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Abstract

In this paper, I relax the common assumption of the one-dimensionality of

noise made in the standard competitive noisy rational expectations framework.

Within an environment characterized by multidimensional noise, I explore

the strategic interactions between different traders that are informed about

different components of the noise inherent in the market price. I find that

agents’ trades against different types of noise are complements due to an

inference augmentation effect. As one group trades more aggressively against

the part of the noise they observe, the market price becomes a more precise

signal for fundamentals for the other noise-informed groups. Since traders

use their information about noise together with the market price in order to

infer information about fundamentals, this makes the other groups trade more

aggressively against their observed piece of noise, too. Strategic complementar-

ities can also be found in the information market. Both acquiring information

about the same type and about different types of noise can be complements.

JEL Classifications: C62, D53, G12, G40.

Keywords: Rational Expectations Equilibrium, Complementarities,

Noise Trading, Non-Fundamental Information.
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1 Introduction

Recently, retail investment has experienced an era of immense growth. As of 2020,

retail investment is responsible for 25% of total trading volume in US equity markets,

compared to 10% in 2019 according to the Traders Magazine.1 Due to a lack of

investment alternatives caused by the current low-interest phase in most industrial-

ized countries, private households have turned their attention to the stock market in

search for returns on their savings. This increased trading activity by retail investors

has significantly contributed to a boom in the online brokerage sector. In their

competition for the growing mass of customers, online brokers have significantly

reduced their commissions. The often-debated trading application Robinhood, e.g.,

tries to attract clients by promising zero trading fees. As reported by CNBC, this

offer has made more than three million retail investors open an account via Robinhood,

only in the first four month of 2020.2

Ever since Milton Friedman, it its well known that there is no “free lunch” in

economies. Instead of paying with money, customers of commission-free trading

applications pay with data. Robinhood and other trading applications mainly make

money by passing on their customer orders to third parties in the market. This

method is known as “payment for order flow” (PFOF). The third parties, then, can

try to match the order flows with other suitable ones and profit from the bid-ask

spread.

Thus, the recent boom in retail investment has not only lead to a growth in the

online brokerage sector, but also to an increase in available information about re-

tail investors’ orders in financial markets. As retail investment is responsible for

a remarkable size of total trading volume, such information is not only valuable

when trying to match orders, but also when trading on one’s own account. More

particularly, due to PFOF, financial markets are populated by different traders who

observe different pieces of the whole order flow linked to retail investment in the

market. The aim of this paper is to analyze the interactions that emerge between

these diverse informed traders.

In the academic literature, retail investors are often referred to as “noise traders”, i.e.,

unsophisticated, inexperienced traders, whose orders are uncorrelated to fundamen-

tals (see, e.g., Black (1986) and Barber et al. (2006)). Interpreting retail investors

as noise traders makes the competitive noisy rational expectations framework à la

Grossman & Stiglitz (1980) (henceforth: GS 1980) and Hellwig (1980) a suitable

1Shanny Basar, “Retail Investing Evolves”, Traders Magazine, September 2020, https://www.
tradersmagazine.com/am/retail-investing-evolves.

2Weizhen Tan, “Retail investing boom may spark concerns”, CNBC, September 2020,
https://www.cnbc.com/2020/09/10/markets-have-lived-through-retail-investing-booms

-before-strategist-says.html.
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framework for the analysis of the expounded research task. Nevertheless, there is one

important modification that has to be made compared to the standard framework.

The vast majority of the existing literature assumes noise to be one-dimensional.3

The demand coming from noise traders, which prevents the price from fully revealing

fundamentals in equilibrium is summed up in a single component. This common

assumption, however, does not account for the fact that there can exist sophisticated

traders in the market who possess unbiased knowledge of a part of the whole demand

stemming from noise traders. That is, rather than gleaning information about the

whole order flow linked to noise trading, these investors precisely know the demand

of some noise traders in the market. Of course, there exist other noise traders, whose

orders they do not observe. Thus, we need to extend the noisy rational expectations

framework to the case where noise is not one-, but multidimensional. This means

that the market price is shaped by more than one noise factor in equilibrium.

In a static competitive economy, agents use their information about noise, i.e., their

non-fundamental information to extract noise from the market price and to gain

a more precise signal about fundamentals out of it. Whenever non-fundamentally

informed traders observe a high noise trader demand, they expect the price to be very

noisy and, thus, fundamentals to be very low, which makes them reduce their demand.

Inversely, if they observe low noise trader demand, fundamentals are expected to be

high and they raise their demand as a consequence. That is, rational agents follow a

contrarian strategy with respect to their non-fundamental information. They trade

against noise traders and, therefore, mitigate their influence on prices.

The central question concerning the financial market is how agents’ trades against

different noise trader demands are connected. Does more aggressive trading against

noise by one group encourage other groups to trade more or less aggressively against

the type of noise that they observe? When looking at the information market, we

aim at exploring two different types of interactions in information acquisition. On

the one hand, we would like to assess whether acquiring information about the same

type of noise is a complement or a substitute. This type of interaction could also

be studied in an environment characterized by one-dimensional noise. On the other

hand, when noise is multidimensional, one can also investigate whether acquiring

information about different types of noise is a complement or a substitute. Thus,

multidimensionality of noise allows to assess whether cross-complementarities or

cross-substitutabilities in non-fundamental information acquisition exist.

I find that both the financial market and the information market are characterized

by complementarities. It is worth stressing that complementarities do not arise

per se in this type of models. The seminal model of GS 1980 is characterized by

strategic substitutability in (fundamental) information acquisition. At the trading

3One of the very few exceptions constitutes, e.g., Gennotte & Leland (1990).
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stage, more aggressive trading against noise by one group encourages other ones

to do the same. This is due to an inference augmentation effect. More aggressive

trading against one type of noise makes the market price react less to it relative to

fundamentals. Hence, all traders that do not observe this specific type of noise profit

from a more informative price signal. As a consequence, they trade more aggressively

on it. Since all noise-informed agents use their non-fundamental information together

with the market price to infer information about fundamentals, more aggressive

trading on their price signal implies more aggressive trading against the type of

noise they observe. This strong complementarity in trading leads to the existence

of multiple equilibria in financial markets, that show, if noise is two-dimensional,

similar properties to those of Ganguli & Yang (2009). If noise is three-dimensional,

these properties significantly differ from the two-dimensional case.

In the information market, I can show that both acquiring information about the

same type and about different types of noise can be complements. These results

are driven by the fact that a rise in the mass of one noise-informed group does not

only affect how this group but also how other non-fundamentally informed ones

trade against the pieces of noise that they observe. Thus, more non-fundamentally

informed traders do not only affect price informativeness as a whole but also the

uncertainty each specific noise-informed group faces (which crucially depends on how

other noise-informed groups trade against their observed type of noise).

By contrast, in the absence of different noise-informed groups, acquiring informa-

tion about the same of type of noise is always a substitute. In the reduced setup

with only one noise-informed group, a rise in the mass of this group makes the

price more informative about fundamentals, but does not affect how other pieces

of noise influence the market price. As a consequence, the uncertainty the already

noise-informed traders face does not change, which lowers the incentive for others to

acquire non-fundamental information. Complementarities only occur with different

noise-informed groups. Moreover, I show that multiple equilibria can also exist in

the information market.

My results relate to two growing strands of the literature concerning the competitive

noisy rational expectations framework. The first strands deals with the effects of non-

fundamental information. The pioneering model dates back to Gennotte & Leland

(1990). In their specification, a fixed portion of traders observes a part of the noisy

asset supply, which is driven by liquidity traders. The authors focus on explaining

stock market crashes that can occur due to unobserved shifts in supply, i.e., due to

a lack of non-fundamental information. Manzano & Vives (2011) consider a static

economy where rational traders receive private information about the noisy asset

supply. The existence of private non-fundamental signals can lead to self-fulfilling

equilibria in the financial market as it opens up new possibilities for the coordination
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among traders that do not in exist in the original framework.

Cespa & Vives (2015) assume correlated noise shocks in an overlapping-generations

model with two trading periods. If noise shocks across periods are correlated, traders

can use the current price in order to infer information about the current noise shock,

which then yields information about next period’s noise. Persistent noise trading

generates multiple equilibria in financial markets as it induces strategic complemen-

tarities among short-term investor in the use of their private fundamental information.

They identify an equilibrium that is characterized by high price informativeness.

This finding challenges the widespread view that short-term trading harms price

informativeness. In a closely related framework, Cespa & Vives (2012) show that

persistent noise trading can also generate multiple equilibria and improve price

informativeness in an economy with long-term investors.

Marmora & Rytchkov (2018) lay the focus on the impact of non-fundamental in-

formation acquisition. In an economy where agents are endowed with diverse prior

information about the fundamental asset value, they assign each rational trader a

fixed information processing capacity that they can use to produce private funda-

mental and private non-fundamental information. They show that agents tend to

specialize in information acquisition. Those with precise prior information about fun-

damentals focus on the acquisition of fundamental information, those with imprecise

prior information switch to acquiring non-fundamental information. Moreover, the

existence of non-fundamental information increases price informativeness although it

can crowd out fundamental information.

Along similar lines, Farboodi & Veldkamp (2020) analyze the effects coming from non-

fundamental information acquisition in an infinite-horizon economy that is populated

by overlapping generations They assign traders a data constraint to process con-

temporaneous private fundamental and contemporaneous private non-fundamental

information. There is technological progress over time., i.e., agents can process more

information as time advances. When technology is rather poor, investors focus on

producing fundamental information. As technology improves, they begin to produce

non-fundamental information. As technology becomes very sophisticated, both types

of information become abundant. Analogously to Marmora & Rytchkov (2018), they

show that non-fundamental information also increases price informativeness in a

dynamic context.

Second, this paper relates to the strand of the literature that aims at showing that

traders’ interactions can be characterized by complementarities in a competitive trad-

ing environment. In a dynamic three-period setting with long-lived agents, Hirshleifer

et al. (1994) show that complementarities in fundamental information acquisition can

occur if there are traders that receive private fundamental information early than

other ones. In Veldkamp (2006), the cost of acquiring fundamental information is en-
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dogenous and negatively depends on the mass of informed traders. This relationship

can induce complementarities in information acquisition. Garcia & Strobl (2011)

study a setup where agents derive utility from comparing their wealth to the average

wealth in the economy. More informed trading increases average wealth, which then

can increase the incentive for uninformed traders to acquire information. In Rahi &

Zigrand (2014), complementarities are induced by different private evaluations of the

value of an asset. Goldstein et al. (2014) show that complementarities can occur if

agents’ investment opportunities differ.

In a dynamic setup with two trading periods and long-lived agents, Avdis (2016)

shows that acquiring fundamental information can be a complement if noise shocks

across periods are correlated. Since first-period agents use the first-period price to

infer information about next period’s noise shock, more fundamentally informed

trading makes it more difficult to glean this type of information by disentangling

the price. As a consequence, the incentive for uninformed traders to acquire funda-

mental information increases since fundamental information helps them to extract

non-fundamental information from the market price.

In a closer related setup to mine, Ganguli & Yang (2009) show within an environment

characterized by one-dimensional noise that the existence of private non-fundamental

information can lead to complementarities in fundamental information acquisition.

The reason for this is that more fundamentally informed trading can make prices

less informative about fundamentals in the presence of private non-fundamental

information. As more fundamentally informed traders enter the market, the price

can become less informative, which increases the incentive for others to acquire

fundamental information. Moreover, they show that acquiring a fixed bundle of

private fundamental and private non-fundamental information can be a complement.

In a methodologically related paper, Goldstein & Yang (2015) (henceforth: GY

(2015)) extend the seminal model of GS 1980 by assuming different traders that are

informed about different fundamentals, that jointly determine the “fair” value of

a stock. They show that different agents’ trades on different fundamentals can be

complements due to an uncertainty reduction effect. As one group of fundamentally

informed traders trades more aggressively on the fundamental they know, the uncer-

tainty the other traders face is reduced. This makes them trade more aggressively

on their own fundamental information, too.

However, GY (2015, p. 1733) identify a second effect, an “inference augmentation

effect”, which favors strategic substitutability in trading in their setup. As one

informed group trades more aggressively on their fundamental, the price becomes

more informative about this fundamental for traders that do not observe it. Hence,

they rely more on the market price when predicting the unknown fundamental.

Since a higher value for the fundamental they observe ceteris paribus indicates a
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lower value for the unobserved fundamental when looking at the market price, they

reduce their demand for the risky asset when their observed fundamental takes on a

higher value. The higher the informativeness of the market price about the unknown

fundamental (which crucially depends on how aggressively the other group trades on

their fundamental information), the more they lower their demand as a reaction to

observing a higher value of the fundamental they know.

When concerning diverse non-fundamental information, I also identify an inference

augmentation effect, that, however, works in the opposite direction, i.e., it induces

complementarities in trading. While this effect prevents equilibrium multiplicity in

GY 2015 by leading to substitutabilities in trading, it is responsible for generating

multiple equilibria in this paper.

Although fundamental information is diverse, acquiring information about the same

fundamental is always a substitute in GY 2015. However, they show that acquir-

ing information about different fundamentals can be a complement. As already

mentioned, non-fundamental information acquisition is characterized by possible

complementarities in both respective types.

The remainder of this paper is structured as follows: Section 2 describes the model

and derives its equilibrium in the financial market. Section 3 focuses on traders’

interaction at the trading stage. Section 4 derives the equilibrium in the information

market and explores the respective interactions therein. Section 5 shortly discusses

the results of an extension with three-dimensional noise. Section 6 concludes.

2 The Model

A. Model Assumptions

The financial market consists of one riskless and one risky asset. The riskless

asset (i.e., a bond) can be traded without supply restrictions. Its return is normalized

to zero and it serves as a numeraire in the economy. The risky asset (i.e., a stock) in

zero net supply is traded at market price P in the first period. In the second period,

it pays off its fundamental value given by θ ∼ N(0, τ−1θ ).

There are six different types of agents in the financial market, two of which stand for

noise traders with demand x1 ∼ N(0, τ−1x ) and x2 ∼ N(0, τ−1x ), respectively.4 More-

over, there exist two sets of non-fundamentally informed agents indexed by [0, λ1]

and by [0, λ2], respectively. Each trader n1 ∈ [0, λ1] observes x1 whereas each trader

n2 ∈ [0, λ2] knows x2. Additionally, there is a continuum of fundamentally informed

4One could also interpret each component of noise trader demand as the sum of a fixed number
of single noise trader demands.
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traders indexed by the interval [0, 1].5 Each trader f ∈ [0, 1] observes sf = θ + εf ,

where εf ∼ i.i.d.N(0, τ−1ε ). There is also a continuum of completely uninformed but

rational traders indexed by the interval [0, λu]. Each trader u ∈ [0, λu] only observes

the market price. θ, x1, x2, and εf are assumed to be pairwise independent for all f .

Since the market is assumed to competitive, all agents are price takers. Therefore,

they (additionally) use the market price in order to infer information about θ.

For k = n1, n2, f, u, agent k’s final wealth is given by πk = (θ − P )Dk, where Dk

stands for agent k’s demand for the risky asset. Without the loss of generality, we

normalize agents’ initial wealth to zero. All rational traders are characterized by a

negative exponential utility function with constant absolute risk aversion (CARA),

U(πk) = −e−γπk . γ (> 0) measures agents’ common degree of risk aversion.

B. Equilibrium Determination

In the spirit of GS 1980, the equilibrium that we derive is a rational expecta-

tions equilibrium (REE). The price function is determined by a conjecture-and-verify

approach. Suppose that the price is linear in the state variables, i.e.,

P = aθ θ + a1 x1 + a2 x2. (1)

All rational agents aim at maximizing their expected utility conditional on the

information that they observe by optimally choosing their demand for the risky asset.

Maximizing their CARA utility function yields

Dk =
E[θ|Fk]− P
γVar[θ|Fk]

, (2)

where Fk stands for agent k’s information set. We have Fn1 = {P, x1}, Fn2 = {P, x2},
Ff = {P, sf}, and Fu = {P}. Intuitively, traders go long (resp., short) in the risky

asset if the expected value of θ exceeds (resp., is inferior to) the market price. Because

of their risk aversion, demand is constrained. The higher the uncertainty about

fundamentals or the higher the degree of risk aversion, the lower is the demand in

absolute terms.

The non-fundamentally informed agents use their knowledge about noise trader

demand to generate a more precise signal for the fundamental asset value out of

the market price. Building on (1), the price turns into the following signal for the

x1-informed traders, which they use to update their prior expectations about θ:

P̂n1 ≡
P − a1 x1

aθ
= θ +

1

β
x2, (3)

5Any mass different from unity would leave all derived results unchanged.



8

with β ≡ aθ/a2. Analogously, the x2-informed ones can disentangle the market price

as follows:

P̂n2 ≡
P − a2 x2

aθ
= θ +

1

α
x1, (4)

with α ≡ aθ/a1. Thus, for the non-fundamentally informed traders, the market price

is a signal about θ with precision β2τx and α2τx, respectively. By (3) and (4), it can

be seen that a rise in x1 or x2 reduces the demand of the respective noise-informed

group. The explanation for this is the following: As the noise-informed agents use

their knowledge about noise trader demand to gain a more precise signal about θ out

of the market price, their signal (i.e., P̂n1 or P̂n2) ceteris paribus indicates a lower

value for the risky fundamental asset value if x1 and x2 go up, respectively. Due to a

lower expected fundamental value, the noise-informed agents reduce their demand.

Thus, they follow a contrarian strategy with respect to their information about noise.

The more precise their signal gained from decomposing the market price is, the more

they reduce their demand as a response to a rise in noise trader demand.

For the fundamentally informed agents as well as for the completely uninformed

ones, observing the price is informationally equivalent to observing

P̂f/u ≡
P

aθ
= θ +

a1 x1 + a2 x2
aθ

. (5)

Hence, P̂f/u is a signal about θ with precision τx/(1/α
2 + 1/β2). Without non-

fundamental information, the signal for θ generated by disentangling the market

price clearly has a lower precision. Using (3), (4), (5), and agents’ private fundamental

signals, the first two conditional moments of θ can be determined for all types of

traders by using the projection theorem.

Then, the price P is determined by clearing the asset market:∫ 1

0

Df df +

∫ λ1

0

Dn1 dn1 +

∫ λ2

0

Dn2 dn2 +

∫ λu

0

Du du + x1 + x2 = 0. (6)

By plugging rational agents’ demand function from (2) into (6), one can solve for P

and show that it is indeed determined by a linear function of the state variables as

conjectured in (1). After matching coefficients, we obtain the following function of

P in the REE (the proof and the definition of ∆β can be found in the Appendix):

Proposition 1. If ∆β < 0 (resp., ∆β = 0), there exist(s) two (resp., one) partially

revealing REE given by

P = aθ θ + a1 x1 + a2 x2,



9

where

aθ =
α4λ2τx + β2 (τε + λ1β

2τx) + α2 (τε + β2τx ω)

α4λ2τx + β2 (τε + λ1β2τx + τθ ω) + α2 [τε + (β2τx + τθ)ω]
,

a1 =
1

α
aθ,

a2 =
1

β
aθ,

ω ≡ 1 + λ1 + λ2 + λu

and α as well as β are solutions of the following fixed-point equations:

α = f(α) ≡ λ1λ
2
2τ

3
x α

4 + 2λ1λ2τ
2
xτε α

2 + τε(λ1τxτε + γ2)

γ3
,

β = f(β) ≡ λ21λ2τ
3
x β

4 + 2λ1λ2τ
2
xτε β

2 + τε(λ2τxτε + γ2)

γ3
.

According to proposition 1, there are, apart from one combination of the exogenous

parameters that yields ∆β = 0, two REE if an equilibrium exists. The number

of equilibria is pinned down by the number of solutions for α and β. Since their

solutions are hardly analytically tractable, we illustrate them numerically. Figure 1

shows the mapping of f(β) with β where γ = 1, τε = 0.3, τx = 0.5, λ1 = 0.6, and

λ2 = 0.5.

The two intersections of the graph with the dashed 45◦-line mark the two equilibria

Figure 1: Mapping f(β) with β.

of the model. From the definitions of α and β, it can be concluded that they measure
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how strongly the price reacts to the fundamental asset value relative to the respective

noise shock. Since high (resp., low) values of β and α imply that the market price

is mainly driven by fundamental information (resp., by noise), we refer to the first

intersection in Figure 1 as the low information equilibrium (LIE) and to the second

one as the high information equilibrium (HIE). In the next section, some further

conditions that ensure the existence of an equilibrium are derived.

3 Interactions at the Trading Stage

Now, we turn to the interactions of the diverse non-fundamentally informed groups at

the trading stage. Particularly, we are interested in how their trades against the two

different noise shocks are connected. Moreover, we would like to analyze the effects of

their interactions on price informativeness and assess what effects a rise in the mass

of non-fundamentally informed traders exerts on the equilibria of the financial market.

A. Trading Intensities

The term “trading intensity” refers to the amount of aggressiveness with which

the noise-informed traders trade against their signal about noise trader demand.

Hence, it measures how much noise is actually counteracted by the rational, non-

fundamentally informed agents. Since there are two different groups of noise-informed

traders, we deal with two trading intensities. From the demand functions of the

noise-informed traders (see (A1) and (A2) in the Appendix), we obtain

Ix1 ≡ λ1

∣∣∣∣∂Dn1

∂x1

∣∣∣∣ = λ1
β2τx
γα

, (7)

Ix2 ≡ λ2

∣∣∣∣∂Dn2

∂x2

∣∣∣∣ = λ2
α2τx
γβ

. (8)

Note that both trading intensities are a function of agents’ conjectured values for

α and β, as they use the function in (1) in order to update their beliefs about θ

(which then influences their demand for the risky asset). By rewriting the aggregate

demand functions of the rational traders in a general way, we are able to find a

connection between the implied values of α and β (that follow from invoking rational
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expectations) and the trading intensities:∫ 1

0

Df df =
τε
γ
θ + P̃f P,

∫ λ1

0

Dn1 dn1 = P̃n1 P − Ix1 x1,

∫ λ2

0

Dn2 dn2 = P̃n2 P − Ix2 x2,

∫ λu

0

Du du = P̃u P,

where P̃f , P̃n1 , P̃n2 , and P̃u are functions of the exogenous parameters of the model

that correspond to (A1) - (A4) in the Appendix. Thus, in general form, the implied

values of the three REE coefficients are given by

aθ =
τε

−γ(P̃f + P̃n1 + P̃n2 + P̃u)
,

a1 =
1− Ix1

−(P̃f + P̃n1 + P̃n2 + P̃u)
,

a2 =
1− Ix2

−(P̃f + P̃n1 + P̃n2 + P̃u)
.

Hence, the implied value for α can be expressed as

α =
τε

γ (1− Ix1)
, Ix1 ∈ [ 0 , 1). (9)

Applying the same logic to the case of the implied value for β yields

β =
τε

γ (1− Ix2)
, Ix2 ∈ [ 0 , 1). (10)

(9) and (10) show that the trading intensities are positively connected to the values

for α and β. This is intuitive as more aggressive trading against noise makes the

price react less strongly to noise relative to fundamentals. Since α and β can be seen

as proxies for the informativeness of the price about fundamentals, this is equivalent

to a rise in their values.

The defined value range of the two trading intensities is deduced from the fact

that α and β are always positive, whenever an REE exists. Negative values for α

and/or β would contradict rational traders’ initial conjecture of the price function in

equilibrium (see (1)). Consequently, the trading intensities are higher in the HIE
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than in the LIE. In other words, more noise is offset in the HIE than in the LIE.

B. Strategic Complementarities in Trading

As outlined in the Introduction, one central question is how the non-fundamentally

informed traders interact in the financial market, i.e., how their trading intensities

are connected. Does a higher Ix1 lead to a higher or lower Ix2 and vice versa? By

plugging (9) and (10) into (7) and (8), respectively, and rearranging terms, we get

Ixi =
λiτxτε

γ2(1− Ixj)2 + λiτxτε
, for i, j = 1, 2, j 6= i. (11)

The general form of (11) follows from the symmetry of (7) and (8). By inspecting

(11), the next proposition immediately follows.

Proposition 2. Trading against xi is a complement to trading against xj, i.e.,

∂Ixi/∂Ixj > 0.

The explanation for the clear complementarity is the following: A higher Ixj means

that more noise coming from the xj-noise traders is offset. This benefits the traders

that do not know xj, as they now are able to obtain a more precise signal about θ

from disentangling the market price. As a consequence, they trade more aggressively

on their signal for θ generated out of the market price. Since the xi-informed traders

exclusively use their non-fundamental information in order to extract noise from the

market price, more aggressive trading on their obtained price signal is equivalent to

more aggressive trading against xi, i.e., a higher Ixi .

The identified inference augmentation effect exerts the opposite effect compared

to GY 2015, who deal with diverse fundamental information. In their model, it

favors strategic substitutability in trading. They additionally identify an uncertainty

reduction effect, which boosts complementarities in trading. Thus, the resulting type

of interaction is ambiguous in their setup. Trading against different types of noise,

by contrast, is unambiguously a complement.

C. An Explanation for Equilibrium Multiplicity

The clear complementarity in trading against different types of noise is the driving

mechanism that leads to equilibrium multiplicity. Noise-informed traders’ interaction

at the trading stage leads to the existence of two self-fulfilling REE. Since agents’

conjecture about the values for α and β influences how well the market price reflects

the fundamental asset value, θ, it also affects how aggressively agents trade against
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noise. Thus, the conjectured values for α and β shape the trading intensities (see (7)

and (8)).

If rational agents conjecture, e.g., a high α, the market price becomes a precise signal

for θ for the x2-informed traders, which makes them trade very aggressively against

their non-fundamental information, i.e., Ix2 rises. By (11), a high Ix2 leads to a high

Ix1 due to the complementarities in trading. A high Ix1 unambiguously translates

into a high implied value for α (see (9)). Hence, the initial conjecture of the rational

agents is verified in equilibrium, thereby leading to the existence of the HIE. The

symmetric argument holds for the conjecture and verification of a high value for β.

By contrast, the conjecture and verification of low values for α and for β justify the

existence of the LIE.

D. Price Informativeness

As already outlined, α and β can be seen as proxies for the informativeness of

the market price about fundamentals. In equilibrium, the information that, e.g., α

conveys can be split up into two parts as follows (see (A6) in the Appendix):

α =
τε
γ︸︷︷︸

fundamental
information

+
λ1 β

2 τx
γ

.︸ ︷︷ ︸
non−fundamental

information

The first component of α determines how much fundamental information it conveys.

It is given by the trading intensity of the fundamentally informed traders with

respect to their private signal about θ. This component is comparable to the one

of the seminal model of GS 1980. The second component of α determines how

much information about fundamentals the price conveys due to the existence of

non-fundamental information. It also shows the crucial connection between the two

REE fractions and, hence, between the two trading intensities. α and β are clearly

positively connected. Thus, the amount of information α conveys also depends on

the amount of information that β conveys and vice versa. This positive link between

the two REE fractions gives rise to the explained complementarity in trading against

different types of noise. As a consequence, the interaction of the noise-informed

agents benefits price informativeness. Following Vives (2008), we define this metric

as the inverse of the variance of fundamentals conditional on the market price. It is

given by

1

Var[θ|P ]
= τθ +

τxτ
2
ε

γ2 [(1− Ix1)2 + (1− Ix2)2]
. (12)
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Hence, the effect of a rise in Ixi on price informativeness is given as follows:

dVar−1[θ|P ]

dIxi
=
∂ Var−1[θ|P ]

∂Ixi︸ ︷︷ ︸
direct effect

+
∂ Var−1[θ|P ]

∂Ixj

dIxj
dIxi

,︸ ︷︷ ︸
complementarity

effect

for i, j = 1, 2, i 6= j. (13)

According to (13), the total effect can be split up into two parts. First, by increasing

their trading intensity, the xi-informed agents counteract more noise induced by the

xi-noise traders. This raises the quality of the market price as an adequate signal for

the fundamental asset value. This fact is represented by the first summand in (13).

Additionally, a higher Ixi triggers the derived complementarity in trading against

noise. A rise in Ixi leads to a rise in Ixj (see (11)). If more noise generated by the

xi-noise traders is counteracted, the xj-informed traders increase their own trading

intensity. The rise in Ixj further improves price informativeness as more noise coming

from the xj-noise traders is offset as a consequence. This connection is described by

the second summand in (13). Higher trading intensities increase price informativeness

through two channels. Due to this positive relationship, price informativeness is, of

course, higher in the HIE than in the LIE.

E. Consequences of a Rise in λi in Equilibrium

Next, we would like to examine the effects of an increase in the mass of noise-

informed traders in equilibrium. On the one hand, we are interested in the influence

on the trading intensities induced by a change in λ1 or λ2. By (11), it can be seen

that a rise in λi (resp., λj) directly affects Ixi (resp. Ixj). Additionally, a change

in λi (resp. λj) indirectly affects Ixi (resp., Ixj) through influencing the respective

other trading intensity. A change in λi (resp., λj) only indirectly affects Ixj (resp.,

Ixi) by changing Ixi (resp., Ixj). On the other hand, we explore the effects the mass

of noise-informed traders exerts on the existence and multiplicity of equilibria in the

model. The results are summarized in the following proposition (with the proof and

the expression for λ̃i in (A19) in the Appendix):

Proposition 3.

(a) The total effect of a rise in λi on both trading intensities is given by

dIxi
dλi

= Γ−1 × ∂Ixi
∂λi

, (14)

dIxj
dλi

= Γ−1 ×
∂Ixj
∂Ixi

∂Ixi
∂λi

, (15)
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Γ ≡ 1− 4Ix1Ix2 . (16)

(b) In the LIE (resp., HIE), it holds that Γ > 0 (resp., Γ < 0).

(c) If λi = λ̃i, it holds that

α =
2λ2τετx +

√
λ2τετx(4λ2τετx + 3γ2)

3γλ2τx
, (17)

β =
2λ1τετx +

√
λ1τετx(4λ1τετx + 3γ2)

3γλ1τx
. (18)

(d) If λi > λ̃i, there is no equilibrium. If λi < λ̃i, there are two equilibria.

Since all partial derivatives in (14) and (15) are clearly positive (see (11)), part

(a) in proposition 3 states that a rise in λi can decrease both trading intensities in

equilibrium, if Γ < 0. Part (b) shows that this always happens in the HIE, whereas

the opposite effect holds in the LIE. That is, the direction of influence on the trading

intensities induced by a rise in the mass of noise-informed traders is pinned down by

the equilibrium rational traders coordinate on.

The obtained result is in line with the existing literature on non-fundamental infor-

mation and equilibrium multiplicity. Comparable results are derived in Ganguli &

Yang (2009). In their specification, a rise in the mass of informed agents increases

informativeness in one equilibrium while decreasing it in a second one. I identify this

feature in my model, too.

The fact that a rise in the mass of noise-informed agents can lead to a decrease in the

trading intensities (and equilibrium fractions) stems, as in the case of equilibrium

multiplicity, from the self-fulfilling expectations of the rational traders. The reasoning

I use is similar to the one in Ganguli & Yang (2009, p. 100): Suppose the agents

coordinate on the HIE and, hence, conjecture that a rise in the mass of noise-informed

agents leads to a fall in the equilibrium fractions (and in the trading intensities). The

implied values of α and β as functions of their conjectured values are given by (A6)

and (A7) in the Appendix. According to these two equations, the direct effect of a

rise in the mass of non-fundamentally informed traders is positive, thereby tending

to increase the implied values of the two fractions. However, since the conjectured

values of α and β are high in the HIE (in comparison to their values in the LIE),

the induced decline in the conjectured values outweighs the direct positive effect. In

aggregate, this leads to lower implied values for α and β, which self-fulfills agents’

initial conjecture.

Moreover, part (c) in proposition 3 shows that there exists a critical value for λi
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which leads to a unique REE. In this special case, the solutions for α and β can be

determined in closed form. They are given by (17) and (18), respectively. According

to part (d), there are two equilibria (the LIE and the HIE) if the mass of noise-

informed traders is sufficiently low. If the overall mass of noise-informed traders is

too high, an equilibrium fails to exist and the market breaks down. By carefully

inspecting f(α) and f(β) in proposition 1, it can be seen that the same occurs for

sufficiently high values of τε and τx and for sufficiently low values of γ.

Strong informed trading expressed by a high mass of noise-informed agents (i.e, a

high λ1 or λ2) or a precise fundamental signal (i.e., a high τε) exacerbates the adverse

selection problem in financial markets. Very aggressive trading expressed by low

risk aversion (i.e., a low γ) produces the same effect. Adverse selection in financial

markets describes the state that traders are exposed to the risk of potentially trading

against other agents that possess information superior to their own one (see, e.g.,

Medrano & Vives (2004)).

If the adverse selection problem happens to be very intense, agents might refrain from

participating in the market, thereby producing a market breakdown. The fact that

too much informed trading leads to a market breakdown due to the described adverse

selection problem can also be found in other models related to non-fundamental

information like in Ganguli & Yang (2009) and in Marmora & Rytchkov (2018).

In my setup, the novelty compared to Ganguli & Yang (2009) and Marmora &

Rytchkov (2018) is that the volatility of noise trading also influences the existence of

an equilibrium. This result can be directly linked to the adverse selection problem

in financial markets, too. Highly volatile noise trading (i.e., a low τx) alleviates this

problem. If the impact of noise traders increases, the risk of trading against a better

informed agent is mitigated. Instead, it becomes more likely to trade against an

uninformed noise trader (cf. also Vives (2008, Chapter 4)).

4 Costly Signals and Information Acquisition

A. Information Acquisition Equilibrium

In section 2, knowing x1 and x2 is not linked to any cost. In what follows, this

assumption is relaxed and x1 and x2 are turned into costly signals. Particularly,

information on x1 and on x2 can be acquired at cost c1 > 0 and at cost c2 > 0,

respectively. This allows us to endogenize the values for λ1 and λ2 . For the sake of

tractability, each uninformed trader is only able to acquire one of the two signals.

6Imposing a restriction on the overall mass of fundamentally uninformed traders would signifi-
cantly complicate the derivation of an equilibrium in the information market, however leaving all
derived results qualitatively unchanged.
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Throughout the analysis, we assume, similar to GY 2015, that there are always

some rational traders that decide to stay completely uninformed in equilibrium, i.e.,

λu > 0. This allows us to omit the analysis of corner solutions where all fundamen-

tally uninformed agents decide to acquire information on x1 and on x2, respectively.6

As already pointed out by GY (2015, p. 1740), the “case of λu > 0 is of course

empirically relevant, since in reality it is unlikely that every trader is informed.”

As a consequence, we are interested in the following four outcomes in equilibrium:

(λ∗1 = λ∗2 = 0), (λ∗1 > 0, λ∗2 = 0), (λ∗1 = 0, λ∗2 > 0), and (λ∗1 > 0, λ∗2 > 0).

By comparing the ex-ante expected utility of a noise-informed trader with the one of

an uninformed trader, we can derive the value of non-fundamental information. It is

given in the next proposition (with the proof in the Appendix).

Proposition 4. The value of information about noise is given by

φxi =
1

2γ
log

[
Var [θ|P ]

Var [θ|P, xi]

]
, for i = 1, 2. (19)

According to (19), the value of non-fundamental information is mainly shaped by

the ratio of the uncertainty that traders face if they only observe the market price

and by the variance if they additionally know xi. The more the information about

xi reduces the conditional variance of θ compared to just observing the market price,

the higher is its value. If the information about noise only marginally reduces the

uncertainty the traders are confronted with, its value is rather small.

In general, a rational agent is willing to acquire information about noise if its cost

is lower than its value. If its cost exactly equals its benefit, the agent is indifferent

between becoming noise-informed or not. Since we suppose that there are always

some rational agents that decide to stay completely uniformed, the cost of a sig-

nal must be equal to its value given that there are noise-informed traders in the

market. That is, if λ∗i > 0, we have ci = φxi . A trader refrains from acquiring

information about xi if the cost is higher than its value. Thus, if λ∗i = 0, we have

ci ≥ φxi . The following proposition describes the equilibrium in the information

market (with the proof and the expressions for c̄, c̄2, f(c1), and g(c1) in the Appendix):

Proposition 5.

(a) λ∗1 = λ∗2 = 0 is an equilibrium if c1 ≥ c̄ and c2 ≥ c̄.

(b) λ∗1 > 0, λ∗2 = 0 is an equilibrium if c1 < c̄ and c2 ≥ f(c1).
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(c) λ∗1 = 0, λ∗2 > 0 is an equilibrium if c1 > c̄ and c̄ ≥ c2 ≥ g(c1).

(d) λ∗1 > 0, λ∗2 > 0 is an equilibrium if

(i) c1 ≤ c̄ and c̄2 > c2 > f(c1);

(ii) c1 > c̄ and c̄2 > c2 > g(c1).

(e) There is no equilibrium in the information market if

(i) c1 ≤ c̄ and c2 < f(c1);

(ii) c1 > c̄ and c2 < g(c1).

Building on proposition 5, Figure 2 illustrates all possible equilibria in the in-

Figure 2: Information Acquistion Equilibrium

formation market in the space of (c1, c2), where the value for ¯̄c directly follows from

equating c̄ with c̄2 and solving for c1. In space (1), both cost parameters are too high

and all agents refrain from acquiring non-fundamental information (i.e., λ∗1 = λ∗2 = 0).

In space (2), agents only acquire information about x1 (i.e., λ∗1 > 0, λ∗2 = 0). Spaces

(3) - (5) define a channel that supports multiple equilibria in the model. In these

three spaces an equilibrium with both groups of noise-informed traders (i.e., λ∗1 > 0,

λ∗2 > 0) is always possible. Additionally, there is a second equilibrium in the infor-

mation market, whose type depends on the exact combination for c1 and c2. Space

(3) (resp., space (5)) also supports an equilibrium of the form λ∗1 > 0, λ∗2 = 0 (resp.,
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λ∗1 = 0, λ∗2 > 0). In space (4), an equilibrium without non-fundamentally informed

traders (i.e., λ∗1 = λ∗2 = 0) is possible. In space (6), equilibrium is unique and of the

form λ∗1 = 0, λ∗2 > 0.

Surprisingly, an information acquisition equilibrium fails to exist for sufficiently small

costs (see space (7)). Intuitively, one would expect an equilibrium with both groups

of noise-informed traders in this situation. The explanation for this phenomenon is

the following: In a potential equilibrium of the form λ∗1 > 0, λ∗2 > 0, low costs are

associated with low values of information about noise. Low values of information

about noise are associated with low values for α and β in a potential equilibrium.

This is intuitive as low values for α and β imply a rather uninformative price. Thus,

knowing one of the two noise shocks does not significantly improve the predictive

power of the market price with respect to the fundamental asset value. It still

remains a rather noisy signal for θ. As a consequence, the value of information about

noise is low. However, if α and β are smaller than τε/γ, i.e., if they are smaller than

the trading intensity of the fundamentally informed agents with respective to their

private signal about θ, an information acquisition equilibrium with both groups of

non-fundamentally informed agents present can not exist (see also (A6) and (A7) in

the Appendix). That is, in order to be able to carry non-fundamental information,

both α and β need to convey more information than potentially contributed by the

fundamentally informed traders. For sufficiently small values of c1 and c2 and, hence,

for sufficiently low values of information about noise, this is not the case and an

information acquisition equilibrium with non-fundamentally informed traders fails to

exist.7

B. Interactions in the Information Market

After having derived an equilibrium with endogenous values for λ1 and λ2, we

now turn to the strategic interactions in information acquisition. In other words, we

would like analyze whether acquiring information on the same noise component on

the one hand and on different noise components on the other hand is a strategic

complement and substitute, respectively. If a rise in λi increases (resp., decreases) φxi ,

acquiring information about the same noise component is said to be a complement

(resp., substitute). That is, as more traders with information about xi enter the

market, the incentive for other agents to acquire information about xi rises (resp.,

shrinks), which is expressed by a higher (resp., lower) value of information about

noise. Whenever a rise in λj increases (resp., decreases) φxi , acquiring information

7The obtained result would not qualitatively change if one allowed for the existence of the
excluded corner solutions. There still would exist a space near the origin in Figure 2 where an
equilibrium in the information market would fail to exist.
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about different noise components is a complement (resp., substitute), i.e., as more

traders with information about xj enter the market, the incentive for other traders

to acquire information about xi rises (resp., shrinks).

Analogously to GY 2015, (19) can be split up into two parts as follows:

φxi =
1

2γ
log

[
τθ +

τ 2ε τx
γ2 (1− Ixj)2

]
︸ ︷︷ ︸

signal precision

− 1

2γ
log

[
1

Var [θ|P ]

]
︸ ︷︷ ︸
price informativeness

. (20)

According to (20), a change in λi or λj affects φxi in two ways. On the one hand, it

influences the precision of the signal an xi-informed trader gains by observing the

market price. Since this precision is shaped by how aggressively the xj-informed

traders trade against their signal about noise, λi and λj affect this component

through affecting Ixj . A(n) decrease (resp., increase) in the named precision reduces

(resp., raises) the incentive to acquire information about xi. On the other hand,

the overall price informativeness is affected by a rise in the mass of noise-informed

agents. The more informative the market price, the lower is the incentive to acquire

costly non-fundamental information. Whenever an increase in λi or λj raises (resp.,

decreases) price informativeness, agents’ incentive to free-ride on the price increases

(resp., shrinks).

In the LIE, a rise in the mass of noise-informed traders increases both trading

intensities. Thus, both components in (20) rise and the overall effect on the value of

information about noise is ambiguous. The same result holds for the HIE with the

respective inverse argumentation. In the HIE, a rise in the mass of non-fundamentally

informed agents leads to fall in both trading intensities. Thus, the precision of the

price signal an xi-informed traders gleans as well as overall price informativeness

shrink. The next proposition summarizes the obtained results concerning agents’

interactions in the information market (with the proof delegated to the Appendix):

Proposition 6. (a) If λj = 0, acquiring information about the same noise compo-

nent is always a substitute, i.e., dφxi/dλi < 0. (b) If λj > 0, acquiring information

about the same noise component can be a complement in the LIE and in the HIE,

i.e., dφxi/dλi > 0. (c) Acquiring information about different noise components can

be a complement in the LIE and in the HIE, i.e., dφxi/dλj > 0.

The exact conditions that ensure the complementarities mentioned in part (b)

and (c) in proposition 6 can also be found in the Appendix. Part (a) in proposition

6 states that a rise in λi always reduces the value of information about xi (i.e.,

dφxi/dλi < 0), if non-fundamental information is not diverse (i.e., λj = 0). In other

words, acquiring information about the same noise component is unambiguously a
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substitute whenever there is only one non-fundamentally informed group present.

The explanation is the following: If λi rises, Ixi increases, too. Since there is no

non-fundamental information diversity, there is no equilibrium multiplicity. In this

reduced setting, a higher λi always translates into a higher Ixi . By raising their

trading intensity, the xi-informed traders turn the market price into a more accurate

signal for the risky fundamental asset value. However, since there is no second

group of noise-informed traders present, their action induces no complementarity

in trading against noise, thereby leaving their residual variance unchanged. As a

consequence, their informational advantage shrinks. This reduces the incentive to

acquire information about xi.

Part (b) in proposition says that acquiring information about the same noise com-

ponent can be complement in both equilibria if noise is multidimensional and

non-fundamental information is diverse. If λj > 0, a rise in the mass of traders with

information about xi does not only affect overall price informativeness, but also the

precision of the price signal an xi-informed trader obtains through changing Ixj . In

the LIE (resp., in the HIE), the positive affect on the value of information about

noise generated by increasing the signal precision (resp., by decreasing overall price

informativeness) can outweigh the negative effect generated by increasing overall

price informativeness (resp., by decreasing the signal precision). This, then, leads to

complementarities in the acquisition of information about the same noise component.

Part (c) shows that the same holds true for the acquisition of information about

different noise components. Both in the LIE and in the HIE, acquiring information

about xi can be a complement to acquiring information about xj.

Table 1 compares the obtained results on strategic interactions in acquiring non-

fundamental information with the relevant literature that is concerned with mul-

tidimensional fundamentals and uniform and diverse fundamental information, re-

spectively - namely GS 1980 and GY 2015. The last two rows in Table 1 display

the results contained in proposition 6. In the seminal GS 1980 model, agents only

Same component Different components

GS 1980 substitute /

GY 2015 substitute substitute or complement

λi > 0, λj = 0 substitute /

λi > 0, λj > 0 substitute or complement substitute or complement

Table 1: Comparison of Strategic Interactions in Information Acquistion

have information about one of the two risky fundamental components, that jointly

determine the fair value of the asset. In their setup, acquiring information about

this fundamental is always a substitute. In the extension of GY 2015, with two
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groups of rational traders that possess information about one of the two fundamentals

each, it is a substitute, too. Although fundamental information is diverse, acquiring

information about the same fundamental is always a substitute.

If noise is multidimensional and non-fundamental information is uniform, acquir-

ing information about the same noise component is always a substitute. This is

comparable to the result on fundamental information acquisition obtained by GS

1980. However, if non-fundamental information is diverse, acquiring information

about the same noise component can be a complement. A comparable result does

not hold when concerning diverse fundamental information, as analyzed by GY 2015.

Nevertheless, GY 2015 uncover a possible complementarity in acquiring informa-

tion about different fundamental components. When considering multidimensional

noise and diverse non-fundamental information, the analogous complementarity

can occur, i.e., non-fundamental information acquisition can be characterized by

cross-complementarities.

5 An Extension with Three-Dimensional Noise

This section briefly reviews the main implications that follow from extending the

basic model to the case of three-dimensional noise and adding a third group of

noise-informed traders. Introducing a third dimension of noise leads to a highly

non-linear system that determines the three REE fractions. As a consequence, the

respective fixed-point equations can not be analytically derived anymore. Therefore,

the obtained results rely on an extensive set of numerical simulations.8

The numerical calibrations show that all of the main results of the model with

two-dimensional noise regarding equilibrium multiplicity and complementarities in

the financial market and in the information market are still valid. Nevertheless, the

three-dimensional extension highlights the importance of diverse non-fundamental

information in generating equilibrium multiplicity. If and only if information about

all three noise shocks is available to traders, i.e., non-fundamental information is

sufficiently diverse, complementarities in trading are strong enough to generate mul-

tiple equilibria. As one of the three groups of non-fundamentally informed traders

vanishes, equilibrium turns out to be unique.

The most striking difference compared to the two-dimensional case lies in the proper-

ties of the equilibria. They significantly differ from the “classical” ones à la Ganguli

& Yang (2009). In both equilibria, a rise in λi now leads to an increase in Ixi ,

whereas leading to a fall (resp., a rise) in the other two trading intensities in the

HIE (resp., in the LIE). More interestingly, the mass of noise-informed traders does

not shape the existence of an equilibrium anymore. If noise is three-dimensional, the

8The exact numerical simulations are available upon request.
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adverse selection problem is less serve than in the two-dimensional case. The higher

the dimension of noise, the smaller is the informational advantage obtained from

observing a single noise component.9 However, if fundamental information is very

precise (i.e., a high τε), noise trading is very weak (i.e., a high τx), or trading is very

aggressive (i.e., a low γ), adverse selection intensifies and the market breaks down.

Though much less tractable, extending the basic model to the case with three-

dimensional noise underscores the importance of non-fundamental information di-

versity in generating multiple equilibria. Additionally, new properties of equilibria

linked to the interactions of noise-informed agents are uncovered, that have been

absent in the literature so far.10

6 Conclusion

This paper explores the strategic interactions between different rational traders that

are informed about different components of noise trader demand. It contributes to

the existing theoretical literature on non-fundamental information by identifying new

types of complementarities in the financial market and in the information market,

which can only be uncovered if noise is multidimensional. In the financial market,

agents’ trades against different order flows from noise traders are complements

due to an inference augmentation effect. As one noise-informed group trades more

aggressively against the piece of noise trader demand that they observe, the price

becomes more informative about fundamentals for the other noise-informed group.

This makes them trade more aggressively on their price signal, which implies more

aggressive trading against the type of noise they observe. The strong complementarity

in trading leads to the existence of multiple, self-fulfilling equilibria, that show, if

noise is two-dimensional, similar properties to those of Ganguli & Yang (2009). If

noise is three-dimensional, the properties significantly differ due to weaker adverse

selection. Moreover, the complementarity in trading against noise clearly benefits

price informativeness.

In the information market, multiple equilibria and complementarities are also possible.

I identify a channel for combinations of cost parameters where an equilibrium

with diverse non-fundamental information and one with uniform non-fundamental

information and without non-fundamental information, respectively, are plausible.

If noise is multidimensional and non-fundamental information is diverse, acquiring

9If one allowed for a group of traders that would observe two of the three noise shocks, the
two equilibria again would show the classical properties and a high mass of noise-informed traders
would lead to a market breakdown.

10The author is aware of the fact that the adverse selection problem vanishes if the error terms
in the traders’ private fundamental signals are correlated, as shown by Manzano & Vives (2011).
However, the extension of this section shows that adverse selection can be significantly weakened if
noise is three-dimensional and non-fundamental information is sufficiently dispersed.
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information about the same type of noise can be a complement. There can also exist

cross-complementarities, i.e., acquiring information about different types of noise

can be a complement.

Appendix

Proof of Proposition 1. By (2) and by computing the first two conditional moments

of θ via the projection theorem, the demand function of an x1-informed trader and

of an x2-informed trader becomes

Dn1 =

β2τx

(
P

aθ
− 1

α
x1

)
− P (τθ + β2 τx)

γ
(A1)

and

Dn2 =

α2τx

(
P

aθ
− 1

β
x2

)
− P (τθ + α2 τx)

γ
, (A2)

respectively. Analogously, the demand of a fundamentally informed trader and of an

uninformed one is

Df =

τε sf +
τx

1

α2
+

1

β2

P

aθ
− P

τθ + τε +
τx

1

α2
+

1

β2


γ

. (A3)

and

Du =

τx
1

α2
+

1

β2

P

aθ
− P

τθ +
τx

1

α2
+

1

β2


γ

, (A4)

respectively. By plugging (A1) - (A4) into (6) and rearranging terms, we obtain11

(1 + λu)

τθ +
τx(1− a−1θ )

1

α2
+

1

β2

P + λ1[(1− a−1θ )β2τx + τθ]P

+ λ2[(1− a−1θ )α2τx + τθ]P = τε θ +

(
γ − λ1β

2 τx
α

)
x1 +

(
γ − λ2α

2 τx
β

)
x2. (A5)

11By the law of large numbers, we get
∫ 1

0
sf = θ.
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By comparing (1) with (A5) and after some tedious calculations, we obtain

aθ =
α4λ2τx + β2 (τε + λ1β

2τx) + α2 (τε + β2τx ω)

α4λ2τx + β2 (τε + +τθ ω + λ1β2τx) + α2 [τε + (β2τx + τθ)ω]
,

where ω ≡ 1 + λ1 + λ2 + λu.

By the definitions of α and β, it immediately follows that

a1 =
aθ
α

and a2 =
aθ
β
.

Moreover, invoking rational expectations implies that

α =
τε

γ − λ1β
2 τx
α

and

β =
τε

γ − λ2α
2 τx
β

.

Thus,

α =
τε + λ1β

2τx
γ

(A6)

and

β =
τε + λ2α

2τx
γ

. (A7)

By simultaneously solving (A6) and (A7) for α and β, we can find the two fixed-point

equations that determine the solutions for both defined ratios:

α =
λ1λ

2
2α

4τ 3x + 2λ1λ2α
2τ 2xτε + λ1τxτ

2
ε + τεγ

2

γ3
(A8)

and

β =
λ21λ2β

4τ 3x + 2λ1λ2β
2τ 2xτε + λ2τxτ

2
ε + τεγ

2

γ3
. (A9)

(A8) and (A9) can be used to find the explicit solutions for both fractions. In what

follows, we focus on (A9). Due to symmetry, the analogous results hold for (A8).
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Rearranging (A9) delivers

λ21λ2τ
3
xβ

4 + 2λ1λ2τ
2
xτεβ

2 − γ3β + λ2τxτ
2
ε + τεγ

2 = 0. (A10)

The solutions for β are obtained by determining the roots of the quartic in (A10).

Descartes’ rule of signs immediately tells us that there exist either two or zero positive

real roots. Hence, the existence of an REE can be ensured if and only if the solution

of the quartic in (A10) delivers two positive real roots. Following Dickson (1914,

Chapter 4), this is the case whenever the discriminant (∆β) of (A10) is non-positive.

If it is negative, we have two distinct real roots. A discriminant equal to zero means

that there are two identical roots. Then, by the using the formula for the discriminant

of a quartic (see, e.g., Dickson (1914, p. 41)), we get

∆β =
256

27
λ61λ

3
2τ

9
xτ

3
ε (4λ2τxτε + 3γ2)3

− 1

27
λ41λ

2
2τ

6
x(128λ1λ

2
2τ

3
xτ

3
ε + 144λ1λ2τ

2
xτ

2
ε γ

2 − 27γ6)2.

Thus, whenever ∆β < 0 (resp., ∆β = 0), there exist(s) two (resp., one) REE. �

Proof of Proposition 3. Formally, the total effect of a rise in λi on Ixi and Ixj
is given by

dIxi
dλi

=
∂Ixi
∂λi

+
∂Ixi
∂Ixj

dIxj
dλi

and
dIxj
dλi

=
∂Ixj
∂Ixi

dIxi
dλi

.

Thus,

dIxi
dλi

=

∂Ixi
∂λi

1− ∂Ixi
∂Ixj

∂Ixj
∂Ixi

=

(
1− ∂Ix1

∂Ix2

∂Ix2
∂Ix1

)−1
∂Ixi
∂λi

(A11)

and

dIxj
dλi

=

∂Ixj
∂Ixi

∂Ixi
∂λi

1− ∂Ixi
∂Ixj

∂Ixj
∂Ixi

=

(
1− ∂Ix1

∂Ix2

∂Ix2
∂Ix1

)−1 ∂Ixj
∂Ixi

∂Ixi
∂λi

. (A12)

By (11), we have

∂Ixi
∂Ixj

=
2γ2(1− Ixj)λiτxτε

(γ2(1− Ixj)2 + λiτxτε)2
, for i, j = 1, 2, i 6= j. (A13)
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Next, we would like to eliminate λi in (A13). Solving (11) for λi yields

λi =
γ2Ixi(1− Ixj)2

(1− Ixi)τxτε
, for i, j = 1, 2, i 6= j. (A14)

By plugging (A14) into (A13), we obtain

∂Ixi
∂Ixj

=
2Ixi(1− Ixi)

1− Ixj
, for i, j = 1, 2, i 6= j.

This gives

Γ ≡ 1− ∂Ix1
∂Ix2

∂Ix2
∂Ix1

= 1− 4Ix1Ix2 ,

which together with (A12) and (A13) yields (14) to (16). Then, we can also show

that

dIxi
dλi

=
τετx(1− Ixi)2

γ2(1− Ixj)2(1− 4Ix1Ix2)
, (A15)

dIxj
dλi

=
2τετx(1− Ixi)Ixj

γ2(1− Ixj)(1− 4Ix1Ix2)
. (A16)

Next, we assume Ix1 = 0.25 I−1x2 so that Γ = 0 and examine the consequences in

equilibrium. At this point, the effect of a change in λi on both trading intensities is

undefined. Then, by (9) and (10), the value for α in equilibrium in terms of β is

α =
4τε(γβ − τε)
γ(3γβ − 4τε)

. (A17)

Equating (A17) with (A6) and rearranging terms delivers the following quadratic

function in β:

3γλ1τxβ
2 − 4λ1τετxβ − γτε = 0. (A18)

Solving (A18) immediately leads to (18). Due to symmetry, this immediately yields

(17). By equating (18) with (A7) and (17) with (A6) and solving for λ2 and λ1,

respectively, we can derive the critical values for the two parameters that are linked

to the existence of a unique REE. After some tedious calculations, we can show that

the critical value in general form is given by

λ̃i =
27γ6[

√
λjτετx(4λjτετx + 3γ2)− λjτετx]

16λjτ 2ε τ
2
x [3γ2 + 2λjτετx +

√
λjτετx(4λjτετx + 3γ2)]

> 0, for i, j = 1, 2, i 6= j.

(A19)
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Since both f(α) and f(β) from proposition 1 are increasing in λ1 and λ2, we can

further conclude that λi < λ̃i is a necessary and sufficient condition for the existence

of the LIE and of the HIE. If λi > λ̃i, there is no solution to the two fixed-point

equations in proposition 1 and an REE fails to exist.

To prove part (b) in proposition 3, it suffices to explore the effect of an increase in

λi on the REE fractions α and β, since they are positively connected to the trading

intensities. According to proposition 1, in equilibrium, it holds that β − f(β) = 0

(and α− f(α) = 0). Applying the implicit function theorem delivers

dβ

dλi
=

d f(β)

dλi
1− f ′(β)

.

Since f(β) is strictly increasing in λi, we have sign(dβ/dλi) = sign(1− f ′(β)). As

f(β) is a strictly increasing and convex function in β with a positive intercept, it

can be concluded that f ′(βLIE) < 1 and f ′(βHIE) > 1. This means that dβ/dλi > 0

in the LIE and dβ/dλi < 0 in the HIE. By symmetry, the analogous result holds for

αLIE and αHIE. Due to the positive link between the REE fractions and the trading

intensities, this proves that Γ > 0 (resp., Γ < 0) is true in the LIE (resp., HIE). �

Proof of Proposition 4. By turning x1 and x2 into costly signals, the wealth function

of a noise-informed trader slightly changes to πni = (θ − P )Dni − ci for i = 1, 2. Due

to the CARA form of utility, initial wealth does not affect the investment decision,

i.e., ci does not change Dni . Thus, the conditional expected utility of a noise-informed

agent can be written as

E [U(πni)|xi, P ] = − exp {γci} exp

{
−(E [θ|xi, P ]− P )2

2Var [θ|xi, P ]

}
.

Taking expectations conditional on P yields

E [U(πni)|P ]− exp {γci}E
[
exp

{
−(E [θ|xi, P ]− P )2

2Var [θ|xi, P ]

} ∣∣∣∣P] . (A20)

Let Y be a normally distributed variable. It is well known that the following holds

(see, e.g., Demange & Laroque (1995)):

E
[
−y2

]
=

1√
1 + 2Var[Y ]

exp

{
− (E[Y ])2

1 + 2Var[Y ]

}
. (A21)

Applying (A21) with Y = (E[θ|xi, P ]− P ) /
√

2Var [θ|xi, P ] and recalling that, by

the law of total conditional variance, Var [E[θ|xi, P ]|P ] = Var[θ|P ] − Var[θ|xi, P ],
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conditional on P , (A20) becomes

E [U(πni)|P ] = − exp {γci}

√
Var [θ|xi, P ]

Var [θ|P ]
exp

{
−(E [θ|P ]− P )2

2Var [θ|P ]

}
.

Again taking (unconditional) expectations yields

E [U(πni)] = − exp {γci}

√
Var [θ|xi, P ]

Var [θ|P ]
E
[
exp

{
−(E [θ|P ]− P )2

2Var [θ|P ]

}]
. (A22)

By a similar argument, the ex-ante expected utility of an uninformed trader can be

expressed as

E [U(πu)] = −E
[
exp

{
−(E [θ|P ]− P )2

2Var [θ|P ]

}]
. (A23)

Equating (A22) with (A23) and solving for ci yields (19). �

Proof of Proposition 5. Straightforward computations show that φx1 and φx2 can be

expressed in terms of α and β as follows:

φx1(α, β) =
1

2γ
log

[
(α2 + β2)(τθ + β2τx)

β2τθ + α2(τθ + β2τx)

]
, (A24)

φx2(α, β) =
1

2γ
log

[
(α2 + β2)(τθ + α2τx)

β2τθ + α2(τθ + β2τx)

]
. (A25)

Case 1. First, we look at the case where no one acquires information about noise,

i.e., λ∗1 = λ∗2 = 0. By (A6) and (A7), this leads to α = β = τε/γ. In this situation,

no agent finds it beneficial to acquire information about noise given that there is

no single trader in the market possessing non-fundamental information. Hence,

in equilibrium, it follows that c1 ≥ φx1 (τε/γ, τε/γ) and c2 ≥ φx2 (τε/γ, τε/γ). The

respective computations yield due to the symmetry of (A24) and (A25) that

φx1 (τε/γ, τε/γ) = φx2 (τε/γ, τε/γ) =
1

2γ
log

[
2 (γ2τθ + τ 2ε τx)

2γ2τθ + τ 2ε τx

]
≡ c̄.

Therefore, in an information acquisition equilibrium of the form λ∗1 = λ∗2 = 0, it holds

that

c1 ≥ c̄ and c2 ≥ c̄. (A26)
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Case 2. In the second case, we turn to the situation where agents acquire information

about x1 only, i.e., λ∗1 > 0, λ∗2 = 0. Since λ∗2 = 0, it follows by (A7) that β = τε/γ.

Thus, in equilibrium, we have

φx1 (α, τε/γ) = c1 and φx2 (α, τε/γ) ≤ c2.

The value of α in terms of c1 is then given by

α =
τε
√
τ 2ε τx − (e2γc1 − 1)γ2τθ

γ
√

(e2γc1 − 1)(τ 2ε τx + γ2τθ)
. (A27)

From (A6), we know that λ∗1 can be expressed as

λ∗1 =
γα− τε
β2τx

. (A28)

Thus, by (A28), for λ∗1 > 0 to be true in equilibrium, it must hold that α > τε/γ. By

recalling (A27), it can be shown that α > τε/γ is equal to

c1 <
1

2γ
log

[
2 (γ2τθ + τ 2ε τx)

2γ2τθ + τ 2ε τx

]
= c̄.

Furthermore, by (A27), we can express the value of information about x2 as

φx2 (α, τε/γ) =
1

2γ
log

[
e2γc1 [(e2γc1 − 1) γ4τ 2θ + τ 4ε τ

2
x ]

(e2γc1 − 1) (γ2τθ + τ 2ε τx)
2

]
≡ f(c1).

Therefore, in order for an equilibrium of the form λ∗1 > 0 and λ∗2 = 0 to exist, it must

hold that

c1 ∈ (0 , c̄) and c2 ≥ f(c1). (A29)

Case 3. The third case deals with the situation where no one possesses information

about x1 and some agents acquire information about x2, i.e., λ∗1 = 0, λ∗2 > 0. This

case is symmetric to the second one. Hence, it can be concluded without any further

calculations that such an equilibrium satisfies

c1 ≥ f(c2) and c2 ∈ (0, c̄), (A30)

where

f(c2) ≡
1

2γ
log

[
e2γc2 [(e2γc2 − 1) γ4τ 2θ + τ 4ε τ

2
x ]

(e2γc2 − 1) (γ2τθ + τ 2ε τx)
2

]
.
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Next, we would like to express the value range of c2 in (A30) in terms of c1. To get

there, we first analyze the monotonicity of f(c2):

f ′(c2) =
(e2γc2 − 1)2γ4τ 2θ − τ 4ε τ 2x

(e2γc2 − 1) [(e2γc2 − 1)γ4τ 2θ + τ 4ε τ
2
x ]
.

Hence,

f ′(c2) T 0 ⇔ c1 T
1

2γ
log

[
1 +

τ 2ε τx
γ2τθ

]
≡ c̃ > c̄.

Consequently, c̃ represents the global minimum of f(c2) (and f(c1)). Moreover, since

f(c2) is a quadratic function of c2, the respective equation c1 = f(c2) possesses

two solutions for c2, i.e., each value of c1 ∈ R+ are assigned two values of c2. The

first one, call it g(c1), is characterized by g(c1) < c̃, the second one, call it h(c1), is

characterized by h(c1) > c̃.

Define C ≡ γ2τθ + τ 2ε τx. Then, direct computations yield

g(c1) =
−τ 4ε τ 2x + γ4τθ + C2e2γc1 −

√
(τ 4ε τ

2
x − γ4τθ − C2e2γc1)2 − 4γ4τ 2θC

2 e2γc1

2γ4τ 2θ

and

h(c1) =
−τ 4ε τ 2x + γ4τθ + C2e2γc1 +

√
(τ 4ε τ

2
x − γ4τθ − C2e2γc1)2 − 4γ4τ 2θC

2 e2γc1

2γ4τ 2θ
.

Since f(c2) is decreasing in c2 for c2 < c̃, g(c1) is decreasing in c1 for c1 ∈ R+.

Analogously, as f(c2) is increasing in c2 for c2 > c̃, h(c1) is increasing in c1 for

c1 ∈ R+. Thus, c1 ≥ f(c2) is equivalent to h(c1) ≥ c2 ≥ g(c1).

Recall from (A30) that an equilibrium of the form λ∗1 = 0, λ∗2 > 0 requires c2 < c̄.

Since h(c1) > c̃ > c̄, the value range of c2 in the third case in terms of c1 is given by

c̄ > c2 ≥ g(c1).

Furthermore, since α(c1 = c̄) = τε/γ (cf. (A27)), it follows by symmetry that

β(c2 = c̄) = τε/γ. As φx1(τε/γ, β)(≡ f(c2)) is decreasing in c2 for c2 < c̃ and

φx1(τε/γ, τε/γ) = c̄, c1 reaches its infimum at c̄ in the third case.

Therefore, the condition in (A30) can also be written as

c1 > c̄ and c̄ > c2 ≥ g(c1). (A31)

Note that g(c̄) = c̄. Since g(c1) is decreasing in c1, we can conclude that c̄ > g(c1)

holds for sure for all c1 > c̄.
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Case 4. The fourth and last case implies that both information about x1 and

x2 is acquired in equilibrium, i.e., λ∗1 > 0, λ∗2 > 0. Thus, it holds that

φx1 (α, β) = c1 and φx2 (α, β) = c2. (A32)

First, we derive how a change in c1 affects the equilibrium values of α and β. Implicit

differentiation of the system in (A32) with respect to c1 yields
∂φx1
∂α

dα

dc1
+
∂φx1
∂β

dβ

dc1
= 1,

∂φx2
∂α

dα

dc1
+
∂φx2
∂β

dβ

dc1
= 0.

Thus,

dα

dc1
=

∂φx2/∂β

∂φx1
∂α

∂φx2
∂β
− ∂φx1

∂β

∂φx2
∂α

and
dβ

dc1
= − ∂φx2/∂α

∂φx1
∂α

∂φx2
∂β
− ∂φx1

∂β

∂φx2
∂α

.

Then, by (A24) and (A25), straightforward but rather tedious calculations yield

dα

dc1
=
γα(τθ + α2τx)(τθ + β2x)

2β2τθτx
> 0

and

dβ

dc1
=
γ(τθ + β2τx)(α

2τθ + β2(2τθ + α2τx)

2β3τθτx
> 0.

Turning to the case of c2, we can immediately conclude due to symmetry that

dα

dc2
=
γ(τθ + α2τx)(β

2τθ + α2(2τθ + β2τx)

2α3τθτx
> 0

as well as

dβ

dc2
=
γβ(τθ + α2τx)(τθ + β2x)

2α2τθτx
> 0.

Thus, both α and β are increasing in both cost parameters in equilibrium.

Furthermore, rearranging the system in (A32) with φx1 (resp., φx2) given by (A24)

(resp., (A25)) yields a biquadratic equation in α and in β, respectively, that are

symmetric. Then, direct computations show that these two equations only exhibit

one pair of roots that satisfies α > 0 and β > 0 simultaneously in this type of
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information acquisition equilibrium under certain conditions. It is given by

α (c1, c2) =

√
−

[e2γ(c1+c2) − e2γc1 +
√

(e2γc1 − 1)(e2γc2 − 1) e2γc2 ]τθ
τx[e2γ(c1+c2) − (e2γc1 + e2γc2)]

(A33)

and

β (c1, c2) =

√
−

[e2γ(c1+c2) − e2γc2 +
√

(e2γc1 − 1)(e2γc2 − 1) e2γc1 ]τθ
τx[e2γ(c1+c2) − (e2γc1 + e2γc2)]

. (A34)

We immediately see that (α, β) ∈ R2
++ requires

e2γ(c1+c2) − (e2γc1 + e2γc2) < 0

⇔ c2 <
1

2γ
log

[
e2γc1

e2γc1 − 1

]
≡ c̄2

or by symmetry

c1 <
1

2γ
log

[
e2γc2

e2γc2 − 1

]
≡ c̄1.

Moreover, we already know that an information acquisition equilibrium of the form

λ∗1 > 0 and λ∗2 > 0 requires γα > τε as well as γβ > τε. In what follows, we investigate

the case λ∗1 > 0 and derive the respective results for λ∗2 > 0 by symmetry. Note from

(A33) that

α (0, c2) =

√
(e2γc2 − 1)τθ

τx
.

Since α is increasing in c1, λ
∗
1 > 0 holds for all c1 ∈ (0, c̄1) if

γ α (0, c2)− τε ≥ 0

⇔ c2 ≥
1

2γ
log

[
1 +

τ 2ε τx
γ2τθ

]
= c̃.

Whenever c2 < c̃, λ∗1 > 0 holds if and only if

γ α(c1, c2)− τε > 0.

Direct computations yield a quadratic inequality in c1. It can be easily shown that

the roots of the respective quadratic equation are given by f(c2) and c̄1. A direct
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comparison of c̄1 and f(c2) yields

1

2γ
log

[
e2γc2

e2γc2 − 1

]
T

1

2γ
log

[
e2γc2 [(e2γc2 − 1) γ4τ 2θ + τ 4ε τ

2
x ]

(e2γc2 − 1) (γ2τθ + τ 2ε τx)
2

]

⇔ c2 S
1

2γ
log

[
2 +

2τ 2ε τx
γ2τθ

]
≡ ĉ > c̃.

Thus, we can conclude that c̄1 > f(c2) for all c2 < c̃. Furthermore, λ∗1 /∈ R if c1 ≥ c̄1.

Recalling that α is increasing in c1, λ
∗
1 > 0 holds for c̄1 > c1 > f(c2) ≡

1

2γ
log

[
e2γc2 [(e2γc2 − 1) γ4τ 2θ + τ 4ε τ

2
x ]

(e2γc2 − 1) (γ2τθ + τ 2ε τx)
2

]
if c2 < c̃,

c1 ∈ (0, c̄1) if c2 ≥ c̃.

(A35)

Recall that β is increasing in c2. Then, by symmetry, we can immediately deduce

that λ∗2 > 0 holds for c̄2 > c2 > f(c1) ≡
1

2γ
log

[
e2γc1 [(e2γc1 − 1) γ4τ 2θ + τ 4ε τ

2
x ]

(e2γc1 − 1) (γ2τθ + τ 2ε τx)
2

]
if c1 < c̃,

c2 ∈ (0, c̄2) if c1 ≥ c̃.

(A36)

Next, we would like to unite the conditions in (A35) and (A36) by deducing the

value range of c2 in dependence of c1 that simultaneously ensures λ∗1 > 0 and λ∗2 > 0

in equilibrium. We already know that c2 < c̃ and c1 = f(c2) would lead to λ∗1 = 0.

Furthermore, we have deduced that solving c1 = f(c2) for c2 delivers two solutions,

namely g(c1) and h(c1) (see the results from the third case).

Since h(c1) > c̃, c2 = h(c1) can not yield λ∗1 = 0. Thus, as g(c1) < c̃, g(c1) is the

unique value for c2 that leads to λ∗1 = 0. As α is increasing in c2, c2 > g(c1) is a

necessary condition for λ∗1 > 0 to hold. As already derived, the upper bound of c2 in

an information acquisition equilibrium of the fourth case is c̄2.

Hence, the condition in (A35) can be written as c̄2 > c2 > g(c1). Recall that

c̄1 > f(c2) for c2 < ĉ. Since g(c1) ∈ (0, c̃) and c̃ < ĉ, g(c1) < ĉ holds for all c1 ∈ R+.

This leads to c̄2 > g(c1) for all c1 ∈ R+.

Moreover, note that g(c1) is the inverse function of f(c1) for c1 < c̃. As f(c̄) = c̄, lim
c1→ 0

f(c1) =∞, and lim
c1→ 0

g(c1) = c̃, f(c1) > g(c1) holds for c1 ∈ (0, c̄) and g(c1) > f(c1)

holds for c1 ∈ (c̄, c̃). If c1 ≥ c̃, λ∗2 > 0 holds for all c2 ∈ (0, c̄2) and the condition

c2 > f(c1) becomes irrelevant. For λ∗1 > 0 to be true in this case, c̄2 > c2 > g(c1)

still needs to be valid.

Eventually, we can conclude that an information acquisition equilibrium of the form
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λ∗1 > 0, λ∗2 > 0 requires{
c̄2 > c2 > f(c1) if c1 ∈ (0, c̄ ],

c̄2 > c2 > g(c1) if c1 > c̄.
(A37)

(A26), (A29), (A31), and (A37) together yield the conditions of the proposition. �

Proof of Proposition 6. By (11), if λj = 0, we have Ixj = 0. In this scenario,

a rise in λi does not affect the first term in (20). Thus, we get

dφxi
dλi

= − 1

2γ
Var [θ|P ]

(
∂Var−1[θ|P ]

∂Ixi

dIxi
dλi

)
. (A38)

Building on (12), we can show that

∂Var−1[θ|P ]

∂Ixi
=

2τ 2ε τx(1− Ixi)
γ2
[
(1− Ixi)2 + (1− Ixj)2

]2 (A39)

and by symmetry

∂Var−1[θ|P ]

∂Ixj
=

2τ 2ε τx(1− Ixj)
γ2
[
(1− Ixi)2 + (1− Ixj)2

]2 . (A40)

Then, by (12), (A15), (A39), and Ixj = 0, (A38) becomes

dφxi
dλi

= − 1

2γ

τετx(1− Ixi){2τε + (1− Ixi)[(1− Ixi)2 + 1]2}
[(1− Ixi)2 + 1]{γ2τθ[(1− Ixi)2 + 1] + τ 2ε τx}

< 0.

If λj > 0, both terms in (20) are affected by a rise in λi. By (A16), comparative

statics analysis of the first term in (20) yields

d log

[
τθ +

τ 2ε τx
γ2 (1− Ixj)2

]
dλi

=
4τ 3ε τ

2
x(1− Ixi)Ixj

γ2(1− 4Ix1Ix2)(1− Ixj)2[γ2 (1− Ixj)2 τθ + τ 2ε τx]
.

(A41)

By inspecting (A41), it can be seen that the direction of the effect induced by a

rise in λi depends on the sign of Γ (i.e., 1 − 4Ix1Ix2) and, hence, on the type of

equilibrium traders coordinate on.

Comparative statics analysis regarding the second term in (20) yields

d log [Var−1[θ|P ]]

dλi
= Var [θ|P ]

(
∂Var−1[θ|P ]

∂Ixi

dIxi
dλi

+
∂Var−1[θ|P ]

∂Ixj

dIxj
dλi

)
.
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By plugging (12), (A15), (A16), (A39), and (A40) into the equation above, we obtain

d log [Var−1[θ|P ]]

dλi
=

2τ 3ε τ
2
x(1− Ixi)

[
(1− Ixi)2 + 2 (1− Ixj)2Ixj

]
γ2χ(1− 4Ix1Ix2)(1− Ixj)2(τθγ2χ+ τ 2ε τx)

, (A42)

where χ ≡ (1− Ixi)2 + (1− Ixj)2.
The sign of (A42) again depends on the equilibrium traders coordinate on. Putting

(A41) and (A42) together eventually yields

dφxi
dλi

=
1

2γ

d log

[
τθ +

τ 2ε τx
γ2 (1− Ixj)2

]
dλi

− 1

2γ

d log [Var−1[θ|P ]]

dλi

=
(1− Ixi)3τ 3ε τ 2x

{
τθγ

2[2(1− Ixi)2Ixj + (1− Ixj)2(4Ixj − 1)]− τ 2ε τx(1− 2Ixj)
}

γ3(1− 4Ix1Ix2)(1− Ixj)2χ(γ2 (1− Ixj)2 τθ + τ 2ε τx)(τθγ
2χ+ τ 2ε τx)

.

(A43)

Thus, acquiring information about xi is a substitute (resp., complement) in the

LIE if the numerator in (A43) is negative (resp., positive). By contrast, acquiring

information about xi is a substitute (resp., complement) in the HIE if the numerator

in (A43) is positive (resp., negative). Note that all given scenarios are plausible,

since both Ixi and Ixj are independent of τθ.

Lastly, we investigate the influence of a change in λj on φxi . By using the symmetric

counterpart of (A15), we get

d log

[
τθ +

τ 2ε τx
γ2 (1− Ixj)2

]
dλj

=
2τ 3ε τ

2
x(1− Ixj)

γ2(1− 4Ix1Ix2)(1− Ixi)2[γ2 (1− Ixj)2 τθ + τ 2ε τx]
.

(A44)

The term that captures the effect on price informativeness becomes

d log [Var−1[θ|P ]]

dλj
=

2τ 3ε τ
2
x(1− Ixj)[(1− Ixj)2 + 2 (1− Ixi)2Ixi ]

γ2χ(1− 4Ix1Ix2)(1− Ixi)2(τθγ2χ+ τ 2ε τx)
, (A45)

By (A44) and (A45), we finally obtain

dφxi
dλj

=
1

2γ

d log

[
τθ +

τ 2ε τx
γ2 (1− Ixj)2

]
dλj

− 1

2γ

d log [Var−1[θ|P ]]

dλj

=
τ 3ε τ

2
x(1− Ixj)

{
τθγ

2[(1− Ixi)2 + 2(1− Ixj)2(1− Ixi)] + τ 2ε τx(1− 2Ixi)
}

γ3(1− 4Ix1Ix2)χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)

.

(A46)
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Consequently, acquiring information about different noise components is a substitute

(resp., complement) in the LIE if the numerator in (A46) is negative (resp., positive).

Inversely, acquiring information about different noise components is a substitute

(resp., complement) in the HIE if the numerator in (A46) is positive (resp., negative).

Again all scenarios can occur since the endogenous values of both trading intensities

do not vary with τθ. �
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