [5| denote
former East Germany. For a detailed representation of the counties assigned in each tier for the 7
agglomerations, refer to Table [A-3]in the Appendix, where counties highlighted in red are missing

in the dataset of |Braun and Lee| (2021)) and are therefore not included in the estimation.
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Top 8 Cities and surrounding counties

Stuttgart

Munich

Tier 1 Tier 2 Tier 3

FIGURE 5. Top 7 agglomerations and surrounding counties

City no. of counties
Berlin 21
Munich 19
Hamburg 19
Cologne/ Diisseldorf 28
Frankfurt am main 22
Leipzig 18
Stuttgart 15

TABLE 2. Sum of counties in Tier 1-3 for each of the Big 7 cities

account for county fixed effects in the estimations for two reasons[l¥| First, we observe
slight heterogeneity over time due to the short time period. Figuresto F_glin the
Appendix show only little variation in the time-varying explanatory variables by the
state over time. Second, including a set of time dummies in column (2) in Table
we find time dummies to be insignificant at all common significant levels except for the
year 2018. The results from the F' — T'est on joint significance of the time variables also
do not reject the null that they together are not different from zero (p — value = 0.27).
Moreover, comparing random and fixed effects estimation results with the Hausman
test, we also reject the use of random effects (p — value = 0.00). To circumvent various

serial autocorrelation issues for short panels, we use the transformation approach

18.  Omitting time fixed effects could lead to a significant upward bias in the spatial lag’s coefficient
(ILee and Yul, |2010b|; |Halleck Vega and Elhorst|, |2015|).

19. The data and sources are described in detail in the Appendix in Table



Braun and Lee 18

maximum likelihood (ML) estimation with county fixed effects as in Lee and Yu

(2010a) 7]

5.1. Spatial correlation of land and housing prices

Table [3] shows global Moran’s I statistics that measure the spatial correlations for
house and land prices in 2014. The first correlations use the first-order contiguity and
inverse distance weight matrix. Other spatial correlations use three binary weight
matrices that assign a weight of one if two counties are located within a certain
distance and 0 otherwise. The distance bands for the correlations we use are 0-60km,
60-120km, and 120-180km to reflect the distances between Tier levels. Columns (1)
and (2) show a significant positive auto-correlation both in house and land prices, that
diminishes with increasing distance of neighboring counties. These spatial correlations
lend informal for endogenous interaction of house and land prices.

Other explanatory variables also display similar spatial correlation patterns. Table
also provides the global spatial cross-correlation coefficient by |Chenl (2015), R.. If
exogenous spillover effects in land and housing markets exist, one would expect spatial
cross-correlation between housing and land markets with agglomeration variables. We
find significantly positive cross-correlations between a county’s land and house prices
and neighboring counties’ median income and population density. However, especially,
the cross-correlation with population density quickly vanishes with distance. The land
area is negatively cross-correlated with both house and land prices. These spatial

correlation patterns also show informal evidence for exogenous spillover effects.
5.2. Non-spatial estimation results

Baseline results for Germany are displayed in Tables[4 and [5] Tables [6] and [7] compare
the Spatial Durbin Model results for West and former East Germany and the Big 7
Agglomerations.

We first estimate a non-spatial model as a benchmark. Column (1) of Table
reports the estimation results for the non-spatial model accounting for fixed effects.
In column (1), all coefficients are statistically significant on the 1 or 10% significance
level and have the expected sign. Except for the coefficient on green coverage, we
would expect the opposite sign as green coverage proxies local amenities. However,
green coverage could also indicate a restriction on available land to build. A city with
a higher median income and higher population density is likely to have higher land
values, ceteris paribus. Besides income and population density, the variable land area

20. |Lee and Yu(2010a) introduce the bias correction procedures for Spatial Error Model (SEM),

SDM, SAR and SDEM models to correct for biased parameter estimates in models with spatial
fixed effects (and time fixed effects).
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FE SLX SAR SDM

main
log(median income) 3.08***  2.52*** 2 HR*** 2.56%**
(23.42)  (11.63) (16.72)  (10.76)

log(Lag Population density (person per km?2))  4.30%**  3.34%**  3.70*** 3.38%**
(15.74)  (8.98)  (12.30) (8.28)

green coverage -6.98* ST.26%FF ST S7.18%**
(-7.04)  (-7.42)  (-6.64)  (-6.68)
log(construction cost index) -1.09***  -1.A7F -1.19%*F  -1.20%%F
(-10.78)  (-11.65) (-10.91)  (-10.90)
log(arable land (sqkm) per capita) -0.61***  -0.63*** -0.58***  -0.59***
(-3.49)  (-3.68)  (-3.09)  (-3.12)
log(land area (km?)) 3.90%** 2.34 2.94* 2.51
(2.68)  (1.60)  (1.86) (1.57)
F
log(median income) 0.10** 0.01
(2.63) (0.26)
log(Lag Population density (person per km?)) 0.37*** 0.15
(4.19) (1.47)
log(Land value per m? (Braun,Lee (2021))) 0.05%** 0.04***
(9.99) (7.21)
N 1890.00 1890.00  1890.00 1890.00
R2 0.516 0.529 0.522  0.99/0.524
Log-Likelihood 1654.2 1679.8 1680.1 1682.3

t statistics in parentheses

dependent variable: log(landvalue per m?) Braun&Lee (2021)
spatial weight matrix: first order contiguity

*p<0.1, * p<0.05 *** p <0.01

TABLE 4. Baseline estimation results - Germany

per km? that is also supposed to measure agglomeration economies has a statistically
significant effect on land prices. If population density increases by one percent, land

value per m?

increases land values by 4.3 percent, ceteris paribus. An increase in land
area per km? by one percent drives up land values by 3.08 percent. If arable land
per capita increases by one percent, the land price per m? decreases by 0.61 percent.
In other words, a less restrictive housing supply is associated with lower land values.
Lastly, the independent variables in the model specification (FE) explain around 52

percent of the cross-county land price variation.
5.3. Spatial estimation results

Despite the SDM model being the main model of interest, the first part of this section
is divided by the type of spillover effects: First, agglomeration effects are discussed
in light of the SLX model, followed by endogenous spillover effects in SDM and
SAR models. The subsequent parts focus on the difference in direct and indirect
interactions, diagnostics, estimations for the Top 7 agglomerations and house price

index as an alternate dependent variable.
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SLX SAR SDM

direct
log(median income) 2.52%**  2.62%**  2.60***
(11.63) (17.11) (11.10)

log(Lag Population density (person per km?2)) 3.34***  3.75%**  3.48%**
(8.98)  (12.44)  (9.04)

indirect
log(median income) 0.10***  0.95***  0.85***
(2.63)  (7.48)  (3.56)

log(Lag Population density (person per km?2))  0.37*** 1.35%** 1.99***
(4.19)  (6.70)  (3.43)
Observations 1890 1890 1890

t statistics in parentheses

dependent variable: log(landvalue per m?) Braun&Lee (2021)
spatial weight matrix: first order contiguity

£ p <01, ** p<0.05 *** p< 0.0l

TABLE 5. Baseline estimation results - Germany (direct and indirect effects)

5.3.1. Ezogenous spillover effects: SLX model. For the SLX model, the choice of the
spatial weights matrix is important as it determines the structure of spatial spillovers
across counties. Although [LeSage and Pace| (2014) suggest that spatial estimation
results are not as sensitive to the choice of spatial weights as commonly believed
in literature, we capture the nature of spatial interaction with two spatial weight
matrices. First, we estimate the spatial models outlined in Section [4 using a first-order
binary contiguity matrix as the network externalities are highest among neighboring
CountiesE Second, to allow for network externalities between counties further apart,
the models are re-estimated using an inverse distance matrix (See Section [5.4.2)).
Inverse distance matrices depict spatial interaction by weights that diminish with
distance.

We find empirical support for the presence of network externalities for the model
in column (2). The coefficients on the spatial lag of a counties’ population density and
median income are positive and significant. For example, an increase in the population
density in a neighboring county of one percent increases land values per m? in the
county of interest by 0.37 percent, ceteris paribus. The direct effects of median income
and population density are smaller compared to the fixed effects specification (1). For
income, the coefficient falls by 0.56, and the coefficient on population density falls
by 0.96. The other explanatory variables, if at all, change only slightly and are all
still highly significant in model (2) compared to the non-spatial model specification.
The effect of a county’s scale is lower in column (2) compared to column (1) and

statistically insignificant.

21. Table |§| shows both higher auto-correlations and cross-correlations coefficients for the global

Moran’s I statistics using a first-order contiguity matrix compared to an inverse distance matrix.
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Although we present statistical support for network spillover effects in land values,
the spatial dependence may also be caused by pure spatial spillovers in land values.

For this reason, we compare the SLX results with the SAR and SDM models below.

5.8.2. Endogenous spillover effects: SAR and SDM models. If spatial dependence is
still present after accounting for network externalities, it can be attributed to pure
land value spillovers or common shocks. Consequently, if pure land value spillovers
cause the remaining spatial dependence, then the SDM would be a more valid
specification.

Column 4 and 5 in Tables 4] and [5| show the QMLE estimates of the SAR and the
SDM models for the first order contiguity matrix. The significant estimated coefficient
(0.05 and 0.04 for the SAR and SDM, respectively) on WY; in both columns (3) and
(4) support pure land value spillovers.

Except for land area, the coefficients in the SAR model (3) and SDM model
(4) remain highly significant and increase either slightly or stay almost the same
compared to column (2). When including exogenous spillover effects into the model
in column (4), the coefficient estimate of the spatial lags for median income and
population density becomes insignificant. However, as discussed in Section this
interpretation may be misleading in the Spatial Durbin Model as there might be
some network effects, which are more discussed in the following section. Compared
to column (2), the SAR model slightly decreases explanatory power but comparing
models (4) and (3), we find the SDM to be slightly superior. Moreover, the Likelihood
Ratio (LR) tests, where the SDM is defined as the unrestrictive model, clearly reject
the null-hypothesis that both the SLX and SAR are significantly preferred to the
SDM P

5.3.3. Network effects. As discussed in Section spatial regressors’ point
estimates in spatial models (2)-(4) do not exactly show the direct and indirect
spillover effects. We use the partial derivative approach to calculate direct and indirect
spatial effects (See Table[5)). It shows both evidence for a direct and indirect effect of
population density and median income on a counties’ land value. For example, a one
percent increase in median income and population density in neighboring counties
increases land values in the SLX model in a given county by 0.10 and 0.37 percent,
respectively, ceteris paribus. On the other hand, the total (direct plus indirect) effects
of a one percent increase in median income and population density in neighboring
counties increase land values in a given county for median income and population

density on land prices are 2.62 percent and 3.71 percent, respectively.

22. For example, the likelihood ratio test of LR = 2in (W) for SLX vs. SDM gives

restrictive

LR = 2(1682.3 — 1679.8) = 5 with the critical X3 o5 5 = 2.73
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Overall, the direct effects of population density and median income stay relatively
robust across non-spatial and spatial models. In contrast, spillover effects vary
between model specifications. Taking a closer look at Table the cross-county
spillover effects for median income and population density are higher in the SAR
and SDM models compared to model (2). The increase in the spillover effects of
median income and population density from the SLX to SAR model suggests that
besides network externalities, pure interaction mechanisms also play a role in land
value determination.

Taken the results of all models together, we conclude that cross-county
dependencies in land values are driven not only by network spillovers but also by
pure land value spillovers. However, the magnitude and form of the underlying spatial

interaction vary between the three types of spillovers.

5.8.4. Diagnostics. For consistency, the QMLE estimation by [Lee and Yu| (2010al)
assumes residuals to be independent and identically distributed with Normal zero
mean and finite (4 + ¢) th moment, where ¢ > 0. Hence, this section tests for the
residual assumptions in the baseline specification.

To check for normality of the error terms, we use Pearson’s Chi-squared goodness-
of-fit test. The test cannot reject the null of normality of the error terms for all
three spatial models (SLX, SAR, SDM) at the 5% significance level. The spatial
autocorrelation among the residuals is measured by Moran’s I statistics for each
of the years 2014-2018. We conduct this statistics to check whether the models
capture the spatial correlation structure of the data. The Moran’s I for the first
order contiguity matrix does not significantly differ from zero at a 5% significance
level for all years in the three spatial models. This result indicates that the models
entirely capture the spatial correlation structure. To check for autocorrelation among
the residuals, we conduct a Durbin-Watson test for each of the three models. Again,
the test cannot reject the null that there is no autocorrelation in each case for a
5% significance level. Finally, the Breusch-Pagan test and the White test are used
to check for homoscedasticity. Both tests do not reject the null of constant variance.
Hence, there is no evidence for heteroskedasticity in the spatial models’ residuals.

Given the conducted residual diagnostics, we conclude that the assumptions for
consistency mentioned above are fulfilled and that the models capture the spatial

correlation structure within the data quite well.

5.8.5. Clity comparison and West-Fast disparities. This section discusses the Spatial
Durbin Model’s estimation results for 314 counties in the old Federal States, 64
counties in the new Federal States, and the Big 7 German cities, including their
surrounding counties. We find three main results from Tables [6] and [7] First, we do

not find significant spillover effects in land values (W*log(land value per m?)), except
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for East German counties and Cologne/Diisseldorf as well as a negative spillover
effect for Hamburg. Second, Table [7] shows that there are significant direct effects of
median income and population density in all regions except for population density in
Hamburg. These direct agglomeration effects are stronger in the old Federal States
than the new federal states, at least for median income. The Top 7 agglomerations’
results further support this result. The estimated coefficients on median income are
higher (and positive) for agglomerations in former West Germany. No clear pattern
is observed for population density for the Top 7 cities. Third, Table[7] also shows that
there is some empirical support for network externalities and spatial spillovers in land
values. While for West German counties, we find spillover effects in median income,
we find a significant negative coefficient on the spatial lag of population density for
East German counties. The positive income spillover effect is also present in 3 of
5 West German agglomerations considered and Leipzig. While there is evidence for
negative spillover effects of population density for all East German counties. This
effect is significantly positive for Berlin on the 10 percent significance level. This
result is economically sensible as Berlin is the largest agglomeration in the former
East German area@ The negative externality of a high population density county on
neighboring counties’ land prices may be explained by a lack of large agglomerations
in former East German counties. A lower spatial correlation between land values and

population density compared to median income is also reflected in Table

5.3.6. Alternate Dependent Variable: log(HPI). One of the main research questions
is to analyze whether land values, besides construction costs, are the driving
component in house prices@ To address this question, the models from Section
are re-estimated with log(HPI) as the dependent variable (Tables [§ and [9) and
including log(land value per m?) as an explanatory variable (Tables [10] and . The
estimation results support land values to be a major determinant in housing prices.
The coefficients of interest in Tables [§] and [9] are much smaller compared to those in
Tables [4] and |5 Additionally, controlling for log(land value per m?) the coefficients
further decrease in Tables and and the coefficient of log(land value per m?)
is positive and statistically significant on the 1 percent significance level in models

(1)-(4). Controlling for the log(land value per m?) in the estimation on house prices,

23. Berlin as the German capital is denoted as West German, although some parts of Berlin were

located in East Germany before 1990.
24. |Davis and Heathcote| (2007)); |Davis and Palumbo] (2008)) and |Braun and Lee| (2021)
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the coefficient on green-coverage now has the expected positive sign and is either
statistically significant on a 1 or 5% significance level in the spatial models (2)—(4)@

We complement this analysis by the Spatial Durbin Model estimation results for
314 counties in the old Federal States, 64 counties in the new federal states, and
the Big 7 German cities including their surrounding counties (Tables and .
As for the total German sample, the coefficients are smaller than those with land
value as a dependent variable. Compared to former East Germany, land prices have
a higher impact on house prices in the old Federal States on the county of interest
itself but not on neighboring counties. We only find positive statistically significant
indirect spillover effects of land value on house prices for Berlin, Leipzig, and all
new Federal States’ counties. A county’s land value has a statistically positive effect
on the county’s house price in all Top 7 agglomerations, ceteris paribus. However,
controlling for land prices in this house price estimation, we only find occasional
evidence for agglomeration spillover effects. We even find a negative agglomeration
spillover effect of median income on house prices when controlling for log(land value
per m?) both among former East and West German counties. For population density,
network effects are only significant for the old federal states, Berlin and Frankfurt on
the 1% and for Leipzig on the 10% significance level. The next section discusses the
robustness of the results using different explanatory variables and the inverse distance

matrix.
5.4. Robustness Analysis

In this section, we focus on land values as the dependent variable and evaluate the
robustness of the results in terms of two factors: different sets of explanatory variables
and the inverse distance matrix as spatial weighting pattern. Moreover, we also discuss
the results in light of different land value measurements for Germany. The results
estimated using the land values estimated in Braun and Lee| (2021) are compared with

estimations using the land prices on vacant land sales of land ready for construction.

5.4.1. Control variables. We re-estimate the models (1)-(4) using different sets of
explanatory variables. Tables [14] and [15| present the results for the SDM model, with
the baseline specification in column (1).

In column (2), we remove the log(land area km?). Column (3) repeats column (1)

and includes the spatial lag of log(land area km?). Column (4) additionally controls

25. While the log(construction cost index) coefficient in the land price estimation was negative
by construction, it now is strongly statistically significant and positive. See Section for more

discussion.
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FE SLX SAR SDM
main
log(median income) 1.14%**  1.06***  0.79***  1.11***
(41.74)  (25.13)  (24.62)  (27.03)
log(Lag Population density (person per km?2))  2.40%**  1.72%**  1.98***  1.66***
(42.47)  (23.80)  (34.11)  (23.62)
green coverage 0.002 -0.12 -0.16 -0.14
(0.01)  (-0.63)  (-0.81)  (-0.77)
log(construction cost index) 0.27%**  0.23***  0.21***  0.20%**
(12.87)  (12.05)  (10.16)  (10.48)
log(arable land (sqgkm) per capita) -0.15***  -0.16***  -0.16*** -0.14***
(-4.26)  (-4.74)  (-4.63)  (-4.38)
log(land area (km?)) 1.77%%  0.87***F  1.20%**  1.20%**
(5.88)  (3.08)  (4.09)  (4.33)
F
log(median income) 0.01 -0.12%**
(0.79) (-13.10)
log(Lag Population density (person per km?2)) 0.25%** -0.04*
(14.57) (-1.91)
log(House price index) 0.05***  0.09***
(20.68)  (19.92)
N 1890.00 1890.00 1890.00  1890.00
R2 0.916 0.928 0.926 0.930
Log-Likelihood 4631.7 4779.7 4866.03 4961.8
t statistics in parentheses
dependent variable: log(house price index)
spatial weight matrix: first order contiguity
*p<0.1, ** p<0.05, *** p<0.01
TABLE 8. House price estimation - Germany
SLX SAR SDM
direct
log(median income) 1.06***  0.80***  1.10***

(25.13)  (26.00)  (27.36)

log(Lag Population density (person per km?2))  1.72%%*  2.01***  1.73%***
(23.80) (34.15)  (24.96)

indirect
log(median income) 0.01 0.28***  -0.25***
(0.79)  (17.85)  (-4.12)

log(Lag Population density (person per km?))  0.25%**  0.71%**  1.21%**
(1457)  (15.23)  (8.42)
Observations 1890 1890 1890

t statistics in parentheses

dependent variable: log(house price index)
spatial weight matrix: first order contiguity
*p<0.1, * p<0.05, *** p<0.01

TABLE 9. House price estimation - Germany (direct and indirect effects)

for the log(number of accommodation facilities in a county), the log(housing stock of
single-/double family houses)) and unemployment rates.

We find most of the estimated coefficients of the baseline model (1) to be robust
throughout the 4 specifications. But, the controls for tourism, housing stock and

unemployment in a county have no significant impact on the dependent variable.
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FE SLX SAR SDM

main
log(Land value per m? (Braun,Lee (2021))) 0.10***  0.08***  0.08***  0.07***
(24.03)  (21.01) (18.82)  (18.09)
log(median income) 0.87***  0.86"**  0.60***  0.92%**

(30.57)  (22.69)  (19.68)  (23.53)

log(Lag Population density (person per km?2))  1.97***  1.45%%*  1.70%**  1.43%**
(37.44)  (22.71)  (31.27)  (21.76)

green coverage 0.70***  0.51*** 0.42** 0.40**
(3.86)  (3.03)  (2.33)  (2.35)
log(construction cost index) 0.38***  0.32***  0.30***  0.29***
(20.06)  (18.37)  (15.91)  (16.04)
log(arable land (sqkm) per capita) -0.09***  -0.09*** -0.11*** -0.10***
(-2.93)  (-3.20)  (-3.53)  (-3.24)
log(land area (km?2)) 1.38%**  0.73***  0.98***  (0.98***
(5.22) (2.97) (3.70) (3.87)
F
log(Land value per m? (Braun,Lee (2021))) 0.01*** 0.002
(9.36) (1.35)
log(median income) -0.03*** -0.11%**
(-4.07) (-12.62)
log(Lag Population density (person per km?)) 0.15%** -0.03
(9.47) (-1.42)
log(House price index) 0.04***  0.08***
(18.80)  (15.26)
N 1890.00  1890.00  1890.00  1890.00
R2 0.936 0.946 0.943 0.948
Log-Likelihood 4884.5 5054.8 5063.3 5155.9

t statistics in parentheses

dependent variable: log(house price index)
spatial weight matrix: first order contiguity
*p<0.1,** p<0.05 *** p<0.01

TABLE 10. House price estimation - Germany (including log(Land value per m2))

SLX SAR SDM

direct

log(Land value per m? (Braun,Lee (2021))) 0.08***  0.08***  0.08***
(21.01)  (19.65)  (19.18)

log(median income) 0.86***  0.60***  0.89***

(22.69)  (20.48)  (24.01)

log(Lag Population density (person per km?))  1.45%**  1.72%**  1.46***
(22.71)  (31.74)  (23.36)

indirect

log(Land value per m? (Braun,Lee (2021))) 0.01***  0.02***  0.07***
(9.36)  (12.96)  (5.51)

log(median income) -0.03***  0.17***  -0.40***

(-4.07)  (15.24)  (-7.03)

log(Lag Population density (person per km?))  0.15%**  0.48***  (0.71***
(9.47)  (13.95)  (5.69)
Observations 1890 1890 1890

t statistics in parentheses

dependent variable: log(house price index)
spatial weight matrix: first order contiguity
*p< 0.1, ** p<0.05 *** p<0.01

TABLE 11. House price estimation - Germany (including log(Land value per m2); direct and
indirect effects)
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M ® ® @
log(Land value per m? (Braun,Lee (2021)))
log(median income) 2.56**F*  2.59*** 2. 55**F 2 HgFE*
(10.76)  (10.94)  (10.74) (9.33)
log(Lag Population density (person per km?)) 3.38*** 327 3.43*** 3.39%**
(8.28)  (8.12)  (8.39)  (8.18)
green coverage STA8FRF L7.22%RR 7 28%FF T 4%
(-6.68) (-6.72) (-6.78) (-6.63)
log(construction cost index) -1.20%%*  -1.20%%F  -1.21%**  -1.20%**
(-10.90) (-10.88) (-10.95) (-10.89)
log(arable land (sqkm) per capita) -0.59***  -0.55***  -0.60*** -0.58***
(-3.12) (-2.96) (-3.18) (-3.05)
log(land area (km?)) 2.51 2.69* 2.54
(1.57) (1.67)  (L.58)
log(open accomodation facilities) -0.03
(-0.56)
log (housing stock (single/double family houses)) 0.09
(0.66)
unemployment rate -0.0001
(-0.01)
F
log(median income) 0.01 0.01 0.02 0.01
(0.26) (0.33) (0.51) (0.23)
log(Lag Population density (person per km?)) 0.15 0.18* 0.16 0.14
(1.47) (1.91) (1.57) (1.35)
log(Land value per m? (Braun,Lee (2021))) 0.04***  0.04***  0.04***  0.04***
(7.21)  (6.63)  (6.81)  (7.20)
log(land area (km?)) -0.90*
(-1.65)
N 1890.00 1890.00 1890.00  1890.00
R2 0.524 0.525 0.526 0.524
Log-Likelihood 1682.3 1680.8 1684.0 1682.8

t statistics in parentheses

dependent variable: log(landvalue per m2) Braun&Lee (2021)

spatial weight matrix: first order contiguity
*p<0.1, * p<0.05 *** p<0.01

TABLE 14. SDM estimation results for different sets of controls variables - Germany

Thus, they are excluded from the benchmark model. Moreover, Table [I5] shows no

32

evidence for network effects of the size of a county on land values. Due to this fact

and given that explanatory power does not increase significantly from columns 1 and

2, we also exclude the spatial lag of land area.

5.4.2. Inverse distance matriz.

models (FE)-(SDM) using an inverse distance matrix to measure spatial dependence

As outlined in Section we further re-estimate

between counties and also account for spatial dependence between counties that are

geographically further apart. The weight between two counties ¢ and j is calculated

as

wij = 1/di;

9)
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[€)) (2) 3) 4)
direct

log(median income) 2.60%**  2.64%**  2.58***  2.56***
(11.31)  (11.63) (11.53)  (9.62)

log(Lag Population density (person per km?2)) 3.45%**  3.34*** 3.51%**  3.46%**
(8.58)  (8.56)  (8.43)  (8.50)

log(land area (km?)) 2.49
(1.54)
indirect
log(median income) 0.84***  0.78*** 0.87*** (0.83***

(3.52)  (3.39)  (3.74)  (352)

log(Lag Population density (person per km?))  2.04***  2.20***  2.01***  1.96%**
(3.60)  (3.88)  (3.45)  (3.18)

log(land area (km?)) -5.18
(-1.48)
Observations 1890 1890 1890 1890

t statistics in parentheses

dependent variable: log(landvalue per m2) Braun&Lee (2021)
spatial weight matrix: first order contiguity

*p<0.1, ** p<0.05, *** p <0.01

TABLE 15. SDM estimation results for different sets of controls variables - Germany (direct and
indirect effects)

and diminishes with distance d. Results are presented in Tables [I6] and

Overall, the results are more or less robust to the specification of the spatial weight
matrix with the first-order contiguity. The estimated coefficients for the explanatory
variables do not change dramatically in terms of significance and size. Except for
log(median income) coefficients are significantly smaller but still significant at the
one percent significance level compared to the baseline specification. However, given
that spatial dependence is now also allowed between counties of higher neighbor-order,
the spatial interaction effects increase in size (See Table . The fact that the indirect
spillover effects of median income and population density increase substantially from
the SLX to SAR model suggests that besides network externalities, pure interaction
mechanisms also play an important role in land value determination. However, with
the inverse distance weight matrix specification, there is no evidence for agglomeration
spillovers between counties regarding population density. We even find a negative
effect that is significant on the 10% significance level. This result is not surprising as
it coincides with the Moran’s I cross-correlation measure for population density and

land values in Table [3| that drastically decreases with distance.

5.4.8. Vacant land prices (ready for construction). In the land price estimation
literature, there are several popular approaches to measuring land prices. Based on
the underlying data and methods to estimate land prices, one can argue that each
of the resulting land price indices represents different purposes. In this section, using
the SDM, we compare the spatial analysis for the land values from Braun and Lee

(2021)), the house price index from vdpResearch, and the land values based on vacant
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FE SLX SAR SDM
main
log(median income) 3.08***  0.73***  1.46%**  1.01***
(23.42)  (359)  (9.76)  (4.43)
log(Lag Population density (person per km?2))  4.30%**  3.20%**  2.65%**  3.09***
(15.74)  (10.07)  (8.56)  (8.80)
green coverage -6.98%**  _8.01*** -7.82*** _8.12***
(-7.04) (-8.49) (-7.51) (-7.79)
log(construction cost index) -1.09%**  -1.37***  -1.31***  -1.35%**
(-10.78)  (-13.98) (-12.30)  (-12.46)
log(arable land (sqgkm) per capita) -0.61**  -0.43***  -0.41**  -0.41**
(-3.49)  (-2.59)  (-2.21)  (-2.25)
log(land area (km?)) 3.90%**  3.39** 2.69* 3.29**
(2.68)  (243)  (1.75)  (2.14)
inv
log(median income) 3.75%%* 1.55%**
(12.53) (3.73)
log(Lag Population density (person per km?2)) -1.54* -2.80%**
(-1.89) (-2.91)
log(Land value per m? (Braun,Lee (2021))) 0.82***  0.68***
(25.55)  (8.43)
N 1890.00 1890.00 1890.00  1890.00
R2 0.516 0.565 0.446 0.551
Log-Likelihood 1654.2 1775.0 1738.4 1748.2
t statistics in parentheses
dependent variable: log(landvalue per m?) Braun&Lee (2021)
spatial weight matrix: inverse distance
*p<0.1, ** p<0.05, *** p <0.01
TABLE 16. Estimation results - Germany - Inverse distance matrix
SLX SAR SDM
direct
log(median income) 0.75%**  1.47***  1.03***
(3.59)  (9.74)  (4.60)
log(Lag Population density (person per km?)) 3.20%**  2.71***  3.09***
(10.07)  (8.84)  (8.73)
indirect
log(median income) 3.75**%  6.34%**  7.00%**
(12.53) (4.67) (3.27)
log(Lag Population density (person per km?))  -1.54*  11.61***  -2.23
(-1.89) (4.86) (-0.76)
Observations 1890 1890 1890

t statistics in parentheses

dependent variable: log(landvalue per m?) Braun&Lee (2021)

spatial weight matrix: inverse distance
*p<0.1, ** p<0.05, *** p<0.01

34

TABLE 17. Estimation results - Germany - Inverse distance matrix (direct and indirect effects)

land sales of land ready for construction from the Statistical Offices of the Federal
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Government and the German States[’| Results for the SDM are displayed in Tables
and

The main methodological difference between the residential and vacant land prices
is the following. While Braun and Leg| (2021) estimate the price of residential land
with a two-step residual approach using listings data from the ImmobilienScout24
website on single-/double-family housing, the vacant land price statistic calculates
a per m? price of the transaction prices of vacant land sales ready for construction
(Statistisches Bundesamt), [2012)).

One can see two noteable results from Tables [18 and First, direct and indirect
spillover effects are larger and more statistically significant for residential land prices
compared to vacant land price estimation results (Table . For example, in the
results on the SDM model, if median income increases by one percent, the land
price changes by 2.88 percent or 1.06 percent, respectively, ceteris paribus. We do
not find indirect spatial effects for median income in all specifications in the smaller
sample. However, the spatial spillover effects for population density are also much
more significant using the residential land prices estimates and even insignificant in
the SDM model for the price of vacant land. If population density in a county increases
by 1 percent. In that case, land prices in neighboring counties increase by 2.24 percent,
ceteris paribus, for the SDM using residential land prices. At the same time, there is
no significant indirect effect on vacant land prices. From my perspective, this result
is because the residential land prices denote everything except for the structure’s
replacement cost to the land component in the housing bundle. Hence, the residential
land prices more likely reflect the presence of agglomeration economies/amenities. On
the other hand, we argue that vacant land transactions are more likely to occur in
new development areas that often are located on the outskirts of towns and cities.
Second, by construction, the construction cost index should significantly negatively
impact the residential land prices resulting from the residual approach. However, as
expected, the construction costs have a significant positive effect on the vacant land

prices and house prices.

6. Concluding Remarks

In this paper, we analyze spatial spillover patterns in German land and house prices.
We estimate the SLX, SAR, and SDM model for the total of 378 counties, 314

counties in the old Federal States, 64 counties in the new Federal States, and the

26. As there is no vacant land sales data for some county-year observations, the sample size reduces
to 1520 from 1890. To maintain a balanced panel, we have to remove observations of 74 counties

that have one or more missing county-year observations.
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log(landvalue  log(landvalue log(house
per m?) per m?2) price index)
Braun&Lee (vacant land
(2021) sales)
SDM SDM SDM
main
log(median income) 2.8 1.08%** 1.19%**
(11.53) (2.72) (27.68)
log(Lag Population density (person per km?2)) 3.45%%* 2.10%** 1.63***
(7.95) (3.05) (21.90)
green coverage -7.39%%* -0.80 -0.18
(-6.57) (-0.45) (-0.93)
log(construction cost index) Sl 1% 0.59%** 0.21%+**
(-8.93) (2.98) (10.00)
log(arable land (sqgkm) per capita) -0.64%** -1.01%** -0.17%**
(-2.95) (-2.93) (-4.43)
log(land area (km?)) 2.81* 0.62 1.42%%%
(1.77) (0.25) (5.18)
F_LPI_RS
log(median income) -0.11%** -0.12 -0.15%**
(-2.32) (-1.64) (-14.86)
log(Lag Population density (person per km?2)) 0.16 0.07 -0.04
(1.40) (0.44) (-1.55)
log(dependent variable) 0.06%*** 0.04%** 0.10%**
(8.15) (5.83) (19.01)
N 1520.00 1520.00 1520.00
R2 0.51 0.23 0.93
Log-Likelihood 1374.5 675.2 4020.5

t statistics in parentheses
spatial weight matrix: first order contiguity
* p<0.05, ** p<0.01, *** p <0.001

TABLE 18. Estimation results - Germany - Vacant vs. residential land values

log(landvalue  log(landvalue log(house
per m?2) per m?2) price index)
Braun&Lee (vacant land
(2021) sales)
SDM SDM SDM
direct
log(median income) 2.88%** 1.06*** 1.16***
(11.96) (2.61) (27.59)
log(Lag Population density (person per km?2)) 3.58*** 2.16*** 1.71%**
(8.54) (3.22) (24.12)
indirect
log(median income) 0.36 -0.43 -0.34***
(1.53) (0.95) (-5.98)
log(Lag Population density (person per km?)) 2.24%*x* 0.95 1.21%**
(3.81) (1.05) (8.37)
Observations 1520 1520 1520

t statistics in parentheses
spatial weight matrix: first order contiguity
* p <0.05, ** p<0.01, *** p < 0.001

TABLE 19. Estimation results - Germany - Vacant vs. residential land values (direct and indirect
effects)
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Big 7 German cities including their surrounding counties using a panel data set for
378 German counties from 2014-2018. Besides local housing market determinants, we
find evidence for the importance of both exogenous and endogenous spatial interaction
patterns between housing and land markets.

The results are summarized as follows. First, we find that cross-county spillovers
can explain variation in land values for Germany. While these spillovers are relatively
weak in a smaller dataset on a more local level for new and old Federal States and
7 Big German cities and their surrounding counties, we find agglomeration effects
to be more substantial in the West than East German counties, at least for median
income. This result is also similar for the Top 7 German agglomerations but to a
lesser degree. Consequently, we show, unlike |Gyourko et al.| (2013)), that the Big 7
German cities do not exhibit the characteristics of the so-called Superstar Cities.
Second, while still significant, we show that the spatial effects are smaller when using
house prices as the dependent variable. Third, when including the land price in house
price estimation, the spillover effects in house prices further decrease. Moreover, the
significantly positive coefficient on land value per m? both for direct and indirect
spatial effects supports the theory that clustering patterns in house prices can be
attributed to spatial variations in land prices. Lastly, we explore these patterns in
two different land price measurements for Germany. The direct and indirect spillover
effects can explain more variation in residential land values than in vacant land prices
of land ready for construction from the Statistical Offices of the Federal Government
and the German States.

These results suggest that changes in agglomeration variables such as median
income (productivity) and population density cannot completely explain disparate
local land and house prices. Consequently, the results support the theory that house
and land prices, indeed are a local phenomenon and that land prices are a major
determinant for the development of house prices. The fact that we find spillover
effects in land prices raises the question whether more rural counties may be better
off in investing in public goods and services to increase attractiveness and strengthen
local externality (spillover) effects.

Focusing more on the urban-peripheral inequalities would be an interesting
extension for future research. Moreover, one could pay more attention to the impact
of climate conditions and other environmental and natural amenities on land prices.
For example, do German’s value the spatial proximity to the mountainside or the
sea? A longer time series would also be a great extension to focus more on the spatio-

temporal dimension.
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Appendix: Appendix

A.1. Tables

Dependent Variable Availability Source Regional Level
House Price Index 2012-2018 vdpResearch County
Land value per m? 2014-2018 Braun and Lee|(2021) County
Land value m? (vacant land sales) 1995-2019 Statistical Offices of the Federal Government and the German States (Statistic 61511-01-03-4) County
Control Variable
Land area km? 2008-2019 Statistical Offices of the Federal Government and the German States (Statistic 11111-01-01-4)  County
Income 2014-2019 Federal Employment Agency County
Population 1995-2019 Federal Statistical Office (Statistic 12411-0015) County
Unemployment Rate 2008-2018 Federal Employment Agency County
Construction Cost Index 1958-2020 Federal Statistical Office (Statistic 61261-0001) National
Regional Construction Cost Factors 2012-2019 BKI County
Amount of accomodation facilities 1995-2019 Statistical Offices of the Federal Government and the German States (Statistic 45412-01-02-4) County
Green coverage 1995-2019 Statistical Offices of the Federal Government and the German States County
(Statistic 33111-01-02-4 and 33111-01-01-4)
Housing Stock measures 1995-2019 Statistical Offices of the Federal Government and the German States (Statistic 31231-02-01-4) County

TABLE A.1. Dependent and explanatory variables

90 pue unerg
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House price index data

GER,FRA,UK,DNK,AUT

Us

Internatioal House Price Database - Federal Reserve
Bank of Dallas
Davis and Heathcote| (2007])

Construction cost index data

GER

FRA

DNK

UK

AUT

UsS

Destatis statistic 61261-0014: Construction cost indices
for residential buildings: Germany, quarters, type of
construction costs

Institut national de la statistique et des études
économiques Identifier 000008630: Cost-of-Construction
Index (CCI)

Statistics Denmark BYG42: Construction cost index for
residential buildings

1975-2012: BCIS Series Numbers 7504/7505 ” Output
price index for All Work (New Construction and Repair&
Maintenance)”

2013-2020: Office for National Statistics ” All construction
output prices”

Australian Bureau of Statistics. 2020. Australian
National Accounts 5206005: National Income,
Expenditure and Product. Table 5. Expenditure on Gross
Domestic Product (GDP), Implicit price deflators

Davis and Heathcote| (2007)

TABLE A.2. Sources - Figure 1
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City Tier Kreis Landvalue/sqm
2015 2016 2017 2018
Berlin 1 SK Berlin 0.04 0.21 0.21 0.12
Average Tier 2 0.02 0.05 0.10 0.12
Berlin 2 SK Potsdam 0.05 0.14 0.14 0.15
Berlin 2 LK Barnim -0.01 0.02 0.07 0.11
Berlin 2 LK Dahme-Spreewald 0.04 0.03 0.05 0.07
Berlin 2 LK Havelland 0.01 0.06 0.08 0.16
Berlin 2 LK Markisch-Oderland 0.02 0.09 0.09 0.10
Berlin 2 LK Oberhavel 0.02 0.05 0.05 0.10
Berlin 2 LK Oder-Spree 0.00 -0.02 0.16 0.11
Berlin 2 LK Potsdam-Mittelmark 0.02 0.04 0.11 0.10
Berlin 2 LK Teltow-Flaming 0.03 0.03 0.15 0.15
Average Tier 3 0.02 0.03 0.04 0.02
Berlin 3 LK Uckermark 0.00 0.00 0.02 0.04
Berlin 3 LK Ostprignitz-Ruppin 0.06 0.05 0.05 0.02
Berlin 3 SK Cottbus 0.00 0.07 0.07 -0.01
Berlin 3 LK Elbe-Elster 0.05 -0.13 0.15 -0.02
Berlin 3 LK Ostspreewald-Lausitz -0.02 -0.03 0.05 0.13
Berlin 3 LK Prignitz 0.01 0.11 0.10 0.08
Berlin 3 LK Spree-Neifle 0.14 0.10 -0.12 -0.02
Berlin 3 LK Anhalt-Bitterfeld 0.06 0.06 0.09 0.03
Berlin 3 LK Jerichower Land -0.05 0.08 0.05 -0.02
Berlin 3 LK Stendal 0.01 0.01 -0.01 o0.01
Berlin 3 LK Wittenberg 0.00 0.05 0.00 -0.04
Munich 1 SK Miinchen 0.11 0.12 0.13 0.05
Average Tier 2 0.07 0.10 0.09 0.08
Munich 2 LK Miinchen 0.07 0.12 0.08 0.08
Munich 2 LK Bad T06lz-Wolfratshausen 0.07 0.08 0.08 0.10
Munich 2 LK Dachau 0.08 0.09 0.12 0.06
Munich 2 LK Ebersberg 0.05 0.11 0.05 0.10
Munich 2 LK Erding 0.13 0.12 0.05 0.11
Munich 2 LK Freising 0.04 0.13 0.10 0.10
Munich 2 LK Fiirstenfeldbruck 0.05 0.08 0.09 0.07
Munich 2 LK Miesbach 0.08 0.09 0.07 0.08
Munich 2 LK Landberg am Lech 0.05 0.10 0.13 0.06
Munich 2 LK Starnberg 0.05 0.05 0.08 0.07
Average Tier 3 0.04 0.08 0.09 0.09
Munich 3 LK Weilheim-Schongau 0.06 0.07 0.06 0.12
Munich 3 LK Miihldorf am Inn 0.03  0.06 0.06 0.10
Munich 3 LK Neuburg-Schrobenhausen 0.08 0.10 0.07 0.08
Munich 3 LK Pfaffenhofen a.d. Ilm 0.03 0.06 0.11 0.10
Munich 3 LK Rosenheim 0.06 0.08 0.08 0.12
Munich 3 LK Landshut 0.03 0.11 0.09 0.07
Munich 3 SK Landshut 0.03 0.08 0.12 0.08
Munich 3 LK Aichach-Friedberg 0.03 0.09 0.13 0.08
Hamburg 1 SK Hamburg 0.06 0.07 0.12 0.04
Average Tier 2 0.04 0.09 0.06 0.12
Hamburg 2 LK Herzogtum Lauenburg 0.04 0.05 0.00 0.16
Hamburg 2 LK Pinneberg 0.06 0.04 0.10 0.15
Hamburg 2 LK Segeberg 0.03 0.11 0.04 0.08
Hamburg 2 LK Stormarn 0.02 0.05 0.04 0.09
Hamburg 2 LK Harburg 0.01 0.11 0.12 0.14
Hamburg 2 LK Stade 0.08 0.15 0.08 0.10

Average Tier 3 0.04 0.05 0.06 0.08
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Hamburg 3 LK Nordwestmecklenburg -0.04 0.17 0.20 0.32
Hamburg 3 LK Ludwigslust-Parchim 0.07 -0.03 -0.01 -0.07
Hamburg 3 SK Liibeck 0.06 0.05 0.07 0.08
Hamburg 3 SK Neumiinster 0.05 0.14 0.11 0.21
Hamburg 3 LK Ostholstein 0.08 0.05 0.03 0.06
Hamburg 3 LK Plén 0.08 0.12 0.03 0.10
Hamburg 3 LK Rendsburg-Eckernférde 0.03 0.04 0.05 0.04
Hamburg 3 LK Steinburg 0.00 0.16 0.00 0.20
Hamburg 3 LK Cuxhaven 0.15 0.19 0.18 0.01
Hamburg 3 LK Liineburg 0.08 0.12 0.20 0.13
Hamburg 3 LK Rotenburg (Wiimme) 0.02 0.10 0.05 0.06
Hamburg 3 LK Heidekreis -0.02 0.08 0.12 0.07
Diisseldorf/Koln 1 SK Kéln 0.06 0.07 0.06 0.07
Diisseldorf/Koln 1 SK Diisseldorf 0.07 0.10 0.09 0.06

Average Tier 2 0.04 0.09 0.07 0.08
Diisseldorf/Koln 2 LK Mettmann 0.03 0.09 0.09 0.07
Diisseldorf/Koln 2 LK Rhein-Kreis Neuss 0.01 0.12 0.08 0.10
Diisseldorf/Koln 2 SK Bonn 0.04 0.10 0.06 0.07
Diisseldorf/Koln 2 SK Leverkusen 0.04 0.09 0.07 0.08
Diisseldorf/Koln 2 LK Rhein-Erft-Kreis 0.09 0.10 0.06 0.08
Diisseldorf/Koln 2 LK Rheinisch-Bergischer Kreis 0.07 0.08 0.06 0.08
Diisseldorf/Koln 2 LK Rhein-Sieg-Kreis 0.03 0.11 0.11 0.09
Diisseldorf/Koéln 2 SK Krefeld 0.02 0.11 0.01 0.11
Diisseldorf/Koln 2 SK Miilheim an der Ruhr 0.02 0.05 0.05 0.09
Diisseldorf/Koln 2 SK Duisburg 0.04 0.06 0.10 0.01

Average Tier 3 0.03 0.09 0.09 0.09
Diisseldorf/Koln 3 LK Ahrweiler -0.01 0.12 0.11 0.04
Diisseldorf/Koln 3 LK Altenkirchen (Westerwald) 0.01 0.10 0.15 0.22
Diisseldorf/Koln 3 LK Neuwied 0.11  0.02 0.17 0.05
Diisseldorf/Koln 3 SK Essen 0.01 0.09 0.09 0.05
Diisseldorf/Koln 3 SK Monchengladbach 0.04 0.13 0.02 0.11
Diisseldorf/Koln 3 SK Remscheid 0.04 0.02 0.06 0.07
Diisseldorf/Koln 3 SK Solingen 0.04 0.06 0.05 0.08
Diisseldorf/Koln 3 SK Wuppertal 0.00 0.06 0.08 0.10
Diisseldorf/Koln 3 LK Viersen -0.01 0.15 0.11 0.14
Diisseldorf/Koln 3 LK Diiren 0.04 0.17 0.06 0.12
Diisseldorf/Koln 3 LK Einkirchen 0.05 0.10 0.10 0.14
Diisseldorf/Koln 3 LK Heinsberg 0.11  0.07 0.12 0.06
Diisseldorf/Koln 3 LK Oberbergischer Kreis 0.07 0.11 0.04 0.11
Diisseldorf/Koln 3 LK Ennepe-Ruhr-Kreis 0.00 0.06 0.08 0.09
Diisseldorf/Koln 3 SK Oberhausen 0.00 0.08 0.12 0.08
Diisseldorf/Koln 3 LK Wesel 0.02 0.06 0.08 0.06
Frankfurt am Main 1 SK Frankfurt am Main 0.06 0.07 0.11 0.10

Average Tier 2 0.07 0.10 0.08 0.10
Frankfurt am Main 2 LK Oftenbach 0.03 0.09 0.10 0.09
Frankfurt am Main 2 LK Grof-Gerau 0.06 0.08 0.08 0.10
Frankfurt am Main 2 SK Offenbach am Main 0.11 0.10 0.06 0.14
Frankfurt am Main 2 LK Main-Minzig-Kreis 0.09 0.09 0.05 0.12
Frankfurt am Main 2 LK Wetteraukreis 0.10 0.10 0.08 0.10
Frankfurt am Main 2 LK Hochtaunuskreis 0.06 0.11 0.09 0.08
Frankfurt am Main 2 LK Main-Taunus-Kreis 0.07 0.10 0.10 0.08

Average Tier 3 0.05 0.12 0.08 0.10
Frankfurt am Main 3 LK Aschaffenburg 0.07 0.06 0.05 0.14
Frankfurt am Main 3 SK Mainz 0.04 0.07 0.10 0.09
Frankfurt am Main 3 LK Mainz-Bingen 0.04 0.10 0.03 0.11
Frankfurt am Main 3 SK Darmstadt 0.02 0.08 0.07 0.08
Frankfurt am Main 3 SK Wiesbaden 0.10 0.11 0.10 0.11
Frankfurt am Main 3 LK Darmstadt-Dieburg 0.07 0.11 0.06 0.15
Frankfurt am Main 3 LK Rheingau-Taunus-Kreis 0.12 0.15 0.13 0.06
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Frankfurt am Main 3 LK Gieflen 0.08 0.17 0.08 0.09
Frankfurt am Main 3 LK Lahn-Dill-Kreis 0.03 0.12 0.06 -0.01
Frankfurt am Main 3 LK Limburg-Weilburg -0.02 0.13 0.10 0.07
Frankfurt am Main 3 LK Vogelbergkreis 0.06 0.13 0.01 0.16
Frankfurt am Main 3 LK Fulda 0.06 0.19 -0.03 0.24
Frankfurt am Main 3 LK Main-Spessart 0.03 0.05 0.11 0.08
Frankfurt am Main 3 LK Bad Kissingen 0.07 0.15 0.28 -0.05
Leipzig 1 SK Leipzig 0.01 0.06 0.13 0.16

Average Tier 2 -0.03 0.00 0.09 0.05
Leipzig 2 LK Leipzig 0.00 -0.03 0.14 0.06
Leipzig 2 LK Halle(Saale) -0.02 0.04 0.12 0.05
Leipzig 2 LK Saalekreis -0.09 0.06 0.06 -0.06
Leipzig 2 LK Burgenlandkreis 0.05 0.04 0.06 0.03
Leipzig 2 LK Nordsachsen -0.07 -0.09 0.09 0.16

Average Tier 3 0.05 -0.04 0.04 0.02
Leipzig 3 LK Mandfeld-Siidharz 0.09 -0.04 0.08 0.02
Leipzig 3 LK Salzlandkreis -0.03 0.05 -0.07 0.11
Leipzig 3 LK Anhalt-Bitterfeld 0.06 0.06 0.09 0.03
Leipzig 3 LK Wittenberg 0.00 0.05 0.00 -0.04
Leipzig 3 LK Elbe-Elster 0.05 -0.13 0.15 -0.02
Leipzig 3 LK Meiflen 0.00 -0.02 0.07 0.05
Leipzig 3 Mittelsachsen 0.24 -0.21 0.04 0.10
Leipzig 3 LK Greiz 0.15 -0.18 -0.07 -0.03
Leipzig 3 LK Saale-Holzland-Kreis -0.03 -0.02 0.05 -0.01
Leipzig 3 LK Weimarer Land -0.01 0.00 0.01 0.09
Leipzig 3 LK Sémmerda 0.01 -0.04 0.07 0.06
Leipzig 3 LK Kyffhauserkreis 0.07 0.04 0.10 -0.11
Stuttgart 1 SK Stuttgart 0.03 0.08 0.11 0.08

Average Tier 2 0.05 0.07 0.09 0.11
Stuttgart 2 LK Boblingen 0.07 0.06 0.12 0.09
Stuttgart 2 LK Esslingen 0.04 0.07 0.08 0.11
Stuttgart 2 LK Ludwigsburg 0.06 0.08 0.07 0.12
Stuttgart 2 LK Rems-Murr-Kreis 0.02 0.08 0.09 0.12

Average Tier 3 0.06 0.08 0.09 0.10
Stuttgart 3 LK Goppingen 0.07 0.13 0.03 0.10
Stuttgart 3 LK Ostalbkreis 0.07 0.05 0.20 0.10
Stuttgart 3 LK Schwibisch Hall 0.04 0.08 0.09 0.08
Stuttgart 3 LK Heilbronn 0.06 0.08 0.08 0.14
Stuttgart 3 SK Heilbronn 0.04 0.06 0.07 0.09
Stuttgart 3 LK Enzkreis 0.04 0.04 0.09 0.11
Stuttgart 3 SK Pforzheim 0.04 0.11 0.12 0.08
Stuttgart 3 LK Calw 0.08 0.08 0.09 0.11
Stuttgart 3 LK Tiibingen 0.07 0.08 0.05 0.15
Stuttgart 3 LK Reutlingen 0.06 0.09 0.10 0.06

TABLE A.4. Percentage changes in land value per m? - Top 7 agglomerations and surrounding

tiers
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City Tier Kreis HPI
2015 2016 2017 2018
Berlin 1 SK Berlin 0.04 0.17 0.14 0.12
Average Tier 2 0.03 0.04 0.07 0.08
Berlin 2 SK Potsdam 0.06 0.07 0.11 0.11
Berlin 2 LK Barnim 0.01 0.03 0.05 0.09
Berlin 2 LK Dahme-Spreewald 0.03 0.04 0.05 0.08
Berlin 2 LK Havelland 0.03 0.04 0.06 0.08
Berlin 2 LK Markisch-Oderland 0.04 0.05 0.07 0.08
Berlin 2 LK Oberhavel 0.03 0.04 0.05 0.08
Berlin 2 LK Oder-Spree 0.02 0.03 0.06 0.07
Berlin 2 LK Potsdam-Mittelmark 0.03 0.04 0.07 0.08
Berlin 2 LK Teltow-Flaming 0.03 0.04 0.07 0.08
Average Tier 3 0.01 0.02 0.03 0.04
Berlin 3 LK Uckermark 0.02 0.03 0.04 0.05
Berlin 3 LK Ostprignitz-Ruppin 0.02 0.03 0.04 0.05
Berlin 3 SK Cottbus 0.02 0.03 0.04 0.05
Berlin 3 LK Elbe-Elster 0.00 0.01 0.04 0.02
Berlin 3 LK Ostspreewald-Lausitz 0.02 0.02 0.04 0.07
Berlin 3 LK Prignitz 0.02 0.03 0.04 0.05
Berlin 3 LK Spree-Neifle 0.01 0.02 0.02 0.05
Berlin 3 LK Anhalt-Bitterfeld 0.01 0.02 0.02 0.02
Berlin 3 LK Jerichower Land 0.01 0.02 0.02 0.01
Berlin 3 LK Stendal 0.01 0.01 0.02 0.02
Berlin 3 LK Wittenberg 0.01 0.01 0.03 0.02
Munich 1 SK Miinchen 0.08 0.10 0.10 0.06
Average Tier 2 0.06 0.08 0.07 0.08
Munich 2 LK Miinchen 0.07 0.09 0.07 0.08
Munich 2 LK Bad T6lz-Wolfratshausen 0.05 0.08 0.08 0.08
Munich 2 LK Dachau 0.05 0.08 0.08 0.07
Munich 2 LK Ebersberg 0.06 0.08 0.06 0.09
Munich 2 LK Erding 0.07 0.08 0.06 0.08
Munich 2 LK Freising 0.05 0.07 0.08 0.09
Munich 2 LK Firstenfeldbruck 0.05 0.08 0.07 0.07
Munich 2 LK Miesbach 0.06 0.08 0.07 0.08
Munich 2 LK Landberg am Lech 0.05 0.07 0.07 0.07
Munich 2 LK Starnberg 0.04 0.06 0.09 0.07
Average Tier 3 0.05 0.07 0.07 0.08
Munich 3 LK Weilheim-Schongau 0.05 0.07 0.06 0.08
Munich 3 LK Miihldorf am Inn 0.05 0.06 0.05 0.08
Munich 3 LK Neuburg-Schrobenhausen 0.05 0.06 0.06 0.07
Munich 3 LK Pfaffenhofen a.d. Ilm 0.04 0.06 0.08 0.07
Munich 3 LK Rosenheim 0.05 0.07 0.07 0.08
Munich 3 LK Landshut 0.04 0.06 0.07 0.07
Munich 3 SK Landshut 0.05 0.07 0.07 0.09
Munich 3 LK Aichach-Friedberg 0.04 0.06 0.07 0.07
Hamburg 1 SK Hamburg 0.05 0.06 0.09 0.05
Average Tier 2 0.04 0.06 0.06 0.08
Hamburg 2 LK Herzogtum Lauenburg 0.04 0.05 0.05 0.09
Hamburg 2 LK Pinneberg 0.04 0.06 0.06 0.09
Hamburg 2 LK Segeberg 0.03 0.06 0.06 0.08
Hamburg 2 LK Stormarn 0.04 0.06 0.06 0.08
Hamburg 2 LK Harburg 0.04 0.07 0.08 0.08
Hamburg 2 LK Stade 0.04 0.06 0.05 0.07
Average Tier 3 0.01 0.01 0.01 0.01
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Hamburg 3 LK Nordwestmecklenburg 0.02 0.03 0.06 0.04
Hamburg 3 LK Ludwigslust-Parchim 0.02 0.02 0.04 0.03
Hamburg 3 SK Liibeck 0.03 0.05 0.07 0.08
Hamburg 3 SK Neumiinster 0.03 0.05 0.07 0.06
Hamburg 3 LK Ostholstein 0.03 0.05 0.04 0.07
Hamburg 3 LK Plén 0.03 0.06 0.05 0.05
Hamburg 3 LK Rendsburg-Eckernférde 0.03 0.05 0.05 0.05
Hamburg 3 LK Steinburg 0.03 0.04 0.05 0.07
Hamburg 3 LK Cuxhaven 0.04 0.05 0.07 0.05
Hamburg 3 LK Liineburg 0.06 0.07 0.07 0.09
Hamburg 3 LK Rotenburg (Wiimme) 0.03 0.04 0.06 0.05
Hamburg 3 LK Heidekreis 0.03 0.03 0.05 0.04
Diisseldorf/Koln 1 SK Koéln 0.05 0.07 0.07 0.06
Diisseldorf/Koln 1 SK Diisseldorf 0.06 0.09 0.09 0.06

Average Tier 2 0.04 0.06 0.06 0.06
Diisseldorf/Koln 2 LK Mettmann 0.04 0.07 0.07 0.07
Diisseldorf/Koln 2 LK Rhein-Kreis Neuss 0.04 0.06 0.06 0.07
Diisseldorf/Koln 2 SK Bonn 0.05 0.07 0.07 0.07
Diisseldorf/Koln 2 SK Leverkusen 0.03 0.06 0.07 0.05
Diisseldorf/Koln 2 LK Rhein-Erft-Kreis 0.04 0.06 0.05 0.06
Diisseldorf/Koln 2 LK Rheinisch-Bergischer Kreis 0.04 0.05 0.06 0.08
Diisseldorf/Koln 2 LK Rhein-Sieg-Kreis 0.04 0.06 0.07 0.07
Diisseldorf/Koln 2 SK Krefeld 0.04 0.06 0.03 0.07
Diisseldorf/Kéln 2 SK Miilheim an der Ruhr 0.03 0.05 0.05 0.06
Diisseldorf/Koln 2 SK Duisburg 0.02 0.04 0.07 0.04

Average Tier 3 0.03 0.05 0.05 0.06
Diisseldorf/Koln 3 LK Ahrweiler 0.03 0.05 0.04 0.07
Diisseldorf/Koln 3 LK Altenkirchen (Westerwald) 0.03 0.06 0.05 0.05
Disseldorf/Kéln 3 LK Neuwied 0.02 0.04 0.06 0.05
Disseldorf/Kéln 3 SK Essen 0.03 0.05 0.08 0.06
Disseldorf/Kéln 3 SK Ménchengladbach 0.04 0.06 0.06 0.07
Diisseldorf/Koln 3 SK Remscheid 0.02 0.04 0.04 0.04
Diisseldorf/Koln 3 SK Solingen 0.03 0.05 0.05 0.06
Diisseldorf/Koln 3 SK Wuppertal 0.02 0.04 0.06 0.08
Diisseldorf/Kéln 3 LK Viersen 0.04 0.06 0.05 0.07
Diisseldorf/Koln 3 LK Diiren 0.04 0.05 0.05 0.06
Diisseldorf/Kéln 3 LK Einkirchen 0.04 0.06 0.06 0.07
Diisseldorf/Koln 3 LK Heinsberg 0.02 0.04 0.06 0.06
Diisseldorf/Koln 3 LK Oberbergischer Kreis 0.03 0.05 0.05 0.06
Diisseldorf/Koln 3 LK Ennepe-Ruhr-Kreis 0.02 0.03 0.06 0.06
Diisseldorf/Koln 3 SK Oberhausen 0.02 0.04 0.07 0.06
Diisseldorf/Koln 3 LK Wesel 0.03 0.05 0.04 0.05
Frankfurt am Main 1 SK Frankfurt am Main 0.05 0.06 0.10 0.09

Average Tier 2 0.05 0.07 0.07 0.07
Frankfurt am Main 2 LK Offenbach 0.04 0.06 0.07 0.07
Frankfurt am Main 2 LK GroB-Gerau 0.04 0.06 0.07 0.07
Frankfurt am Main 2 SK Offenbach am Main 0.05 0.07 0.07 0.09
Frankfurt am Main 2 LK Main-Minzig-Kreis 0.05 0.06 0.05 0.07
Frankfurt am Main 2 LK Wetteraukreis 0.04 0.06 0.07 0.07
Frankfurt am Main 2 LK Hochtaunuskreis 0.05 0.07 0.06 0.06
Frankfurt am Main 2 LK Main-Taunus-Kreis 0.06 0.08 0.08 0.07

Average Tier 3 0.04 0.05 0.05 0.06
Frankfurt am Main 3 LK Aschaffenburg 0.04 0.06 0.03 0.08
Frankfurt am Main 3 SK Mainz 0.04 0.07 0.08 0.09
Frankfurt am Main 3 LK Mainz-Bingen 0.04 0.06 0.04 0.07
Frankfurt am Main 3 SK Darmstadt 0.03 0.05 0.08 0.07
Frankfurt am Main 3 SK Wiesbaden 0.05 0.08 0.07 0.09
Frankfurt am Main 3 LK Darmstadt-Dieburg 0.05 0.06 0.06 0.09
Frankfurt am Main 3 LK Rheingau-Taunus-Kreis 0.05 0.07 0.06 0.07



Braun and Lee

50

Frankfurt am Main 3 LK Gieflen 0.04 0.06 0.06 0.06
Frankfurt am Main 3 LK Lahn-Dill-Kreis 0.02 0.04 0.05 0.04
Frankfurt am Main 3 LK Limburg-Weilburg 0.03 0.04 0.06 0.04
Frankfurt am Main 3 LK Vogelbergkreis 0.02 0.03 0.04 0.04
Frankfurt am Main 3 LK Fulda 0.03 0.04 0.03 0.07
Frankfurt am Main 3 LK Main-Spessart 0.03 0.04 0.04 0.06
Frankfurt am Main 3 LK Bad Kissingen 0.04 0.05 0.05 0.04
Leipzig 1 SK Leipzig 0.02 0.04 0.08 0.08

Average Tier 2 0.01 0.02 0.04 0.05
Leipzig 2 LK Leipzig 0.02 0.03 0.06 0.05
Leipzig 2 LK Halle(Saale) 0.02 0.03 0.06 0.05
Leipzig 2 LK Saalekreis 0.00 0.01 0.02 0.04
Leipzig 2 LK Burgenlandkreis 0.02 0.01 0.04 0.02
Leipzig 2 LK Nordsachsen 0.01 0.01 0.03 0.08

Average Tier 3 0.02 0.02 0.03 0.03
Leipzig 3 LK Mandfeld-Siidharz 0.02 0.02 0.02 0.03
Leipzig 3 LK Salzlandkreis 0.01 0.02 0.02 0.03
Leipzig 3 LK Anhalt-Bitterfeld 0.01 0.02 0.02 0.02
Leipzig 3 LK Wittenberg 0.01 0.01 0.03 0.02
Leipzig 3 LK Elbe-Elster 0.00 0.01 0.04 0.02
Leipzig 3 LK Meiflen 0.02 0.01 0.04 0.05
Leipzig 3 Mittelsachsen 0.02 0.02 0.03 0.03
Leipzig 3 LK Greiz 0.01 0.01 0.00 0.03
Leipzig 3 LK Saale-Holzland-Kreis 0.02 0.03 0.01 0.03
Leipzig 3 LK Weimarer Land 0.02 0.03 0.03 0.06
Leipzig 3 LK Sémmerda 0.01 0.02 0.03 0.03
Leipzig 3 LK Kyffhauserkreis 0.02 0.01 0.02 0.02
Stuttgart 1 SK Stuttgart 0.05 0.07 0.11 0.08

Average Tier 2 0.05 0.07 0.08 0.08
Stuttgart 2 LK Boéblingen 0.05 0.06 0.10 0.08
Stuttgart 2 LK Esslingen 0.05 0.07 0.07 0.08
Stuttgart 2 LK Ludwigsburg 0.05 0.07 0.06 0.09
Stuttgart 2 LK Rems-Murr-Kreis 0.05 0.06 0.07 0.08

Average Tier 3 0.04 0.06 0.06 0.08
Stuttgart 3 LK Goéppingen 0.05 0.06 0.05 0.07
Stuttgart 3 LK Ostalbkreis 0.04 0.05 0.07 0.07
Stuttgart 3 LK Schwabisch Hall 0.04 0.05 0.06 0.06
Stuttgart 3 LK Heilbronn 0.05 0.06 0.06 0.08
Stuttgart 3 SK Heilbronn 0.05 0.06 0.08 0.08
Stuttgart 3 LK Enzkreis 0.04 0.05 0.06 0.08
Stuttgart 3 SK Pforzheim 0.05 0.06 0.06 0.09
Stuttgart 3 LK Calw 0.04 0.05 0.04 0.08
Stuttgart 3 LK T1iibingen 0.05 0.07 0.05 0.08
Stuttgart 3 LK Reutlingen 0.05 0.06 0.05 0.07

TABLE A.5. Percentage changes in house price index - Top 7 agglomerations and surrounding

tiers
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OLS OLS FE RE
Tog(Median income) 2057 2007 3.187* 3147~
(13.46)  (13.63)  (21.37)  (22.72)
log(Lag Population density (person per km?2))  0.88*** 0.88*** 3.06*** 0.52%**
(13.53) (13.59) (7.74) (4.07)
log(Land area (km?)) 0.22%** 0.22%** 5.01%** 0.29***
(8.00) (8.04) (3.01) (4.80)
log(arable land (sqgkm) per capita) 0.23*** 0.25%** -0.81%** -0.15
(4.46) (4.69) (-4.12)  (-1.47)
Green coverage -4.36%** -3.81%** -7.90%** -9.32%**
(-3.24) (-2.78) (-7.06) (-9.11)
log(Construction cost index) 1.74%** 1.87*** -0.99***  -0.44***
(9.45) (9.66) (-8.68) (-4.16)
year=2015 -0.04
(-0.85)
year=2016 -0.06
(-1.15)
year=2017 -0.08
(-1.47)
year=2018 -0.12**
(-2.21)
Constant -24.02%**  -24.87***  -70.26***  -23.58***
(-22.02)  (-21.45)  (-6.36)  (-24.66)
N 1890.00 1890.00 1890.00 1890.00
R? 0.54 0.54 0.50
F( 4, 1879) 1.28
Prob > F 0.27
chi2(6) 153.31
Prob > chi2 0.00

t statistics in parentheses

dependent variable: Land value per m? (Braun&Lee (2021))
*p<0.1,** p<0.05 *** p <0.01

TABLE A.6. Non-spatial estimation results, tests
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A.2. Figures
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FIGURE A.2. Median income by state, 2014-2018
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Development of Population Density (2014-2018)
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FIGURE A.3. Population density by state, 2014-2018
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