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Behavioral game theory accounts for how people actually make strategic decisions by incorporating
social utility, limited iterated reasoning, and learning [1]. The papers in this Special Issue span this
space of behavioral game theory research.

Seier [2] in this Special Issue explores whether fairness in strategic games tends to be driven by
intuitive or deliberative responses. Many people are willing to incur selfish costs to uphold norms
of fairness, from promoting efficiency or equity to punishing others who violate these norms [3].
Fair behavior could follow from deliberation, with self-control being used to do the right thing despite
an intuitive inclination to be selfish, or it could be an intuitive response that is adaptive in naturalistic
contexts, but that can be overcome deliberatively in the lab in artificial contexts in which selfishness
does not have reputational costs. Seier [2] finds that people who give more intuitive answers on the
cognitive reflection task tend to make more fair choices in strategic games: they give away more money
in the dictator game, demand more money as receivers in the ultimatum game, and engage in more
costly third-party punishment of norm violators in a multiplayer game. For many people, social utility
is a fundamental element of their preferences.

Zhao [4] in this Special Issue studies how the extent of iterated reasoning performed in a strategic
decision depends on constraints on the other player’s ability (as well as one’s own ability) to engage in
iterated reasoning. Using two-player guessing games in which strategic choices map cleanly onto levels
of reasoning in a level-k model [5–7], Zhao [4] finds that players engage in more steps of reasoning
when their opponents have been placed under a condition of lighter (rather than heavier) cognitive
load, and this effect is stronger when players themselves are under lighter cognitive load, and thus able
to engage in more steps of reasoning in the first place. That is, players are capable of recognizing that
cognitive load may inhibit the reasoning ability of their opponents, and they respond appropriately.
The observed pattern of behavior reflects an adaptive response that transcends the level-k reasoning
model. Other models, including logit quantal response equilibrium [8,9], noisy introspection [10],
and the dual accumulator model [11], can also account for limited iterated reasoning in guessing
games, and manipulating the precision of logit responses in these models can also affect the depth of
reasoning that an individual exhibits. A behavioral insight affirmed here, and consistent with all of
these models, is that while people are boundedly rational, in that they are not capable of unlimited
iterated reasoning, they do respond sensibly to changes in their opponent’s incentives or constraints.

Guilfoos and Pape [12] in this Special Issue study how strategic behavior changes as players play
a game repeatedly (with new opponents) and get feedback. They econometrically estimate case-based
learning [13], reinforcement learning [14], and self-tuning experience weighted attraction [15], applied to
Selten and Chmura’s [16] dataset of 864 subjects repeatedly playing one of twelve 2 × 2 games.
Case-based learning fits the observed behavior best, and also best predicts out-of-sample choices for a
held-out slice of the data. Comparing the models based on out-of-sample prediction ensures that the
empirical support for case-based learning is not an artifact of model flexibility and overfitting.

Guisasola and Saari [17] in this Special Issue introduce a coordinate system for the full space
of 2 × 2 games that distinguishes changes in payoffs that exclusively affect: (i) the selfish costs and
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benefits of one’s own strategies averaged uniformly across the other player’s strategies (the “individual
preference component”); (ii) the dependence of these selfish costs and benefits on the choice of
the other player’s strategy (the “coordinative pressure component”); (iii) the externality imposed
on the other player by the choice of one’s own strategy (the “pure externality component”); (iv) a
constant level shift of all payoffs (the “kernel component”). The coordinate system is useful for
a number of applications. This paper focuses on applying it to 2 × 2 potential games, including
coordination games and anti-coordination games. Predictions based on individual selfish costs and
benefits, including Nash equilibrium, risk-dominance (equivalently, the global maximum of the
potential function), level-k reasoning, quantal response equilibrium, noisy introspection, and the
dual accumulator model, are invariant to changes in the pure externality component of a game.
However, changes in the pure externality component of the game do affect social welfare. Thus, it is
straightforward to design games that pose a tension between the strategy predicted by any model based
on individual selfish costs and benefits and the strategy that maximizes social welfare. The empirical
fact that people care about social welfare as well as other aspects of the interaction between the
externality component of a game and the individual preference component [18] indicates that any
model of the individual reasoning process needs to be augmented with a model of social preferences to
more fully capture behavior. The decomposition of 2 × 2 games in the coordinate system presented in
this paper could be useful for experimental research by making it easier to independently test models
of individual reasoning and models of social preferences.

Jamison [19] in this Special Issue explores the role of pre-play cheap talk among players
with common knowledge of rationality. Whereas cheap talk is often dismissed as not credible
because it is easily imitated, it may actually be informative when players have partially aligned
incentives [20,21] or social preferences [22], such that, conditional on a statement being interpreted
correctly, an individual wants to make the statement in the first place. In the absence of pre-play
communication, common knowledge of rationality implies that players will choose rationalizable
strategies, but not necessarily successfully coordinate on a Nash equilibrium. Jamison [19] shows
that cheap talk allows rational players to reach (only) efficient Nash equilibria. Understanding
pre-play cheap talk among rational players gives us a benchmark for studying pre-play cheap talk in
laboratory games and in the real world; a context in which players are boundedly rational, may have
incomplete information, and may have uncertainty or biases about each other’s social preferences [23].
These behavioral elements allow communication to be informative in new and interesting ways [24–29].
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Abstract: Can differences in cognitive reflection explain other-regarding behavior? To test this, I use
the three-item Cognitive Reflection Task to classify individuals as intuitive or reflective and correlate
this measure with choices in three games that each subject participates in. The main sample consists
of 236 individuals who completed the dictator game, ultimatum game and a third-party punishment task.
Subjects afterwards completed the three-item Cognitive Reflection Test. Results showed that intuitive
individuals acted more prosocially in all social dilemma tasks. These individuals were more likely to
serve as a norm enforcer and third-party punish a selfish act in the dictator game. Reflective individuals
were found more likely to act consistently in a self-interested manner across the three games.

Keywords: social preferences; third-party punishment; cognitive reflection ability; intuition; reflection;
dictator game; ultimatum game

1. Introduction

Human societies depend on their members acting cooperatively. Social sanctioning is crucial
for the maintenance of cooperative behavior when there exist material incentives to deviate from
collectively desirable behavior, such as benefiting from a public good without bearing the cost of
contributing. Sanctioning behavior can be explained by strong reciprocity, which is defined by
a willingness to sacrifice resources to reward cooperative actions and to punish hostile actions even
when this is costly and provides neither present nor future material rewards for the reciprocator [1,2].
Thus, individuals acting as norm enforcers enable cooperative behavior because of an understanding
and expectation that a deviation will be sanctioned [3]. Social dilemma experiments reveal a great deal
of strong reciprocity. For example, in [4], the majority of subjects were willing to engage in third-party
punishment. That is, they punished a hostile action even though it did not affect their personal earnings.

Is sanctioning a norm violation an intuitive response, or does it take deliberation to sacrifice
resources? To the best of my knowledge this question has not been investigated in the context of
third-party punishment, where there is no indirect benefit from sanctioning through reputation-building
or long-term material incentives from changing the behavior of people one interacts with in the future.

More generally, is cooperative behavior driven by an intuitive response or due to deliberation?
Whether individuals rely on intuition or reflection in social dilemma experiments has been shown to
generate differences in behavior. Applying cognitive reflection tests [5,6], subjects relying on intuition
in decision-making are found to act more prosocially [7–11].

I contribute to this literature by examining whether behavior is consistent across three games and
whether sanctioning the violation of a norm is an intuitive action. Applying a third-party punishment
task, subjects are given the opportunity to, at a personal cost, sanction another subject who kept the
entire endowment to herself in the dictator game.

Studying subjects’ response time has as well been applied to access whether individuals rely on
intuition in decision-making. Results in these studies are, however, not conclusive about whether a

Games 2020, 11, 21; doi:10.3390/g11020021 www.mdpi.com/journal/games5
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faster response time indicate more prosocial [12] or more egoistic [13] behavior. Identifying whether a
choice is intuitive or deliberate from response time suffers from endogeneity issues as various cognitive
processes contribute to response time. When controlling for strength-of-preference, there is no evidence
that one type of choice is systematically faster than the other [14].

According to the Social Heuristic Hypothesis, intuitive individuals behave more prosocially in the
lab because they internalize generally beneficial behavior from daily life that favors cooperative and
fair behavior [15]. In light of this, the employed experimental design in this study investigates how
strong these internalized fairness preferences are.

The purpose of this study is twofold. By having subjects complete the dictator game, the ultimatum
game (both in the role of proposer and recipient) and finally the third-party punishment task the purpose is
first to see if subjects display consistent behavior across games in line with the hypothesis that the “fair”
outcome drives instinctive choices but that it takes deliberation to act selfishly. Secondly, this experiment
investigates for the first time if the instinctive action is to engage in third-party punishment toward a
dictator who kept the entire endowment to herself in the dictator game. The subjects’ tendency to rely on
intuition in decision-making is assessed by Frederick’s three-item Cognitive Reflection Test (CRT) [5].

The sample consists of 295 students at Aarhus University, collected during spring 2019.
The results of this study confirmed, first of all, previous findings that reflective subjects act

more selfishly and in accordance with the economic prediction in the dictator- and ultimatum games.
They transferred less in dictator game, they offerred less as the proposer in the ultimatum game, and they
were more likely to accept a low offer as recipient. Secondly, the experiment extended previous
findings to third-party punishment by showing that the intuitive action was to sanction a norm-violator.
Subjects relying on intuition in decision-making were found more likely to sacrifice resources to
sanction a dictator who kept the entire endowment to herself. Taken together, the results of this
experiment provide evidence that the intuitive action is to engage in “fair” behavior, or to sanction
those not complying with the social norm of fair behavior.

In the following Section 2, I present the experimental design. The hypotheses are presented in
Section 3. Section 4 presents the results of the experiment. Section 5 provides a general discussion of
the findings. Section 6 discusses the limitations of this study. Section 7 concludes.

2. Experimental Design

2.1. Procedures

Subjects were recruited during four lectures in Psychology, Political Science, and Economics at
Aarhus University. Three of these four lectures were for second semester students. The students
were orally encouraged to participate during the break of the course and a link to the survey was
distributed online.

Subjects were incentivized through a lottery scheme. In total, seven subjects were paid on average
DKK 50 (≈$7.5) for completing the experiment and, in pairs, paid according to their choices in the task,
for which they were drawn at random to receive payment. For each the dictator game, ultimatum game,
and third-party punishment task, two subjects received payment. One subject was drawn to get paid for
completing the CRT. For each correct answer on the CRT, one ticket was added to the bowl from where
a subject was drawn. The subject received DKK 100 (≈$15) for completing the CRT.

2.2. Experimental Design

Subjects completed four social dilemma tasks: The dictator game, the ultimatum game with role
uncertainty (i.e., subjects made choices in the role of both the proposer and the recipient) and decided
whether to engage in third-party punishment by choosing if and how much to sacrifice to sanction a
dictator, who kept the entire endowment to herself in the dictator game. After completing the four social
dilemma tasks, subjects continued to the second part of the experiment to complete the three-item CRT.
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Lastly, subjects were to state their gender, line of study and their email address in order to potentially
get paid for participating in the experiment.

In the following, I will present each social dilemma task as well as the three-item CRT.
The experimental instructions are reproduced in Appendix A.

2.2.1. Dictator Game

The first task was a standard dictator game. The subject acting in the role of the dictator was
endowed with DKK 100 and had to decide on how much (in increments of DKK 10) to transfer to
another subject acting as the receiver, with whom she was randomly matched. The receiver had no
decision to make.

2.2.2. Ultimatum Game

For the second and third task, subjects were to make a decision first as proposer and later as
recipient in the ultimatum game. The proposer is endowed with DKK 100 and chooses how much to
offer (in increments of DKK 10) the recipient. The recipient indicates the minimum amount (acceptance
threshold), she is willing to accept (in increments of DKK 10). If the offer is accepted, the proposed
allocation is realized, and if the offer is rejected, both the proposer and the recipient receive nothing.

The strategy method [16] is employed to the recipient’s decision because the sampling procedure
allowed players to enter their choices at different time points. Even though applying the strategy
method was necessary in this case, it is useful in the ultimatum game, since most offers are close to equal
splits which means that there are few rejections, and thereby the actually relevant choices provide little
information regarding the willingness to accept or reject low offers [17].

2.2.3. Third-Party Punishment Task

The fourth and final social dilemma task added a third-party punishment option to the dictator
game. The subject is informed that she has been randomly matched to a pair of other subjects from
the dictator game. One of the other subjects was assigned to the role of the dictator and chose to keep
the entire endowment to herself1. The subject, who must decide on how much (if at all) to punish
the dictator is endowed with DKK 50. For each DKK 1, the third-party punisher sacrifices, the dictator
suffers a reduction in earnings of DKK 5. The third-party punisher must decide on how much to sacrifice
between DKK 0 and DKK 20. By sacrificing DKK 20 of her own endowment, the third-party punisher
can reduce the earnings of the dictator to DKK 0.

2.2.4. Three-Item Cognitive Reflection Test

After having completed the above-mentioned tasks, the subjects proceed to the three-item CRT [5].
The three-item CRT can be found in Appendix B.

The test is used to detect an individual’s proclivity for applying two systems of decision-making:
System 1 and System 2 processes [19]. System 1 is the intuitive “part” of the brain that relies on
heuristics and automaticity. It possesses no computational capacity and is characterized as unconscious.
It is fast, automatic and requires no effort. System 2 is the more analytical and rational system. It is
deliberate and activated when facing complex calculations, different choices and requires the individual
to be focused [20]. The performance on CRT indicates whether an individual is able to overcome
the desire to go with the intuitive (incorrect) answer, reflect further upon the question and reach the,
when explained to, relatively easy correct answer. For example the first question of the CRT: A bat and

1 The experimental design applied actual matching on the subset of subjects who gave DKK 0 in the dictator game. Ex ante it
could be expected that at least one subject would do so, based on previous dictator game experiments (In a meta study [18]
found that 36.11% of all participants chose to give nothing).
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a ball cost $1.10. The bat costs $1.00 more than the ball. How much does the ball cost? ___ cents. Intuitive
Answer: 10 / Correct Answer: 5.

Based on the answers to the CRT I divide subjects into three groups using the categorization
used by [21]: Subjects who answered correctly two or more items on the CRT are categorized as
reflective. Those opting for the intuitive, but wrong answer at least in two of the three items are intuitive.
The subjects who are not categorized as either reflective or intuitive, form the residual group. For precise
details of the categorization, see Appendix C.

3. Hypotheses

Looking to replicate previous findings of fair behavior by individuals relying on intuition in
decision-making and that it takes reflection to pursue a self-interested objective gives three hypotheses
in the dictator- and ultimatum game decisions.

Hypothesis 1. Reflective individuals transfer less in the dictator game compared to intuitive individuals.

Hypothesis 2. Reflective individuals offer less as proposer in the ultimatum game compared to intuitive individuals.

Hypothesis 3. Reflective individuals require a smaller share to accept the offer as ultimatum game recipient
compared to intuitive individuals.

Including both the proposer decision in the ultimatum game and the transfer decision in the
dictator game, it is possible to detect whether strategic considerations drive the ultimatum game offer.
In the dictator game, such strategic considerations are absent, because it is a pure decision problem
without strategic interaction. Expecting the intuitive action to be fair and reflection to lead to rational,
self-interested decisions generates two hypotheses for proposer and dictator behavior.

Hypothesis 4a. Reflective individuals offer more in the ultimatum game relative to their transfer in the dictator game.

Hypothesis 4b. Intuitive individuals do not offer more in the ultimatum game relative to their transfer in the
dictator game.

A main contribution of this study is the investigation of whether the intuitive action is to sanction
those who violated the norm of fair behavior.

Hypothesis 5. Intuitive individuals exhibit a greater willingness to punish a selfish dictator than
reflective individuals.

The other contribution to the existing literature is that this study investigates the behavior across
four social dilemma decisions.

Hypothesis 6. Reflective individuals act consistently more rational and self-interested in the four social dilemma
decisions compared to intuitive individuals.

4. Results

A total of 295 subjects completed the study. The main sample consists of 236 observations,
for which all variables of interest are available. Of the 236 subjects in the main sample, 124 (52.5%)

were male subjects (one subject did not state gender). 214 of the subjects were students at the faculty
of Business and Social Sciences at Aarhus University, which leaves a minority from other faculties.
This is not surprising, because the courses where the study was advertised are available in the faculty
of Business and Social Sciences.
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In each task, a few subjects chose the opposite extreme of strict self-interest (transferring DKK 100
in the dictator game and offering DKK 100 in the ultimatum game and accepting no less than DKK 100
in the ultimatum game). These “outliers” are included in the analysis. Excluding them does not alter
the findings.

4.1. Cognitive Reflection Test Results

On average, the subjects answered 2.1 of the items on the CRT correctly. Of the 236 subjects,
48.7% answered all three items correctly, 24.2% answered two correctly, 14.4% answered one correctly
and 12.7% did not answer any of the three items correctly. 9% of the subjects opted for the intuitive
incorrect answer in all three items, 23.3% chose the intuitive answer in at least two items and 45.8%
chose the intuitive incorrect answer at least once.

The reflective group consists of 172 subjects. The intuitive group consists of 56 subjects. The residual
group consists of 8 subjects. As the residual group consists only of 8 subjects, these are grouped with
the intuitive subjects throughout the statistical analysis. Therefore, the analyses mainly compares those
reflective to those not reflective. The non-reflective group consists therefore of 64 subjects. Excluding the
residual group, and thereby comparing the reflective to the intuitive subjects, does not change conclusions.
(See Appendix D (Tables A1–A6, Figures A1–A5) for a summary of the findings excluding the
residual group).

Men performed better in the CRT by answering an average of 2.3 items correctly compared to
women with an average of 1.84 correct answers. This difference is statistically significant (p = 0.003,
MWU2). The distribution of the answers can be found in Appendix E (Tables A7–A11).

In the following subsections, I will present the results for each of the tasks in the experiment.
A graphical representation of the frequency of decisions consistent with rational, self-interested
behavior by non-reflective (reflective) individuals can found in Figure 1. A more detailed presentation of
decisions in each task can be found in Appendix F (Tables A12–A16, Figures A6–A9).

Figure 1. Frequency of Decision by Non-Reflective (Reflective) Individuals.

2 Mann-Whitney-U: Note that the MWU is a test of differences in distribution.
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4.2. Dictator Behavior

Result 1: Reflective subjects transfer less in the dictator game than intuitive subjects.
Reflective subjects transfer on average less than those not reflective (average transfer of DKK 28.2

and DKK 36.4, respectively). This difference is statistically significant at the 5% significance level
(p = 0.03, MWU).

The average amount transferred to the recipient in the dictator game was DKK 30.4. The modal
transfer was DKK 50, which 44.5% of the subjects chose, whereas 36% of the subjects chose to keep the
entire endowment to themselves.

Transferring 0 DKK to the receiver and thus comply with the prediction from standard economic
theory is more common for the reflective subjects (40.1% chose this versus 25% of the non-reflective).
This difference is statistically significant at the 5% level (p = 0.032, χ2 − test). However, a part of the
difference can be contributed to gender: Males are found significantly more likely to transfer DKK 0 to
the receiver in the dictator game Thus, it appears that acting selfish in the dictator game is independent of
being reflective when controlling for gender. Gender seems to be the significant factor that predicts
behavioral differences (see Table 1).

4.3. Proposer Behavior in the Ultimatum Game

Result 2: Reflective subjects offer less in the ultimatum game than intuitive subjects.
Reflective subjects offer on average less than those not reflective (average offer of DKK 40.9 and

DKK 50.5, respectively). This difference is statistically significant (p = 0.0001, MWU).
The average offer in the ultimatum game was DKK 43.5. The most frequently offered amount was

DKK 50, which 68.6% of the subjects chose.
Of the reflective subjects, 15.7% offered DKK 10. Only one subject (1.8%) from the intuitive group

offered DKK 10.
Distinguishing whether the recipient accepts or rejects an offer when indifferent, both offers of

DKK 0 and DKK 10 can be considered consistent with rational and strictly self-interested behavior.
16.9% of the reflective subjects chose either of these offers as opposed to 3.1% of the non-reflective.
This difference is statistically significant (p = 0.005, χ2 − test).

When controlling for gender, reflective subjects are estimated to be 12.6%-points more likely than
non-reflective subjects to offer DKK 0 or DKK 10 in the ultimatum game. Reflective subjects are predicted
to choose such an offer with a probability of 16.2% as opposed to a predicted probability of 3.6% for
those non-reflective (see Table 1).

4.4. Recipient Behavior in the Ultimatum Game

Result 3: Reflective subjects are willing to accept lower offers in the ultimatum game than intuitive subjects.
Reflective subjects have on average a lower acceptance threshold relative to those not reflective

(average threshold of DKK 27.8 and DKK 33.9, respectively). This difference is statistically significant
at the 5% significance level (p = 0.032, MWU).

The average acceptance threshold was DKK 29.45. The modal acceptance threshold was DKK 10
and was chosen by 32.2% of the subjects whereas DKK 50 (requiring an equal split) was chosen by
29.7% of the subjects.

For the reflective subjects, the modal acceptance threshold was DKK 10, which was chosen by
36.6% in this category as opposed to 21.4% in the intuitive category. The modal acceptance threshold
for the intuitive subjects was DKK 50, which was chosen by 37.5% in this category as opposed to 25%
in the reflective category.

Both an acceptance threshold of DKK 0 or DKK 10 can be considered the rational, self-interested
choice. 42.4% of the reflective subjects chose one of these thresholds as opposed to 29.7% of the
non-reflective subjects. This difference is statistically significant at the 10% significance level (p = 0.074,
χ2 − test). When controlling for gender, reflective subjects are estimated to be 11.4%-points more likely,
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compared to non-reflective subjects, to choose an acceptance threshold of DKK 0 or DKK 10 as recipient
in the ultimatum game. Reflective subjects are predicted to choose such an acceptance threshold with a
probability of 42.2% as opposed to a predicted probability of 30.8% for those non-reflective (see Table 1).

4.5. Dictator/Proposer Comparison

Result 4: Both reflective and intuitive subjects increase their offer in the ultimatum games relative to their
transfer in the dictator game.

Across all subjects, the average transfer in the dictator game was DKK 30.4 and the average offer in
the ultimatum game was DKK 43.5. Applying a Wilcoxon Sign Rank test, these means are significantly
different (p < 0.001). Applying the test when distinguishing between reflective and intuitive subjects
yields the same conclusion (p′s < 0.001). Thus, both the reflective and intuitive subjects increase their
offer in the ultimatum game relative to their transfer in the dictator game.

More than half of the subjects (50.4%) chose to increase their offer in the ultimatum game compared
to their transfer in the dictator game—exhibiting strategic fairness. 52.9% of the reflective and 43.8% of
the non-reflective subjects opted for this decision. This difference is not statistically significant (p > 0.21,
χ2 − test).

When controlling for gender, reflective subjects are estimated to be 4%-points more likely to exhibit
strategic fairness than non-reflective subjects. However, the effect is not statistically significant. Reflective
subjects are predicted to exhibit strategic fairness with a probability of 51.3% as opposed to a predicted
probability of 47.3% for those non-reflective (see Table 1).

4.6. Third-Party Punishment Behavior

Result 5: Intuitive subjects are more likely to punish a selfish dictator than reflective subjects.
Of the 236 subjects, 105 chose to punish the dictator, who kept the entire endowment to herself.

The average amount sacrificed was DKK 4.8 which implies that a selfish dictator, on average, had her
income reduced by DKK 24. The modal amount sacrificed was DKK 0, which 55.5% of the subjects
chose. 10.2% of the subjects chose to reduce the earnings of the selfish dictator to DKK 0 by sacrificing
DKK 20 of their endowment. 15.3% of the subjects chose to reduce the dictator’s earnings by DKK 50
leaving the dictator with half of her initial endowment.

57.1% of the intuitive subjects chose to punish as opposed to 39% of the reflective subjects.
This difference is statistically significant (p = 0.017, χ2 − test). The reflective subjects sacrificed,
on average, DKK 3.97 as opposed to DKK 6.69 sacrificed by intuitive subjects. This difference is
statistically significant (p < 0.01, MWU). Comparing the reflective subjects to those not reflective yields
the same conclusion.

Considering only the subjects who opted for the opportunity to punish the selfish dictator,
the intuitive subjects sacrificed, on average, DKK 11.7 as opposed to DKK 10.2 by the reflective subjects.
This difference is not statistically significant (p > 0.32, MWU).

When controlling for gender, reflective subjects are estimated to be 20.1%-points more likely to
not punish the dictator than non-reflective subjects. Reflective subjects are predicted to not engage in
third-party punishment with a probability of 61.2% as opposed to a predicted probability of 41.1% for
those non-reflective (see Table 1).

4.7. Consistency in Choices

Result 6: Reflective subjects are more likely to act consistently and in line with rational, self-interested
behavior across all social dilemma tasks compared to intuitive subjects.

A rather clear prediction for rational, self-interested behavior exists for the dictator game, recipient’s
acceptance threshold in the ultimatum game, and the third-party punishment task. However, the decision
as proposer in the ultimatum game is rather difficult to classify as expectations for the decision of the
recipient matter. Thus, any offer can be considered rational, self-interested if that is the lowest amount
the proposer expects to be accepted.
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Due to the ambiguity in what constitutes rational, self-interested behavior in the ultimatum game
proposer decision, I will consider offering DKK 0 or DKK 10 and strategic fairness separately.

First I consider whether reflective subjects are more likely to transfer DKK 0 in dictator game,
offer DKK 0 or DKK 10 as proposer in the ultimatum game, acceptance threshold of DKK 0 or DKK
10 as recipient in the ultimatum game and not opting for the punishment opportunity in the third-party
punishment task.

13.4% of the reflective subjects complied with the above-mentioned as opposed to 1.6% of those
not reflective. This difference is statistically significant (p = 0.008, χ2 − test). When controlling for
gender, reflective individuals are predicted to be 10.8%-points more likely than non-reflective subjects
to choose as described in these tasks. Reflective subjects are predicted to choose as described with a
probability of 12.7% as opposed to a predicted probability of 1.9% for those non-reflective (see Table 1).

A rational, self-interested individual could, as proposer in the ultimatum game, offer any share to
the recipient if this is what the proposer believes to be the lowest amount to be accepted. However, in the
dictator game there is no scope for such strategic considerations why a rational, self-interested individual
would offer more as proposer in the ultimatum game relative to the transfer in dictator game. Considering
whether reflective subjects are more likely to transfer DKK 0 in dictator game, have an acceptance threshold
of DKK 0 or DKK 10 in the ultimatum game, exhibit strategic fairness as proposer in the ultimatum game
and not opting for the punishment opportunity in the third-party punishment task, I find this to be the
case. 20.9% of the reflective subjects complied with the above-mentioned as opposed to 6.3% of those not
reflective. This difference is statistically significant (p = 0.008, χ2 − test). When controlling for gender,
reflective subjects are predicted to be 12.2%-points more likely than non-reflective subjects to choose as
described in these tasks. Reflective subjects are predicted to choose as described with a probability of 19.8%
as opposed to a predicted probability of 7.6% for those non-reflective (see Table 1).

Table 1. Marginal effects from Logistic regressions.

(1) (2) (3) (4) (5) (6) (7)
VARIABLES A B C D E F G

1.Reflective 0.098 0.126 *** 0.114 0.040 0.201 *** 0.108 *** 0.122 **
(0.069) (0.037) (0.071) (0.074) (0.074) (0.032) (0.048)

1.Male 0.233 *** 0.091 ** 0.072 0.210 *** 0.029 0.089 ** 0.165 ***
(0.062) (0.042) (0.065) (0.065) (0.065) (0.038) (0.048)

Observations 235 235 235 235 235 235 235

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. A: Dictator Game transfer = 0, B: Ultimatum
Game offer = 0 or = 10, C: Ultimatum Game acceptance threshold = 0 or = 10, D: Strategic fairness; Ultimatum
Game offer greater than Dictator Game transfer, E: Punishment sacrifice = 0, F: Compliance with A; B; C; E, G:
Compliance with A; C; D; E.

5. Discussion

In line with several other studies, this study found more rational, self-interested behavior among
more reflective individuals and more prosocial behavior among intuitive individuals. Further, this study
found the more prosocial behavior among intuitive individuals to carry over to the third-party
punishment task, where these individuals were found more likely to sanction a selfish act. A contribution
of the present study was that subjects were to complete multiple social dilemma task, which allows to
investigate the consistency across choices. In this aspect, reflective individuals were found more likely
to act rationally in accordance with their self-interest across all four decisions.

Intuitive subjects give more in the dictator game, which is consistent with the findings of [7].
Transferring a positive amount to the receiver in the dictator game could be interpreted as altruistic
preferences [2]. However, the findings of more rational and self-interested behavior by reflective subjects
should be interpreted carefully, as gender seems to be the significant factor that drives differences in
behavior in the dictator game. This is consistent with the findings of women giving more in a meta
study on the experiments testing for gender differences [18].
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In the ultimatum game, reflective subjects offered less than those not reflective. The decision of the
proposer can be explained either by a “taste for fairness” or a “fear of rejection” (or a combination
of these motives) [22]. Including the dictator game allows the inference with which motive matters
for which group. However, the results indicate that both groups seem to act on a “fear of rejection”.
These findings contradict the findings of difference in transfer/offer being driven mostly by reflective
individuals [10]. Even though “strategic fairness” appears to exist among both groups, the offers of the
intuitive individuals are larger than those of the reflective. Thus, intuitive individuals appear to expect
their offers in the ultimatum game to more likely be rejected. This is consistent with the consensus
effect [23]. Intuitive individuals require a larger amount to accept an offer themselves.

Reflective subjects are more likely to accept offers in the ultimatum game, which confirms the
findings of [8,9]. In those studies, the “strategy method” was not applied to the recipient’s decision.
Thus, reflective individuals exhibit a greater willingness to accept an unfair ultimatum game offer even
when they are not directly faced with and possibly offended by the offer. Whether or not the strategic
version of the ultimatum game induces lower acceptance thresholds is to some degree addressed in [24].
In this study, besides from playing the extensive form of the game, the subjects were required to state
the minimum offer she would be willing accept. They found a significant negative correlation between
the acceptance threshold and proposed offer which can be interpreted in light of reflective behavior.
These individuals understand the bargaining position of the game as well as the risk of being rejected.
Considering “negative reciprocity” as the motive for rejecting unfair offers in the ultimatum game,
reflective individuals are more capable of overcoming their intuitive desire to punish the selfish act by
the proposer. The willingness to accept an unfair offer is related to the ability to reflect further upon the
decision and realize that accepting the offer is the better option.

Intuitive subjects are more likely to engage in third-party punishment and reflective subjects appear
again more likely to act rational and self-interested. Thus, intuitive individuals are interpreted to be
more likely to act reciprocally.

6. Limitations

Some factors related to the experimental design may have influenced how subjects behaved.
As the link to the survey were distributed at lectures encouraging students to participate, it is

unknown when, where and possibly with whom the subjects completed the survey. Hence, there is
concerns regarding their anonymity. Considering the relatively high share of correct answers in the
CRT, one could expect subjects to have communicated with each other or have accessed the internet
to look up the correct answer. Further, the chances of receiving payment for completing the CRT
depended on the number of correct answers, which might have further incentivized subjects to look up
the correct answer - at least incentivized them to think more carefully about the question, which was
unintended. These limitations question whether the categorization of subjects is reliable. A reasonable
explanation for the relatively high share of correct answers on the CRT in this study is the test’s
correlation with math abilities [5]. The vast majority of subjects were students of Economics, Political
Science or Psychology. Especially students of Economics are expected to be relatively more capable of
math. The survey questions did not elicit from which education the subjects were enrolled.

Only seven of the 295 subjects who completed the study received payment, providing only weak
incentives. However, the observations here fit rather well the observations from other studies with
stronger economic incentives. In a meta study, the average transfer was found to be 28% of the
endowment [18], which is not far from 30.4% observed in this study. In a meta study on the ultimatum
game, subjects were found to offer 40% of the endowment on average [17], which is comparable to the
43.5% observed here.

Further, around 20% of the subjects who started completing the survey opted out before the final
question. Not being able to control the condition under which the survey was completed increases the
probability of subjects sabotaging the experiment by choosing randomly or not reading through the
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instructions thoroughly. However, including or excluding the “outliers” of the present study did not
change results.

7. Concluding Remarks

Reflective individuals are more likely to act rational and self-interested in social dilemma tasks and
intuitive individuals are more likely to bring their internalized cooperative and fair behavior to the lab.
Acknowledging that individuals differ in their cognitive reflection ability entails greater prediction
and description of decision making. Intuitive individuals are more likely to act as a strong reciprocator
and do not tolerate selfish deviations for material incentives. Explaining the intuitive decision in
the lab by the Social Heuristic Hypothesis insights are gained regarding how society maintains the
cooperative and fair behavior and could shed light on cultural differences. A topic for future research
is to investigate whether the intuitive behavior is prosocial across cultures. Future research could
differentiate the perspectives further to predict decision making with greater precision and understand
the behavioral differences in more detail.
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Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Survey Instructions

Q1: I would really appreciate your help in collecting data for my bachelor thesis. Completing this
survey will only take a few minutes and you will have the chance to earn up to DKK 400 by answering
seven survey questions. I will randomly draw 7 participants, who will get paid according to their
choices. This will be explained in the survey. My name is Markus Seier and I am studying Economics.
Your participation is voluntary. I will analyze the data in anonymous format. The email address that
you can provide at the end of the survey will only be used to contact you in case you are among the
participants drawn to receive a payment. Payments will be made by mobile pay. I will delete the email
address as soon as payments are completed.

Q2: First, you complete four tasks regarding “division of money”. Your decisions in these tasks
determine your earnings if you are randomly drawn to be paid for answering this survey. If you are
drawn to be paid for a particular question, you are paid according to your choices and the choices of
the other participants with whom you are randomly matched. You can be drawn to be paid for multiple
questions. After completing the four above-mentioned tasks, you proceed to the second part of this
survey with three short questions. Lastly, you are to indicate your gender, at which faculty you study and
provide your email address if you want to have a chance of getting paid up to DKK 400. Please continue
to the next page where you are to complete four different tasks regarding division of money.

Q3: You are matched with another participant of this survey. You are given DKK 100 and must
decide on how much to offer the other participant. You act as the “proposer”. You earn DKK 100
subtracted what you have offered and the other participant earns what you have offered him/her.
How much do you give to the other participant? Remember that you and the other participant will
actually be paid according to your decisions if the computer draws your names.

• DKK 0 (That is: You get DKK 100. The other gets DKK 0.)
• DKK 10 (That is: You get DKK 90. The other gets DKK 10.)
• DKK 20 (That is: You get DKK 80. The other gets DKK 20.)
• DKK 30 (That is: You get DKK 70. The other gets DKK 30.)
• DKK 40 (That is: You get DKK 60. The other gets DKK 40.)
• DKK 50 (That is: You get DKK 50. The other gets DKK 50.)
• DKK 60 (That is: You get DKK 40. The other gets DKK 60.)
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• DKK 70 (That is: You get DKK 30. The other gets DKK 70.)
• DKK 80 (That is: You get DKK 20. The other gets DKK 80.)
• DKK 90 (That is: You get DKK 10. The other gets DKK 90.)
• DKK 100 (That is: You get DKK 0. The other gets DKK 100.)

Q4: You are matched with another participant of this survey. You are given DKK 100 and must
decide on how much to offer the other participant. If the other participant accepts your offer, you earn
DKK 100 subtracted what you have offered and the other participant earns what you have offered
him/her. If the other participant rejects your offer, you both earn DKK 0. How much do your offer the
other participant? Remember that you and the other participant will actually be paid according to
your decisions if the computer draws your names.

• DKK 0 (That is: You get DKK 100, The other gets DKK 0 if the offer is accepted. Otherwise,
you both get DKK 0.)

• DKK 10 (That is: You get DKK 90, The other gets DKK 10 if the offer is accepted. Otherwise,
you both get DKK 0.)

• DKK 20 (That is: You get DKK 80, The other gets DKK 20 if the offer is accepted. Otherwise,
you both get DKK 0.)

• DKK 30 (That is: You get DKK 70, The other gets DKK 30 if the offer is accepted. Otherwise,
you both get DKK 0.)

• DKK 40 (That is: You get DKK 60, The other gets DKK 40 if the offer is accepted. Otherwise,
you both get DKK 0.)

• DKK 50 (That is: You get DKK 50, The other gets DKK 50 if the offer is accepted. Otherwise,
you both get DKK 0.)

• DKK 60 (That is: You get DKK 40, The other gets DKK 60 if the offer is accepted. Otherwise,
you both get DKK 0.)

• DKK 70 (That is: You get DKK 30, The other gets DKK 70 if the offer is accepted. Otherwise,
you both get DKK 0.)

• DKK 80 (That is: You get DKK 10, The other gets DKK 80 if the offer is accepted. Otherwise,
you both get DKK 0.)

• DKK 90 (That is: You get DKK 10, The other gets DKK 90 if the offer is accepted. Otherwise,
you both get DKK 0.)

• DKK 100 (That is: You get DKK 0, The other gets DKK 100 if the offer is accepted. Otherwise,
you both get DKK 0.)

Q5: You must now decide whether to accept or reject an offer from another participant. The other
participant is given DKK 100 and must decide on how much to offer you. If you accept, you earn what
the other participant offered you and the other participant earns DKK 100 subtracted what he/she
offered you. If you reject, you both earn DKK 0. What is the minimum offer, you are willing to accept?
Remember that you and the other participant will actually be paid according to your decisions if the
computer draws your names.

• DKK 0
• DKK 10
• DKK 20
• DKK 30
• DKK 40
• DKK 50
• DKK 60
• DKK 70
• DKK 80
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• DKK 90
• DKK 100

Q6: I will randomly draw a pair of participants, from the first question, were the participant
endowed with DKK 100 (the “proposer”) chose to give DKK 0 and keep the DKK 100 for him/herself.
You are given DKK 50 and can reduce the earnings of the proposer who chose to keep the DKK 100 for
him/herself. You can reduce the earnings of the proposer by DKK 5 by giving up DKK 1 of your own
earnings. That is, if you give up DKK X of your own earnings, you reduce the earnings of the proposer
by DKK 5*X. How much of your own earnings are you willing to give up to reduce the earnings of
the proposer? Remember that you and the other participant will actually be paid according to your
decisions if the computer draws your names.

• DKK 0 (Reduce the earnings of the proposer by DKK 0)
• DKK 1 (Reduce the earnings of the proposer by DKK 5)
• DKK 2 (Reduce the earnings of the proposer by DKK 10)
• DKK 3 (Reduce the earnings of the proposer by DKK 15)
• DKK 4 (Reduce the earnings of the proposer by DKK 20)
• DKK 5 (Reduce the earnings of the proposer by DKK 25)
• DKK 6 (Reduce the earnings of the proposer by DKK 30)
• DKK 7 (Reduce the earnings of the proposer by DKK 35)
• DKK 8 (Reduce the earnings of the proposer by DKK 40)
• DKK 9 (Reduce the earnings of the proposer by DKK 45)
• DKK 10 (Reduce the earnings of the proposer by DKK 50)
• DKK 11 (Reduce the earnings of the proposer by DKK 55)
• DKK 12 (Reduce the earnings of the proposer by DKK 60)
• DKK 13 (Reduce the earnings of the proposer by DKK 65)
• DKK 14 (Reduce the earnings of the proposer by DKK 70)
• DKK 15 (Reduce the earnings of the proposer by DKK 75)
• DKK 16 (Reduce the earnings of the proposer by DKK 80)
• DKK 17 (Reduce the earnings of the proposer by DKK 85)
• DKK 18 (Reduce the earnings of the proposer by DKK 90)
• DKK 19 (Reduce the earnings of the proposer by DKK 95)
• DKK 20 (Reduce the earnings of the proposer by DKK 100)

You have now completed the first part of the survey. The next part consists of three questions,
where you are to write your answer in the box below the question. Your chances of getting paid for
this part depend on how many questions you answer correctly. For each correct answer, one lottery
ticket with your name will be added to the pool from which the computer will draw one participant,
who will be paid DKK 100.

Q7: A bat and a ball cost $1.10. The bat costs $1.00 more than the ball. How much does the ball
cost? (Write your answer in cents) Remember, a correct answer increases your chances of getting paid
DKK 100.

Q8: If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines
to make 100 widgets? (Write your answer in minutes) Remember, a correct answer increases your
chances of getting paid DKK 100.

Q9: In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes
48 days for the patch to cover the entire lake, how long would it take for the patch to cover half of the
lake? (Write your answer in days) Remember, a correct answer increases your chances of getting paid
DKK 100.

Q10: Please indicate your gender.
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• Male
• Female

Q11: At which faculty do you study?

• Arts
• Health
• Science & Technology
• BSS

Q12: Please write your email-address (studynumber@post.au.dk) The email address is to pay a
participant who is drawn to receive his/her earnings in the survey. You are not required to provide
your email address, but you cannot get paid if you do not.

Thank you for participating. You will be notified by email if you are drawn to be paid.

Appendix B. Cognitive Reflection Test

1. A bat and a ball cost $1.10. The bat costs $1.00 more than the ball. How much does the ball cost?
___ cents. Intuitive Answer: 10 / Correct Answer: 5.

2. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make
100 widgets? _____ minutes. Intuitive Answer: 100 / Correct Answer: 5.

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days
for the patch to cover the entire lake, how long would it take for the patch to cover half of the
lake?_____ days. Intuitive Answer: 24 / Correct Answer: 47.

Appendix C. Cognitive Reflection Test Categorization

Intuitive

{
= 1 i f Q1 = 10 & Q2 = 100 or Q1 = 10 & Q3 = 24 or Q2 = 100 & Q3 = 24

= 0 Otherwise

Re f lective

{
= 1 i f Q1 = 5 & Q2 = 5 or Q1 = 5 & Q3 = 47 or Q2 = 5 & Q3 = 47

= 0 Otherwise

Residual

{
= 1 i f Intuitive = 0 & Re f lective = 0

= 0 Otherwise
.

Appendix D. Results Excluding the Residual Group

Appendix D.1. Rational and Self-Interested Behavior

A graphical representation of decisions consistent with rational, self-interested behavior by
intuitive (reflective) individuals can be found in Figure A1.
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Figure A1. Frequency of Decision by Intuitive (Reflective) Individuals.

Appendix D.2. Transfer in the Dictator Game

The distribution of the dictator game transfer can be found in Table A1 and is illustrated in Figure A2.

Table A1. Frequency of Dictator Game Transfer by Intuitive (Reflective) Individuals.

Dictator Game Transfer Intuitive Reflective Total

Transfer = 0 26.6% 40.12% 36.84%

Transfer = 10 1.8% 1.16% 1.32%

Transfer = 20 3.57% 4.65% 4.39%

Transfer = 30 3.57% 2.91% 3.07%

Transfer = 40 8.93% 5.81% 6.58%

Transfer = 50 48.21% 41.86% 43.42%

Transfer = 60 1.79% 1.16% 1.32%

Transfer = 70 0% 0% 0%

Transfer = 80 1.79% 0% 0.44%

Transfer = 90 0% 0% 0%

Transfer = 100 3.57% 2.33% 2.63%
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Figure A2. Frequency of Transfer by Intuitive (Reflective) Individuals.

Appendix D.3. Proposer Behavior in the Ultimatum Game

The distribution of the proposer decision in the ultimatum game can be found in Table A2 and is
illustrated in Figure A3.

Table A2. Frequency of Ultimatum Game Offer by Intuitive (Reflective) Individuals.

Ultimatum Game Offer Intuitive Reflective Total

Offer = 0 1.79% 1.16% 1.32%

Offer = 10 1.79% 15.70% 12.28%

Offer = 20 0% 4.07% 3.07%

Offer = 30 1.79% 4.65% 3.95%

Offer = 40 3.57% 7.56% 6.58%

Offer = 50 82.14% 63.37% 67.98%

Offer = 60 3.57% 2.33% 2.63%

Offer = 70 0% 0% 0%

Offer = 80 0% 0.58% 0.44%

Offer = 90 0% 0% 0%

Offer = 100 5.36% 0.58% 1.75%
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Figure A3. Frequency of Ultimatum Game Offer by Intuitive (Reflective) Individuals.

Appendix D.4. Recipient Behavior in the Ultimatum Game

The distribution of the recipient decision in the ultimatum game can be found in Table A3 and is
illustrated in Figure A4.

Table A3. Frequency of Ultimatum Game Acceptance Threshold by Intuitive (Reflective) Individuals.

Ultimatum Game Acceptance Threshold Intuitive Reflective Total

Threshold = 0 10.71% 5.81% 7.02%

Threshold = 10 21.42% 36.63% 32.89%

Threshold = 20 1.79% 5.23% 4.39%

Threshold = 30 10.71% 9.30% 9.65%

Threshold = 40 16.07% 16.86% 16.67%

Threshold = 50 37.50% 25.00% 28.07%

Threshold = 60 0% 0% 0%

Threshold = 70 0% 0% 0%

Threshold = 80 0% 0% 0%

Threshold = 90 0% 1.16% 0.88%

Threshold = 100 1.79% 0% 0.44%
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Figure A4. Frequency of Ultimatum Game Acceptance Threshold by Intuitive (Reflective) Individuals.

Appendix D.5. Third-Party Punishment Behavior

The distribution of the third-party punishment decision can be found in Table A4 and is illustrated
in Figure A5.

Table A4. Frequency of Punishment Sacrifice by Intuitive (Reflective) Individuals.

Punishment Sacrifice Intuitive Reflective Total

Sacrifice = 0 42.86% 61.05% 56.58%

Sacrifice = 1 0% 1.74% 1.32%

Sacrifice = 2 1.79% 0.58% 0.88%

Sacrifice = 3 1.79% 1.16% 1.32%

Sacrifice = 4 3.57% 1.16% 1.75%

Sacrifice = 5 8.93% 6.40% 7.02%

Sacrifice = 6 0% 1.16% 0.88%

Sacrifice = 7 0% 0.58% 0.44%

Sacrifice = 8 0% 1.16% 0.88%

Sacrifice = 9 0% 0% 0%

Sacrifice = 10 19.64% 13.95% 15.35%

Sacrifice = 11 0% 0.58% 0.44%

Sacrifice = 12 1.79% 1.16% 1.32%

Sacrifice = 13 0% 1.16% 0.88%

Sacrifice = 14 0% 0% 0%

Sacrifice = 15 1.79% 0.58% 0.88%

Sacrifice = 16 0% 0% 0%

Sacrifice = 17 0% 0.58% 0.44%

Sacrifice = 18 0% 0% 0%

Sacrifice = 19 0% 0% 0%

Sacrifice = 20 17.86% 6.98% 9.65%
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Figure A5. Frequency of Punishments Sacrifice by Intuitive (Reflective) Individuals.

Appendix D.6. Behavioral Differences between Intuitive and Reflective Individuals (Excluding Residual Group)

In Table A5 an overview of the results when excluding the residual group can be found.
This include means of the different tasks as well as p-values from the statistical tests. A table with the
marginal effects from logistic regressions can be found in Table A6. Excluding the residual group from
the analyses and comparing those categorized as reflective only with those categorized as intuitive does
not change much in the conclusions. Most notable differences are in terms of statistical significant
in the MWU distribution tests and the contingency-table χ2 tests where the p-values are greater for
almost all of the tasks. The logistic regressions excluding the residual group reveal a very similar
pattern in terms of statistical significant and interpretation of marginal effects.

Table A5. Results Excluding the Residual Group by Intuitive (Reflective) Individuals.

Intuitive Reflective Combined MWU or χ2 (p-Value)

Dictator Game Transfer (mean) 35.7 28.2 30 0.074

A: Dictator Game Transfer = 0 (freq.) 26.8% 40.1% 36.8% 0.072

Ultimatum Game Offer (mean) 50.78 40.9 43.3 0.000

B: Ultimatum Game Offer =
0 ∨ 10 (freq.)

3.57% 16.9% 13.7% 0.012

Ultimatum Game Acceptance
Threshold (mean)

32.7 27.8 29 0.127

C: Ultimatum Game Acceptance
Threshold = 0 ∨ 10 (freq.)

32.1% 42.4% 39.9% 0.172

D: Strategic Fairness (Dictator Game
Transfer > Ultimatum Game

Offer) (freq.)

46.4% 52.9% 51.3% 0.400

Punishment Sacrifice (mean) 6.7 4 4.6 0.010

E: Punishment Sacrifice = 0 (freq.) 42.9% 61.1% 56.6% 0.017

Compliance with A, B, C & E 1.8% 13.4% 10.5% 0.014

Compliance with A, C, D & E 7.14% 20.9% 17.5% 0.018
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Table A6. Marginal effects from Logistic regressions.

(1) (2) (3) (4) (5) (6) (7)
VARIABLES A B C D E F G

1.Reflective 0.081 0.123 *** 0.090 0.014 0.177 ** 0.107 *** 0.114 **
(0.072) (0.040) (0.075) (0.076) (0.078) (0.033) (0.051)

1.Male 0.242 *** 0.094 ** 0.076 0.222 *** 0.036 0.092 ** 0.169 ***
(0.063) (0.043) (0.066) (0.066) (0.067) (0.039) (0.049)

Observations 227 227 227 227 227 227 227

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. A: Dictator Game transfer = 0, B: Ultimatum
Game offer = 0 or = 10, C: Ultimatum Game acceptance threshold = 0 or = 10, D: Strategic fairness; Ultimatum
Game offer greater than Dictator Game transfer, E: Punishment sacrifice = 0, F: Compliance with A; B; C; E, G:
Compliance with A; C; D; E.

Appendix E. Cognitive Reflection Test Results

The distribution of answers on the CRT for both men and women can be found in Table A7,
for men alone in Table A8 and for women in Table A9.

Table A7. Distribution of Answers on the CRT for Both Men and Women.

Question/Answer Correct Intuitive Other

1: Bat and Ball 58% 39% 3%

2: Widget 69% 25% 6%

3: Lily Pads 82% 15% 3%

Table A8. Distribution of Answers on the CRT for Men Alone.

Question/Answer Correct Intuitive Other

1: Bat and Ball 65% 31% 3%

2: Widget 77% 20% 3%

3: Lily Pads 89% 10% 1%

Table A9. Distribution of Answers on the CRT for Women Alone.

Question/Answer Correct Intuitive Other

1: Bat and Ball 50% 48% 2%

2: Widget 60% 30% 10%

3: Lily Pads 74% 21% 5%

The distribution of the number of correct answers on the CRT by gender and in total can be found
in Table A10 and the distribution of the number of intuitive, wrong answers can be found in Table A11.

Table A10. Distribution of Number of Correct Answers on the CRT by Gender.

Gender/Number of
Correct Answers

0 Correct
Answers

1 Correct
Answer

2 Correct
Answers

3 Correct
Answers

Men 5% 13% 27% 55%

Women 21% 16% 22% 41%

Men & Women 13% 14% 24% 49%
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Table A11. Distribution of Number of Intuitive Answers on the CRT by Gender.

Gender/Number of
Intuitive Answers

0 Intuitive
Answers

1 Intuitive
Answer

2 Intuitive
Answers

3 Intuitive
Answers

Men 60% 23% 12% 5%

Women 47% 22% 18% 13%

Men & Women 54% 22% 15% 9%

Appendix F. Additional Tables and Histograms of Choices by Non-Reflective (Reflective) Individuals

Appendix F.1. Transfer in the Dictator Game

The distribution of the dictator game transfer can be found in Table A12 and is illustrated in
Figure A6.

Table A12. Frequency of Dictator Game Transfer by Non-Reflective (Reflective) Individuals.

Dictator Game Transfer Non-Reflective Reflective Total

Transfer = 0 25% 40.12% 36.02%

Transfer = 10 1.56% 1.16% 1.27%

Transfer = 20 3.12% 4.65% 4.24%

Transfer = 30 4.69% 2.91% 3.39%

Transfer = 40 7.81% 5.81% 6.36%

Transfer = 50 51.56% 41.86% 44.49%

Transfer = 60 1.56% 1.16% 1.27%

Transfer = 70 0% 0% 0%

Transfer = 80 1.56% 0% 0.42%

Transfer = 90 0% 0% 0%

Transfer = 100 3.12% 2.33% 2.54%

Figure A6. Frequency of Transfer by Non-Reflective (Reflective) Individuals.
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Appendix F.2. Proposer Behavior in the Ultimatum Game

The distribution of the proposer decision in the ultimatum game can be found in Table A13 and is
illustrated in Figure A7.

Table A13. Frequency of Ultimatum Game Offer by Non-Reflective (Reflective) Individuals.

Ultimatum Game Offer Non-Reflective Reflective Total

Offer = 0 1.56% 1.16% 1.27%

Offer = 10 1.56% 15.70% 11.86%

Offer = 20 0% 4.07% 2.97%

Offer = 30 1.56% 4.65% 3.81%

Offer = 40 4.69% 7.56% 6.78%

Offer = 50 82.81% 63.37% 68.64%

Offer = 60 3.12% 2.33% 2.54%

Offer = 70 0% 0% 0%

Offer = 80 0% 0.58% 0.42%

Offer = 90 0% 0% 0%

Offer = 100 4.69% 0.58% 1.69%

Figure A7. Frequency of Ultimatum Game Offer by Non-Reflective (Reflective) Individuals.

Appendix F.3. Recipient Behavior in the Ultimatum Game

The distribution of the recipient decision in the ultimatum game can be found in Table A14 and is
illustrated in Figure A8.
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Table A14. Frequency of Ultimatum Game Acceptance Threshold by Non-Reflective (Reflective) Individuals.

Ultimatum Game Acceptance Threshold Non-Reflective Reflective Total

Threshold = 0 9.38% 5.81% 6.78%

Threshold= 10 20.31% 36.63% 32.20%

Threshold= 20 1.56% 5.23% 4.24%

Threshold= 30 10.94% 9.30% 9.75%

Threshold= 40 14.06% 16.86% 16.10%

Threshold= 50 42.19% 25.00% 29.66%

Threshold= 60 0% 0% 0%

Threshold= 70 0% 0% 0%

Threshold= 80 0% 0% 0%

Threshold= 90 0% 1.16% 0.85%

Threshold= 100 1.56% 0% 0.42%

Figure A8. Frequency of Ultimatum Game Acceptance Threshold by Non-Reflective (Reflective) Individuals.

Appendix F.4. Third-Party Punishment Behavior

The distribution of the third-party punishment decision can be found in Table A15 and is illustrated
in Figure A9.
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Table A15. Frequency of Punishment Sacrifice by Non-Reflective (Reflective) Individuals.

Punishment Sacrifice Non-Reflective Reflective Total

Sacrifice = 0 40.62% 61.05% 55.51%

Sacrifice = 1 0% 1.74% 1.27%

Sacrifice = 2 1.56% 0.58% 0.85%

Sacrifice = 3 1.56% 1.16% 1.27%

Sacrifice = 4 4.69% 1.16% 2.12%

Sacrifice = 5 7.81% 6.40% 6.78%

Sacrifice = 6 0% 1.16% 0.85%

Sacrifice = 7 0% 0.58% 0.42%

Sacrifice = 8 0% 1.16% 0.85%

Sacrifice = 9 0% 0% 0%

Sacrifice = 10 18.75% 13.95% 15.25%

Sacrifice = 11 1.56% 0.58% 0.85%

Sacrifice = 12 3.12% 1.16% 1.69%

Sacrifice = 13 0% 1.16% 0.85%

Sacrifice = 14 0% 0% 0%

Sacrifice = 15 1.56% 0.58% 0.85%

Sacrifice = 16 0% 0% 0%

Sacrifice = 17 0% 0.58% 0.42%

Sacrifice = 18 0% 0% 0%

Sacrifice = 19 0% 0% 0%

Sacrifice = 20 18.75% 6.98% 10.17%

Figure A9. Frequency of Punishment Sacrifice by Non-Reflective (Reflective) Individuals

Appendix F.5. Behavioral Differences between Non-Reflective and Reflective Individuals

In Table A16 an overview of the results comparing non-reflective and reflective individuals can
be found.
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Table A16. Results by Non-Reflective (Reflective) Individuals.

Non-Reflective Reflective Combined MWU or χ2 (p-Value)

Dictator Game Transfer (mean) 36.4 28.2 30.4 0.033

A: Dictator Game Transfer =
0 (freq.)

25% 40.1% 36% 0.032

Ultimatum Game Offer (mean) 50.5 40.9 43.5 0.000

B: Ultimatum Game Offer =
0 ∨ 10 (freq.)

3.1% 16.9% 13.1% 0.005

Ultimatum Game Acceptance
Threshold (mean)

33.9 27.8 29.4 0.032

C: Ultimatum Game Acceptance
Threshold = 0 ∨ 10 (freq.)

29.7% 42.4% 39% 0.074

D: Strategic Fairness (Dictator
Game Transfer > Ultimatum

Game Offer) (freq.)

43.8% 52.9% 50.4% 0.211

Punishment Sacrifice (mean) 7.1 4 4.8 0.002

E: Punishment Sacrifice =
0 (freq.)

40.6% 61.1% 55.5% 0.005

Compliance with A, B, C & E 1.6% 13.4% 10.2% 0.008

Compliance with A, C, D & E 6.3% 20.9% 17% 0.008
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Abstract: I designed an experiment to study the persistence of the prevailing levels of reasoning across
games. Instead of directly comparing the k-level(s) of reasoning for each game, I used cognitive load
to manipulate the strategic environment by imposing variations on the subject’s cost of reasoning and
their first- and second-order beliefs. Subjects have systematic changes in k-level(s) of reasoning across
games. That finding suggests that subjects are responsive to changes in the strategic environment.
Changes in k-level(s) of reasoning are mostly consistent with the endogenous depth of reasoning
model when subjects are more cognitively capable or facing less cognitively capable opponents.
Subjects have cognitive bounds, but often choose a lower-type action due to their beliefs about their
opponents. Finally, cognitive ability plays a significant role in subjects making strategic adjustments
when facing different strategic environments.

Keywords: level-k reasoning; guessing game; cognitive load; endogenous depth of reasoning;
strategic thinking

1. Introduction

The use of the level-k model has prevailed in the literature for characterizing people’s initial
responses in laboratory strategic games [1,2]. The model characterizes the player’s systematic
deviations from the Nash equilibrium using a bounded rational-type explanation. The level-0 type’s
action is assumed to be uniformly distributed over all actions (or in some cases, level-0 type’s action is
the most prominent action available), whereas the level-1 type has the best response to the expected
action of the level-0 type. The level-2 type has the best response to the expected action of the level-1
type. The iterations follow this pattern, as the level-k type always has the best response to the actions
of level-k − 1 type. Such patterns of off-equilibrium play have been evidenced in many laboratory
experiments. In Nagel’s p-beauty contest game, Nagel found spikes that correspond to the first and
second rounds of iterative best responses [1]. Stahl and Wilson found similar evidence of level-1 and
level-2 types with 10 matrix games [2]. Camerer et al. developed a cognitive hierarchy model [3].
Instead of holding a belief that all the other players are type k-1, level-k players in the cognitive
hierarchy model assign a probability distribution over all the lower types. Many other studies used
the level-k model to explain laboratory data (matrix game [4]; beauty contest game [5–8]; sequential
game [9]; auction [10,11]; Crawford, Costa-Gomes and Iriberri also provide a comprehensive literature
review [12]).

However, although the level-k model has proven its usefulness in characterizing initial responses
for many laboratory games, its predictive power remains ambiguous because (1) it is often used
posteriorly to classify a player’s type given their actions and (2) the model lacks components related
to individual characteristics that could help identify different types of players. It is important to
understand how certain levels are reached for each individual, as it is a starting point for the discussion
of the model’s predictive power. Alaoui and Penta developed a framework called the endogenous
depth of reasoning (EDR) model to explain what may happen in a player’s head when they encounter
a given strategic situation [13]. The EDR model captures individual characteristics by introducing cost
of reasoning, which is determined both by the strategic environment and by a player’s endogenous
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cognitive ability. The model includes game-specific characteristics by introducing the benefit of
reasoning through payoffs of the games. Lastly, the model allows a clear separation of cognitive
bounds and behavioral levels observed in games by introducing higher-order beliefs. Such separation
makes room for individual adjustments of k-levels in different strategic environments. As a result,
a level-1 action observed from a game does not necessarily classify the player as a level-1 player.
Instead, such action can be a product of the player’s cost and benefit analysis and his belief about
his opponents.

The EDR model provides a plausible starting point to study the persistence of the level-k model.
However, as individuals have heterogeneous costs of reasoning and belief systems in all kinds of
strategic situations, it is hard to conduct direct comparisons across games to test whether the behavioral
k-levels follow the EDR model’s predictions. In this paper, I use Costa-Gomes and Crawford’s
two-person guessing games (henceforth CGC06) and cognitive load to create different strategic
environments [14]. By controlling cognitive load, I create a standard for the cost of reasoning for all
the subjects. Although individual cognitive ability may still have an effect, by using a within-subject
experimental design, the individual effect will no longer impact the comparisons of strategic levels
across games for the same subject. The revelation of information about the strategic environment is
also carefully manipulated to clearly control the subject’s belief space. The goal was to test whether the
EDR model provides directional predictions about the changes on k-levels across games for any given
subject. Alaoui and Penta tested the benefit part of their model using the 11–20 money request game
with altered bonus rewards [13,15]. To the best of my knowledge, this was the first paper to provide
experimental tests of the EDR model by introducing different strategic environments with controlled
cost and belief space.

With the 18 two-person guessing games in the experiment, the results suggest that the subject’s
behavioral levels systematically vary across the games. Subjects are mostly responsive to the changes in
the strategic environment. Their directional changes in behavioral levels can be predicted by the EDR
model when they are more cognitively capable or their opponent is less cognitively capable. An inherent
cognitive bound exists for the subjects in different strategic environments. When comparing a subject’s
behavioral levels across all the games while providing the same amount of cognitive resources,
their behavioral levels rarely exceed their cognitive bound level for that strategic environment.

A few other papers also studied the correlation of individual k-levels with cognitive ability.
Allred et al. investigated the effects of cognitive load on strategic sophistication [16]. In their experiments,
they asked the subjects to perform a memorization task of either a three- or nine-digit binary number
concurrently with strategic games such as beauty contest, 11–20, and 10 matrix games. They found
that subjects with high loads (i.e., nine-digit number) were less capable of computing best responses,
especially for the beauty contest game. They were also aware of their strategic disadvantages. The net
result of cognitive load depended on the specific strategic context. Burnham et al. used a standard
psychometric test to measure the cognitive abilities of their subjects, and correlated the test results with
subjects’ performances in a p-beauty contest game [17]. They found a negative correlation between
cognitive test scores and entries in the beauty contest game, indicating that subjects with higher
cognitive ability tend to be more strategically sophisticated in such games. Gill and Prowse used a
60-question non-verbal Raven test to assign subjects into high- and low-cognitive-ability groups [18].
They asked the subjects to play a p beauty contest game for 10 rounds, and found that subjects in the
high-cognitive-ability group converged to equilibrium faster. These studies provided some evidence
of the correlation of individual k-levels with cognitive ability or carefully controlled cognitive tasks.
In my experiment, I used memorization tasks to manipulate the cost of reasoning for the subjects in
the context of a two-person guessing game. According to Allred et al., higher cognitive load negatively
affects a subject’s ability to calculate the best responses in this type of guessing games [16]. To attain
a higher level of strategic sophistication, players have to exert more effort to combat the effects of
cognitive load; therefore, the cost of reasoning increases with cognitive load in this strategic situation.
Every subject experienced both the low and high cognitive loads at some point during the experiment,
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so they were fully aware of the additional cost of reasoning that was added by these memorization
tasks. As a result, their cost of reasoning and their belief about their opponent’s cost of reasoning can
be quantified by the cognitive load.

The stability of k-levels is an important aspect in the level-k model literature. Stahl and Wilson
used twelve normal-form games to estimate the player’s level [19]. They found that using a relatively
low threshold, 35 out of 48 subjects could be classified as stable across games. Fragiadakis et al. asked
the subjects to repeat their decisions in a series of two-person guessing games to subsequently best
respond to their past actions [20]. They found that only 40% of the subjects who were able to replicate
the decisions could be classified as a known behavioral type. A few works mentioned the predictive
power of strategic sophistication. Arad and Rubinstein used a multidimensional Colonel Blotto game
to observe subject’s multidimensional iterative reasoning process [21]. They found that subjects with a
higher level of reasoning in the 11–20 money request game also seem to have more rounds of iterative
reasoning in this game.

Perhaps the most closely related work to this paper is Georganas, Healy, and Weber’s 2015 paper [22].
They conducted an experiment to examine the cross-game stability of the k-levels. They used four matrix
undercutting games and six two-person guessing games and compared them at the individual level.
They found no correlation between the levels of reasoning across games. However, they found some
evidence of cross-game stability within the class of undercutting game. I studied a similar question to
the cross-game stability of the level-k model. Instead of introducing a second family of games, I used
cognitive load to mimic different strategic environments, and restricted the subjects to fixed pairs
while playing the games. The belief space was therefore carefully controlled, and the uncertainty
from playing against a new random player for each round was completely eliminated. The data
suggested that systematic level changes can be predicted by the EDR model under certain conditions.
In Section 2, I provide a brief introduction to the EDR model to cover some necessary background and
theoretical predictions. In Section 3, the experimental design is introduced in detail. Sections 4 and 5
cover the data analysis procedure and the discussion of the results, respectively. Section 6 provides the
concluding remarks.

2. Theoretical Consideration

2.1. Model

I adopted Alaoui and Penta’s EDR model for theoretical predictions [13]. In this model,
players follow an endogenous reasoning process that determines the strategic bound in a particular
context. With added structure on beliefs, the model is able to predict a player’s actual level of play in
any game that could use a k-level iterative best response reasoning process. The main benefit of using
this model is that the structure of the model allowed me to conduct a comparative statics exercise
on a player’s reasoning process. One of the main goals of this study was to conduct a comparative
static exercise on the cost side. Below, I provide more detailed descriptions of some key features of this
model. These features are relevant to the experimental design and predictions for this paper.

A player’s cognitive bound is a mapping from the incremental cost of reasoning (c(k)) and the
incremental value of reasoning (v(k)) at each level to the intersection of the two terms.

κ(v, c) = min{k ∈ N | v(k) ≥ c(k) and v(k + 1) < c(k + 1)} (1)

A player reaches their cognitive bound at the kth level by having a value of reasoning for that level
exceeds cost of reasoning, but their cost–benefit analysis no longer supports the one-higher level
(i.e., k + 1) of reasoning. Further denote the cognitive bound of player i as k̄i, where:

k̄i = κ(vi, ci). (2)
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According to Alaoui and Penta, the value of reasoning is affected by the payoff of the game [13].
The cost of reasoning is an endogenous characteristic of an individual, which is largely related to their
cognitive or reasoning ability. In this paper, I take their assumption on the value of reasoning and
continue to assume that the payoff is the only incentive for players to apply logical reasoning in the
games. I provide a further discussion on the cost of reasoning. Beyond an individual’s endogenous
ability, the strategic environment (such as cognitive load) provides many challenges for a person in
applying strategic reasoning, which alters the cost of reasoning.

A player’s belief is represented as a tuple. Since the game in my design is symmetric in payoffs,
a player’s belief can be restricted to the beliefs about the cost of reasoning. Therefore, the first element
of the tuple, ci, represents player i’s own cost of reasoning. The second element is player i’s beliefs of
his opponent’s (player j) cost of reasoning, denoted as ci

j. The last element cij
i is player i’s second-order

belief, which is their belief about player j’s belief of themselves. Any higher-order beliefs could be
nested to the first- and second-order beliefs; therefore, a player’s belief is represented as:

ti = (ci, ci
j, cij

i ). (3)

2.2. Theoretical Predictions

I formulated the testable predictions following the EDR construction discussed in Section 2.1.
For any game G = {Xi, ui}i=1,2, let ki(xi) be the reflected behavioral level of player i by choosing
action xi, where Xi is the set of actions available for player i and ui is the payoff function for player i.

1. Changing the cost of reasoning: For any ci
j and cij

i , ki(xi) (weakly) decreases with ci.
Fixing player i’s first- and second-order beliefs, their cognitive bound weakly decreases with the
cost of reasoning. The observed level of player i from the game will also weakly decrease. In my
design, for the first 16 games holding cognitive load and information structure constant for the
opponent, players will display lower strategic levels when the memorization task is a string of
seven letters.

2. Changing the opponent’s cost of reasoning: For any ci and cij
i , ki(xi) (weakly) decreases with

ci
j. If cij

i = ci, then player i’s cognitive bound is binding if they regard their opponent as
more sophisticated.
Player i reacts to the change in the cost of reasoning of their opponents. More specifically, if he
observes his opponent’s cost of reasoning increasing, he will adjust their strategy in the game to
best respond to his opponent. That means they may choose to take an action that corresponds
to a lower level of strategic sophistication. However, such adjustments of strategies are binding
by the cognitive bound when the player believes their opponent has a lower cost of reasoning
compared to their own cost. In the context of my experiment, a player should choose a weakly
lower level of strategy if he observes his opponent’s memorization task becoming more difficult
(i.e., from a string of three letters to a string of seven letters).

3. Changing the second-order belief: For any ci and ci
j, ki(xi) (weakly) decreases with cij

i . If ci ≥ cij
i ,

then player i’s cognitive bound is binding. By fixing player i’s own cost of reasoning and his
opponent’s cost, through only changing player i′s second-order belief, player i should adjust
their strategic actions. For example, when a player has a low cost of reasoning in the game, if they
believe that their opponent has a wrong belief about themselves, namely, they believe that their
opponent thinks the cost of reasoning for them is very high, then they can switch to an action
that is associated with a lower level of reasoning. However, this adjustment of strategic actions
according to the second-order belief is restricted by player i’s own cognitive bound, meaning that
they cannot make any adjustments that requires a higher level of reasoning than their cognitive
bound. In the context of my experimental design, players should adjust their actions when the
information structure shifts from full revelation of cognitive load to partial revelation.
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4. Cognitive bound: Given ci, for any ci
j and cij

i , ki(xi) never exceeds k̄i. When fixing player i’s
own cost of reasoning, their behavioral level should never exceed their cognitive bound. In the
context of this experiment, on an individual level, actions observed in games 17 and 18 should
correspond to the highest level of reasoning that one player can achieve under the respective
cognitive load.

3. Experimental Design

In this section, I present the details of the experimental design. The experiment captured the
process of level-k thinking through the two-person guessing game [14]. I provide a brief introduction
to the game first, followed by the treatment design and the experimental timeline.

3.1. The Game

The two-person guessing game is an asymmetric, two-player game. Each player has a lower
limit, ai > 0, an upper limit, bi > 0, and a target pi ∈ (0, 2). Players are required to input a guess
that is within their lower and upper limit. However, their actual choice is not restricted by the limit.
Denote player i’s input by xi. If a player guesses a number xi that falls outside the limit interval,
then their guess will be adjusted to the closest bound. For example, if xi < ai, then the adjusted guess
yi will be yi = ai. If xi > bi, then the adjusted guess yi is yi = bi. However, any guess falling within
the limit interval will not be adjusted; i.e., yi = xi.

The goal of the game is to make a guess that minimizes the difference between the player’s
own guess and the product of their target and his opponent’s guess. Denote the difference by
ei =| yi − pi · yj |. The payoff is a quasi-concave function minimized at zero. Player i receives
ui = max{0, 200 − ei} + max{0, 100 − ei

100}. Since a player’s guesses that have the same adjusted
inputs will yield the same outcome for the subject, I use the adjusted guess yi as a proxy of how players
perform in the game.

In this game, the level-0 player is assumed to play randomly according to a uniform distribution
over the action space. Denote the theoretical predicted guess made by a k-level player as xk

i . Given the
assumption imposed on the level-0 player’s strategy, level-1 players will best respond to the expected
value of level-0 player’s guess, i.e., x1

i = pi ·E{yj | yj ∈ [aj, bj]}. The level-2 player’s strategy will then
be x2

i = pi · {�(x1
j ∈ [aj, bj]) · x1

j + �(x1
j < aj) · aj + �(x1

j > bj) · bj}. The reasoning process follows
iterative best responses. It converges to the Nash equilibrium after finite rounds of iterations.

In this paper, I adopt 14 two-person guessing games used by CGC06 and 4 two-person guessing
games used by Georganas et al. [14,22]. The parameters of each game are given in Table 1. All the
players survive at least two rounds of iterative best responses before reaching the equilibrium (as stated
in Table 1 “steps to eqm” column). Since in CGC06, only a few number of subjects reached level 3 in
the reasoning process, the choice of parameters in this paper should be sufficient to identify a player’s
strategic levels in the game.

3.2. Cognitive Load

Before directed to the guessing game, subjects were required to memorize a string of letters and
were told that they need to recall the given string after the guessing game. The string was composed
of either three or seven random letters, for example, UMH or WIEZOFH. The subjects were given 15 s
to memorize the string; then they were automatically directed to the guessing game.

I did not pay the subjects specifically for correct recalls. However, their payments on the guessing
game were partially dependent on this memorization task. If the recall for the selected payment round
was wrong, they were not paid for that round, and left the experiment with only the participation fee.
Said payment scheme incentivized the subjects to memorize the cognitive load correctly, and therefore
guaranteed the effects of different cognitive load treatments.
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Table 1. The eighteen two-person guessing games.

Game P1’s Limits P2’s Limits
Treatment P1’s Role P2’s Role

Steps Eqm at
# & Target & Target to Eqm Boundary

1 [(100,900); 1.5] [(300,500); 0.7] [LL+] role B role A 5+ -
2 [(300,900); 1.3] [(100,500); 0.7] [HL-] role B role A 5+ lower
3 [(300,900); 1.3] [(300,900); 1.3] [HH+] role B role A 3 upper
4 [(300,900); 0.7] [(100,900); 1.3] [LH+] role A role B 5+ lower
5 [(100,500); 1.5] [(100,500); 0.7] [LH-] role B role A 5+ upper
6 [(100,500); 0.7] [(100,900); 0.5] [HL+] role A role B 5 lower
7 [(100,500); 0.7] [(100,500); 1.5] [LH-] role A role B 5+ -
8 [(300,500); 0.7] [(100,900); 1.5] [LL+] role A role B 5+ upper
9 [(100,500); 0.7] [(300,900); 1.3] [HL-] role A role B 5+ -
10 [(300,500); 0.7] [(100,900); 0.5] [HH-] role B role A 3 lower
11 [(100,500); 1.5] [(100,900); 0.5] [LL-] role B role A 5+ -
12 [(300,900); 1.3] [(300,900); 1.3] [HH+] role A role B 3 upper
13 [(100,900); 1.3] [(300,900); 0.7] [LH+] role B role A 5+ -
14 [(100,900); 0.5] [(300,500); 0.7] [HH-] role A role B 4 -
15 [(100,900); 0.5] [(100,500); 0.7] [HL+] role B role A 4 lower
16 [(100,500); 0.5] [(100,500); 1.5] [LL-] role A role B 5+ lower
17 [(100,900); 1.3] [(100,500); 0.5] L - - 5+ -
18 [(100,900); 1.5] [(100,500); 0.7] H - - 5+ -

3.3. Treatments

The experiment consisted of two blocks. In the first block, subjects were assigned into pairs.
They played 16 two-person guessing games against each other within the fixed pairs. In the second
block, they played two guessing games against the computer. There were a total of 18 two-person
guessing games for them to complete for this experiment, and no feedback was given throughout
the process.

3.3.1. Against Human

I adopted a 2 × 2 × 2 design. For ease of explanation, I specify the two players in the guessing
game as having role A and role B in this section. However, subjects were not aware of their role during
the experiment. Each subject was given the role of A or B for each treatment exactly once. I used a
within-subject design.

To examine the effects of changing the cost of thinking on a subject’s level of reasoning, I varied
the cognitive load for role A, holding role B’s cognitive load constant. As mentioned in the previous
section, role A needed to memorize a string of either three or seven random letters when playing
the guessing game. To test the effects of changing the opponent’s cost of thinking on a player’s level
of strategic sophistication revealed in the game, I also varied role B’s cognitive load by two levels.
Changing the cost of thinking of role B essentially tests the effects of changing the first-order belief for
role A. Denote the cognitive load of three letters as low load (L) and seven letters as high load (H).

Lastly, I varied the disclosure of information on the cognitive load for role B. The exact cognitive
load implemented on role A was either fully revealed to role B or partially revealed as a probability
distribution. Denote full revelation as [+] and the counterpart as [-]. In the partial revelation treatment,
role B was told that role A has a 0.5 probability of memorizing a string of three letters and a 0.5
probability of memorizing a string of seven letters. The full and partial revelations of the cognitive
load information on role B were a method of measuring the effects of changing the second-order belief
for role A. In the full revelation treatment, both roles A and B were aware that role A’s memorization
task is common knowledge. However, in the partial revelation treatment, role A knew their exact
memorization task was hidden to role B; therefore, their second-order belief (i.e., their belief about
role B’s belief of their own cost of thinking) may not coincide with their actual cost of reasoning.
A summary of treatments is provided in Table 2. In later sections, I used role A’s label to identify the
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treatments, as I was essentially examining the treatment effects for role A only. The first letter in the
label indicates role A’s cognitive load (either L or H). The second letter indicates role B’s cognitive load
(opponent’s cognitive load, either L or H), and the last element of the label indicates full or partial
revelation (role A’s second order belief, either [+] or [-]). Role B served as a supporting role to complete
the information required for each treatment. The information presented to role B for each treatment
is also presented in Table 2. However, when later discussing the experimental results, I only refer to
each treatment using role A’s label. Table 1 provides a summary of treatments and assignments of
roles for each game. Each subject played as either role A or role B exactly once for each treatment.
There are in total 16 games. For each treatment, the pair of games are symmetric in game parameters
and cognitive load realizations. The games were played in two random orders (the first order was as
game numbers listed in Table 1; the second order was: 2, 13, 14, 4, 3, 1, 16, 6, 11, 8, 12, 5, 10, 15, 7, 9, 18,
17. Since for each game, there were two players assigned with different cognitive loads, considering
player 2’s order of play, there were essentially four sequences. The number of subjects in each order
was roughly balanced. After dropping subjects with missing data, there were 28 subjects playing
the first order as player 1, 29 subjects playing the first order as player 2, and 27 subjects playing the
second order as player 1 and player 2 respectively.). Before the start of each session, one of the two
was randomly selected.

Table 2. The eight treatments.

Role Label Cost 1st Order Belief 2nd Order Belief

1 Role A [LL+] Low Low Low (full revelation)
Role B Low Low Low (full revelation)

2 Role A [HL+] High Low High (full revelation)
Role B Low High Low (full revelation)

3 Role A [LH+] Low High Low (full revelation)
Role B High Low High (full revelation)

4 Role A [HH+] High High High (full revelation)
Role B High High High (full revelation)

5 Role A [LL-] Low Low 50% Low, 50% High (partial revelation)
Role B Low 50% Low, 50% High Low (full revelation)

6 Role A [HL-] High Low 50% Low, 50% High (partial revelation)
Role B Low 50% Low, 50% High Low (full revelation)

7 Role A [LH-] Low High 50% Low, 50% High (partial revelation)
Role B High 50% Low, 50% High High (full revelation)

8 Role A [HH-] High High 50% Low, 50% High (partial revelation)
Role B High 50% Low, 50% High High (full revelation)

3.3.2. Against Computer

Subjects played against the computer for the second block of the experiment. The computer
always chooses a Nash equilibrium action. The concept of equilibrium was explained to the subjects.
For example, subjects were told that “a combination of guesses, one for each person, such that each
person’s guess earns them as many points as possible, given the other person’s guess, is called an
equilibrium guess.” A similar description of equilibrium guess is found in CGC06. Subjects were
also given an example of an equilibrium guess following this description. However, they were not
specifically taught how to derive an equilibrium guess. The reason for introducing the equilibrium
concept was to encourage the subjects to perform as many rounds of iterative best responses as possible.
The two guessing games in this part are labeled 17 and 18 in Table 1.
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3.4. Experimental Timeline

A total of 111 subjects were recruited for this experiment. Sessions were conducted at the Incentive
Lab at Rady School of Management, University of California—San Diego (San Diego, CA, USA).
The experiment was programmed and conducted using z-tree [23]. The complete session lasted for
90 min. Subjects were given a 5 USD show-up fee for attending the experiment and an additional
$5 if they passed the understanding test and completed the experiment. They earned an additional
$8 on average depending on their decisions for the guessing games. For those who did not pass the
understanding test, they spent about 30 min in this experiment and left with the $5 show-up fee.

Subjects were given instructions on the two-person guessing game first. After explaining the
rules, I introduced four unincentivized practice rounds. During the practice rounds, subjects played
against the computer and were told that the computer will always choose the mean of the target
interval. After the subjects made a guess, feedback was provided for the subjects to reflect on the game
rule and the payoff rule. An understanding test was then administered. The test was composed of
six questions, similar to the understanding test in CGC06. Standard questions included calculatiosn
of best responses and payoffs. Although subjects in the experiment were not restricted to following
a level-k reasoning process, for the purpose of the experiment, I wanted to make sure the subjects
were capable of calculating the best responses. A screenshot of the understanding test is shown in
Figure 1. Subjects needed to answer four out of six questions correctly to proceed to the main part of
the experiment.

 

Figure 1. Screenshot of the understanding test.

Before playing the incentivized guessing games, subjects were introduced to the memorization
task. They were given two unincentivized practice rounds for the low load and high load treatments.
During the practice round, they had the standard 15 s to memorize the string of letters and were asked
for immediate recall when the time was up. They, however, did no get to practice the guessing game
with the cognitive load implemented.

The main experiment consisted of two parts, as discussed in Section 3.3. There were 18 two-person
guessing games in total. For the first 16 games, subjects were randomly assigned into pairs and
stayed within the same pair for all 16 decisions (one as player 1 and the other as player 2). For each
game, subjects were given the same information set that consisted of the types of memorization task
(either string of three or seven letters, or a probability distribution) for themselves and their opponents,
whether their opponents knew about their exact memorization task, and the targets and limits for both
players. An example of the actual decision screen is provided in Figure 2. Subjects were also asked to
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elicit their opponents’ types of memorization task after they made their guesses and recalled the letters.
This practice allowed me to check whether the subjects received and processed the correct information
about their strategic environment. There was no feedback given in between the 18 guessing games.
This prevented the subjects from learning anything about their opponents’ past actions. Such practice
also limited the subject’s learning of the guessing game, as no payoff information was provided.
(There was limited learning of the game. Upon checking a subject’s levels with respect to the orders of
the games they played, playing a later game was not associated with higher k-levels. The coefficient
from the OLS regression was 0.005 and it was not statistically significant.)

 

Figure 2. Screenshot of the incentivised two-person guessing game.

Subjects took a 10-question Mensa practice test at the end of the experiment. The test is used to
measure the subject’s analytical ability. Some questions ask the subject to identify the missing element
that completes a sequence of patterns or numbers. Some questions are verbal math questions. A couple
of studies in economics literature have used a similar test as a measure of cognitive ability [22]. I used
this test in the experiment to measure whether there were any heterogeneous treatment effects on
subjects with different exogenous cognitive abilities.

3.5. Discussion of the Experimental Design

First, I used letters to compose strings for the cognitive load treatment, unlike the conventional
use of binary numbers [16]. This design restricts the subjects from using the cognitive load numbers as
their inputs for the guessing game. It allows a clear separation of the two tasks, the memorization task
and guessing game, and therefore increases the reliability of the treatment effects of cognitive load.
I recognized subjects may be able to use other methods to memorize the string of letters, for example,
using hand gestures. However, any such method also requires cognitive effort and therefore should
not significantly lessen the effects of cognitive load for treatment purposes.

Subjects remained within the fixed pair for the first 16 incentivized guessing games. Since no
feedback was given in between games, this design ensures the manipulation of cognitive load being
the only source of changing beliefs for any subject. Subjects were different exogenously in terms of
cognitive ability, so by staying in the same pair, they carried the same beliefs about their opponents’
cognitive abilities throughout the whole session.

Lastly, for each of the 18 incentivized tasks, subjects were given 90 s to make a decision for the
guessing game. According to Agranov et al., 90 s is enough for strategic players to make a decision
in this type of guessing game [24]. To keep the effect of cognitive load constant across players, I only
allowed the subjects to submit their guesses after the 90 s was up. Said practice avoids some subjects
naïvely picking a guesses without strategic contemplation for the purpose of achieving correct recalls
for the memorization task.
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4. Data Analysis Procedure

All the subjects played 18 games in total, each against a fixed opponent during the experiment.
There were 1998 observations of guesses. Grouping the guesses by games, I looked for level shifts
observed with raw guesses. This exercise provided a general view of the effects of cognitive load on
the games. I also used density plots of the guesses to visualize the treatment effects.

After the exploration of raw guesses, I estimated the level for each guess using the maximum
likelihood method. Instead of assuming the subject’s behaviors are determined by a single type across
all the games, I assumed the subject’s behavior in each game was determined by a single type and the
types across games were allowed to be different. This was achievable with the design of my experiment
with the variations on cognitive load.

Out of 1998 observations, 831 guesses correspond to a type’s exact guesses. As about 40% of
the observed guesses were a type’s exact guesses, I followed the CGC06 approach in my estimation.
Specifically, for each player i, game g, and level k, if player i was not making a type’s exact guesses
in game g, then I defined a likelihood function L(yig | k, λ) for each level k for the player in that
game, with beliefs f k

g (y) and sensitivity parameter λ, based on the assumption that they were trying to
maximize their expected utility.

Formally, let xig be the raw guess observed for player i in game g. With the specification of lower
limits aig and upper limits big, the adjusted guess is then yig = min{max{aig, xig), big}}. The density
f k
g (z) represents a subject’s belief about his opponent’s action given their behavioral level being k.

Although in the literature a subject’s belief of the other player’s level could follow a certain type of
distribution, for example, Poisson distribution as in Camerer et al. (2004), in this study, I followed
the standard approach that level-k player has point belief about his opponent, that his opponent is
level-(k − 1) with probability 1. y0

g is defined as uniformly spread across the action space. The expected
payoff of playing xig with behavioral level k’s belief is then:

Uk
ig(yig) =

∫ 1000

1
Uig(yig, z) fg(z)dz. (4)

Let Uk
ig = [max(yk

g − 0.5, aig), min(yk
g + 0.5, big)] be the interval of a type-k subject’s exact adjusted

guesses, allowing an error of 0.5. Any guess for game g, subject i, who is placed within Uk
ig, is then

identified as an exact match for k-level. Conversely, define Uk
ig
�
= [aig, big]/Uk

ig as the complement of

Uk
ig within the limit interval for subject i’s game g. The likelihood function is then the following:

L(yig|k, λ) =
exp[λUk

ig(yig)]∫
Uk

ig
� exp[λUk

ig(w)]dw
. (5)

Since only one observation was used for the estimation, I took the sensitivity parameter (λ) as 1.33,
which is the averaged estimated value of λ in CGC06 with only the subject’s guesses. The maximum
likelihood estimate of a subject’s behavioral level in each game maximizes (5) over k, which is:

kig = arg max
k∈{1,2,3,4,5,6}

L∗(yig|k). (6)

To examine the treatment effects on behavioral levels, I pooled guesses into pairs for comparison.
For example, to test the prediction on the changing cost of reasoning, I first identified games with the
same first-order belief (either low or high cost of reasoning for opponent) and the same second-order
belief (partial revelation), and then they were separated into comparison pairs by the subject’s
cognitive load tasks. The same selection was performed following the conditions listed in each
testable prediction.
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For each pair of games, I first conducted a binary comparison on their behavioral levels and
I report the summary statistics. Since this is essentially a repeated measure of behavioral level from the
same sample, I then conducted the Wilcoxon signed-rank test to check the distribution of behavioral
levels. Lastly, I ran a GLS random effect regression to examine the treatment effects on behavioral
levels. The regression was run by regressing the estimated level on the treatment variable. A subject’s
cognitive load was coded as 0 when it was in the low load treatment, and 1 when it was a high-load
treatment. The same binary coding was also applied to the opponent’s cognitive load treatment.
The full revelation of information treatment was coded 0, whereas partial revelation was coded 1.

5. Results

5.1. General Examination of Raw Guesses

There were a total 1998 observations and 831 guesses corresponded to a specific level (levels 1 to 5,
and equilibrium). When identifying levels, I assigned the lowest possible level to a guess that matched
multiple types. For example, in game 3, equilibrium was reached after three rounds of iterative best
responses, and the equilibrium was at the boundary of the target interval. In this case, although levels
3, 4, and 5, and the equilibrium all have corresponding guesses at 900, a subject’s guess of 900 only
assigned the subject to type level 3. This method of identification restricted over-assignments of
the types.

Figure 3 shows the distribution of guesses that matched specific levels. Of the 831 guesses that
matched a specific level, 43.92% were level 1 guesses, 31.41% were level 2 guesses, 14.20% were
equilibrium guesses, and level 3 and higher corresponded to the remaining 10% of the guesses.
To provide a clearer picture of the treatment effect, I used a Markov matrix for some treatments with
these exactly matched guesses. Tables 3 and 4 present the level transitions between comparable games.
For example, Table 3 consists of all the comparable pairs of changing a subject’s own cost of reasoning,
fixing the opponent with a high cognitive load (game 7 [LH-] and game 14 [HH-]). There were a
total of 111 pairs of comparisons, 24 of which had both guesses that exactly matched a specific level.
From games 7 to 14, 12 subjects reached level 1 in game 7 and 83.33% stayed at level 1 in game 14.
Eight subjects reached level 2 in game 7, 87.5% of which stayed at level 2 and below in game 14.
This result largely complies with the theory prediction that increasing cost of reasoning while fixing
first- and second-order belief constant decreases the level of reasoning weakly. Likewise, Table 4
presents all the comparison pairs of changing the subject’s first-order belief while fixing their own
cost of reasoning and keeping their second-order belief constant (game 1 [LL+], game 8 [LL+], game 4
[LH+], and game 15 [LH+]). There were a total of 444 pairs of comparison, 99 of which had both
guesses matched to a specific level. Forty pairs had level 1 guesses in the [LL+] treatment and 62.5%
of them remained level 1 in the [LH+] treatment games. Similarly, 27 pairs had level two guesses in
the [LL+] treatment. When changing the subject’s first-order belief by increasing the cognitive load
of their opponents, about 90% of these pairs had level 2 or lower guesses in the [LH+] treatment.
These statistics largely coincided with the theoretical prediction—with increasing the cost of reasoning
for the opponents, the subjects adjusted by weakly decreasing their behavioral levels of playing the
game. Due to the limited number of exact matches, I was not able to conduct the same exercise for all
the treatment pairs. However, complete discussion of the treatment effects is provided below with
estimated behavioral levels.
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Figure 3. Distribution of exact matches.

Table 3. Markov matrix of level transitions for increasing cost of reasoning, opponent with high load.

↓ to → Level 1 Level 2 Level 3 Level 4 Level 5 Eqm Num

Level 1 83.33% 0 16.67% 0 0 0 12
Level 2 25% 62.5% 12.5% 0 0 0 8
Level 3 0 0 100% 0 0 0 1
Level 4 0 0 0 0 0 0 0
Level 5 0 0 0 0 0 0 0

Eqm 0 66.67% 33.33% 0 0 0 3

Table 4. Markov matrix of level transitions for changing first-order belief, subject with low load.

↓ to → Level 1 Level 2 Level 3 Level 4 Level 5 Eqm Num

Level 1 62.5% 7.5% 2.5% 0 15% 12.5% 40
Level 2 3.7% 85.19% 7.41% 0 0 3.7% 27
Level 3 0 0 0 0 0 0 0
Level 4 0 0 0 0 0 0 0
Level 5 0 0 0 0 0 0 0

Eqm 31.25% 18.75% 28.13% 0 21.88% 0 32

The pattern of subjects’ adjustments to the changing strategic environment is also illustrated
with density plots of each game. This time, all the raw guesses (after adjustments according to upper
and lower limits) were used to plot the graphs. Figure 4 illustrates the treatment effects for the
three theoretical predictions. To better compare across games, level 1 guesses were centered, and all
the guesses were adjusted accordingly. The colored vertical lines illustrate the level-exact guesses.
For example, in Figure 4a, the vertical red dashed line indicates level-1 guesses. Both density plots
in the figure show peaks around the red vertical line, which indicate higher proportions of level-1
(or close to level 1) strategy used within the games across all the subjects. Notably, in the density plot
for the [LH-] treatment (G7), there is another peak centered right at the level 2 guess for that game
(indicated by blue dashed line). The density plot clearly shows that in the game where subjects have a
lower cost of reasoning ([LH-]), guesses are congregated at both levels 1 and 2, whereas in the game
where subjects have a higher cost of reasoning ([HH-]), only a peak at the level-1 guess is observed.
Likewise, in Figure 4b, four games are plotted to illustrate the treatment effects of increasing cost of
reasoning for the opponent. In Figure 4c, three games are used to demonstrate changing second-order
beliefs. Note that both games 1 and 8 are relevant in both graphs, as the [LL+] treatment is relevant
for both comparisons. As illustrated in the figure, in one of the games, the three peaks correspond to
level 1, level 2, and equilibrium. When increasing the cost of reasoning for the opponent, the level
1 peak is still observable; however, only one game has a level-2 peak. Similarly, when changing the
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second-order belief from low load with probability 1 to (0.5, 0.5; L, H), only the level 1 peak remains,
as then the subjects thought that their opponents thought there was a 50% probability that the subject
was experiencing a high cognitive load. I omitted other vertical lines that indicated different levels
due to the absence of peaks in the density plots.

(a) Density plot of changing cost of reasoning
(opponent high load).

(b) Density plot of changing cost of reasoning for
opponent (subject low load).

Figure 4. Cont.
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(c) Density plot of changing second-order belief (LL).

Figure 4. Density plot of raw guesses.

5.2. Distribution of Levels

From the preview of results from raw guesses in the previous subsection, changing the
strategic environment appeared to lead to some structured changes in the depth of reasoning.
However, only about half of the guesses were type-exact guesses. To better understand the treatment
effects of the other half, I used maximum likelihood estimation to assign types, and then conducted
analyses based on the estimated levels.

There were a total 1998 observations of guesses. As discussed in the previous section, I assigned a
behavioral level for each observation. Surprisingly, a few guesses corresponded to exact level 4 and
level 5 guesses in my data. Therefore, I included levels 1 to 5 and the Nash equilibrium type in my
estimation. Of all the observations, 1167 guesses were estimated. The distribution of estimated levels
for these guesses is shown in Table 5. The majority of the guesses were assigned to level 1 guesses.
The level distribution for all the guesses is shown in Table 6. The game number is referred to the game
number list in Table 1. Since all the subjects played each game exactly once, for each game listed,
there were 111 observations.

Table 5. Summary of estimation results.

L1 L2 L3 L4 L5 Nash

Exact 43.92% 31.41% 5.54% 1.56% 3.37% 14.20%
Estimated 71.89% 5.57% 12.94% 5.57% 3.43% 0.60%
Total 60.26% 16.32% 9.86% 3.90% 3.40% 6.26%
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Table 6. The frequency of levels by game.

Game # L1 L2 L3 L4 L5 Nash

All Guesses 60.26% 16.32% 9.86% 3.90% 3.40% 6.26%

1 72.97% 13.51% 0 2.70% 4.50% 6.31%
2 35.14% 16.22% 19.82% 15.32% 3.60% 9.91%
3 44.14% 22.52% 33.33% 0 0 0
4 63.06% 14.41% 1.80% 7.21% 13.51% 0
5 72.07% 12.61% 0 1.80% 0 13.51%
6 83.78% 4.50% 2.70% 9.01% 0 0
7 53.15% 12.61% 16.22% 5.41% 6.31% 6.31%
8 62.16% 12.61% 1.00% 0 0 24.32%
9 59.46% 6.31% 18.02% 1.80% 7.21% 7.21%
10 54.05% 45.95% 0 0 0 0
11 69.37% 10.81% 7.21% 1.80% 1.80% 9.01%
12 44.14% 23.42% 32.43% 0 0 0
13 70.27% 16.22% 1.00% 1.00% 5.41% 6.31%
14 73.87% 11.71% 14.41% 0 0 0
15 65.77% 15.32% 11.71% 7.21% 0 0
16 64.86% 16.22% 5.41% 2.70% 10.81% 0
17 34.23% 28.83% 3.60% 10.81% 2.70% 19.92%
18 62.16% 9.91% 9.91% 3.60% 5.41% 9.91%

The distributions of the levels were fairly similar to the results in CGC06, except that levels 4
and 5 were then included. Level 1 was the most prominent behavioral level. Of 1998 observations,
60.26% were level 1 guesses. In some games, level 1 was even more frequently observed. For example,
in game 1, about 70% of the guesses were classified as level 1. A number of observations were
levels 2 and 3 and Nash guesses. In my data, the occurrence of level 3 was more frequent in a few
games. For example, in game 2 and game 3, more than 20% of observations were assigned to level 3.
Although some observations corresponded to exact level 4 or level 5 guesses, the overall frequency of
these two higher levels was much lower. In about one-third of the games, no guesses were classified
into these two levels.

As shown in Table 6, there are a pair of games that have almost identical level distribution, game 3
and game 12. These two games have identical parameters and treatments (as shown in Table 1).
Besides these two games, the frequency of levels in other games differed considerably. In some games,
behavioral levels congregated toward levels 1 or 2, for example, games 1 and 6. In some games, such as
games 2 and 9, behavioral levels spread out across the six categories. The variations in the distribution
of levels across games could be due to the differences in the cognitive load tasks. The exact impact of
the memorization tasks is discussed in detail in the following subsections.

5.3. Result 1: Increasing Cost of Reasoning

As mentioned in Section 2.2, the first testable prediction involved fixing the subject’s first- and
second-order beliefs and examining the effect of the changing cost of reasoning on the subject’s
behavioral levels. There were essentially two comparisons in this case: a comparison between treatment
[LL-] and treatment [HL-], and between treatment [LH-] and [HH-]. Note that in both comparisons,
the cost of reasoning for the subject varied from low to high; therefore, it was crucial to have partial
revelation of the subject’s (role A) memorization task. In the partial revelation treatment, role B
(the opponent) only knew the probability distribution of the subject’s memorization task (0.5, 0.5;
L, H); therefore, even with the subject’s own tasks varying between two treatments, the subject’s
second-order belief was controlled to be the same. There were 222 pairs of comparison in total.
The summary statistics of the comparisons are presented in Table 7. The plotted distribution of
behavioral levels is presented in Figure 5. To aid with the interpretation of the results, the behavioral

45



Games 2020, 11, 40

levels in the figure are presented in a reverse order (i.e., higher level on the left and lower level on
the right).

Table 7. The frequency of changing behavioral levels with increasing cost of reasoning.

Pair Name (From Game a to Game b) # of Pairs Treatment Decreases Constant Increases

G16 to G9 111 LL- to HL- 20.72% 43.24% 36.03%
G7 to G14 111 LH- to HH- 39.64% 49.55% 10.81%

Combined 222 L?- to H?- 30.18% 46.40% 23.42%

(a) (b)

Figure 5. Cumulative level distribution for increasing cost of reasoning.

When the opponent’s cognitive load was controlled to be high and with partial revelation, subjects
weakly decreased their behavioral levels 89.19% of the time (39.64% strict decrease). In Figure 5b,
the [LH-] treatment is first-order stochastic dominant over the [HH-] treatment. The Wilcoxon test
(Table 8) was significant at the 1% level for the comparison of the distributions of behavioral levels
between these two strategic environments. When regressing the behavioral level on the treatment
dummy, the result (Table 9) suggested that the coefficient for treatment dummy was 0.77, which was
significant at the 1% level. This implied that the estimated behavioral level weakly decreased when the
subject’s own cognitive load increased when facing an opponent with high cognitive load. The finding
is consistent with the EDR model. The relatively large proportion (49.55%) of constant levels may seem
quite surprising at first look. One possible explanation is that these subjects may have had different
cognitive bounds in the two treatments. In the [LH-] treatment, subjects may have adjusted their
behavioral levels downward from their cognitive bound in that treatment due to some belief they
formed when facing opponents with high cognitive loads. In the [HH-] treatment, subjects who had
a lower cognitive bound (as they had a high cognitive load) may have displayed a lower behavioral
level. When the two behavioral levels from two treatments coincided, I observed no changes in the
behavioral levels in the treatment comparison.

The result for the comparison between [LL-] and [HL-] is less clear. As shown in Table 7, 63.97% of
the comparisons had weakly decreasing behavioral levels (20.72% strict decrease), and a noticeable
percentage (36.03%) of the comparisons had increasing levels. The Wilcoxon test statistic rejected the
null hypothesis that the two strategic environments have the same distribution of behavioral levels
at the 5% level. However, upon further checking using a one-tail Wilcoxon test, the distribution of
behavioral levels shifted rightward when cognitive load changed from low to high when facing an
opponent with a low cognitive load. When conducting the standard GLS random effect regression,
the coefficient on the treatment dummy was positive and significant at the 10% level.

46



Games 2020, 11, 40

Table 8. Test results for equality of distribution.

Comparison Group (in Treatment) Wilcoxon p-Values (Two-Tailed) Wilcoxon p-Values (One-Tailed)

Changing Cost of Reasoning
LL- to HL- 0.05 ∗∗ 0.98
LH- to HH- 0.00 ∗∗∗ 0.00 ∗∗∗

Changing Opponent’s Cost of Reasoning
LL+ to LH+ 0.01 ∗∗∗ 0.00 ∗∗∗
HL+ to HH+ 0.00 ∗∗∗ 1

Changing Second Order Belief
LL+ to LL- 0.11 0.05 ∗∗
LH+ to LH- 0.00 ∗∗∗ 0.99
HL- to HL+ 0.00 ∗∗∗ 0.00 ∗∗∗
HH- to HH+ 0.00 ∗∗∗ 1

Against Computer (Nash)
L to H 0.00 ∗∗∗ 0.00 ∗∗∗

∗ indicates < 10% significance, ∗∗ indicates < 5% significance, and ∗∗∗ indicates < 1% significance.

Table 9. Regression results for treatment effects.

Comparison Group (in Treatment) Relevant Dummy Constant Number of Obs.

Changing Cost of Reasoning
LL- to HL- 0.34 ∗ (0.18) 1.78 ∗∗∗ (0.14) 222
LH- to HH- −0.77 ∗∗∗ (0.16) 2.18 ∗∗∗ (0.12) 222

Changing Opponent’s Cost of Reasoning
LL+ to LH+ −0.27 ∗ (0.14) 2.03 ∗∗∗ (0.11) 444
HL+ to HH+ 0.33 ∗∗∗ (0.10) 1.55 ∗∗∗ (0.07) 444

Changing Second Order Belief
LL+ to LL- −0.25 (0.18) 2.04 ∗∗∗ (0.12) 333
LH+ to LH- 0.41 ∗∗∗ (0.15) 1.77 ∗∗∗ (0.09) 333
HL+ to HL- 0.57 ∗∗∗ (0.15) 1.55 ∗∗∗ (0.10) 333
HH+ to HH- −0.48 ∗∗∗ (0.09) 1.89 ∗∗∗ (0.06) 333

∗ indicates < 10% significance, ∗∗ indicates < 5% significance, and ∗∗∗ indicates < 1% significance. Standard
errors in parenthesis.

In this analysis, I treated equilibrium level as the highest level, since it requires the subjects to
perform multiple steps of iterative best responses. However, since many games have equilibrium at
the boundary of the limit interval (games 2, 4, 6, 10, 15, and 16 have the equilibrium at the lower limit;
games 3, 5, 8, and 12 have the equilibrium at the upper limit), if the subject chooses an equilibrium
action by naïvely playing at the boundary, then this behavioral level should not be considered as a
higher level than any of the k levels. This was not the case for this comparison pair. Although game 9
([HL-]) had 7.21% equilibrium guesses, those guesses were not at the boundary. However, upon further
checking of games 16 ([LL-]) and 9 ([HL-]), I found that the level-5 type in game 16 had the same
strategy as the equilibrium strategy of that game. Therefore, some of the equilibrium strategies in game
16 were pooled into level-5 type, which may be one possible explanation for the significant positive
coefficient on the treatment dummy. Another explanation may be that the subjects felt more motivated
to reason at higher strategic levels when they saw the opponents had easier strategic environments
(memorizing three letters) as opposed to their own difficult strategic environments (memorizing seven
letters). As a result, they displayed higher behavioral levels. This explanation suggests that other
factors, such as motivation factor, may also play a role in determining a subject’s behavioral levels.
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5.4. Result 2: Increasing Cost of Reasoning for Opponent

To examine the effect of changing the first-order belief on a subject’s behavioral level in games,
I selected pairs of games with changing cognitive loads for the opponents. For example, a comparison
of behavioral levels for games 1 and 4 served the purpose. In game 1 ([LL+]), player 1 has a low
cognitive load when facing an opponent with a low cognitive load, and there is full revelation of each
other’s strategic environment. In game 4 ([LH+]), player 1 has a low cognitive load when facing
an opponent with high cognitive load, and again, there is full revelation of the treatments. I found
444 pairs of comparison for the cases wherein the subjects had low cognitive loads, and another
444 pairs of comparison for the cases when they had high cognitive loads. The detailed comparison
groups and summary statistics are shown in Table 10. The plotted distribution of behavioral levels is
presented in Figure 6.

Table 10. The frequency of changing behavioral levels with increasing cost of reasoning for opponent.

Pair Name (From Game a to Game b) # of Pairs Treatment Decreases Constant Increases

(G1, G8) to (G4, G15) 444 LL+ to LH+ 23.87% 55.86% 20.27%
(G6, G13) to (G3, G12) 444 HL+ to HH+ 15.54% 41.44% 43.02%

Combined 888 ?L+ to ?H+ 19.71% 48.65% 31.64%

(a) (b)

Figure 6. Level Distribution for increasing cost of reasoning for opponent.

The combined results were the opposite of the theory prediction, with a significant 31.64% of
cases of increasing behavioral levels. However, upon further checking, the majority of the increasing
cases occurred when subjects are having high cognitive load. When subjects had low cognitive load,
79.73% of the time, they weakly decreased their behavioral levels when their opponents’ cognitive
loads changed from low to high (23.87% strict decrease). Figure 6a illustrates that [LL+] games had
more guesses at higher levels. This result is consistent with the EDR model. When a subject’s cost and
second-order belief was controlled across the two strategic environments, he was responsive to the
changes in his opponent’s cost of reasoning. However, some of these adjustments in behavioral levels
were not strictly decreasing. If the subject believed that the increased opponent’s cost of reasoning was
not large enough to decrease the opponent’s behavioral level by one, the subject’s behavioral level
remained the same across the two strategic environments. This partially explains the high percentage
(55.86% and 41.44%) of constant behavioral levels in Table 10. When the subject had a high cognitive
load and his opponent’s cognitive load changed, the result did not comply with the EDR model. A total
of 43.02% of the pairs showed increasing behavioral levels across the two strategic environments.
The frequency of levels in Table 6 reveals that most subjects had level 1 guesses in games 6 (83.78%)
and 13 (70.27%). This gave subjects much less room to adjust their behavioral levels downward
compared to another strategic situation. Any behavioral level that was beyond level 1 in games 3 and
12 was considered as moving the behavioral level upward. This was one major limitation in observing
the effects of changing the first-order belief when the subject had a high cost of reasoning (i.e., high
cognitive load).
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The Wilcoxon signed-rank test rejected the null hypothesis that the level distribution was the
same for both treatment comparisons ([LL+] to [LH+] and [HL+] to [HH+]). However, the one-tail test
suggested that when the subject had low cognitive load, increasing his opponent’s cost of reasoning
shifted the former’s level to the left (to lower levels, significant at the 1% level). However, when the
subject had high cognitive load, the level distribution shifted to the right. The regression coefficients
suggested that increasing the opponent’s cost of reasoning decreased the behavioral level when the
subject had a low cognitive load (significant at the 10% level).

5.5. Result 3: Changing the Second-Order Belief

In the experiment, I used a (0.5, 0.5) probability distribution on the revelation of cognitive load
treatments to control for the subject’s second-order belief. In the full revelation treatment, role B
knew the exact memorization task that was received by role A (the subject), either three (low load)
or seven letters (high load) with a probability of one. Therefore, role A’s (the subject) second-order
belief was either ((1, 0); (L, H)) or ((0, 1); (L, H)). In the partial revelation treatment, role B knew that
the probability of three or seven letters for role A was (0.5, 0.5), which made role A (the subject) have a
second-order belief of ((0.5, 0.5); (L, H)). If comparing two games with different second-order beliefs
for the subject, with everything else controlled as constant, then a second-order belief of low load
with probability of one should be considered as more cognitively capable perceived by role B than a
second-order belief of((0.5, 0.5); (L, H). The experiment, as shown in Table 11, supported that most
subjects had a clear understanding of their opponent’s cognitive load when the load was explicitly
elicited, and they almost had uniform beliefs about their opponents’ cognitive loads when they were
in the partial revelation treatment as role B.

Table 11. Subject’s belief about his opponent’s cognitive load.

Belief Elicitation

3 Letters 7 Letters Not Sure Sum

Treatments
3 Letters 591 51 24 666
7 Letters 97 546 23 666
(0.5 L, 0.5 H) 143 111 190 444

In the dataset, I found 888 pairs for comparison that allowed me to examine the effect of changing
the second-order belief. I separated them into two groups: a comparison between the full revelation of
low load to partial revelation, and a comparison between a partial revelation and a full revelation of
high load. Both comparisons were performed in the direction of increasing second-order belief
(i.e., cij

i increases). The detailed comparison pairs and summary statistics are listed in Table 12.
The distribution of behavioral levels is plotted in Figure 7.

Table 12. The frequency of changing levels with changing second-order belief.

Pair Name (From Game a to Game b) # of Pairs Treatment Decreases Constant Increases

Second order belief: Low to (0.5 Low, 0.5 High)
(G1, G8) to G16 222 LL+ to LL- 25.68% 51.35% 22.97%
(G4, G15) to G7 222 LH+ to LH- 20.27% 43.69% 36.04%
Combined 444 L?+ to L?- 22.97% 47.52% 29.50%

Second order belief: (0.5 Low, 0.5 High) to High
G9 to (G6, G13) 222 HL- to HL+ 35.14% 52.70% 12.16%
G14 to (G3, G12) 222 HH- to HH+ 14.86% 45.50% 39.64%
Combined 444 H?- to H?+ 25.00% 49.10% 25.90%
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(a) (b)

(c) (d)

Figure 7. Level Distribution for changing second-order belief.

The effect of changing the second-order belief was generally weak, except for the cases where
the subjects had high cognitive loads when facing opponents with low cognitive loads. For the
treatment where both players had low cognitive loads, about 77.03% of the pairs had weakly decreasing
behavioral levels when second-order belief changed from full to partial revelation. Among these
comparisons, only 25.68% had strictly decreasing levels. This finding suggested that the changes
in second-order belief may not have been strong enough for the subjects to adjust their behavioral
level downward, even though both subjects had a low cognitive load and were relatively competent
at contemplating over the strategic environment. To examine the effect of the second-order belief,
it was first necessary to determine the effect of changing the first-order belief for the same group of
subjects. In Table 10, the subject’s behavioral responses to the changing opponent’s cognitive load
were limited when the subject had a high cognitive load. Now, consider the finding in the [LH+] to
[LH-] comparison to the [HH-] to [HH+] comparison (Table 12); changing the second-order belief of
the subject effectively changed his opponent’s first-order belief. If the subject holds the belief about his
opponent (who has a high cognitive load treatment) that the changes in his opponent’s behavioral
level are limited, then the subject should not decrease his behavioral level at all. This partially explains
the low frequency of strictly decreasing behavioral levels for subjects who faced opponents with high
cognitive loads.

The comparison between [HL-] and [HL+] is consistent with the EDR model. In Figure 7c,
the [HL-] treatment is first-order stochastic dominant over the [HL+] treatment. Of the guesses,
87.84% had weakly decreasing behavioral levels, with 35.14% having strict decreases. Changing from
partial revelation to full revelation of high cognitive load, the second-order belief decreased the
subject’s cognitive capability perceived by their opponent. Subjects were responsive to this change in
the belief system, and adjusted their behavioral levels downward to best respond to their opponents.
Testable prediction 3 suggests that if the subject’s behavioral level is binding by their cognitive bound,
then they are not able to make further adjustments according to their changing beliefs. The large
percentage of constant levels for these comparisons supported this statement.

The Wilcoxon test results showed that the level distribution changed for changing second-order
belief. When conducting a one-tailed test, the test result suggested that for [LH+ to LH-] and [HH- to
HH+] treatments, the distribution of levels significantly (at the 1% level) shifted rightward (increasing
behavioral levels). This may have occurred due to the subject’s belief that their opponent with high
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cognitive load will engage in higher behavioral level. This result seems to comply with the results in
Section 5.4, but the underlying reasons need further investigation.

The regression coefficient on the treatment dummy further supported the results. Since the
treatment dummy was coded as zero with full revelation and one with partial revelation, the coefficient
of 0.57 for [HL-, HL+] comparison suggested that the behavioral level decreased from partial to full
revelation. It was significant at the 1% level. Again, the [LH+, LH-] and [HH-, HH+] comparisons
were the opposite direction of model predictions, and they were also highly significant. In general,
when the subjects faced opponents with high cognitive loads, they were responsive to changing
second-order beliefs, but not in the direction that is predicted by the EDR model. However, when they
faced more cognitively capable opponents, then they were mostly responsive to this change in the
belief system because they thought their opponents were responsive to this information in their
strategic environment. This finding is consistent with the EDR model when the opponent has a low
cognitive load, which supports the opposite direction when the opponent is in a less cognitively
capable situation.

5.6. Result 4: Cognitive Bound

In block 2 of the experiment, the subjects played against the computer. They were told that
the computer was playing a Nash equilibrium strategy, and the equilibrium concept was explained.
However, they were not taught the method to derive the equilibrium. The behavioral levels from the
guesses in these two games should be considered as the highest levels they could achieve under each
cognitive load treatment. I selected all the games with the same cognitive load treatment, either low
cognitive load or high cognitive load, and pooled the results. A pairwise comparison between the
pooled data and behavioral level obtained from games 17 and 18 allowed me to examine the existence
of cognitive bounds. There were 888 pairs of comparison for each type of cognitive load, and the
summary statistics are shown in Table 13.

Table 13. The frequency of changing behavioral levels comparing to cognitive bound.

Cognitive Bound # of Pairs Decreases Constant Increases

Low cognitive bound
(G1, G2, G4, G7, G8, G11, G15, G16) to G17 888 18.36% 33.45% 48.20%
High cognitive bound
(G3, G5, G6, G9, G10, G12, G13, G14) to G18 888 21.96% 48.20% 29.84%

Combined 1776 20.16% 40.82% 39.02%

The result for low cognitive load treatment was interesting: 48.20% of the guesses from block
1 games had behavioral levels lower than the subject’s respective cognitive bound (level in game 17).
Less than 20% of guesses had higher behavioral levels. This suggested that in many block 1 games,
subjects purposely adjusted their behavioral levels downward due to different strategic situations,
even though they had reached higher levels. For high cognitive load treatment, about 30% of behavioral
levels increased from block 1 games to game 18. However, about 50% of the guesses had the same
behavioral level across the two situations. Since high cognitive load inherently restricts the subject’s
cognitive ability, there may have been less room for downward adjustments for block 1 games. Due to
the large percentage of weakly increasing levels from block 1 to block 2 games, I concluded that
cognitive bound existed in most cases. In some situations, cognitive bound was strictly higher than
the subject’s behavioral levels in games. In some situations, cognitive bound was the same as the
behavioral levels. Such cases were largely observed in the high cognitive load treatment.

To examine whether high cognitive load had a lower level distribution, I conducted a Wilcoxon
signed-rank test on the estimated behavioral levels of games 17 (low load) and 18 (high load). Table 8
shows that the distributions of levels for the two treatments were significantly different at the 1% level.
The one-tailed test indicated that the distribution of low load cognitive bound levels was to the right of
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the distribution of high load cognitive bound levels. This finding indicated that subjects had a higher
cognitive bound when receiving low cognitive load treatment (memorizing a string of three letters)
compared to receiving a high cognitive load treatment (memorizing a string of seven letters).

5.7. Robustness Check

During the guessing games, subjects needed to memorize a string of three or seven letters and
recall the letters after they finished the guessing game. In this subsection, I present the results of this
memorization task. Although the subjects were fully aware that if they failed to recall all the letters
correctly, they would earn zero points for that round of the game, there were still some cases of wrong
recalls due to reasons such as lack of attention or being too focused on the guessing game. I wanted
to control the experimental results for such cases, as the subjects may have engaged in reasoning at
higher levels when cognitive load did not fully apply. Table 14 shows the results of the memorization
tasks. Most of the memorization tasks were perfectly performed. Not surprisingly, low cognitive load
(three-letter memorization task) had more correct recalls, about 7% more than the high cognitive load
task. The difference was significant at the 1% level.

Table 14. Results of the memorization task.

3 Letters ∗∗∗ (Low Load) 7 Letters (High Load) Total

Correct 97.30% 90.89% 94.09%
Wrong 2.70% 9.11% 5.91%

# of tasks 999 999 1998

∗ indicates < 10% significance, ∗∗ indicates < 5% significance, and ∗∗∗ indicates < 1% significance.

To check whether poor performance of the memorization task affected the treatment results,
I excluded the data with wrong recalls and performed the analysis again. The comparison pair was
dropped from the sample if either game of the pair had incorrect recalls. This was performed to ensure
that the cognitive load was fully in effect, so that high cognitive load added difficulties to thinking
through the guessing games at higher levels, and the cost of reasoning was higher.

Table 15 presents the treatment results after the robustness check. Treatments that involved
high cognitive load had more data points dropped. For example, the [HH-] to [HH+] comparison
had 444 pairs of comparison in the original sample. After robustness check, about 100 pairs were
dropped. However, the results did not change much compared to the results presented in results
1 to 3 (Sections 5.3–5.5). The changes were mostly within 1%. I can therefore safely conclude that
the original results were robust. The quality of the memorization task (i.e., whether the letters were
correctly recalled) was almost independent of the treatment effects. Even in the cases of wrong recalls,
the effect of cognitive load still applied to the subjects.
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Table 15. Summary of the robust results with incorrect recalls dropped.

Pair Name (From Game a to Game b) # of Pairs Treatment Decreases Constant Increases

Increasing Cost of Reasoning
G16 to G9 107 LL- to HL- 20.56% 43.93% 35.51%
G7 to G14 77 LH- to HH- 40.26% 48.05% 11.69%
Combined 184 L?- to H?- 28.80% 45.65% 25.54%

Increasing Cost of Reasoning for Opponent
(G1, G8) to (G4, G15) 426 LL+ to LH+ 23.71% 56.10% 20.19%
(G6, G13) to (G3, G12) 392 HL+ to HH+ 16.33% 42.09% 41.58%
Combined 818 ?L+ to ?H+ 20.17% 49.39% 30.44%

Second order belief: Low to (0.5 Low, 0.5 High)
(G1, G8) to G16 214 LL+ to LL- 26.17% 50.93% 22.90%
(G4, G15) to G7 211 LH+ to LH- 21.33% 44.08% 34.60%
Combined 425 L?+ to L?- 23.76% 47.53% 28.71%

Second order belief: (0.5 Low, 0.5 High) to High
G9 to (G6, G13) 202 HL- to HL+ 35.64% 52.48% 11.88%
G14 to (G3, G12) 152 HH- to HH+ 15.13% 45.39% 39.47%
Combined 354 H?- to H?+ 26.84% 49.44% 23.73%

5.8. Cognitive Tests

In this subsection, I examine the results of the Mensa practice test. The test is composed of
10 questions and has a time limit of 10 min. Some subjects finished earlier, but they could never run
overtime. Each correct answer is worth 1 point and all the unattempted questions are marked as
0 points. The score distribution of 104 subjects (seven missing) is presented in Table 16. There are a few
very low points (2 or 3), and six subjects had scores of 10. Most subjects earned seven or eight points in
this test.

Table 16. Summary statistics of cognitive test score and the counts of level changes following theory predictions.

(1) (2) (3) (4) (5) (6)

Test Score Sum.Strict Sum.Weak Cost.Weak 1st.Weak 2nd.Weak

Points possible 10 18 18 2 8 8
Max 10 13 18 2 8 8
Min 2 0 7 0 2 1
Median 7 4 13 2 6 6
Mean 7 4 13 1.5 5.5 6

To examine whether there are heterogeneous treatment effects in this experiment due to exogenous
cognitive ability, I first determined a measure of the treatment effect. Out of all the results discussed in
results 1 to 3 (Sections 5.3–5.5), there are in total 18 pairs of comparison. For each subject, I recorded one
for the pair if the level change followed the theory prediction, and zero otherwise. As listed in Table 16,
column Sum.Strict includes all the 18 comparisons, and only strict changes of levels are recognized.
For example, if the pair game 16–game 9 had level 2 in both games, it is coded zero under Sum.Strict.
However, column Sum.Weak allows weak changes; therefore, the above-mentioned scenario is coded
as one under this column. The EDR model mostly discusses weak behavioral level changes because,
in some cases, the changes in belief system or costs are not big enough to shift a behavioral level
downwards by one level (evidenced by a large percentage of constant levels). Due to this reason,
I considered “weak” changes, and decomposed them into columns (4) to (6), which cover the three
main results. When limited to strict changes, a number of subjects had zero pairs following theory
prediction (10 out of 111 subjects), and most subjects had only three or four pairs that had changes
that could be predicted by the EDR model. However, when allowing weak changes, seven subjects
had all the comparison pairs that were theory-predicted directional level changes, and most subjects
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had about 13 to 14 comparisons that could be predicted by the EDR model. The last three columns in
Table 16 present results for each treatment separately.

To test whether cognitive ability had any correlation with the treatment effects, I ran a regression
after dropping the subjects with missing test scores. The result is presented in Table 17. I used
gender, class standing, and major as control variables. This information was collected at the end
of the experiment. It appears that the cognitive test score and the female dummy variable were
positively correlated with weak changes (at a 5% significance level), and the treatments changing the
opponent’s cost of reasoning (changing first-order belief) and changing second-order belief. The results
showed some heterogeneous treatment effects in which the more cognitively capable subjects were
more responsive to the treatments as predicted by the EDR model, especially in those requiring
adjustments in response to the changing strategic environment of their opponents. When the strategic
environment changed, these subjects were more likely to actively adjust their actions to gain possible
strategic advantages.

Table 17. Regression results for cognitive test scores on correct directional changes of behavioral levels
in block 1 games.

Sum.Strict Sum.Weak Cost.Weak First Order.Weak Second Order.Weak

Test Score
0.03

(0.16)
0.36 ∗∗
(0.18)

−0.04
(0.04)

0.23 ∗∗
(0.11)

0.17 ∗
(0.10)

Gender (F)
−0.73
(0.57)

1.43 ∗∗
(0.60)

0.03
(0.13)

0.83 ∗∗
(0.37)

0.57 ∗
(0.34)

Class Standing
0.33

(0.24)
−0.18
(0.25)

−0.01
(0.05)

−0.13
(0.15)

−0.04
(0.14)

Major
−0.02
(0.12)

0.00
(0.13)

−0.03
(0.03)

−0.03
(0.08)

0.01
(0.07)

Constant
3.09 ∗
(1.67)

10.04 ∗∗∗
(1.75)

1.76 ∗∗∗
(0.37)

3.94 ∗∗∗
(1.08)

4.34 ∗∗∗
(1.00)

# of Obs. 104 104 104 104 104

“Weak” includes constant levels and decreasing levels, while “strict” only includes strictly decreasing levels.
∗ indicates < 10% significance, ∗∗ indicates < 5% significance, and ∗∗∗ indicates < 1% significance. Standard
errors in parenthesis.

Since the result above suggested that more cognitively capable subjects’ responses to changing
strategic environment were more coherent with the EDR model, I separated the subjects into two groups
according to cognitive test scores. Subjects with scores of eight or above were labeled as high cognitive
subjects (high), and the remainder were labeled as low cognitive subjects (low). Table 18 presents
results 1–3 again, separated by the cognitive test scores. As discussed in results 1 to 3 (Sections 5.3–5.5),
I found significant asymmetries arising from the different strategic environments. Separating the
subjects into two groups according to cognitive test scores allowed a closer examination of the source
of the asymmetry. In Table 18, result 2 and result 3.1 highlight the relatively stable performance for the
high cognitive subjects. As discussed in Section 5.4, subjects’ responses to their opponents’ changing
cost of reasoning depended on their own cost of reasoning. In general, their adjustments in behavioral
levels only followed the EDR model when they had a low cost of reasoning. This observation is
untrue for the high cognitive subjects, who showed relatively stable performance regardless of their
own strategic environment, with about 20% of the comparisons strictly following the EDR model.
I observed a slight increase of 10% for those that did not follow the model; however, in general,
the performance did not vary considerably. For the low cognitive subjects, the difference was huge.
The 27.54% for comparison pairs that strictly followed the model decreased to 12.29%, and, more
strikingly, the percentage of pairs that did not follow the model increased from 19.07% to 51.27%.
This huge difference showed that the asymmetry found in the previous results was mostly due to these
low cognitive subjects. There was a similar observation for result 3.1, where the high cognitive subjects
had relatively stable performance regardless of their opponents’ cognitive loads, whereas the low
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cognitive test score subjects were very sensitive to their opponents’ strategic environments. Therefore,
I concluded that the majority of asymmetric results found in results 2 and 3.1 were primarily driven by
the low cognitive subjects. They were responsive to the treatments under the condition that they were
in a more cognitively advanced situation. For results 1 and 3.2, both high and low cognitive subjects
responded asymmetrically toward the treatment. However, as evidenced in Table 18, the changes from
the low cognitive group were much greater than those of their counterparts.

Table 18. Results 1 to 3 separated by cognitive test scores.

Changes in Behavioral Levels

Treatment Cog Test # of Pairs Decreases Constant Increases

Result 1: Increasing Cost of Reasoning
LL- to HL- High 45 22.22% 37.78% 40.00%
LL- to HL- Low 59 16.95% 47.46% 35.59%
LH- to HH- High 45 28.89% 55.56% 15.56%
LH- to HH- Low 59 35.59% 57.63% 6.78%

Result 2: Increasing Cost of Reasoning for Opponent
LL+ to LH+ High 180 19.44% 59.44% 21.11%
LL+ to LH+ Low 236 27.54% 53.39% 19.07%
HL+ to HH+ High 180 20.00% 47.22% 32.78%
HL+ to HH+ Low 236 12.29% 36.44% 51.27%

Result 3.1: Second order belief: Low to (0.5 Low, 0.5 High)
LL+ to LL- High 90 23.33% 53.33% 23.33%
LL+ to LL- Low 118 28.81% 50.85% 20.34%
LH+ to LH- High 90 20.00% 44.44% 35.56%
LH+ to LH- Low 118 19.49% 42.37% 38.14%

Result 3.2: Second order belief: (0.5 Low, 0.5 High) to High
HL- to HL+ High 90 35.56% 48.89% 15.56%
HL- to HL+ High 118 34.75% 55.08% 10.17%
HH- to HH+ High 90 21.11% 50.00% 28.89%
HH- to HH+ High 118 11.02% 40.68% 48.31%

The impact of cognitive ability on treatment effects was further evidenced by the regression
results. In Table 19, the interaction term is significant for the comparison pairs that did not follow the
EDR model ([HL+ to HH+], [LH+ to LH-], and [HH+ to HH-]). This implied that higher cognitive
test scores skewed the effects of the treatment in the direction pointed by the EDR model. It seems
that cognitive ability plays an important role for the subjects to display behavioral changes that can
be predicted by the EDR model. The cognitive ability was captured endogenously by the treatment
design in this experiment with two kinds of cognitive load. As discussed previously, the results
differed systematically according to the amount of cognitive resources. Cognitive ability was also
captured exogenously by the Mensa practice test, as discussed in this section. Within the asymmetric
findings, subjects with higher cognitive test scores had more stable performance regardless of their
own cognitive load, and were generally more predictable by the EDR model.
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Table 19. Regression results for treatment effects and cognitive test scores on behavioral levels.

Comparison Dummy Score Dummy ∗ Score # Obs.

Changing Cost of Reasoning
LL- to HL- 0.81 (0.79) 0.07 (0.07) −0.06 (0.11) 208
LH- to HH- −2.13 ∗∗∗ (0.73) −0.11 (0.10) 0.19 ∗ (0.10) 208

Changing Opponent’s Cost of Reasoning
LL+ to LH+ −1.15 (0.77) −0.04 (0.09) 0.12 (0.10) 416
HL+ to HH+ 1.67 ∗∗∗ (0.44) 0.08 (0.05) −0.19 ∗∗∗ (0.06) 416

Changing Second Order Belief
LL+ to LL- −1.06 (0.75) −0.04 (0.09) 0.11 (0.10) 312
LH+ to LH- 1.77 ∗∗ (0.80) 0.08 (0.05) −0.19 ∗ (0.11) 312
HL+ to HL- 1.08 (0.75) 0.08 (0.05) −0.07 (0.10) 312
HH+ to HH- −1.85 ∗∗∗ (0.37) −0.11 ∗∗∗ (0.04) 0.19 ∗∗∗ (0.05) 312

∗ indicates < 10% significance, ∗∗ indicates < 5% significance, and ∗∗∗ indicates < 1% significance. Clustered
individual standard errors in parenthesis.

6. Concluding Remarks

In this study, I designed a laboratory experiment to examine the consistency of players’ strategic
sophistication formulated by the level-k model. Following the endogenous depth of reasoning
framework, I controlled the strategic environment by varying the cost of reasoning for the subjects,
and their first- and second-order beliefs about their opponents.

My findings were consistent with the EDR model under some conditions. When the strategic
environment was carefully controlled, subjects were very responsive towards the changes in the
environment. Subjects who have more cognitive resources (in a low cognitive load treatment) or
subjects who are facing opponents with less cognitive resources (in a high cognitive load treatment)
change strategies systematically. This behavior can be predicted by the EDR model. Subjects in a
strategically disadvantaged situation (high cognitive load treatment) have less room for strategic
adjustments. In some of my findings, subjects appeared to try to achieve higher behavioral levels when
they were under the high cognitive load treatment. The reason for this is still unclear. It may due to
the awareness of the strategic disadvantage and the extra effort of the subjects under such situations,
or some other behavioral factors existed that were not captured by the EDR model. The underlying
reason needs further investigation. The effect of cognitive ability on the treatments was also captured
by the cognitive test. Subjects with higher test scores were more predictable by the EDR model,
regardless of the strategic environment. This finding is in line with the asymmetry observed in my
results. As the source of asymmetry was mainly the amount of cognitive resources, it is not surprising
that subjects with higher cognitive test scores adjusted better in these tasks.

A level of cognitive bound existed for subjects in different strategic situations. When playing
games under the same amount of cognitive resources, subjects rarely had behavioral levels that
exceeded their respective cognitive bounds for that strategic situation. Significant downward
adjustments occurred from the cognitive bound in response to different strategic environments. Overall,
when there is a strict control over the strategic environment, changes in k-levels across games are
systematic. They can be explained by the EDR model to some extent, especially for subjects in a
more cognitively advantaged situation. This study only discusses the directional changes in the levels.
Further studies could examine the criteria and accuracy of such predictions.
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Abstract: We propose a framework in order to econometrically estimate case-based learning and apply
it to empirical data from twelve 2 × 2 mixed strategy equilibria experiments. Case-based learning
allows agents to explicitly incorporate information available to the experimental subjects in a simple,
compact, and arguably natural way. We compare the estimates of case-based learning to other
learning models (reinforcement learning and self-tuned experience weighted attraction learning)
while using in-sample and out-of-sample measures. We find evidence that case-based learning
explains these data better than the other models based on both in-sample and out-of-sample measures.
Additionally, the case-based specification estimates how factors determine the salience of past
experiences for the agents. We find that, in constant sum games, opposing players’ behavior is
more important than recency and, in non-constant sum games, the reverse is true.

Keywords: learning; behavioral game theory; case-based decision theory
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1. Introduction

Economists across the discipline—micro and macro, theory and empirics—study the impact of
learning on individual and social behavior. Two questions are typical of this inquiry: first, whether and
when learning leads to equilibrium behavior, and second, which model(s) of learning best explain the
data. In this paper, we formulate a method to econometrically estimate Case-based Decision Theory
(CBDT), introduced by Gilboa and Schmeidler [1], on individual choice data.

Like Expected Utility (EU), CBDT is a decision theory: that is, it shows that if an agent’s choice
behavior follows certain axioms, it can be rationalized with a particular mathematical representation of
utility e.g., Von Neumann and Morgenstern [2], Savage [3]. The Expected Utility framework has states
of the world, actions, and payoffs/outcomes. The CBDT framework retains actions and payoffs, but it
replaces the set of states with a set of “problems”, or circumstances; essentially, vectors of information
that describe the choice setting the agent faces. CBDT postulates that when an agent is confronted with
a new problem, she asks herself: how similar is today’s problem to problems in memory? She then
uses those similarity-weighted problems to construct a forecasted payoff for each action, and chooses
an action with the highest forecasted payoff.

The primary motivation for our study is to estimate and measure the efficacy of CBDT to explain
learning. Therefore, in this context, we refer to Case-based Learning or CBL. We develop a framework
to estimate dynamic case-based decision theory econometrically and test it in a game-theoretic setting
against other learning models. One significant difference between CBL and other learning models
is the formulation of how information enters into decision-making. In CBL, information enters in
how agents perceive past experiences to be salient to current choice. To do this, CBL incorporates
psychological similarity.

Games 2020, 11, 38; doi:10.3390/g11030038 www.mdpi.com/journal/games59



Games 2020, 11, 38

An important part of this work is using a stochastic choice rule to estimate CBDT. CBDT is a
deterministic theory of choice, but, in this study, we transform it into stochastic choice. The primary
purpose of this transformation is estimating parameters of models on data, like much of the literature in
learning algorithms that we compare CBDT against. However, it is worth noting that there is precedent
in the literature to treat CBDT specifically as stochastic, e.g., Pape and Kurtz [4] and Guilfoos and
Pape [5] use stochastic forgetfulness in their implementations to match human data. Moreover, there is
a broader tradition in psychology of converting deterministic utility valuations into stochastic choice
through the so-called Luce choice rule or Luce choice axiom [6] (see Section 3.6).

We test CBL and other learning models on data from a series of 2 × 2 experimental mixed
strategy equilibria games. Erev and Roth [7] make an explicit case for the use of unique mixed strategy
equilibrium games to investigate learning models, in part because the number of equilibria does not
change with finite repetitions of the game and the equilibrium can be achieved in the stage game.
Given the simplicity of the information available to subjects, these data provide a relatively conservative
environment for a researcher to test CBL, as it restricts the degrees of freedom to the researcher. In an
experiment, the information available to subjects is tightly controlled, so a well-defined experiment
provides a natural definition of the problem vector for CBDT. We estimate parameters of the learning
algorithms to understand how parameters change under different contexts, and because they provide
information about the nature of choice. A benefit of estimating parameters of CBL is to compare how
stable the parameters remain under different contexts. The data we use are well-studied by researchers
investigating stationarity concepts and learning models [8,9].

We find that CBL explains these empirical data well. We show that CBL outperforms other
learning algorithms on aggregate on in-sample and out-of-sample measures. Reinforcement learning
and CBL perform similarly across individual games and they have similar predictions across games.
This is also supported by our analysis of the overlap in RL and CBL in attraction dynamics when
certain restrictions are made. When learning models outperform the known equilibria or stationary
concepts (Nash Equilibrium, action-sampling equilibrium, payoff-sampling equilibrium, and impulse
balance equilibrium) it prompts the question of which learning models characterize the data well and
what insights are gained through learning models into decision making behavior.1 For instance, it is
known that some of the learning models in games do not converge to Nash Equilibrium and then we
must consider what is it converging to, if anything, and how is it converging.

Our econometric framework for CBL provides estimates that measure the relative importance for
each piece of information available to subjects and the joint significance of information in predicting
individual choice; this can be interpreted as estimates of the salience of past experiences for the agents.
We find that both recency and opposing players’ behavior are jointly important in determining salience.
We also find that in constant sum games, the behavior of opposing players is more important than
recency, while, in non-constant sum games, recency is more important. The relative importance
(as revealed by the relative weights) provides new insight into how subjects respond to stimuli in
mixed strategy games, and provides a new piece of empirical data for future theory models to explain
and understand. This points toward future work, in which more studies interact learning models with
available information to identify how learning occurs in and across games.

We compare CBL to two learning models from the literature: Reinforcement Learning [7];
and self-tuning Experience Weighted Attraction [10]. Reinforcement Learning (RL) directly posits
that individuals will exhibit behavior that in the past has garnered relatively high payoffs.
Self-tuning Experience Weighted Attraction (self-tuning EWA) is a model that allows for the learners
to incorporate aspects of reinforcement learning and belief learning. Both have achieved empirical
success in explaining experimental game play; in particular, these two were the most successful

1 The learning models from Chmura et al. [9] establish the fit of these stationary concepts and other learning models provide
a worse fit of the data than the models considered here. We do replicate the findings for self-tuning EWA and find a better
fit for reinforcement learning by estimating a greater number of free parameters.
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learning models tested in Chmura et al. [9], whose data we analyze. We describe these models
in greater detail in Section 3. We also formally investigate the relationship between CBL and RL;
we show there is a mapping between RL and CBL when particular assumptions are imposed on both.
Relaxing these assumptions is informative in understanding how the algorithms relate.

There is a small but persuasive literature evaluating the empirical success of CBDT. It has been
used to explain human choice behavior in a variety of settings in and outside the lab. There are three
classes of empirical studies. The first class uses a similarity function as a static model, which ignores
dynamics and learning [11,12]. The second class is dynamic, but it utilizes simulations to show
that case-based models match population dynamics rather than econometric techniques to find
parameters [4,5]. The third class is experimental investigations of different aspects of case-based
decision-making [13–18]. Our study is unique in that it proposes a stochastic choice framework
to estimate a dynamic case-based decision process on game theoretic observations from the lab.
Further, we relate this estimator to the learning and behavioral game theory literature and demonstrate
the way in which case-based learning is different.

Neuroeconomic mechanisms also suggest that CBDT is consistent with how past cases are encoded
and used in order to make connections between cases when a decision-makers faces a new situation [19].
Neuroeconomics is also in agreement with many other learning models. It is hypothesized by Gayer
and Gilboa [20] that, in simple games, case-based reasoning is more likely to be discarded in favor of
rule-based reasoning, but case-based reasoning is likely to remain in complex games. CBDT is related
to the learning model of Bordalo et al. [21], which uses a similarity measure to determine which past
experiences are recalled from memory. This is related to CBDT: in Bordalo et al. [21], experience recall
is driven by similarity, while, in CBDT, how significant an experience weighs in utility is driven
by similarity. Argenziano and Gilboa [22] develop a similarity-based Nash Equilibria, in which the
selection of actions is based on actions that would have performed best had it been used in the past.
While the similarity-based equilibria are closely related to this work, our case-based learning is not an
equilibrium concept. Our work builds on the empirical design developed in the applied papers as well
as those developing empirical and functional tools related to CBL e.g., [23,24].

2. Applying Case-Based Learning to Experiments

First, we compare the case-based approach to traditional expected utility. The expected utility
framework requires that the set of possible states is known to the decision-maker and that the
decision-maker has a belief distribution over this set of states. Case-based decision theory replaces
the state space and its corresponding belief distribution with a “problem” space—a space of possible
circumstances that the decision-maker might encounter—and a similarity function defined over pairs of
problems (circumstances). One limitation of the expected utility approach is that it is not well-defined
for the decision-maker to encounter a truly “new” state, which is, a state the decision-maker had never
thought of before (it could be modeled as a state that occurs with probability zero, but then Bayesian
updating would leave it at probability zero). The case-based approach overcomes this difficulty:
the decision-maker can naturally encounter a “new” problem or circumstance, and need only be able
to judge how similar that problem is to other problems the decision-maker has encountered: no ex-ante
determination is required.2 The problem space is also, arguably, more intuitive for many practical
decision-making problems than the corresponding state space. For example, consider the problem of
hiring a new assistant professor, where one’s payoff includes the success of this candidate, fit with
the current department, willingness of the candidate to stay, etc. Describing each candidate as a
vector of characteristics that can be judged more or less similar is fairly intuitive, while constructing

2 It is worth noting that there is a mapping between expected utility and case-based decision theory [25], which implies that
in a formal sense replacing the state space with the problem space is not ‘easier,’ if one requires that the decision-maker
must ex-ante judge the similarity between all possible pairs of problems.
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a corresponding state space—possible maps of candidates to payoff-relevant variables—may not
be. Reasoning by analogy, through similarity, can also make complex decisions more manageable.
Moreover, the similarity between vectors of characteristics provides a specific means of extrapolating
learning about one candidate to other candidates; the assumption of prior distributions, and updating
those distributions, provides less guidance about how that extrapolation should be done.

In our setting multiple games are played in a laboratory in which players interact with each
other to determine outcomes. The state space in this setting is large. The broadest interpretation of
the appropriate state space is: the set of all possible maps from all possible histories of play with all
opponents to all future play. While this is quite general, learning (that is, extrapolation from past
events to future ones) requires the specification of a well-informed prior; if literally any path of play
is possible given history, and if one had a diffuse (i.e., “uninformed”) prior over that set, then any
future path is equally likely after every possible path of play. Alternatively, the state space might
assume a limited set of possible player types or strategies; in that case, the state space would be all
possible mappings of player types/strategies to players. While this provides more structure to learning,
it requires that the (correct) set of possible player types is known.

On the other hand, defining an information vector about history is less open-ended. There are
natural things to include in such a vector: the identity (if known) of the player encountered; the past
play of opponents, a time when each action/play occurred; and, perhaps other features, such as
social distance [26] or even personality traits [27]. This implies a kind of learning/extrapolation in
which the behavior of player A is considered to be more relevant to predictions of A’s future behavior
than is the behavior of some other player B; that if two players behave in a similar way in the past;
that learning about one player is useful for predicting the play of another; and, that more recent events
are more important than ones far in the past. These implications for learning naturally arise from a
similarity function that considers vectors closer in Euclidean distance to be more similar (as we do
here).3 Interestingly, others have adopted the concept of similarity as a basis of choice in cognitive
choice models [28].4

Note that this kind of extrapolation can be constructed in a setting with priors over a state
space, under particular joint assumptions over the prior over the state space and the state space itself.
Case-based decision theory can be thought of as a particular set of testable joint assumptions that may
or may not be true for predicting human behavior.

3. Learning Algorithms

Learning models in economics have served dual purposes. First, learning algorithms can play
a theoretical role as a model of dynamics which converge to equilibrium. This is the explicit goal of
the “belief learning” model [29]. Second, learning algorithms can play an empirical role in explaining
the observed dynamics of game play over time. This goal is explicit in the “reinforcement learning”
model [7] which draws heavily on models from artificial intelligence and psychology.

Both purposes are incorporated in the Experience Weighted Attraction model, which, appropriately
enough, explicitly incorporates the belief learning and reinforcement learning models [30–32].
EWA and its one parameter successor, self-tuning EWA, has proved to be a particularly successful
account of human experimental game play. Here, we discuss these reinforcement and self-tuning EWA
models and compare and contrast them to the case-based learning approach.

In the following repeated games, we assume the same following notation: there are a set of
agents indexed by i = 1, . . . , n, each with a strategy set Si, which consists of mi discrete choices,

3 But see Section 7.2. In fact, Erev and Roth [7] discuss such a similarity between situations in which to define experimentation
of a subject when choosing strategies.

4 Similarity is used in a way that maps closely to how learning models work, in general, by repeating successful choices under
certain conditions. Choices in Cerigioni [28] use similarity when automated through the dual decision processes familiar
from psychology.
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so that Si =
{

s1
i , . . . , smi

i
}

. Strategies are indexed with j (e.g., sj
i). Let s = (s1, s2, . . . , sn) be a strategy

profile, one for each agent; in typical notation, s−i denotes the strategy profile with agent i excluded,
so s−i = (s1, . . . , si−1, si+1, . . . , sn). Scalar payoffs for player i are denoted with the function πi(si, s−i).
Finally, let si(t) denote agent i’s strategy choice at time t, so s−i(t) is the strategy choices of all other
agents at time t.

Erev and Roth [7] argue that, empirically, behavior in experimental game theory appears to be
probabilistic, not deterministic. Instead of recommending deterministic choices, these models offer
what the EWA approach has come to call "attractions." An attraction of an agent i to strategy j at time t
is a scalar which corresponds to the likelihood that agent will choose this strategy at this time relative to
other strategies available to this agent. An attraction by agent i to strategy j at time t under an arbitrary
learning model will be represented by Aj

i(t). We compare these models by saying that different models

provide different functions which generate these attractions, so we will have, e.g., CBAj
i(t) to represent

the attraction that is generated by the case-based model.

Because a given attraction corresponds to a likelihood, a vector of attractions
{

Aj
i(t)

}mi

j=1
corresponds to a probability distribution over available choices at time t and, therefore, fully describes
how this agent will choose at time t.5

We consider case-based learning (CBL), reinforcement learning (RL), and self-tuning experience
weighted attraction (EWA), in turn.

3.1. Case-Based Learning

We bring a formulation of case-based decision theory as introduced by Gilboa and Schmeidler [1]
into the “attraction” notation discussed above, ultimately ending up with a case-based attraction
CBAj

i(t) for each strategy sj.
The primitives of Case-Based Decision Theory are: a finite set of actions A with typical element a,

a finite set of problems P with typical element p, and a set of results R with typical element r. The set
of acts is of course the same as the set of actions or strategies as one would find in a typical game
theoretic set-up. The set of problems can be thought of a set of circumstances that the agent might face:
or, more precisely, a vector of relevant information about the present circumstances surrounding the
choice that the agent faces, such as current weather, time of day, or presence of others. The results are
simply the prizes or outcomes that result from the choice.

A problem/action/result triplet (p, a, r) is called a case and can be thought of as a complete
learning experience. The set of cases is C = P ×A×R. Each agent is endowed with a set M⊆ C,
which is called the memory of that agent. Typically, the memory represents those cases that the agent
has directly experienced (which is how it is used here) but the memory could be populated with cases
from another source, such another agent or a public information source.

Each agent is also endowed with a similarity function s : P × P → R+, which represents how
similar two problems are in the mind of the agent. The agent also has a utility function u : R → R

and a reference level of utility H, which is called the aspiration value. An aspiration value is a kind of
reference point. It is the desired level of utility for the agent; when the agent achieves her aspiration
value of utility, she is satisfied with that choice and is not moved to seek alternatives.

When an agent is presented with problem p, the agent constructs the case-based utility for each
available action a ∈ A and selects an action with the highest CBU.6 CBU is constructed from memory
in Equation (1).

5 We discuss the functional form of the probability distribution in Section 3.6.
6 As discussed in the introduction of this section, our implementation uses attractions, so choice is not deterministic, but rather

stochastic with the probability of choosing an action increasing in the CBU.
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CBU(p, a) = ∑
(q,a,r)∈M(a)

s(p, q) [u(r)− H] (1)

where M(a) is defined as the subset of memory in which act a was chosen; that is
M(a) = {(q, a, r)|(q, a, r) ∈ M}. (Following Gilboa and Schmeidler [1], if M(a) is the empty set—that
is, if act a does not appear anywhere in memory—then CBU(p, a) is assumed to equal zero.)

The interpretation of case-based utility is that, to form a forecast of the value of choosing act a,
the agent recalls all those cases in which she chose action a. That typical corresponding case is called
(q, a, r). The value associated with that case is the similarity s(p, q) between that case’s problem q and
her current problem p, times the utility value of the result of that decision, minus the aspiration value
H. Subsequently, her total forecast is the sum of those values across the entire available memory.

Now, let us bring the theory of case-based learning to an empirical strategy for estimating
case-based learning in these experiments. Note that the experiments studied here—2 × 2 games with
information about one’s history—provide an environment for testing the theory of case-based learning,
because the information vectors P presented to subjects is well-understood and controlled by the
experimenter. (Outside the lab, more and stronger assumptions may be required to define P).

3.1.1. Definition of Case-Based Attraction

CBL is defined by Equation (2). CBAj
i(t) is the case-based attraction of agent i to strategy j at time

t; as discussed above, an attraction corresponds to the probability of selecting a strategy j. Here we
present the equation and discuss each component in turn:

CBAj
i(t) = Aj

0 +
t−1

∑
m=max(t−M,0)

I(sj
i , si(m)) · S(xt, xm) · [π(si(m))− H] (2)

The first term, Aj
0, is a taste parameter for strategy j. On the first instance of play, the second term

is zero (we will explain below), so Aj
0 also equals the initial attraction to strategy j. On the first instance

of play, there are no prior cases to inform the experimenter of the subject’s preferences, so it might be
natural to assume that the agent ought to be indifferent among all actions, which would suggest that
agents ought to choose all actions with equal probability in the first round. This does not appear to be
the case in the data, hence the inclusion of this taste parameter (if initial actions are selected with equal
probabilities, then these taste parameters will be estimated to be equal).

Now, let us consider the second term:

t−1

∑
m=max(t−M,0)

I(sj
i , si(m)) · S(xt, xm) · [π(si(m))− H]

The variable M the (maximum) length of memory considered by the agent. The first case
considered by the agent is listed as m = max(t − M, 0). This has a straight-forward interpretation:
either considered memory begins at period 0, which is the beginning, or, if t > M (and, therefore,
t − M > 0), then only the last M periods are considered in memory. For example, if M = 3, then every
utility calculation only considers the last three periods. If all experiences are included in memory then
M is equal to ∞. We test the importance of the choice of M in the Section 6.

I(sj
i , si(m)) is an indicator function that maps cases in memory to the appropriate attraction for

the strategy chosen: that is, when the strategy chosen, si(m), is equal to strategy sj
i , then this function

equals one and it contributes to the attraction for strategy sj
i . Otherwise, this function is zero and it

does not contribute.
S(xt, xm) is the similarity function, which translates the elements of the problem into relevance:

the greater the similarity value, the more relevant problem xm is to problem xt to the decision-maker.
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[π(si(m))− H] is the payoff in memory, net the aspiration level, so results that exceed aspirations
are positive and results that fall short of aspirations are negative.

3.1.2. The Functional Form of Similarity

We give a specific functional form to the similarity function in Equations (3) and (4), where x
and y denote two different problem vectors. We choose an inverse exponential function that uses
weighted Euclidean distance between the elements of the circumstances to measure the similarity of
situations. This choice has support from the psychology literature [33]. Specifically, the information
that individuals encounter in past experiences and can observe in the current case are compared
through the similarity function. The more similar the current case to the past case, the greater weight
the past case is given in the formulation of utility. (We explore other functional forms of similarity and
distance between information vectors in Section 7.2.).

S(x, y) =
1

ed(x,y)
(3)

where d(x, y) =

√√√√#Dims

∑
i=1

wi[(xi − yi)
2] (4)

for some weights wi.

3.1.3. Comparision to RL And EWA

In RL and self-tuning EWA, attractions at time t are a function of attractions at time t − 1,
and attractions explicitly grow when the strategies they correspond to are valuable to the agent,
a process called ‘accumulation’. Note that CBL does not explicitly accumulate attractions in this way,
and has no built-in depreciation or accumulation factor such as φ or N(t)

N(t−1) . However, closer inspection
suggests that CBL implicitly accumulates attractions through how it handles cases in memory: as new
cases enter memory, when payoffs exceed the aspiration level, they increase the attraction of the
corresponding strategy. This appears to function as explicit accumulation does in the other theories.
One important difference between the case-based approach to accumulation and the RL/EWA method
is dynamic re-weighting: that is, when the current problem (information vector) changes, the entire
memory is re-weighted by the corresponding similarity values. There is accumulation of a sort, but that
accumulation is information-vector dependent. Accumulation through similarity allows for CBL to
re-calibrate attractions to strategies that are based on information in the current and past problem sets.7

Depreciation can also be modeled in a natural way in CBL: if time is a characteristic in the
information vector, then cases further in the past automatically play a diminishing role in current
utility forecasts as they become more dissimilar to the present.

3.2. Reinforcement Learning

Reinforcement learning (RL) has origins in psychology and artificial intelligence and it is used in
many fields, including neuroscience [34,35]. This is the formulation that we use here:

Consider a vector of attractions
{

RLAj
i

}mi

j=1
. Suppose that strategy sj is chosen, the payoff

experienced by agent i is added to RLAj
i . In this way, strategies that turn out well (have a high payoff)

have their attraction increased, so they are played more likely in the future. After strategy profile s(t)
is chosen at time t and payoffs are awarded, the new vector of attractions is:

7 Moreover, the similarity function can also be dynamic, which further allows for reconsideration of past events in a way
RL/EWA accumulation does not.
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RLAj
i(t) = φRLAj

i(t − 1) + I
(

sj
i (t) , sj

i

)
· πi (si, s−i (t)) ∀j = 1, . . . , mi (5)

This is the same basic model of accumulated attractions as proposed by Harley [36] and Roth
and Erev [37]. The first term within the brackets, φRLAj

i(t − 1), captures the waning influence of
past attractions. For all attractions other than the one corresponding to the selected strategy s(t)
attractions tend toward zero, assuming that the single global factor is not too large. I(sj

i , si(t)) will

be used to denote the indicator function which equals 1 when sj
i = si(t) and 0 otherwise. The one

countervailing force is the payoff πi, which only plays a role in the selected strategy (as indicated
by the indicator function). This version of reinforcement learning is a cumulative weighted RL,
since payoffs accumulate in the attractions to chosen strategies. In a simplified setting where payoffs
are weakly positive, this process can be thought of as a set of leaky buckets (with leak rate (1 − φ)),
one corresponding to each strategy, in which more water is poured into buckets corresponding to the
strategy chosen in proportion to the size of the payoff received.8 Subsequently, a strategy is chosen
with a probability that corresponds to the amount of water in its bucket.

There are simpler forms of RL that can be used, where φ is equal to 1, and not estimated.
This simpler model is estimated in Chmura et al. [9] and performs worse than our modified model
in explaining the data. We use Equation (5) to fit the data to make conservative comparisons to the
CBL model.

3.3. Self-Tuning Experience Weighted Attraction

Self-tuning experience weighted attraction was developed by Ho et al. [10] to encompass
experience weighted attraction [31] in a simple one parameter model. EWA incorporates both RL and
belief learning, which relies on so-called “fictitious play”, in which the payoffs of forgone strategies
are weighted alongside realized payoffs. Self-tuning EWA is a compact and flexible way to incorporate
different types of learning in one algorithm.

Equation (6) describes self-tuning EWA: a δ weight is placed on fictitious play and a (1 − δ)

weight is placed on realized outcomes. Self-tuning EWA has been successful at explaining game play
in a number of different settings, including the data that we use in this paper.

EWAj
i(t) =

N(t − 1)φ(t)EWAj
i(t − 1) +

[
δ + (1 − δ) · I(sj

i , si(t))
]
· π(sj

i , s−i(t))

N(t)
(6)

In self-tuning EWA, the parameter N evolves by the rule N(t) = φ · N(t − 1) + 1 and N(0) = 1.
The I(·) function is an indicator function that takes a value of 1 when s(t) = si and 0 otherwise.
The parameter φ acts as a discount on past experiences, which represents either agents forgetfulness
or incorporating a belief that conditions of the game may be changing. This parameter evolves,
so that φ(t) = 1 − 1

2 Sp(t), where Sp(t) is a surprise index. Sp(t) measures the extent to which agent’s
partners deviate from previous play. More precisely, it is defined by the cumulative history of play
hk

j (t) and a vector of the most recent play rk
j (t) for strategy j and opposing player k, as given in the

Equations (7) and (8).

hk
j (t) =

∑t
τ=1 I(sk

j , sk(τ))

t
(7)

rk
j (t) =

2

∑
j=1

∑t
τ=t−W+1 I(sk

j , sk(τ))

W
(8)

8 The bucket analogy is also apropos because Erev and Roth [7] describe a spillover effect, in which buckets can slosh over to
neighboring buckets. We do not investigate the spillover effect in this paper, since with only two actions (in 2 × 2 games)
the spillover effect washes out.

66



Games 2020, 11, 38

W = 2 because there are only two strategies available to all agents in these games. In the
experiments used in this paper, the subjects are unable to identify opposing players and we treat all of
the opposing players as a representative average player, following Chmura et al. [9], to define histories
and the surprise index. Equation (9) defines the surprise index, which is the quadratic distance between
cumulative and immediate histories.

Sp(t) =
2

∑
j=1

(rk
j (t)− hk

j (t))
2 (9)

The fictitious play coefficient δ shifts attention to the high payoff strategy. This function takes the
value of δ = 1

W if π(si, s−i(t)) > π(t) and 0 otherwise.

3.4. Relationship between RL and CBL

There is a strong connection between case-based learning and other learning algorithms,
particularly reinforcement learning. One way to illustrate the connection between RL and CBL
is by constraining both RL and CBL in particular ways, so that they become instances of each other.
Subsequently, we can consider the implications of relaxing these constraints and allowing them
to differ.

On CBL, we impose three restrictive assumptions: first, we constrain the information vector to
include only time (so that the only aspect of situations/problems that the case-based learner uses to
judge similarity is how close in time they occurred). Second, we set the aspiration level to zero, so that
payoffs are reinforced equivalently in RL and CBL. Third, we assume the similarity function is of
the form in Equation (10).

S(xt, xm) =
1

w|t−m| . (10)

(Note, again, that xt is a ‘vector’, which consists only of t).
Finally, on both, we impose the assumption that initial attractions to be zero for both CBL and RL,

which means that, in both cases, choices are randomized in the initial period.
We can then derive the weight in similarity that leads to the same decay in attractions in both RL

and CBL, as displayed in Equation (11).

φ = S(xt, xt−1) =
1
w

(11)

Under the assumptions on RL and CBL listed above, if one estimates the RL equation (Equation (5))
and then estimates the CBL equation (Equation (2)) on the same data, and then resulting estimators φ

and w are necessarily related in the way described in Equation (11). We do not use these specialized
forms to estimate against the data, but rather use them to demonstrate the simple similarities and
differences in how CBL and RL are constructed. In Appendix A, we provide more details on the formal
relationship between RL and CBL.

This is a base case, where RL and CBL are the same. Now, let us consider two complications
relative to this base case and consider the implications for the different attractions.

First, let us allow for more variables in the information vector (in addition to time) and consider
how this would change the CBL agent relative to the RL/base case agent. Adding more variables
to the information vector can be thought of as a CBL agent being able to maintain multiple ‘rates of
decay’, which could vary over time, where the CBL agent can choose which ‘rate of decay’ to use
based on the current situation. For example, suppose opponent ID is included in the information
vector. Subsequently, if the agent is playing a partner they encountered two periods ago, the CBL agent
could choose to downweight the previous period’s attraction and increase the weight given to the
problem from two periods ago. In essence, this additional information, and combination of weights in
the definition of distance, allows for the φ parameter to be ‘recast’ based on the memory of an agent
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and the current problem. The modification of reinforcement learning to include the recasting is an
elegant way to incorporate the multiple dimensions of information agents use when playing games.
It suggests that other empirical applications in discrete choice may also benefit in using CBL, because it
contains core elements of reinforcement learning that have been successful in modeling behavior.

Second, let us consider an aspiration level that differs from zero. Suppose payoffs π ≥ 0,
as they are in the games that we consider here. Subsequently, under RL, and under CBL with
H = 0, every experience acts as an attractor: that is, it adds probability weight to a particular action,
the question is: how much probability weight does it add. However, when H > 0, then the change in
attraction of an action is does not increase in π, but rather in π − H. This, importantly, changes the
implications for attraction for payoffs that fall short of H. Under CBDT, such payoffs provide a
“detractor” to that action, so they directly lower the attraction corresponding to this action.

3.5. Initial Attractions

We estimate initial attractions to strategies for all learning models. This adds two additional
parameters to estimate for all models, for the row player the initial attraction to strategy Up and for
the column player the initial attraction to strategy Left. This seems sensible, because, empirically,
it does not appear that subjects choose strategies randomly in the first period of play, and, a priori,
there is a systematic difference between payoffs when considering the expected play by the opposing
player. We can compare the actions in the first round of the experimental data to the estimated initial
attractions as a sensible test of the learning model. We fit all learning models using the stochastic
choice rule and appropriate learning theory and then predict the choice for each period (round) and
subject in the dataset.

3.6. Stochastic Choice Probabilities

As defined in Sections 3.1–3.3, each learning model generates a set of attractions for each strategy
j: RLAj

i(t), EWAj
i(t), and CBAj

i(t). We use the same function to aggregate the attractions generated by

these different models. That function is a logit response rule. Let Aj
i(t) be any of these three attractions.

Subsequently, Equation (12) gives the probabilities that the attractions yield:

Pj
i (t + 1) =

eλ·Aj
i (t)

mi

∑
k=1

eλ·Ak
i (t)

(12)

Logit response has been expansively used in the learning literature of stochastic choice and, if the
exponetial of the attractions are interpretes “choice intensities”, this formulation is consistent with
the Luce Choice Rule [6], as discussed in the introduction.9 Equation (12) is used as the stochastic
choice rule to fit data to the models to explain each individual choice j by each subject i in every time
period t. The learning algorithm equations will be estimated using maximum likelihood in order to
determine the fit of the each of the models and provide estimates of the specific learning parameters.
This includes experimenting with various initial parameters and algorithms.10

In this logit rule, λ is the sensitivity of response to the attractions, where a low value of λ

would suggest that choices are made randomly and a high value of λ would suggest that the choices
determined by the attractions. This value will be estimated with the empirical data and could vary for
a variety of reasons, such as the subject’s motivation in the game or unobserved components of payoffs.

9 In addition to logit response, we also estimate a power logit function, but find that it does not change the conclusions or
generally improve the fit of the learning models estimated here.

10 We use STATA to estimate the maximium likelihood functions using variations of Newton–Raphson and
Davidon–Fletcher–Powell algorithms, depending on success in estimation. Code is available upon request.
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4. Description of the Data

All of the games investigated are of the 2 × 2 form, as shown in Figure 1. The experiments
from these games were collected by Selten and Chmura [8] and discussed in Chmura et al. [9].
Chmura et al. [9] investigate a series of learning models and determine which rules characterize
individual and aggregate performance better. They find that self-tuning EWA fit the data best yet
impulse-matching learning also fit the data well. The twelve 2 × 2 games include both constant sum
and non-constant sum games.

The experiments were performed at the Bonn Lab with 54 sessions and 16 subjects in each session.
864 subjects participated in the experiment. The subjects in a given session were only exposed to one
game. Games were 200 rounds long and subjects were randomly matched by round in groups of eight
during the sessions. Knowledge of the game structure, payoffs, and matching protocols were public at
the outset. The subject’s role of row or column player are fixed during the experiment, so four subjects
in the group of eight were assigned to be a row player and the others were assigned to be a column
player. At the end of each round, the subjects were told their current round payout, the other player’s
choice, the round number, and their cumulative payout. The experiments lasted between 1.5 and 2 h
and subjects received at 5 Euro show-up fee plus an average of 19 Euros in additional payouts.

L R L R

Game 1 U (10, 8) (0, 18) Game 7 U (10, 12) (4, 22)
D (9, 9) (10, 8) D (9, 9) (14, 8)

L R L R

Game 2 U (9, 4) (0, 13) Game 8 U (9, 7) (3, 16)
D (6, 7) (8, 5) D (6, 7) (11, 5)

L R L R

Game 3 U (8, 6) (0, 14) Game 9 U (8, 9) (3, 17)
D (7, 7) (10, 4) D (7, 7) (13, 4)

L R L R

Game 4 U (7, 4) (0, 11) Game 10 U (7, 6) (2, 13)
D (5, 6) (9, 2) D (5, 6) (11, 2)

L R L R

Game 5 U (7, 2) (0, 9) Game 11 U (7, 4) (2, 11)
D (4, 5) (8, 1) D (4, 5) (10, 0)

L R L R

Game 6 U (7, 1) (1, 7) Game 12 U (7, 3) (3, 9)
D (3, 5) (8, 0) D (3, 5) (10, 0)

Note: Payoffs for row (r) and column (c) players are given (r,c) in the matrix. Abbreviations of for Up, Down, Left, and Right are
given as U,D,L, and R.

Figure 1. 2 × 2 Games.
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5. Measuring Goodness of Fit

Following Chmura et al. [9], we use a quadratic scoring rule in order to assess the goodness of
fit of each learning model.11 This rule, as described in Equation (13), provides a measure of nearness
from the predicted choice to the observed choice.12

qi(t) = 2pi(t)− pi(t)
2 − (1 − pi(t))2 (13)

The quadratic score, qi(t), is a function of the probability, pi(t), of the choice by action i in period t.
p is the predicted probability that is derived from the parameters of the learning models. The score is
equal to 1 minus the squared distance between the predicted probability and the actual choice.

The expected range of qi(t) is [−1, 1]. On one hand, if a learning model predicts the data perfectly,
then pi(t) = 1, which implies qi(t) = 1. On the other hand, a completely uninformative learning
model, in our setting, would be right half the time, so pi(t) = 0.5, which implies qi(t) = 0.5.

We employ the quadratic scoring rule in order to understand goodness of fit of each learning model
in multiple tests. First, we calculate parameters on the entire playing history of all subjects and use
the best-fitting parameters to estimate the predicted probabilities across playing history and calculate
the mean quadratic score for each learning model. Next, we employ a rolling forward out-of-sample
procedure. The out-of-sample process is chosen by fitting all models on the first X% of the data and
using the fitted parameters of the model to predict the holdout sample of (100 − X)% of the data.
We then calculate the mean quadratic score for the remaining out-of-sample observations. We repeat
for different values of X; in particular, we use 40%, 50%, 60%, 70%, and 80% in-sample training
data to predict choice on the remaining 60%, 50%, 40%, 30%, and 20% remaining data, respectively.
The in-sample method is a standard way to judge goodness-of-fit, by simply looking at how much of
the whole data the model can explain individual choice. The out-of-sample method guards against
over-fitting the data, but, to be valid, it assumes stationarity of parameters across the in-sample
and holdout data. For concerns of over-fitting the data with any learning model, this out-of-sample
procedure is the preferred benchmark in choosing which model explain the data best.

In estimating CBL, we use information available to subjects to define the Problem set P . In our
main specification, we choose two elements in the information vector (i.e., problem vector). The first
element is the round of the game (i.e., time). The round of the game plays the role of recency,
or forgetting, in other learning models; cases that are distant in the past are less similar to present
circumstances than cases that happened more recently. The second element is the opponents’ play from
the game. We account for other players actions by using a moving average of past play, treating all
opponents as a representative player, just as we do for the surprise index in self-tuning EWA. We use
a four period moving average. For example, a row player would use the moving average of how
many times their opponents played Left as a component of similarity and, as opponents trend toward
different frequencies of playing Left, the CBL would put less weight on those cases, C. There are many
possible choices on how to incorporate these information vectors and we explore them further in the
Appendix B in Table A1. We find that these choices do not have a large effect on the performance
of CBL.

We include cases as much as 15 periods in the past in memory (we explore the sensitivity of this
assumption in Section 7.1).

11 The quadratic scoring rule was introduced by Brier [38] to measure performance in weather forecasting. This scoring rule is
also described in Selten [39].

12 The use of other measures of goodness of fit generally provide the same qualitative measures, but ordering of preferred
learning models can be reversed by employing Log-Likelihood when model fitness is relatively close. We prefer the
quadratic scoring rule and use that throughout.
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6. Results

To fit the learning models to data, we estimate Equation (2) for CBL, Equation (5) for RL,
and Equation (6) for self-tuning EWA. All of the learning algorithms use the stochastic logit choice rule
in Equation (12). In Figure 2, we report the mean quadratic score by the learning models discussed
in the previous section across all 12 experimental games. We find when using in-sample measures
between the learning models that CBL fits best, RL fits second best, and self-tuning EWA fits third
best.13 RL performs about as well as CBL across these experimental games. As expected, each learning
model outperforms a baseline benchmark of random choice (i.e., a mean quadratic score of 0.5).
Note that Chmura et al. [9] also find that self-tuning EWA and a selection of other simple learning
models out-perform random choice, but they found self-tuning EWA was the best performing learning
model in predicting individual choice with these data.14
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Figure 2. In-sample Fit of Learning Models. Note: The red line represents the quadratic score of the
baseline model which is the predicted score of a learning model picking strategies at random. ST EWA
refers to self-tuning EWA, RL refers to reinforcement learning, and CBL refers to case-based learning.

We use a non-nested model selection test proposed by Vuong [40], which provides a directional
test of which model is favored in the data generating process. Testing the CBL model versus the RL
model, the Vuong test statistic is 7.45, which is highly significant and favors the selection of the CBL
model. In addition, we find that the CBL is selected over the ST EWA model with a Voung test statisitic
of 37.91.

In Figure 3, we report the mean quadratic scores of the out-of-sample data using in-sample
parameter estimates. We find similar conclusions as in the in-sample fit in Figure 2. CBL fits best,

13 The mean squared error is 0.1618 for RL, 0.1715 for self-tuning EWA, and 0.1603 for CBL, where the ordering of selection of
models is the same as the quadratic scoring rule.

14 We estimate the initial attractions in our self-tuning EWA model while Chmura et al. [9] do not, which does not appear to
make much of a difference in goodness of fit. They assume a random action initially for all learning models investigated.
Chmura et al. [9] also estimates a one parameter RL model, which under performs self-tuning EWA.
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followed by RL, and then by ST EWA. This leads us to presume that CBL may be better at explaining
behavior across all these games, likely due to the inclusion of information about the moving average
of opposing players’ play during the game. It is important to note that the RL predicts almost as well
as CBL with arguably a simpler learning model. The experiments we use, and have been traditionally
used to assess learning models, are relatively information-poor environments for subjects compared to
some other games. For example, many one-shot prisoner dilemma games or coordination games where
information about partner’s identity or their past play is public knowledge would be a comparably
information-rich environment. This makes us optimistic that CBL may be even more convincing in
information-rich environments. Because CBL makes use of the data about opposing players, CBL is an
obvious candidate to accommodate this type of information in a systematic way that seems consistent
with the psychology of decision making.
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Figure 3. Out-of-sample Fit of Learning Models. Note: Each model is estimated using a portion of the
data, while goodness of fit is measured on the remaining data. ST EWA refers to the self-tuning EWA,
RL refers to reinforcement learning, and CBL refers to case-based learning.

7. Case-Based Parameters

In this section, we discuss the parameters of CBL estimation based on the full sample estimation.
The parameters of CBL are λ, which measures the sensitivity of choice to CBU (see Section 3.6), AL

0 is
the parameter measuring the initial attraction for Left for the column player, while AU

0 is the initial
attraction for Up for the row player (see Section 3.1). These initial attractions are relative measures as
the initial attractions for Down and Right are held at zero. Wi are weights in the similarity function
on the different characteristics of the information vector (see Equation (4)). In particular, W1 is the
weight given to recency (here, round number), W2 is the weight given to the moving average of
actions of opposing players. These parameters are estimated to best fit the data using the logit rule in
Equation (12).

We do not directly estimate the aspiration parameter, because it cannot be effectively empirically
distinguished from the initial attraction parameters. If one considers Equation (2), one can see that
the H parameter and the mean of the Aj parameters confound identification. We cannot distinguish
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between the average initial attractions to strategies due to priors and the aspiration value of the agent.
Fortunately, we find that the fit of the CBL generally does not rely on the estimation of the aspiration
level to achieve the same goodness-of-fit.

In Table 1, we report the estimated parameters using the full sample of observations in each
treatment of each experiment. In all experimental treatments, we find a statistically significant value
for λ, meaning that the learning algorithm estimated explains some choice. We find that the initial
attraction parameters Aj

0 are consistent with the frequency of choices in the first period. The relative
weights of W1 and W2 are difficult to directly compare, as they are in different scales. We could
normalize the data prior to estimation, but it is unclear what affect that might have on cumulative
CBL over time. We explore ex-post normalization of the parameters in Appendix C and list results
in Table A2. The empirical estimate of W1 is positive and statistically significant. This indicates that,
consistent with other learning models, recency is important to learning.

By comparing the coefficients W1 in Table 1, we find that recency degrades similarity faster in
non-constant sum games than in constant sum games. This difference suggests that in non-constant
sum game, subjects ’forget’ past experience faster when constructing expectations about the
current problem and they put relatively more weight on the similarity of the moving average of
opposing players.

The weight, W2, on the moving average of past play of opposing players is positive and significant.
A positive parameter gives greater weight to cases with similar average playing rates to the current
problem. This parameter picks up adjustments to group actions over time.
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7.1. Memory

We explore to what extent adding memory explains behavior in CBL. This is an important part of
our depiction of learning, and we test the regularity to which it is important by varying the known
memory of subjects in CBL. Figure 4 shows the improvement in the mean quadratic score as more
memory is allowed in the CBL algorithm starting with three prior periods in memory (M = 3) and
expanding to seventeen prior periods (M = 17). If we refer to three periods in memory, then subjects
‘forget’ periods that were further in the past than three periods (rounds) ago and do not consider them
in comparing the current periods definition of a case. The figure demonstrates that increasing the
length of short time-horizons provide an improvement in model fit, but most gains are exhausted by
around nine periods. Because period number is included as an element of the problem definition P ,
continuing to add more periods into the similarity function makes little difference past nine periods
and degrades past fifteen periods. This provides the basis of our choice of fifteen periods for estimation.
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Figure 4. Length of Memory M.

7.2. Definition of Similarity

We estimate multiple similarity functional forms and measures of distance between the attributes
used in the definition similarity between problems. We test how similarity as characterized by
Equation (14) compares to in-sample fit of the data. The definitions of our similarity functions
primarily differ in how similarity decays; above, we assume similarity decays exponentially and,
in Equation (14), it decays according to the logarithm (Ones were added to avoid dividing-by-zero and
log-of-zero problems).

S2(x, y) =
1

ln(d(x, y) + 1) + 1
(14)

In addition to the decay of similarity, we can also test a different definition of distance between
elements of the problem. In our main specification, we use weighted Euclidean distance, as defined in
Equation (4). Another popular definition in psychology for distance is the Manhattan distance given
by Equation (15).

75



Games 2020, 11, 38

d2(x, y) =
#Dims

∑
i=1

wi|xi − yi| (15)

Using these definitions, we report that the in-sample fit of the data, measured by the quadratic
scoring rule, in Table 1 to be robust to the various definitions of similarity and distance. We indicate
by column heading in Table 2 which equations were used corresponding to specific functional forms
of similarity and distance. The functional form of distance between elements seems to be of minor
importance to fit in the mixed strategy equilibria games explored here. Nevertheless, there is greater
variation in the performance of the different similarity functions. The similarity function provided in
Equation (14) performs better than the exponential. We also find the weight W2 with Equation (14)
is negative and statistically significant, which is unexpected. To avoid overfitting the data with
parameters that do not make psychological sense, we use Equation (3) in our main specification.
We conclude that CBL is robust to different definitions of similarity, and the inverse exponential
function is a good fit with the experimental data at hand. This also corresponds to previous findings in
psychology and economics [4,33].

Table 2. Similarity Definitions Measured by Mean Quadratic Score.

(1) (2) (3) (4)

S, d S2, d S, d2 S2, d2

MQS 0.679 0.686 0.681 0.682

Note: S denotes the similarity function in Equation (3) and S2 denotes the similarity function in Equation (4).
d denotes the Euclidean distance function and d2 denotes the Manhattan distance function.

8. Empirical Comparison of Learning Models

In this section, we investigate the dynamics of RL and CBL, the two best-fitting learning models,
to more fully understand the results of these learning algorithms. Previously we discussed the potential
overlap in RL and CBL, which in practice have similar fits to the data. CBL likely outperforms RL in
aggregate due to its ability to incorporate important information in the the choice behavior of subjects.
RL and CBL appear to converge on choices overtime. We illustrate convergence in prediction between
CBL and RL in Figure 5. There is a possibility that RL and CBL are increasingly correct about different
types of individual decisions and could not actually be converging to similar predictions of behavior.
For example, say there are three types of decision makers (A, B, and C). CBL and RL predict players of
type A well, but not B or C. As more information is added and the learning models improve goodness
of fit, CBL predicts player type B better and RL predicts player type C better. Both of the models
are doing better, but are doing it on different observations and therefore on not converging on the
types of predictions they get correct. The convergence between CBL and EWA by round in Figure 5
demonstrates that the gains in accuracy are accompanied by a convergence in agreement between
the two learning algorithms, although convergence is slight. The coefficient of the regression line
in Figure 5 is −0.00006 with a clustered standard error by game type of 0.00002. This coefficient is
statistically significant with a t-statistic of −2.98.

We also provide the model fits by individual games in Appendix D. Table A3 and A4 show the
in-sample and out-of-sample model fits by individual game for all learning models.
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Figure 5. Convergence of RL and CBL. The red line denotes an OLS regression line of round on percent
difference in predictions.

9. Discussion

The parameters of CBL are also related to other theories of learning. Aspiration levels can be
incorporated into both the self-tuning EWA and CBL models of learning. They are somewhat inherent
in the self-tuning EWA algorithm already because the attractions compare the average payoffs of
previous attractions to the the current attraction and act as an endogenous version of aspiration level
that incorporates foregone payoffs. Another similarity between these theories of behavior is recency,
or the weighting of events that have more recently occurred in the past. In self-tuning EWA and
RL, the parameter φ and cumulative attractions account for recency and, in CBL, a time indicator
in the definition of the problem and definition of memory account for recency. In all the learning
models, recency allows individuals to ’forget’ old occurrences of a problem and adapt to new emergent
behavior or payoffs.

In this study, we show the effectiveness of CBL in an environment used traditionally for learning
models. CBL can easily be applied to other contexts with the same basic construction showed here.
It would be simple to estimate the same algorithm on other games through the same procedures
or choice data from outside the lab. The harder question is how to define the Problem, P , in these
different environments. In Appendix B, we discuss different definitions of the Problem for this context.
We find the results aree robust to the definition of Problem in Table A1. In more information-rich
contexts, it may be difficult to decide the number of characteristics, how information is presented in the
similarity function, and whether fictitious cases are present in memory. One approach, if experiments
are used, could be to track attention to particular pieces of information (e.g., through mouse clicks,
eyetracking, or even asking subjects). Collecting secondary information on choices may be beneficial
testing axioms of case-based decision theory. Further, as in Bleichrodt et al. [17], through experimental
design, decision weights for information can be constructed to further understand the properties of
CBL that can be non-parametrically estimated.

One suggested limitation of learning models is that they do not explain why the way partners
are matched matters [41], although more sophisticated learners can address this deficiency [32].
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CBL may better explain why matching matters directly through the information vector and the
similarity function. This is the biggest difference between CBL and other algorithms: the formulation
of how information enters into decision making, which is systematic, follows what we know from
psychology about decision making of individuals, and it is shown to be important through numerous
experimental investigations.

CBL also has the ability to incorporate fictitious play, although we do not pursue this in the
current paper. As mentioned above, although typically an agent’s memory is the list of cases she has
experienced—which is what we assume here—it is possible for cases in memory to come from some
other sources. The agent could add fictitious play cases to memory and thereafter use those fictitious
cases to calculate CBL. Moreover, this agent could distinguish fictitious from real cases if she so desired
by adding a variable to the information vector denoting whether the case was fictitious; then fictitious
cases could have less—but not zero—importance relative to real cases. Bayesian learning can also be
tractable in the case of 2 × 2 games, where the dimensions of the state space are small. We did not
consider forgone payoffs in CBL and, therefore, did not compare CBL to other Belief models. We can
imagine that comparing CBL to Bayesian learning models that would have priors defined over the
complete state space is a natural next step in this line of research. We leave this for future investigation.

10. Conclusions

In this work, we demonstrate the estimation of a new learning model based on an existing decision
theory, Case-based Decision Theory. This form of decision-making under uncertainty when applied
to game theoretic experiments performs well when compared to two other leading learning models:
Reinforcement Learning and self-tuning Experience Weighted Attraction. An important feature of
Case-Based Learning is the ability to systematically incorporate information that is available to subjects
into choice decisions. Real people condition their behavior on their observations of their environments,
and the case-based approach incorporates this in a natural way.

The parameters of Case-Based Learning indicate a relationship between recency and the type
of game played. Constant sum games exhibit a smaller recency effect than non-constant sum games.
This indicates that subjects weight experience with a opponents differently, depending on the type of
game played. Significant attention is given to the average rates of play, and changes to those average
rates of play, through the inclusion of moving averages in the definition of the ‘Problem’.

Further work in applying CBL to other decision making environments is important in
understanding its limits and sensible parameterizations of information vectors, hypothetical references,
and how deliberate thoughtful decisions are affected by institutions that include information.
CBL could also be used and adapted to predict behavior across different types of games, or more
generally changes to decision-making environments, to understand the influence of previous game
play on decisions in new environments and how subjects encode information across games. A natural
extension of this type of investigation are repeated prisoner dilemma games or repeated coordination
games, which allow more complex equilibria, but also allow for a greater freedom to explore the
primitives of learning across environments.
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Appendix A. Proofs

Proposition A1. Let N(t)=N(t+1) and H = 0, A0 = 0 for all choices, only time is in the definition of the
problem for CBL, and the similarity function is simple inverse weighted exponential given in Equation (10).
Then there exists φ > 0 such that RL attraction RLA with parameter φ and the case-based attraction implied by
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the similarity function S are equal, and therefore the attractions decay at the same rate and φ and w are related
in Equation (A1).

φ = S(xt, xt−1) =
1
w

(A1)

For Proposition 1 we provide the following proof. When considering attractions from RL and
CBL with the following simplifications: N(t) = N(t + 1), H = 0, A0 = 0, and only time is in definition
of the problem for CBL. Under the condition that the similarity function is an inverse exponential of
the difference in the time index, RL attraction degrades at the rate φ while CBL degrades at the rate
defined by the following similarity function,

φ =
1

w|t−t−1| . (A2)

Then, for all past attractions more generally, φk = 1
wt |k|

. As past attractions are discounted in RL
they get discounted each time period by φ so to is the weight in CBL by an equivalent adjustment
in the distance between time periods. This rate is held constant across time in both models since
N(t) = N(t + 1).

The typical similarity and distance functions used in the literature do not have equivalence
between the similarity and recency in RL, and therefore this may be seen as a special case of the
relationship between RL and CBL. We do not use these specialized forms to estimate against the
data, but rather use them to demonstrate the simple similarities and differences in how CBL and RL
are constructed.

Appendix B. Definition of the Problem

In this section we discuss in greater detail the definition of the problem set, P , or, equivalently,
the definition of the information vector. Experiments are very helpful for the researcher to define the
information vector used in CBL since information is experimentally controlled and limited compared
to observed behavior in the ’wild.’ Here we describe the decisions we made to define the problem set
P in this series of 2 × 2 games.

In contructing a measure of recency we assume that rounds are considered as simple vectors of
whole numbers and do not consider additional non-linearities in this information, such as squares or
other transformations of the data. Perhaps more difficult in this setting is the definition of opposing
player behavior since actions are anonymous in all games of this experiment. The history of the
opposing player’s action could be incorporated in many ways into the problem. We use a moving
average of the past play for all group members encountered by a subject, so as the recent trend of
play changes, agents adapt to those trends. Another possibility is that agents use rules that specify the
ordering of past play instead of a moving average. We can accommodate this definition in CBL by
using binary indicators for the lag in observed play, This would make sense if subjects used strategies
similar to Tit-for-Tat or more complex patterns that incorporate how the last three rounds of play
occurred. For completeness we estimate CBL under these different information vectors and find
small improvements in goodness of fit with more parameters. Table A1 shows the results of different
definitions of the problem.

While the use of additional parameters improves the goodness of fit of the model, we choose
to use the simpler and possibly more conservative moving average measure in the main models.
We argue that our main estimates are more conservative based on fit, but are preferred because the
parameters for the weights on the lags are negative in some cases which violate our understanding of
the reasonable parameters for this model.
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Table A1. Information Vector Definitions.

(1)
Mean Quadratic Score

One lag 0.677
Two lags 0.684
Three lags 0.682
MA-3 0.678
MA-5 0.678

Note: Each lag represents a extra parameter on whether a partner in the past played either Up or Left,
depending on the roll of the subject. Abbreviations: MA-3 moving average for past three rounds, MA-5 moving
average for past five rounds.

Appendix C. Normalization of Weights

To compare the relevance of the information vectors we need to transform the weights into
comparable units. Therefore, we use a simple form of transformation by multiplying the estimated
coefficients by the standard deviation of the data. The transformed coefficient would approximate
how much a standard deviation in the data affects the similarity function. This does not change the
interpretation of statistical significance, but does provide a way to assess the economic significance of
the information vectors to subjects.

In Table A2, we find that the moving average captures more relative weight in constant sum
games while recency is weighed more heavily in non-constant sum games. While both weights appear
to be economically significant to define similarity of cases across all games, a standard deviation
change in the moving average of opposing players garners much more weight on choices on average.
Consistent with our previous interpretation, the non-constant sum games tend to discount cases in the
relatively far past heavily compared to constant sum games.

Table A2. CBL Normalized weights.

W1 W2

Constant sum games 0.544 2.435
Non-constant sum games 14.245 1.539
All games 0.622 1.414

Appendix D. Individual Game Results

In this section we provide the detailed results of the learning algorithms on each individual game.

Table A3. In-sample Fit by Game: Mean Quadratic Score * denotes the best-fitting model based on the
mean quadratic score. CBL has five estimated parameters, RL has four estimated parameters, and ST
EWA has one estimated parameter. ST EWA refers to the self-tuning EWA, RL refers to reinforcement
learning, and CBL refers to case-based learning.

CBL ST EWA RL

Game 1 0.809 * 0.785 0.808
Game 2 0.667 * 0.661 0.667
Game 3 0.768 * 0.750 0.767
Game 4 0.654 * 0.636 0.650
Game 5 0.630 0.608 0.633 *
Game 6 0.594 0.568 0.598 *
Game 7 0.741 0.735 0.751 *
Game 8 0.637 * 0.629 0.636
Game 9 0.743 * 0.706 0.738
Game 10 0.639 * 0.607 0.637
Game 11 0.616 * 0.597 0.615
Game 12 0.593 * 0.573 0.590
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Table A4. Out-of-sample Fit by Game Note: * denotes the best fitting model based on the mean
quadratic score. ST EWA refers to the self-tuning EWA, RL refers to reinforcement learning, and CBL
refers to case-based learning.

A: Out-of-Sample: Predict Last 60% B: Out-of-Sample: Predict Last 50%

CBL ST EWA RL CBL ST EWA RL

Game 1 0.827 0.811 0.838 * 0.845 * 0.817 0.844
Game 2 0.674 0.669 0.675 * 0.671 0.671 0.677 *
Game 3 0.793 * 0.771 0.793 0.782 0.778 0.798 *
Game 4 0.658 * 0.637 0.653 0.659 * 0.637 0.655
Game 5 0.636 * 0.607 0.632 0.641 * 0.607 0.634
Game 6 0.601 * 0.568 0.600 0.603 * 0.567 0.599
Game 7 0.768 0.766 0.783 * 0.784 0.769 0.785 *
Game 8 0.641 0.638 0.644 * 0.637 0.637 0.642 *
Game 9 0.743 0.715 0.747 * 0.746 0.711 0.747 *
Game 10 0.632 0.605 0.638 * 0.645 * 0.610 0.641
Game 11 0.616 0.598 0.617 * 0.618 0.601 0.624 *
Game 12 0.593 * 0.576 0.593 0.579 0.574 0.593

C: Out-of-Sample: Predict Last 40% D: Out-of-Sample: Predict Last 30%

CBL ST EWA RL CBL ST EWA RL

Game 1 0.843 0.818 0.847 0.854 0.82 0.852
Game 2 0.665 0.672 0.680 * 0.669 0.671 0.680 *
Game 3 0.787 0.779 0.800 * 0.792 0.780 0.802 *
Game 4 0.661 * 0.636 0.655 0.664 * 0.641 0.659
Game 5 0.641 * 0.607 0.634 0.643 * 0.611 0.635
Game 6 0.594 0.569 0.600 * 0.606 * 0.574 0.603
Game 7 0.789 0.775 0.792 * 0.791 0.777 0.795 *
Game 8 0.635 0.635 0.640 * 0.639 0.634 0.639 *
Game 9 0.750 * 0.715 0.748 0.737 0.714 0.748 *
Game 10 0.651 * 0.613 0.650 0.643 0.614 0.651 *
Game 11 0.621 0.605 0.626 * 0.621 0.603 0.624 *
Game 12 0.596 * 0.574 0.594 0.599 0.579 0.599 *

E: Out-of-Sample: Predict Last 20%

Game 1 0.866 * 0.821 0.862
Game 2 0.694 0.686 0.697 *
Game 3 0.804 0.789 0.806 *
Game 4 0.660 0.642 0.661 *
Game 5 0.637 * 0.612 0.636
Game 6 0.609 * 0.574 0.604
Game 7 0.794 * 0.776 0.794
Game 8 0.634 0.637 0.643 *
Game 9 0.746 0.726 0.757 *
Game 10 0.663 0.626 0.666 *
Game 11 0.620 0.608 0.629 *
Game 12 0.591 0.575 0.595 *
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Abstract: Lower one- or two-dimensional coordination, or potential games, are popularly used
to model interactive behavior, such as innovation diffusion and cultural evolution. Typically,
this involves determining the “better” of competing solutions. However, examples have demonstrated
that different measures of a “good” choice can lead to conflicting conclusions; a fact that reflects the
history of game theory in equilibrium selection. This behavior is totally explained while extending the
analysis to the full seven-dimensional class of potential games, which includes coordination games.

Keywords: potential games; social welfare; risk dominance; payoff dominance; innovation diffusion;
externalities; decomposition

1. Introduction

When Schelling (1960) wrote Strategy of Conflict, it pivoted attention from zero-sum games
to the more general behavior allowed by games with mutually beneficial outcomes (which was
appropriate during this Cold War period) [1]. Specifically, Schelling made a case for coordination games,
which Lewis (1969) used to discuss culture and convention [2]. This behavioral notion of mutually
beneficial outcomes was further explored by Rosenthal (1973) with his development of the congestion
game [3]. Monderer and Shapley (1996) built on the congestion game with “common interest” games;
namely the potential games (which include coordination games) [4]. More recently, Young (2006, 2011)
and Newton and Sercombe (2020) took this analysis a step further by modeling, with potential games,
how populations on networks evolve from one convention to another [5–7]. The natural question in
this work is to discover whether the status quo or an innovation will be accepted.

This issue of finding the “better outcome” (e.g., an innovation or the status quo), which is a theme
of this paper, is a fundamental and general concern for game theory; answers require selecting a
measure of comparison. A natural choice is to prefer those outcomes where the players receive larger
payoffs. Rather than payoff dominance, another refinement of Nash equilibria offered by Harsanyi
and Selton (1988) is risk dominance [8].1 The choice used by Young (2006, 2011) and later by Newton
and Sercombe (2020) is to maximize social welfare. Still, other measures can be constructed [5–7].

With the social welfare measure, Young constructed a clever ad-hoc example where, although it is
seemingly profitable to adopt the innovation, the innovation is worse than the status quo [5]. Young’s
observation underscores the important need to understand when and why a model’s conclusions can
change. This includes his concerns of identifying when and why a new cultural convention is “better”.
Is there a boundary between the quality of innovations?

1 A payoff dominant Nash cell is where each agent does at least as well as in any other Nash cell, and at least one does better.
A risk-dominant Nash cell is less costly should coordination be mistakenly expected; see Section 3.1.
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Conflicting conclusions must be anticipated because different measures emphasize different traits
of games. Thus, answering the "better" question requires determining which aspects of a game a given
measure ignores or accentuates. The approach used here to address this concern is new; it appeals
to a recent decomposition (or coordinate system) created for the space of games [9–12] (in what
follows, the [9–11] papers are designated by [JS1], and the book [12] by [JS2]). There are many ways to
decompose games, where the emphases reflect different objectives. An early approach was to express
a game in terms of its zero sum and identical play components, which plays a role in the more recent
Kalai and Kalai bargaining solution [13]. Others include examining harmonic and potential games [14]
and strategic behavior such as in [15,16]. While some overlap must be expected, the material in [JS1]
and [JS2] appears to be the first to strictly separate and emphasize Nash and non-Nash structures.

Indeed, in [JS1], [JS2], and this paper, appropriate aspects of a game are used to extract all
information, and only this information, needed for the game’s Nash structures; this is the game’s “Nash”
component. Other coordinate directions (orthogonal to, and hence independent of the Nash structures)
identify those features of a game that require interaction among the players, such as coordination,
cooperation, externalities, and so forth. By isolating the attributes that induce behavior among players,
these terms define the game’s “Behavioral” component. The final component, the kernel, is akin to
adding the same value to each of a player’s payoffs. While this is a valuable variable with transferable
assets, or to avoid having games with negative payoffs, it plays no role in the analysis of most settings.
In [JS2], the [JS1] decomposition is extended to handle more player and strategies.2

One objective of this current paper is to develop a coordinate system that is more convenient to
use with a wide variety of choices that include potential games (a later paper extends this to more
players and strategies). An advantage of using these coordinates is that they intuitively organize the
strategic and payoff structures of all games. This is achieved by extracting from each payoff entry
the behavioral portions that capture ways in which players agree or disagree (e.g., in accepting or
rejecting an innovation) and affect payoff values. Of interest is how this structure applies to all 2 × 2
normal form games. When placing the emphasis on potential games, these coordinates cover their full
seven-dimensional space, so they subsume the lower dimensional models in the literature.

By being a change of basis of the original decomposition, this system still highlights the
unexpected facts that Nash equilibria and similar solution concepts (e.g., solution notions based
on “best response” such as standard Quantal Response Equilibria) ignore nontrivial aspects of a
game’s payoff structure; see [11]. In fact, this is the precise feature that answers certain concerns in the
innovation diffusion literature. Young’s example [5], for instance, turns out to combine disagreement
between two natural measures of "good" outcomes: one measure depends on unilateral deviations;
the other aggregates the collective payoff. Newton and Sercombe re-parametrize Young’s model to
further explore this disagreement [7]. As we show, Young’s example and the Newton and Sercombe
arguments stem from a game’s tension between group cooperative behavior and individualistic forces.

Other contributions of this current paper are to

• describe the payoff structure of these games;
• characterize the full seven-dimensional space of 2 × 2 potential games;
• analyze the behavioral tension between individual and cooperative forces in potential games;
• explain why different measures can reach different conclusions; and,
• relate the results to risk-dominance when possible.

2 Experimental work has been done by Jessie and Kendall [17] by building on the decomposition in [JS1]. More precisely and as
given in this paper, the separation aspect of the decomposition permits constructing large classes of games with an identical
Nash component (or, the strategic component), but with wildly different externalities components (or, the behavioral
component). As they showed, the choice of the behavioral term influenced an agent’s selection. Section 2 discusses
these components.

86



Games 2020, 11, 33

The paper begins with an overview of the coordinate system for all 2 × 2 normal form games.
After identifying the source of all conflict with symmetric potential games, the full seven-dimensional
class is described.

2. Overview of the Coordinate System

As standard with coordinate systems, the one developed for games in [JS1] can be adjusted to
meet other needs. The choice given here [JS2] reflects central features of potential games.

Consider an arbitrary 2 × 2 game G (Table 1), where each agent’s strategies are labeled +1 and −1
(cells also will be denoted by TL (top-left), BR (bottom-right), etc.).

Table 1. Arbitrary Game G in Normal-Form.

+1 −1
+1 a1 b1 a3 b2
−1 a2 b3 a4 b4

A weakness of this representation is captured by the Table 2 game. Information about which
strategy each player prefers, whether they do, or do not want to coordinate with the other player,
and where to find group opportunities is packed into the entries. Yet, in general, this structure is not
readily available from the Table 2 form.

Table 2. An Example.

+1 −1
+1 −3 7 7 3
−1 −1 5 −1 −3

The coordinate system described here significantly demystifies a game by unpacking its valued
behavioral information. This is done by decomposing a game into four orthogonal components,
where each captures a specified essential trait: individual preference, individual coordinative pressures,
pure externality (or Behavioral), and kernel components (see Table 3) (the orthogonality comment
follows by identifying games with vectors). The original game is the sum of the four parts.

Table 3. The Four Components of a 2 × 2 Game.

+1 −1 +1 −1
+1 α1 α2 α1 −α2 +1 γ1 γ2 −γ1 −γ2
−1 −α1 α2 −α1 −α2 −1 −γ1 −γ2 γ1 γ2

a. Individual Preference Component b. Coordinative Pressure Component

+1 −1 +1 −1
+1 β1 β2 −β1 β2 +1 κ1 κ2 κ1 κ2
−1 β1 −β2 −β1 −β2 −1 κ1 κ2 κ1 κ2

c. Pure Externality Component d. Kernel Component

To associate these components with behavioral traits of any 2 × 2 game, the individual preference
component identifies an agent’s inherent preference for strategy +1 or −1. If αi > 0, then agent i
prefers strategy +1 to −1 independent of what the other agent plays. In turn, αi < 0 means that agent
i’s individual preference is for strategy −1. The Table 2 values will turn out to be α1 = 2, α2 = 3,
which indicates that both players prefer +1 (or TL).
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The coordinative pressure component γj reflects a conforming stress a game imposes on agent j.
Independent of the αi sign, a γj > 0 value rewards agent j a positive payoff by conforming with
agent i’s preferred αi choice. Conversely, when γj < 0, agent j’s payoff is improved by playing a
strategy different than what agent i wants. With Table 2, γ1 = −3 while γ2 = −1, so neither player is
strategically supportive of personally reinforcing the other agent’s preferred choice.

The pure externality component represents consequences that an agent’s action imposes on the
other agent.3 If agent i plays +1, for instance, then, independent of what agent j does, agent j receives
an extra β j payoff! Acting alone, however, agent j is powerless to change this portion of the payoff.
To see why this statement is true, should Column select L in Table 3c, then no matter what strategy
Row chooses, this extra advantage remains β1. The sign of β j indicates which of agent i’s strategies
contributes to, or detracts from, agent j’s payoff. In Table 2, the β1 = −3, β2 = 2 values convert TR
into a potential group opportunity.

A subtle but important behavioral distinction is reflected by the γ and β terms. The γj values
capture whether, in seeking a personally preferred (Nash) outcome, an agent should, or should not,
coordinate with the other agent’s preferred interests. In contrast, the β j values identify externalities
and opportunities to encourage both to cooperate. For a supporting story, suppose the strategies are to
take highway 1 or −1 to drive to a desired location. A γ1 < 0 value indicates the first agent’s personal
preference to avoid being on the same highway as the second. However, it should it be winter time,
then the second agent, who always has a truck with a plow when driving on highway 1, creates a
positive externality that can be captured with a β value.

The final component is the kernel, which for Table 2 is κ1 = 1, κ2 = 3. This can be treated as an
inflationary term that adds the same κi value to each of the ith agent’s payoffs. Methods that compare
payoffs cancel the kernel value, so, as in this paper, the kernel can be ignored.

It is important to point out that the individual and coordinative pressure components contain
all information from a game that is needed to compute the Nash equilibrium and to analyze related
strategic solution concepts [JS1]. To appreciate why this is so, recall that the Nash information relies on
payoff comparisons with unilateral deviations. But with the pure externality and kernel components,
all unilateral payoff differences equal zero, so they contain no Nash information. This also means
that “best response” solutions and methods ignore, and are not affected by the wealth of a game’s β

information (for explicit examples, see [11]).
By involving eight orthogonal directions and independent variables, these components span

the eight-dimensional space of all 2 × 2 games. Consequently, any 2 × 2 game can be expressed and
analyzed in terms of these eight coordinates. The equations converting a game into this form are

α1 = 1
4 [(a1 + a3)− (a2 + a4)], α2 = 1

4 [(b1 + b3)− (b2 + b4)], γ1 = 1
4 [(a1 + a4)− (a2 + a3)],

γ2 = 1
4 [(b1 + b4)− (b2 + b3)], κ1 = 1

4 [a1 + a2 + a3 + a4], κ2 = 1
4 [b1 + b2 + b3 + b4],

β1 = 1
2 [a1 + a2]− κ1, β2 = 1

2 [b1 + b2]− κ2.
(1)

For interpretations, κj is agent j’s average payoff, β j is agent j’s average payoff should the other agent
play 1 minus the inflationary κj value, αj is half the difference of agent j’s average payoff if the other
agent plays 1 and the average if the other agent plays −1, and γj is half the difference of the jth agent’s
average TL, BR payoff, and average BL and TR payoff.

To illustrate the derivation of Equation (1), the α1 value of the Table 4a game is computed. All that
is needed is a standard vector analysis to find how much of game G is in the α1 coordinate direction,
which is denoted by Gα1 , where α1 = 1 and α2 = 0. The sum of the squares of the Gα1 entries
(which in the following notation equals [Gα1 ,Gα1 ]) is 12 + 02 + 12 + 02 + (−1)2 + 02 + (−1)2 + 02 =

4, so, according to vector analysis, α1 = 1
4 [G,Gα1 ]. Here, [G,Gα1 ] is the sum of the products of

3 This is the behavioral component in [JS1].
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corresponding entries from each cell. (Identifying a game’s payoffs with components of a vector in R8,
[G1,G2] is the scalar product of the vectors.) In this example, [G,Gα1 ] = (12)(1) + (10)(0) + (2)(1) +
(2)(0) + (0)(−1) + (4)(0) + (6)(−1) + (0)(0) = 8,, so α1 = 1

4 [G,Gα1 ] = 2.. Similarly, by defining a
corresponding Gα2 ,Gγ1 , . . . ,, the remaining values are α2 = 3, γ1 = 4, γ2 = 1, β1 = 1, β2 = 2, κ1 = 5,
and κ2 = 4. The Equation (1) expressions can be recovered in this manner.

Table 4. Decomposing a game.

+1 −1 +1 −1
+1 12 10 2 2 +1 1 0 1 0
−1 0 4 6 0 −1 −1 0 −1 0

a. G : A special case b. Gα1 : Where α1 = 1, α2 = 0

This decomposition simplifies the analysis by extracting the portion from each payoff that
contributes to these different attributes of a game. Illustrating with Table 1, rather than handling each
entry separately, behavior can be analyzed with the separated impact of the components. For instance,
the a1 entry is a1 = α1 + γ1 + β1 + κ1, which, for Table 2, is a1 = −3 = 2 − 3 − 3 + 1.

To connect this notation with [JS1], [JS2], a game’s Nash component, denoted by GN , is the sum of
the individual preference and coordinative pressure components as given in Table 5.

Table 5. The GN Nash component.

+1 −1
+1 η1,1 = α1 + γ1 η1,2 = α2 + γ2 η2,1 = α1 − γ1 −η1,2 = −α2 − γ2
−1 −η1,1 = −α1 − γ1 η2,2 = α2 − γ2 −η2,1 = −α1 + γ1 −η2,2 = −α2 + γ2

Principal facts about 2× 2 games follow.4 As a reminder, a game is a potential game if there exists
a global payoff function that aggregates the unilateral incentive structure of the game. More precisely,
the payoff difference obtained by an agent unilaterally deviating is reflected in the change of the
potential function. Potential games are often called “common interest” games. Coordination games
have pure strategy Nash equilibria precisely where the agents play the same strategy (i.e., the strategy
profiles (+1,+1) and (−1,−1)). On the other hand, anti-coordination games have pure strategy Nash
equilibria when the agents play different strategies (i.e., the strategy profiles (+1,−1) and (−1,+1)).

Theorem 1. Generically (that is, all GN and β j entries are nonzero), the following hold for 2 × 2 normal form
games G.

1. A G cell is pure Nash if and only if all of the cell’s GN entries are positive.
2. G is a potential game if and only if γ1 = γ2.
3. G is a coordination game if and only if |γ1| > |α1|, |γ2| > |α2| and sgn γ1 = sgn γ2 = 1. If sgn γ1 =

sgn γ2 = −1, then G is an anti-coordination game.
4. All of the payoffs in a normal-form game, as in Table 3, can be expressed with the utility functions for

agents 1 and 2 given by, respectively,

π1(t1, t2) = α1t1 + γ1t1t2 + β1t2 + κ1 and π2(t1, t2) = α2t2 + γ2t1t2 + β2t1 + κ2,

where t1 and t2 represent the strategy choice (either +1 or −1) of agents 1 and 2,
5. A potential function for a game with components described in Table 3 can be transformed into

P(t1, t2) = α1t1 + α2t2 + γt1t2, where γ = γ1 = γ2. (2)

4 All of these results extend to 2 × . . . × 2 games.
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6. A potential game’s potential function is invariant to the pure externality and kernel components.

To explain certain comments, recall that a potential game has a potential function; if an agent
changes a strategy, the change in the agent’s payoff equals the change in the potential function.
To illustrate, suppose the first agent changes from strategy t1 = 1 to t1 = −1, while agent 2 remains at
t2 = 1. According to Table 2, the change in the first agent’s payoff is

[−α1 − γ1 + β1 + κ1]− [α1 + γ1 + β1 + κ1] = −2[α1 + γ1],

or −2[α1 + γ] for potential games. According to Equation (2), the change in the potential is the
same value

P(−1, 1)− P(1, 1) = [−α1 + α2 + (1)(−1)γ]− [α1 + α2 + (1)(1)γ] = −2[α1 + γ].

Statement 1 is proved in [JS1]. To prove the second assertion, in (Chap. 2 of [JS2]) it is shown that
game G is a potential game if and only if it is orthogonal to the 2 × 2 matching pennies game G pennies;
5this orthogonality condition is [G,G pennies] = 0. A direct computation shows that the individual
preference, pure externality, and kernel components always satisfy this condition. The coordinative
pressure component satisfies the condition if and only if γ1 = γ2.

Statement 4 is a direct computation. Statement 5 is a direct computation showing that changes in
an agent’s strategy have the same change in the potential function as in the player’s payoff. Statement 6
follows, because P(t1, t2) (Equation (2)) does not have β or κ values. A proof of the remaining
statement 3 is in [JS2]. For intuition, the players in a coordination game coordinate their strategies,
which is the defining feature of the coordinative pressure component. Thus, for G to be a coordination
game, the γ values must dominate the game’s Nash structure.

3. Disagreement in Potential Games

These coordinates lead to explanations why different behavioral measures can differ about
which is the "better" outcome for certain games. This discussion is motivated by innovation diffusion,
which is typically modeled by using coordination games with two equilibria, so a key step is to
identify the preferred equilibria. A common choice is the risk-dominant pure Nash equilibria. In part,
this is because these equilibria have been connected to the long-run behavior of dynamics, such as
log-linear learning [18]. Because a coordination game is a potential game, the potential function’s
global maximum is the risk-dominant equilibrium (Theorem 2).

However, as developed next, there are many games where a maximizing strategy for the potential
function differs from the profile that maximizes social welfare. This difference is what allows agents to
do “better” by using a profile other than the one leading to the risk-dominant equilibrium. Young [5,6]
creates such an example using the utilitarian measure of social welfare, which sums all of the payoffs in
a given strategy profile, and Newton and Sercombe [7] discuss similar ideas. A first concern is whether
their examples are sufficiently isolated that they can be ignored, or whether they are so prevalent that
they must be taken seriously. As we show, the second holds.

An explanation for what causes these conflicting conclusions emerges from the Table 2
decomposition and Theorem 1. A way to illustrate these results is to create any number of new,
more complex examples. To do so, start with the fact (Theorem 2.5 in [JS2]) that with 2 × 2 games and
two Nash equilibria, a Nash cell is risk dominant over the other Nash cell if and only if the product of
the η values (see Table 4) of the first is larger than the product of the η values of the second. (To handle

5 This makes sense; “matching pennies” is antithetical (orthogonal) to the cooperative spirit of potential games. The space of
matching pennies is the harmonic component discussed in [14].
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some of our needs, this result is refined in Theorem 2.) Of significance is that, although the β terms
obviously affect payoff values, they play no role in this risk-adverse dominance analysis.

To illustrate, let γ1 = γ2 = 4 (Theorems 1-2; to have a potential game) and α1 = α2 = 1
(Theorem 1-3; to have a coordination game). This defines the Table 6a game where the TL Nash cell
(with (η1,1)(η1,2) = 25) is risk dominant over the BR Nash cell (with (−η1,1)(−η1,2) = 9). There remain
simple ways to modify this game that make the payoffs of any desired cell, say BR, more attractive
than the risk dominant TL. All that is needed is to select β j values that increase the payoffs for the
appropriate Table 3c cell; for the BR choice, this requires choosing negative β1, β2 values (Table 3c).
Although these values never affect the risk-dominant analysis, they enhance each player’s BR payoff
while reducing their TL payoffs. The β1 = β2 = −3 choices define the Table 6b game where each
player receives a significantly larger payoff from BR than from the risk dominant TL! In both games,
the Nash and risk dominance structures remain unchanged.

Table 6. Conflicting measures.

+1 −1 +1 −1
+1 5 5 −3 −5 +1 2 2 0 −8
−1 −5 −3 3 3 −1 −8 0 6 6

a. First example b. Conflicting behavior

These coordinates make it possible to easily create a two-dimensional family of games with such
properties. To do so, add Table 3c to the Table 6a game, and then select appropriate β1, β2 values to
emphasize the payoffs of different cells. For instance, using Young’s welfare measure (the sum of a
cell’s payoffs), no matter which cell is selected, suitable β values exist to make that cell preferred to
TL. It follows from the Table 3c structure, for instance, that a way to enhance the TR payoffs is to use
β1 < 0 and β2 > 0 choices. Adding these values to the Table 6a game defines the TR cell values of
−3 + |β1| and −5 + β2 while the TL values are 5 − |β1| and 5 + β2. Thus, the sum of TR cell values
dominates the sum of TL values if and only if

(−3 + |β1|) + (−5 + β2) > (5 − |β1|) + (5 + β2), or iff − β1 = |β1| > 9. (3)

10 11 2 7
8 4 8 6

=
1 2 −3 −2

−1 −1 3 1
+

2 2 −2 2
2 −2 −2 −2

+
7 7 7 7
7 7 7 7

. (4)

Conflict among 50-50, payoff, and risk dominance

The coordinates also make it possible to compare other measures by mimicking the above
approach. Games with payoff dominant strategies that differ from the risk adverse ones, for example,
require appropriate β values. To explain, if BR is risk dominant, then, as in the Equation (4) game
(from Section 2.6.4 in [JS2]), the product of its η values from BR in GN (first bimatrix on the right) is
larger than the product of the TL GN values. This product condition ensures that the only way the
payoff and risk dominant cells can differ is by introducing TL β components; this is illustrated with
β1 = β2 = 2 in the second bimatrix in Equation (4). More generally and using just elementary algebra
as in Equation (3), the regions (in the space of games) where the two concepts differ now can finally
be determined.

For another measure, consider the 50–50 choice. This is where, absent any information about
an opponent, it seems reasonable to assume there is a 50–50 chance the opponent will select one Nash
cell over the other. This assumption suggests using an expected value analysis to identify which
strategy a player should select. To discover what coordinate information this measure uses, if TL and
BR are the two Nash cells, then for Row and this 50–50 assumption, the expected return from playing
T is 1

2 [|η1,1| − |η2,1|] + 1
2 [β1 − β1] +

1
2 [κ1 + κ1] =

1
2 [|η1,1| − |η2,1|] + κ1. Similarly, the expected value
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of playing B is 1
2 [−|η1,1|+ |η2,1|] + 1

2 [β1 − β1] +
1
2 [κ1 + κ1] =

1
2 [−|η1,1|+ |η2,1|] + κ1. Consequently,

an agent’s larger η value completely determines the 50-50 choice. However, if the risk adverse cell of
GN is not also GN payoff dominant, as true with the first bimatrix on the right in Equation (4), and if
both players adopt the 50-50 measure, they will select a non-Nash outcome. Indeed, in Equation (4),
BR is risk dominant, TL is payoff dominant, and BL, which is not a Nash cell (and Pareto inferior to
both Nash cells), is the 50–50 choice. Again, elementary algebra of the Equation (3) form identifies the
large region of games where this behavior can arise. (By using appropriate β values, it is easy to create
50–50 outcomes that are disastrous.)

3.1. The Potential and Welfare Functions

Moving beyond examples, these coordinates can fully identify those games for which different
measures agree or disagree, which is one of the objectives of this paper. The importance of this analysis
is that it underscores our earlier comment that this conflict between the conclusions of measures is a
fundamental concern that is suffered by a surprisingly large percentage of all 2 × 2 games.

Our outcomes are described using maps of the space of 2 × 2 games. The maps show where the
potential and social welfare functions (e.g., the ones used by Young [5,6] and Newton and Sercombe [7])
agree, or disagree, on which is the "better" choice of two equilibria. Not only do these diagrams
demonstrate the preponderance of this conflict, but they identify which behavior a specific game
will experience. As an illustration, the dark regions of Figure 1 single out those potential games
(so γ1 = γ2), where α1 = α2 = α and β1 = β2 = β, which are without conflict; for games in the
unshaded regions, different measures support different outcomes.

α

β

α + β = 0

TLBR

α

β

α + β = 2|γ|
α + β = −2|γ|

α = |γ|α = −|γ|

TLBR

(a). The α-β plane; γ ≥ 0 (b). The α-β plane; γ < 0

Figure 1. Conflict and agreement with α, β values.

Thanks to the coordinate system for games, the game theoretic analysis is surprisingly simple;
it merely uses a slightly more abstract version of the Equation (3) analysis. To illustrate with the above
50-50 discussion, if the Nash cells are TL and BR, then η1,1,−η2,1, η1,2,−η2,2 are all positive (if the Nash
cells are BL and TR, all of these entries are negative). Consequently, the two surfaces η1,1 + η2,1 = 0
and η1,2 + η2,2 = 0 separate which one of an agent’s η values is larger. Even though the discussion
applies to the four dimensional space of η values, one can envision the huge wedges these surfaces
define where the η values force the 50–50 approach to select a non-Nash outcome.

A similar approach applies to all of the maps derived here. In Figure 1a, the dividing surface
separating which Nash cell is selected by potential function outcomes is α = 0; if α > 0, the game’s
top Nash choice for the potential function is TL; if α < 0, the top Nash choice is BR. However, the
social welfare conclusion is influenced by β values, so it will turn out that the separating line between
a social welfare function selecting TL or BR is the α + β = 0 line. Above this line, TR is the preferred
Nash choice; below it is BR. Given this legend, Figure 1a demonstrates those games for which the
different measures agree or disagree about the top choices, and the magnitude of the problem. Stated
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simply, regions that emphasize behavioral terms place emphasis on payoff and social welfare dominant
measures; regions that emphasize Nash strategic terms emphasize risk dominant measures.

Stated differently, difficulties in what follows do not reflect the game theory; the coordinate system
handles all of these problems. Instead, all of the complications (there are some) reflect the geometric
intricacy of the seven-dimensional space of 2 × 2 potential games. Consequently, readers that are
interested in applying this material to specific games should emphasize the maps and their legends
(given in the associated theorems). Readers that are interested in the geometry of the space of potential
functions will find the following technical analysis of value. However, first, a fundamental conclusion
about potential games is derived.

3.2. A Basic "Risk Dominant" Theorem

The coordinates explicitly display a tension between what individuals can achieve on their own
(Nash behavior) and with cooperative forces. With a focus on individualistic forces, the potential
function is useful because its local maxima are pure Nash equilibria. Even more, as known,
the potential’s global maximum is the risk dominant equilibrium. This fact is re-derived for 2 × 2
potential games in a manner that now highlights the roles of a potential game’s coordinates.

Theorem 2. For a 2 × 2 potential game G, its potential function has a global maximum at the strategy profile
(t′, t′′) if and only if (t′, t′′) is G’s risk-dominant Nash equilibrium. With two Nash equilibria where one is risk
dominant, (t′, t′′) is the risk dominant strategy if and only if the following inequalities hold

a. (α1t′ + α2t′′) > 0, b. |γ| > |α1|, |α2|, c. t′t′′γ > 0. (5)

As shown in the proof, inequality c identifies the Nash cells; e.g., if γ < 0, then t′t′′ = −1,
so the Nash cells are BL and TR. With two Nash cells, the inequality a identifies which one is a global
maximum of the potential function. Similarly, inequality b requires γ to have a sufficiently large value
to create two Nash cells. Of importance, Equation (5) does not include β values!

To illustrate these inequalities, let α1 = 1, α2 = −2, and γ = 3. By satisfying Equation (5b),
there are two Nash cells. According to Equation (5c), t′t′′ = 1, so t′ = t′′, which positions the Nash
cells at TL and BR. From Equation (5a), t′ − 2t′ > 0, or t′ < 0, so the risk dominant strategy is
the t′ = t′′ = −1 BR cell. Conversely, to create an example where a desired cell, say TR, is risk
dominant, the t′ = 1, t′′ = −1 values require (Equation (5c)) γ < 0 and (Equation (5a)) α1 > α2. Finally,
select γ < 0 that satisfies Equation (5b); e.g., α1 = 1, α2 = −1 and γ = −2 suffice.

The Equation (5) inequalities lead to the following conclusion.

Corollary 1. If a 2 × 2 potential game G has two pure Nash equilibria where one is risk dominant, then G is
a coordination game. If γ > 0, the Nash cells are at TL and BR, where G is a coordination game. If γ < 0,
the Nash cells are at BL and TR, where G is an anti-coordination game.6

Proof of Corollary 1. According to Theorem 2, the Corollary 1 hypothesis ensures that
Equation (5) hold. With the b inequality, it follows from Theorem 1-3 that G is a coordination game. In a
2 × 2 game, pure Nash cells are diagonally opposite. If γ > 0, it follows from Equation (5), c that the
Nash strategies satisfy t′t′′ = 1, so the Nash cells are at TL (for t′ = t′′ = 1) and BR (for t′ = t′′ = −1),
and that this is a coordination game. Similarly, if γ < 0, then t′t′′ = −1, so the Nash cells are at BL
(for t′ = −1, t′′ = 1) and TR (for t′ = 1, t′′ = −1) to define an anti-coordination game.

6 As pointed out by a referee, the case where γ < 0 appears to be related to the notion of self-defeating externalities, making
the potential game in this case a stable game, as defined in [19].
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Proof of Theorem 2. In a non-degenerate case (i.e., P(t1, t2) is not a constant function), P has a
maximum, so there exists at least one pure Nash cell. If a game has a unique pure strategy Nash
equilibrium, then, by default, it is risk-dominant and P’s unique maximum.

Assume there are two Nash cells; properties that the potential, P, must satisfy at a global maximum
are derived. Pure Nash equilibria must be diametrically opposite in a normal form representation,
so if G has two pure strategy Nash equilibria where one is (t′, t′′), then the other one is at (−t′,−t′′).
Consequently, if P has a global maximum at (t′, t′′),, then P has a local maximum at (−t′,−t′′),
so P(t′, t′′) > P(−t′,−t′′). According to Equation (2), this inequality holds iff [α1t′+ α2t′′+γ(t′)(t′′)]−
[α1(−t′) + α2(−t′′) + γ(−t′)(−t′′)] = 2[α1t′ + α2t′′] > 0, which is inequality Equation (5)a.

The local maximum structure of P(−t′,−t′′) requires that P(−t′,−t′′) > P(t′,−t′′) and
P(−t′,−t′′) > P(t′,−t′′). Again, according to Equation (2), the first inequality is true if

α1(−t′) + α2(−t′′) + γ(−t′)(−t′′) > α1t′ + α2(−t′′) + γ(t′)(−t′′),

or γt′t′′ > α1t′. Similarly, the second inequality is true iff γt′t′′ > α2t′′. Thus, for a potential game with
two Nash cells, P has a global maximum at (t′, t′′) iff

[α1t′ + α2t′′] > 0, γt′t′′ > α1t′, γt′t′′ > α2t′′, γt′t′′ > 0. (6)

The last inequality follows from the first one, which requires at least one of α1t′, α2t′′ to be positive.
Thus, the γt′t′′ > 0 inequality follows from either the second or third inequality.

All that is needed to establish the equivalence of the Equation (6) inequalities and those of
Equation (5) is that Equation (5b) is equivalent to the two middle inequalities of Equation (6).
Equation (5b) implies the two middle inequalities of Equation (6) is immediate. In the opposite
direction, the first Equation (6) inequality requires at least one of α1t′ or α2t′′ to be positive. If it
is αjt, then because |γ| = γt′t′′, this positive term requires the appropriate middle inequality of
Equation (6) to be |γ| > |αj|. If it holds for both terms, the proof is completed. If it holds for only
one term, say α1t′ > 0, but α2t′′ < 0, then the first Equation (6) inequality requires that |α1| > |α2|,
which completes the proof.

The second step requires showing that (t′, t′′) is a risk-dominant Nash equilibrium if
Equation (5) holds. According to Harsanyi and Selten (1988), (t′, t′′) is a game’s risk-dominant
Nash equilibrium if

(P(−t′ ,t′′)−P(t′ ,t′′))(P(t′ ,−t′′)−P(t′ ,t′′))>(P(t′ ,−t′′)−P(−t′ ,−t′′))(P(−t′ ,t′′)−P(−t′ ,−t′′)), (7)

which is (−2α1t′ − 2γt′t′′)(−2α2t′ − 2γt′t′′) > (2α1t′ − 2γt′t′′)(2α2t′ − 2γt′t′′). This inequality
reduces to

γt′t′′(α1t′ + α2t′′) > 0. (8)

If t′t′′ = 1, the Nash cells are at TL and BR, so both entries of these two Table 4 cells must be
positive (Theorem 1-1). For the TL cell, this means that γ > −α1,−α2,, while for the BR cell it requires
γ > α1, α2. Consequently, γ > |α1|, |α2| and γ > 0: inequalities b and c of Equation (5) are satisfied.
That inequality a of Equation (5) holds follows from γt′t′′ > 0 and Equation (8).

Similarly, if t′t′′ = −1, then BL and TR are the Nash cells. Again, each entry of each of these
Table 4 cells must be positive: from BL, we have that −α1, α2 > γ,, while from TR we have that
α1,−α2 > γ. Consequently, γ < 0, γt′t′′ > 0 and |γ| > |α1|, |α2|; these are inequalities b and c of
Equation (5). That inequality a holds again follows from Equation (8).

A consequence of Theorem 2 is that the potential function can serve as a comparison measure
of Nash outcomes. Other natural measures reflect the overall well-being of all agents, such as
the utilitarian social welfare function that sums each strategy profile’s payoffs. To obtain precise
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conclusions, our results use this social welfare function. However, as indicated later, everything
extends to several other measures.

3.3. Symmetric Games

Without question, it is difficult to understand the structures of a four-dimensional object,
leave alone the seven-dimensions of the space of 2 × 2 potential games. Thus, to underscore the ideas,
we start with the simpler (but important) symmetric games (all symmetric games are potential games);
doing so reduces the dimension of the space of games from seven to four (with the kernel). This
is where α1 = α2 = α, β1 = β2 = β, γ1 = γ2 = γ, and κ1 = κ2 = κ. Ignoring the kernel term,
the coordinates are given in Table 7.

Table 7. Decomposition for a symmetric potential game.

+1 −1 +1 −1
+1 α + γ α + γ α − γ −α − γ +1 β β −β β
−1 −α − γ α − γ −α + γ −α + γ −1 β −β −β −β

a. Nash terms b. Behavioral, externality terms

To interpret Table 7, the Nash entries combine terms, where each agent prefers a particular
strategy independent of what the other agent does (if α > 0, each agent prefers to play 1; if α < 0
each agent prefers −1) with terms that impose coordination pressures. That is, if γ > 0, the game’s
Nash structure inflicts a pressure on both agents to coordinate; if γ < 0, the game’s joint pressure is for
anti-coordination. With symmetric games, the payoffs for both agents agree at TL and at BR, so if one
of these cells is social welfare top-ranked (the sum of the entries is larger than the sum of entries of any
other cell), the cell also has the stronger property of being payoff dominant.

All 2 × 2 symmetric games can be expressed with these four α, β, γ, κ variables (Equation (1)).
Ignoring κ, the remaining variables define a three-dimensional system. To tie all of this in with commonly
used symmetric games, if BR is the sole Nash point, then the above defines a Prisoner’s Dilemma game
if −α + γ > 0 and α + γ + β > −α + γ − β, the second of which reduces to β + α > 0. Similarly,
the Hawk–Dove game with Nash points at BL and TR, and “hawk” strategy as +1, has −α − γ > 0 and
α − γ > 0 for the Nash points, and β < 0 to enhance the BR payoffs, so γ < 0, α < −|γ|, and β < 0.
A coordination game simply has γ > |α| (these inequalities allow the different games to easily be located
in Figure 1 and elsewhere). As stated, because γ1 = γ2, it follows (Theorem 1-2) that all 2 × 2 symmetric
games are potential games with the potential function (Equation (2))

P(t1, t2) = α(t1 + t2) + γt1t2 (9)

A computation (Table 7) proves that the social welfare function (the sum of a cell’s entries) is

w(t1, t2) = (α + β)(t1 + t2) + 2γt1t2. (10)

Our goal is to identify those games for which the potential and social functions agree, or disagree,
on the ordering of strategies. Here, the following results are useful.

Theorem 3. A 2 × 2 symmetric potential game G satisfies

w(t1, t2) = 2P(t1, t2) + (β − α)(t1 + t2). (11)

If α = β, the potential function and the welfare function rankings of G’s four cells agree.
Both the potential and welfare functions are indifferent about the ranking of the BL and TR cells, denoted as

BL ∼ TR. If one of these cells is a Nash cell for G, then so is the other one, but neither is risk dominant.
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Equation (11) explicitly demonstrates that β values—the game’s behavioral or externality
values—are solely responsible for all of the differences between how the potential and social welfare
functions rank G’s cells.

Proof. Adding and subtracting α(t1 + t2) to Equation (10) leads to Equation (11). Thus, if α = β,
then 1

2 w(t1, t2) = P(t1, t2), so both functions have the same ranking of G’s four cells.
The BL and TR cells correspond, respectively, to (t1 = −1, t2 = 1) and (t1 = 1, t2 = −1),

where t1 + t2 = 0. Thus, (Equation (11)), the 1
2 w, and P values for each of these cells is γ. As both

measures have the same value for each cell, both have a tie ranking for the two cells denoted
by BL ∼ TR.

The Nash entries of BL and TR are the same but in different order (Table 6a). Thus, if both
entries of one of these cells are positive, then so are both entries of the other. This means that both are
Nash cells (Theorem 1-1). The risk dominant assertion follows because inequality a of Equation (5) is
not satisfied; it equals zero. Equivalently, P does not have a unique global maximum in this case.

3.3.1. A Map of Games and Symmetries

A portion of a map that describes the structure of all 2 × 2 games (Chapter 3, [JS2]) is expanded
here to concentrate on the symmetric games. While variables α, γ, β require a three-dimensional space,
the potential function does not depend on β, so Figure 2a highlights the α-γ plane. Treat the positive
β axis as coming out orthogonal to the page.

α

γ
α = γα = −γ

1

2

3

4

5

6

7

8

•• mapping F

TLBR(BL∼TR)BRTL(BL∼TR)

TL(BL∼TR)BR

TL(BL∼TR)BR

BR(BL∼TR)TL

BR(BL∼TR)TL

(BL∼TR)TLBR(BL∼TR)BRTL

(a). The α-γ plane (b). The P rankings

Figure 2. The α, β, γ structures.

Changes in the potential game and P (Equation (9)) depend on α, γ, γ − α, and γ + α values,
which suggests dividing the α-γ plane into sectors where these terms have different signs. That is,
divide the plane into eight regions (Figure 2a) with the lines α = 0, γ = 0, α = γ, and −α = γ. The first
two lines represent changes in a game’s structure by varying the α and γ signs. For instance, reversing
the sign of α changes which strategy the agents prefer; swapping the γ sign exchanges a game’s
coordination, anti-coordination features. The other two lines are where certain payoffs (Table 6a)
change sign, which affects the game’s Nash structure. The labelling of the regions follows:

(1) γ > α > 0 (2) α > γ > 0 (3) α > −γ > 0 (4) −γ > α > 0
(5) γ > −α > 0 (6) −α > γ > 0 (7) −α > −γ > 0 (8) −γ > −α > 0

A natural symmetry simplifies the analysis. In Table 6, interchanging each matrix’s rows and then
columns creates an equivalent game, where the t′, t′′ cell in the original becomes the −t′,−t′′ cell in
the image. This equivalent game is identified in Figure 2a with the mapping

F(α, γ, β) = (−α, γ,−β). (12)
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Geometrically, F flips a point on the right (a symmetric potential game) about the γ axis to a point
on the left (which corresponds to the described changing of rows and columns of the original game);
e.g., in Figure 2a, the bullet in region 2 is flipped to the bullet in region 6. Similarly, the original β value
is flipped to the other side of the α-γ plane. Consequently, anything stated about a (t′, t′′) strategy or
cell for a game in region k holds for a (−t′,−t′′) strategy or cell of the corresponding game in region
(k + 4). Thanks to this symmetry, by determining the P ranking of region k to the right of the γ axis,
the P ranking of region k + 4 is also known.

The following theorem describes each region’s P ranking. The reason the decomposition structure
simplifies the analysis is that all of the comments about Nash cells follow directly from Table 6a.
If, for instance, γ > α > 0 (region 1), then only cells TL and BR have all positive entries (Table 6a),
so they are the only Nash cells. Similarly, if −γ > α > 0 (region 4), only cells BL and TR have all positive
entries, so they are the Nash cells (Theorem 1-1). Each cell’s P value is specified in matrix Table 8a,
so the P ranking of the cells follows immediately. Region 2, for instance, has α > γ > 0, so TL is P’s
top-ranked cell. Whether BL is P-ranked over BR holds (Table 8a) iff −γ > γ − 2α, or α > γ, which
is the case. This leads to P’s ranking of TL  (BL ∼ TR)  BR for all region 2 games (here, A  B
means A is ranked over B and A ∼ B means they are tied). Each cell’s 1

2 w’s value (half the social
welfare function), which comes from Equation (11), is given in Table 8b.

Table 8. A symmetric potential game’s P and w
2 values.

+1 −1 +1 −1
+1 2α + γ −γ +1 γ + [α + β] −γ
−1 −γ γ − 2α −1 −γ γ − [α + β]

a. P values b. w
2 values

Theorem 4. The following hold for a 2 × 2 symmetric potential game.

1. Region 1 has Nash equilibria at TL and BR, where TL is risk dominant. The P ranking of the cells is
TL  BR  (BL ∼ TR). The region 5 P ranking is BR  TL  (BL ∼ TR); BR is risk dominant.

2. Regions 2 and 3 have a single Nash cell at TL, where, for each region, the P ranking of the cells is
TL  (BL ∼ TR)  BR. The P ranking in regions 6 and 7 is BR  (BL ∼ TR)  TL.

3. Region 4 has Nash cells at BL and TR, where neither is risk dominant. The P ranking is (BL ∼ TR) 
TL  BR. The region 8 P ranking is (BL ∼ TR)  BR  TL.

The content of this theorem is displayed in Figure 2b. Notice, with α > 0, the potential function
has BR bottom ranked unless BR is a Nash cell. This makes sense; α > 0 means (Table 3a) that both
agents prefer a “+1” strategy, so they prefer T and L. In fact, with α > 0, the only way TL loses
its top-ranked P status is with a sufficiently strong negative γ value (region 4 of Figure 2a). This
also makes sense; a negative γ value (Table 3b) captures the game’s anti-coordination flavor, which,
if strong enough, can crown BL and TR as Nash cells.

Similar comments hold for α < 0; this is because TL and BR reverse roles in the P rankings
(properties of F (Equation (12)). Thus, the P ranking of region 1 is TL  BR  (BL ∼ TR), so the
P ranking of region 5 is BR  TL  (BL ∼ TR). Accordingly, for α < 0, P always bottom-ranks TL
unless TL is a Nash cell, which reflects that α < 0 is where the players have a preference for B and R.

The next theorem describes where the potential and social welfare function rankings agree or
disagree. As its proof relies on Table 8b values, it is carried out in the same manner as for Theorem 4.
Namely, to determine whether TL is ranked above BL or TR, it must be determined (Table 8b) whether
γ + (α + β) > −γ, or whether 2γ > α + β > 0. Next, according to (Table 8b), the social welfare
function ranks BR above BL (or TR) iff γ − (α + β) > −γ, or 2γ > α + β > 0. Thus, if 2γ > α + β > 0,
the social welfare ranking is TL  BR  (BL ∼ TR).
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Theorem 5. For a 2 × 2 symmetric potential game with a coordinative flavor of γ > 0, the social welfare
function (Equation (10)) ranks the cells in the following manner:

1. If (α + β) > 2γ, the ranking is TL  (BL ∼ TR)  BR and TL is payoff dominant,
2. if 2γ > (α + β) > 0, the ranking is TL  BR  (BL ∼ TR) and TL is payoff dominant,
3. if 0 > (α + β) > −2γ, the ranking is BR  TL  (BL ∼ TR) and BR is payoff dominant, and
4. if −2γ > (α + β), the ranking is BR  (BL ∼ TR)  TL where BR is payoff dominant.

For games with an anti-coordinative flavor of γ < 0, the social welfare rankings are

5 if (α + β) > −2γ, the ranking is TL  (TR ∼ BL)  BR and TL is payoff dominant;
6 if −2γ > (α + β) > 0, the ranking is (BL ∼ TR)  TL  BR,
7 if 0 > (α + β) > 2γ, the ranking is (BL ∼ TR)  BR  TL, and
8 if 0 > 2γ > (α + β), the ranking is BR  (BL ∼ TR)  TL and BR is payoff dominant.

As with Theorem 4, this theorem ignores certain equalities, such as α + β = 2γ > 0, but the social
welfare ranking is the obvious choice. This equality captures the transition between parts 1 and 2,
so its associated ranking is TL  BR ∼ (BL ∼ TR).

A message of these theorems is to anticipate strong differences between the potential and social
welfare rankings. Each game in region 1 of Figure 2a, for instance, has the unique P ranking of
TL  BR  (BL ∼ TR), so TL is P’s “best” cell. In contrast, each game in each region has four different
social welfare rankings7 where most of them involve ranking conflicts! In region 1 of Figure 2a,
for instance, an admissible social welfare ranking (Theorem 5-4) is BR  (BL ∼ TR)  TL, where the
payoff dominant BR is treated as being significantly better than P’s top choice of TL.

The coordinates explicitly identify why these differences arise: The potential function ignores β,
while the β values contribute to the social welfare rankings. By influencing a game’s payoffs and
identifying (positive or negative) externalities that players can impose on each other, the β values
constitute important information about the game. To illustrate, Table 5 has two different symmetric
games; they differ only in that the first game has β = 0 with no externalities while the second has
β = −3, which is a sizable externality favoring BR payoffs (Table 6b). Both of the games are in region 1
of Figure 2, so both have the same P ranking of TL  BR  (BL ∼ TR) (Theorem 4-1), where TL is
judged the better of the two Nash cells. However, the social welfare ranking for the Table 5b game
is BR  TL  (BL ∼ TR), which disagrees with the P ranking by crowning BR as the superior cell.
By examining this Table 5b game, which includes externality information, it would seem to be difficult
to argue otherwise.

Viewed from this externality perspective, Theorem 5 makes excellent sense. It asserts that, with
sufficiently large positive β values, the social welfare function favors TL, which must be expected.
The decomposition (Table 6b) requires β > 0 to favor TL payoffs. Conversely, β < 0 enhances the
BR payoffs.

Table 9. Conflicting measures.

+1 −1 +1 −1
+1 4 4 2 −4 +1 −2 −2 8 −10
−1 −4 2 −2 −2 −1 −10 8 4 4

a. Example with β = 0 b. Example with β = −6

7 If ties, such as TL ∼ BR or BR ∼ (BL ∼ TR) are included, there are seven distinct social welfare rankings for each game in
each Figure 2a region.
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The potential and social welfare rankings can even reverse each other. According to Theorem 4-2,
all games in region 2 of Figure 2a have a single Nash cell with the P ranking of TL  (BR ∼ TR)  BR.
This region requires α > γ > 0, so the Table 9a example is constructed with α = 3, γ = 1. For this game,
where β = 0, the P and social welfare rankings agree. To modify the game to obtain the reversed
social welfare ranking of BR  (BL ∼ TR)  TL, where the non-Nash cell BR will be the social
welfare function’s best choice, Theorem 5 describes precisely what to do; select β values that satisfy
(α + β) < −2γ. For Table 9, this means that β < −2(1)− 3 = −5. The β = −6 choice leads to the
Table 9b game, where the social welfare ranking reverses that of the potential function. Again, it is
difficult to argue against this game’s social welfare ranking.

4. Conflict and Agreement

These negative conclusions, where potential and social welfare rankings disagree, can be overly
refined for many purposes. Similar to an election, the interest may be in the winner rather than who is
in second, third, or fourth place. Thus, an effective but cruder measure is to determine where potential
and social welfare functions have the same top-ranked cell.

All of the conflict in potential and social welfare rankings are strictly caused by β values, which
suggests identifying those β values that allow the same potential and social welfare preferred cell. It is
encouraging how answers follow from α and β comparisons.

Corollary 2. For symmetric 2 × 2 games, the following hold for γ ≥ 0:

1. The potential and social welfare functions have TL as the top-ranked and payoff dominant cell for α + β > 0
and α > 0 (shaded Figure 1a region on the right).

2. If α + β < 0 and α > 0 (unshaded region region on the right of Figure 1a), then BR is the social welfare
top-ranked and payoff dominant cell, but the top-ranked P cell is TL.

3. If α + β < 0 and α < 0 (shaded Figure 1a region on the left), both functions have the BR cell top-ranked.
BR also is the payoff dominant cell.

4. If α + β > 0 and α < 0 (unshaded region on the left of Figure 1a), TL is the social welfare top-ranked and
payoff dominant cell, while the P top-ranked cell is BR.

The content of this corollary serves as a legend for the Figure 1a map; the shaded regions are
where both measures have the same top-ranked cell. A simple way to interpret this figure is that for all
games to the right of the β axis (α > 0), P’s top-ranked cell is TL, while to the left it is BR. In contrast,
above the α + β = 0 slanted line, the social welfare’s top-ranked cell is TL, while below it is BR. Thus,
in the unshaded regions, one measure has BR top-ranked, while the other has TL.

This corollary and Figure 1a show that if the α value (indicating a preference of the agents for
T and L or B and R) is not overly hindered by the externality forces (e.g., if α > 0 and β > −α) then
the potential and social welfare functions share the same top ranked cell. But should conflict arise
between these two fundamental variables, where the α and β values favor cells in opposite directions,
disagreement arises between the choices of the top ranked P and social welfare cells.

Proof. The proof follows directly from Table 8. With γ ≥ 0, P’s top-ranked cell is TL for α > 0 (to the
right of the Figure 1a β axis), and BR for α < 0 (Table 8a). According to Table 8b, the social welfare’s
top-ranked cell is TL iff γ + [α + β] > γ − [α + β], or iff α + β > 0; this is the region above the Figure 1a
slanted line. The same computation shows that the social welfare’s top-ranked cell is BR for the region
below the slanted line. This completes the proof.

Everything becomes slightly more complicated with γ < 0. The reason is that this γ < 0
anti-coordination factor permits BL and TR to become Nash cells. This characteristic is manifested in
Figure 1b, where the Figure 1a α = 0 and α + β = 0 lines are separated into strips.
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The content of the next corollary is captured by Figure 1b, where the potential and social welfare’s
top-ranked cells agree in the three shaded regions. To interpret Figure 1b, P’s top-ranked cell is BR for
all games to the left of the vertical strip (α < −|γ|), cells BL and TR (or BL ∼ TR) in the vertical strip
(−|γ| < α < |γ|), and cell TL to the right of the vertical strip (α > |γ|). Similarly, the social welfare’s
top-ranked cell is BR below the slanted strip, BL ∼ TR in the slanted strip, and TL above the slanted
strip. As γ → 0, the width of the strips shrink and Figure 1b merges into Figure 1a.

Corollary 3. For symmetric 2 × 2 potential games, the following hold for γ < 0:

1. The top-ranked P cell is TL iff α > |γ| (the Figure 1b region to the right of the α = |γ| vertical line).
In this region, the social welfare ranking is TL (to agree with P) for (α + β) > 2|γ| (shaded region on
the right of Figure 1b), but conflicts with P’s choice with the social welfare top-ranking of BL ∼ TR if
2|γ| > (α + β) > −2|γ| (the portion of the strip below the shaded region on the right of Figure 1b),
and with the top-ranked BR for −2|γ| > (α + β) (the unshaded region below the strip on the right of
Figure 1b).

2. For −|γ| < α < |γ| (the vertical strip of Figure 1b), both BL and TR are P’s top-ranked cells with the
ranking BL ∼ TR. In this strip, the social welfare function has the same BL ∼ TR ranking only if
−2|γ| < (α + β) < 2|γ| (the shaded trapezoid). Outside of this region in the strip, the social welfare
top-ranked cell differs from P’s BL ∼ TR choice by being TL for (α + β) > 2|γ| (above the trapezoid) and
BR for (α + β) < −2|γ| (below the trapezoid).

3. The top-ranked cell for P is BR for α < −|γ| (to the left of the vertical strip). The social welfare function’s
top-ranked cell also is BR for α + β < −2|γ| (shaded Figure 1b region on the left). However, in this
region, the social welfare function has BL and TR top ranked, or BL ∼ TR, for −2|γ| < (α + β) < 2|γ|
(the portion of the slanted strip above the shaded region) and TL top ranked for (α + β) > 2|γ| (above the
slanted strip).

Proof. The proof follows directly from Table 8. With γ < 0, it follows from Table 8a that P’s top-ranked
cell is TL if it is preferred to either BL or TR, which is if 2α + γ > −γ or if α > |γ|. This is the Figure 1b
region to the right of the α = |γ| vertical line. Similarly, P’s top-ranked cell is BR if γ − 2α > −γ, or if
−α > |γ|; this is the region to the left of the α = −|γ| vertical line. The same computation shows that
in the vertical strip −|γ| < α < |γ|, P’s top-ranked cells are the two Nash cells BL and TR, where P’s
ranking is BL ∼ TR.

Using the same approach with Table 8b, it follows that the social welfare’s top-ranked cell is TL
if it has a higher score than BL or TR, which is if −|γ|+ (α + β) > |γ|, or if α + β > 2|γ|. This is the
region above the α + β = |γ| slanted line. Similarly, the social welfare top ranked cells are BL ∼ TR
for −2|γ| < (α + β) < 2|γ|, which is the slanted strip (which expanded the Figure 1a slanting line),
and BR for (α + β) < −2|γ|, which is the region below the slanting strip. This completes the proof.

4.1. Changing β1, β2

The cause of conflict between potential and social welfare rankings now is clear; the first ignores
β values while the second depends upon them. However, a feature of the previous section is that
if TL or BR ended up being the social welfare top-ranked cell, it also was the payoff dominant cell.
This property is a direct consequence of the symmetric game structure where the behavioral terms
(Table 6b) always favored one of these two cells.

To recognize the many other possibilities, change the β structure from
β = β1 = β2 to β = β1 = −β2. This affects Table 6b by changing the sign of player 2’s entries,
so the game’s externality features now emphasize either BL or TR. The social welfare function becomes

w = 2γt1t2 + α(t1 + t2) + β(t2 − t1) (13)
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A reason for considering this case is that any (β1, β2) can be uniquely expressed as

(β1, β2) = (b1, b1) + (b2,−b2) where b1 =
β1 + β2

2
, b2 =

β1 − β2

2
. (14)

Thus, combining Figure 1 with the impact of (β,−β) captures the general complexity.
Because the decomposition isolates appropriate variables for each measure, Table 8 is the main tool

to derive the Figure 3 results. In this new setting, Table 8 is replaced with Table 10, where part a restates
the potential function values for each cell and b gives half of the social welfare function’s values.

Table 10. A quasi-symmetric potential game’s P and w
2 values, with (β,−β).

+1 −1 +1 −1
+1 2α + γ −γ +1 γ + α −γ − β
−1 −γ γ − 2α −1 −γ + β γ − α

a. P values b. w
2 values

β = α + 2γ

β = α − 2γ

β = −α + 2γ

β = −α − 2γ

TLBR

BL

TR

α

β

α

β
β = α + 2|γ|

β = α − 2|γ|

β = −α + 2|γ|
β = −α − 2|γ|α = |γ|α = −|γ|

TLBR

BL

TR

(a). The α-β plane; γ ≥ 0 (b). The α-β plane; γ < 0

Figure 3. More conflict and agreement with α, β values.

As with Figure 1a, if γ ≥ 0, then P’s top-ranked cell is TL for α > 0 and BR for α < 0. The same
holds for Figure 3a. According to Table 10b, the social welfare function ranks TL over BL if γ + α >

−γ + β, or if β < 2γ + α. In Fig. 3a, this is the region below the β = α + 2γ slanted line. Similarly,
the social welfare function ranks TL over TR if α + 2γ > −β, or β > −α − 2γ, which is the Figure 3a
region above the β = −α − 2γ line. P’s top ranked cell is BR if α < 0, which is the Figure 3a region to
the left of the β axis. A similar analysis shows that the social welfare function ranks BR above TR if
β > α − 2γ, or the region above the Figure 3a β = α − 2γ line. Finally, this function ranks BR above BL
if β < −α + 2γ, which is the region below the β = −α + 2γ line.

Consequently, agreement between the two measure’s top-ranked cell is in Figure 3a shaded
regions, where BR is the common choice to the left of the β axis and TL is for the region to the left.
Conflict occurs in the unshaded region where BL is the welfare’s top-cell on the top and TR is for the
region below. Again, these outcomes capture the β structure where, now, positive β values emphasize
the BL cell and negative values enhance the TR entries. Contrary to Figure 1a, the upper unshaded
region now is where BL, rather than TL, is the welfare function’s top-ranked cell.

Consistent with Figure 1b, the situation becomes more complicated with the anti-coordination
γ < 0. Again, P’s top ranked cell is BR to the left of the vertical strip, BL ∼ TR in the strip, and TR to
the right of the strip. Similar algebraic comparisons show that the social welfare’s top-ranked cell is
BL in the upper unshaded region of Figure 3b, including the portion of the β axis. Similarly, TR is the
welfare function’s top-ranked cell in the lower unshaded region. Consequently, the two large shaded
regions are where agreement occurs (going from left to right, BR, TL).
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With the Table 6a Nash structure, outcomes for all possible (β1, β2) values can be computed from
Figures 1 and 3. To illustrate with γ = −0.5, α = −2, β1 = 11, β2 = 1, it follows from |γ| < −α that
BR is P’s top-ranked cell. The information for the welfare function comes from Equation (14) where
b1 = 6, b2 = 5. To find half of the welfare functions value, substitute α = 2γ = −0.5, β = 6 in Table 8b,
substitute α = 2γ = −0.5, β = 6 in Equation (13b), and add the values. It already follows from plotting
these values in Figures 1b and 3b that the outcome is either TL or BL.

4.2. Changing α1, α2

The general setting for a potential game involves variables α1, α2, β1, β2, γ. This suggests
mimicking what was done with β by carrying out an analysis using α = α1 = −α2; this is simple,
but not necessary. The reason is that most needed information about P’s top-ranked cell comes
from Equation (5). As this expression shows, with appropriate choices of α1, α2, and γ, any cell
can be selected to be P’s risk-dominant, top-ranked choice, any admissible pair of cells can be Nash
cells, where a designated one is risk dominant, and any cell can be selected to be the sole Nash cell.
Finding how the behavioral terms (the β1, β2 values) can change which cell is the welfare function’s
top-ranked cell has been reduced to elementary algebra.

All that is needed to obtain answers is to have a generalized form of Tables 8 and 10, which is given
in Table 11. The Table 11a values come from the general form of the potential function in Equation (2).
The Table 11b values for the welfare function come from a direct computation of its equation

w(t1, t2) = (α1 + β2)t1 + (α2 + β1)t2 + 2γt1t2. (15)

Table 11. A potential game’s P and w values.

+1 −1
+1 α1 + α2 + γ α1 − α2 − γ
−1 −α1 + α2 − γ −α1 − α2 + γ

a. P values

+1 −1
+1 α1 + α2 + β1 + β2 + 2γ α1 − α2 − β1 + β2 − 2γ
−1 −α1 + α2 + β1 − β2 − 2γ −α1 − α2 − β1 − β2 + 2γ

b. w values

In the manner employed above, Theorem 6 is a sample of results. Here, use Equation (5) to
determine the potential function structure, and Theorem 6 to compare social welfare (and β) values.

Theorem 6. The social welfare function (Equation (15)) is maximized at TL if and only if α1 + β2 + α2 + β1 > 0
and βi + α¬i > −2γ, where i = 1, 2 and ¬i denotes the agent who is not i. The welfare function is maximized at
TR if and only if α2 + β1 < −2γ, α1 + β2 > 2γ, and α1 + β2 > α2 + β1. The welfare function is maximized
at BL if and only if α1 + β2 < −2γ, α2 + β1 > 2γ, and α2 + β1 > α1 + β2. Finally, the welfare function is
maximized at BR if and only if α1 + β2 + α2 + β1 < 0 and βi + α¬i < 2γ, for i = 1, 2.

5. Discussion

Questions regarding the various measures for game theory have proved to be difficult to analyze.
There is an excellent reason for this complexity; answers must depend upon the particular payoffs of a
game, but it was not clear what portions of each payoff contribute to which aspects of a game. As such,
a surprising and welcomed property of the coordinate system is how it identifies how all of a game’s
entries interact; the coordinates precisely dissect and extract from each payoff entry its contribution to
the different attributes of a game.
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Support for these comments come from equations such as Equation (9) for the potential function
and Equation (10) for the welfare function. The different signs of t1t2 and ti coefficients, for instance,
nicely capture the complexity of a standard approach; it indicates there exists a twisting of certain
portions of the payoff entries that are needed to carry out an analysis. The decomposition’s separation
of which parts of a payoff entry affect Nash structures and which affect payoff and externality
factors explain why different measures of a game can have different conclusions. What illustrates the
power of doing so is how the discovery and proofs of many subtle results now reduce to elementary
algebraic computations.

Our analysis described how and why differences can arise among potential function, payoff
dominance, and social welfare conclusions about games. Everything extends more generally. As the
decomposition demonstrates, expect methods, learning approaches, and measures that emphasize
“best response”, comparisons of individual payoff differences, and obtaining Nash equilibria to ignore
behavioral terms. Should the objective be to identify properties of Nash structures, doing so simplifies
the analysis by eliminating the redundant (for a Nash analysis) β j variables. However, by not including
β terms, it must be expected that answers from these approaches about games will differ from those
measures that capture the value of payoffs, such as the social welfare function and payoff dominance.
They must; the two different classes of measures depend upon different information about the games.
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Abstract: Intuitively, we expect that players who are allowed to engage in costless communication
before playing a game would be foolish to agree on an inefficient outcome amongst the set of
equilibria. At the same time, however, such preplay communication has been suggested as a rationale
for expecting Nash equilibria in general. This paper presents a plausible formal model of cheap
talk that distinguishes and resolves these possibilities. Players are assumed to have an unlimited
opportunity to send messages before playing an arbitrary game. Using an extension of fictitious play
beliefs, minimal assumptions are made concerning which messages about future actions are credible
and hence contribute to final beliefs. In this environment, it is shown that meaningful communication
among players leads to a Nash equilibrium (NE) of the action game. Within the set of NE, efficiency
then turns out to be a consequence of imposing optimality on the cheap talk portion of the extended
game. This finding contrasts with previous “babbling” results.

Keywords: strategic communication; two-stage games; pareto efficient equilibria; belief formation

1. Introduction

Self-enforcing agreements—those for that no party has any incentive to break given that all others
comply—should be carried out even if they are not binding in a formal sense. This is in fact the defining
characteristic of the standard Nash equilibrium concept, and thus, one of the common justifications for
this concept is that if players are allowed to communicate before playing a game, they could hardly
reasonably agree on an outcome not satisfying this criterion. Recall that a Nash equilibrium constitutes
for each player a set of strategies and beliefs (about other players’ strategies), such that the strategies
are the best responses to beliefs and the beliefs are correct (see e.g., Osborne 2004 [1]). We assume that
there is no recourse to court-enforceable contracting, or equivalently that any such interactions have
already taken place. Unfortunately, while intuitively pleasing, this justification for the use of a Nash
equilibrium has been characterized by a shortage of formal models.

On a related, but distinctly different track of reasoning, it is natural to wonder why agents would
ever agree on an inefficient outcome, assuming that they had the chance to talk in the first place.
In other words, why would players agree ahead of time to an inefficient outcome of a game if there
were another potential outcome, also an equilibrium, that gave strictly greater payoffs to all of them?
Once again, the challenge has lied in constructing a realistic, but necessarily simplified, formal model
of the agents’ communication process. Among other problems, this inefficient result appears to be
incompatible with the arguments outlined above, in which Nash equilibria in general are justified.

This type of preplay communication is often called cheap talk , which may be roughly defined as
nonbinding, nonpayoff relevant, preplay communication. Although cheap talk has indeed received
attention as a potential solution to these questions surrounding the equilibrium concept, in practice,
it has been mostly used in the study of signaling games, in repeated environments (often in connection
with learning), and in certain applied settings. These are of course all important applications, but these
leave the original ambiguities unresolved. This paper, then, returns to the goal of constructing a
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more comprehensive model of pure cheap talk and explores its relationship with equilibria and
equilibrium selection.

This paper develops a model of cheap talk that involves an unlimited communication session,
called a conversation , before the play of a standard game begins. Players announce in advance what
actions they plan to take in the upcoming game, and taken together, these announcements form one
possible prediction of what they may actually do. On the other hand, there is also a common prior
forecast, given exogenously, of what each player will do; this forecast is updated as the conversation
proceeds. An announcement is defined to be credible only if it is close to the best response to one
or the other of these two predictions about the rest of the players. Otherwise, an announcement has
no external justification, so it is deemed unbelievable and disregarded. The conversation continues
indefinitely in this manner, possibly, but not inexorably toward some limit. Realistically, it will rarely
if ever go on for very long (although, for complicated games, it may take some time), since if it is
going to converge, it will do so rapidly. However, it is important not to have an artificial limit imposed
externally, just as long finitely repeated games behave very differently than infinitely repeated games.

The paper’s first main result is that if the conversation converges toward a limit, then this
limit must be a Nash equilibrium of the underlying action game in which payoffs are determined.1

Conversely, any Nash Equilibrium forms a possible limit of the conversation. This result can be
interpreted as saying that meaningful communication before a game can only lead to Nash outcomes.
Since the cheap talk is the initial interaction between the players, we assume that they cannot be sure of
the strategies that their opponents will follow in the communication stage. Any strategy in this phase
that is weakly dominated by another is clearly not optimal; anything else is potentially the preferred
choice and is therefore, given the lack of information, one possible optimal choice.2 The paper’s
second result then states that optimal pregame play in the conversation stage leads to an efficient
outcome and that any efficient final outcome is a possible result of such a strategic conversation.3

This can be interpreted as saying that rational, or thoughtful, speech leads to efficiency. This completes
the connection between cheap talk (as modeled here, i.e., in an environment where rationality and
utilities are common knowledge), Nash equilibria, and Pareto optimality. The first result applies to all
games (at least those with a Nash equilibrium), while the second result only has bite in games with
multiple equilibria.

The conclusion derived from the second main result contrasts with previous “babbling” results,
in which it is impossible to select among the set of Nash equilibria because all pregame communication
is ignored. The main reason for the difference is that those previous studies looked for equilibria of the
extended communication game as a whole—for instance, by assuming that the full strategies of all
players are known. This allows equilibrium strategies in which no value is placed even on seemingly
mutually informative communication, whereas the model below presupposes the impossibility of
ignoring beneficial interchange. Thus, the present paper takes a more primitive view of pregame
strategies, especially since in part it is attempting to justify the equilibrium concept in the first place.
Naturally, although the model does not impose beliefs about the cheap talk stage, it still must make
some assumption about beliefs held upon entering the action game. Another approach that will destroy
the babbling equilibria is to assume an arbitrarily small, but positive cost to sending messages—this
is a restriction on the environment rather than on the structure of equilibrium or on belief formation.
While this limitation is plausible in reality, it is, strictly speaking, no longer a model of cheap talk, even if
the total sum spent on sending messages is always lower than the game’s smallest payoff differential.

The paper proceeds as follows. Section 2 provides a brief survey of some of the relevant literature.
In Section 3, some motivation is given for the specific assumptions made in this conversational model

1 The limit is an ε-Nash equilibrium.
2 This is discussed in further detail in Section 3.
3 The notion of efficiency used here is stable efficiency, a concept that is equivalent to Pareto efficiency in generic two

person games.
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of cheap talk. Section 4 lays out the formal model, stating and proving the paper’s two main results.
Several examples are detailed in Section 5 in order to illustrate both the cheap talk process and the
implications of the theorems. Finally, Section 6 concludes the paper by summarizing the model and
discussing some possible extensions of its implications.

2. Previous Literature

The concept of cheap talk was introduced into the economics literature by Crawford and Sobel
(1982) and Farrell (1987) [2,3]. Since then, a sizable literature has developed related to this topic,
with such examples as Farrell and Gibbons (1989), Forges (1990), Farrell (1993), Aumann and Hart
(1993), Blume and Sobel (1995), and a survey in Farrell and Rabin (1996) [4–9]. The paper that perhaps
is closest to the present one is Rabin (1994) [10]. It models a finite instead of an infinite opportunity for
communication, but also seeks a notion of optimality rather than equilibrium in the analysis of the
extended game. The specific form of cheap talk assumed by Rabin is different from the one presented
below, in particular with respect to the element of choice between strategies against which to credibly
best respond. The results can be framed in terms of the two central questions posed here, but are
generally less conclusive in either. Both papers adhere to the full rationality paradigm of classical
game theory and previous work on cheap talk, as opposed to, say, the evolution literature.

There are a number of papers that study a more limited class of games. For instance,
Matsui (1991) [11] applied cheap talk to common interest games, and in this context, his notion
of cyclic stability yields efficiency. Canning (1997) [12] studied signaling games of common interest,
although the messages do not necessarily constitute cheap talk per se. He found that off-path beliefs
are vital to the question of whether or not efficiency is eventually realized; randomly drawn off-path
beliefs encourage experimentation and lead to efficiency. Finally, Sandroni (2000) [13] studied two
person repeated coordination games without cheap talk. He introduced the concept of blurry beliefs,
which is a less restrictive (that is, more fully rational) belief dynamic than those used in evolutionary
game theory, although it is stronger than anything used here. Sandroni showed that if the belief classes
of the players satisfy reciprocity, then cooperation will be achieved. Overall, the current paper pins
down the link between communication and (efficient) equilibrium outcomes more concretely than the
previous literature. In particular, it explores a specific empirically-consistent model of belief formation
and shows a two way equivalence between that process and the optimality of the resulting behaviors.

A fairly large class of papers has studied repeated games and the emergence of Nash equilibria
without introducing cheap talk, including Crawford and Haller (1990), Young (1993), and Kalai and
Lehrer (1993) [14–16]. Finally, there have been some experimental studies of communication and
equilibrium selection in various coordination games; see, for example,Cooper et al (1992), Brandts
and Cooper 125 (2007), and Cachon and Camerer (1996) [17–19]. The results can be summarized (and
oversimplified) as finding that two way pregame communication greatly increases the chances of
observing efficient equilibrium outcomes. Pertinently, this holds even if the efficient equilibrium is not
risk-dominant, in contradistinction to some previous results. Meanwhile, some experimental studies
found that preplay communication can actually induce fewer choices consistent with Nash equilibria,
e.g., Boulu-Reshef et al (2020) [20] in the context of public goods games. This could either be due to
the limited opportunity for communication and/or the possibility of social preferences (which would
change the set of NE).

3. Motivation

This section provides some intuition and justification for the structure of the model that follows;
the impatient reader can skip to the next section. The model assumes that there is an action game to be
played, about which the players are assumed to have full information (in order to abstract away from
any signaling incentives during the conversation). Each player begins with a common forecast about
what actions he or she will take in the upcoming game. These expectations can be interpreted as vague
initial ideas about how the game might be played, arising perhaps from societal conventions or from
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focal points (hence the assumption that the forecasts are common and known). They are not beliefs in
the formal sense, although they will be updated throughout the conversation.4 Since a priori, nothing
can be absolutely ruled out by any of the players, the prior forecasts are totally mixed.5 Needless to
say, the forecasts are not in any way binding: players ignore what they themselves are “expected”
to do, although they can take into account the influence this expectation has on their opponents.6

The key distinction between forecasts and standard beliefs is that the forecasts are about the general
environment (how might this game typically be played by others?), whereas beliefs are about the
actual decisions by the specific players interacting in a given concrete situation. Thus, among other
implications, it makes sense to reason about players trying to influence the beliefs that their opponents
have about them, whereas they cannot influence the more broadly prevalent forecasts. Of course,
then, we need to model from whence the forecasts come (social norms, news media, evolutionary
psychology, etc), but that is outside the scope of the present paper.

During the conversation stage, before playing the action game, players send public messages to
each other. Since we are attempting to understand what such preplay communication can achieve,
we assume that there is an unlimited (but countable) opportunity to send these messages. For simplicity
and without loss of generality, the messages are taken simply to be announcements of a player’s
own expected actions in the game. One could assume instead that players announce mixtures of
their possible actions, but this is an unnecessary complication. Essentially, given infinite riskless
communication, this slight limitation on the flexibility of messages imposes no loss in the long run.
Implicitly, we are assuming that players can understand one another and that they take messages
at face value (not in a strategic sense, but in a linguistic sense). If the message “action L” is sent,
everyone understands that to mean “action L” and not “action R”. Thus, there is a natural language for
speech; the players share enough common history or cultural affiliation that they are able to talk and
understand one another in a previously unencountered situation.

Of course, not all announcements should be considered seriously. We need to define a notion
of credibility or believability. The first requirement is that a player’s announced action should be
self-committing, in the sense that if it were believed and best responded to, the original announcer would
still be willing to carry through with it (within the confines of the action game). This requirement
is equivalent, then, to being in the support of some Nash equilibrium of the action game. At the
beginning of the preplay conversation, any self-committing action is credible, so players have a chance
to guide the discussion. In general, there will be some tradeoff between allowing the players leeway
to influence the conversation at the beginning, but requiring them at some point to pay attention
to what the others are saying and to reflect that updated information in their own announcements.
Unlike in the deterministic best response dynamics of evolutionary models, it is important in this
model that players have a choice over what to say; this is the hallmark of a conversation. It is this
choice, along with the lack of payoffs until the action game is at the very end, that differentiates this
paper’s model from an evolutionary learning model.

The common forecast is very slowly updated by each credible announcement. We can think of the
prior forecast as the result of a long, but finite fictitious history of credible announcements, with each
new stated action adding to the average.7 As beliefs get updated, the initial forecast can be ignored and
only the actual credible announcements counted toward an average forecast: this forecast constitutes a

4 The players do not have beliefs about the full strategies of their opponents, only ideas about what might actually occur in the
game. Thus, the preplay forecasts are distributions over actions, not distributions over mixed strategies (which themselves
are distributions over actions). This is not crucial to the conclusions reached.

5 It is not strictly necessary for the results that the priors be totally mixed.
6 The author performed the analysis under the seemingly weaker assumption that all that is known about the prior forecasts is

that they place a certain minimum weight on each action, but the results carry over. Since this assumption adds complexity,
but is no sounder in justification (Why can the entire distributions not be known if the minimum weights are?), it has been
left out.

7 Recall that the average of multiple sets of actions is equivalent to a mixed strategy.
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player’s appearance. In general, we recursively define an announced action to be credible if it is the
best response (within ε) to either the current forecast of an opponent’s behavior or to an opponent’s
appearance.8 If there are more than two players, either the common updated forecast or a player’s
appearance may be substituted for each. The intuition here is that a player can either say something
like, “This is what I think you are going to do, and if so then I would plan to do such-and-such,”
or something along the lines of, “Okay—for the moment I’ll take you at your face value, and in that
case I’ll want to do so-and-so.” Of course, he or she only needs to consider credible announcements in
making these plans.

At any time during the preplay conversation, a player can make any announcement desired,
but only those statements that are credible will have an impact on the conversation. Since all
players know the prior forecasts and all previous announcements, they can calculate which of these
announcements were actually credible and hence also which of their own announcements will be
perceived as credible by others. If at any point, there is but a single action that is credible for a
particular player, it must be that this player can only seriously be considering that action (at that point
in time). Therefore, in effect, it does not matter whether or not he or she actually announces that
action; everyone knows that it is being considered, and hence, it should count toward the forecast and
appearance of that player, regardless of what may or may not be announced. This argument implies
that without loss of generality, we may assume that all players make credible announcements during
each round of the conversation.9 Finally, we assume that at each point in time, any player can start
over; that is, declare a clean slate and remake their appearance anew. This is the equivalent of declaring
that the conversation has broken down from his or her perspective and, among other implications,
allows the players to attempt to coordinate. Although it may seem like an overly strong possibility,
in fact, a player’s appearance is a powerful commitment device, and so, giving up on it involves a
significant loss.10 In any case, of course, the clean slate option is available equally to all of the players.
This completes the description of the cheap talk conversation.

One last remaining question about the credibility concept concerns the infinite durability of
credible announcements. That is, a credible announcement always “counts” even if it is no longer
credible. The reason for this is that any credible announcement indicates evidence of a desire for
that action if possible, and there is no reason to think that the desire will change or that the desired
action may not once again become plausible. In effect, each announcement has a small impact
that builds toward the whole impression, rather than the fads of currently credible actions. In fact,
if only those actions that are credible at the moment are averaged into the player’s appearance,
at each communication stage, one can observe swings back and forth of what is and is not believable.
Furthermore, in this updated setting, eventually, only one pure strategy will be credible, and so, it is
essentially impossible for players to converge to a mixed strategy.

Once the preplay conversation is complete, we have a countably infinite sequence of
announcements for each player, with an associated sequence of appearances (the average credible
announcement to date). This latter sequence may or may not have a limit.11 Because of the infinite
horizon and the nature of the updating process, if the limit does exist for a given player, then the
forecasts made by the other players about this player will also converge, and to the same point. In this
case, we specify that entering the concrete action game, the beliefs held by the other players about this
player are also this same point in the strategy space. In this way, the conversation is a model of belief
formation. If the appearance does not converge, then the appropriate forecast will not converge either,

8 We assume that players only care about payoffs up to some arbitrarily small constant ε, either because they cannot perceive
finer differences or because they are indifferent over this range.

9 We make the standard assumptions on the action game so that a best response always exists.
10 In particular, continually starting over inhibits convergence, in which case, the player has no influence on the ultimate

course of the discussion. This is never optimal, as shown below.
11 If no credible announcements were made after some finite stage, this is taken to mean that the limit does not exist. However,

as above, we may assume that this does not occur.
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and beliefs remain open for the time being. Of course, it may be true in general that appearances have
a limit only for some (possibly empty) subset of the group of players.

If the appearances of all players converge, then we say that the conversation itself converges.
However, in this case, every player continues to make credible announcements, and hence, at the
limit, these announcements must be near the best responses to the actions stated by the other players,
and hence to the limits of the other players. Since by definition, the latter are the beliefs held by
the given player upon entering the action game, his or her limit must be an action that is (near) the
best response to his or her beliefs and is therefore one optimal strategy to pursue in the action game.
Therefore, we may assume that this limit action is indeed chosen, validating the beliefs of the other
players. Of course, since this is true for all players, the limits must be mutual best responses, and thus,
the play arrives at a Nash equilibrium. This is Theorem 1 below.

We next turn our attention to the question of optimality in the cheap talk stage of the overall
game. Stepping back for a moment, we consider the question of whether or not to participate in
the conversation at all, given the opportunity to do so. Since there is a natural language with which
to communicate, any player can initiate a conversation. Whether or not they choose to participate,
other players will hear and be influenced by the announcements of this player. Therefore, if they do
not also make announcements, this player (or players) will have free reign to drive beliefs toward the
equilibrium of their choosing (by announcing it ad infinitum). Since this outcome is at least weakly bad
for other players, it cannot hurt them to also join in the conversation and attempt to guide the discussion
in a direction favorable for them. For instance, in the Battle of the Sexes game, played between one
man and one woman, Player 1 conversing with himself will continuously announce the equilibrium
that he prefers. Entering the action game, the other player believes these announcements and best
responds to them, so that the play will in fact be at that equilibrium. In this case, it would have been
a good idea for Player 2 to at least try to promote her favored outcome, that is to participate in the
conversation. Thus, we may assume, without any loss of generality, that all players converse.

Players do not know the cheap talk strategies employed by their opponents (if they did, we should
instead be modeling what occurred before this conversation in order for that knowledge to be gained),
so these players must consider all strategies to be possible. Thus, if a cheap talk strategy for one player
never performs better (in terms of the payoffs ultimately realized in the action game, of course) than
another competing strategy and does strictly worse against at least one possible strategy profile of
the opponents, then the original strategy should be discarded as suboptimal. Anything that is not
weakly dominated is optimal.12 This is intentionally a broad definition of a strategy; it is meant to be as
loose as possible and yet at least minimally capture the requirements of optimality. Theorem 2 below
proves that if all players employ communication strategies that are optimal in this loose sense, then the
conversation must converge to a stably efficient equilibrium of the game. This class of equilibria,
defined below, is essentially those Nash equilibria for which no coalition can break away and, on their
own, force the other players to follow them to some other equilibrium that is preferred by the coalition.
In two person games with distinct payoffs (a property that holds generically), this result is equivalent
to Pareto optimality.

4. Model

Consider a game G with n players and finite action spaces Si for i = 1, ..., n.13 Payoffs are given by
ui for i = 1, ..., n. It will be simplest to think of G in normal form. G is played exactly once, though G

itself may be a repeated game. Before this happens, there is a conversation C(G), defined as follows.
Each player begins the pregame conversation with a totally mixed prior forecast πi = π1

i ∈ Δ(Si)

about his or her behavior. The forecasts are common knowledge among all the players. At each

12 Naturally, since full rationality is assumed, we could endlessly iterate the process, but there is no need.
13 The assumption of finiteness can be weakened.
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round t = 1, 2, 3... of the conversation, player i announces mt
i ∈ Si. The announcements are made

simultaneously by all players in each round.14

Let NE(G) ⊆ n×
i=1

Δ(Si) be the set of Nash equilibria of G, and define Ei ⊆ Si by:

Ei = {si ∈ Si | ∃σ ∈ NE(G) with si ∈ supp(σi)} .

This set constitutes the self-committing actions for player i. At t = 1, any m1
i ∈ Ei is said to be

credible. If m1
i was credible, then we define:

π2
i = (Tπ1

i + m1
i )/(T + 1)

for some fixed T, which can be chosen to be large relative to the scale of the strategy space and
payoffs in the underlying game. This captures the slow updating process of prior forecasts by credible
announcements. In a similar fashion, the appearance is given by p2

i = m1
i . If the initial announcement

was not credible, then the forecast is not updated, and the appearance is undefined. Recursively,
we now define mt

i to be credible when:

mt
i ∈ εBRi(×

j �=i
qt

j) with qt
j = πt

j or pt
j∀j,

where εBRi(σ−1) denotes:
{

si ∈ Si | max
s′i∈Si

ui(s′i, σ−1)− ui(si, σ−i) < ε

}

for some arbitrarily small ε > 0. If mt
i is not credible,15 then πt+1

i = πt
i and pt+1

i = pt
i . If mt

i is credible,
then we define:

πt+1
i = ((T + t − 1)π1

i + m1
i )/(T + t) and pt+1

i = ((t − 1)pt
i + mt

i)/t.

Say that player i’s appearance converges if player i never entirely stops making credible
announcements and if lim

t→∞
pt

i exists. If this happens, it is clear that lim
t→∞

πt
i also exists and is the

same; call it bi for the belief about player i. If the limit exists for all players, then the conversation
converges. In this case, we assume that beliefs after the conversation and entering G are given by
μi = ×

j �=i
bj.

Definition 1. An acceptable equilibrium (of G) is a profile σ ∈ n×
i=1

Δ(Si) such that σ = b for some belief

vector b resulting from a convergent conversation starting at some prior forecasts π; the set of acceptable
equilibria is denoted AccE(G).

Theorem 1.

1. NE(G) ⊆ AccE(G)
2. AccE(G) ⊆ εNE(G)

Proof. (1) Let σ ∈ NE(G), and consider prior forecasts π very close to σ. By the definition of a Nash
equilibrium, any si ∈ supp(σi) is in εBRi(π−i). Now, let the players announce actions in the support

14 Sequential announcements lead to a forced asymmetry regarding who speaks when. The effects of this generalized
first-mover advantage are irrelevant for the present discussion.

15 Unless player i has only one possible credible announcement, as discussed in Section 3.
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of σ in such a way as to match as nearly as possible the actual distribution prescribed by σ. Initially,
all these actions will be credible as stated. Of course, the forecasts will change over time, but since
the updating process is slow and the cheap talk announcements are matching the given distribution,
the forecasts will always stay near σ. Hence, the actions in the support of the announcements will
remain credible forever. In this manner, lim

t→∞
pt

i exists ∀i, and moreover, lim
t→∞

pt
i = σi. Thus, σ is indeed

an acceptable equilibrium.
(2) If σ ∈ AccE(G) and so is the limit of a convergent conversation, it must be that all si ∈

supp(σi) are credibly announced infinitely often during the preplay cheap talk stage.16 Since in the
limit, both the forecasts and the appearances are arbitrarily near σ, each such si must be in εBRi(σ−1),
and therefore, σi ∈ εBRi(σ−i)∀i.

Among other things, this result justifies the possibility that after a convergent conversation,
players both rationally and self-consistently hold the beliefs that are given by the model. Theorem
1 in some sense clarifies the relationship between cheap talk (as has been modeled here) and Nash
equilibrium. If the communication is meaningful, that is if the cheap talk has a limit, then it must lead
to a Nash outcome. Of course, there is no guarantee that the conversation will converge, and it is quite
possible that it will not.17 Furthermore, no Nash equilibrium, even if inefficient, can yet be ruled out.
Something stronger than an acceptable equilibrium is required.

We next turn to defining the appropriate efficiency concept in this setting.

Definition 2. Call σ ∈ NE(G) directly attainable from σ′ ∈ NE(G) by the coalition S if σs is a Nash
equilibrium in the induced game fixing all players outside of S to play as in σ′, and if also ∀i /∈ S, we have
ui(σi, σS, σ′

−i,S) > ui(σ
′
i , σS, σ′

−i,S).

This is a strenuous definition: the first condition asks that the members of S be able to “jump” to
σ from σ′, and the second condition requires that once they have done so, they can force the rest of the
players to follow them.

Definition 3. Call σ ∈ NE(G) attainable from σ′ ∈ NE(G) by the coalition S if there is a chain of equilibria,
each directly attainable by S, leading from σ′ to σ; if also, ∀i ∈ S ui(σ) > ui(σ

′); and if finally, there is no
similar such chain (for any coalition) leading away from σ.

These are once again fairly strict requirements. The second one states that all members of S must
strictly prefer the new equilibrium, and the third states that the new equilibrium itself is immune to
these sorts of deviations.

Definition 4. A Nash equilibrium of G is stably efficient if nothing is attainable from it; the set of these
equilibria is denoted StE f f (G).

By considering the grand coalition of all players, it is clear that an equilibrium exhibiting stable
efficiency will tend to be efficient. In games with distinct payoffs, no singleton coalitions can ever
attain alternate equilibria (this follows from the first condition of the first definition), and hence, in
two-person games, stable efficiency is generically equivalent to efficiency. It is clear that stably efficient
equilibria always exist (since whatever is attained must itself be stably efficient). In most games,
efficiency and stable efficiency will coincide, but when they do not, it is important that we use the
latter concept. Stable efficiency is related to the coalition-proof concept introduced by [21], but is more

16 In particular, since the conversation converges, there must be some round after which nobody ever cleans their slate and
starts over.

17 Consider, as one example, fictitious play in the rock-paper-scissors game.
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farsighted in that it looks at the full implications of a coalitional deviation; it turns out that neither
definition is a refinement of the other.

Recall that a cheap talk strategy is optimal if it is not weakly dominated.

Definition 5. An agreeable equilibrium (of G) is a profile σ ∈ n×
i=1

Δ(Si) such that σ = b for some belief

vector b resulting from a convergent optimal conversation starting at some prior forecasts π; the set of agreeable
equilibria is denoted AgrE(G).

Theorem 2.

1. StE f f (G) ⊆ AgrE(G)
2. AgrE(G) ⊆ εStE f f (G)

Proof. (1) Consider σ ∈ StE f f (G), and let the prior forecasts π be very close to σ. Since the forecasts
favor σ so heavily, the only way that another equilibrium can ever be reached during the conversation
is if it is directly attainable or the result of a chain of directly attainable equilibria. Thus, all of the
players know that these are the only feasible outcomes, and in fact (see the strategies below), they
can be reached in a conversation. However, since σ is stably efficient, it is not possible for any player
(as a member of any coalition) to be sure that by deviating from one of these alternates, a superior
payoff can be achieved. It must be the case that either not all members of the coalition will profit by
the switch (in which case, those who do not profit will not participate in the deviation) or if they do,
that then, there is another coalition that can profitably and successfully deviate away from this new
point. Of course, it is possible that one’s payoff will be increased by attempting to switch equilibria,
but there will always be circumstances in which it is not profitable. Thus, there is no strategy that
weakly dominates the strategy “emulate σ”, which is always available due to the prior forecasts.
This implies that one optimal strategy for all players is to follow σ, and the result of this will be that
the conversation converges with σ. There may be other optimal strategies, and there may be other
possible results to the conversation; however, this is sufficient to show that σ ∈ AgrE(G), as desired.

(2) Suppose that a conversation is converging toward an equilibrium σ that is not stably efficient
(even up to ε-indifference). If there is just one coalition that can attain a superior equilibrium for
itself, it can pursue the following strategy: (a) Erase its current appearance and start over, and then,
(b) announce the actions that lead to the first equilibrium along the chain. If all members of the coalition
have done likewise, then they will be able to credibly repeat those announcements in the next round,
since these are mutual best responses given the forecasts near σ for the other players. If the other
members have not done this, each individual can start over again and try once more. If eventually
they coordinate, then they can continue to make these announcements indefinitely. At some point,
the forecasts and appearances will then be very close to this new equilibrium, and the only credible
choice for the other players will be to switch to it as well (this follows from the definition of directly
attainable). They can continue in this fashion until the final equilibrium in the chain, where the process
will conclude (by the argument in Part (1) above).

Of course, this attempted deviation will not always work, but it is safe in that either it works
(that is, all members of the coalition coordinate) and a higher payoff is realized or it does not and the
conversation stays at σ instead. Therefore, the deviation strategy weakly dominates the “emulate σ

and stay where you are” strategy. Since this is true for all members of the coalition, optimality implies
that all of them will attempt to force the switch to the preferred attainable equilibrium, and with
probability one they will eventually coordinate (since they always have the opportunity to start over).
Therefore, σ was not in fact an agreeable equilibrium.

Similarly, if there were several coalitions that could attain superior equilibria, each member of each
coalition can start over at each round and attempt to coordinate with his or her coalition. Any player
who is a member of several coalitions or who has a choice between attainable equilibria can randomize
between these possibilities. If the player puts almost all weight on his or her individually preferred
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outcome among all these choices and spreads σ(ε) weight across the others, then this will be ε-optimal,
but will at the same time guarantee that with probability one, coordination takes place at some point.
This weakly dominates “emulate σ” because either the conversation converges to σ anyway (though
this never actually happens with optimality), or another coalition coordinates (which could not be
helped), or one of the attempted coalitions coordinates first (which increases payoffs). Therefore, once
again, no optimal conversation will remain at σ, and thus, it could not have been agreeable.

The intuition behind Part (1) is particularly simple in two player games. In this case, given a
strong prior forecast, either player can insist on the original equilibrium σ for longer than the other
player can credibly hold out against it (by the definition of Nash). Therefore, both players must
optimally be able to get at least their payoff from σ. However, since σ is efficient, this means that both
players get exactly this payoff under any optimal strategies, and thus, staying at σ itself is as good as
anything else. The examples in the next section serve to illustrate the mechanisms behind both the
definitions and the proof of the theorem. It should be pointed out that in most specific cases, very little
of the somewhat complex machinery developed above is necessary or applicable; the process is often
hopefully quite natural and intuitive.

5. Examples

The most obvious example of an equilibrium selection problem is posed by the following
coordination game:

A B
A 2, 2 0, 0
B 0, 0 1, 1

Of the three Nash equilibria in the game, only one is efficient. There is also an inefficient
equilibrium, and this type of coordination problem comes up often in many contexts—including viral
pandemics (see, e.g., Jnawali et al. 2017 [22]). Although in scenarios without communication, it is
possible for (B,B) to occur, Theorem 2 implies that the efficient equilibrium (A, A) is the only possible
outcome after rational nonbinding communication takes place among the players, no matter the prior
forecasts. This is easy to see if either of the forecasts puts significant weight on A. In that case, the
other player can credibly repeatedly announce A as the best response and, in this manner, eventually
force the only credible announcement by either player to be A. Since this yields the highest possible
payoff, it is optimal, and the conversation will converge to A.

If instead the prior forecasts are both heavily skewed toward B, then each player can reason as
follows: “If I announce B, we will be stuck there forever, and I will get a payoff of one. If I announce
A, there is some chance that my opponent will announce B, in which case, we will get stuck, and I
will receive one. However, there is also some chance that my opponent will announce A. If we both
continue to do this, these will remain credible announcements (since they each best respond to the
other’s appearance), and we will converge to the efficient equilibrium, delivering me a payoff of two
instead of zero or one. I can always go back to announcing B and force that equilibrium (or start over
altogether), so there is no risk of ending up at the really inefficient mixed equilibrium. Since there are
no instantaneous payoffs lost from miscoordination along the way, the only possible optimal strategy
is for me to announce A.”

Both players are rational, so they will in fact both announce A at all rounds of the cheap talk
communication, and the conversation will end up converging to the efficient equilibrium. Given that
the forecasts were heavily skewed toward B, it may be a long time before the two players have
truly convinced each other of their intention to play A, but they have all the time in the world and
every reason to make use of it. If we looked instead at the pure coordination game in which (A, A)

also yields payoffs of one to each player, the analysis is slightly changed. If the prior forecasts lean
toward either of the symmetric and efficient pure equilibria, the conversation will converge in that
direction. However, if the priors miscoordinate just right (for example, they are completely uniform
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for both players), it will be necessary for both players to randomize their initial announcement. If they
coordinate at that point, successful convergence follows. If not, they simply clean their slate, start over,
and try again. At some point, they must (that is, with probability one) both choose the same action
(this is why it is necessary to randomize rather than to try to coordinate in some deterministic pattern),
and then, they are done.

A less clear-cut example with a unique efficient equilibrium is found in the following version of
the “stag-hunt” game:

S R
S 5, 5 0, 4
R 4, 0 3, 3

Here, the unique efficient equilibrium involves choosing a risk-dominated action, perhaps making
it more difficult to reach. Allowing communication, however, will afford the players an opportunity to
convince each other that it is safe to play action S. [23] has argued to the contrary that cheap talk may
not help in this game. His reasoning is that since each player would prefer the other to take action S,
they should each attempt to convince the other player to choose it. The way to do this is by claiming
that you yourself are also going to pick S. Therefore, hearing the other player announce S should be
discounted as purely manipulative and ignored.

It seems that Aumann’s argument is not self-evident, at least when there is an unlimited chance
to communicate. Rational players know that they will eventually agree on a Nash equilibrium; there
is zero probability of suckering the other player or miscoordinating. At this point, it comes down to
a choice among equilibria. Knowing this perfectly in advance, if a player announces S, it must be
because he or she is hoping to eventually end up at the efficient equilibrium, that is to end up playing
S. It is, after all, the best response at that point. In any case, the data clearly support the idea that
allowing preplay messages increases the probability of observing the efficient, but risk-dominated
equilibrium; see Charness (2000) and Miller and Moser (2004) [24,25].

We turn our attention next to the Battle of the Sexes, which is not at all a game with
common interests:

F B
F 2, 1 0, 0
B 0, 0 1, 2

In this case, it is not immediately obvious that even with communication, efficiency can necessarily
be achieved. If the prior forecasts favor either one of the pure equilibria, then the player who prefers that
equilibrium will be able to credibly “insist” on it, and it will be the ultimate limit of the conversation.
If the forecasts are balanced, however, neither player can be assured of getting his/her preferred
outcome. Insisting on it whenever possible may lead the conversation to converge toward the inefficient
mixed equilibrium, which is worse for both players. Therefore, this strategy is not optimal. If instead,
the players “yield” to the other player with some extremely small probability at each round, this will
always be achieved within ε of any other strategy, and since it always leads to one of the efficient
equilibria, it weakly dominates the strategy by a player that forever insists on getting his or her way.
Thus, under this scenario, the players are behaving optimally and can achieve efficiency with certainty.

As a final example, we turn to games with three players in order to explain some of the added
complexity that arises. First, consider the following game in which the matrix player’s payoffs are
listed last:

L R
U 0, 0, 10 −5,−5, 0
D −5,−5, 0 1, 1,−5

L R
U −2,−2, 0 −5,−5, 0
D −5,−5, 0 −1,−1, 0

A B
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This game has two pure Nash equilibria, namely (U, L, A) and (D, R, B), only the first of which is
efficient. The second equilibrium is directly attainable from the first through a coalition of the row
and column players, but it is not fully attainable because they enjoy a lower payoff in this equilibrium.
Thus, the first equilibrium is stably efficient (and hence, the second, dominated one cannot be) and
will be the result of rational communication. Nevertheless, since the row and column payoffs would
be higher at the intermediate point along the chain fixing the matrix player at A, the original efficient
equilibrium is not coalition-proof. Now, modify the payoffs slightly:

L R
U 2, 2, 10 −5,−5, 0
D −5,−5, 0 1, 1,−5

L R
U −2,−2, 0 −5,−5, 0
D −5,−5, 0 3, 3, 0

A B

Only the equilibrium payoffs have been changed, but the analysis has been affected greatly.
Both pure equilibria are now efficient, but for exactly the reasons outlined above, only the second
one, (D, R, B), is stably efficient and can be the result of cheap talk. On the other hand, the original
equilibrium is now coalition-proof, showing the discrepancy between the two concepts.

One of the (unavoidable) limitations of this model is that it can say nothing about zero-sum
games, except that communication can only converge to a Nash equilibrium. Other games in which
all equilibria are efficient, and so for which Theorem 2 is vacuous, are games with a unique Nash
equilibrium. These include matching pennies, rock-paper-scissors (where many of the convergence
problems of fictitious play show up), and the game-theoretic standby of the prisoner’s dilemma.
Of course, we cannot expect that simple communication would lead to cooperation, a strictly dominated
strategy. We have assumed throughout that there is only a single (though unlimited) chance for the
players to talk for playing a game. If G is a repeated game and the players have a full conversation
between each stage, then optimal speech should lead to efficient outcomes all along the extensive form
game tree, both on and off the equilibrium path. This gives rise to the difficult problem of finding
renegotiation-proof equilibria18.

6. Conclusions

Coordination games of various forms, from actual rendezvous games to super-modular games
and complementarity games, have received increasing attention in the game theory literature.
Most equilibrium selection in such games, however, has been relatively informal, appealing to such
concepts as focal points, initial conditions, or competition (essentially an evolutionary argument).
Cheap talk, meaning costless and nonbinding preplay communication, has presented an intuitively
pleasing method for formally attacking the equilibrium selection problem. The model of conversations
presented here attempts to provide one possible resolution to this question of equilibrium selection,
as well as to the even older question of justifying the Nash equilibrium concept.

The model assumes that players meet for the first time and communicate in order to allay their
uncertainty about the future actions of their opponents. Since they have no knowledge of the cheap
talk strategies used by the other players, we do not look for an actual equilibrium of the extended game.
Instead, we look for all outcomes that could reasonably occur as the result of rational communication
on the part of the players. Messages are defined to be credible in the context of a particular conversation.
If at the end of a conversation, a player has put forward a consistent and credible appearance, this is
assumed to in fact be the other players’ belief about his or her future actions. From this base, it is
proven that meaningful communication (that is, in which there is convergence) must end up at a
Nash equilibrium. This is a partial justification for the Nash concept. It is then proven that optimal

18 See, for example, the survey paper by Bergin and MacLeod (1993) [26].
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communication, meaning that all players make strategic and rational announcements, leads to the
deselection of inefficient equilibria.

A strength of the paper is that it gives a decisive answer to these two issues within the context of
a single model. It also applies to games with more than two players or that do not necessarily exhibit
common interests. There are, however, several qualifications to the model. First, the results do not
prove that convergence must take place, only that if it does, then it takes a certain form. Secondly,
since by no means all applications allow the possibility for preplay communication, this cannot be a
general justification for the Nash concept. Indeed, this also potentially predicts a distinction between
environments where one would expect Nash equilibrium to obtain versus others where one would not
necessarily expect it. Finally, the model does put restrictions on the belief formation process, in that it
requires some very small amount of faith to be put in credible announcements, at least over the long
run. Note that this is not a departure from full rationality; traditional models have simply left this
process unmodeled. There are also a number of possible relevant extensions of this model, notably to
correlated equilibrium and to introducing a stochastic element in the conversation.

Calvin Coolidge once wisely said, “It is better to remain silent and be thought a fool than to speak
and prove it.” However, that applies only to fools: the moral of this paper is, “It is worse to remain
silent and only be supposed rational than to speak and confirm it.”
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