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1 Introduction

The installed capacity and power consumption of datacentres has grown at an unprece-
dented rate in recent years [23]. This is due to ever-increasing creation, storage and util-
isation of digital data. The future demands on the electricity system from datacentres
are uncertain, not least due to new advances in energy e�ciency within datacentres. The
majority of the research on the topic of energy consumption by datacentres to date has
focused on the potential for e�ciency gains and demand reductions from the datacentres
themselves [30, 6, 26, 8, 17, 36, 35, 5, 7], as well as the capacity for datacentres to exploit
some �exibility in the timing of their electricity demand [40]. The EU's Joint Research
Council has also produced a code of best practice in energy e�ciency for datacentres [1]
in an e�ort to facilitate voluntary participation in energy e�ciency e�orts by datacentre
owners and operators. There is, however, a dearth of research on the impacts of datacentre
growth on the electrical power system itself.

The pro�le of demand growth from datacentres is distinct from other sources of demand
growth. Electricity demand in general is driven by both population and economic activity,
but tempered by advances in energy e�ciency. Future demand growth is likely to be
driven primarily by electri�cation of the heating and transport sectors, and is therefore
spatially dispersed broadly in line with the population. Datacentre demand, in contrast,
is spatially concentrated, as datacentre owners generally require that their facilities be
located within a particular geographic area, due to the requirements of digital network
design. Demand growth from datacentres is therefore spatially unbalanced, which has
signi�cant implications both for the optimal location of the electricity generation and
transmission assets of the power system, and for optimal decarbonisation pathways and
policies.

Decarbonisation policy in Europe has been driven to date by a mix of speci�c targets
for emissions reduction, energy e�ciency and renewable generation [16]. Because using
multiple instruments to achieve a policy objective tends to be sub-optimal [33], these
overlapping targets will lead to a �nal energy and technology portfolio that is no cheaper,
and possibly more costly, than the least-cost policy that targets emissions reduction alone.
For example, some low carbon technologies, such as nuclear power or carbon capture and
sequestration (CCS), can aid in meeting a carbon reduction target, but not a renewable
generation target. Any carbon abatement solution that can be arrived at under a policy mix
that includes targets for emissions, renewable energy and energy e�ciency can therefore
also be arrived at by a policy that targets emissions alone, but the converse is not necessarily
true.

The extra costs of employing multiple di�erentiated climate targets has been considered
in the literature already, for example in [4] in the case of the EU and in [41] in the case of the
United States. [25] also points out that carbon reduction policies may lead to a more diverse
electricity generation portfolio than a renewable generation policy. Furthermore, [11] �nds
that policies that explicitly target increased renewable energy can negatively a�ect the
carbon market, resulting in favourable conditions for high-emissions technologies. This
can be partly mitigated by combining renewable policy with carbon policy [3]. However,
none of these studies quantify the costs and bene�ts of various climate policies given new
spatially unbalanced electricity demand pro�les. This gap in the literature motivates our
contribution.

The environmental impact of the information and communication technology (ICT)
sector has received some attention in the literature [38, 39]. From a global perspective, the
sector is currently responsible for 3.5% of the greenhouse gas emissions emitted worldwide
[2]. However, this is expected to reach approximately 15% in the coming decade or so,
overtaking the shipping and the aviation sectors in terms of carbon footprint. Datacentres
are expected to account for almost half of this, and are projected to consume more than
one �fth of electrical power produced globally.

Many companies have located or plan to locate their European datacentres in Ireland,
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due in part to its temperate climate and strategic location on the global map [22]. Irish
government policy is also favourably inclined towards datacentres, seeing the ICT industry
as a key driver in the Irish economy [27]. The Irish transmission system operator Eir-
Grid therefore estimates that electricity demand from datacentres will account for 75% of
electricity demand growth over the next decade, increasing the total share of electricity
demand accounted for by datacentres from 2% in 2017 to a possible 36% by 2030 [10].
New datacentres are expected to locate in areas where the power network infrastructure is
already under stress. Furthermore, Ireland is a small island power system with low levels of
interconnection to Great Britain, and Ireland has targets to source 70% of electricity from
renewable sources by 2030, both of which bring about extra challenges for power system
planning and operation. The island of Ireland is therefore a useful test case for examining
the power system impacts of spatially unbalanced electricity demand growth from datacen-
tres. We model the possible e�ects of two alternative approaches to climate policy, namely
a target for renewable electricity generation and a target for carbon emissions reduction.
We also consider the impact of decentralising the datacentres, dispersing them across the
country according to the capacity of the digital network, rather than concentrating them
in Dublin, the capital city, as is currently envisaged. Dublin currently experiences high
electricity grid congestion, and so increasing demand in this region adds particular strain
on the transmission system.

The analysis performed in this article takes the form of Generation Expansion Planning
(GEP) and Transmission Expansion Planning (TEP) models, both of which calculate the
optimal investment in the electric power system given the need to ensure reliable electricity
supply. GEP determines the optimal type, size and location of electricity generation in-
vestments, such as coal, gas, wind and solar, while TEP determines optimal investments in
the electricity transmission network, comprising cables and transformers. GEP and TEP
models seek to minimise the cost of the system, identifying the optimal power system un-
der the assumption of perfect competition, or alternatively, assuming that a benign social
planner is making all investment and operation decisions. As the share of electricity gen-
erated from variable renewable energy sources, such as wind and solar, increases, the TEP
problem in particular increases in complexity. The transmission system must be planned
in such a way as to transport electricity generated in diverse and remote areas to the end
user, rather than transmitting energy generated from large power stations located at a
small number of strategically chosen locations.

Many datacentre companies seek to invest in renewable power themselves in order to
o�set the climate implications of datacentre demand: see for example [37, 15, 28]. How-
ever, the least cost analysis undertaken in this research makes no assumptions regarding
ownership of the electricity generation investments themselves. Furthermore, the trans-
mission system requirements that arise from datacentre demand and renewable investment
remain unaltered if the renewable investment is undertaken by the datacentre companies
themselves or by other energy companies. Therefore the least-cost analysis undertaken
here is not a�ected by these actions, although the �nal price paid by consumers may be
di�erent.

In summary, this work undertakes an analysis of the power system impacts of spatially-
concentrated increases in electricity demand from datacentres, subdivided into generation
and transmission impacts, by means of a case study on the island system of Ireland. In
order to account for the uncertainty in future datacentre location and demand growth,
we consider four di�erent scenarios, designated as "high demand", "moderate demand",
"distributed demand" and "low demand" scenarios. Each case is considered under four
di�erent renewable generation policy targets and four di�erent corresponding carbon re-
duction policy targets. In this manner we can distinguish between the marginal e�ects of
both increased datacentre demand and increased stringency of policy targets on the power
system.

The various policy alternatives yield widely varying results in terms of the �nal set of
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generation technologies. Furthermore, the divergence in costs between a carbon reduction
policy and a renewable generation policy increases non-linearly in datacentre demand. Op-
timally locating the datacentres along the �ber optics corridor has a signi�cant impact on
the transmission system investment, but has only a small e�ect on total costs. The results
suggest that renewable energy targets are a signi�cantly inferior policy to technology-
neutral decarbonisation targets given the increased electricity demand from datacentres
and suggest that Irish and EU energy policy should therefore be amended.

The remainder of this paper is structured as follows. Section 2 outlines the methodology
employed in the current study. Data and assumptions are presented in section 3. Numerical
results are provided in section 4 while section 5 covers a broad discussion of the results
and concludes.

2 Methodology: the ENGINE model

To perform the analysis in the current paper, we use the Electricity Network and Gener-
ation INvEstment (ENGINE) model, partly described in [13]. The ENGINE model deter-
mines a joint optimisation of the Generation Expansion Planning (GEP) and Transmission
Expansion Planning (TEP) problems in a least-cost manner, considering a number of tech-
nical, economic and environmental constraints. The model formulates these two problems
using stochastic programming, which determines the optimal set of decisions under both
long term and short term uncertainty. In this case, the ENGINE model considers several
possible exogenously-determined long term realisations of demand from datacentres, and
determines one optimal set of generation and transmission investments taking the various
possible demand pathways into account. ENGINE also considers short term uncertainty in
demand on an hour to hour basis, as well as uncertainty in the output of renewable power
generation.

ENGINE is a spatial model, determining the optimal investment at each transmission
node on the Irish grid (rather than determining the optimal investment for the whole island
but without specifying the location of individual components). ENGINE also considers
the optimal �ow of power from one transmission node to the next, respecting physical
constraints that are governed by Kircho�'s Laws. The model therefore respects voltage
constraints as well as the constraints that govern the balance of supply and demand at
each transmission node in real time. A simpli�ed version of the ENGINE model is outlined
in section A, in the Appendix.

3 Power system data and inputs

We use the 2017 power system of the island of Ireland for this analysis, described in detail
in [13]. This system has a transmission network aggregated at 110 kV and higher, covering
the entire Irish island. Data and further details of the system can be found in [9]. The
transmission nodes that are candidate nodes for renewable power investment are shown in
Figure 1.

We consider the evolution of the power system out to 2030, with three decision stages
at the years 2020, 2025 and 2030. We consider carbon prices of 20, 25 and 30 e/tCO2

for 2020, 2025 and 2030, respectively, in line with the carbon price projections in [34].
However, we acknowledge that carbon prices could be higher than these �gures.

Power system operation becomes increasingly complex as the amount of renewable
power on the system at any point in time increases. For this reason, power system op-
erators often impose a limit on the non-synchronous penetration at each point in time.
Non-synchronous penetration is de�ned as the ratio of generation from variable renew-
able power sources plus electricity imported via direct current interconnectors to demand
plus electricity exported via direct current interconnectors. In other words, it is the total
demand, less electricity exported, that is met by renewables and/or imported electricity.
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Figure 1: Candidate connection nodes of variable renewable generation (see green dots)

In our analysis, we impose a system non-synchronous penetration (SNSP) limit of 75%.
We do not include interconnection to other electricity systems in our analysis as we are
particularly interested in examining the impacts of datacentres in an isolated system. It
is however important to note that while some of our results may �nd that the SNSP is
almost equivalent to the percentage of demand met by renewable generation, in reality,
total power generation can be higher (lower) than the total electricity demand, with the
surplus (de�cit) being exported (imported).

Existing generation is retired according to an exogenously-determined schedule, while
investments in new thermal power plants are assumed to be in brown�eld sites. The
technical and economic assumptions regarding generation and storage technologies are
presented in Table 3 in the Appendix. In order to ensure the model is tractable, the
variable capturing investment in all generation and storage technologies is continuous,
rather than discrete. The capital cost per MW of generation capacity is assumed to be
�xed over the study, with the exception of storage, for which we assume 5 and 10% cost
reductions in 2025 and 2030, respectively. This is because battery storage is a new and
evolving technology, and the cost is expected to decrease over time [20].

3.1 Demand and climate policy scenarios

The future pattern of expansion of datacentres is unknown, so we construct several sce-
narios to examine a range of possibilities. The transmission system operator, EirGrid, has
four di�erent demand projections [10]. These are shown in Figure 2. EirGrid denotes their
scenarios as "Slow change", "Steady evolution", "Consumer action" and "Low carbon liv-
ing". There are several di�erences between the EirGrid scenarios, concerning for example
electric heating and transport, but the relevant variable for our purposes is the rollout of
datacentre demand, the primary driver of increases in electricity demand. EirGrid assigns
no probabilities to their projections, but historical trends suggest that EirGrid's highest
demand scenario is unlikely to be realised, as it would require that all planned datacentre
projects would be developed. Historically, at least some of the planned demand sources
from large end-user sectors have failed to materialise.

The primary di�erence between our scenarios arises from the probability we assign
to EirGrid's own four projections. We designate our scenarios as "High", "`Moderate",
"Distributed" and "Low". In our "High" case, we assume EirGrid's four demand growth
scenarios are equally probable. In our "Moderate" case, we assign greater probability
weights of 40% to EirGrid's "Slow change" and "Steady evolution" projections, a 15%
probability to their "Consumer action" projection and a probability of 5% to their "Low
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Figure 2: EirGrid's datacentre growth projections over the planning horizon

Carbon Living" projection. Our "Distributed" case uses the same datacentre projections
as the "Moderate" case, but assumes that 30% of the datacentres will be located according
to the capacity of the digital network, shown in Figure 3, rather than concentrating all
datacentres in Dublin. Finally, our "Low" case assumes that the datacentre capacity is
frozen at the 2020 levels with no new datacentre investments taking place in the remaining
years of the considered horizon, and assigns a probability of 25% to the other drivers of
demand within each of the EirGrid scenarios (eg, electri�cation of heat and transport),
which have a small impact compared to datacentre expansion. This case allows us to
quantify the rami�cations of increased electricity demand due to datacentres over the
coming decade against a "business as usual" benchmark. These scenarios are summarised
in Table 1.

Figure 3: Optimal locations of datacentres
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Table 1: Construction of di�erent demand scenarios

Demand scenario
Probability assigned to EirGrid scenario Spatially

dispersed
datacentres

Slow
Change

Steady Evo-
lution

Consumer
Action

Low Carbon
Living

High 25% 25% 25% 25% No
Moderate 40% 40% 15% 5% No
Distributed 40% 40% 15% 5% Yes
Low 25% 25% 25% 25% NA

Note that none of our scenarios considers the extreme case of the highest datacentre
demand projected by EirGrid occurring with 100% probability. We essentially consider
the probability of this eventuality to be so low as to render its examination unnecessary,
based on the historical ratio of planned to actual investment by large industrial electricity
users. However, should this level of datacentre investment take place, the power system
impacts will be even greater than those modelled here.

The demand cases above are considered under two di�erent climate policies, namely a
renewable policy and a carbon policy. Under the renewable policy, we include a constraint
that speci�es a minimum percentage of generation that must come from renewable sources
in 2030. Under the carbon policy, we instead include a technology-neutral constraint that
limits the carbon intensity of the power system. The limit chosen corresponds to the carbon
intensity realised under the renewable policy. Thus, both scenarios meet the same carbon
target, but with (potentially) di�erent technology and generation mixes, and the carbon
policy will be cheaper than the corresponding renewable policy, at least weakly.

The renewable targets considered are 55%, 60%, 65% and 70% by 2030, with inter-
mediate 2025 targets of 47% in the �rst case and 55% in all other cases. Therefore, we
consider thirty-two scenario combinations in total, for two di�erent climate policies, four
di�erent climate targets and four di�erent demand scenarios (see Table 2).

Table 2: Climate and demand scenarios considered. Each of these scenarios is run for four
di�erent climate targets.

Variables

Cases Climate policy Demand growth

1

Renewable

Low demand
2 Distributed demand
3 Moderate demand
4 High demand

5

Carbon reduction

Low demand
6 Distributed demand
7 Moderate demand
8 High demand

4 Numerical Results

4.1 Total and marginal costs of di�erent policy and demand scenarios

The "Low" datacentre demand scenario with a carbon reduction policy is the lowest-cost
scenario, and so we �rst consider the percentage increase in total costs for all other scenarios
relative to this base case. Figure 4 presents these cost increases. The increased demand
from datacentres increases costs substantially. Renewable targets are also more expensive
than their carbon reduction counterparts, consistent with [24]. The "High" demand case
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is roughly 6% more expensive than the "Low" case under all carbon reduction policies,
but the di�erential between the "Low" and "High" cases increases from about 9% under
the lowest renewable policy to 15% under the highest renewable policy. In other words, a
renewable energy policy causes the electricity system costs due to datacentres to increase
from 6% to 9%-15%, depending on the level of datacentre demand. The costs of a carbon
reduction policy therefore increase linearly in demand, while the costs of a renewable policy
increase non-linearly. This bolsters the case for technology-neutral climate policies in the
face of uncertainty regarding future demand levels. Increasing the spatial distribution of
demand (the "distributed" case) has only a very small impact on the total costs, under
both climate policies.

Figure 4: A comparison of NPV di�erentials under both climate policies.

To further explore these results, �gure 5 shows the shadow cost of both climate policies
under the various demand growth levels. The shadow costs are de�ned as the increase in
total costs that results from a marginal increase in the stringency of the policy constraint,
and can be interpreted as a measure of abatement cost. Under both climate policies, the
shadow cost of the climate policy increases non-linearly as the policy target becomes more
stringent. The abatement cost curves for the renewable policies lie above the curves for the
carbon policies for all demand scenarios. However, the abatement cost curves under the
carbon policy diverge at higher carbon reduction policies, while for the renewable policy
they converge at higher levels of renewable integration. The incremental cost of renewable
integration at high renewable levels therefore decreases in sensitivity to increased demand
from datacentres, while the opposite is true for the abatement cost of carbon.

4.2 Generation and Network Investments

We now consider the generation and network investment decisions that drive the total
costs outlined above. Figure 6 compares the �nal investments in generation and storage
under the least stringent climate policies (i.e. the 55% RES-E and its equivalent carbon
reduction target). In general, the renewable policy leads to an expansion mix dominated by
onshore wind, photovoltaic (PV) solar and new Combined Cycle Gas Turbines (CCGTs).
In contrast, the carbon policy sees investment in carbon capture and sequestration (CCS)
technologies, with very low levels of solar and storage and no o�shore wind investment.
High renewable targets therefore crowd out other non-renewable, low carbon options such
as CCS.

The investment in CCGTs under the two policies is of particular interest: there is
higher investment in CCGTs under the renewable policy versus the carbon policy. This
suggests that the variability in wind and solar output gives rise to shortfalls in supply that
are su�cient to require investment in conventional generation technologies, but insu�cient
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Figure 5: Comparison of abatement costs between the climate policy types and targets.

to justify the increased cost of investment in CCS. This observation can be explained in
terms of capacity factors, where the capacity factor is de�ned as the total generation from
the technology compared to its maximum potential generation. A technology that spends
a high proportion of time operating at partial capacity, or not operating at all, has a lower
capacity factor. The variable renewable output decreases capacity factors of CCGTs, and
therefore induces investment in non-CCS CCGTs only.

The lower capacity factors under the renewable policy are also evident in 6: the renew-
able policy sees higher total installations in generation capacity compared to the carbon
policy. Even with substantial investment in storage, higher absolute levels of capacity with
a lower average capacity factor are required under the renewable scenario.

(a) Renewable policy (b) Carbon reduction policy

Figure 6: Optimal power generation and storage expansion under each climate policy.

4.2.1 Impact of increased demand from datacentres

Figure 7 shows the ratio of the increase in generation capacity investment (in MW) to the
increase in datacentre capacity (in MW). The increase in generation capacity relative to
demand is far higher under the renewable policy than the carbon policy. This is again due
to the lower capacity factor under the renewable policy.
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Figure 7: Impact of marginal increase in demand on generation and storage expansion.

Here, we �nd that the capacity to demand ratio of the more stringent carbon policy is
slightly lower than the less stringent carbon policy, while the opposite is the case for the
renewable policies. In other words, the total capacity investment required to meet new
demand is slightly lower under a more stringent carbon reduction target than under a less
stringent target. This result is driven by increased capacity factors for CCS technologies.
In particular, because demand from datacentres does not vary over the course of the day,
datacentre demand can be met in a cost-e�ective low-carbon manner by CCS technologies,
whose output can be kept constant over the course of the day. The variable nature of
renewables, on the other hand, is less complementary to the load pro�le of datacentres.

Generally, generation investment increases nonlinearly in demand. This e�ect is more
pronounced under low climate policy targets. For instance, under the 55% renewable tar-
get, about 3.3 MW of new generation capacity (including storage) is needed for every
MW increase in demand under the "High demand" case, with only 2.6 MW and 2.8 MW
required for the �Low" and �Medium" demand cases, corresponding to 15% and 21% re-
ductions, respectively. Figure 7 also indicates that these e�ects are much lower under
carbon reduction targets. These �gures indicate that overestimating future demand, and
over-specifying the system as a result, is particularly costly under a renewables policy. The
carbon reduction policy is therefore more robust to uncertainty in future demand.

Figure 8 shows the locational marginal prices, calculated as the marginal cost of increas-
ing demand, at each node where datacentres are located for eight regions within Ireland,
averaged across all time periods. In general, prices are lower under the carbon policies rel-
ative to the renewable policies. Prices are fairly stable across regions, with the exception of
the Dublin region, where most of the datacentres are located. Several nodes have extremely
high prices, with the highest occurring under the high demand scenario with a low carbon
policy target. This is a counterintuitive result, and is driven by the fact that the ENGINE
model allows for some electricity demand to remain unmet, if the cost of meeting demand
would be prohibitively high. Therefore, for some hours, the cost minimising-solution is to
disconnect some customers, failing to meet all electricity demand, and incur a high penalty
cost which is known as the Value of Lost Load (VOLL). The VOLL is very high because
policy makers place a high value on reliable electricity supply, and so system operators only
disconnect consumers as a last resort. The lowest carbon policy sees some hours where it
is optimal to fail to meet demand rather than to invest in more generation technologies.
The more stringent carbon policy scenarios lead to higher generation investment in CCS,
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reducing the number of hours where it is optimal to shed demand, and therefore reducing
prices.

Figure 8: Marginal cost of increase in demand. Acronyms: MID = Midland; ME = Mid-
East; MW = Mid-West; SE = South-East; SW = South-West

4.2.2 Regional impacts

Figures 9 and 10 show the regional distribution of generation and storage builds under the
"low" and "high" demand scenarios for the least stringent renewable and climate policies,
respectively.
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Figure 9: Optimal generation and storage investment in MW by region under the renewable
policy.
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Figure 10: Optimal generation and storage investment in MW by region under the carbon
reduction policy.

The renewable policy sees large amounts of wind investment in the west of the country,
where wind speed levels are higher, and the high demand case also sees signi�cant PV
investment in Dublin where the majority of the datacentres are concentrated, and where
network congestion is relatively high. Storage levels are also relatively dispersed regionally
under the renewable policy.

The carbon reduction target, however, has thermal generation investment taking place
at only three nodes, the existing brown�eld site of Moneypoint in the MidWest, Northern
Ireland (which has signi�cant projected undercapacity) and a small amount in the South-
west. The regional pattern of investment therefore varies considerably under the di�erent
policies, but the pattern is similar under low and high demand, albeit at a di�erent scale.

4.3 Emissions

Figure 11 displays the increase in expected emissions for each case, relative to the lowest
demand case under the carbon reduction policy. The increased demand from datacentres
increases emissions by 5% in the "Moderate" case and by 8% in the "High" case. The
decrease in emissions under the "Distributed" case is very small, suggesting that the scale
rather than the location of the datacentres drives emissions.

Figure 11: Changes in expected emissions relative to the "Carbon, Low demand" case.
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4.4 Transmission network investment and costs

The ENGINE model identi�es the investments in the transmission network that are re-
quired to ensure reliable supply at each node of the electricity network, including invest-
ments both in transmission wires and in transformer stations. The grid investment model
does not rigorously account for security criteria, such as the criterion that the system must
prove robust to the loss of any one transmission asset. Thus, the grid investment require-
ments arrived at by ENGINE can be considered as a lower bound on the transmission
investments required by a risk-averse system operator. Figure 12 compares the aggregate
capacity of transmission network investments under the lowest and highest targets of each
climate policy.

Figure 12: A comparison of cumulative network capacity investments under both climate
policies.

In general, the carbon policy leads to higher grid investments than the renewables pol-
icy, with a greater divergence under the lowest climate policy targets. The increased levels
of storage under the renewable targets drive this result. Higher renewable penetration
renders storage investment more economic, which means that excess generation can be
stored at the transmission node in question, rather than being exported to another node.
The stored energy can then be used to meet demand during high demand periods, rather
than requiring that electricity be imported from another node. The reduction in require-
ments to import and export electricity reduces the requirement for transmission network
investment. In short, storage and transmission can be considered as substitutes.

Optimally distributing datacentres according to the digital network capacity reduces
grid investment needs under every scenario, but the e�ect is more pronounced under the
renewable policy than under the carbon policy. Network investments in the "distributed"
case are 21% lower than the "moderate demand" case under the carbon policy, and 39%
lower under the renewable policy. This is driven by the fact that RES-E and storage
have a higher spatial distribution than the CCS investment seen under the carbon policy,
and so increasing the spatial distribution of datacentre demand has a greater impact on
transmission investments under the renewable policy compared to the carbon policy.

Network investment costs for the renewable policy range between 0.7% (under the low
demand scenario and 70% RES-E target) and about 1.4% (under the highest demand
portfolio) of the total NPV. For the carbon policy, these �gures are 1.5% and about 2%,
respectively. These �gures explain why the di�erence in total costs between the "moder-
ate" and "distributed" cases is quite low, under every set of inputs, and indicate that the
scope for reducing power system impacts of datacentre demand by changing their spatial
distribution is limited. However, the transmission network expansion is still of particular
relevance to policy makers, for two reasons. The �rst is that datacentres themselves will
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cover at least part of the extra generation system costs they give rise to via their electricity
payments. Transmission system costs, on the other hand, are bourne by all electricity con-
sumers, and are not necessarily linked to electricity usage. Transmission system costs that
are driven by datacentre demand are therefore of interest over and above the generation
costs. Secondly, the public acceptance of electricity system assets is a signi�cant challenge
for policy makers. The ENGINE model determines the economic cost of transmission assets
only, but policymakers may see extra utility in reducing transmission system investments
over and above the economic saving, if this decreases the costs of public acceptance.

The divergence again increases as the target becomes more stringent: the di�erence in
network investment in the high versus the low demand scenarios is 17% under the least
stringent renewable policy, rising to 39% under the most stringent. The most stringent
carbon reduction policy however sees an 89% increase in transmission asset investments
in the high demand scenario relative to the lowest demand. This again underlines the
substitutive nature of transmission and storage.

4.5 Consumer and producer analysis

The changes in system costs may a�ect both consumers and producers. Consumers are
a�ected by changes in electricity prices, while producers are a�ected by changes both in
prices, which a�ect their revenues, and in their �xed and variable production costs. We
therefore analyse the impact increased datacentre demand and/or climate policy can have
on consumer costs and producer pro�ts.

Electricity demand is assumed to be inelastic, in that it does not vary as prices increase
or decrease. This is representative of the majority of electricity consumers, and is a common
assumption in the literature. Consumer costs are therefore calculated by the sumproduct
of hourly demand and electricity prices at each transmission node, within a given year.
Producer pro�ts are calculated by subtracting the costs of power generation (including
emission costs) from the sumproduct of hourly prices and actual power generation for a
given year.

Figures 13 and 14 compare the percentage changes in consumer costs and producer
pro�ts for the various cases, respectively. As before, these are expressed relative to those
recorded under the case of low demand outlook and carbon policy. Both consumer costs
and generator surpluses increase nonlinearly with increasing demand. Furthermore, this
impact is much more pronounced under the renewable policy than carbon policy (especially
at higher demand levels). It should however be noted that, regardless of the climate policy,
the absolute value of both consumer costs and generator surpluses show progressive declines
with increasing stringency of climate policy targets, but with the greatest declines under
the lower demand scenarios. The percentage di�erence between the low and high demand
scenarios therefore increases.

Figures 13 and 14 also show that an optimal allocation of datacentres across the island
slightly mitigates the impacts.

These results suggest that the impact of increased demand from datacentres is bourne
by consumers via increased electricity bills. The pro�ts of generation companies, however,
are positively impacted both by increased demand and by increased stringency of climate
targets. Furthermore, our analysis ignores the impact of subsidisation of technologies such
as wind and solar, which would facilitate an even greater transfer of resources from con-
sumer to producer. However, the analysis also ignores actions that could reduce producer
pro�ts and consumer costs. These include responsive demand from consumers, who may
choose to reduce their electricity usage during high price periods, as well as action by
government to place a cap on electricity prices. Finally, datacentre owners themselves are
included in the consumer group, and so at least part of the increased consumer costs is
bourne by the datacentre owners themselves. The decomposition of consumer costs be-
tween datacentre owners and other consumer groups will be examined in further research.
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Figure 13: Changes in consumer costs relative to the "Carbon, Low demand" case

Figure 14: Changes in producer surplus relative to the "Carbon, Low demand" case
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5 Discussion and conclusions

The results outlined above have several common themes. Our �nding that renewable
policies are more expensive than technology-neutral decarbonisation policies accords with
the literature, but the increased demand from datacentres augments and enhances this
�nding in several new respects.

First, the non-linear increase in costs under the renewable target compared to the
carbon target is signi�cant. This result appears to be driven primarily by the relatively
low capacity factors of renewable generation, and the consequent lower capacity factors of
thermal generation. The fact that CCS appears only in the carbon reduction policy shows
how renewable technologies crowd out other low carbon technologies, and underlines the
ability of policy to greatly alter the �nal technology portfolio, even under equal emission
targets.

Second, the renewable policy is clearly more costly at higher levels of demand, and
is therefore far more sensitive to overestimation of �nal demand. Given the considerable
uncertainty in the future datacentre capacity, and indeed other sources of uncertainty in
future demand, the case for a technology-neutral climate policy over a renewable policy is
bolstered in this context.

Thirdly, the locational results show that the renewable policy leads to a far greater
spatial dispersal of infrastructure compared to the carbon policy. The latter sees a few large
scale investments in existing brown�eld sites, while the former requires high investment
in various regions. Given strong public opposition to renewable energy developments in
Ireland and worldwide, this �nding is of particular signi�cance for policy-makers.

Conversely, the renewable policy sees a lower investment requirement in network assets,
due to the fact that storage and transmission investment are substitutes. The impact of
network investment on total costs is negligible, however. Furthermore, locating 30% of
the demand outside of the Dublin region does little to mitigate the impacts of datacentre
demand on system costs, suggesting that it is primarily the scale, rather than the loca-
tion, of datacentre demand that drives the results. A reduction in transmission system
investments does occur as a result of relocation of datacentre demand.

Finally, while both consumer costs and producer pro�ts increase as datacentre demand
increases, the e�ect is again non-linear, with the greatest impacts seen under the most
stringent climate policies. This suggests that increased datacentre demand facilitates a
transfer from consumers to producers, and this impact is magni�ed by adopting a renewable
policy.

The ENGINE model minimises total costs, but does not model cost recovery by energy
companies, which takes place by billing �nal energy users, including datacentres. The
increase in total costs will be at least partially o�set by the electricity payments made
by datacentre companies themselves. Therefore, the electricity costs of other electricity
consumers will not increase at the same rate as total system costs. However, given that
electricity is billed on the basis of usage, this argument most likely holds in the case
of variable costs such as generation and carbon costs. The �xed cost of transmission
network investments are harder to apportion directly to the electricity users that gave rise
to them, and is instead covered by all electricity users. The decomposition of the impacts of
datacentre demand on di�erent consumer groups is an important topic for future research.

Further limitations to this analysis include the fact that the ENGINE model is a long-
run, least cost model, and some of the technical constraints of electricity generation are
therefore neglected. Future work will consider more detailed short-run modelling that
considers the operation of generation and transmission assets, but does not consider in-
vestment. The possibility for strategic behaviour by market participants has also been
neglected in this analysis, but will be considered in future research.

Two policy-related points arise from this research. Firstly, our results suggest that Irish
and EU energy policy should be reviewed, as a technology-neutral policy is signi�cantly
cheaper than a renewable target, particularly for consumers, and is also better able to
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withstand uncertainties in projected demand. Secondly, even under the lowest-cost policy,
datacentres increase system costs signi�cantly, by 6%, with an even greater increase in
consumer costs. Given that the datacentres in question will store data for customers across
Europe, there may be a carbon leakage argument to be made, namely that a portion of the
emissions that arise due to electricity consumption from datacentres should be counted
towards the national emissions of other countries. The feasibility of this policy will be
explored in future research.

A The ENGINE model

This appendix gives a simpli�ed outline of the ENGINE model. The full model is described
in [13].

The objective function of the ENGINE model, expressed in Equation 1, constitutes
a sum of the net present values of �ve terms related to investment costs, variable costs,
reliability costs, operation and maintenance and emission costs:

MinTC = TInvC + TMC + TEC + V OLL+ TEmiC (1)

TInvC denotes the NPV of total investment costs in new generation capacity, trans-
mission and storage investments:

TInvC =
∑
t∈Ωt

(1 + r)−tInvCgen
t (2)

where

InvCgen
t =

∑
g∈Ωg

∑
i∈Ωi

r(1 + r)LTg

(1 + r)LTg − 1
ICg,i(xg,i,t − xg,i,t−1);xg,i,0 = 0 (3)

ICg,i represents the investment cost of generators, xg,i,t is the investment variable of gen-
erator g, LTg is the lifetime of generator g and r is the discount rate.

The second term, TMC, represents the net present value of �xed maintenance and
operation costs of (new or existing) generators and of network components:

TMC =
∑
t∈Ωt

(1 + r)−t
(
MntCgen

t +MntCntk
t

)
(4)

whereMntCgen
t is the maintenance costs of new and existing generators at each time stage:

MntCgen
t =

∑
g∈Ωg

∑
i∈Ωi

MCN
g xg,i,t +

∑
g∈Ωg

∑
i∈Ωi

MCE
g ug,i,t (5)

and MntCntk
t is the maintenance cost of an existing line. This cost is nonzero only if the

corresponding utilisation variable u is nonzero:

MntCntk
t =

∑
k∈Ωel

MCE
k uk,t +

∑
tr∈ΩEtr

MCE
trutr,t (6)

TEC refers to the total cost of producing electricity in the system using both new and
existing generators:

TEC =
∑
t∈Ωt

(1 + r)−t(ECNG
t + ECEG

t ) (7)

where
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ECgen
t =

∑
s∈Ωs

ρs
∑

w∈Ωw

πw
∑
g∈Ωg

∑
i∈Ωi

(λNg,s,w,tP
N
g,i,s,w,t + λEg,s,w,tP

E
g,i,s,w,t) (8)

In other words, TEC denotes the variable costs of meeting the electricity demand i.e.
the cost of power generation.

The fourth term in TC, V OLL, represents the total cost of unserved power in the
system, i.e. the value of lost load or reliability cost:

V OLL =
∑
t∈Ωt

(1 + r)−tENSCt (9)

where

ENSCt =
∑
s∈Ωs

ρs
∑

w∈Ωw

πw
∑
e∈Ωi

(νPs,hP
PNS
i,s,w,t + νQs,hQ

PNS
i,s,w,t) (10)

and νPs,h and νQs,h are penalty parameters corresponding to active and reactive power
curtailments, respectively.

Finally, the term TEmiC calculates the total carbon emission costs in the system:

TEmiC =
∑
t∈Ωt

(1 + r)−t(EmiCNG
t + EmiCEG

t ) (11)

where

EmiCgen
t = EmiCNG

t + EmiCEG
t (12)

EmiCNG
t =

∑
s∈Ωs

ρs
∑

w∈Ωw

πw
∑
g∈Ωg

∑
i∈Ωi

λCO2e
s,w,t ER

N
g P

N
g,i,s,w,t (13)

EmiCEG
t =

∑
s∈Ωs

ρs
∑

w∈Ωw

πw
∑
g∈Ωg

∑
i∈Ωi

λCO2e
s,w,t ER

E
g P

E
g,i,s,w,t (14)

The objective function outlined above is minimised while respecting various constraints,
which can be broadly classi�ed as technical, economic, spatial and environmental con-
straints. For the full mathematical detail of the constraints, see [13].

Within the technical constraints, the model deploys Kirchno�'s current and voltage
laws. Kirchno�'s current law states that the sum of all incoming �ows to a node must
equal the sum of all outgoing �ows at any given time. Kirchno�'s voltage law, unlike the
current law, is nonlinear and states that the sum of all voltages around a closed loop is equal
to zero. This paper, however, linearises the non-linear expression of this law by making
two practical assumptions, observed in the literature [12, 14]. The technical constraints
also include boundary conditions of relevant system variables: power �ows in each line
should not exceed its maximum transfer capacity, network losses must be accounted for,
active and reactive power production is constrained by the total capacity of each unit.

Economic constraints include logical constraints related to irreversibility of investment
and budget constraints.

The investment planning is also subject to spatial constraints, depending on either the
availability of resources, space or both. One example in this case is wind power, which
requires the availability of both the primary energy source � wind speed � and space for
its development.

Environmental constraints emanate from climate policy targets to abate greenhouse
emissions. In this paper, there are two types of environmental constraints. One requires
that a certain proportion of energy must be generated from renewable sources, while the
other requires that the total carbon emissions from the system must be no greater than a
predetermined target. The carbon target is set equal to the total carbon emissions observed
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under the renewable constraint, in order to ensure we compare like with like throughout
our policy scenarios.

The model is executed in the Generic Algebraic Modelling System (GAMS). All simu-
lations are carried out on a server with Intel Xeon E5-2630 dual processor clocking at 2.2
GHz and with 256 GB RAM.

Nomenclature

Indices and sets

g/Ωg Index/set of all generators (existing and new)
i, j/Ωi Index/set of all nodes
i′ Index for �ctitious transformer nodes
k/Ωk Index/set of all lines
t/Ωt Index/set of all time stages
tr/ΩEtr Index/set of existing transformers
s/Ωs Index/set of stochastic scenarios
w,w′/Ωw Index/set of operational states
ΩRES Set of all RES type power generators
Ωel Set of existing lines
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Functions

ECgen
t Cost of energy generated by all generators (e)

TC Total system cost (e)
TInvC Total investment cost (e)
TMC Total maintenance cost (e)
TEC Total cost of power production (e)
V OLL Total cost of loss of load (e)
TEmiC Total cost of emissions (e)
EmiCNG

t Cost of emissions from new generators (e)
EmiCEG

t Cost of emissions from existing generators (e)
ENSCt Expected cost of energy not served (e)
ECNG

t Cost of power produced by new generators (e)
ECEG

t Cost of power produced by existing generators (e)
MntCntk

t Maintenance cost of all lines and transformers (e)
MntCgen

t Maintenance cost of all generators (e)
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Variables

PN
g,i,s,w,t Power generated by new generator (MW)

PE
g,i,s,w,t Power generated by existing generator (MW)

PPNS
i,s,w,t Active power not served (MW)

QPNS
i,s,w,t Active power not served (MVAr)

xg,i,t Generator investment variable (MW)
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Parameters
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ρs Probability of scenario
πw Snapshot weight

λCO2e
s,w,t Carbon price (e/tCO2)

ERN
g Emission rate of new generator (tCO2/MWh)

ERE
g Emission rate of existing generator (tCO2/MWh)

νPs,h Penalty factor of unserved active power (e/MW)

νQs,h Penalty factor of unserved reactive power (e/MVAr)

r Discount rate (%)
λNg,s,w,t Marginal cost of power production using new generator (e/MWh)

λEg,s,w,t Marginal cost of power production using existing generator (e/MWh)

MCE
k Maintenance cost of existing line (e)

uk,t Availability of existing line
MCE

tr Maintenance cost of existing transformer (e)
MCE

g Unit maintenance cost of existing generator (e)
MCN

g Unit maintenance cost of new generator (e)
ICg,i Unit investment cost of generator (e)
LTg Lifetime of generator (years)
utr,t Availability of existing transformer
ug,i,t Availability of existing generator

B Generator and Storage Data

Table 3 shows the cost and operation assumptions of the generation technologies considered.
Further assumptions for storage include a 90% round-trip e�ciency, a 10 year lifetime

and an 80% depth of discharge [42, 31, 29].
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