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High wage workers and low wage firms:
negative assortative matching or

statistical artefact?a

Martyn J. Andrewsb , Len Gillc, Thorsten Schankd , Richard Upwarde

Abstract: In the empirical literature on the estimation of �rm and worker hetero-
geneity using linked employer-employee data, unobserved worker quality appears to
be negatively correlated with unobserved �rm quality. We investigate the possibility
that this is simply caused by standard estimation error and develop formulae that
show that the estimated correlation is biased downwards if there is true positive
assortative matching and when any conditioning covariates are uncorrelated with
the �rm and worker �xed-e�ects. This result applies to any two-way (or higher)
error-components model estimated by �xed-e�ects methods. We apply these bias
corrections to a large German linked employer-employee dataset. We �nd that al-
though the biases can be considerable, they are not su�ciently large to remove the
negative correlation entirely.

Zusammenfassung: Auf der Basis von zusammengefügten Betriebs- und Person-
endaten �ndet sich in der empirischen Literatur eine negative Korrelation zwischen
den unbeobachteten Eigenschaften von Beschäftigten und denen von Betrieben. Wir
zeigen formal, dass die geschätzte Korrelation nach unten verzerrt ist, sofern ein po-
sitives Matching existiert und sofern die übrigen Kovariate mit den Betriebs- und
Beschäftigten Fixed E�ects unkorreliert sind. Dieses Ergebnis kann allgemein auf
jedes mehrdimensionale Fixed E�ects Modell übertragen werden. Für kombinierte
Firmen-Beschäftigtendaten aus Deutschland �nden wir eine beträchtliche Verzer-
rung in der geschätzten Korrelation. Diese ist jedoch nicht groÿ genug, um die
ermittelte negative Korrelation vollständig erklären zu können.
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1 Introduction

There is a rapidly-growing empirical literature which uses linked employer-employee
data to estimate the contribution of worker and �rm heterogeneity to outcomes in
the labour market. Much of this literature stems from Abowd, Kramarz & Margolis
(1999) (henceforth AKM) and related papers.1 An important issue in the literature
is the relationship between the unobserved worker- and �rm-components of wages.
Models of assignment imply positive assortative matching and therefore a positive
correlation between worker and �rm productivities. In the words of AKM: �high-
wage workers and high-wage �rms� match together.

However, a puzzle has emerged, in that the unobserved component of workers' wages
appears to be negatively correlated with the unobserved component of �rms' aver-
age wages. Apart from AKM's original study, which reported a positive correlation,
all subsequent work has reported negative correlations. Abowd, Creecy & Kramarz
(2002) report correlations of −0.28 for French data and −0.03 for data from Wash-
ington State, whereas Goux & Maurin (1999), using French di�erent data, �nd a
correlation ranging from +0.01 to −0.32 depending on the time period chosen.2

Gruetter & Lalive (2004) report a correlation of −0.27 for Austrian data. All of
these are weaker than Barth & Dale-Olsen's (2003) correlations of between −0.47

and −0.55 for Norwegian data. In other words, when focussing on unobserved com-
ponents, low wage workers tend to work in high wage �rms, and vice versa. This
seems counter-intuitive in the light of theories of assortative matching.

There are two possible explanations for this emerging stylised fact. The �rst, sug-
gested by Barth & Dale-Olsen (2003) and Abowd, Kramarz, Lengermann & Perez-
Duarte (2004), is that the observed negative correlation is simply the result of using
standard econometric techniques. Because the estimates of the worker and �rm
dummies are estimated with error, it is possible that the estimated correlation be-
tween them is biased downwards. It is not immediately obvious why this is so, but
an over-estimate of a worker e�ect leads to, on average, to an under-estimate of
a �rm e�ect. The second explanation focuses on whether there any genuine eco-
nomic explanations for why there might be negative assortative matching. Again,
see Abowd et al. (2004).

1 See also Abowd & Kramarz (1999) and Haltiwanger, Lane, Spletzer, Theeuwes & Troske
(1999) for early surveys of the wide range of issues covered in this literature.

2 AKM originally used an approximation to the LSDV estimator. Abowd et al. (2002) re-
estimated these models using the exact solution they developed subsequently. This is why
AKM's results look like outliers.
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In this paper, we focus on the �rst explanation. We derive formulae for the bias
in the sampling distribution of the covariance between the unobserved worker- and
�rm-components of wages, and the biases in the variances of both components.
When there are no conditioning covariates in the model, or when these covariates
are not correlated with the worker and �rm dummies, we show that the bias in the
correlation is unambiguously negative when there is positive assortative matching.
However, it is possible, but unlikely, that the bias can become positive when there
is a strong correlation between the observed covariates and the worker and �rm
dummies. Subject to possible size constraints, the bias can be computed for any
given dataset.

We also show that the extent of the bias depends on how much worker mobility
each �rm experiences, which itself depends on the key features of a given dataset.
These include the length of the panel, the average size of �rms (more generally, the
�rm-size distribution), and the error variance of the model. To analyse the impact
of these features, we simulate a data generation process which creates an arti�cial
linked employer-employee dataset which exhibits positive assortative matching; with
this we estimate the parameters of the model using standard methods, and compute
the biases using the formulae we have developed.

Ultimately, the size of the bias is an empirical issue, and should be computed for
every application of linked employee-employer data. More importantly, this result
applies to any two-way (or higher) error-components model estimated by �xed-e�ects
methods. For example, an estimate of a true positive correlation between unobserv-
ably good schools and unobservably good pupils would be biased downwards.

Because it is possible that all of the negative estimates obtained thus far in the
literature are consistent with positive assortative matching, we give an example us-
ing German linked data, from the Institut für Arbeitsmarkt� und Berufsforschung,
Nürnberg (hereafter IAB).3 It turns out that our bias correction moves the estimate
of the correlation from −0.19 to −0.15, and so the econometric explanation�the sta-
tistical artefact of the title�is not su�cient to explain negative assortative matching
on its own. We then �nd that the choice of sample is also important, namely whether
small plants are excluded from the analysis and whether movers and analysed sep-
arately from non-movers. Then our bias-corrected estimate of the correlation is
0.23.

3 Like us, Abowd et al. (2004) investigate the same issue, but conclude that the zero or negative
correlation between person and �rm e�ects is not explained by estimation biases due to lack
of mobility in their data. This is probably because their data have many movers or because
they assume that the true correlation is zero.
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The structure of the paper is as follows. In Section 2 we outline the generic model
used in most of the literature and we explain the methods that are used to estimate
the parameters of this model. In Section 3 we derive expressions for the biases in
the correlation. In Section 4, we generate simulated data that are used to determine
those features of the data which cause the bias; Section 5 presents the results of
these simulations. In Section 6 we report what happens with our example using
German linked data, and Section 7 concludes.

2 The generic model

Consider a model of wages with both employer and employee unobserved hetero-
geneity and employer and employee observed covariates:

yit = µ + xitβ1 + wjtβ2 + uiη + qjρ + αi + φj + εit. (1)

There are i = 1, . . . , N workers, j = 1, . . . , J �rms and t = 1. . . . , T years. yit is the
dependent variable (in this case wages); xit and ui are vectors of observable i-level
covariates; wjt and qj are vectors of observable j-level covariates.4 αi and φj are
(scalar) unobserved heterogeneities. It is usual to assume that both are correlated
with the observable components of wages. Models of positive assortative matching
would also imply that they are positively correlated with each other. Note that
both αi and ui are variables that are time-invariant for workers. Similarly, φj and
qj are �xed over time for �rms. xit, on the other hand, varies across i and t, and
wjt varies across j and t. Equation (1) therefore contains all four possible types of
information which a researcher might have about workers and �rms. There are K

observed covariates in total.

Both workers and �rms are assumed to enter and exit the panel, which means we
have an unbalanced panel with Ti observations per worker. There are N∗ =

∑N
i=1 Ti

observations (worker-years) in total. Individuals also change �rms. This is crucial,
as the parameters in �xed-e�ects models are identi�ed by changers. Throughout we
assume strict exogeneity, namely that

E(εit|xi1, . . . , xiT , wj1, . . . , wjT , αi, φj) = 0. (2)

This implies that workers' mobility decisions are independent of εit. However, it is
4 A more precise notation would be to write wj(it)t, where the function j(it) maps worker i at

time t to �rm j. This emphasises the point that the unit of observation is an worker/year,
but it is more cumbersome.
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worth noting that mobility may be a function of the observables αi and φj. Indeed,
positive assortative matching requires that worker mobility is non-random with re-
spect to αi and φj.

As shown by AKM, in the presence of any correlations across the two sides of the
market, that is correlations between unobserved/observed worker characteristics and
unobserved/observed �rm characteristics, there are omitted-variables biases which
arise when estimating Equation (1) using data from only one side of the market.
It is usual to assume that the heterogeneity terms αi and φj are correlated with
the observables from the same side of the market. This means that random e�ects
methods are biased and inconsistent, and so �xed e�ects methods are needed to
estimate the parameters of interest. This means that [η, ρ], the parameter vector
associated with the time-invariant variables, is not identi�ed. Rather than dropping
[ui, qj], it is usual to de�ne θi ≡ αi + uiη and ψj ≡ φj + qjρ giving

yit = µ + xitβ1 + wjtβ2 + θi + ψj + εit. (3)

This is because estimates of [η, ρ] can be recovered by making the additional random
e�ects assumptions if the investigator so requires (as AKM do). Equation (3) is the
generic model that represents most of the existing literature. The particular focus
of this paper is on the estimation of the worker and �rm �xed e�ects, θi and ψj, and
their correlation with each other.

We now write the model in matrix notation:

y = Zγ + Dθ + Fψ + ε (4)

where y and ε are N∗ × 1 vectors, D is a N∗ × N matrix of worker dummies, F

is a N∗ × J matrix of �rm dummies, and Z = [X, W ], where X represents worker
covariates and W represents �rm covariates. Z is a N∗ × K matrix. θ is a N × 1

parameter vector, ψ is a J × 1 parameter vector, and γ is a K× 1 parameter vector.
Because one �rm dummy is dropped, J is rede�ned accordingly, and note that Z

does not contain a constant.

If one is not interested in the estimates of θi and ψj themselves, a consistent estimate
of γ from Equation (4) is straightforward to obtain by time-demeaning within each
unique worker-�rm combination (or �spell�). This is because for each spell of a
worker within a �rm neither θi nor ψj vary, and so time-demeaning removes both
terms. However, we are interested in the estimates of θi and ψj themselves, so this
solution is not useful because it allows us to recover only the sum θi + ψj after
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estimation, and not the worker components (see AKM). It is worth noting, however,
that for many researchers this �spell �xed e�ects� (Spell FE) method is a practical
and simple solution which does not present any computational di�culty.

As noted by AKM, the Least Squares Dummy Variable (LSDV) estimator of Equa-
tion (3) requires the estimation of N worker e�ects and (approximately) J �rm
e�ects. N is often in the order of millions, and J is often in the order of thousands,
or tens of thousands. For most realistic values of N and J this is not a practical
solution. In standard linear panel data models�that is, where the �rm e�ects are
absent�the LSDV estimator gives identical results to models where the heterogene-
ity is removed algebraically, by taking deviations from the mean of all variables in
Equation (4). However, there appears to be no algebraic transformation of the ob-
servables that sweeps away both �rm and worker e�ects, nor which allows them to
be recovered subsequently. This is because of the lack of patterning between workers
and their employers.5

To circumvent this problem, AKM note that explicitly including dummy variables
for the �rm heterogeneity, but sweeping out the worker heterogeneity algebraically,
gives exactly the same solution as the LSDV estimator. In other words, Equation (4)
is transformed by sweeping out the matrix of worker dummies D using MD ≡ IN∗ −
D(DT D)−1DT :

MDy = MDZγ + MDFψ + MDε. (5)

In words, yit − ȳi is regressed on the vector of covariates zit − z̄i and on J mean-
deviated �rm dummies F j

it − F̄ j
i , where F j

it is the j-th column of F , and r̄i =

(
∑

t rit)/Ti for any variable r.

To distinguish this estimator from the standard LSDV estimator, hereafter we label
this estimator as �FEiLSDVj�. They are identical estimators, but di�er in how they
are computed. The covariance matrix for FEiLSDVj needs the standard degrees-of-
freedom adjustment.

To obtain estimates of the worker heterogeneity, note that

Dθ̂ = PDy − PDZγ̂ − PDFψ̂, (6)

where PD ≡ D(DT D)−1DT . This equation gives the intuition as to why there is
an observed negative correlation between θ̂ and ψ̂ (as noted by Barth & Dale-Olsen
(2003) and Abowd et al. (2004)). To see this, write out Equation (6) explicitly for
5 More precisely, sort the data by workers, and the �rm dummies are unpatterned; sort the data

by �rms, and the worker dummies are unpatterned.
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each worker:
θ̂i = ȳi − ψ̂i − z̄iγ̂, (7)

where ψ̂i averages ψ̂j(it) over t. As the ψj are estimated by LSDV, they are sub-
ject to the usual sampling variation (the �rm dummies are no di�erent from any
other observed covariate). Once estimated, each ψ̂j generates a number of θ̂i, via
Equation (7). If a ψj is over-estimated, then, on average, the corresponding θi are
under-estimated, and vice versa. This implies that the estimated correlation be-
tween θi and ψj is biased downwards. An expression for this bias is formulated in
the next section.

3 The bias

After estimation, one computes the sample variance over all N∗ estimates of θi (N
of which are distinct), the sample variance over all N∗ estimates of ψj (J of which
are distinct, if all are identi�ed)6, and the sample covariance between these two
unobserved components:

Sψ̂ψ̂ =
1

N∗ − 1

∑
it

(ψ̂j − ¯̂
ψ)2 =

1

N∗ − 1
ψ̂T F T AFψ̂, (8)

Sθ̂θ̂ =
1

N∗ − 1

∑
it

(θ̂i − ¯̂
θ)2 =

1

N∗ − 1
θ̂T DT ADθ̂ (9)

Sθ̂ψ̂ =
1

N∗ − 1

∑
it

(θ̂i − ¯̂
θ)(ψ̂j − ¯̂

ψ) =
1

N∗ − 1
θ̂T DT AFψ̂. (10)

The it-th element of the N∗× 1 vector Dθ̂ comprises θ̂i and the it-th element of the
N∗× 1 vector Fψ̂ comprises ψ̂j. ¯̂

θ averages θ̂i over all of worker i's observations and
similarly ¯̂

ψ averages ψ̂j over all of �rm j's observations. Because these averages are
non-zero, this gives rise to A in these expressions, where A = IN∗ − 1

(
1T1

)−1
1T is

the projection matrix producing mean deviations, and 1 is a N∗ × 1 vector of ones.
We emphasise that each of Sψ̂ψ̂, Sθ̂θ̂ and Sψ̂θ̂ is computed over N∗ observations, that
is, a given θ̂i is summed over Ti observations and a given ψ̂j is summed over as many
worker-periods the �rm is observed in the data. These could be computed over N

worker-level observations or J �rm-level observations, but it seems sensible to use
weighted averages, and so we do not develop these formulae here.

The vectors θ̂ and ψ̂ su�er standard least-squares estimation error, and so we com-

6 A ψj for a �rm with no movement is not identi�ed.
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pare the means of the sampling distributions of Sψ̂ψ̂, Sθ̂θ̂ and Sψ̂θ̂ with their respective
true values Sψψ, Sθθ and Sψθ:

Sψψ =
1

N∗ − 1
ψT F T AFψ, Sθθ =

1

N∗ − 1
θT DT ADθ, Sθψ =

1

N∗ − 1
θT DT AFψ.

In the Appendix, we show that the resulting biases are as follows:

Bias[Sψ̂ψ̂] =
σ2

ε

N∗ − 1
tr

{
F T AF

[
F T MV F

]−1
}

(11)

Bias[Sθ̂θ̂] =
σ2

ε

N∗ − 1
tr

{
DT AD

[
DT M[Z,F ]D

]−1
}

(12)

Bias[Sθ̂ψ̂] = − σ2
ε

N∗ − 1
tr

{
F T MZD

[
DT MZD

]−1
DT AF

[
F T MV F

]−1
}

. (13)

where σ2
ε is the variance of εit, and V = (Z, D).

We also show that, when the columns of Z are orthogonal to [D,F ], each trace can be
unambiguously signed as positive. Thus, both Sθ̂ and Sψ̂ are overestimated whereas,
as expected at the end of Section 2, Sθ̂ψ̂ is underestimated. It is well-known that Sψ̂,
in the absence of worker dummies, is biased upwards (Krueger & Summers 1988).7

Our analysis here emphasises the downwards bias in the covariance. In other words,
if the true covariance is positive, that is, there is positive assortative matching, the
estimated correlation will always be too small, and could be negative. On the other
hand, if the true covariance is negative, the estimated correlation could either be
more or less negative.

It is di�cult to make clear-cut predictions about what happens when the columns
of Z are not orthogonal to [D,F ]. However, as a particular column of Z becomes
less orthogonal to [D,F ], loosely speaking, the smaller the bias becomes, but, at
the same time, the in�uence of that variable becomes less important. Ultimately,
the sign and the size of the bias is an empirical issue, using the formulae presented
immediately above.

The estimated correlation between ψ̂ and θ̂ is given by

Rθ̂ψ̂ =
θ̂T DT AFψ̂√

ψ̂T F T AFψ̂
√

θ̂T DT ADθ̂

. (14)

7 Goux & Maurin (1999) give expressions for these biases, all of which are positive. This is
because they use Spell FE, which is only an approximation to LSDV, and does not separately
identify θ̂ and ψ̂.
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All three biases can be estimated, since each depends on only σ2
ε/(N

∗ − 1) and
the data matrices X, D and F . Thus one can adjust the estimates of the three
components by using estimates of the bias, and recompute the correlation. As
already noted, linked employee-employer datasets can be very large. As the software
has already computed (F T MDF )−1 to produce LSDV estimates, the number of �rms
is not an issue. The only potential computational problem is that the expression for
Bias[Sθ̂θ̂] involves inverting the N ×N matrix [DT M[Z,F ]D]. The number of workers
N might to be too large for the software at hand, in which case one has to assume
that Z is orthogonal to D and F and use the formulae given in Appendix A.2. See
also Appendix A.3 for further details on how to compute the biases.

We now need to establish some properties of these three bias terms, especially for
the covariance. This is easier if one assumes there are no covariates Z. Intuition
suggests that the three biases, in absolute terms, are a (complicated) decreasing
function of the number of movers between �rms, a property of the matrix F T D,
which appears a number of times in Equation (A.6). In particular, F T D is a J ×N

matrix that records the number of periods worker i is employed at �rm j. In the
next section, we use simulated data to show how large these biases might be for the
type of datasets used in this literature. In particular, we attempt to uncover the
non-linear relationship that links the bias in the correlation (or its components) to
the number of movers and other features of these datasets, such as the number of
�rms and the number of time periods.

4 The simulation design

The simulated data mimics the generic model outlined in Section 2. J �rms are
created indexed j = 1, . . . , J , each with a random number of employees Nj drawn
from a Uniform distribution with mean µN . In this section, and the next, we have
a balanced panel where each employee is observed for T periods. Each �rm is given
a realisation of wjt and ψj; each worker is given a realisation of xit and θi.8 These
realisations are drawn from a joint Normal distribution with the following means
and covariance structure for any period t:

8 We use one variable of each type, hence wjt and xit are scalars rather than vectors as in
Equation (3).
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ψj

wjt

θi

xit



∼ N




0

;

Sψψ

0 Swψ Sww

0 Sθψ Sθw Sθθ

0 Sxψ 0 Sxθ Sxx




(15)

The structure above focuses on the correlation between the unobservables and the
observables, and the correlation between the unobservables themselves.9 We assume
that the observed �rm and worker e�ects (wjt and xit) are uncorrelated with each
other, but we allow for non-zero covariance between the unobserved components
(Sθψ 6= 0), as well as between the unobserved components and both �rm and worker
time-varying e�ects.

The draw of [ψj, wjt, θi, xit] initially ensures that workers with certain characteristics
are matched with �rms with certain characteristics. For example, if Sθψ > 0 then
high wage workers tend, on average, to be matched with high wage �rms. This gives
the distribution of workers across �rms in period t = 1.

We now generate the movement of workers between �rms. As noted, this is crucial
for the identi�cation of the �xed e�ects. For each worker we draw a potential new
�rm j′ from the list of currently existing �rms. This new �rm has its own set of
characteristics [ψj′ , wj′t].10

The probability of movement from j to j′, denoted m∗
it, is determined by a random

draw from a Normal distribution. A move occurs if m∗ is greater than some critical
percentile of the distribution of m∗, denoted m∗

c , such that the probability of move-
ment p ≡ Pr(m∗ > m∗

c) is set at 0.1. Altering p allows us to alter the number of
workers who move each period. If a move occurs, the value of j′ is copied to j in that
period and for all future periods, as are ψj′ , qj′ and wj′t. The potential matching of
workers and �rms occurs once per period t. The number of periods T can be varied
to mimic real data. Typically T is small because linked data are recorded annually,
and have become available only recently.

It is important to emphasise that the assumption of random mobility is innocuous.
So long as Equation (2) holds, any model of mobility will generate simulations with

9 For clarity, we write out the correlation structure at time t. In addition, there are correlations
across periods. Both variables xit and wjt are autocorrelated, with parameter 0.9. All xit and
wjt pairs are uncorrelated.

10 In order to ensure that a new match is drawn with a probability proportional to �rm size, the
list of new �rms is weighted by the size of the �rm.
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similar properties. We choose random mobility because it means that we do not
have to choose speci�c models about how movement occurs; for example, whether
matches are �experience� or �search� goods.

Once the identity of each �rm is established for every worker in all T rows of the
data, the dependent variable yit is generated according to Equation (3). As already
noted, the resulting dataset is balanced for workers, unlike real data. It is not
however necessarily balanced in terms of �rms, because small �rms who experience
worker exits may disappear.

5 Simulation Results

5.1 Baseline simulation

We now repeatedly generate a synthetic dataset using the methods outlined in Sec-
tion 4. Table 1 reports the baseline values chosen for the synthetic data and sum-
marises the outcomes of the key parameters for 100 replications.

Table 1: Baseline parameter values and realisations: random mobility
Population Realisation (100 reps.)

Mean s.d.

Number of �rms J 100 100 −
Number of time periods T 5 5 −
Average number of workers per �rm µN 50 50.401 1.683
Total number of observations N∗ 25, 000 24, 907.55 1, 594.87
Probability of movement per period p 0.1 0.1 −

Number of movers M 1997.18 138.04
Total number of groups G 1.66 0.844
Number of observations in largest group 24, 902.05 1, 595.29

Variance of idiosyncratic error σ2
ε 1 1.001 0.0099

Parameter on xit, β1 0 0 −
Parameter on wjt, β2 0 0 −

Variance of worker e�ects Sθθ 0.3 0.309 0.0087
Variance of �rm e�ects Sψψ 0.3 0.295 0.0490
Covariance �rm and worker e�ects Sθψ 0.0737 0.0730 0.0133
Correlation �rm and worker e�ects Rθψ 0.246 0.241 0.0244

Because the number of workers per �rm, Nj, is drawn randomly from a Uniform
distribution with mean µN , this varies across simulations, as does the total number of



13

workers who change �rm each period, denoted M . The total number of observations,
T

∑J
j=1 Nj, varies across simulations for the same reason, even though the number

of �rms remains �xed. (The population number of observations is TJµN = 25, 000.)
Each replication involves a completely new set of worker movements from �rm to
�rm, and so the number of groups G (and hence the number of estimable e�ects)
varies slightly between replications.11 In fact, in about half the replications there
is only one group (all workers and �rms are connected); moreover, the size of the
largest group is only slightly smaller than the total sample size. This is the usual
�nding in real linked data (Abowd et al. 2002). It is important to emphasise that
in the base simulation, the parameters J , T , µN , p and σ2

ε are held �xed, but will
vary when we make departures from the base simulation.

The crucial parameter is the correlation between θ and ψ, which is chosen to be
positive (Rθψ = 0.246): unobservably high wage workers work for unobservably
high wage �rms. We also assume positive correlation between each unobservable
and both time-varying observables: the other four correlations in Equation (15) are
Rθx = 0.295, Rθw = 0.160, Rψx = 0.082, and Rψw = 0.299. High wage workers work
for �rms with observably better characteristics, and high wage �rms employ workers
with observably better characteristics. The latter assumption is supported by much
evidence from real linked employer-employee data.

For each dataset we estimate Equation (3) using FEiLSDVj. Note that we include
xit and wjt in the regression, even though β1 = β2 = 0 in the data generation
process. We then compute θ̂ using Equation (7), from which we compute Sθ̂θ̂, Sψ̂ψ̂,
Sθ̂ψ̂, using Equations (8�10), and Rθ̂ψ̂ using Equation (14). In Table 2 we report
the baseline estimation results. The reader is reminded that Table 1 reports true
simulated values of ψ and θ, whereas Table 2 reports estimated values ψ̂ and θ̂.

First note, as expected, that the FEiLSDVj method produces unbiased estimates
of β1 = 0 and β2 = 0: β1 = 0 lies within two s.d.s about the mean value of
β̂1 = −0.00128, and the same is true for β2 = 0. However, the resulting estimate
of the correlation of the worker and �rm e�ects is signi�cantly downwards biased;
the 95% con�dence interval about the mean estimate of 0.118 does not contain the
true value of 0.246. This result illustrates the key �nding of this paper. In fact,
as shown algebraically in Section 3, all three components of the correlation are
biased, when the observed covariates xit and wjt are absent from the model. The
variance of the estimated worker unobservables is almost twice as big as the variance

11 Identi�cation of �rm e�ects is only possible within a �group�, where a group is de�ned by the
movement of workers between �rms (Abowd et al. 2002).
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Table 2: Baseline parameter estimates, 100 reps., random mobility
Population Simulation

Mean s.d.

Parameter on xit, β1 0 −0.00128 0.00822
Parameter on wjt, β2 0 0.00022 0.0074

Variance of worker e�ects Sθ̂θ̂ 0.3 0.534 0.0148
Variance of �rm e�ects Sψ̂ψ̂ 0.3 0.323 0.0572
Covariance �rm and worker e�ects Sθ̂ψ̂ 0.0737 0.0492 0.0157
Correlation �rm and worker e�ects Rθ̂ψ̂ 0.246 0.118 0.0317

of the true worker unobservables: Sψ̂ψ̂ = 0.534 whereas Sψψ = 0.3. However, the
variance of the estimated �rm unobservables is not biased by much: Sθ̂θ̂ = 0.323

whereas Sθθ = 0.3. Finally, the covariance is biased downwards, thereby estimating
a positive covariance too close to zero. Here Sθ̂ψ̂ = 0.0492, whereas Sθψ = 0.0737.
As we know from Section 3, these three biases, taken together, imply that a true
positive correlation is always biased downwards. This is clearly being illustrated
here.

5.2 Departures from the baseline simulation

We now vary the simulation in single dimensions away from the baseline. We then
compute the three biases for each replication. Note that we use Equations (A.4�
A.6) because we know that the true model does not contain observable covariates.
This allows us to examine the cause of the bias, that is, estimation error in ψ̂ and
θ̂ in isolation of the estimation error in the parameters on the covariates. In what
follows, we seek to quantify the extent of the bias as a function of the characteristics
of particular data. In other words, we vary one of the parameters J , T , µN , p and
σ2

ε , but keep the others �xed.

Varying the probability of movement. The easiest way to illustrate the
basic relationship between the bias in the covariance term, given in Equa-
tion (A.6), and the number of movers M is to vary the probability of a match
dissolving (p). Simulations for three departures, for p = 0.05, p = 0.15 and
p = 0.20 are plotted in Figure 1, together with the baseline replication p = 0.10.
It is quite clear that the bias in the covariance tends to zero as the number of
movers endogenously increases. This basic result recurs throughout.
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Figure 1: Varying p: bias in covariance
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One cannot write down an algebraic expression for the bias in the correlation.
All we can do is calculate the estimated correlation for each replication and
subtract from it the true correlation. In Figure 2, we plot this di�erence against
M for the same four sets of replications. The plot can be used to assess the
probable bias in the correlation for a real dataset that has the same features as
our simulated data. There is much more vertical variation in clusters compared
with the �rst plot because the two variance terms in the denominator are also
biased. In other words, for the same bias in the covariance, there are lots of
possible biases in the product of the variances, each giving a di�erent bias in
the correlation.

Varying average firm size. Larger �rms tend to have more workers join-
ing and leaving them, and so varying µN provides another way of endoge-
nously varying the number of movers M . We simulated various datasets for
µN = 25, 50, 75, with p = 0.10. All that happens is that each cluster of 100
replications lies on the curve plotted in Figure 1, with low values of µN located
to the left (not reported). The same happens if we use di�erent values of p.

Varying the number of time periods. The third dimension over which
the number of movers can be endogenously increased is to lengthen the panel.
The longer the panel, the more accurately ψ can be estimated because, once
again, each �rm has on average more movers, and so the bias in the covari-
ance/correlation should lessen. Also, the bias in the correlation will get smaller
as the bias in the two variances falls as T goes up. This is con�rmed in Fig-
ure 3. We �rst re-plot the four clouds in Figure 1 (labelled T = 5). Below
them are four clouds for which p = 0.05, 0.10, 0.15, 0.20, but now T = 3. One
can see that holding p constant, but reducing T from 5 to 3, increases the
bias in the estimated covariance (as predicted) by shifting the relationship in
Figure 1 downwards. We �nally plot a cluster p = 0.1 and T = 7. Thus the
reader can see the e�ect of holding p constant at 0.10, and letting T = 3,
T = 5 and T = 7. The number of movers gets bigger (there are more periods
in which to move) and the bias gets smaller.

Varying the number of firms. In contrast, varying the number of �rms for
a given p has no e�ect on the bias of the estimated correlation (nor the true
correlation). This is because every new �rm requires a new estimated param-
eter ψ, and no improvement in sampling variability. Figure 4 illustrates this
result, where one can see three clusters for p = 0.10, for J = 50, 100, 150,
which lie to left and right of each other.
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Figure 3: Varying T : bias in covariance
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Varying overall error variance. In Figure 5 we illustrate the e�ect of
increasing the overall error variance of Equation (3). As σ2

ε increases the
sampling variability of ψ̂ increases, which decreases the estimated correlation
of ψ and θ, and therefore the absolute value of the bias increases. This plot
is di�erent from the others because altering σ2

ε has no e�ect on the number of
movers.

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

B
ia

s 
in

 e
st

im
at

ed
 c

or
re

la
tio

n

.36 .64 1 1.44 1.96
Error variance

Figure 5: Varying σ2
ε : bias in correlation

5.3 Conclusions

The relationship between the bias in the covariance and the number of movers M

is very clear, being negative and asymptoting towards zero as M increases. All
combinations of µN and p lie on this same `curve'. The curve shifts upwards towards
zero as T increases, J decreases and σ2

ε decreases. The bias in the correlation,
which is also a�ected by positive biases in both variances, shows the same basic
pattern, but is much more a�ected by the noise in the data generation process, from
simulation to simulation. Averaging over this noise, we can conclude that the bias
in the correlation is decreasing in T , µN , and p, increasing in σ2

ε , and is una�ected
by J , because all of these parameters can be thought of as exogenously altering the
number of movers in any given dataset.

Notice that Figures 2 and 5 show that the bias in the correlation can be quite sub-
stantial when the numbers of movers is relatively low. In fact, very occasionally in
the simulations, Bias[Rθ̂ψ̂] < −0.246, showing that it is possible for there to be neg-
ative estimates of the correlation even when there is positive assortative matching.
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6 An example using German linked data

To illustrate how a downwards-biased estimate of Rθ̂ψ̂ can be corrected, we use
data from a linked worker-�rm dataset made available by the IAB.12 The �rm data
comprise a panel of 4,376 establishments (or �plants�) from the former West Ger-
many observed over the period 1993�1997. The worker data comprise a panel of
1,930,260 workers who are employed in these plants. A common establishment iden-
ti�er is available in both datasets, allowing them to be linked.13 After eliminating
observations with missing or incomplete information, the resulting linked dataset
has 5,145,098 worker-year observations (the it level). For each row in the data the
identity j of the plant is recorded.

Firm e�ects are identi�ed by the number of movers in each plant; most plants in
the IAB data have few or no movers between other plants in the data. This is
because the plant data is a survey, and because the dataset is relatively small in the
T dimension. There are 1,821 plants (out of the total of 4,376) who have positive
turnover.

Notice that N is approximately two million, and so we cannot compute the biases
given in Equations (11�13) because of having to invert DT M[Z,F ]D in Equation (12).
We therefore must assume that Z is orthogonal to D and F , and instead compute
the biases given in Equations (A.4�A.6).

We estimate a standard earnings equation with K = 53 covariates, including marital
status, age, education thresholds, occupation, union recognition, investment, concen-
tration, plant size, age of plant, and pro�tability. Because we estimate Equation (3),
not Equation (1), time-invariant covariates cannot be included (for example gender
and industry). The model is estimated by a Classical Minimum Distance method
that very closely approximates FEiLSDVj (see Andrews, Schank & Upward (2006)
for further details and how the method is implemented in Stata). This model is
reported in full in Andrews, Schank & Upward (2005); here we are only concerned
with the estimated correlation between θi and ψj.

When the model is estimated with a full set of plant dummies, ie for the 1821
plants who have turnover, the estimated correlation between θi and ψj is −0.191

(see the �rst column of Table 3). This is consistent with the existing literature (see

12 Hereafter we refer to the data as LIAB: Linked IAB data.
13 Kölling (2000) provides more information on the IAB establishment panel, Bender, Haas &

Klose (2000) has details on the worker data and Alda, Bender & Gartner (2005) has details
on the linked data.
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Table 3: Bias correction, wage regressions, LIAB data
All plants High turnover plants

Whole Movers Whole Movers
sample sub-sample sample sub-sample

No. observations N∗ 4, 883, 331 72, 253 5, 145, 098 62, 668
No. workers N 1, 816, 368 23, 393 1, 930, 260 20, 313
No. plants J 1, 821 1, 821 212 212
No. movers M 23, 393 23, 393 20, 313 20, 313

Error variance σ2
ε 0.00459 0.00720 0.00461 0.00742

Uncorrected estimates
Variance of worker e�ects Sθ̂θ̂ 0.05381 0.05747 0.10231 0.20250
Variance of plant e�ects Sψ̂ψ̂ 0.01339 0.01513 0.00290 0.00562
Cov. plant/worker e�ects Sθ̂ψ̂ −0.00512 −0.00389 −0.00030 0.00597
Corrn. plant/worker e�ects Rθ̂ψ̂ −0.191 −0.132 −0.017 0.177

Correction to bias
Bias[Sθ̂θ̂] (Equation (A.5)) 0.00320 0.00450 0.00180 0.00330
Bias[Sψ̂ψ̂] (Equation (A.4)) 0.00149 0.00235 0.00008 0.00092
Bias[Sθ̂ψ̂] (Equation (A.6)) −0.00149 −0.00217 −0.00008 −0.00089

Corrected estimates
Variance of worker e�ects Sθ̂θ̂ 0.05061 0.05297 0.10050 0.19921
Variance of plant e�ects Sψ̂ψ̂ 0.01190 0.01278 0.00283 0.00470
Cov. plant/worker e�ects Sθ̂ψ̂ −0.00363 −0.00171 −0.00022 0.00686
Corrn. plant/worker e�ects Rθ̂ψ̂ −0.148 −0.066 −0.013 0.224

Correction to bias
Bias[Rθ̂θ̂] −0.043 −0.066 −0.004 −0.047
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the Introduction). Applying the bias correction, the correlation moves to −0.148,
primarily because the covariance term moves from −0.00512 to −0.00363. Of the two
explanations discussed in the Introduction, clearly the econometric explanation, on
its own, does not explain why there is not positive assortative matching. Nonetheless,
a 25% movement in the correlation represents a sizeable bias. The actual correction
to the bias, namely 0.043, is given in the bottom row of the table.

This is the main message of the paper. However, we still need to investigate two
modelling issues that recur in these analyses. The �rst concerns the size of the
bias, and whether it can be ameliorated by pooling �small� plants into a single small
�super plant�. This often happens in the literature because the number of plants can
be too many for the FEiLSDVj estimator. The second is whether we should model
movers and non-movers separately.

One possible explanation for why there is a large bias is that the estimates of ψj

are noisy for plants that experience low turnover. Equation (7) suggests that the
more imprecise the estimates of ψj, the more biased is the correlation. Of the 1,821
plants who experience turnover, only 211 plants have 30 or more workers who move
to other plants in the sample. In what follows, we group together all plants who
have fewer than 30 movers into one super-plant, and estimate a model with just 212
identi�able plant e�ects.

When we re-estimate the model with only 212 plant e�ects (column 3), the estimated
correlation increases to −0.017 and the bias-corrected estimate is −0.013. The
absolute size of the bias in the estimated correlation therefore falls substantially
from column 1 to column 3 (bottom row), which is what we would expect if the bias
is caused by noisy estimates of ψ. However, there may be another reason for the fall
in the bias, which is that we are restricting more than 3 million rows of the dataset
(about 60% of the sample) to have the same value of ψ̂. One should also note that
in this case the restriction implied by moving from column 1 to column 3 is easily
rejected (the standard F -test is 10.5).

The second issue that recurs with any type of �xed-e�ects model is that the sub-
sample of movers (who e�ectively identify the parameters of the model) may be a
non-random sub-sample. Workers and plants who choose to separate for whatever
reason are not necessarily the same as those worker-pairs who tend to stay together.
In particular, the correlation of worker and �rm e�ects may not be the same for
movers and non-movers. In column (2) we therefore report estimates separately
for movers. That is, we use the 72,253 observations for those workers who move
between the 1,821 plants. An F -test of parameter equality between movers and
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non-movers sub-samples rejects the null hypothesis easily (p-value zero). There is
also evidence that movers have a di�erent degree of assortative matching than non-
movers. The bias-corrected correlation of plant and worker e�ects increases from
−0.148 to −0.066.

Since the separation of movers and non-movers appears to be important (column
2), and since the pooling of low-turnover plants also reduces the bias (column 3),
it seems logical to look at the results for movers in high turnover plants (column
4). When we do this we actually estimate a positive correlation of plant and worker
e�ects (0.224, bias corrected). As before, the pooling of low-turnover plants reduces
the size of the bias (compare column 4 with column 2). However, once again, we
reject the implied restriction (the standard F -test is 6.6). And also, as before, the
correlation for movers is larger than for the whole sample (compare column 4 with
column 3).

The lesson from all this is that estimates of the correlation of worker and plant
e�ects are sensitive to modelling decisions as well as the statistical bias highlighted
in Sections 3 and 4. The bias may be as large as 50% of the size of the uncorrected
correlation. But in our example, looking at movers and non-movers separately,
resulted in even larger movements in the correlation. Finally, our preferred estimate
of the correlation of −0.066 (column 2) is still negative though somewhat closer to
zero than others in the literature. This estimate is much closer to zero than our
uncorrected estimate (−0.191), partly because of the bias correction, and partly
because the correlation is less negative for movers than non-movers.

7 Conclusion

In this paper, we show that estimates of the correlation between �rm- and worker-
�xed-e�ects are biased downwards if there is true positive assortative matching and
when any conditioning covariates are uncorrelated with the �rm- and worker- �xed-
e�ects. We develop formulae for the biases for the components of the estimated
correlation. Ultimately, the size of the bias is an empirical issue, and should be
computed for every application of linked employee-employer data. More importantly,
this result applies to any two-way (or higher) error-components model estimated by
�xed-e�ects methods.

Using simulations, we show that the extent of the bias depends on how much worker
mobility each �rm experiences, which itself depends on the propensity to move,
the length of the panel, the average size of �rms (more generally, the �rm-size
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distribution) and the error variance of the model. It is, however, una�ected by the
number of �rms. We apply these bias corrections to a large German linked employer-
employee dataset. We �nd that although the biases can be considerable, they are
not su�ciently large to remove the negative correlation entirely. We also show
that modelling choices regarding the separation of movers and non-movers and the
grouping of small plants can have signi�cant impacts on the estimated correlation.
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A Algebraic details

A.1 Deriving the three biases

From Equation (4) of the main text,

y = Zγ + Dθ + Fψ + ε,

by combining Z and D into a matrix V, the Frisch-Waugh (FW hereafter) argument
can be used to calculate ψ̂ and θ̂ as

ψ̂ =
[
F T MV F

]−1
F T MV y,

θ̂ =
[
DT MZD

]−1
DT MZ(y − Fψ̂).

The sampling errors of θ̂ and ψ̂ are calculated from substitution of y:

ψ̂ = ψ +
[
F T MV F

]−1
F T MV ε, (A.1)

and similarly,
θ̂ = θ +

[
DT MZD

]−1
DT MZ

[
ε− F (ψ̂ − ψ)

]
. (A.2)

Using an alternative organisation of the regressors, the FW argument also gives:

θ̂ =
[
DT M[Z,F ]D

]−1
DT M[Z,F ]y

= θ +
[
DT M[Z,F ]D

]−1
DT M[Z,F ]ε.

The sample variance of the elements of ψ̂ is

Sψ̂ψ̂ =
1

N∗ − 1
ψ̂T F T AFψ̂,

where A = IN∗ − 1
(
1T1

)−1
1T is the projection matrix producing mean deviations,

and 1 is a N∗ × 1 vector of ones.
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The expected value of Sψ̂ψ̂ is

E[Sψ̂ψ̂] =
1

N∗ − 1

{
ψ +

[
F T MV F

]−1
F T MV ε

}T

F T AF
{

ψ +
[
F T MV F

]−1
F T MV ε

}

=
1

N∗ − 1

(
ψT F T AFψ + E

{
εT MV F

[
F T MV F

]−1
F T AF

[
F T MV F

]−1
F T MV ε

})

=
1

N∗ − 1

(
ψT F T AFψ + σ2

ε tr
{

MV F
[
F T MV F

]−1
F T AF

[
F T MV F

]−1
F T MV

})

=
1

N∗ − 1

(
ψT F T AFψ + σ2

ε tr
{

F T AF
[
F T MV F

]−1
})

= Sψ +
σ2

ε

N∗ − 1
tr

{
F T AF

[
F T MV F

]−1
}

.

The penultimate line comes from the cyclical property of traces.

Thus the bias in estimating Sψ̂ψ̂ is

Bias[Sψ̂ψ̂] =
σ2

ε

N∗ − 1
tr

{
F T AF

[
F T MV F

]−1
}

This is Equation (11) of the main text. Because both A and MV are positive semi-
de�nite, the matrices F T AF and F T MV F are positive semi-de�nite, and will be
positive de�nite in practice. The result that tr[AB−1] > 0 if both A and B are
positive de�nite completes the proof that the bias is unambiguously positive.14 This
is because each ψj is estimated with error, the square of which is added into the
expression for the variance.

For θ̂, the sample variance is

Sθ̂θ̂ =
1

N∗ − 1
θ̂T DT ADθ̂ (A.3)

Using the symmetry between D and F in Equation (3) of the main text,

Bias[Sθ̂θ̂] =
σ2

ε

N∗ − 1
tr

{
DT AD

[
DT M[Z,F ]D

]−1
}

.

This is Equation (12) of the main text. Again, this bias is unambiguously positive,
for the same reasons as for Bias[Sψ̂ψ̂].

14 If A and B are symmetric and psd, write both matrices in terms of their symmetric positive
square root matrices: tr(AB) = tr[(A1/2A1/2)(B1/2B1/2)] = tr[(A1/2B1/2)(B1/2A1/2)] =
tr(CT C) ≥ 0.
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For the sample covariance between θ̂ and ψ̂, we get

E[Sθ̂ψ̂] = Sθψ +
σ2

ε

N∗ − 1
tr

{
M[Z,F ]D

[
DT M[Z,F ]D

]−1
DT AF

[
F T MV F

]−1
F T MV

}
.

There is a �well-known� projection identity (Baltagi 2005, Eqns(9.29, 9.30)) which
says that

PV = PZ + MZD
[
DT MZD

]−1
DT MZ

which translates into an identity for MV :

MV = MZ −MZD
[
DT MZD

]−1
DT MZ ,

with a corresponding result for

M[Z,F ] = MZ −MZF
[
F T MZF

]−1
F T MZ .

Also note that

MV M[Z,F ] =
{

MZ −MZD
[
DT MZD

]−1
DT MZ

}
M[Z,F ]

= M[Z,F ] −MZD
[
DT MZD

]−1
DT M[Z,F ]

since MZM[Z,F ] = M[Z,F ].

Plugging this result into the bias expression for E[Sθ̂ψ̂], one obtains

tr
{

DT AF
[
F T MV F

]−1
F T MV M[Z,F ]D

[
DT M[Z,F ]D

]−1
}

= tr
{

DT AF
[
F T MV F

]−1
F T M[Z,F ]D

[
DT M[Z,F ]D

]−1

− DT AF
[
F T MV F

]−1
F T MZD

[
DT MZD

]−1
DT M[Z,F ]D

[
DT M[Z,F ]D

]−1
}

= − tr
{

DT AF
[
F T MV F

]−1
F T MZD

[
DT MZD

]−1
}

since F T M[Z,F ] = 0. This is Equation (13) of the main text.

Signing the trace requires that GT A ≡ MZD
[
DT MZD

]−1
DT A is symmetric. In

general this is not so, but is symmetric when Z is absent, or when Z is orthogonal
to D and F . In this case, it can shown that the trace is positive, an algebraic proof
of which is given in the following subsection. It can be shown, using numerical
examples, that the less orthogonal each column of Z is to D, F , (in the sense that
a regression of a column of Z on D, F has a higher R2), then the less symmetric
GT A becomes, and the less positive the trace becomes. In pathological cases, the
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trace can become negative, for example when a column of Z is collinear with D, F ;
however, this case is no interest as D, F contain no extra information, and so the
parameter on this column of Z would not be identi�ed.

In short, the essence of why there is a negative bias between worker and �rm unob-
servables is seen in the case where Z is orthogonal to D and F , or, equivalently, when
Z is absent. However, given that this is not going to happen in practice, ultimately
computing the bias is an empirical issue, using the formulae presented immediately
above.

A.2 What happens with no Zs?

When Z is absent, substitute MZ = IN∗ and MV = MD:

Bias[Sψ̂ψ̂] =
σ2

ε

N∗ − 1
tr

{
F T AF

[
F T MDF

]−1
}

. (A.4)

Bias[Sθ̂θ̂] =
σ2

ε

N∗ − 1

(
tr {PDA}+ tr

{
F T PDAPDF

[
F T MDF

]−1
})

=
σ2

ε

N∗ − 1

(
N − 1 + tr

{
F T APDF

[
F T MDF

]−1
})

. (A.5)

Bias[Sθ̂ψ̂] = − σ2
ε

N∗ − 1
tr

{
F T D

[
DT D

]−1
DT AF

[
F T MDF

]−1
}

= − σ2
ε

N∗ − 1
tr

{
F T PDAF

[
F T MDF

]−1
}

. (A.6)

The �rst line of (A.5) comes from substituting (A.1) into (A.2), and using MV = MD

and DT MZ = DT :

θ̂ = θ +
[
DT D

]−1
DT

(
IN∗ − F

[
F T MDF

]−1
F T MD

)
ε.

Substituting into (A.3), and taking expectations as with E[Sθ̂θ̂] above gives the
expression shown in the second line of (A.5).

Exactly the same results occur when Z orthogonal to D and F .

To show that the trace in Equation (A.6) is positive requires showing that the double
projection matrix PDA is positive semi-de�nite. Three properties of the matrix D

are used: (a) that the rows sum to unity, Di = 1; (b) that the columns sum to T

and (c) that DT D = diag{Ti}. (b) and (c) imply that

(DT D)−1DT1 = i
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where i is a N × 1 vector of ones. Hence

PDA = PD(IN∗ − 1
(
1T1

)−1
1T )

= PD −D(DT D)−1DT1
(
1T1

)−1
1T

= PD −Di
(
1T1

)−1
1T using (b,c)

= PD − 1
(
1T1

)−1
1T using (a)

= PD − P1

Hence PDA is psd, with trace(PDA) = trace(PD)− trace(P1) = N − 1.

Also note that F T MDF is a strictly positive de�nite matrix except when MDF = 0.
This can only occur when there is no movement between �rms, in which the �rm
dummy e�ects ψ cannot be identi�ed.

Without the covariates, the intuition as to why there is a negative bias can be easily
seen. Substitute MZ = IN∗ into Equation (A.2), and writing out for worker i:

θ̂i − θi = −(ψ̂i − ψi) + εi,

where ψ̂i averages ψ̂j(it) over t, where ψi averages ψj(it) over t, and εi averages εit

over t. This is the equation that shows that, on average, an under-estimate of ψj

leads to an over-estimate of θi, and vice versa. This is the cause of the downwards
bias that this paper seeks to establish.

Finally note that Sθ̂ is over-estimated for the same reason that Sθ̂ψ̂ is underestimated,
as both have the same bias term. There is an extra bias term in Sθ̂, which is
≈ (N/N∗)σ2

ε , or σ2
ε/T in a balanced panel. This term comes about because each

worker-e�ect θi is estimated on T observations, a bias e�ect that disappears as T

goes to in�nity. All the other bias terms disappear as N∗ goes to in�nity. It is
this term that Krueger & Summers (1988) and Haisken-DeNew & Schmidt (1997)
use to adjust the variance of the estimates of a set of industry dummies in their
analysis of inter-industry wage di�erentials. If one drops Dθ from Equation (4), it
is easy to show, using the same properties of D above applied to F , that the bias of
Sψ̂ is σ2

ε
J−1

N∗−1
. This is the same as Haisken-Denew & Schmidt, who use a di�erent

parameterisation.
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A.3 Computation and size constraints

Linked employee-employer datasets can be very large. N is often in the order of
millions, and J is often in the order of thousands, or tens of thousands. In the text,
where we discuss estimation of the generic model, it is assumed that the software
can invert J × J matrices, but not N × N or N∗ × N∗ matrices. With these
constraints, one cannot compute Bias[Sθ̂θ̂] in Equation (12), which requires inverting[
DT M[Z,F ]D

]
. As with the existing literature (Krueger & Summers 1988, Haisken-

DeNew & Schmidt 1997), one is therefore forced to ignore the fact that most models
will be estimated with observable (worker and �rm) covariates, ie assume that Z is
orthogonal to D and F . All the other traces can be computed by running auxiliary
regressions that do not involve inverting matrices larger than J ×J . It is also useful
to have software, such as Stata, that �accumulates� data matrices with N∗ rows into
cross-product matrices of dimension J × J .15

In Equations (11�13), suppose that one can invert
[
DT M[Z,F ]D

]
. There are two

more inversions required in the three biases. The �rst is
[
F T MV F

]−1. Here one
takes each column of F , denoted fj, form mean-deviations for worker i, and repeat
for all the columns of Z. Regress fj in mean-deviations on Z in mean-deviations,
and form residuals. Denote this as Regression (Rj). After j = 1, . . . , J loops, stack
the J vectors of residuals, form the inner product, and invert.

The second inversion is F T MZD
[
DT MZD

]−1. Consider the j-th regression

fj = Zβ1j + Dβ2j + uj.

Using FW, β̂2j can be computed in 2 ways:

β̂2j = [DT MZD]−1DT MZfj (A.7)

or

β̂2j = [DT D]−1DT (fj − Zβ̂1j) with β̂1j = [ZT MDZ]−1ZT MDfj. (A.8)

Equation (A.7) is what is required; Equation (A.8) gives how to compute it without
inverting N × N matrices. In other words, run Regression (Rj) above and form
�residuals� fj−Zβ̂1j. Take the average for each worker i and save as a N ×1 vector.
After looping over j = 1, . . . , J �rms, form the N × J matrix, as required.

15 Stata code that computes all the biases given above is available on request.
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