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Abstract

We estimate spatial German land price effects using the county-level residential land prices from

2014 to 2018. We show that county-level spatial agglomeration effects play a large and significant

role in explaining the cross-county variations in land prices. For example, a 1 % increase in the

median income has an increase of 3.45 % in land prices, whereas a 1 % increase in the population

density accounts for an increase of 5.47 % increase in land prices. We find that similar empirical

patterns also hold for house prices but less so for the seven major German cities. Moreover,

housing supply factors such as the available land to build and housing stocks are crucial factors

in explaining land and house prices. Furthermore, we show that the land price spillover effects

are among the dominating factors in the formation of regional house prices. These results suggest

that changes in agglomeration variables such as median income (productivity) and population

density cannot completely explain disparate local land and house prices. Lastly, estimating two

different land price measurements for Germany shows that direct and indirect agglomeration

spillover effects can explain more variation in residential land prices than vacant land prices.

(JEL: R0; R11; R14; R21; R31)

Keywords: German Land prices; Land values; German Housing prices; Housing values; Spatial

Effects.
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1. Introduction

Figure 1 shows robust growth in house and land prices for the seven biggest German

cities1 that outpaced both New York and London since 2014.
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Figure 1. Development of house prices (2014-2020) and land prices (2014-2018) - Selected
German and international cities

Surrounding areas for these seven cities have also experienced a similar growth

pattern in house and land prices from 2014 to 2018.2 The average real house

price appreciation for these German cities’ first contiguous surrounding areas ranges

between 11 percent and 34 percent. For the same surroundings, the land prices

appreciated between 12 percent to 31 percent, whereby both the house and land

prices for Munich had the highest and Leipzig had the lowest growth.3 Figure 2,

which plots the Moran scatterplots that measure spatial correlation for house and

land prices in 2014, shows clear positive spatial correlations for 378 German counties

including these cities and their surrounding areas: the first order contiguity spatial

correlations for house and land prices are 0.66 and 0.58, respectively.

1. We use the Big 8 cities that are also chosen by Gröbel et al. (2020) as the biggest residential

markets. But, given their spatial proximity, we combine Cologne and Düsseldorf to represent the

biggest German agglomeration. Consequently, we either speak of Top 7 cities or agglomerations in

this paper.

2. German house prices have been appreciating at a much faster rate than both New York and

London since 2010. However, the analysis starts from 2014 as we use the German land price dataset

from Braun and Lee (2021) at the county level that begins from 2014 to 2018.

3. Tables A.4 and A.5 in the Appendix show house and land price development for the first three

tiers of the seven cities from 2014 to 2018.
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Figure 2. Moran scatterplot for land and house prices - First order contiguity matrix

These apparent regional house price spatial spillover effects are well documented

for various geographical regions.4 The main take-away message from the spatial

correlation literature is clear: the spatial spillover effects matter in understanding

real estate markets. Yet, the economic causes for these spillovers in house prices are

less understood as most of the studies focus on the mechanisms of the spatial and

temporal lags on housing prices.

The objective of this paper is to analyze the impact of agglomeration effects on

spatial price variations for German real estate markets in 378 administrative counties

and cities from 2014 to 2018.5 While most spatial correlation literature focuses on

the spatial interaction effects in house prices, the focus of this paper is on the

spatial spillovers in land prices affected by the clustering of production and workers,

also known as agglomeration economies. Consequently, one of the distinguishing

characteristics of this papers’ framework is the role played by land prices. We focus on

land prices as recent studies on the U.S. land prices such as Ahlfeldt and McMillen

(2020), Albouy et al. (2018), Davis et al. (2021), and Braun and Lee (2021), on

German land prices, with different objectives in mind, have shown that most of the

variations in house prices are due to the underlying land values and shares. For the

international evidence, Knoll et al. (2017) also document that rising land values and

shares mainly drive house price increases for many developed economies since World

War II. For example, Figure 3 that plots the quarterly time series for housing, imputed

land, and construction cost indexes for Germany, the U.K., and the U.S., from 2000 to

2020:q3 also informally shows the importance of land price development for housing

markets.

4. For example, among others, Otto and Schmid (2018) and Möller (2009) for Germany, Gong

et al. (2020) and Guo and Qu (2019) for China, Fingleton (2008) and Baltagi et al. (2014) for the

U.K., and Brady (2014) and Cohen et al. (2016), Pijnenburg (2017) for the U.S.

5. The official number of administrative counties in Germany is 401 as of 2019. Given the territorial

boundaries from 2016, we use 378 counties due to the lack of data for the rest.



Braun and Lee 4

50
10

0
15

0
20

0

2000q1 2005q1 2010q1 2015q1 2020q1 2000q1 2005q1 2010q1 2015q1 2020q1 2000q1 2005q1 2010q1 2015q1 2020q1

GER UK US

House Price Index Construction Cost Index Land Price Index

H
PI

, C
C

I, 
LP

I (
20

05
=1

00
)

date

Graphs by country
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Source: The sources are listed in Table A.2. The imputed land value is calculated according to
Knoll et al. (2017) with α = 0.5.

We use the German residential land price dataset from Braun and Lee (2021)

for two reasons. First, Figure 3 shows that although German housing prices have

been sharply increasing since 2010, the residential land share in total wealth has

increased but the structure share in total wealth has been steadily decreasing.

Moreover, it shows that residential land prices have increased significantly more than

the structure costs and house prices in most of the German counties from 2014 to

2018. Consequently, the findings from Braun and Lee (2021) imply that cycles in the

German land values are more likely to affect house prices in the future. Second, Braun

and Lee (2021), that construct the German residential land prices at a county level,

provides the first and only publicly available dataset. Previously available land price

datasets are from the Federal Statistical Office, which only provides the vacant land

prices on a national level from 2010 and from the Statistical Offices of the Federal

and State Governments, which provide the vacant land prices on a county level from

1995.6

6. Appraiser assessed land values are available from regional Independent Surveyor Commissions

at costs. However, these Surveyor Commissions use independent appraisal methods. Despite being

based on detailed guidelines, these existing land price valuations rely on surveyors’ knowledge and

expertise. For more details on German land price measurements see Braun and Lee (2021).
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The other main focus is the impact of spatial agglomeration effects on real

estate markets. Well established empirical evidence that supports the existence of

agglomeration economies are the positive relationships between population density

and productivity (wages) as well as between population density and real estate prices.

Figure 4 shows positive relationships between the log of population density versus the

log of GDP per capita (0.59), the log of median income (0.60), the log of house price

index (0.55), and the log of land price per square meter (0.60) for German counties

in 2014.

9.
5

10
10

.5
11

11
.5

12
Lo

g 
of

 G
D

P 
pe

r c
ap

ita
, 2

01
4

4 5 6 7 8
Log of Population Density, 2014

Sources:
GDP per Capita and Land Area: Statistical Offices of the Federal Government 
and the Federal States, Regionalstatistik 82111-01-05-4 and 11111-01-01-4,
Population: Federal Statistical Office: 12411-0015

lbip = 9.4 + 0.18 lpop_dens    R2 = 34.7%
log(Population density) and log(GDP per capita, EUR)

7.
6

7.
8

8
8.

2
8.

4
Lo

g 
of

 m
ed

ia
n 

in
co

m
e,

 2
01

4

4 5 6 7 8
Log of Population Density, 2014

Sources:
Median Income: Sozialversicherungspflichtige Bruttoarbeitsentgelte - Entgeltstatistik - Median,
Bundesagentur für Arbeit
Land Area: Statistical Offices of the Federal Government 
and the Federal States, Regionalstatistik 11111-01-01-4,
Population: Federal Statistical Office: 12411-0015

linc = 7.5 + 0.08 lpop_dens    R2 = 35.5%
log(Population density) and log(Median Income, EUR)

4.
5

4.
6

4.
7

4.
8

4.
9

Lo
g 

of
 H

ou
se

 P
ric

e 
In

de
x,

 2
01

4

4 5 6 7 8
Log of Population Density, 2014

Sources:
House Price Index: vdpResearch
land area: Statistical Offices of the Federal Government 
and the Federal States, Regionalstatistik 11111-01-01-4,
Population: Federal Statistical Office: 12411-0015

lhpi = 4.5 + 0.04 lpop_dens    R2 = 30.5%
log(Population density) and log(House Price Index)

0
2

4
6

8
Lo

g 
of

 L
an

d 
Pr

ic
e 

pe
r s

qm
., 

20
14

4 5 6 7 8
Log of Population Density, 2014

Sources:
Land Price: Braun&Lee(2021)
land area: Statistical Offices of the Federal Government 
and the Federal States, Regionalstatistik 11111-01-01-4,
Population: Federal Statistical Office: 12411-0015

llpi = 2.0 + 0.54 lpop_dens    R2 = 35.5%
log(Population density) and log(Land Price per sqm)

Figure 4. Measuring agglomeration - German counties in 2014

These positive relationships informally indicate the well-documented density-

productivity relationship in the United States by Ciccone and Hall (1996) and in

Europe by Ciccone (2002). Consequently, the spatial equilibrium framework by Rosen

(1979) and Roback (1982) suggests that these positive correlations between density

and real estate prices can either mean that dense places have become more pleasant

over time or that dense places have become more productive. The literature on land

value estimation also lend an indirect support for the existence of agglomeration

effects in house and land markets. For example, Ahlfeldt and McMillen (2020) report

that variation in land shares is likely influenced by demand-side factors that are

exogenous to the production function of housing and less by inelasticities in housing

supply. Albouy et al. (2018) further provide indirect evidence of agglomeration effects
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on land prices by showing that monocentric cities have spatially varying negative land

price gradients with increasing distance to the city center.

This paper estimates spatial land price and agglomeration spillovers using a

standard spatial econometrics framework that accounts for the effects of localization

and network externalities as well as spatial spillovers in house and land prices. We first

estimate panel data with fixed effects as a benchmark. Then, the analysis is extended

using a spatial framework that accounts for spatial lags of dependent (house and

land prices) and agglomeration variables, the so-called Spatial Durbin Model (SDM).

We also estimate the Spatial Lag of X Model (SLX) and the Spatial Autoregressive

Model (SAR) that account for either only exogenous spillovers or endogenous

spillovers, respectively. More specifically, we address the following questions: First, can

cross-county agglomeration spillovers explain variation in land and house prices for

Germany, including the seven largest German cities and their surrounding counties?7

Second, to what extent can clustering patterns in house prices be attributed to spatial

variations in land prices? Lastly, how do spillover effects on house price variations

differ between the residential land prices and the land prices on vacant land, which

are provided from the Statistical Offices of the Federal Government and the German

States?

One of the main results is that there are large and significant local and spatial

agglomeration effects on land and house prices. For example, if there is an one percent

increase in the median income the land price changes by 2.6 percent, ceteris paribus.

A corresponding one percent increase in median income of the neighboring counties

raises land prices by 0.85 percent in the county of interest. A one percent change in

the population density of the county itself and its neighboring counties has a similar

effect on land prices, with land price increases of 3.48 percent and 1.99 percent,

respectively. We find that comparable empirical patterns also hold for house prices,

but less so for the seven major German cities. This result suggests, unlike Gyourko

et al. (2013), that the Big 7 German cities do not exhibit the characteristics of the

so-called Superstar Cities. Although the direct median income and population density

effects are significant for all seven cities, the indirect (spatial) effects for the variables

are significant for only four out of seven cities.

Moreover, housing supply factors such as the available land to build and a proxy

for the restrictiveness of housing supply also significantly affect land and house prices

on county and city levels. Furthermore, we show that the land price spillover effects

are among the dominating factors in the formation of regional house prices. These

7. Figure 5 shows those seven cities (Tier 1) as well as their surrounding counties that we assigned

into Tier 2 and 3. The upper right map highlights the new German Federal States (Former ”East

Germany” and before 1990, part of the German Democratic Republic (GDR).).
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results, as in Gyourko et al. (2013), suggest that disparate local land and house prices

can be driven by other housing variables and cannot be explained entirely by the

agglomeration effects such as median income (productivity) and population density

levels in those areas. Lastly, estimation on two different land price measurements for

Germany shows that direct and indirect agglomeration spillover effects can explain

more variation in residential land values than in vacant land prices from the Statistical

Offices of the Federal Government and the German States.

The rest of this paper is organized as follows. In Section 2, we overview the

literature on spatial effects in housing prices. Section 3 outlines a simple baseline

framework on network spillovers in housing and land prices across counties for the

empirical analysis. Section 4 presents the empirical model specifications and outlines

the data sources. In Section 5, we present the empirical findings that include various

robustness analysis. Section 6 concludes, followed by the Appendix.

2. Previous Literature on Spatial Spillovers in House Prices,

Agglomeration, and Land Prices

This paper combines three strands of literature: Literature on spatial spillovers in

house prices, agglomeration effects on real estate prices, and land prices. This section,

thus, provides a literature review on the significance of spatial correlation in regional

housing markets, the agglomeration effects on real estate markets, and the upward

trend in land prices.

The literature on spatial interaction in real estate markets is clear in the

importance of spatial correlation in determining property values. These so-called

spatial spillover effects in house prices are widely studied in the literature using spatial

econometric methods for different countries and different geographic aggregation

levels.

Prior to 2007, spatial econometrics mostly focused on models that contained

one type of spatial spillover effect. These models that contain either an endogenous

interaction effect (i.e., a spatially lagged dependent variable) or correlated effects (i.e.,

spatially autocorrelated error terms were introduced in the seminal work by Anselin

(1988)). After 2007, the literature includes model estimation with several types of

interaction effects. Kelejian and Prucha (1998); Kelejian et al. (2004) and Kelejian

and Prucha (1999) developed estimation techniques for models that contain both

spatially lagged dependent variables and autocorrelated error terms. Whereas, LeSage

and Pace (2009) introduced the Spatial Durbin Model (SDM) that incorporates both

endogenous as well as exogenous interaction effects, where a exogenous interaction

effect supposes that the house price of a region depends on other regions’ explanatory

variables (Elhorst, 2010).
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Many studies use hedonic house price analysis that incorporates spatial interaction

effects to investigate mechanisms for spillovers between prices of neighboring houses.

On the least aggregated (MSA) level, Can (1990, 1992) shows that for Columbus,

Ohio, USA, accounting for different spatial effects using spatial econometric models

is superior to simple hedonic pricing models. Dubin (1988) examines spatial

autocorrelation in hedonic house price residuals using a Maximum Likelihood

procedure for data on 221 property transactions of homes in Baltimore sold in 1978.

She extends her earlier work in Dubin (1992) by presenting an alternative approach

to model spatial autocorrelation in hedonic house price residuals. Based on structural

characteristics of properties and the average of hedonic residuals of nearby properties,

she predicts market values for homes by Kriging. Other studies that examine spatial

autocorrelation in house prices within Metropolitan areas using similar methodologies

to Can (1990, 1992) and Dubin (1988, 1992) are for example Basu and Thibodeau

(1998) that use transaction data of home sales in Dallas 1991:4-1993:1 and Clapp and

Tirtiroglu (1994) that use data for the Hartford area, 1982-1988. Helbich et al. (2014)

and Pijnenburg (2017) emphasize the importance of comparing different estimation

techniques (parametric, non-parametric, and non-linear spatial effects) to account for

the presence of spatial heterogeneity in hedonic house prices in Austria and the U.S.

Spatial interactions of house prices, however, do not only occur within urban

housing markets. They also appear between aggregated housing markets, such as

between different counties, cities, or states. Many studies used spatial autoregressive

models that include endogenous interaction effects to investigate house price

interaction effects. Fingleton (2008) motivates this type of interaction by displacement

effects in supply and demand. Fingleton (2008) finds evidence for endogenous house

price spillovers among 353 districts in the U.K. estimating a spatial autoregressive

model (SAR) model in 2001. Also for the U.K., Baltagi et al. (2014) support this

finding even after using random nested error terms with panel data from 2000-2007 for

the 353 districts. Gong et al. (2020) also show endogenous cross-region spillover effects

for the Chinese housing markets. Another mechanism that a SAR model empirically

estimates is yardstick competition, which assumes that participants of the demand

and supply side of a housing market take actions of neighboring housing markets into

account when forming their buying and selling strategies (Brady, 2014; Gong et al.,

2020). For the U.S., Brady (2014, 2011) find persistent spatial diffusion processes by

estimating spatial impulse response functions based on a SAR model for California

counties for the period, 1995-2002 and across the U.S. States for the period, 1975-

2011. Similarly, using a spatial-temporal model Holly et al. (2010) examine to what

extent movements in house prices can be explained by fundamentals for the States

of the U.S. For regions in the U.K., Holly et al. (2011) analyze spatial and temporal
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diffusion processes of shocks in a dominant region (London) in a spatial-temporal

setting.

For Germany, Otto and Schmid (2018) find evidence for the existence of cross-

county house price spillovers estimating dynamic spatial panel data models for their

dataset on German real estate prices in 412 counties. The found ripple effect is

timely delayed and diminishes with distance to the region a shock occurred. Möller

(2009) also finds similar spatial effects for vacant land ready for development when

analyzing the relationship between the regional German labor market and the market

for building land.

Endogenous spillover effects are not the only cause of cross-county interactions

considered in the literature. Cross-county spillovers can also emerge due to exogenous

interaction mechanisms such as network effects in a county or city grid. The presence

of agglomeration effects between counties, was first implemented by Krugman (1991)

in the new economic geography theory (NEG). The existence of this type of spatial

spillover effects is, for example, supported by Gong et al. (2020) who applies the

spatial lag of X model (SLX) using cross-sectional housing market data on an

urban network in eastern China. They also find common shocks to cause cross-

city dependence of housing prices, estimating the Spatial Durbin Error Model

(SDEM). Some other studies that show evidence for network spillover effects in

housing markets use different market potential measures. For 136 European large

urban zones, Camagni et al. (2017) find a significant impact of static and dynamic

agglomeration economies on house prices. For U.S. counties, Partridge et al. (2009)

analyze the impact of hierarchical geographic proximity and market potential on

median earnings and housing costs. They find especially housing costs to be higher

with closer proximity to higher-tier urban cores.

While most of this literature focuses on spatial interaction effects in house prices,

this papers’ goal is to analyze spatial spillovers in land prices. The literature on

land prices shows the upward trend in land prices and large land shares in housing

wealth for many developed economies. Most of these studies equate house prices to

the cost of putting up the structure plus the value of land, where the latter is often

seen as pricing any geographical and regulatory barriers to housing supply, as well as

amenities accessible at a given location (Glaeser et al., 2006; Davis and Heathcote,

2007; Davis and Palumbo, 2008). Studies such as Davis and Heathcote (2007), Davis

and Palumbo (2008), and Davis et al. (2017), Davis et al. (2021) have shown, for

the U.S., that most of the variations in house prices are due to the underlying land

value. In Braun and Lee (2021), we argue that movements in the land - and structure

values are crucial for understanding the development of German housing markets and

policy measures that accompany these movements. Studies that estimate land values

and shares via spatial transaction based approaches such as Albouy et al. (2018) and
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Ahlfeldt and McMillen (2020) support the presence of network externalities in land

values. For example, Albouy et al. (2018)’s land value estimates indirectly support the

monocentric city theory as they increase with decreasing distance to the center of an

agglomeration. Ahlfeldt and McMillen (2020) argue that the factors to the demand

side that are exogenous to the housing production function such as higher income

and larger preferences for certain amenities are positively correlated with high land

values.

3. Baseline Model

The main empirical interest lies in the spatial interaction patterns of land prices both

of endogenous and exogenous nature and the clustering patterns in house prices that

can be contributed to spatial variations in land prices. Rather than simply presenting

spatial lag models for the empirical analysis, we present a simple reduced form of the

spatial housing market which captures variables that affect both supply and demand

functions.

As in Fingleton and Le Gallo (2008), consider an economy with n counties. In this

economy, the determination process of house price within a region i may not assume

to be only a function of demand and supply factors of that region but also of regions

within commuting distance from county i. Consequently, we assume that demand for

real estate (qi) reacts to changes in income (wi) of both region i and surrounding

regions to reflect the travel-to-work patterns that require to cross county borders.

Moreover, I assume that demand for real estate depends on natural attributes of

a county (Ei) such as green coverage as well as two types of externalities: 1) local

externalities formed by agglomeration economies (li) and 2) network externalities

from cross-county connections (Wli, where W is a spatial weighting matrix). A

prime example for agglomeration economies is that higher population density counties

can increase the likelihood of enjoyable social contacts and meet like-minded peers,

especially attracting young single people. Also, so-called higher-order amenities, such

as opera, expensive restaurants that require substantial scales of economies to be

sustained, can mostly be found in higher population density places. We also include

the size of land (Combes et al., 2010) and median income (Ciccone and Hall, 1996;

Combes and Gobillon, 2015) to measure the agglomeration effect.

One can further link the local externality to its agglomeration level in economic

activities. Mechanisms that support this connection are, for example, a shared

and larger labor pool that improves firm-worker matching and knowledge spillovers

through shared information during face-to-face meetings (Glaeser et al., 2001; Gong

et al., 2020; O’sullivan, 2007). Switching from the single county to a network of
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counties,8 the previously mentioned connection can cause the same benefits resulting

from agglomeration economies within such a network. For example, higher-order

amenities can be used by people from less dense populated nearby counties in order for

them to complement their shopping and entertainment facilities. But these amenities

also need to be demanded by those people in order to support and maintain the

higher population density counties’ functionality and local externalities (Gong et al.,

2020; Meijers et al., 2016; Meijers and Burger, 2017).9 Finally, while demand in

region i is assumed to negatively depend on the region’s house price pi, this reduced

demand spills over to neighboring regions (displaced demand effect:
∑n

i6=jWijpj).

Consequently, the demand function for housing is10

qi = a0 + a1wi + a
n∑

i6=j

Wijwj + a2Ei + a3li + â
∑

Wijli (1)

−a4pi + ã
n∑

i6=j

Wijpj + ωi,

where Wij spatially links counties with each other. ωi is the error term that

contains other unmodelled demand factors.

The corresponding supply function for housing takes the following form

qi = b0 + b1pi + b2Hi − b
n∑

i6=j

Wijpj + ηi, (2)

where ηi is the unobserved supply error term. The supply of housing is assumed

to increase in the price level of housing in region i. High real estate prices attract

real estate developers and it may be more likely that homeowners are offering

their properties for sale. However, this also means that high property prices in

neighboring counties ”steal” away supply of housing from region i (displaced supply

effect:
∑n

i6=jWijpj). As in Gong et al. (2020), supply is assumed to depend on the

restrictiveness of housing supply, Hi.

8. We focus on network connections between counties located in geographical proximity to each

other. As mentioned in Camagni et al. (2017), network externalities can, however, also emerge

between regions located far from each other but linked through a horizontal, non-hierarchical

network given a similar size.

9. The productivity of counties with smaller urban cores can be increased given the so-called

”borrowed size” effect, when located next to counties with major urban cores, by borrowing their

technological externalities. Moreover, proximity to larger consumer and supplier markets increases

productivity by saving transportation costs and often correlates with higher wage levels (Gong

et al., 2020).

10. In the empirical analysis, we also include unemployment, housing stock, and open

accommodation as control variables.



Braun and Lee 12

Rewriting the supply function by solving for pi, we have

pi =
1

b1
qi −

b0
b1

− b2
b1
Hi +

1

b1
b

n∑
i6=j

Wijpj −
ηi
b1
. (3)

Substituting for qi yields

pi = c1

a0 + a1wi + a
n∑

i6=j

Wijwj + a2Ei + a3li + â
n∑

i6=j

Wijli − a4pi + ã
n∑

i6=j

Wijpj + ωi


− c0 − c2Hi + c3

n∑
i6=j

Wijpj − νi.

(4)

Simplifying the equation further gives the empirical form that includes spatial effects

as

pi = d0 + d1wi + d
∑
i6=j

Wijwj + d2Ei + d3li + d̂
∑
i6=j

Wijli+

+ d4Hi + d̃
∑
i6=j

Wijpj + ui,

(5)

where ui = c1ωi + νi.

Since the focus is on land prices, we modify Equation (5) by including construction

costs. As Davis and Heathcote (2007) and Davis and Palumbo (2008), Glaeser et al.

(2006) argue that the determination of house price is more complex in a sense, that

the costs of new construction consist of the cost of putting up the structure in addition

to any geographical or regulatory barriers to housing supply. While the former can

be assumed to be supplied highly elastically, the latter can cause housing supply to

be highly inelastic depending on locations. Following the residual approach in Braun

and Lee (2021)11, we decompose house value into a physical cost of construction

and the land value. Therefore, from the housing supply perspective, the price of

housing will be determined by the cost of new construction, defined above as the

sum of construction cost and land value, in places where demand is sufficiently large

to justify new construction. Incorporating this decomposition into Equation (5), the

land value is defined as:

lpi = d0 + d1wi + d̄
∑
j 6=i

Wijwj + d2Ei + d3li+

d̂
∑
j 6=i

Wijlj + d4Hi + d̃
∑
j 6=i

Wijpj + λcci + ui

(6)

11. The two-step residual approach has been used in Davis and Heathcote (2007); Davis and

Palumbo (2008) and Braun and Lee (2021)
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where lpi is the land value per m2 in county i, cci is a county-specific construction

cost factor and λ measures the effect of county-specific construction cost on land

value. In the next section we outline the empirical methodology.

4. Empirical Framework and Data

We are interested in two types of spatial spillover effects in land and house

prices: First, exogenous interaction effects within the explanatory variables. Second,

endogenous interaction effects within the dependent variable.

There are different types of spatial regression model specifications that include

spatial lags of the dependent variable. But Anselin (1988); LeSage and Pace (2009)

argue that one specification, the spatial Durbin model (SDM), stands out as superior

in a vast number of applied situations. The SDM is shown in Equation (7). It includes

a spatial lag of the dependent variable (ln(P )) as well as agglomeration variables in

(l):

ln(P ) = ρMln(P ) + α01 +Xβ +Wlθ + ε, ε ∼ N
(
0, σ2

)
(7)

where, Pn×1 is the vector of land values or house prices, Xn×r incorporates the

county-specific characteristics and agglomeration economies and Wln×r represents

the network externalities. In the empirical analysis, we use the same weight matrix

for Mn×n and Wn×n (Anselin, 1988; LeSage and Pace, 2009). W (M) is the spatial

weight matrix that defines how counties are spatially connected. This matrix allows for

local externalities l to spillover between spatially linked counties and hence spillover

effects can be modeled as Wl.

Apart from estimating the model in Equation (7), we also estimate three other

models. We first start with a panel fixed effects model (ρ = θ1×r = 0), and then add

two other spatial lagged models, namely the Spatial Autoregressive Model (SAR:

θ = 0) and the Spatial Lag of X Model (SLX: ρ = 0).

The latter is seen as more appropriate for applied studies and superior to SAR-

type specifications as it does not suffer from identification problems (Halleck Vega

and Elhorst, 2015; Gibbons and Overman, 2012; Gong et al., 2020). Also, next to

the SDM, this model provides a flexible way to model exogenous interaction effects

among the explanatory variables.

However, for economic reasons we use the SDM as the main model of interest

as the likelihood of displacement effects in land and house prices causing cross-

county spillovers being present in the process of house price determination is pretty

high. For example, high house prices in one region cause demand for housing to

decrease. However, this demand is likely to be displaced to regions nearby. Another

mechanism that can explain this type of spillover effect is ”yardstick competition”.
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For example, house sellers and buyers might take into account price signals from

house price transactions in a neighboring county, spatially linking house prices with

each other (Brady, 2014; Gong et al., 2020).

Note that a significant estimate of ρ could either be attributed to pure spatial

spillover effects in house prices or reflect information picked up from omitted variables

such as network externalities (Corrado and Fingleton, 2012; Gibbons and Overman,

2012; Gong et al., 2020). However, one can statistically justify estimating Equation (7)

by evaluating the role of network externalities when testing the SDM model against

the SAR model with the restriction θ = 0.12

4.1. Direct vs. Indirect Effects

In spatial econometrics, due to the presence of the spatial weights matrix, the

interpretation of point estimates as spatial spillover effects is misleading in some

models (Elhorst, 2010; LeSage and Pace, 2009). To circumvent delusive conclusions

from hypothesis tests based on point estimates, LeSage and Pace (2009) present

the partial derivative approach for finding the impact of a change in variables for

different model specification as being more valid. Given this approach, the direct

effect represents the effect of a change in a county-specific variable on that counties’

land value. We however, interested in cross-county spillovers. By definition this refers

to the indirect effect, the impact of a change in a county-specific variable on land

values of other counties (Gong et al., 2020; LeSage and Pace, 2009; Elhorst, 2010).

We briefly outline the direct and indirect effects below, but the interested reader

may refer to LeSage and Pace (2009) and Elhorst (2010) for more details. Equation

(7) can be written as

ln(P ) = (I − ρM)−1 (Xβ +Wlθ +R) , (8)

where R includes intercept and the error terms. The marginal effect of agglomeration

on the land or house prices can be clearly seen by taking the derivatives of ln(P ) with

respect to the rth l :

∂ln(P )

∂l n×r
= (I − ρM)−1 (1n×1β1×r +Wn×n1n×1θ1×r) .

For the SDM, the diagonal elements of (I − ρM)−1 (1n×1β1×r +Wn×n1n×1θ1×r)

represent direct effect and the off-diagonal elements are the indirect effects. For the

SLX, β1×r and θ1×r are the direct and indirect effects, respectively. Lastly, for the

SAR, the diagonal elements of (I − ρM)−1 (1n×1β1×r) represent direct effect and the

off-diagonal elements are the indirect effects.

12. For more details on the spatial econometric models outlined in this section the reader may

refer for example to Anselin (1988) and LeSage and Pace (2009).
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4.2. Data

We use the annual (2014-2018) land value per square meter of lot size estimates for

German counties and county-free cities from Braun and Lee (2021) as a measure for

residential land price. Since one of the main focuses of this paper rests on land prices,

the data from Braun and Lee (2021) is briefly summarized here. It estimates changes

in the value and price of residential land for the 379 German counties (”Landkreise”)

from 2014 to 2018 by combining data from several publicly available sources for

academic researchers. In doing so, a database for the cost of housing structures and

residential land values at the county-level is built. The framework of the approach

used is that of Davis and Heathcote (2007), who decompose house value into the

value of the structure and land value on the aggregate level for the U.S. Some of the

results from Braun and Lee (2021) lend support to this papers’ spatial analysis. For

example, it shows that residential land price has become relatively more expensive in

the majority of German counties. Moreover, the counties around urban centers such as

Munich, Stuttgart, Berlin, Hamburg, Dresden, and the Ruhr area cities experienced

the highest land price increases. However, we also note that, in general, an upward

shift in home values, land values, and residential land share occurred in almost every

state.

We use annual house price indexes for single- and double-family houses from

vdpResearch at the county and independent city level available for the years 2007-

2018 based on transaction data. I control for several county-level characteristics in

different model specifications (Table 14). First, we use the following variables to

measure the agglomeration economies of each county that are known to generate

local and network externalities: the counties’ land area in km2, its median income, and

population density (Gong et al., 2020). The latter is calculated by dividing county’s

population by its land area in km2 in a given year. That is, population density is

equal to 100 in a county with 100 individuals per km2.13 Second, we include county-

specific natural and economic characteristics in different model specifications. As an

indicator for the environmental amenities of a city, we include the green residential

area that is used for recreational purposes divided by a county’s land area in km2

(green coverage). We measure amenities of a county in terms of history and culture

with the number of available accommodation facilities in that county (e.g., hotels,

etc.). Moreover, we include the housing stock of single and double family housing as

a measure of housing supply and the arable land per km2 of land area to measure

for the restrictiveness of housing supply (Gyourko et al., 2013; Gong et al., 2020).

13. As land values(/house prices) and population are usually determined simultaneously,

population density could cause endogeneity. To circumvent this problem, we use one-year lagged

population density.
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Mean Std.Dev. Min Max

House price index 117.5 14.33 88.64 189.5

Land value per m2 (Braun and Lee, 2021) 252.2 255.3 0.987 2184.2

Land value per m2 (Vacant land ready for
construction)

175.3 231.3 8.960 2737.8

Population density (person per km2) 516.0 702.0 35.78 4736.1

Median income14 3012.5 455.1 1961.8 4896.9
Unemployment rate 5.605 2.629 1.300 15.40

Housing starts15 310.1 255.2 10 2708
Open accomodation facilities 131.3 152.0 5 1398
Green coverage (percent of ’green’ recreation
area within residential areas)

0.0150 0.0207 0 0.121

Land area (km2) 931.5 722.4 40.02 5495.6
Total housing stock 48924.3 32291.1 6977 326882
Housing stock (Single family houses) 32650.8 20562.1 4235 169251
Housing stock (Double family houses) 8081.0 5250.1 762 30681
Construction cost index 101.3 10.74 65.20 160.3

Table 1. Descriptive statistics

Finally, we use the construction cost, income, and unemployment rate as measures for

a counties’ economic situation as control variables. The data and sources are described

in detail in the Appendix in Table A.1. Descriptive statistics are provided in Table 1.

5. Estimation Results

We focus on the first-order contiguity matrix16 estimation results for land values

as spatial baseline results. We estimate the models outlined in Section 4 for the

total of 378 counties, 314 counties in the old Federal States, 64 counties in the new

Federal States, and the Big 7 German cities, including their surrounding counties.

For expositional purpose, we present Figure 5 that shows the counties assigned to

each Tier and Table 2 that presents the number of total counties within Tiers 1-3.17

As we use an annual panel data set for German counties from 2014-2018 we need

to consider both time and cross effects in the estimation methods. However, we only

15. Median of gross financial wages of full-time workers with compulsory social insurance.

16. Construction permits of new residential buildings and apartments in residential buildings,

annual sum.

16. To construct spatial weight matrices and maps in this paper, the shape files with coordinates

on German states and counties from Bundesamt für Kartographie und Geodäsie, Frankfurt am

Main (GeoBasis-DE / BKG) (2019) are used.

17. The states highlighted in red in the map in the upper right corner of Figure 5 denote

former East Germany. For a detailed representation of the counties assigned in each tier for the 7

agglomerations, refer to Table A.3 in the Appendix, where counties highlighted in red are missing

in the dataset of Braun and Lee (2021) and are therefore not included in the estimation.
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TextText

Top 8 Cities and surrounding counties

Tier 1 Tier 3Tier 2

Hamburg

Berlin

Leipzig

Cologne/
Düsseldorf

Stuttgart

Frankfurt
 am Main

Munich

Figure 5. Top 7 agglomerations and surrounding counties

City no. of counties
Berlin 21
Munich 19
Hamburg 19
Cologne/ Düsseldorf 28
Frankfurt am main 22
Leipzig 18
Stuttgart 15

Table 2. Sum of counties in Tier 1-3 for each of the Big 7 cities

account for county fixed effects in the estimations for two reasons.18 First, we observe

slight heterogeneity over time due to the short time period. Figures A.1 to A.3 19 in the

Appendix show only little variation in the time-varying explanatory variables by the

state over time. Second, including a set of time dummies in column (2) in Table A.6,

we find time dummies to be insignificant at all common significant levels except for the

year 2018. The results from the F −Test on joint significance of the time variables also

do not reject the null that they together are not different from zero (p− value= 0.27).

Moreover, comparing random and fixed effects estimation results with the Hausman

test, we also reject the use of random effects (p− value= 0.00). To circumvent various

serial autocorrelation issues for short panels, we use the transformation approach

18. Omitting time fixed effects could lead to a significant upward bias in the spatial lag’s coefficient

(Lee and Yu, 2010b; Halleck Vega and Elhorst, 2015).

19. The data and sources are described in detail in the Appendix in Table A.1.



Braun and Lee 18

maximum likelihood (ML) estimation with county fixed effects as in Lee and Yu

(2010a).20

5.1. Spatial correlation of land and housing prices

Table 3 shows global Moran’s I statistics that measure the spatial correlations for

house and land prices in 2014. The first correlations use the first-order contiguity and

inverse distance weight matrix. Other spatial correlations use three binary weight

matrices that assign a weight of one if two counties are located within a certain

distance and 0 otherwise. The distance bands for the correlations we use are 0-60km,

60-120km, and 120-180km to reflect the distances between Tier levels. Columns (1)

and (2) show a significant positive auto-correlation both in house and land prices, that

diminishes with increasing distance of neighboring counties. These spatial correlations

lend informal for endogenous interaction of house and land prices.

Other explanatory variables also display similar spatial correlation patterns. Table

3 also provides the global spatial cross-correlation coefficient by Chen (2015), Rc. If

exogenous spillover effects in land and housing markets exist, one would expect spatial

cross-correlation between housing and land markets with agglomeration variables. We

find significantly positive cross-correlations between a county’s land and house prices

and neighboring counties’ median income and population density. However, especially,

the cross-correlation with population density quickly vanishes with distance. The land

area is negatively cross-correlated with both house and land prices. These spatial

correlation patterns also show informal evidence for exogenous spillover effects.

5.2. Non-spatial estimation results

Baseline results for Germany are displayed in Tables 4 and 5. Tables 6 and 7 compare

the Spatial Durbin Model results for West and former East Germany and the Big 7

Agglomerations.

We first estimate a non-spatial model as a benchmark. Column (1) of Table 4

reports the estimation results for the non-spatial model accounting for fixed effects.

In column (1), all coefficients are statistically significant on the 1 or 10% significance

level and have the expected sign. Except for the coefficient on green coverage, we

would expect the opposite sign as green coverage proxies local amenities. However,

green coverage could also indicate a restriction on available land to build. A city with

a higher median income and higher population density is likely to have higher land

values, ceteris paribus. Besides income and population density, the variable land area

20. Lee and Yu (2010a) introduce the bias correction procedures for Spatial Error Model (SEM),

SDM, SAR and SDEM models to correct for biased parameter estimates in models with spatial

fixed effects (and time fixed effects).
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FE SLX SAR SDM
main
log(median income) 3.08∗∗∗ 2.52∗∗∗ 2.58∗∗∗ 2.56∗∗∗

(23.42) (11.63) (16.72) (10.76)

log(Lag Population density (person per km2)) 4.30∗∗∗ 3.34∗∗∗ 3.70∗∗∗ 3.38∗∗∗

(15.74) (8.98) (12.30) (8.28)

green coverage -6.98∗ -7.26∗∗∗ -7.11∗∗∗ -7.18∗∗∗

(-7.04) (-7.42) (-6.64) (-6.68)

log(construction cost index) -1.09∗∗∗ -1.17∗∗∗ -1.19∗∗∗ -1.20∗∗∗

(-10.78) (-11.65) (-10.91) (-10.90)

log(arable land (sqkm) per capita) -0.61∗∗∗ -0.63∗∗∗ -0.58∗∗∗ -0.59∗∗∗

(-3.49) (-3.68) (-3.09) (-3.12)

log(land area (km2)) 3.90∗∗∗ 2.34 2.94∗ 2.51
(2.68) (1.60) (1.86) (1.57)

F
log(median income) 0.10∗∗ 0.01

(2.63) (0.26)

log(Lag Population density (person per km2)) 0.37∗∗∗ 0.15
(4.19) (1.47)

log(Land value per m2 (Braun,Lee (2021))) 0.05∗∗∗ 0.04∗∗∗

(9.99) (7.21)
N 1890.00 1890.00 1890.00 1890.00
R2 0.516 0.529 0.522 0.99/0.524
Log-Likelihood 1654.2 1679.8 1680.1 1682.3

t statistics in parentheses
dependent variable: log(landvalue per m2) Braun&Lee (2021)
spatial weight matrix: first order contiguity
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4. Baseline estimation results - Germany

per km2 that is also supposed to measure agglomeration economies has a statistically

significant effect on land prices. If population density increases by one percent, land

value per m2 increases land values by 4.3 percent, ceteris paribus. An increase in land

area per km2 by one percent drives up land values by 3.08 percent. If arable land

per capita increases by one percent, the land price per m2 decreases by 0.61 percent.

In other words, a less restrictive housing supply is associated with lower land values.

Lastly, the independent variables in the model specification (FE) explain around 52

percent of the cross-county land price variation.

5.3. Spatial estimation results

Despite the SDM model being the main model of interest, the first part of this section

is divided by the type of spillover effects: First, agglomeration effects are discussed

in light of the SLX model, followed by endogenous spillover effects in SDM and

SAR models. The subsequent parts focus on the difference in direct and indirect

interactions, diagnostics, estimations for the Top 7 agglomerations and house price

index as an alternate dependent variable.
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SLX SAR SDM
direct
log(median income) 2.52∗∗∗ 2.62∗∗∗ 2.60∗∗∗

(11.63) (17.11) (11.10)

log(Lag Population density (person per km2)) 3.34∗∗∗ 3.75∗∗∗ 3.48∗∗∗

(8.98) (12.44) (9.04)
indirect
log(median income) 0.10∗∗∗ 0.95∗∗∗ 0.85∗∗∗

(2.63) (7.48) (3.56)

log(Lag Population density (person per km2)) 0.37∗∗∗ 1.35∗∗∗ 1.99∗∗∗

(4.19) (6.70) (3.43)
Observations 1890 1890 1890

t statistics in parentheses
dependent variable: log(landvalue per m2) Braun&Lee (2021)
spatial weight matrix: first order contiguity
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5. Baseline estimation results - Germany (direct and indirect effects)

5.3.1. Exogenous spillover effects: SLX model. For the SLX model, the choice of the

spatial weights matrix is important as it determines the structure of spatial spillovers

across counties. Although LeSage and Pace (2014) suggest that spatial estimation

results are not as sensitive to the choice of spatial weights as commonly believed

in literature, we capture the nature of spatial interaction with two spatial weight

matrices. First, we estimate the spatial models outlined in Section 4 using a first-order

binary contiguity matrix as the network externalities are highest among neighboring

counties.21 Second, to allow for network externalities between counties further apart,

the models are re-estimated using an inverse distance matrix (See Section 5.4.2).

Inverse distance matrices depict spatial interaction by weights that diminish with

distance.

We find empirical support for the presence of network externalities for the model

in column (2). The coefficients on the spatial lag of a counties’ population density and

median income are positive and significant. For example, an increase in the population

density in a neighboring county of one percent increases land values per m2 in the

county of interest by 0.37 percent, ceteris paribus. The direct effects of median income

and population density are smaller compared to the fixed effects specification (1). For

income, the coefficient falls by 0.56, and the coefficient on population density falls

by 0.96. The other explanatory variables, if at all, change only slightly and are all

still highly significant in model (2) compared to the non-spatial model specification.

The effect of a county’s scale is lower in column (2) compared to column (1) and

statistically insignificant.

21. Table 3 shows both higher auto-correlations and cross-correlations coefficients for the global

Moran’s I statistics using a first-order contiguity matrix compared to an inverse distance matrix.
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Although we present statistical support for network spillover effects in land values,

the spatial dependence may also be caused by pure spatial spillovers in land values.

For this reason, we compare the SLX results with the SAR and SDM models below.

5.3.2. Endogenous spillover effects: SAR and SDM models. If spatial dependence is

still present after accounting for network externalities, it can be attributed to pure

land value spillovers or common shocks. Consequently, if pure land value spillovers

cause the remaining spatial dependence, then the SDM would be a more valid

specification.

Column 4 and 5 in Tables 4 and 5 show the QMLE estimates of the SAR and the

SDM models for the first order contiguity matrix. The significant estimated coefficient

(0.05 and 0.04 for the SAR and SDM, respectively) on WYt in both columns (3) and

(4) support pure land value spillovers.

Except for land area, the coefficients in the SAR model (3) and SDM model

(4) remain highly significant and increase either slightly or stay almost the same

compared to column (2). When including exogenous spillover effects into the model

in column (4), the coefficient estimate of the spatial lags for median income and

population density becomes insignificant. However, as discussed in Section 4.1, this

interpretation may be misleading in the Spatial Durbin Model as there might be

some network effects, which are more discussed in the following section. Compared

to column (2), the SAR model slightly decreases explanatory power but comparing

models (4) and (3), we find the SDM to be slightly superior. Moreover, the Likelihood

Ratio (LR) tests, where the SDM is defined as the unrestrictive model, clearly reject

the null-hypothesis that both the SLX and SAR are significantly preferred to the

SDM.22

5.3.3. Network effects. As discussed in Section 4.1, spatial regressors’ point

estimates in spatial models (2)-(4) do not exactly show the direct and indirect

spillover effects. We use the partial derivative approach to calculate direct and indirect

spatial effects (See Table 5). It shows both evidence for a direct and indirect effect of

population density and median income on a counties’ land value. For example, a one

percent increase in median income and population density in neighboring counties

increases land values in the SLX model in a given county by 0.10 and 0.37 percent,

respectively, ceteris paribus. On the other hand, the total (direct plus indirect) effects

of a one percent increase in median income and population density in neighboring

counties increase land values in a given county for median income and population

density on land prices are 2.62 percent and 3.71 percent, respectively.

22. For example, the likelihood ratio test of LR = 2ln
(
unrestrictive
restrictive

)
for SLX vs. SDM gives

LR = 2 (1682.3 − 1679.8) = 5 with the critical χ2
0.95,8 = 2.73
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Overall, the direct effects of population density and median income stay relatively

robust across non-spatial and spatial models. In contrast, spillover effects vary

between model specifications. Taking a closer look at Table 5, the cross-county

spillover effects for median income and population density are higher in the SAR

and SDM models compared to model (2). The increase in the spillover effects of

median income and population density from the SLX to SAR model suggests that

besides network externalities, pure interaction mechanisms also play a role in land

value determination.

Taken the results of all models together, we conclude that cross-county

dependencies in land values are driven not only by network spillovers but also by

pure land value spillovers. However, the magnitude and form of the underlying spatial

interaction vary between the three types of spillovers.

5.3.4. Diagnostics. For consistency, the QMLE estimation by Lee and Yu (2010a)

assumes residuals to be independent and identically distributed with Normal zero

mean and finite (4 + ζ) th moment, where ζ > 0. Hence, this section tests for the

residual assumptions in the baseline specification.

To check for normality of the error terms, we use Pearson’s Chi-squared goodness-

of-fit test. The test cannot reject the null of normality of the error terms for all

three spatial models (SLX, SAR, SDM) at the 5% significance level. The spatial

autocorrelation among the residuals is measured by Moran’s I statistics for each

of the years 2014-2018. We conduct this statistics to check whether the models

capture the spatial correlation structure of the data. The Moran’s I for the first

order contiguity matrix does not significantly differ from zero at a 5% significance

level for all years in the three spatial models. This result indicates that the models

entirely capture the spatial correlation structure. To check for autocorrelation among

the residuals, we conduct a Durbin-Watson test for each of the three models. Again,

the test cannot reject the null that there is no autocorrelation in each case for a

5% significance level. Finally, the Breusch-Pagan test and the White test are used

to check for homoscedasticity. Both tests do not reject the null of constant variance.

Hence, there is no evidence for heteroskedasticity in the spatial models’ residuals.

Given the conducted residual diagnostics, we conclude that the assumptions for

consistency mentioned above are fulfilled and that the models capture the spatial

correlation structure within the data quite well.

5.3.5. City comparison and West-East disparities. This section discusses the Spatial

Durbin Model’s estimation results for 314 counties in the old Federal States, 64

counties in the new Federal States, and the Big 7 German cities, including their

surrounding counties. We find three main results from Tables 6 and 7. First, we do

not find significant spillover effects in land values (W*log(land value per m2)), except
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for East German counties and Cologne/Düsseldorf as well as a negative spillover

effect for Hamburg. Second, Table 7 shows that there are significant direct effects of

median income and population density in all regions except for population density in

Hamburg. These direct agglomeration effects are stronger in the old Federal States

than the new federal states, at least for median income. The Top 7 agglomerations’

results further support this result. The estimated coefficients on median income are

higher (and positive) for agglomerations in former West Germany. No clear pattern

is observed for population density for the Top 7 cities. Third, Table 7 also shows that

there is some empirical support for network externalities and spatial spillovers in land

values. While for West German counties, we find spillover effects in median income,

we find a significant negative coefficient on the spatial lag of population density for

East German counties. The positive income spillover effect is also present in 3 of

5 West German agglomerations considered and Leipzig. While there is evidence for

negative spillover effects of population density for all East German counties. This

effect is significantly positive for Berlin on the 10 percent significance level. This

result is economically sensible as Berlin is the largest agglomeration in the former

East German area.23 The negative externality of a high population density county on

neighboring counties’ land prices may be explained by a lack of large agglomerations

in former East German counties. A lower spatial correlation between land values and

population density compared to median income is also reflected in Table 3.

5.3.6. Alternate Dependent Variable: log(HPI). One of the main research questions

is to analyze whether land values, besides construction costs, are the driving

component in house prices.24 To address this question, the models from Section

4 are re-estimated with log(HPI) as the dependent variable (Tables 8 and 9) and

including log(land value per m2) as an explanatory variable (Tables 10 and 11). The

estimation results support land values to be a major determinant in housing prices.

The coefficients of interest in Tables 8 and 9 are much smaller compared to those in

Tables 4 and 5. Additionally, controlling for log(land value per m2) the coefficients

further decrease in Tables 10 and 11 and the coefficient of log(land value per m2)

is positive and statistically significant on the 1 percent significance level in models

(1)-(4). Controlling for the log(land value per m2) in the estimation on house prices,

23. Berlin as the German capital is denoted as West German, although some parts of Berlin were

located in East Germany before 1990.

24. Davis and Heathcote (2007); Davis and Palumbo (2008) and Braun and Lee (2021)
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ü
ss

el
d

o
rf

lo
g
(L

a
n

d
v
a
lu

e
p

er
m

2
(B

ra
u

n
,L

ee
(2

0
2
1
))

)
lo

g
(M

ed
ia

n
in

co
m

e)
3
.4

6
∗∗

∗
2
.7

9
∗∗

∗
1
.7

8
∗∗

∗
2
.2

1
∗∗

∗
2
.0

2
∗∗

∗
3
.2

9
∗∗

∗
2
.9

3
∗∗

∗
1
.6

5
∗∗

∗
3
.1

9
∗∗

∗

(1
8
.2

1
)

(3
.9

6
)

(5
.2

4
)

(8
.7

2
)

(3
.6

2
)

(1
0
.2

1
)

(7
.9

6
)

(6
.0

3
)

(1
1
.6

6
)

lo
g
(L

a
g

P
o
p

u
la

ti
o
n

d
en

si
ty

(p
er

so
n

p
er
k
m

2
))

2
.0

1
∗∗

∗
5
.1

0
∗∗

∗
3
.3

1
∗∗

∗
2
.7

8
∗∗

∗
1
.3

3
1
.0

8
2
.7

4
∗∗

2
.1

6
∗∗

∗
0
.3

5
(6

.1
7
)

(3
.9

5
)

(4
.9

8
)

(5
.1

2
)

(0
.8

8
)

(1
.5

1
)

(3
.9

7
)

(3
.4

4
)

(1
.1

3
)

G
re

en
co

v
er

a
g
e

-1
.2

5
-1

1
.3

3
∗∗

∗
5
.5

5
2
.1

7
2
.4

8
-1

.3
3

-3
3
.5

9
∗∗

∗
-1

.8
5

-1
3
.8

3
(-

1
.0

6
)

(-
4
.1

6
)

(0
.6

9
)

(0
.6

8
)

(0
.3

1
)

(-
0
.6

9
)

(-
2
.8

3
)

(-
1
.5

4
)

(-
1
.2

1
)

lo
g
(C

o
n

st
ru

ct
io

n
co

st
in

d
ex

)
-1

.0
9
∗∗

∗
-3

.0
6
∗∗

∗
-1

.0
4
∗∗

∗
-0

.4
6
∗∗

∗
-1

.4
1
∗∗

∗
-0

.3
0
∗

-0
.6

6
∗∗

∗
-1

.6
1
∗∗

∗
-0

.5
1
∗∗

∗

(-
1
3
.2

8
)

(-
6
.4

9
)

(-
5
.1

8
)

(-
3
.9

3
)

(-
6
.5

0
)

(-
1
.9

1
)

(-
2
.9

6
)

(-
8
.3

1
)

(-
3
.4

9
)

lo
g
(a

ra
b

le
la

n
d

(s
q
k
m

)
p

er
ca

p
it

a
)

-0
.5

0
∗∗

∗
-1

.5
0
∗∗

-0
.1

5
-0

.3
8
∗∗

-1
.5

0
∗∗

∗
-0

.0
5

-1
.6

9
∗

-0
.4

0
-1

.4
5

(-
3
.3

0
)

(-
2
.3

8
)

(-
0
.1

9
)

(-
2
.3

7
)

(-
3
.1

8
)

(-
0
.1

8
)

(-
1
.8

1
)

(-
0
.5

7
)

(-
0
.6

1
)

lo
g
(L

a
n

d
a
re

a
(k
m

2
))

1
.9

1
∗

1
5
.3

2
2
0
.4

2
-9

8
.3

0
∗∗

6
.4

8
8
.4

0
3
8
.6

2
-1

0
.4

1
2
.4

7
(1

.7
4
)

(0
.8

7
)

(1
.1

0
)

(-
2
.1

1
)

(0
.8

6
)

(0
.6

7
)

(1
.0

2
)

(-
0
.9

9
)

(0
.7

3
)

F lo
g
(M

ea
n

in
co

m
e)

0
.1

5
∗∗

∗
0
.0

4
-0

.0
1

0
.0

2
0
.8

3
∗∗

∗
-0

.2
3
∗∗

0
.1

8
0
.0

7
0
.0

2
(3

.3
0
)

(0
.3

0
)

(-
0
.1

5
)

(0
.2

6
)

(3
.9

6
)

(-
2
.5

1
)

(1
.2

7
)

(1
.2

3
)

(0
.8

8
)

lo
g
(P

o
p

u
la

ti
o
n

d
en

si
ty

(p
er

so
n

p
er
k
m

2
))

0
.0

5
-1

.4
2
∗∗

0
.5

4
∗

-0
.0

3
-0

.0
5

0
.1

0
-0

.0
6

0
.0

8
-0

.0
1

(0
.6

1
)

(-
2
.4

4
)

(1
.8

3
)

(-
0
.1

7
)

(-
0
.1

2
)

(0
.4

5
)

(-
0
.2

9
)

(0
.2

8
)

(-
0
.1

0
)

lo
g
(L

a
n

d
v
a
lu

e
p

er
m

2
(B

ra
u

n
,L

ee
(2

0
2
1
))

)
0
.0

1
0
.0

3
∗

0
.0

2
0
.0

4
-0

.0
8
∗∗

0
.0

8
∗∗

∗
0
.0

0
2

0
.0

4
0
.0

4
(0

.7
6
)

(1
.9

5
)

(0
.6

5
)

(1
.4

7
)

(-
2
.3

4
)

(4
.2

5
)

(0
.0

8
)

(1
.2

4
)

(1
.0

2
)

N
1
5
7
0
.0

0
3
2
0
.0

0
1
0
5
.0

0
9
5
.0

0
9
5
.0

0
1
4
0
.0

0
1
1
0
.0

0
9
0
.0

0
7
5
.0

0
R

2
0
.7

5
4

0
.2

8
0

0
.8

1
1

0
.9

7
4

0
.8

4
5

0
.9

1
2

0
.9

1
4

0
.7

0
7

0
.9

7
2

L
o
g
-L

ik
el

ih
o
o
d

2
0
3
5
.7

1
1
5
.8

1
8
7
.8

2
4
3
.1

1
5
3
.5

2
9
0
.7

2
0
7
.4

1
6
9
.1

1
9
1
.5

t
st

a
ti

st
ic

s
in

p
a
re

n
th

es
es

d
ep

en
d

en
t

v
a
ri

a
b

le
:

lo
g
(l

a
n

d
v
a
lu

e
p

er
m

2
)

B
ra

u
n

&
L

ee
(2

0
2
1
)

sp
a
ti

a
l

w
ei

g
h
t

m
a
tr

ix
:

fi
rs

t
o
rd

er
co

n
ti

g
u

it
y

∗
p
<

0
.1

,
∗∗

p
<

0
.0

5
,
∗∗

∗
p
<

0
.0

1

T
a
b
l
e
6
.

S
p
a
ti

a
l

D
u
rb

in
M

o
d
el

-
B

a
se

li
n
e

es
ti

m
a
ti

o
n

re
su

lt
s

fo
r

T
o
p

7
ci

ti
es

a
s

w
el

l
a
s

W
es

t
a
n
d

E
a
st

G
er

m
a
n
y



Braun and Lee 26

W
es

t
E

a
st

B
er

li
n

M
u

n
ic

h
H

a
m

b
u

rg
C

o
lo

g
n

e/
D

u
ss

el
d

o
rf

F
ra

n
k
fu

rt
L

ei
p

zi
g

S
tu

tt
g
a
rt

d
ir

ec
t

lo
g
(M

ed
ia

n
in

co
m

e)
3
.4

5
∗∗

∗
2
.8

3
∗∗

∗
1
.8

1
∗∗

∗
2
.2

2
∗∗

∗
1
.8

0
∗∗

∗
3
.3

0
∗∗

∗
2
.9

4
∗∗

∗
1
.6

7
∗∗

∗
3
.2

2
∗∗

∗

(1
7
.7

1
)

(4
.1

6
)

(5
.5

1
)

(8
.8

5
)

(2
.9

2
)

(1
0
.4

7
)

(7
.8

9
)

(6
.0

6
)

(1
2
.2

7
)

lo
g
(L

a
g

P
o
p

u
la

ti
o
n

d
en

si
ty

(p
er

so
n

p
er
k
m

2
))

2
.0

2
∗∗

∗
4
.9

7
∗∗

3
.4

0
∗∗

∗
2
.8

1
∗∗

∗
1
.3

3
1
.2

0
∗

2
.7

2
∗∗

∗
2
.2

0
∗∗

∗
0
.3

5
∗

(6
.2

7
)

(3
.8

1
)

(5
.2

6
)

(5
.2

5
)

(0
.8

1
)

(1
.6

6
)

(3
.9

1
)

(3
.3

8
)

(1
.1

4
)

in
d

ir
ec

t
lo

g
(M

ed
ia

n
in

co
m

e)
0
.8

8
∗∗

∗
0
.6

9
0
.1

0
0
.6

4
2
.2

8
∗∗

∗
0
.4

4
0
.8

3
∗

0
.6

4
∗∗

0
.6

8
∗∗

(4
.6

2
)

(1
.1

5
)

(0
.2

5
)

(1
.5

6
)

(3
.0

8
)

(0
.8

6
)

(1
.6

7
)

(2
.1

3
)

(2
.1

8
)

lo
g
(L

a
g

P
o
p

u
la

ti
o
n

d
en

si
ty

(p
er

so
n

p
er
k
m

2
))

0
.3

3
-6

.6
3
∗∗

2
.8

1
∗

0
.4

8
-0

.5
4

1
.4

4
-0

.2
0

0
.8

3
0
.0

3
(0

.7
8
)

(-
2
.1

8
)

(1
.9

3
)

(0
.6

8
)

(-
0
.3

2
)

(1
.1

3
)

(-
0
.2

3
)

(0
.4

9
)

(0
.0

5
)

O
b

se
rv

a
ti

o
n

s
1
5
7
0

3
2
0

1
0
5

9
5

9
5

1
4
0

1
1
0

9
0

7
5

t
st

a
ti

st
ic

s
in

p
a
re

n
th

es
es

d
ep

en
d

en
t

v
a
ri

a
b

le
:

lo
g
(l

a
n

d
v
a
lu

e
p

er
m

2
)

B
ra

u
n

&
L

ee
(2

0
2
1
)

sp
a
ti

a
l

w
ei

g
h
t

m
a
tr

ix
:

fi
rs

t
o
rd

er
co

n
ti

g
u

it
y

∗
p
<

0
.1

,
∗∗

p
<

0
.0

5
,
∗∗

∗
p
<

0
.0

1

T
a
b
l
e
7
.

S
p
a
ti

a
l

D
u
rb

in
M

o
d
el

-
B

a
se

li
n
e

es
ti

m
a
ti

o
n

re
su

lt
s

fo
r

T
o
p

7
ci

ti
es

a
s

w
el

l
a
s

W
es

t
a
n
d

E
a
st

G
er

m
a
n
y

(d
ir

ec
t

a
n
d

in
d
ir

ec
t

eff
ec

ts
)



Braun and Lee 27

the coefficient on green-coverage now has the expected positive sign and is either

statistically significant on a 1 or 5% significance level in the spatial models (2)-(4).25

We complement this analysis by the Spatial Durbin Model estimation results for

314 counties in the old Federal States, 64 counties in the new federal states, and

the Big 7 German cities including their surrounding counties (Tables 12 and 13).

As for the total German sample, the coefficients are smaller than those with land

value as a dependent variable. Compared to former East Germany, land prices have

a higher impact on house prices in the old Federal States on the county of interest

itself but not on neighboring counties. We only find positive statistically significant

indirect spillover effects of land value on house prices for Berlin, Leipzig, and all

new Federal States’ counties. A county’s land value has a statistically positive effect

on the county’s house price in all Top 7 agglomerations, ceteris paribus. However,

controlling for land prices in this house price estimation, we only find occasional

evidence for agglomeration spillover effects. We even find a negative agglomeration

spillover effect of median income on house prices when controlling for log(land value

per m2) both among former East and West German counties. For population density,

network effects are only significant for the old federal states, Berlin and Frankfurt on

the 1% and for Leipzig on the 10% significance level. The next section discusses the

robustness of the results using different explanatory variables and the inverse distance

matrix.

5.4. Robustness Analysis

In this section, we focus on land values as the dependent variable and evaluate the

robustness of the results in terms of two factors: different sets of explanatory variables

and the inverse distance matrix as spatial weighting pattern. Moreover, we also discuss

the results in light of different land value measurements for Germany. The results

estimated using the land values estimated in Braun and Lee (2021) are compared with

estimations using the land prices on vacant land sales of land ready for construction.

5.4.1. Control variables. We re-estimate the models (1)-(4) using different sets of

explanatory variables. Tables 14 and 15 present the results for the SDM model, with

the baseline specification in column (1).

In column (2), we remove the log(land area km2). Column (3) repeats column (1)

and includes the spatial lag of log(land area km2). Column (4) additionally controls

25. While the log(construction cost index) coefficient in the land price estimation was negative

by construction, it now is strongly statistically significant and positive. See Section 5.4.3 for more

discussion.
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FE SLX SAR SDM
main
log(median income) 1.14∗∗∗ 1.06∗∗∗ 0.79∗∗∗ 1.11∗∗∗

(41.74) (25.13) (24.62) (27.03)

log(Lag Population density (person per km2)) 2.40∗∗∗ 1.72∗∗∗ 1.98∗∗∗ 1.66∗∗∗

(42.47) (23.80) (34.11) (23.62)

green coverage 0.002 -0.12 -0.16 -0.14
(0.01) (-0.63) (-0.81) (-0.77)

log(construction cost index) 0.27∗∗∗ 0.23∗∗∗ 0.21∗∗∗ 0.20∗∗∗

(12.87) (12.05) (10.16) (10.48)

log(arable land (sqkm) per capita) -0.15∗∗∗ -0.16∗∗∗ -0.16∗∗∗ -0.14∗∗∗

(-4.26) (-4.74) (-4.63) (-4.38)

log(land area (km2)) 1.77∗∗∗ 0.87∗∗∗ 1.20∗∗∗ 1.20∗∗∗

(5.88) (3.08) (4.09) (4.33)
F
log(median income) 0.01 -0.12∗∗∗

(0.79) (-13.10)

log(Lag Population density (person per km2)) 0.25∗∗∗ -0.04∗

(14.57) (-1.91)

log(House price index) 0.05∗∗∗ 0.09∗∗∗

(20.68) (19.92)
N 1890.00 1890.00 1890.00 1890.00
R2 0.916 0.928 0.926 0.930
Log-Likelihood 4631.7 4779.7 4866.03 4961.8

t statistics in parentheses
dependent variable: log(house price index)
spatial weight matrix: first order contiguity
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8. House price estimation - Germany

SLX SAR SDM
direct
log(median income) 1.06∗∗∗ 0.80∗∗∗ 1.10∗∗∗

(25.13) (26.00) (27.36)

log(Lag Population density (person per km2)) 1.72∗∗∗ 2.01∗∗∗ 1.73∗∗∗

(23.80) (34.15) (24.96)
indirect
log(median income) 0.01 0.28∗∗∗ -0.25∗∗∗

(0.79) (17.85) (-4.12)

log(Lag Population density (person per km2)) 0.25∗∗∗ 0.71∗∗∗ 1.21∗∗∗

(14.57) (15.23) (8.42)
Observations 1890 1890 1890

t statistics in parentheses
dependent variable: log(house price index)
spatial weight matrix: first order contiguity
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9. House price estimation - Germany (direct and indirect effects)

for the log(number of accommodation facilities in a county), the log(housing stock of

single-/double family houses)) and unemployment rates.

We find most of the estimated coefficients of the baseline model (1) to be robust

throughout the 4 specifications. But, the controls for tourism, housing stock and

unemployment in a county have no significant impact on the dependent variable.
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FE SLX SAR SDM
main
log(Land value per m2 (Braun,Lee (2021))) 0.10∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.07∗∗∗

(24.03) (21.01) (18.82) (18.09)

log(median income) 0.87∗∗∗ 0.86∗∗∗ 0.60∗∗∗ 0.92∗∗∗

(30.57) (22.69) (19.68) (23.53)

log(Lag Population density (person per km2)) 1.97∗∗∗ 1.45∗∗∗ 1.70∗∗∗ 1.43∗∗∗

(37.44) (22.71) (31.27) (21.76)

green coverage 0.70∗∗∗ 0.51∗∗∗ 0.42∗∗ 0.40∗∗

(3.86) (3.03) (2.33) (2.35)

log(construction cost index) 0.38∗∗∗ 0.32∗∗∗ 0.30∗∗∗ 0.29∗∗∗

(20.06) (18.37) (15.91) (16.04)

log(arable land (sqkm) per capita) -0.09∗∗∗ -0.09∗∗∗ -0.11∗∗∗ -0.10∗∗∗

(-2.93) (-3.20) (-3.53) (-3.24)

log(land area (km2)) 1.38∗∗∗ 0.73∗∗∗ 0.98∗∗∗ 0.98∗∗∗

(5.22) (2.97) (3.70) (3.87)
F
log(Land value per m2 (Braun,Lee (2021))) 0.01∗∗∗ 0.002

(9.36) (1.35)
log(median income) -0.03∗∗∗ -0.11∗∗∗

(-4.07) (-12.62)

log(Lag Population density (person per km2)) 0.15∗∗∗ -0.03
(9.47) (-1.42)

log(House price index) 0.04∗∗∗ 0.08∗∗∗

(18.80) (15.26)
N 1890.00 1890.00 1890.00 1890.00
R2 0.936 0.946 0.943 0.948
Log-Likelihood 4884.5 5054.8 5063.3 5155.9

t statistics in parentheses
dependent variable: log(house price index)
spatial weight matrix: first order contiguity
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 10. House price estimation - Germany (including log(Land value per m2))

SLX SAR SDM
direct
log(Land value per m2 (Braun,Lee (2021))) 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗

(21.01) (19.65) (19.18)

log(median income) 0.86∗∗∗ 0.60∗∗∗ 0.89∗∗∗

(22.69) (20.48) (24.01)

log(Lag Population density (person per km2)) 1.45∗∗∗ 1.72∗∗∗ 1.46∗∗∗

(22.71) (31.74) (23.36)
indirect
log(Land value per m2 (Braun,Lee (2021))) 0.01∗∗∗ 0.02∗∗∗ 0.07∗∗∗

(9.36) (12.96) (5.51)

log(median income) -0.03∗∗∗ 0.17∗∗∗ -0.40∗∗∗

(-4.07) (15.24) (-7.03)

log(Lag Population density (person per km2)) 0.15∗∗∗ 0.48∗∗∗ 0.71∗∗∗

(9.47) (13.95) (5.69)
Observations 1890 1890 1890

t statistics in parentheses
dependent variable: log(house price index)
spatial weight matrix: first order contiguity
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 11. House price estimation - Germany (including log(Land value per m2); direct and
indirect effects)
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(1) (2) (3) (4)
log(Land value per m2 (Braun,Lee (2021)))
log(median income) 2.56∗∗∗ 2.59∗∗∗ 2.55∗∗∗ 2.54∗∗∗

(10.76) (10.94) (10.74) (9.33)

log(Lag Population density (person per km2)) 3.38∗∗∗ 3.27∗∗∗ 3.43∗∗∗ 3.39∗∗∗

(8.28) (8.12) (8.39) (8.18)

green coverage -7.18∗∗∗ -7.22∗∗∗ -7.28∗∗∗ -7.14∗∗∗

(-6.68) (-6.72) (-6.78) (-6.63)

log(construction cost index) -1.20∗∗∗ -1.20∗∗∗ -1.21∗∗∗ -1.20∗∗∗

(-10.90) (-10.88) (-10.95) (-10.89)

log(arable land (sqkm) per capita) -0.59∗∗∗ -0.55∗∗∗ -0.60∗∗∗ -0.58∗∗∗

(-3.12) (-2.96) (-3.18) (-3.05)

log(land area (km2)) 2.51 2.69∗ 2.54
(1.57) (1.67) (1.58)

log(open accomodation facilities) -0.03
(-0.56)

log (housing stock (single/double family houses)) 0.09
(0.66)

unemployment rate -0.0001
(-0.01)

F
log(median income) 0.01 0.01 0.02 0.01

(0.26) (0.33) (0.51) (0.23)

log(Lag Population density (person per km2)) 0.15 0.18∗ 0.16 0.14
(1.47) (1.91) (1.57) (1.35)

log(Land value per m2 (Braun,Lee (2021))) 0.04∗∗∗ 0.04∗∗∗ 0.04∗∗∗ 0.04∗∗∗

(7.21) (6.63) (6.81) (7.20)

log(land area (km2)) -0.90∗

(-1.65)
N 1890.00 1890.00 1890.00 1890.00
R2 0.524 0.525 0.526 0.524
Log-Likelihood 1682.3 1680.8 1684.0 1682.8

t statistics in parentheses
dependent variable: log(landvalue per m2) Braun&Lee (2021)
spatial weight matrix: first order contiguity
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 14. SDM estimation results for different sets of controls variables - Germany

Thus, they are excluded from the benchmark model. Moreover, Table 15 shows no

evidence for network effects of the size of a county on land values. Due to this fact

and given that explanatory power does not increase significantly from columns 1 and

2, we also exclude the spatial lag of land area.

5.4.2. Inverse distance matrix. As outlined in Section 5.3.1, we further re-estimate

models (FE)-(SDM) using an inverse distance matrix to measure spatial dependence

between counties and also account for spatial dependence between counties that are

geographically further apart. The weight between two counties i and j is calculated

as

wij = 1/dij (9)
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(1) (2) (3) (4)
direct
log(median income) 2.60∗∗∗ 2.64∗∗∗ 2.58∗∗∗ 2.56∗∗∗

(11.31) (11.63) (11.53) (9.62)

log(Lag Population density (person per km2)) 3.45∗∗∗ 3.34∗∗∗ 3.51∗∗∗ 3.46∗∗∗

(8.58) (8.56) (8.43) (8.50)

log(land area (km2)) 2.49
(1.54)

indirect
log(median income) 0.84∗∗∗ 0.78∗∗∗ 0.87∗∗∗ 0.83∗∗∗

(3.52) (3.39) (3.74) (352)

log(Lag Population density (person per km2)) 2.04∗∗∗ 2.20∗∗∗ 2.01∗∗∗ 1.96∗∗∗

(3.60) (3.88) (3.45) (3.18)

log(land area (km2)) -5.18
(-1.48)

Observations 1890 1890 1890 1890

t statistics in parentheses
dependent variable: log(landvalue per m2) Braun&Lee (2021)
spatial weight matrix: first order contiguity
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 15. SDM estimation results for different sets of controls variables - Germany (direct and
indirect effects)

and diminishes with distance d. Results are presented in Tables 16 and 17.

Overall, the results are more or less robust to the specification of the spatial weight

matrix with the first-order contiguity. The estimated coefficients for the explanatory

variables do not change dramatically in terms of significance and size. Except for

log(median income) coefficients are significantly smaller but still significant at the

one percent significance level compared to the baseline specification. However, given

that spatial dependence is now also allowed between counties of higher neighbor-order,

the spatial interaction effects increase in size (See Table 17). The fact that the indirect

spillover effects of median income and population density increase substantially from

the SLX to SAR model suggests that besides network externalities, pure interaction

mechanisms also play an important role in land value determination. However, with

the inverse distance weight matrix specification, there is no evidence for agglomeration

spillovers between counties regarding population density. We even find a negative

effect that is significant on the 10% significance level. This result is not surprising as

it coincides with the Moran’s I cross-correlation measure for population density and

land values in Table 3 that drastically decreases with distance.

5.4.3. Vacant land prices (ready for construction). In the land price estimation

literature, there are several popular approaches to measuring land prices. Based on

the underlying data and methods to estimate land prices, one can argue that each

of the resulting land price indices represents different purposes. In this section, using

the SDM, we compare the spatial analysis for the land values from Braun and Lee

(2021), the house price index from vdpResearch, and the land values based on vacant
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FE SLX SAR SDM
main
log(median income) 3.08∗∗∗ 0.73∗∗∗ 1.46∗∗∗ 1.01∗∗∗

(23.42) (3.59) (9.76) (4.43)

log(Lag Population density (person per km2)) 4.30∗∗∗ 3.20∗∗∗ 2.65∗∗∗ 3.09∗∗∗

(15.74) (10.07) (8.56) (8.80)

green coverage -6.98∗∗∗ -8.01∗∗∗ -7.82∗∗∗ -8.12∗∗∗

(-7.04) (-8.49) (-7.51) (-7.79)

log(construction cost index) -1.09∗∗∗ -1.37∗∗∗ -1.31∗∗∗ -1.35∗∗∗

(-10.78) (-13.98) (-12.30) (-12.46)

log(arable land (sqkm) per capita) -0.61∗∗ -0.43∗∗∗ -0.41∗∗ -0.41∗∗

(-3.49) (-2.59) (-2.21) (-2.25)

log(land area (km2)) 3.90∗∗∗ 3.39∗∗ 2.69∗ 3.29∗∗

(2.68) (2.43) (1.75) (2.14)
inv
log(median income) 3.75∗∗∗ 1.55∗∗∗

(12.53) (3.73)

log(Lag Population density (person per km2)) -1.54∗ -2.80∗∗∗

(-1.89) (-2.91)

log(Land value per m2 (Braun,Lee (2021))) 0.82∗∗∗ 0.68∗∗∗

(25.55) (8.43)
N 1890.00 1890.00 1890.00 1890.00
R2 0.516 0.565 0.446 0.551
Log-Likelihood 1654.2 1775.0 1738.4 1748.2

t statistics in parentheses
dependent variable: log(landvalue per m2) Braun&Lee (2021)
spatial weight matrix: inverse distance
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 16. Estimation results - Germany - Inverse distance matrix

SLX SAR SDM
direct
log(median income) 0.75∗∗∗ 1.47∗∗∗ 1.03∗∗∗

(3.59) (9.74) (4.60)

log(Lag Population density (person per km2)) 3.20∗∗∗ 2.71∗∗∗ 3.09∗∗∗

(10.07) (8.84) (8.73)
indirect
log(median income) 3.75∗∗∗ 6.34∗∗∗ 7.00∗∗∗

(12.53) (4.67) (3.27)

log(Lag Population density (person per km2)) -1.54∗ 11.61∗∗∗ -2.23
(-1.89) (4.86) (-0.76)

Observations 1890 1890 1890

t statistics in parentheses
dependent variable: log(landvalue per m2) Braun&Lee (2021)
spatial weight matrix: inverse distance
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 17. Estimation results - Germany - Inverse distance matrix (direct and indirect effects)

land sales of land ready for construction from the Statistical Offices of the Federal
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Government and the German States.26 Results for the SDM are displayed in Tables

18 and 19.

The main methodological difference between the residential and vacant land prices

is the following. While Braun and Lee (2021) estimate the price of residential land

with a two-step residual approach using listings data from the ImmobilienScout24

website on single-/double-family housing, the vacant land price statistic calculates

a per m2 price of the transaction prices of vacant land sales ready for construction

(Statistisches Bundesamt, 2012).

One can see two noteable results from Tables 18 and 19. First, direct and indirect

spillover effects are larger and more statistically significant for residential land prices

compared to vacant land price estimation results (Table 19). For example, in the

results on the SDM model, if median income increases by one percent, the land

price changes by 2.88 percent or 1.06 percent, respectively, ceteris paribus. We do

not find indirect spatial effects for median income in all specifications in the smaller

sample. However, the spatial spillover effects for population density are also much

more significant using the residential land prices estimates and even insignificant in

the SDM model for the price of vacant land. If population density in a county increases

by 1 percent. In that case, land prices in neighboring counties increase by 2.24 percent,

ceteris paribus, for the SDM using residential land prices. At the same time, there is

no significant indirect effect on vacant land prices. From my perspective, this result

is because the residential land prices denote everything except for the structure’s

replacement cost to the land component in the housing bundle. Hence, the residential

land prices more likely reflect the presence of agglomeration economies/amenities. On

the other hand, we argue that vacant land transactions are more likely to occur in

new development areas that often are located on the outskirts of towns and cities.

Second, by construction, the construction cost index should significantly negatively

impact the residential land prices resulting from the residual approach. However, as

expected, the construction costs have a significant positive effect on the vacant land

prices and house prices.

6. Concluding Remarks

In this paper, we analyze spatial spillover patterns in German land and house prices.

We estimate the SLX, SAR, and SDM model for the total of 378 counties, 314

counties in the old Federal States, 64 counties in the new Federal States, and the

26. As there is no vacant land sales data for some county-year observations, the sample size reduces

to 1520 from 1890. To maintain a balanced panel, we have to remove observations of 74 counties

that have one or more missing county-year observations.
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log(landvalue
per m2)

Braun&Lee
(2021)

log(landvalue
per m2)

(vacant land
sales)

log(house
price index)

SDM SDM SDM
main
log(median income) 2.87*** 1.08*** 1.19***

(11.53) (2.72) (27.68)

log(Lag Population density (person per km2)) 3.45*** 2.10*** 1.63***
(7.95) (3.05) (21.90)

green coverage -7.39*** -0.80 -0.18
(-6.57) (-0.45) (-0.93)

log(construction cost index) -1.11*** 0.59*** 0.21***
(-8.93) (2.98) (10.00)

log(arable land (sqkm) per capita) -0.64*** -1.01*** -0.17***
(-2.95) (-2.93) (-4.43)

log(land area (km2)) 2.81* 0.62 1.42***
(1.77) (0.25) (5.18)

F LPI RS
log(median income) -0.11** -0.12 -0.15***

(-2.32) (-1.64) (-14.86)

log(Lag Population density (person per km2)) 0.16 0.07 -0.04
(1.40) (0.44) (-1.55)

log(dependent variable) 0.06*** 0.04*** 0.10***
(8.15) (5.83) (19.01)

N 1520.00 1520.00 1520.00
R2 0.51 0.23 0.93
Log-Likelihood 1374.5 675.2 4020.5

t statistics in parentheses
spatial weight matrix: first order contiguity
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 18. Estimation results - Germany - Vacant vs. residential land values

log(landvalue
per m2)

Braun&Lee
(2021)

log(landvalue
per m2)

(vacant land
sales)

log(house
price index)

SDM SDM SDM
direct
log(median income) 2.88∗∗∗ 1.06∗∗∗ 1.16∗∗∗

(11.96) (2.61) (27.59)

log(Lag Population density (person per km2)) 3.58∗∗∗ 2.16∗∗∗ 1.71∗∗∗

(8.54) (3.22) (24.12)
indirect
log(median income) 0.36 -0.43 -0.34∗∗∗

(1.53) (0.95) (-5.98)

log(Lag Population density (person per km2)) 2.24∗∗∗ 0.95 1.21∗∗∗

(3.81) (1.05) (8.37)
Observations 1520 1520 1520

t statistics in parentheses
spatial weight matrix: first order contiguity
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 19. Estimation results - Germany - Vacant vs. residential land values (direct and indirect
effects)
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Big 7 German cities including their surrounding counties using a panel data set for

378 German counties from 2014-2018. Besides local housing market determinants, we

find evidence for the importance of both exogenous and endogenous spatial interaction

patterns between housing and land markets.

The results are summarized as follows. First, we find that cross-county spillovers

can explain variation in land values for Germany. While these spillovers are relatively

weak in a smaller dataset on a more local level for new and old Federal States and

7 Big German cities and their surrounding counties, we find agglomeration effects

to be more substantial in the West than East German counties, at least for median

income. This result is also similar for the Top 7 German agglomerations but to a

lesser degree. Consequently, we show, unlike Gyourko et al. (2013), that the Big 7

German cities do not exhibit the characteristics of the so-called Superstar Cities.

Second, while still significant, we show that the spatial effects are smaller when using

house prices as the dependent variable. Third, when including the land price in house

price estimation, the spillover effects in house prices further decrease. Moreover, the

significantly positive coefficient on land value per m2 both for direct and indirect

spatial effects supports the theory that clustering patterns in house prices can be

attributed to spatial variations in land prices. Lastly, we explore these patterns in

two different land price measurements for Germany. The direct and indirect spillover

effects can explain more variation in residential land values than in vacant land prices

of land ready for construction from the Statistical Offices of the Federal Government

and the German States.

These results suggest that changes in agglomeration variables such as median

income (productivity) and population density cannot completely explain disparate

local land and house prices. Consequently, the results support the theory that house

and land prices, indeed are a local phenomenon and that land prices are a major

determinant for the development of house prices. The fact that we find spillover

effects in land prices raises the question whether more rural counties may be better

off in investing in public goods and services to increase attractiveness and strengthen

local externality (spillover) effects.

Focusing more on the urban-peripheral inequalities would be an interesting

extension for future research. Moreover, one could pay more attention to the impact

of climate conditions and other environmental and natural amenities on land prices.

For example, do German’s value the spatial proximity to the mountainside or the

sea? A longer time series would also be a great extension to focus more on the spatio-

temporal dimension.
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Appendix: Appendix

A.1. Tables

Dependent Variable Availability Source Regional Level

House Price Index 2012-2018 vdpResearch County
Land value per m2 2014-2018 Braun and Lee (2021) County
Land value m2 (vacant land sales) 1995-2019 Statistical Offices of the Federal Government and the German States (Statistic 61511-01-03-4) County

Control Variable

Land area km2 2008-2019 Statistical Offices of the Federal Government and the German States (Statistic 11111-01-01-4) County
Income 2014-2019 Federal Employment Agency County
Population 1995-2019 Federal Statistical Office (Statistic 12411-0015) County
Unemployment Rate 2008-2018 Federal Employment Agency County
Construction Cost Index 1958-2020 Federal Statistical Office (Statistic 61261-0001) National
Regional Construction Cost Factors 2012-2019 BKI County
Amount of accomodation facilities 1995-2019 Statistical Offices of the Federal Government and the German States (Statistic 45412-01-02-4) County
Green coverage 1995-2019 Statistical Offices of the Federal Government and the German States County

(Statistic 33111-01-02-4 and 33111-01-01-4)
Housing Stock measures 1995-2019 Statistical Offices of the Federal Government and the German States (Statistic 31231-02-01-4) County

Table A.1. Dependent and explanatory variables
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House price index data

GER,FRA,UK,DNK,AUT Internatioal House Price Database - Federal Reserve
Bank of Dallas

US Davis and Heathcote (2007)

Construction cost index data

GER Destatis statistic 61261-0014: Construction cost indices
for residential buildings: Germany, quarters, type of
construction costs

FRA Institut national de la statistique et des études
économiques Identifier 000008630: Cost-of-Construction
Index (CCI)

DNK Statistics Denmark BYG42: Construction cost index for
residential buildings

UK 1975-2012: BCIS Series Numbers 7504/7505 ”Output
price index for All Work (New Construction and Repair&
Maintenance)”
2013-2020: Office for National Statistics ”All construction
output prices”

AUT Australian Bureau of Statistics. 2020. Australian
National Accounts 5206005: National Income,
Expenditure and Product. Table 5. Expenditure on Gross
Domestic Product (GDP), Implicit price deflators

US Davis and Heathcote (2007)

Table A.2. Sources - Figure 1
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ü
n
e
b
u
r
g

L
K

W
e
s
e
l

L
K

S
a
a
le

k
r
e
is

S
K

H
e
il

b
r
o
n
n

S
K

B
e
r
li

n
L

K
M

ie
s
b
a
c
h

L
K

R
o
t
e
n
b
u
r
g

(
W

ü
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ü
s
s
e
ld

o
r
f

L
K

G
r
o
ß
-G

e
r
a
u

S
K

D
e
s
s
a
u
-R

o
ß
la

u
L

K
M

ä
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City Tier Kreis Landvalue/sqm
2015 2016 2017 2018

Berlin 1 SK Berlin 0.04 0.21 0.21 0.12

Average Tier 2 0.02 0.05 0.10 0.12

Berlin 2 SK Potsdam 0.05 0.14 0.14 0.15
Berlin 2 LK Barnim -0.01 0.02 0.07 0.11
Berlin 2 LK Dahme-Spreewald 0.04 0.03 0.05 0.07
Berlin 2 LK Havelland 0.01 0.06 0.08 0.16
Berlin 2 LK Märkisch-Oderland 0.02 0.09 0.09 0.10
Berlin 2 LK Oberhavel 0.02 0.05 0.05 0.10
Berlin 2 LK Oder-Spree 0.00 -0.02 0.16 0.11
Berlin 2 LK Potsdam-Mittelmark 0.02 0.04 0.11 0.10
Berlin 2 LK Teltow-Fläming 0.03 0.03 0.15 0.15

Average Tier 3 0.02 0.03 0.04 0.02

Berlin 3 LK Uckermark 0.00 0.00 0.02 0.04
Berlin 3 LK Ostprignitz-Ruppin 0.06 0.05 0.05 0.02
Berlin 3 SK Cottbus 0.00 0.07 0.07 -0.01
Berlin 3 LK Elbe-Elster 0.05 -0.13 0.15 -0.02
Berlin 3 LK Ostspreewald-Lausitz -0.02 -0.03 0.05 0.13
Berlin 3 LK Prignitz 0.01 0.11 0.10 0.08
Berlin 3 LK Spree-Neiße 0.14 0.10 -0.12 -0.02
Berlin 3 LK Anhalt-Bitterfeld 0.06 0.06 0.09 0.03
Berlin 3 LK Jerichower Land -0.05 0.08 0.05 -0.02
Berlin 3 LK Stendal 0.01 0.01 -0.01 0.01
Berlin 3 LK Wittenberg 0.00 0.05 0.00 -0.04

Munich 1 SK München 0.11 0.12 0.13 0.05

Average Tier 2 0.07 0.10 0.09 0.08

Munich 2 LK München 0.07 0.12 0.08 0.08
Munich 2 LK Bad Tölz-Wolfratshausen 0.07 0.08 0.08 0.10
Munich 2 LK Dachau 0.08 0.09 0.12 0.06
Munich 2 LK Ebersberg 0.05 0.11 0.05 0.10
Munich 2 LK Erding 0.13 0.12 0.05 0.11
Munich 2 LK Freising 0.04 0.13 0.10 0.10
Munich 2 LK Fürstenfeldbruck 0.05 0.08 0.09 0.07
Munich 2 LK Miesbach 0.08 0.09 0.07 0.08
Munich 2 LK Landberg am Lech 0.05 0.10 0.13 0.06
Munich 2 LK Starnberg 0.05 0.05 0.08 0.07

Average Tier 3 0.04 0.08 0.09 0.09

Munich 3 LK Weilheim-Schongau 0.06 0.07 0.06 0.12
Munich 3 LK Mühldorf am Inn 0.03 0.06 0.06 0.10
Munich 3 LK Neuburg-Schrobenhausen 0.08 0.10 0.07 0.08
Munich 3 LK Pfaffenhofen a.d. Ilm 0.03 0.06 0.11 0.10
Munich 3 LK Rosenheim 0.06 0.08 0.08 0.12
Munich 3 LK Landshut 0.03 0.11 0.09 0.07
Munich 3 SK Landshut 0.03 0.08 0.12 0.08
Munich 3 LK Aichach-Friedberg 0.03 0.09 0.13 0.08

Hamburg 1 SK Hamburg 0.06 0.07 0.12 0.04

Average Tier 2 0.04 0.09 0.06 0.12

Hamburg 2 LK Herzogtum Lauenburg 0.04 0.05 0.00 0.16
Hamburg 2 LK Pinneberg 0.06 0.04 0.10 0.15
Hamburg 2 LK Segeberg 0.03 0.11 0.04 0.08
Hamburg 2 LK Stormarn 0.02 0.05 0.04 0.09
Hamburg 2 LK Harburg 0.01 0.11 0.12 0.14
Hamburg 2 LK Stade 0.08 0.15 0.08 0.10

Average Tier 3 0.04 0.05 0.06 0.08
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Hamburg 3 LK Nordwestmecklenburg -0.04 0.17 0.20 0.32
Hamburg 3 LK Ludwigslust-Parchim 0.07 -0.03 -0.01 -0.07
Hamburg 3 SK Lübeck 0.06 0.05 0.07 0.08
Hamburg 3 SK Neumünster 0.05 0.14 0.11 0.21
Hamburg 3 LK Ostholstein 0.08 0.05 0.03 0.06
Hamburg 3 LK Plön 0.08 0.12 0.03 0.10
Hamburg 3 LK Rendsburg-Eckernförde 0.03 0.04 0.05 0.04
Hamburg 3 LK Steinburg 0.00 0.16 0.00 0.20
Hamburg 3 LK Cuxhaven 0.15 0.19 0.18 0.01
Hamburg 3 LK Lüneburg 0.08 0.12 0.20 0.13
Hamburg 3 LK Rotenburg (Wümme) 0.02 0.10 0.05 0.06
Hamburg 3 LK Heidekreis -0.02 0.08 0.12 0.07

Düsseldorf/Köln 1 SK Köln 0.06 0.07 0.06 0.07
Düsseldorf/Köln 1 SK Düsseldorf 0.07 0.10 0.09 0.06

Average Tier 2 0.04 0.09 0.07 0.08

Düsseldorf/Köln 2 LK Mettmann 0.03 0.09 0.09 0.07
Düsseldorf/Köln 2 LK Rhein-Kreis Neuss 0.01 0.12 0.08 0.10
Düsseldorf/Köln 2 SK Bonn 0.04 0.10 0.06 0.07
Düsseldorf/Köln 2 SK Leverkusen 0.04 0.09 0.07 0.08
Düsseldorf/Köln 2 LK Rhein-Erft-Kreis 0.09 0.10 0.06 0.08
Düsseldorf/Köln 2 LK Rheinisch-Bergischer Kreis 0.07 0.08 0.06 0.08
Düsseldorf/Köln 2 LK Rhein-Sieg-Kreis 0.03 0.11 0.11 0.09
Düsseldorf/Köln 2 SK Krefeld 0.02 0.11 0.01 0.11
Düsseldorf/Köln 2 SK Mülheim an der Ruhr 0.02 0.05 0.05 0.09
Düsseldorf/Köln 2 SK Duisburg 0.04 0.06 0.10 0.01

Average Tier 3 0.03 0.09 0.09 0.09

Düsseldorf/Köln 3 LK Ahrweiler -0.01 0.12 0.11 0.04
Düsseldorf/Köln 3 LK Altenkirchen (Westerwald) 0.01 0.10 0.15 0.22
Düsseldorf/Köln 3 LK Neuwied 0.11 0.02 0.17 0.05
Düsseldorf/Köln 3 SK Essen 0.01 0.09 0.09 0.05
Düsseldorf/Köln 3 SK Mönchengladbach 0.04 0.13 0.02 0.11
Düsseldorf/Köln 3 SK Remscheid 0.04 0.02 0.06 0.07
Düsseldorf/Köln 3 SK Solingen 0.04 0.06 0.05 0.08
Düsseldorf/Köln 3 SK Wuppertal 0.00 0.06 0.08 0.10
Düsseldorf/Köln 3 LK Viersen -0.01 0.15 0.11 0.14
Düsseldorf/Köln 3 LK Düren 0.04 0.17 0.06 0.12
Düsseldorf/Köln 3 LK Einkirchen 0.05 0.10 0.10 0.14
Düsseldorf/Köln 3 LK Heinsberg 0.11 0.07 0.12 0.06
Düsseldorf/Köln 3 LK Oberbergischer Kreis 0.07 0.11 0.04 0.11
Düsseldorf/Köln 3 LK Ennepe-Ruhr-Kreis 0.00 0.06 0.08 0.09
Düsseldorf/Köln 3 SK Oberhausen 0.00 0.08 0.12 0.08
Düsseldorf/Köln 3 LK Wesel 0.02 0.06 0.08 0.06

Frankfurt am Main 1 SK Frankfurt am Main 0.06 0.07 0.11 0.10

Average Tier 2 0.07 0.10 0.08 0.10

Frankfurt am Main 2 LK Offenbach 0.03 0.09 0.10 0.09
Frankfurt am Main 2 LK Groß-Gerau 0.06 0.08 0.08 0.10
Frankfurt am Main 2 SK Offenbach am Main 0.11 0.10 0.06 0.14
Frankfurt am Main 2 LK Main-Minzig-Kreis 0.09 0.09 0.05 0.12
Frankfurt am Main 2 LK Wetteraukreis 0.10 0.10 0.08 0.10
Frankfurt am Main 2 LK Hochtaunuskreis 0.06 0.11 0.09 0.08
Frankfurt am Main 2 LK Main-Taunus-Kreis 0.07 0.10 0.10 0.08

Average Tier 3 0.05 0.12 0.08 0.10

Frankfurt am Main 3 LK Aschaffenburg 0.07 0.06 0.05 0.14
Frankfurt am Main 3 SK Mainz 0.04 0.07 0.10 0.09
Frankfurt am Main 3 LK Mainz-Bingen 0.04 0.10 0.03 0.11
Frankfurt am Main 3 SK Darmstadt 0.02 0.08 0.07 0.08
Frankfurt am Main 3 SK Wiesbaden 0.10 0.11 0.10 0.11
Frankfurt am Main 3 LK Darmstadt-Dieburg 0.07 0.11 0.06 0.15
Frankfurt am Main 3 LK Rheingau-Taunus-Kreis 0.12 0.15 0.13 0.06
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Frankfurt am Main 3 LK Gießen 0.08 0.17 0.08 0.09
Frankfurt am Main 3 LK Lahn-Dill-Kreis 0.03 0.12 0.06 -0.01
Frankfurt am Main 3 LK Limburg-Weilburg -0.02 0.13 0.10 0.07
Frankfurt am Main 3 LK Vogelbergkreis 0.06 0.13 0.01 0.16
Frankfurt am Main 3 LK Fulda 0.06 0.19 -0.03 0.24
Frankfurt am Main 3 LK Main-Spessart 0.03 0.05 0.11 0.08
Frankfurt am Main 3 LK Bad Kissingen 0.07 0.15 0.28 -0.05

Leipzig 1 SK Leipzig 0.01 0.06 0.13 0.16

Average Tier 2 -0.03 0.00 0.09 0.05

Leipzig 2 LK Leipzig 0.00 -0.03 0.14 0.06
Leipzig 2 LK Halle(Saale) -0.02 0.04 0.12 0.05
Leipzig 2 LK Saalekreis -0.09 0.06 0.06 -0.06
Leipzig 2 LK Burgenlandkreis 0.05 0.04 0.06 0.03
Leipzig 2 LK Nordsachsen -0.07 -0.09 0.09 0.16

Average Tier 3 0.05 -0.04 0.04 0.02

Leipzig 3 LK Mandfeld-Südharz 0.09 -0.04 0.08 0.02
Leipzig 3 LK Salzlandkreis -0.03 0.05 -0.07 0.11
Leipzig 3 LK Anhalt-Bitterfeld 0.06 0.06 0.09 0.03
Leipzig 3 LK Wittenberg 0.00 0.05 0.00 -0.04
Leipzig 3 LK Elbe-Elster 0.05 -0.13 0.15 -0.02
Leipzig 3 LK Meißen 0.00 -0.02 0.07 0.05
Leipzig 3 Mittelsachsen 0.24 -0.21 0.04 0.10
Leipzig 3 LK Greiz 0.15 -0.18 -0.07 -0.03
Leipzig 3 LK Saale-Holzland-Kreis -0.03 -0.02 0.05 -0.01
Leipzig 3 LK Weimarer Land -0.01 0.00 0.01 0.09
Leipzig 3 LK Sömmerda 0.01 -0.04 0.07 0.06
Leipzig 3 LK Kyffhäuserkreis 0.07 0.04 0.10 -0.11

Stuttgart 1 SK Stuttgart 0.03 0.08 0.11 0.08

Average Tier 2 0.05 0.07 0.09 0.11

Stuttgart 2 LK Böblingen 0.07 0.06 0.12 0.09
Stuttgart 2 LK Esslingen 0.04 0.07 0.08 0.11
Stuttgart 2 LK Ludwigsburg 0.06 0.08 0.07 0.12
Stuttgart 2 LK Rems-Murr-Kreis 0.02 0.08 0.09 0.12

Average Tier 3 0.06 0.08 0.09 0.10

Stuttgart 3 LK Göppingen 0.07 0.13 0.03 0.10
Stuttgart 3 LK Ostalbkreis 0.07 0.05 0.20 0.10
Stuttgart 3 LK Schwäbisch Hall 0.04 0.08 0.09 0.08
Stuttgart 3 LK Heilbronn 0.06 0.08 0.08 0.14
Stuttgart 3 SK Heilbronn 0.04 0.06 0.07 0.09
Stuttgart 3 LK Enzkreis 0.04 0.04 0.09 0.11
Stuttgart 3 SK Pforzheim 0.04 0.11 0.12 0.08
Stuttgart 3 LK Calw 0.08 0.08 0.09 0.11
Stuttgart 3 LK Tübingen 0.07 0.08 0.05 0.15
Stuttgart 3 LK Reutlingen 0.06 0.09 0.10 0.06

Table A.4. Percentage changes in land value per m2 - Top 7 agglomerations and surrounding
tiers
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City Tier Kreis HPI
2015 2016 2017 2018

Berlin 1 SK Berlin 0.04 0.17 0.14 0.12

Average Tier 2 0.03 0.04 0.07 0.08

Berlin 2 SK Potsdam 0.06 0.07 0.11 0.11
Berlin 2 LK Barnim 0.01 0.03 0.05 0.09
Berlin 2 LK Dahme-Spreewald 0.03 0.04 0.05 0.08
Berlin 2 LK Havelland 0.03 0.04 0.06 0.08
Berlin 2 LK Märkisch-Oderland 0.04 0.05 0.07 0.08
Berlin 2 LK Oberhavel 0.03 0.04 0.05 0.08
Berlin 2 LK Oder-Spree 0.02 0.03 0.06 0.07
Berlin 2 LK Potsdam-Mittelmark 0.03 0.04 0.07 0.08
Berlin 2 LK Teltow-Fläming 0.03 0.04 0.07 0.08

Average Tier 3 0.01 0.02 0.03 0.04

Berlin 3 LK Uckermark 0.02 0.03 0.04 0.05
Berlin 3 LK Ostprignitz-Ruppin 0.02 0.03 0.04 0.05
Berlin 3 SK Cottbus 0.02 0.03 0.04 0.05
Berlin 3 LK Elbe-Elster 0.00 0.01 0.04 0.02
Berlin 3 LK Ostspreewald-Lausitz 0.02 0.02 0.04 0.07
Berlin 3 LK Prignitz 0.02 0.03 0.04 0.05
Berlin 3 LK Spree-Neiße 0.01 0.02 0.02 0.05
Berlin 3 LK Anhalt-Bitterfeld 0.01 0.02 0.02 0.02
Berlin 3 LK Jerichower Land 0.01 0.02 0.02 0.01
Berlin 3 LK Stendal 0.01 0.01 0.02 0.02
Berlin 3 LK Wittenberg 0.01 0.01 0.03 0.02

Munich 1 SK München 0.08 0.10 0.10 0.06

Average Tier 2 0.06 0.08 0.07 0.08

Munich 2 LK München 0.07 0.09 0.07 0.08
Munich 2 LK Bad Tölz-Wolfratshausen 0.05 0.08 0.08 0.08
Munich 2 LK Dachau 0.05 0.08 0.08 0.07
Munich 2 LK Ebersberg 0.06 0.08 0.06 0.09
Munich 2 LK Erding 0.07 0.08 0.06 0.08
Munich 2 LK Freising 0.05 0.07 0.08 0.09
Munich 2 LK Fürstenfeldbruck 0.05 0.08 0.07 0.07
Munich 2 LK Miesbach 0.06 0.08 0.07 0.08
Munich 2 LK Landberg am Lech 0.05 0.07 0.07 0.07
Munich 2 LK Starnberg 0.04 0.06 0.09 0.07

Average Tier 3 0.05 0.07 0.07 0.08

Munich 3 LK Weilheim-Schongau 0.05 0.07 0.06 0.08
Munich 3 LK Mühldorf am Inn 0.05 0.06 0.05 0.08
Munich 3 LK Neuburg-Schrobenhausen 0.05 0.06 0.06 0.07
Munich 3 LK Pfaffenhofen a.d. Ilm 0.04 0.06 0.08 0.07
Munich 3 LK Rosenheim 0.05 0.07 0.07 0.08
Munich 3 LK Landshut 0.04 0.06 0.07 0.07
Munich 3 SK Landshut 0.05 0.07 0.07 0.09
Munich 3 LK Aichach-Friedberg 0.04 0.06 0.07 0.07

Hamburg 1 SK Hamburg 0.05 0.06 0.09 0.05

Average Tier 2 0.04 0.06 0.06 0.08

Hamburg 2 LK Herzogtum Lauenburg 0.04 0.05 0.05 0.09
Hamburg 2 LK Pinneberg 0.04 0.06 0.06 0.09
Hamburg 2 LK Segeberg 0.03 0.06 0.06 0.08
Hamburg 2 LK Stormarn 0.04 0.06 0.06 0.08
Hamburg 2 LK Harburg 0.04 0.07 0.08 0.08
Hamburg 2 LK Stade 0.04 0.06 0.05 0.07

Average Tier 3 0.01 0.01 0.01 0.01
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Hamburg 3 LK Nordwestmecklenburg 0.02 0.03 0.06 0.04
Hamburg 3 LK Ludwigslust-Parchim 0.02 0.02 0.04 0.03
Hamburg 3 SK Lübeck 0.03 0.05 0.07 0.08
Hamburg 3 SK Neumünster 0.03 0.05 0.07 0.06
Hamburg 3 LK Ostholstein 0.03 0.05 0.04 0.07
Hamburg 3 LK Plön 0.03 0.06 0.05 0.05
Hamburg 3 LK Rendsburg-Eckernförde 0.03 0.05 0.05 0.05
Hamburg 3 LK Steinburg 0.03 0.04 0.05 0.07
Hamburg 3 LK Cuxhaven 0.04 0.05 0.07 0.05
Hamburg 3 LK Lüneburg 0.06 0.07 0.07 0.09
Hamburg 3 LK Rotenburg (Wümme) 0.03 0.04 0.06 0.05
Hamburg 3 LK Heidekreis 0.03 0.03 0.05 0.04

Düsseldorf/Köln 1 SK Köln 0.05 0.07 0.07 0.06
Düsseldorf/Köln 1 SK Düsseldorf 0.06 0.09 0.09 0.06

Average Tier 2 0.04 0.06 0.06 0.06

Düsseldorf/Köln 2 LK Mettmann 0.04 0.07 0.07 0.07
Düsseldorf/Köln 2 LK Rhein-Kreis Neuss 0.04 0.06 0.06 0.07
Düsseldorf/Köln 2 SK Bonn 0.05 0.07 0.07 0.07
Düsseldorf/Köln 2 SK Leverkusen 0.03 0.06 0.07 0.05
Düsseldorf/Köln 2 LK Rhein-Erft-Kreis 0.04 0.06 0.05 0.06
Düsseldorf/Köln 2 LK Rheinisch-Bergischer Kreis 0.04 0.05 0.06 0.08
Düsseldorf/Köln 2 LK Rhein-Sieg-Kreis 0.04 0.06 0.07 0.07
Düsseldorf/Köln 2 SK Krefeld 0.04 0.06 0.03 0.07
Düsseldorf/Köln 2 SK Mülheim an der Ruhr 0.03 0.05 0.05 0.06
Düsseldorf/Köln 2 SK Duisburg 0.02 0.04 0.07 0.04

Average Tier 3 0.03 0.05 0.05 0.06

Düsseldorf/Köln 3 LK Ahrweiler 0.03 0.05 0.04 0.07
Düsseldorf/Köln 3 LK Altenkirchen (Westerwald) 0.03 0.06 0.05 0.05
Düsseldorf/Köln 3 LK Neuwied 0.02 0.04 0.06 0.05
Düsseldorf/Köln 3 SK Essen 0.03 0.05 0.08 0.06
Düsseldorf/Köln 3 SK Mönchengladbach 0.04 0.06 0.06 0.07
Düsseldorf/Köln 3 SK Remscheid 0.02 0.04 0.04 0.04
Düsseldorf/Köln 3 SK Solingen 0.03 0.05 0.05 0.06
Düsseldorf/Köln 3 SK Wuppertal 0.02 0.04 0.06 0.08
Düsseldorf/Köln 3 LK Viersen 0.04 0.06 0.05 0.07
Düsseldorf/Köln 3 LK Düren 0.04 0.05 0.05 0.06
Düsseldorf/Köln 3 LK Einkirchen 0.04 0.06 0.06 0.07
Düsseldorf/Köln 3 LK Heinsberg 0.02 0.04 0.06 0.06
Düsseldorf/Köln 3 LK Oberbergischer Kreis 0.03 0.05 0.05 0.06
Düsseldorf/Köln 3 LK Ennepe-Ruhr-Kreis 0.02 0.03 0.06 0.06
Düsseldorf/Köln 3 SK Oberhausen 0.02 0.04 0.07 0.06
Düsseldorf/Köln 3 LK Wesel 0.03 0.05 0.04 0.05

Frankfurt am Main 1 SK Frankfurt am Main 0.05 0.06 0.10 0.09

Average Tier 2 0.05 0.07 0.07 0.07

Frankfurt am Main 2 LK Offenbach 0.04 0.06 0.07 0.07
Frankfurt am Main 2 LK Groß-Gerau 0.04 0.06 0.07 0.07
Frankfurt am Main 2 SK Offenbach am Main 0.05 0.07 0.07 0.09
Frankfurt am Main 2 LK Main-Minzig-Kreis 0.05 0.06 0.05 0.07
Frankfurt am Main 2 LK Wetteraukreis 0.04 0.06 0.07 0.07
Frankfurt am Main 2 LK Hochtaunuskreis 0.05 0.07 0.06 0.06
Frankfurt am Main 2 LK Main-Taunus-Kreis 0.06 0.08 0.08 0.07

Average Tier 3 0.04 0.05 0.05 0.06

Frankfurt am Main 3 LK Aschaffenburg 0.04 0.06 0.03 0.08
Frankfurt am Main 3 SK Mainz 0.04 0.07 0.08 0.09
Frankfurt am Main 3 LK Mainz-Bingen 0.04 0.06 0.04 0.07
Frankfurt am Main 3 SK Darmstadt 0.03 0.05 0.08 0.07
Frankfurt am Main 3 SK Wiesbaden 0.05 0.08 0.07 0.09
Frankfurt am Main 3 LK Darmstadt-Dieburg 0.05 0.06 0.06 0.09
Frankfurt am Main 3 LK Rheingau-Taunus-Kreis 0.05 0.07 0.06 0.07
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Frankfurt am Main 3 LK Gießen 0.04 0.06 0.06 0.06
Frankfurt am Main 3 LK Lahn-Dill-Kreis 0.02 0.04 0.05 0.04
Frankfurt am Main 3 LK Limburg-Weilburg 0.03 0.04 0.06 0.04
Frankfurt am Main 3 LK Vogelbergkreis 0.02 0.03 0.04 0.04
Frankfurt am Main 3 LK Fulda 0.03 0.04 0.03 0.07
Frankfurt am Main 3 LK Main-Spessart 0.03 0.04 0.04 0.06
Frankfurt am Main 3 LK Bad Kissingen 0.04 0.05 0.05 0.04

Leipzig 1 SK Leipzig 0.02 0.04 0.08 0.08

Average Tier 2 0.01 0.02 0.04 0.05

Leipzig 2 LK Leipzig 0.02 0.03 0.06 0.05
Leipzig 2 LK Halle(Saale) 0.02 0.03 0.06 0.05
Leipzig 2 LK Saalekreis 0.00 0.01 0.02 0.04
Leipzig 2 LK Burgenlandkreis 0.02 0.01 0.04 0.02
Leipzig 2 LK Nordsachsen 0.01 0.01 0.03 0.08

Average Tier 3 0.02 0.02 0.03 0.03

Leipzig 3 LK Mandfeld-Südharz 0.02 0.02 0.02 0.03
Leipzig 3 LK Salzlandkreis 0.01 0.02 0.02 0.03
Leipzig 3 LK Anhalt-Bitterfeld 0.01 0.02 0.02 0.02
Leipzig 3 LK Wittenberg 0.01 0.01 0.03 0.02
Leipzig 3 LK Elbe-Elster 0.00 0.01 0.04 0.02
Leipzig 3 LK Meißen 0.02 0.01 0.04 0.05
Leipzig 3 Mittelsachsen 0.02 0.02 0.03 0.03
Leipzig 3 LK Greiz 0.01 0.01 0.00 0.03
Leipzig 3 LK Saale-Holzland-Kreis 0.02 0.03 0.01 0.03
Leipzig 3 LK Weimarer Land 0.02 0.03 0.03 0.06
Leipzig 3 LK Sömmerda 0.01 0.02 0.03 0.03
Leipzig 3 LK Kyffhäuserkreis 0.02 0.01 0.02 0.02

Stuttgart 1 SK Stuttgart 0.05 0.07 0.11 0.08

Average Tier 2 0.05 0.07 0.08 0.08

Stuttgart 2 LK Böblingen 0.05 0.06 0.10 0.08
Stuttgart 2 LK Esslingen 0.05 0.07 0.07 0.08
Stuttgart 2 LK Ludwigsburg 0.05 0.07 0.06 0.09
Stuttgart 2 LK Rems-Murr-Kreis 0.05 0.06 0.07 0.08

Average Tier 3 0.04 0.06 0.06 0.08

Stuttgart 3 LK Göppingen 0.05 0.06 0.05 0.07
Stuttgart 3 LK Ostalbkreis 0.04 0.05 0.07 0.07
Stuttgart 3 LK Schwäbisch Hall 0.04 0.05 0.06 0.06
Stuttgart 3 LK Heilbronn 0.05 0.06 0.06 0.08
Stuttgart 3 SK Heilbronn 0.05 0.06 0.08 0.08
Stuttgart 3 LK Enzkreis 0.04 0.05 0.06 0.08
Stuttgart 3 SK Pforzheim 0.05 0.06 0.06 0.09
Stuttgart 3 LK Calw 0.04 0.05 0.04 0.08
Stuttgart 3 LK Tübingen 0.05 0.07 0.05 0.08
Stuttgart 3 LK Reutlingen 0.05 0.06 0.05 0.07

Table A.5. Percentage changes in house price index - Top 7 agglomerations and surrounding
tiers
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OLS OLS FE RE
log(Median income) 2.05∗∗∗ 2.09∗∗∗ 3.18∗∗∗ 3.14∗∗∗

(13.46) (13.63) (21.37) (22.72)

log(Lag Population density (person per km2)) 0.88∗∗∗ 0.88∗∗∗ 3.06∗∗∗ 0.52∗∗∗

(13.53) (13.59) (7.74) (4.07)

log(Land area (km2)) 0.22∗∗∗ 0.22∗∗∗ 5.01∗∗∗ 0.29∗∗∗

(8.00) (8.04) (3.01) (4.80)

log(arable land (sqkm) per capita) 0.23∗∗∗ 0.25∗∗∗ -0.81∗∗∗ -0.15
(4.46) (4.69) (-4.12) (-1.47)

Green coverage -4.36∗∗∗ -3.81∗∗∗ -7.90∗∗∗ -9.32∗∗∗

(-3.24) (-2.78) (-7.06) (-9.11)

log(Construction cost index) 1.74∗∗∗ 1.87∗∗∗ -0.99∗∗∗ -0.44∗∗∗

(9.45) (9.66) (-8.68) (-4.16)

year=2015 -0.04
(-0.85)

year=2016 -0.06
(-1.15)

year=2017 -0.08
(-1.47)

year=2018 -0.12∗∗

(-2.21)

Constant -24.02∗∗∗ -24.87∗∗∗ -70.26∗∗∗ -23.58∗∗∗

(-22.02) (-21.45) (-6.36) (-24.66)
N 1890.00 1890.00 1890.00 1890.00
R2 0.54 0.54 0.50 .
F( 4, 1879) 1.28
Prob > F 0.27
chi2(6) 153.31
Prob > chi2 0.00

t statistics in parentheses
dependent variable: Land value per m2 (Braun&Lee (2021))
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.6. Non-spatial estimation results, tests
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A.2. Figures
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Figure A.1. Construction cost by state, 2014-2018
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Figure A.2. Median income by state, 2014-2018
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Figure A.3. Population density by state, 2014-2018
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