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Abstract

We investigate the e↵ect of search frictions on labor market sorting by con-

structing a model which is in line with recent evidence that employers collect a

pool of applicants before interviewing a subset of them. In this environment, we

derive the necessary and su�cient conditions for sorting in applications as well

as matches. We show that positive sorting is obtained when production com-

plementarities outweigh a force against sorting measured by a quality-quantity

elasticity. Interestingly, we find that the required degree of production com-

plementarity for positive sorting is increasing in the number of interviews: it

ranges from square-root-supermodularity if each firm can interview a single

applicant to log-supermodularity if each firm can interview all its applicants.

JEL codes: D82, D83, E24.
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1 Introduction

One of the most important tasks for any firm is to hire the right workers. A crucial

part of this process consists of screening applicants through job interviews.1 In this

paper, we are interested in the question how this screening process a↵ects sorting

patterns in the labor market. That is, does the extent to which firms can inter-

view workers a↵ect whether the labor market exhibits positive (PAM) or negative

assortative matching (NAM)? If technological innovations allow firms to screen more

applicants with higher precision, does that make sorting more or less likely?2

Unfortunately, the economic literature is silent on these questions. The earliest

work on assignment problems (Tinbergen, 1956; Shapley and Shubik, 1971; Becker,

1973; Rosen, 1974) considers frictionless environments with no role for screening be-

cause there is full information about types. More recent work by Shimer and Smith

(2000), Shi (2001, 2002), Shimer (2005) and Eeckhout and Kircher (2010a) allows

for frictions but makes particular assumptions about the available information in the

matching process and does not explore how outcomes depend on these assumptions.3

To answer our question, we therefore present a new search model of the labor

market. In line with recent evidence by Davis and Samaniego de la Parra (2017), we

allow firms to interview multiple (but not necessarily all) applicants before making a

job o↵er to the most profitable candidate. We show how the equilibrium allocation

of workers to firms in this environment depends on the degree of production comple-

mentarities on the one hand and the extent to which firms can interview applicants

on the other hand. Perhaps surprisingly, we find that reducing frictions by allowing

firms to interview more workers is a force against sorting.

To explain this result, we must first describe our setup in more detail. We consider

a static environment in which heterogeneous firms compete for heterogeneous workers

by posting menus of type-contingent wages. Workers direct their search to the menu

that maximizes their expected payo↵. This choice determines the expected number of

1See below for some empirical evidence regarding the recruiting process. Note that ‘screening’ in
this context has a di↵erent meaning than the homonymous game-theoretic concept. In addition to
job interviews, screening workers may involve other instruments like checking references, assessments,
and job tests. We use ‘interview’ as shorthand for the entire collection of instruments.

2As an example of such a technological innovation, Ho↵man et al. (2018) describe how some firms
subject all applicants to an online job test. Based on their answers, every applicant is assigned a
score, calculated from correlations between answers and job performance among existing employees.

3Although Eeckhout and Kircher (2010a) use buyer/seller terminology, the same idea applies.
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applicants (the ‘queue length’) at each firm, although the actual number is stochastic

due to coordination frictions. As mentioned, the key novelty in our setup is that we

allow firms to interview a subset of applicants, which reveals their types. Firms hire

the most profitable candidate among their interviewees and subsequently produce

output according to a general production function.

Firms in this environment face a trade-o↵. Attracting low-type applicants can be

beneficial because the search frictions imply that it is always possible that no high

type applies, in which case hiring a low type is better than remaining unmatched.

However, this kind of insurance comes at a cost, because the presence of low types

makes it harder for the firm to identify the high types in the applicant pool. Clearly,

the magnitude of the cost is smaller if firms can screen more, so firms’ decision what

applicant pool to attract ex ante depends on the extent to which they can screen

workers ex post.

We start our analysis by establishing that a firm’s problem can be rewritten as

one in which it purchases queues of applicants at prices equal to workers’ expected

payo↵s. This reformulation implies that the market equilibrium is constrained e�cient

and simplifies exposition. Firms will purchase queues of applicants such that each

worker’s marginal contribution to surplus equals his marginal cost. An applicant

directly contributes to surplus if no other applicant with the same or better type is

being interviewed. However, when firms cannot screen everyone, an applicant also

a↵ects surplus by making it harder for other applicants to be interviewed.

We then turn to sorting. Given the meaningful distinction between applicants and

hires in our environment, we analyze sorting along both dimensions. We define PAM

as first-order stochastic dominance in the distribution of hires, and introduce positive

assortative contacting (PAC) as the corresponding concept for the distribution of

applicants.4 We first show that when worker types are su�ciently close the conditions

for PAC and PAM boil down to a simple comparison between two elasticities: along

the equilibrium path, the elasticity of complementarity of the production function

must exceed a novel elasticity which we label the quality-quantity elasticity (and

which di↵ers between PAC and PAM). It therefore follows that we need to consider the

bounds on the two elasticities. In particular, the supremum of the quality-quantity

elasticity should not exceed the infimum of the elasticity of complementarity. We

4We also provide results for negative assortative contacting (NAC) and NAM. We omit intuition
for those results here as it mirrors the intuition for PAC and PAM.
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prove that this condition is not only necessary but also su�cient.

The elasticity of complementarity is a scalar measure, which can be used to de-

scribe varying degrees of supermodularity. The relevance of complementarity in pro-

duction for sorting has been known since Becker (1973) showed that supermodularity

of the production function (i.e. the elasticity of complementarity being positive) is

necessary and su�cient for PAM in a frictionless economy. It is also well known that

this condition is no longer su�cient in the presence of search frictions. The reason

is that the opportunity cost of remaining unmatched is larger for high types, which

makes them more eager to match with a low type rather than run the risk to not

match at all. To undo this e↵ect, the production function must exhibit stronger com-

plementarities. For example, Shimer and Smith (2000) derive a set of conditions for

PAM under random search that are even stronger than log-supermodularity (i.e. the

elasticity of complementarity being larger than 1).

Most related to our work, Eeckhout and Kircher (2010a) show that under directed

search (but with a single interview per firm) PAM requires that the elasticity of com-

plementarity exceeds the elasticity of substitution of the aggregate meeting function.

This latter elasticity is positive but bounded above by 1
2 for common meeting technolo-

gies, making square-root-supermodularity of the production function (i.e. an elasticity

of complementarity equal to 1
2) su�cient for PAM.5 Intuitively, while frictions still

exist under directed search, they are weaker than under random search, because high

types can avoid meeting low types.

In our environment with simultaneous interviews, the relevant threshold for sorting

is the quality-quantity elasticity. Like the threshold in Eeckhout and Kircher (2010a),

this elasticity depends on the properties of the meeting technology only. However,

a crucial di↵erence is that the quality-quantity elasticity depends not only on the

queue length but also on the queue composition and the degree of screening. To

better understand this elasticity, note that when worker types are su�ciently close,

equilibrium requires more-productive firms to have longer queue lengths. This longer

queue length reduces the probability that a high-type applicant creates surplus, which

discourages more-productive firms from attracting such applicants and therefore forms

a force against sorting. The quality-quantity elasticity measures the magnitude of this

drop: the larger it is, the stronger the force against sorting and the larger production

5Shi (2001) was the first to show that supermodularity is not enough for PAM under directed
search.
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complementarities therefore need to be to o↵set this force and induce positive sorting.

To see the dependence of the quality-quantity elasticity on the queue length and

queue composition, consider the case where high-type workers are abundant in the

economy. The probability that a high-type worker creates surplus decreases then

more quickly along the equilibrium path, as productive firms with long queue lengths

are increasingly likely to interview multiple high-type applicants. Hence, the force

against sorting, as measured by the quality-quantity elasticity, is highest in this case.

Subsequently, we show that the supremum of the quality-quantity elasticity in-

creases with the degree of screening. Viewing increased screening as a relaxation of

the frictions in the environment, one may have expected from the literature cited

above that it must facilitate sorting. We show that this intuition is wrong. The logic

again follows from the above scenario in which the probability that a high-type worker

creates surplus decreases along the equilibrium path. This force against is amplified

by increased screening as that further increases the probability that more-productive

firms interview multiple high-type applicants. The elasticity of complementarity that

is necessary and su�cient for PAC and PAM is increasing in the expected number

of interviews that firms can conduct, ranging from 1
2 (square-root-supermodularity)

with a single interview to 1 (log-supermodularity) when firms can interview all their

applicants.

The paper is organized as follows. The remainder of this section discusses related

literature. Section 2 introduces the model. Section 3 considers the market equilibrium

and establishes that it is constrained e�cient. Section 4 derives our main sorting

results. In Section 5, we consider various extensions, including noisy signals for every

applicant and endogenous choice of screening capacity. For the latter extension, we

show that firms in the middle of the productivity distribution (rather than the most

productive ones) have the strongest incentives to invest in screening. Finally, Section 6

concludes, while proofs and additional results can be found in the (online) appendix.

Related Literature. Our results do not only contribute to the theoretical literature

referenced above, but also have important implications for the empirical literature

that deals with both the sign and the strength of sorting (Gautier and Teulings,

2006; Eeckhout and Kircher, 2011; Gautier and Teulings, 2015; Lise et al., 2016;

Hagedorn et al., 2017; Lopes de Melo, 2018; Bartolucci et al., 2018; Bagger and

Lentz, 2018; Borovičková and Shimer, 2020). An important aim of this literature is

to identify the shape of the production function from observed matching patterns.
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In general, a particular meeting technology is assumed and then the strength and

sign of sorting are used to identify key parameters of the production function.6 Our

findings imply however that such assumptions are not innocuous and that the meeting

technology needs to be identified alongside the production function. Progress along

this dimension is facilitated by our theoretical results on PAC/PAM combined with

recent empirical work by Banfi et al. (2020) who document evidence for PAC as well

as PAM using data from a Chilean online job board.

The strength of sorting is often used to estimate how far an economy is from the

frontier. Our results show that stronger sorting patterns do not necessary imply lower

frictions.

Some papers have argued that increased sorting of high-type workers at high-

wage firms has contributed to the observed increased inequality from the mid-nineties

onwards (see e.g. Card et al., 2013; Song et al., 2019).7 H̊akanson et al. (2018) argue

that the increased sorting patterns are mainly due to increasing complementarities in

production. Our results suggest that if during the same period, new technologies like

automated resume screening made it easier to screen workers, then this would require

even stronger complementarities in the production technology.

Finally, although our focus is on the labor market, our results are also impor-

tant for other markets with matching between heterogeneous agents and a role for

screening, such as the housing market or the marriage market. Also in trade, there

is a growing interest in deriving patterns of international specialization (i.e. under

which conditions do exporters hire the most productive workers) from fundamental

properties of the production technology, see Costinot (2009).

2 Model

2.1 Environment

Agents. A static economy is populated by a continuum of risk-neutral firms and

workers. Each firm demands and each worker supplies a single unit of indivisible labor.

Both types of agents are heterogeneous. In particular, each firm is characterized by

a type y 2 Y = [y, y] ⇢ R+. The measure of firms with types less or equal to y is

6Since wages for a given worker type are typically non-monotonic in firm types, the methodology
by Abowd et al. (1999) of detecting sorting patterns from simply correlating worker and firm fixed
e↵ects fails; the cited papers propose various ways to deal with this.

7Card et al. (2013) use education and occupational sorting.
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denoted by J(y), where the total measure J(y) is normalized to one. Similarly, each

worker is characterized by a type x 2 X = [x, x] ⇢ R+, which initially is private

information, but can be learned by a firm during an interview, as we describe in more

detail below. There are two types of workers: a low type x1 and a high type x2, with

0 < x1 < x2.8 The measure of workers with type xi is denoted by `i > 0. The resource

set or the endowment of agents in the economy is thus given by (x1, x2, `1, `2, J(y)).

Wage Menus and Search. Each firm commits to a wage menu w = (w1, w2),

where wi is the wage for a hire of type xi. Workers observe all wage menus and

apply to one, taking into account that there will be more competition at high wages.9

We initially assume that workers also observe firm types, but then show that this

assumption is redundant because workers only care about their expected payo↵, which

in equilibrium they can infer from the wage alone. We capture the anonymity of the

large market with the standard assumption that identical workers must use symmetric

strategies (see e.g. Shimer, 2005).

A submarket (w, y) consists of the firms of type y that post a wage menu w and

all workers who apply to such a menu. For each submarket, we denote the ratio of

the number of high-type applicants to the number of firms by µ(w, y), and the ratio

of the total number of applicants (regardless of their type) to the number of firms by

�(w, y). Naturally, these ratios—or queue lengths—satisfy 0  µ(w, y)  �(w, y) for

all (w, y).10 For future reference, define ⇣(w, y) = µ(w, y)/�(w, y) as the fraction of

high-type applicants in submarket (w, y).

Benchmark Frictions. The matching process within a submarket is frictional and

exhibits constant returns to scale, in the sense that outcomes only depend on queue

lengths rather the absolute measures of workers and firms. Within those boundaries,

we can allow for a fairly wide class of matching processes, but we initially focus on a

specific benchmark with two stages (applying and screening) to simplify exposition.11

To introduce the benchmark, consider a particular submarket with queues (µ,�).

8In Appendix B.10 we show how our results can be generalized to N worker types for a widely
used class of meeting technologies, that includes the urn-ball and geometric.

9A single chance to match (per period) is standard and captures the idea that (opportunity) costs
are associated with applying. The work relaxing this assumption has focused on environments with
(ex ante) homogeneous agents (see e.g. Albrecht et al., 2006; Galenianos and Kircher, 2009; Kircher,
2009; Woltho↵, 2018; Albrecht et al., 2019). An exception is Auster et al. (2020).

10We provide a formal derivation of these queue lengths below.
11In section 5, we consider various generalizations.
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Workers and firms in the submarket are randomly located on the circumference of

a circle according to a uniform distribution. Workers apply clockwise to the nearest

firm.12 A firm therefore receives n applications with probability 1
1+�(

�
1+�)

n for n =

0, 1, 2, . . . , which is a geometric distribution with mean �.13 In the screening stage,

firms interview their applicants in a random order. An interview reveals the type of

the applicant, which is x2 with probability µ/�. After every interview, and conditional

on applicants remaining, there is an exogenous probability � 2 [0, 1] that the firm can

conduct another interview, while interviewing stops with complementary probability.

Our setup nests two common but extreme specifications of the meeting technology

as special cases. If � = 0, each firm can interview only a single applicant, as in the

bilateral model of Eeckhout and Kircher (2010a). In this case, the presence of low-

type applicants makes it harder for firms to identify a high type in their applicant

pool. Increasing � reduces this meeting externality. It disappears entirely when �

reaches 1 and firms can interview all their applicants. As in the urn-ball setup of

Shimer (2005), firms’ chances of finding a high type in their applicant pool then

become independent of the number of low-type applicants—a property known in the

literature as invariance (see Lester et al., 2015; Cai et al., 2017).

Matching and Production. After the interviews have been conducted, matches

are formed. Firms can only hire a worker which they have interviewed.14 If a firm has

interviewed multiple applicants, it hires the most profitable one. A match between

a worker of type x and a firm type of y produces output f(x, y) > 0, which is twice

continuously di↵erentiable. The partial derivatives fx(x, y) and fy(x, y) are strictly

positive for all (x, y) 2 X ⇥ Y , and the cross-partial is denoted by fxy(x, y). From

the produced output, the firm pays the worker the promised wage wi and keeps the

rest. Firms and workers which fail to match obtain a zero payo↵.

Elasticity of Complementarity. For our analysis, a key characteristic of the pro-

duction function is its elasticity of complementarity (Hicks, 1932, 1970), which is

usually defined for constant-returns-to-scale production functions, and is the inverse

12When workers cannot keep track of the distance they travel, this is merely a tie-breaking rule.
13Note the subtle di↵erence compared to an equidistant positioning of firms, which yields a Poisson

number of applicants with mean �, as in an urn-ball technology. We discuss this case in Section 5.1.
14This assumption can easily be rationalized by introducing a small chance that any given worker

provides the firm with a su�ciently negative payo↵ when hired.
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of the elasticity of substitution. For general production functions, it is defined as

⇢(x, y) ⌘
fxy(x, y)f(x, y)

fx(x, y)fy(x, y)
2 R, (1)

with extrema ⇢ ⌘ sup(x,y)2X⇥Y ⇢(x, y) and ⇢ ⌘ inf(x,y)2X⇥Y ⇢(x, y). For future refer-

ence, note that ⇢(x, y) is the relative percentage change in marginal output by firms,

fy(x, y) in response to a marginal change in f(x, y) (elasticity) caused by increasing

the worker type to x+�x. That is, for su�ciently small �x > 0, we have

fy(x+�x, y)

fy(x, y)
⇡ 1 + ⇢(x, y)

fx(x, y)

f(x, y)
�x ⇡

✓
f(x+�x, y)

f(x, y)

◆⇢(x,y)

.

In general, when x is discrete and ⇢(x, y) is not necessarily constant, the elasticity of

relative marginal product with respect to relative product is bounded by ⇢ and ⇢, as

summarized by the following lemma.

Lemma 1. For given y, fy(x, y)/f(x, y)
⇢ is increasing in x, and fy(x, y)/f(x, y)⇢ is

decreasing in x. That is,

✓
f(x2, y)

f(x1, y)

◆⇢


fy(x2, y)

fy(x1, y)


✓
f(x2, y)

f(x1, y)

◆⇢

, (2)

where the first (resp. second) inequality holds as equality if and only if ⇢ (resp. ⇢) is

equal to ⇢(x, y) for all x 2 [x1, x2].

Proof. See Appendix A.1.

Supermodularity. The elasticity of complementarity ⇢(x, y) is closely related to

the notion of n-root-supermodularity, as defined in Eeckhout and Kircher (2010a).15

Definition 1. The function f(x, y) is n-root-supermodular on X ⇥ Y if and only

if ⇢(x, y) � 1 � 1/n, for all (x, y) 2 X ⇥ Y; special cases include supermodularity

(n = 1) and log-supermodularity (n ! 1). When ⇢(x, y)  1 � 1/n, f(x, y) is said

to be n-root-submodular on X ⇥ Y.

15Eeckhout and Kircher (2010a) define f(x, y) to be n-root-supermodular if n
p

f(x, y) is super-
modular. Since 1

@x@y
n
p
f = n�2f1/n�2

�
ffxy � (1� 1

n )fxfy
�
, our definition is equivalent.
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In other words, n-root-supermodularity is equivalent to ⇢ � 1 � 1/n and n-root-

submodularity is equivalent to ⇢  1� 1/n.16

Special Case. We will sometimes illustrate our results with a CES production

function, because it has a constant elasticity of complementarity, ⇢(x, y) = ⇢. That

is, f(x, y) = (x1�⇢ + y
1�⇢)

1
1�⇢ . This production function is submodular when ⇢  0,

1
1�⇢ -root-supermodular when 0 < ⇢ < 1, and log-supermodular when ⇢ � 1.

Beliefs. A firm of type y posting a wage menuw has to form beliefs about its queues

(µ(w, y),�(w, y)). Following the standard approach in the literature, we restrict these

beliefs in the spirit of subgame perfection through what is known as the market utility

condition (see e.g. Eeckhout and Kircher, 2010b). To state this condition, consider a

worker of type xi. Define Vi(w, µ,�, y) as his expected payo↵ in a submarket (w, y)

with queues (µ,�), and his market utility Ui as the maximum expected payo↵ that he

can obtain in equilibrium, either by visiting one of the submarkets or by remaining

inactive. Firms’ beliefs (µ(w, y),�(w, y)) must then satisfy

8
<

:
V1(w, µ,�, y)  U1, with equality if �� µ > 0,

V2(w, µ,�, y)  U2, with equality if µ > 0.
(3)

For common meeting technologies, including our benchmark as we will show in

Lemma 3 below, (3) admits a unique solution (µ,�), which is then the firm’s be-

lief. For other technologies, there can be multiple solutions to (3). The standard

assumption is then that firms are optimistic and expect the solution that maximizes

their expected payo↵. We denote this expected payo↵ by ⇡ (w, µ,�, y).17

Strategies. Let G(w | y) denote the (conditional) probability that a firm of type

y o↵ers a wage menu ew  w, where ew = ( ew1, ew2), w = (w1, w2), ew1  w1 and

ew2  w2. Given market utilities (U1, U2), firm optimality means that G(w | y) must

maximize ⇡ (w, µ,�, y) subject to the constraint (3).

Similarly, let Hi(w, y) denote the probability that workers of type xi apply to a

firm with ew  w and ey  y. The following accounting identities then link workers’

16The equivalence between ⇢ = 1 and log-supermodularity of f(x, y) also follows from Lemma 1:

when ⇢ = 1, the first inequality in (2) can be rewritten as @
@y log f(x2, y) �

@
@y log f(x1, y).

17Explicit expressions for ⇡ and Vi will be provided in Section 3.1.
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strategies H1(w, y) and H2(w, y) to the queues in di↵erent submarkets.

H2(w, y) =
1

`2

Z

eyy

Z

eww

µ( ew, ey) dG( ew | ey) dJ(ey), (4)

H1(w, y) =
1

`1

Z

eyy

Z

eww

[�( ew, ey)� µ( ew, ey)] dG( ew | ey) dJ(ey). (5)

Worker optimality requires that workers must obtain exactly Ui at any firm to which

they apply with positive probability, and weakly less at other firms i.e. (3) must

hold. Further, note that no firm will post a wage menu w � w ⌘ (f(x1, y), f(x2, y)).

Thus, Hi(w, y) is the probability that workers of type xi apply, which must equal 1 if

Ui > 0, as the payo↵ from not sending an application is zero. This condition can be

interpreted as “market clearing”: in equilibrium, demand for each type of applicant

must equal supply, which determines the “market prices” U1 and U2.

Equilibrium Definition. We can now define an equilibrium as follows.

Definition 2. A (directed search) equilibrium is a triple (G, {H1, H2} , {U1, U2}) sat-

isfying ...

(i) Firm Optimality. Given (U1, U2), every wage menu w in the support of G (· | y)

maximizes ⇡ (w, µ(w, y),�(w, y), y) for each firm type y, where the queue lengths

(µ(w, y),�(w, y)) are determined by (3).

(ii) Worker Optimality. Given (U1, U2), the application strategy of high-type and

low-type workers satisfies (4) and (5), respectively, where the queue lengths

(µ(w, y),�(w, y)) are determined by (3). Further, Hi(w, y) = 1 if Ui > 0.

3 Equilibrium

We start our equilibrium analysis by establishing an equivalence: the problem of a

firm in our environment is equivalent to the problem of a firm that can buy queues of

applicants directly in a competitive market.18 The consequence of this result is that

the equilibrium in our environment is constrained e�cient.

18Hence, the di↵erence with a “conventional” competitive market is that the firm buys a distri-
bution of applicants rather than directly hiring a particular type of worker.
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3.1 E�ciency

Ranking. A caveat in the analysis is that firms’ ranking of workers is endogenous.

To simplify exposition, we initially assume that firms post wage menus satisfying

f(x2, y)� w2 > f(x1, y)� w1, (6)

i.e. more productive workers are more profitable and are therefore preferred by firms.

Later, in Lemma 4, we will show that this assumption is without loss of generality.

Interviewing Probability. Given (6), a firm will hire a high-type worker if and

only if it interviews at least one such worker. The following lemma, which we borrow

from Cai et al. (2020), derives the probability of this event.19

Lemma 2 (Cai et al., 2020). In a submarket with queues (µ,�), the probability that

a firm interviews at least one high-type worker equals

� (µ,�) =
µ

1 + �µ+ (1� �)�
. (7)

Proof. See Appendix B.1.

The key insight of Cai et al. (2020) is that � (µ,�) is useful for multiple reasons.

First, � (µ,�) is su�cient to summarize the meeting process within a submarket.

Given (6), it not only describes the probability that the firm will hire a high-type

worker, but—upon evaluation in µ = �—also the firm’s overall matching probability

(regardless of the hire’s type), which we denote by m (�) ⌘ � (�,�).

Second, the partial derivatives of � (µ,�) have economically meaningful interpre-

tations. The partial derivative �� (µ,�)  0 captures externalities in the recruiting

process as it describes how a firm’s chances to hire a high-type worker change if the

queue of low-type workers gets longer. As discussed before, these externalities are

absent, i.e. ��(µ,�) = 0, if and only if all applicants are interviewed (i.e. � = 1).

In contrast, �µ (µ,�) describes how a firm’s probability of hiring a high-type worker

changes if the queue of such workers increases, while the total queue remains constant

(i.e. changing the composition of the applicant pool). From the perspective of a high-

19Cai et al. (2020) study market segmentation in a world with homogeneous firms. Our focus is
quite di↵erent, so we provide a derivation of �(µ,�) for completeness.
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type applicant, this partial derivative represents the probability that he or she is hired

and increases surplus because no other high-type worker was interviewed.20

Properties. The expression in equation (7) has the following intuitive properties:

A0. �(µ,�) is strictly increasing and concave in µ, i.e. replacing low-type workers

with high-type workers in a submarket increases a firm’s probability of inter-

viewing at least one high-type worker, but at a decreasing rate;

A1. for any given ⇣ 2 (0, 1], �(�⇣,�) is strictly increasing and strictly concave in �,

i.e. holding the fraction of high-type workers constant, adding more workers to

the submarket increases a firm’s probability of interviewing at least one high

type, but at a decreasing rate;

A2. for any given ⇣ 2 (0, 1], �µ(�⇣,�) is strictly decreasing in �, i.e. holding the

fraction of high-type workers constant, adding more workers to the submarket

reduces the probability that a high-type worker creates surplus.

Surplus and Payo↵s. To derive expected surplus, consider a firm of type y facing

a queue (µ,�). With probability m(�) ⌘ �(�,�), the firm receives at least one

application, hence generating at least a surplus f(x1, y); with probability �(µ,�), the

firm interviews at least one high-type worker, hence generating an additional surplus

f(x2, y)� f(x1, y). The expected surplus is therefore

S (µ,�, y) = m (�) f (x1, y) + � (µ,�) [f (x2, y)� f (x1, y)] . (8)

By the same logic, the expected payo↵ of the firm equals

⇡ (w, µ,�, y) = � (µ,�) [f(x2, y)� w2] + [m(�)� �(µ,�)] [f(x1, y)� w1] . (9)

Finally, the expected payo↵ of applicants of type xi is Vi(w, µ,�, y) =  i (µ,�)wi,

where, by a simple accounting identity, their matching probability  i (µ,�) equals

 1 (µ,�) =
m(�)� �(µ,�)

�� µ
or  2 (µ,�) =

�(µ,�)

µ
. (10)

20To see this, note that �µ (µ,�)�µ = �(µ + �µ,�) � �(µ,�) represents the probability that
replacing �µ low-type workers with high types generates additional surplus. Naturally, this is the
case if and only if these �µ workers are the only high types that are interviewed.
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Uniqueness of Queues. In a submarket (w, y), the queues (µ,�) are determined

by the market utility condition (3). Since this is a system of non-linear equations, it

is not immediate that there is a unique solution. Lemma 3 establishes this result.

Lemma 3. If � is given by (7), there exists exactly one solution (µ,�) to the market

utility condition for any wage menu w.

Proof. See Appendix B.2.

Competitive Market for Queues. As is standard in the literature, we can use

the market utility condition (3) to substitute the wages w1 and w2 out of (9) and

rewrite the firm’s problem with queue lengths as choice variables. This yields

max
0µ�

⇧
⇣
µ

�
,�, y

⌘
⌘ S(µ,�, y)� �U1 � µ (U2 � U1) , (11)

where, for use in Section 3.2, the arguments of the firm profit function ⇧ are the

fraction of high-type applicants µ/� and the queue length �.21 Equation (11) has a

straightforward interpretation: it is the payo↵ of a firm buying queues of low-type and

high-type workers in a competitive market at prices equal to their respective market

utilities. This formulation will be the starting point for our sorting analysis below.

Productivity versus Profitability. We have only considered wage menus satis-

fying (6). To see that this restriction is without loss of generality, suppose that a

firm posts a wage menu where low-type workers yield a higher profit ex post, i.e.

f(x2, y) � w2 < f(x1, y) � w1, and attracts a queue (µ,�). Workers must again ob-

tain their market utility, so that the expected transfer from the firm to the workers

must be µU2 + (� � µ)U1. However, expected surplus must be strictly smaller than

S(µ,�, y) in (8). Accordingly, the firm’s expected profit must be strictly smaller than

the maximum profit in (11). The following lemma shows that any interior solution

to (11) satisfies (6), so there is no need to consider wage menus that give priority to

low-type workers because those wage menus always generate lower expected profit.22

We omit the case in which a firm attracts only one type of workers; these corner

solutions are trivial, since the firm can always prevent a certain type of workers from

applying by o↵ering them a zero wage.

21We have implicitly assumed that 0 < µ < � such that both market utility conditions hold with
equality. However, it is easy to see that (11) also holds if µ = 0 or µ = �.

22A similar result appears in Shimer (2005) for the case of urn-ball meetings. Our proof of Lemma 4
generalizes his result to arbitrary meeting technologies.
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Lemma 4. Let (µ⇤
,�

⇤) with 0 < µ
⇤
< �

⇤ be an interior solution to the firm’s prob-

lem (11). The corresponding wage menu (w⇤
1, w

⇤
2) = (U1/ 1(µ⇤

,�
⇤), U2/ 2(µ⇤

,�
⇤))

then satisfies (6).

Proof. See Appendix A.2.

Observability of Firm Productivity. By Lemma 4, all firms will post wage

contracts such that high-type workers are more profitable. Given the wage contract,

the market utility condition then determines the queue length and composition. Since

workers only care about their hiring probability and the wage, this then means that

all our results carry through if they do not observe firm types.

E�ciency. In sum, we have demonstrated that the market equilibrium with wage

menus w coincides with the equilibrium in a competitive market where firms can buy

queues directly at prices equal to workers’ market utility. Hence, by the first welfare

theorem, we obtain the following e�ciency result.

Proposition 1. The market equilibrium is constrained e�cient.

Marginal Contributions. Since the equilibrium is constrained e�cient, the ex-

pected payo↵s of firms and workers equal their marginal contribution to surplus.

Adding more low-type workers to a submarket only increases �, while adding more

high-type workers increases both µ and �. Thus, the marginal contribution of low-

type and high-type workers at a firm of type y with queues (µ,�) are S�(µ,�, y)

and Sµ(µ,�, y) + S�(µ,�, y), respectively. Because of constant returns to scale, the

firm’s marginal contribution is the di↵erence between total surplus and the sum of the

marginal contributions of its applicants, i.e. S(µ,�, y)� µSµ(µ,�, y)� �S�(µ,�, y).23

Using S(µ,�, y) from (8), f 1
⌘ f(x1, y) and �f = f(x2, y)� f(x1, y), we get

T1(µ,�, y) = m
0(�)f 1 + ��(µ,�)�f, (12)

T2(µ,�, y) = m
0(�)f 1 + (�µ(µ,�) + ��(µ,�))�f, (13)

R(µ,�, y) = (m(�)� �m
0(�)) f 1 + (�(µ,�)� µ�µ(µ,�)� ���(µ,�))�f, (14)

where T1, T2 and R are the marginal contribution to surplus of low-type workers,

high-type workers, and firms, respectively.

23Alternatively, increase the number of firms by a factor 1 +�s. The additional surplus is then
(1 +�s)S(µ/(1 +�s),�/(1 +�s), y)� S(µ,�, y), which yields the same result when �s ! 0.
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Concavity of Surplus. The surplus function S(µ,�, y) is not necessarily strictly

concave at a point (µ,�). To see this, consider its Hessian H(µ,�, y), which equals

H(µ,�, y) =

 
�µµ�f �µ��f

�µ��f m
00
f
1 + ����f

!
,

where we omit the arguments of the derivatives of �(µ,�) and m(�) for simplicity.

In the bilateral case � = 0, we have �(µ,�) = m(�)µ/� such that �µµ = 0, which

means that the Hessian is never negative definite and surplus is never concave at

points (µ,�) with 0 < µ < �. Hence, firms will then attract only one type of workers.

Below, we will therefore focus on the case �µµ < 0, i.e. � > 0; the results will extend

to the bilateral case by continuity.24 Given �µµ < 0, the Hessian is negative definite

if and only if its determinant is positive. Let (y) be a measure of output dispersion,

defined as the relative gain in output for a firm of type y from hiring a high- rather

than a low-type worker, i.e.

(y) ⌘
f(x2, y)� f(x1, y)

f(x1, y)
> 0. (15)

Then, we have the following result.

Lemma 5. Surplus S(µ,�, y) is strictly concave at a point (µ,�) with 0 < µ < � if

1

(y)
>
��� � �

2
µ�/�µµ

�m00 , (16)

Proof. See Appendix A.3.

Note that �µµ��� � �
2
µ� is the determinant of the Hessian matrix of �(µ,�). For

our benchmark meeting process, it is zero if � = 1 and strictly negative otherwise,

making the right-hand side of (16) (weakly) positive.25 Consequently, the concavity

condition in (16) is satisfied when (y) is su�ciently small and always holds when

worker heterogeneity disappears (x1 ! x2).

24We will revisit the bilateral case in Section 5.1.
25For other meeting processes, the determinant can be positive for any µ and �, making the right-

hand side of (16) negative, so that the firm’s second-order condition is always satisfied. This is the
case if and only if �(µ,�) is jointly concave in (µ,�). However, as discussed in Cai et al. (2017),
such meeting processes feature positive meeting externalities, which are empirically less relevant for
the labor market, so we abstract from them here.
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3.2 Optimal Queue Length and Composition

In our sorting analysis below, the fraction of high-type applicants across firms will

play an important role. It is therefore convenient to reformulate the firm’s problem as

follows: first, firms choose the fraction of high-type workers in their pool of applicants,

which we denote by ⇣ ⌘ µ/� 2 [0, 1]; second, they choose the total queue length �.

In other words, the firms’ problem is given by max⇣2[0,1] ⇧⇤(⇣, y), where ⇧⇤(⇣, y) ⌘

max��0 ⇧(⇣,�, y) and ⇧(⇣,�, y) = S(⇣�,�, y)��U1�⇣� (U2 � U1), as defined in (11).

Optimal Queue Length. Working backwards, we first consider the choice of the

queue length � for a given ⇣ 2 [0, 1]. Since �(⇣�,�) is strictly concave in � for all

⇣ > 0 and m(�) ⌘ �(�,�), the payo↵ ⇧(⇣,�, y) is strictly concave in � for a given

⇣ 2 [0, 1]. Thus, assuming that firms of type y are active in hiring, their optimal

queue is unique and determined by the first-order condition (FOC)

U1 + ⇣(U2 � U1) = m
0 (�) f 1 +

@� (⇣�,�)

@�
�f, (17)

where @� (⇣�,�) /@� ⌘ ⇣�µ (⇣�,�) + �� (⇣�,�) . Denote the optimal queue length by

�
o(⇣, y). To understand (17), note that the first term denotes the marginal contri-

bution to surplus of a low-type applicant when all applicants are of a low type. The

second term corrects for the fact that a fraction ⇣ of applicants has high productivity.

To understand how the optimal queue length varies with firm type, we can di↵er-

entiate equation (17) with respect to y (holding ⇣ constant). This yields

�
o
y(⇣, y) =

@�
o(⇣, y)

@y
= �

m
0
f
1
y + @�

@��fy

m00f 1 + @2�
@�2�f

, (18)

where we have suppressed arguments fromm(�o(⇣, y)) and �(⇣�o(⇣, y),�o(⇣, y)). Since

�(⇣�,�) is strictly increasing and concave in � for ⇣ > 0, the numerator in (18) is

positive if �fy � 0 and the denominator is negative. In other words, when the

opportunity costs of remaining unmatched are larger for more productive firms (i.e.

supermodularity of the production function), those firms are more willing to invest in

longer queues (holding ⇣ constant). Another special case is when x1 and x2 are close,

which implies that �fy is small, so that the sign of the numerator is dominated by

m
0
f
1
y . In this case, we again have �oy(⇣, y) > 0: more productive firms prefer longer

queues (keeping ⇣ constant).
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Optimal Queue Composition. Assuming that firms have solved for the optimal

queue length �
o(⇣, y), we next consider their choice of ⇣. That is, firms now solve

the maximization problem max⇣2[0,1] ⇧⇤(⇣, y), where ⇧⇤(⇣, y) = ⇧(⇣,�o(⇣, y), y). In

general, ⇧⇤(⇣, y) is not necessarily quasi-concave in ⇣, so the problem may admit

multiple solutions. Denote by Z(y) the set of all optimal ⇣ for firms of type y and let

⇣(y) be an arbitrary element from Z(y).

Suppose first that ⇣(y) is interior. With a slight abuse of notation, denote by �(y)

the corresponding optimal queue length �o(⇣(y), y). Then ⇣(y) and �(y) must satisfy,

@⇧⇤(⇣, y)

@⇣

��
⇣=⇣(y)

= 0 , �µ(⇣(y)�(y),�(y))�f = U2 � U1, (19)

where we used the envelope theorem and treated the total queue � as constant in this

exercise. The left-hand side of the above equation is exactly the di↵erence between

the marginal contribution to surplus of high-type and low-type workers—given by

equations (13) and (12), respectively—while the right-hand side is the di↵erence in

their cost. Intuitively, a larger ⇣ increases the firm’s probability of matching with a

high-type worker, but comes at a cost as these workers are more expensive.26 Finally,

recall that, by Lemma 5, an interior solution ⇣ which satisfies the FOC (19) also

satisfies the second-order condition (SOC) if equation (16) holds.

For future use, note that di↵erentiating equation (17) with respect to ⇣ and eval-

uating the result at ⇣ = ⇣(y) gives

�
o
⇣(⇣(y), y) =

@�
o(⇣, y)

@⇣

��
⇣=⇣(y)

= �
�(y)@�µ

@� �f

m00f 1 + @2�
@�2�f

, if ⇣(y) 2 (0, 1) (20)

where we have used equation (19) to substitute out U2�U1 and suppressed arguments

fromm(�(y)) and �(⇣(y)�(y),�(y)). For a given firm type y, this equation denotes the

e↵ect of a higher ⇣ on the optimal queue length, evaluating ⇣ at its equilibrium value

⇣(y). It shows that along the equilibrium path, �o⇣(⇣(y), y) is negative since with a

higher fraction of high-type workers, firms will reduce the total queue length to reduce

negative hiring spillovers from low-productivity workers (recall @�µ/@� < 0).

The optimal ⇣ does not need to be interior. In case of corner solutions, i.e.,

26The firm can increase ⇣ by �⇣ while keeping � the same by increasing the queue length of
high-type workers by ��⇣ and decreasing the queue length of low-type workers by ��⇣.
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⇣(y) = 0 or ⇣(y) = 1, the following FOCs must be satisfied:

⇣(y) = 0 ) �µ(0,�(y))�f � (U2 � U1)  0 (21)

⇣(y) = 1 ) �µ(�(y),�(y))�f � (U2 � U1) � 0, (22)

where �(y) = �
o(0, y) in equation (21), implicitly defined by m

0(�)f(x1, y) = U1,

while �(y) = �
o(1, y) in equation (22), implicitly defined by m

0(�)f(x2, y) = U2.

Multiplicity. As mentioned, a firm’s optimal choice of the fraction of high-type

workers ⇣ may not be unique, which generally renders the analysis intractable. How-

ever, Cai et al. (2020) show that under a single-crossing condition, which we present

in Appendix B.3 and which is satisfied by our benchmark meeting technology, the

optimal queue composition takes the following simple form.

Lemma 6 (Cai et al., 2020). If � is given by (7), then for any given firm type y,

Z(y) contains at most two elements, and when it contains two elements, one of the

two must be zero.

Proof. See Appendix B.3.

That is, firms of a particular type y may have two optimal strategies. Some firms

may go for quality by encouraging high-type workers to apply and limiting the number

of low-type applicants in order to reduce congestion. Other firms of the same type

may go for quantity and aim for a large hiring probability by attracting many low-

type workers; however, this stops high-skilled workers from applying there altogether.

The above lemma shows that these two scenarios can be optimal simultaneously, but

there are no other possibilities.

Limit Case. In general, the FOCs—i.e. equation (19), (21) or (22)—are necessary

but not su�cient for the optimum. However, when worker heterogeneity is su�ciently

small, the di↵erence between the two strategies (quality or quantity) becomes negligi-

ble. That is, the firm’s problem is concave, the FOCs are su�cient, and the solution

is both unique and continuous. The following proposition formalizes this idea.

Proposition 2. Fix (x1, `1, `2, J(y)) and let x2 ! x1. For su�ciently small x2 � x1,

each firm has a unique optimal queue (µ(y),�(y)). Both µ(y) and �(y) are continuous

in y, and if 0 < µ(y0) < �(y0) for some point y0, then both µ(y) and �(y)—and

therefore ⇣(y) ⌘ µ(y)/�(y)—are continuously di↵erentiable around point y0.
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Proof. See Appendix A.4.

Inspection of the proof reveals that Proposition 2 does not rely on the partic-

ular functional form of �(µ,�); it only requires Property A0 and a weaker version

of A1, namely m(�) is strictly increasing and concave in �. This proposition, al-

though simple and intuitive, will prove useful in the following section for constructing

(counter)examples of equilibrium allocations that exhibit sorting.

4 Sorting

In this section, we analyze under what conditions the market equilibrium exhibits sort-

ing. We first provide our definitions of positive and negative sorting. Subsequently,

we show that the necessary and su�cient condition for sorting relates the elasticity

of complementarity of the production function to a quality-quantity elasticity.

4.1 Definition of Sorting

Much of the literature (see e.g. Becker, 1973; Shi, 2001; Eeckhout and Kircher, 2010a)

defines sorting in terms of a monotonic matching function which maps each worker

type x to their employer type y.27 This definition is not suitable in our environment,

because firms do not necessarily hire a unique worker type. Instead, we require a

set-based notion of sorting. Following Shimer and Smith (2000) and Shimer (2005),

we therefore define sorting as first-order stochastic dominance (FOSD) in firms’ dis-

tributions of hires.28 In our environment, this definition can be expressed in terms of

the probability that a firm hires a high-type worker, conditional on hiring someone,

h(⇣(y),�(y)) ⌘
�(⇣(y)�(y),�(y))

m(�(y))
. (23)

Recall that ⇣(y) is an arbitrary element from Z(y), the set of all optimal ⇣ for firms

of type y, and �(y) is the corresponding optimal queue length, i.e. �(y) ⌘ �
o(⇣(y), y).

27See Lindenlaub (2017) for a generalization to multidimensional types.
28Strictly speaking, Shimer and Smith (2000) use a weaker notion of sorting which is based on the

bounds of the support of the distribution of hires; however, their definition is equivalent to FOSD of
this distribution in the random-search environment that they consider. In contrast, Shimer (2005)
proves a stronger sorting result (high-type workers are more likely to be employed in high-type jobs
than in low-type jobs) for a special case (multiplicatively separable production function and urn-ball
meetings); however, he acknowledges that the data demands to test this result “may be unrealistic”
and suggests FOSD of the distribution of hires as a “more easily testable” alternative.

19



Definition 3. An equilibrium exhibits PAM (resp. NAM) if and only if h(⇣(y),�(y))

is weakly increasing (resp. decreasing) in y.

We will occasionally distinguish between three types of sorting: i) local sorting,

where the definition is satisfied in (the neighborhood of) a particular point y for a

given endowment of agents; ii) global sorting, where it is satisfied along the equilib-

rium path for a given endowment; and iii) robust sorting, where it is satisfied along

the equilibrium path for any endowment of agents.

While the literature has traditionally restricted attention to sorting patterns in

matches, our environment yields additional predictions. After all, given that firms

may interview multiple applicants and subsequently select the most desirable one,

there is a meaningful distinction between an application on the one hand and a

match on the other hand. Hence, in addition to assortativeness of matches, we can

also analyze the assortativeness of applications, i.e. whether the fraction of high-type

applicants ⇣(y) increases or decreases in y.

Definition 4. An equilibrium exhibits PAC (resp. NAC) if and only if ⇣(y) is weakly

increasing (resp. decreasing) in y.

4.2 Quantity versus Quality

The problem of a firm has two margins: the queue length �, determining the total

number of matches m(�) (quantity), and the fraction of high-type applicants ⇣, deter-

mining the number of high-type matches �(�⇣,�) (quality). To describe the relation

between quality and quantity, we define two elasticities that depend on the meeting

technology only and enable us to write our sorting conditions in a uniform way.

Contact Quality-Quantity Elasticity. The marginal e↵ect of an additional ap-

plicant (varying �) on the total number of matches is given by m
0(�), while the

marginal e↵ect of replacing a low-type applicant with a high-type applicant (varying

⇣) on the number of high-type matches is �µ(�⇣,�). Keeping ⇣ constant, we then

consider the relative percentage changes of �µ(�⇣,�) and m
0(�), i.e. the elasticity of

�µ(⇣�,�) with respect to m
0(�), which is given by

a
c(⇣,�) ⌘

@ log �µ(⇣�,�)

@ logm0(�)
=
⇣��µµ(⇣�,�) + ��µ�(⇣�,�)

�µ(⇣�,�)

m
0(�)

�m00(�)
> 0, (24)
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with extrema a
c
⌘ sup⇣,� a

c(⇣,�) and a
c
⌘ inf⇣,� ac(⇣,�).29 In other words, ac(⇣,�)

measures the relative percentage changes in marginal changes in match quality and

matching probability due to a longer queue while holding the queue composition

fixed. It is strictly positive because m(�) is strictly concave and �µ(�⇣,�) is strictly

decreasing in �. We call ac(⇣,�) the contact quality-quantity elasticity because it

holds constant the fraction of high-type applicants, i.e. the high-type workers who

contacted the firm.

Match Quality-Quantity Elasticity. In equation (24), we kept ⇣ fixed. If, in-

stead, we keep h(⇣,�) fixed while varying both ⇣ and �, then the firm must choose

its queue composition and queue length according to d⇣ = �
@h/@�
@h/@⇣ d�, which induces

a rate of change of �µ equal to

� log �µ =
1

�µ

✓
@�µ

@⇣
d⇣ +

@�µ

@�
d�

◆
=

✓
1�

@�µ/@⇣

@�µ/@�

@h/@�

@h/@⇣

◆
@ log �µ

@�
d�,

while the rate of change ofm0(�) is� logm0(�) = d logm0(�)
d� d�. Thus, by equation (24),

the elasticity that measures the relative percentage changes of �µ(�⇣,�) and m
0(�),

i.e. � log �µ/� logm0(�), while fixing h(⇣,�) equals

a
m(⇣,�) ⌘

@ log �µ(⇣�,�)

@ logm0(�)

����
h(⇣,�)=h

= a
c(⇣,�)

✓
1�

@�µ/@⇣

@�µ/@�

@h/@�

@h/@⇣

◆
> 0, (25)

with extrema a
m
⌘ sup⇣,� a

m(⇣,�) and a
m
⌘ inf⇣,� am(⇣,�).30 We refer to a

m(⇣,�) as

the match quality-quantity elasticity, because it holds constant the probability that

the firm matches with a high-type worker.

Homogeneous Queues. It is worth highlighting that am(⇣,�) reduces to a
c(⇣,�)

when the queue is homogeneous, i.e. am(⇣,�) = a
c(⇣,�) when ⇣ = 0 or ⇣ = 1.31 As

we will see below, the infimum (resp. supremum) of ac and a
m can be reached or

approached with ⇣ = 0 (resp. ⇣ = 1) for our benchmark and various other meeting

technologies. It is therefore not surprising that ac = a
m and a

c = a
m in those cases.

29To understand (24), note that @ log �µ(⇣�,�)
@ logm0(�) = @ log �µ(⇣�,�)/@ log �

d logm0(�)/d log � .
30Later, in Lemma 8, we prove that the term in the parenthesis in (25) is always between 0 and 1.
31To see this, note that �(0,�) = 0 and �(�,�) = m(�) for any �. Both imply @h/@� = 0.
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4.3 Conditions for Sorting

We now analyze the conditions for the market equilibrium to exhibit PAC/PAM;

the analysis for NAC/NAM is similar with reversal of the relevant inequalities and

therefore omitted. To simplify exposition, we focus on the case in which the queue

composition ⇣(y) is unique for all y, e.g. because worker types are close (x1 ! x2).

This case provides our main sorting condition. To prove that this condition is su�-

cient for any degree of worker heterogeneity, we need to solve the more complicated

case where the equilibrium contains multiplicity points; we do this in Appendix B.5.

Condition for Local Sorting. First, assume that ⇣(y) is interior. This allows us

to di↵erentiate the FOCs (17) and (19) with respect to y, giving us two equations that

jointly determine �0(y) and ⇣ 0(y), i.e. how the optimal queue length and composition

vary with y. In this case, local PAC/PAM is defined as follows.

Definition 5. If ⇣(y) is unique and interior, then PAC holds locally at point y if

⇣
0(y) � 0, while PAM holds locally if d

dyh(⇣(y),�(y)) � 0.

Recall that (19) is the FOC with respect to ⇣. Di↵erentiating (19) with respect

to y along the equilibrium path yields

�
1

�µ

✓
@�µ

@⇣
⇣
0(y) +

@�µ

@�
�
0(y)

◆
=

�fy

�f
, (26)

which states that the decrease in �µ must equal the increase in �f. Similarly, (17)

is the FOC with respect to queue length �. As we show in the proof of Lemma 7,

di↵erentiating (17) with respect to y along the equilibrium path and combining the

result with (26) yields the percentage change of m0(�) across firm types, i.e.

�
m

00(�(y))

m0(�(y))
�
0(y) =

f
1
y

f 1

1� 1
m0

⇣
�µ

�µ�

�µµ
� ��

⌘
�fy
f1
y

1� 1
m00

⇣
�2
µ�

�µµ
� ���

⌘
�f
f1

. (27)

When there is no worker heterogeneity or the meeting technology exhibits no con-

gestion externalities (i.e. it is is invariant), the second factor on the right-hand side

reduces to 1.32 That is, when we move towards more productive jobs, the percentage

32In the former case, the firms’ optimization problem is simply max� m(�)f(x1, y) � �U1, and
in the latter case, it is maxµ,� m(�)f(x1, y)� �U1 +m(µ)�f � µ�U , where we used the fact that
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decrease in m
0(�) (as a result of a longer queue) is independent of ⇣ and simply equals

the percentage increase in f(x1, y).

When there are congestion externalities between heterogeneous workers, however,

the optimal queue involves a trade-o↵ between quantity and quality, and more of one

a↵ects the marginal contribution of the other. The second factor on the right-hand

side of (27) represents this complex interplay between quality and quantity. Under

the su�cient condition for robust NAC/NAM (see Proposition 4 below), the second

factor exceeds 1, since high-type firms respond to congestion by hiring less high-type

workers and more low-type workers, implying that the percentage decrease in m
0(�)

must exceed f(x1, y). When the su�cient condition for robust PAC/PAM is satisfied

and worker types are relatively close, the second factor is less than 1. That is, the

optimal choice for high-type firms is to attract short queues with a high fraction of

high-type workers.33 Dividing both sides of (26) by the corresponding side of (27)

gives

1
�µ

⇣
@�µ

@⇣ ⇣
0(y) + @�µ

@� �
0(y)
⌘

m00

m0 �
0(y)

=
f
1�fy

f 1
y�f

1� 1
m00

⇣
�2
µ�

�µµ
� ���

⌘
�f
f1

1� 1
m0

⇣
�µ

�µ�

�µµ
� ��

⌘
�fy
f1
y

. (28)

The left-hand side reflects the relative change in �µ and m
0(�) across firm types. The

right-hand side reduces to the elasticity of complementarity in production ⇢(x, y)

when worker heterogeneity disapears (x1, x2 ! x).

Recall that ac(⇣,�) measures the relative change in �µ and m
0(�), while fixing ⇣.

Thus if the right-hand side of (28) is larger than a
c(⇣,�), then it must be the case

that ⇣ 0(y) � 0, i.e. PAC holds locally. Similarly, if the right-hand side of (28) is larger

than a
m(⇣,�), then it must be the case that PAM holds locally. We can summarize

this in the following Lemma.

Lemma 7. If ⇣(y) is both unique and interior, then PAC (for i = c) and PAM (for

m(µ) = �(µ, µ) = �(µ,�). In both cases, the optimal � is determined by: max� m(�)f(x1, y)��U1,
where match quality plays no role.

33See Appendix B.4 for a formal proof of the statements regarding the magnitude of the second
term on the right-hand side of equation (27).
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i = m) hold locally at y if and only if

f
1�fy

f 1
y�f

� a
i
1� 1

m0

⇣
�µ

�µ�

�µµ
� ��

⌘
�fy
f1
y

1� 1
m00

⇣
�2
µ�

�µµ
� ���

⌘
�f
f1

, (29)

where we suppress the arguments of �(⇣(y)�(y),�(y)), m(�(y)) and a
i(⇣(y),�(y)).

Proof. See Appendix A.5.

Necessary Condition for Robust Sorting. In the limit case considered by

Proposition 2 where worker heterogeneity disappears, all firms have a unique op-

timal ⇣. Furthermore, equation (29), the condition for PAC/PAM in this case, re-

duces to something particularly simple: the left-hand side reduces to ⇢(x, y), and the

right-hand side becomes a
i(⇣(y),�(y)). Our next result provides a simple necessary

condition for robust sorting based on this limit case.

Proposition 3. A necessary condition for robust PAC (resp. PAM) is that for i = c

(resp. i = m), we have

⇢ ⌘ inf
x,y

⇢(x, y) � sup
⇣,�

a
i(⇣,�) ⌘ a

i
. (30)

Similarly, a necessary condition for robust NAC (resp. NAM) is that for i = c (resp.

i = m), we have

⇢ ⌘ sup
x,y

⇢(x, y)  inf
0µ�

a
i(⇣,�) ⌘ a

i
. (31)

Proof. See Appendix A.6.

Proposition 3 relies on the exact same mild assumptions on the meeting technology

as Proposition 2 (i.e. Property A0 and a weaker version of A1).

Intuition. Since the market equilibrium is constrained e�cient, we describe the

intuition for Proposition 3 from the planner’s perspective. As discussed in section

3.1, the planner chooses a queue length �(y) and composition ⇣(y) for every firm type

to maximize total surplus, subject to the frictions.

When x1 and x2 are su�ciently close, a firm’s matching probability is of first-

order importance: firms with higher productivity are assigned a longer queue length,
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such that the marginal contribution of a low-type applicant m0(�)f(x1, y) is (approx-

imately) constant across firm types. This implies that �d logm0(�) = d log f(x1, y),

i.e. the increase in queue length is such that the percentage decrease in m
0(�) equals

the percentage increase in f(x1, y).

By equation (19), the marginal contribution of a high type replacing a low type

in the queue, �µ�f , must also be constant across firm types. This implies that

�d log �µ = d log�f , i.e. the percentage decrease in �µ equals the percentage increase

in �f . Therefore, d log �µ/d logm0(�) = d log�f/d log f 1 across firm types. Making

the dependence on y explicit and taking the limit x1, x2 ! x, we obtain

d
dy log �µ(�(y)⇣(y),�(y))

d
dy logm

0(�(y))
= ⇢(x, y). (32)

The left-hand side of this equation measures the relative change of �µ andm
0 across

firm types; it di↵ers from the quality-quantity elasticity ac (⇣(y),�(y)), because it does

not fix ⇣. In other words, ac describes how large the left-hand side of (32) would be if

⇣(y) were independent of y. A large value for ac means that the longer queue at firms

with higher productivity results in a relatively large drop in the probability �µ that

a high-type worker creates surplus; naturally, this constitutes a force against PAC.

To nevertheless obtain PAC locally, this force must therefore be dominated by the

complementarities in production, i.e. ac (⇣(y),�(y))  ⇢(x, y).

This local condition depends not only on x and y, but also on the population

measures of workers and firms, through �(y) and ⇣(y). For example, the force against

PAC measured by a
c is largest when the relative supply of high-type workers is large

such that ⇣(y) ! 1. To obtain robust PAC, we therefore need that the supremum of

a
c does not exceed the infimum of ⇢, i.e. the condition in (30). NAC, PAM and NAM

follow a similar logic.34

Su�ciency. Of course, the question remains whether the above necessary condition

for robust sorting is also su�cient. In the following section, we show that the answer is

‘yes’ for our benchmark meeting technology. In Section 5, we show that this conclusion

extends to other examples of meeting technologies.

34This intuition suggests that the necessary conditions (30) and (31) continue to hold with an
arbitrary number of worker types. The di�culty in analyzing this case rather lies in proving su�-
ciency, as dealing with the multiplicity points where the optimal ⇣ is not unique is manageable with
two types but quickly becomes intractable when the number of types increases.
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4.4 How Screening A↵ects Sorting

Our sorting analysis so far has been quite general and has not made use of the specific

functional form of �(µ,�) given by (7), except that it needs to satisfy regularity

conditions A0 and A1. The following lemma establishes that this functional form

yields very simple expressions for the right-hand side of equations (30) and (31).

Lemma 8. If � is given by (7), then a
i(⇣,�) is strictly increasing in ⇣ for i = c or

m, and

a
c = a

m =
1 + �

2
and a

c = a
m =

1� �

2
. (33)

Proof. See Appendix A.7.

Together with Proposition 3, this lemma implies that ⇢ � (1 + �)/2 is necessary

for robust PAC/PAM, while ⇢  (1 � �)/2 is necessary for robust NAC/NAM. The

following proposition shows that these two conditions are also su�cient.

Proposition 4. Assume that � is given by (7) with � > 0. The equilibrium then

exhibits robust PAC/PAM (resp. NAC/NAM) if and only if ⇢ � (1 + �)/2 (resp.

⇢  (1� �)/2).

Proof. See Appendix A.8.

Given Definition 1, we can alternatively state Proposition 4 as follows.

Corollary 1. Assume that � is given by (7) with � > 0. The equilibrium then exhibits

robust PAC/PAM (resp. NAC/NAM) if and only if f(x, y) is 2/ (1� �)-root-super-

modular (resp. 2/ (1 + �)-root-submodular) on X ⇥ Y.

Two special cases are worth highlighting. When � ! 0 and meetings are bi-

lateral, PAC/PAM requires square-root supermodularity, in line with the results in

Eeckhout and Kircher (2010a). At the other extreme, log-supermodularity is required

for PAC/PAM when � = 1 and firms can interview all their applicants. In contrast, a

stronger degree of substitutability is required for NAC/NAM as the expected number

of interviews goes up: the production function should be square-root-submodular if

� = 0 and submodular when � = 1. Figure 1 illustrates these results.
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�

Figure 1: Combinations of ⇢ and � that give rise to robust PAC/PAM (blue) or robust
NAC/NAM (red), assuming a CES production function.

Intuition. To understand why an increase in � is a force against positive sorting,

consider again the case where x1 ! x2, such that firms with higher productivity

have a longer queue, i.e. �
0 (y) > 0. As discussed above, for given ⇣, this longer

queue unambiguously decreases the probability �µ (⇣� (y) ,� (y)) that a high-type

applicant will create surplus, which is a force against sorting. The magnitude of this

force, depends on 1) whether primarily low types or high types are being added (as

measured by ⇣), and 2) whether types can easily be distinguished (as measured by

�). When the queue primarily consists of low types, i.e. ⇣ is low, the force against

positive sorting is small and it is mitigated by increasing �, because that increases the

chance that the firm will interview at least one high type. In contrast, when the queue

primarily consists of high types, i.e. ⇣ is high, the force against positive sorting is large

and it is exacerbated by increasing �, because that increases the chance that the firm

will interview multiple high types (making the marginal contribution to surplus by

any one of the high types zero, as the firm will still be matched with a high type in

their absence). This latter case forms the strongest restriction given our objective to

derive a condition for robust sorting.

5 Extensions

In this section, we explore various extensions of our environment.
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5.1 Alternative Meeting Technologies

We have derived our main result, Proposition 4, for a specific micro-foundation of

the meeting technology, such that �(µ,�) was given by (7). The search literature

o↵ers various alternatives.35 Since most of our analysis is presented in a general way,

such alternatives can be analyzed by updating � (µ,�). In particular, the necessary

conditions in Proposition 3 continue to apply under very mild restrictions on �(µ,�),

as discussed there. Proving that these conditions are also su�cient is more involved

because one needs to verify that � (µ,�) satisfies the regularity conditions specified in

the proofs of Lemma 6 and Proposition 4. We briefly discuss the two most common

classes of meeting technologies in the literature: bilateral and invariant technologies.36

Bilateral Technologies. Bilateral technologies can be interpreted as firms being

able to interview only a single applicant.37 In that case, �(µ,�) = m(�)µ/�, where,

as before, m(�) is the probability that a firm receives at least one applicant. The

following lemma establishes that ac(⇣,�) and a
m(⇣,�) then become independent of ⇣

and both reduce to the elasticity of substitution of the total number of matches in a

submarket, which is precisely the object that Eeckhout and Kircher (2010a) show to

be important in their study of sorting patterns for bilateral technologies.

Lemma 9. When the meeting technology is bilateral, we have

a
c(⇣,�) = a

m(⇣,�) =
m

0(�)(�m0(�)�m(�))

�m(�)m00(�)
. (34)

Proof. See Appendix B.6.

With bilateral technologies, firms always find it optimal to attract either only

low-type or only high-type workers. Hence, if ⇣(y) is not unique at some point y,

then we must have Z(y) = {0, 1}. In this case, PAC/PAM simply requires that

Z(y0) = {0} for all y0 < y and Z(y0) = {1} for all y0 > y, while the reverse must

hold for NAC/NAM. Appendix B.7 demonstrates for our case with two worker types

that we recover the sorting results of Eeckhout and Kircher (2010a), who assume a

continuum of worker types.

35See Lester et al. (2015) and Cai et al. (2017) for examples.
36For the meeting technology of Woltho↵ (2018), in which workers send their applications accord-

ing to an urn-ball process while screening remains geometric, we can show su�cieny numerically.
37Examples include Moen (1997) and Acemoglu and Shimer (1999).
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Invariant Technologies. Invariant technologies, such as urn-ball or geometric,

exhibit perfect screening in the sense that the presence of low types does not make it

harder (or easier) for a firm to identify a high-type applicant. That is, �� (µ,�) = 0

for all µ and �, or equivalently, �(µ,�) = �(µ, µ) ⌘ m(µ), where m(µ) is always

assumed to be strictly concave (see Cai et al., 2017). Furthermore, one can show that

limµ!0 µm
00(µ) = 0.38 To analyze this case, we first introduce two elasticities:

"0(µ) =
µm

0(µ)

m(µ)
and "1(µ) =

µm
00(µ)

m0(µ)
. (35)

The following lemma then presents ac(⇣,�) and a
m(⇣,�) for invariant technologies in

terms of "0(·) and "1(·).

Lemma 10. When the meeting technology is invariant, we have

a
c(⇣,�) =

"1(�⇣)

"1(�)
and a

m(⇣,�) =
"1(�⇣)

"1(�)

"0(�)

"0(�⇣)
, (36)

with extrema a
c = a

m = 0 and a
c
, a

m
� 1.

Proof. See Appendix B.8.

Recall that the contact quality-quantity elasticity a
c(⇣,�) measures the relative

percentage changes of �µ(�⇣,�) and m
0(�) while holding ⇣ constant. For invari-

ant technologies, �µ(�⇣,�) = m
0(�⇣); thus, ac(⇣,�) is simply "1(�⇣)/"1(�). Next,

note that a
m(⇣,�) measures the same relative percentage changes while holding

m(�⇣)/m(�) constant. The latter requires the percentage changes of m(�⇣) and

m(�) to be equal, that is, the percentage change of �⇣ equals "0(�)/"0(�⇣) times the

percentage change of �; thus, am(⇣,�) = a
m(⇣,�)"0(�)/"0(�⇣).

When the meeting technology is invariant, the surplus function S(µ,�, y) defined

in (8) simplifies to m(�)f (x1, y) + m(µ) [f (x2, y)� f (x1, y)]. The firms’ problem

becomes strictly concave in (µ,�), which implies that for each y, there exists exactly

one optimal queue (µ(y),�(y)). That is, the complication that Z(y) may not be

unique never occurs, which greatly simplifies the proof that the necessary conditions

from Proposition 3 are also su�cient.

38For common invariant technologies such as urn-ball and geometric, this is trivially satisfied
because m00(0) is finite. A general proof—based on the observation that m(µ) is a Bernstein function
for invariant technologies, so it admits the Lévy–Khintchine representation (see Theorem 3.2 in
Schilling et al., 2012)—is available upon request.
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Proposition 5. Suppose the meeting technology is invariant. The equilibrium then

exhibits robust PAC (resp. PAM) if and only if ⇢ � a
c (resp. ⇢ � a

m). In contrast,

The equilibrium exhibits robust NAC/NAM if and only if f (x, y) is submodular.

Proof. See Appendix B.9.

With two mild assumptions, which are satisfied by both the urn-ball and the

geometric technology, the sorting results become particularly simple.39

Assumption INV-1. "1(µ) is decreasing in µ.

Assumption INV-2. "1(µ)/"0(µ) is decreasing in µ.

Assumption INV-1 (resp. INV-2) implies that ac(⇣,�) (resp. am(⇣,�)) is increasing

in ⇣ so that ac = 1 (resp. am = 1). This yields the following result.

Corollary 2. When the meeting technology is invariant and satisfies Assumption INV-

1 (resp. INV-2), the equilibrium exhibits robust PAC (resp. PAM) if and only if f (x, y)

is log-supermodular.

Because invariance implies that the optimal queue composition is always unique,

these sorting results can be generalized to an arbitrary number of worker types in a

straightforward manner. We demonstrate this in Appendix B.10.

5.2 Signals

In our benchmark model, firms have no information about applicants’ types when

selecting interviewees. In practice, there often exist relatively easy ways to obtain a

signal, e.g. from a quick look at applicants’ resumes. As we show in this section, our

baseline environment can be extended quite easily to capture this idea.

Environment with Signals. Consider an environment like our benchmark model,

except that firms can costlessly observe a signal for every applicant. For high-type

applicants, the signal is positive with certainty. In contrast, a low-type applicant

generates a negative signal with probability ⌧ 2 [0, 1] and a positive signal with

complementary probability. Hence, the signal is perfect if ⌧ = 1, but pure noise if

⌧ = 0. Using this information, firms will first interview applicants with positive signals

39However, one can construct invariant technologies that do not satisfy these assumptions, e.g.
a mixture between urn-ball and geometric: m(µ) = t(1 � e�µ) + (1 � t)µ/(1 + µ) with t 2 [0, 1].
Numerically, one can see that ac > 1 and am = 1 when t = 0.2, while ac, am > 1 when t = 0.98.
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and only interview applicants with negative signals if interview capacity remains. As

before, an interview reveals the applicant’s true type.

Isomorphism. The following proposition establishes that this modified environ-

ment is isomorphic to our baseline model, as long as we transform the parameter �

to account for the fact that firms also obtain information from signals.

Proposition 6. In our environment with signals, consider a firm with queues (µ,�).

Let b� = 1 � (1� ⌧) (1� �) 2 [0, 1], then the probability that the firm interviews at

least one high-type worker equals

� (µ,�) =
µ

1 + b�µ+ (1� b�)� .

Proof. See Appendix B.11.

As a direct consequence of this proposition, all our earlier results carry over to

the environment with signals, except that they apply to b� instead of � to account for

the fact that the signal precision ⌧ is a substitute for the screening intensity �.

5.3 Endogenous Screening

The screening intensity � was exogenous in our baseline model. However, firms can

generally influence the number of applicants that they interview. In this section, we

therefore endogenize � and discuss how it a↵ects our results. We keep the discussion

concise and refer to the proof of Proposition 7 for details.

Environment with Endogenous Screening. Consider an environment which is

like our benchmark model, except that firms additionally choose (and post) their

recruiting intensity � 2 [0, 1] at a linear cost c�, where c � 0.40 That is, they solve

max
�, µ,�

�

1 + �
f
1 +

µ

1 + �µ+ (1� �)�
�f � �U1 � µ�U � c�. (37)

Since the second term above is convex in � and c� is linear, the above profit function

is convex in �. The maximum is therefore reached at a corner, i.e. when � = 0 or 1.

40Posting contracts that include � in addition to wages is necessary for constrained e�ciency
in this environment. More restrictive contract spaces and more general cost functions are left for
future research. Woltho↵ (2018) endogenizes � in a similar way as us, but with a cost function that
is su�ciently convex (in an otherwise quite di↵erent model). In the random search model of Birinci
et al. (2020), firms have the option to learn all their applicants’ types after paying a fixed cost.
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To determine firms’ choice, we compare the profits from the two options.

Profits with No Screening. Consider a firm of type y choosing � = 0. This

firm’s optimal queue then consists of either low-type workers or high-type workers,

but not both. Suppose the firm attracts workers of type xi. Equation (37) then

reduces to max�i m(�i)f(xi, y) � �iUi. Because m(�) is strictly concave, the FOC

of this problem is both necessary and su�cient. Assuming that f(xi, y) > Ui, the

optimal queue length is �i =
p

f(xi, y)/Ui � 1, which yields an expected payo↵ of

⇡i(y) =
⇣p

f(xi, y)�
p
Ui

⌘2
. (38)

Naturally, the firm chooses the type of workers it wishes to attract based on whether

⇡1(y) or ⇡2(y) is higher, which requires comparing
p
f(x2, y)�

p
f(x1, y) with

p
U2�

p
U1. If the former is strictly increasing in y, i.e. f is strictly square-root supermod-

ular, then there exists a unique y
EK such that ⇡2(y) > ⇡1(y) if y > y

EK and vice

versa. This result is a special case of Section 5.1 or Eeckhout and Kircher (2010a).

Profits with Perfect Screening. When the firm chooses � = 1, (37) reduces to

⇡(y) ⌘ max
0µ�

�

1 + �
f
1 +

µ

1 + µ
�f � �U1 � µ�U. (39)

This problem is strictly concave in (µ,�), so that the FOCs are both necessary and

su�cient. The only complexity lies in the constraint 0  µ  �, which implies that

there are four possibilities with respect to the optimal applicant pool: a firm choosing

� = 1 may attract (i) no applicants, such that ⇡(y) = 0; (ii) only low-type applicants,

such that ⇡(y) = ⇡1(y); (iii) only high-type applicants, such that ⇡(y) = ⇡2(y); or

(iv) both types of applicants, in which case the FOCs imply µ =
p
�f/�U � 1 and

� =
p
f 1/U1 � 1, such that

⇡(y) =
⇣p

f 1 �

p
U1

⌘2
+
⇣p

�f �

p

�U

⌘2
. (40)

Choice of Screening Intensity. The characterization of ⇡1(y), ⇡2(y), and ⇡(y)

completes the analysis of the firm’s problem (37): the firm chooses � = 1 if ⇡(y)�c �

max{⇡1(y), ⇡2(y)} and � = 0 otherwise.
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An Auxiliary Function. To simplify exposition, we introduce a transformation

⌦(·) of  (y), the output dispersion parameter defined by equation (15), and establish

that this transformation is strictly decreasing:

⌦() ⌘
1

2
+

ln(
p
+

p
1 + )

ln(1 + )
. (41)

Lemma 11. ⌦() is strictly decreasing with lim!0 ⌦() = 1 and lim!1 ⌦() = 1.

Proof. See Appendix B.12.

Sorting. In our main analysis, we showed that—relative to a bilateral world—

allowing firms to interview multiple applicants makes robust sorting harder; in par-

ticular, we found that log-supermodularity is necessary and su�cient to obtain robust

PAC/PAM for any screening intensity �, while submodularity is the corresponding

condition for NAC/NAM.

We now analyze whether these conditions carry over to an environment with en-

dogenous screening in the sense that they are also necessary and su�cient to obtain

robust sorting for any screening cost c. Necessity is immediate: when c = 0, all firms

choose � = 1 and the results of Proposition 5 and Corollary 2 apply. For NAC/NAM,

su�ciency is also relatively straightforward: we find that strict submodularity is su�-

cient for robust NAC/NAM for any screening cost c. PAC/PAM is more complicated.

The following proposition summarizes the results.

Proposition 7. In our environment with endogenous screening, the following holds:

(i) The equilibrium exhibits robust NAC/NAM for any cost c if (resp. only if)

f(x, y) is strictly (resp. weakly) submodular.

(ii) Given any log-supermodular function f , we can find an endowment of agents

and a screening cost c such that PAC/PAM fails in equilibrium. However, given

an endowment of agents and c, PAC/PAM holds in equilibrium as long as

⇢ � ⌦((y)). (42)

Proof. See Appendix B.13.

The su�cient condition (42) depends only on ⇢, the lower bound of the produc-

tion complementarities, and (y), the lower bound of the output dispersion.41 Hence,

41Since f is log-supermodular, (y) is smallest at y = y. Also, by Lemma 11, (42) requires ⇢ > 1.
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PAC/PAM requires that either production complementarity or output dispersion is

su�ciently large. Note that condition (42) is quite sharp: in the proof of Proposi-

tion 7, we show that with CES production we can construct counterexamples where

PAC/PAM fails in equilibrium whenever ⇢ < ⌦((y)).

At first, our result regarding PAC/PAM may seem puzzling. One may have ex-

pected that, with strong complementarities, firms’ incentives to invest in (ex post)

screening are increasing in their productivity and that since the least-productive firms

can only a↵ord to attract low-type workers, PAC/PAM arises. This intuition turns

out to be wrong. When x1 and x2 are su�ciently close, the most-productive firms

find it optimal to attract high-type applicants only. They are not willing to pro-

vide low-type workers with their market utility, because compensating them for the

low matching probability that results from the presence of many high-type workers

requires a very high wage. Therefore, firms in the middle of the productivity dis-

tribution have the strongest incentives to screen ex post. Although those firms also

prefer to hire high-type workers, they can only a↵ord to o↵er modest wages to them

and therefore they attract relatively few of them. As a consequence, they can attract

low-type workers for a relatively low wage (since they o↵er them a high hiring prob-

ability). However, some firm types below those screening firms are not productive

enough to be willing to pay the screening cost as an insurance device (since the oppor-

tunity costs of remaining unmatched is lower for those firms), but conditional on not

screening ex-post, they are productive enough to target high-type applicants. When

this happens, PAC/PAM fails in the middle. In the limit where x1 ! x2, we can

always find an endowment of agents (x1, x2, `1, `2, J(y)) and a screening cost c such

that PAC/PAM fails in equilibrium, even for log-supermodular production functions.

This scenario does not arise when either the degree of complementarity ⇢ or output

dispersion (y) is large, i.e. (42) holds. In that case, the incentive to attract low-type

workers as insurance against failing to hire is decreasing in firms’ type. Then, the

most-productive firms attract only high-type workers, firms in the middle attract

both types and screen ex post, and the least-productive firms attract only low-type

workers. In other words, the gains from ex-post screening are first increasing in y,

reach their maximum at yEK and from then onwards are decreasing in y.
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6 Conclusion

A firm with a vacancy typically has multiple instruments to screen applicants. By

announcing the terms of trade ex ante, it can discourage certain types of workers

from applying, while ex post—after receiving applications—it can interview applicants

in an attempt to identify the most profitable hire. In this paper, we show how

these instruments jointly determine equilibrium outcomes, including sorting patterns.

Perhaps surprisingly, we find that if ex post screening is easier (firms can screen more

applicants), this makes sorting harder. That is, stronger complementarities in the

production technology are necessary to get positive assortative matching. The more

workers a firm can screen, the stronger the incentives for high-type workers are to

avoid ending up in the same pool of applicants and this is a force against sorting

which is by itself e�cient (a social planner also wants to reduce the probability that

valuable resources are wasted because they end up in the same pool).

There are several promising avenues for future research. On the theoretical side,

in markets with a long hiring cycle, like the academic job market, workers may have

relatively strong incentives to send multiple applications simultaneously. This would

reduce the cost for high-type workers to end up in the same queue as other high-

type workers. However, even in those markets, high-type workers have incentives to

diversify and not only apply to the top places.

On the empirical side, an important implication of our model is that sorting

patterns are driven both by the production function and the meeting process. In

order to identify complementarities in production, we may need—besides data on

matches—additional information on the entire pool of applicants. This way, we can

first identify the parameters of the meeting technology (i.e. how many workers apply,

which workers apply and how many are screened) and then, conditional on the meeting

technology, matching patterns are informative on production complementarities.
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Appendix A Proofs

A.1 Proof of Lemma 1

For a given ⇢0, the derivative of log fy(x, y)� ⇢0 log f(x, y) with respect to x equals

@

@x
(log fy � ⇢0 log f) =

fxy

fy
� ⇢0

fx

f
=

fxyf � ⇢0fxfy

ffy
,

where we suppress the arguments of f(x, y) and its partial derivatives for simplicity.

The right-hand side is weakly positive (resp. negative) if ⇢0 = ⇢ (resp. ⇢0 = ⇢),

which means that log fy(x2, y) � ⇢ log f(x2, y) � log fy(x1, y) � ⇢ log f(x1, y), and

log fy(x2, y)�⇢ log f(x2, y) � log fy(x1, y)�⇢ log f(x1, y), which jointly imply (2).

A.2 Proof of Lemma 4

This proof is based on Shimer (2005), but extends his result to arbitrary �(µ,�).

Because �(µ,�) is concave in µ, we have

 1 (µ
⇤
,�

⇤)  �µ(µ
⇤
,�

⇤)   2 (µ
⇤
,�

⇤) , (43)
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where  1 and  2 are defined by equation (10). Consequently, the wages must satisfy

w
⇤
1 =

U1

 1 (µ⇤,�⇤)
�

U1

�µ(µ⇤,�⇤)
and w

⇤
2 =

U2

 2 (µ⇤,�⇤)


U2

�µ(µ⇤,�⇤)
. (44)

Moreover, the FOC of (11) with respect to µ implies �µ(µ⇤
,�

⇤)(f(x2, y)� f(x1, y)) =

U2 � U1. Combining this FOC with (44) implies

w
⇤
2 � w

⇤
1 

U2 � U1

�µ(µ⇤,�⇤)
= f(x2, y)� f(x1, y)

The strict inequality in f(x2, y) � w
⇤
2 > f(x1, y) � w

⇤
1 then follows because the two

inequalities in (43) cannot hold simultaneously; that would imply that �(µ,�⇤) is

linear for µ 2 [0,�⇤], in which case the firm’s problem never has an interior solution

(see Section 5.1 for an extensive discussion of this case).

A.3 Proof of Lemma 5

Given �µµ < 0, the Hessian is negative definite if and only if its determinant is positive,

i.e.�f
⇥
m

00
�µµf

1 +
�
�µµ��� � �

2
µ�

�
�f
⇤
> 0. Using�f > 0 and the definition of (y),

this gives condition (16).

A.4 Proof of Proposition 2

As x2 ! x1, U2 and U1 approach a common value U and total surplus (8) converges

to m(�)f(x1, y), which implies that firms’ expected profit tends to m(�)f(x1, y)��U .

Since 0  m(�)f(x1, y)��U < f(x1, y)��U , this means that—when x2 is su�ciently

close to x1—firms’ choice of queue length � is bounded from above; in particular

� < �(y) ⌘ U/f(x1, y), such that we can restrict each firm’s choice of queues to be

in the convex set �(y) ⌘ {(µ,�) | 0  µ  �  �(y)}.

On this set, the right-hand side of the firm’s SOC (16) is bounded due to continuity.

Hence, (16) will hold for all (µ,�) in �(y) when (y), or equivalently x2 � x1, is

su�ciently small. That is, for each firm type y, the surplus function is concave on the

set �(y). Therefore, each firm’s solution (µ(y),�(y)) is unique, and by the Theorem

of the Maximum, it is also continuous. Furthermore, when µ(y) and �(y) satisfy

0 < µ(y) < �(y), they are jointly determined by the FOCs (17) and (19). Hence, by

the implicit function theorem, they are both continuously di↵erentiable around that

point. The same then applies to ⇣(y) = µ(y)/�(y).
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A.5 Proof of Lemma 7

Di↵erentiating (17) along the equilibrium path yields

⇣
0(y)(U2 � U1) = m

0
f
1
y +m

00
�
0(y)f 1 + (⇣(y)�µ + ��)�fy

+


⇣
0(y)�µ + ⇣

@�µ

@⇣
⇣
0(y) + ⇣

@�µ

@�
�
0(y) +

@��

@⇣
⇣
0(y) +

@��

@�
�
0(y)

�
�f,

where we have suppressed the arguments µ(y) and �(y) from the functions m and �.

By (19), we can substitute �µ�f for U2 � U1 on the left-hand side. The resulting

equation and equation (26) are two linear equations in ⇣ 0(y) and �0(y). A simple but

tedious calculation then yields (27).

Rearranging equation (28) gives

�
1

�µ

@�µ

@⇣
⇣
0(y) =

f
1
y

f 1

0

@f
1�fy

f 1
y�f

�

1
�µ

@�µ

@�

m00

m0

1� 1
m0

⇣
�µ

�µ�

�µµ
� ��

⌘
�fy
f1
y

1� 1
m00

⇣
�2
µ�

�µµ
� ���

⌘
�f
f1

1

A (45)

where we used equation (27) to substitute out �0(y). Since �(µ,�) is strictly concave,
@�µ

@⇣ = ��µµ < 0, which implies that ⇣ 0(y) � 0 if and only if the term in the parenthesis

on the right-hand side is positive, i.e. (29) holds with i = c.

By definition, PAM is equivalent to @h
@⇣ ⇣

0(y) + @h
@��

0(y) � 0. Combining (27)

and (45) then shows that PAM is obtained if and only if (29) holds with i = m.

A.6 Proof of Proposition 3

First consider PAC. We show that if the necessary condition fails, we can construct

a counterexample in which worker heterogeneity is small and PAC fails. The other

cases (PAM, NAC and NAM) follow the same logic.

Suppose that (30) does not hold for i = c, so that there exist x
0
, y

0, µ0, and �
0

such that ⇢(x0
, y

0) < a
c(µ0

,�
0). By continuity, we can then assume that 0 < µ

0
< �

0

(note the strict inequality), and that there exists a small ✏0 2 (0, (�0 � µ
0)/2) such

that the above inequality holds for all x 2 [x0
� ✏0, x

0 + ✏0], y 2 [y0 � ✏0, y
0 + ✏0],

µ 2 [µ0
� ✏0, µ

0 + ✏0], and � 2 [�0 � ✏0,�
0 + ✏0]. Fix ✏0 from now on.

Set x1 = x
0, and `2 = µ

0 and `1 = �
0
� µ

0, where `i is the total measure of xi

workers, i = 1, 2. Next, pick x2, y, and y such that x2�x
0 = y

0
�y = y�y

0 (i.e. y0 is the

midpoint of y and y). We denote this di↵erence by ✏1 and let ✏1 ! 0. Note that when
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✏1 = 0, both firm and worker heterogeneity disappear. For su�ciently small ✏1, the

equilibrium �(y) is unique and continuous by Proposition 2. Since the aggregate ratio

of workers and firms is �0, for su�ciently small ✏1, we have �(y) 2 [�0�✏0,�0+✏0] for all

y. Furthermore, µ(y) is continuous and the average µ(y) is µ0, i.e.
R y

y µ(y)dJ(y) = µ
0.

Therefore, by continuity there exists some y0 such that µ(y0) = µ
0. To sum up, at

point y0 we have µ0 = µ(y0) < �(y0) 2 (�0� ✏0,�0+ ✏0). Since ⇣(y0) is both unique and

interior, ⇣(y) is di↵erentiable at point y0 (see Proposition 2). Hence, the assumptions

of Lemma 7 are satisfied at point y0.

When ✏1 ! 0, the left-hand side of (29) approaches ⇢(x0
, y

0). On the right-hand

side, ac(µ(y0),�(y0)) ! a
c(µ0

,�
0) (note that the choice of y0 depends on the value of

✏1). Furthermore, at point y0, we have

1�
1

m0

✓
�µ
�µ�

�µµ
� ��

◆
�fy

f 1
y

⇡ 1�
1

m0

✓
�µ
�µ�

�µµ
� ��

◆
fxy(x0

, y
0)

fy(x0, y0)
✏1 ! 1,

where we suppress the arguments of m(�0) and �(µ0
,�

0). Similarly, the denominator

on the right-hand side of (29) also goes to 1. Therefore, for (29) to hold at point y0,

we need ⇢(x0
, y

0) � a
c(µ0

,�
0), which yields a contradiction.

A.7 Proof of Lemma 8

We first consider ac(⇣,�). Since �(µ,�) is given by equation (7) and a
c(⇣,�) is defined

by equation (24), direct calculation yields

a
c(⇣,�) =

1 + �

2�

✓
1 +

1

1 + (1� �)�
�

2

1 + �⇣�+ (1� �)�

◆
. (46)

Note that ac(⇣,�) is strictly increasing in ⇣. Thus, we have max⇣ a
c(⇣,�) = a

c(1,�)

and min⇣ a
c(⇣,�) = a

c(0,�). Moreover, (46) reveals that ac(0,�) + a
c(1,�) = 1 and

dac(1,�)
� = �

�(1��)
2(1+(1��)�)2 < 0. Therefore, ac(1,�) approaches its supremum when �! 0

and a
c(0,�) approaches its infimum when � ! 0. Hence, we have sup⇣,� a

c(⇣,�) =

lim�!0 a
c(1,�) = (1+ �)/2 and inf⇣,� ac(⇣,�) = 1� sup⇣,� a

c(⇣,�) = (1� �)/2, where

neither the infimum nor the supremum can be reached because we require � > 0.

Next, we consider am(µ,�). Analogous to above, direct computation yields

a
m(⇣,�) =

�(1 + �)(1� �) + 2�⇣�

2� (1 + (1� �)�)
. (47)
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Note that am(⇣,�) is strictly increasing in ⇣. For a given �, am(⇣,�) therefore reaches

its minimum at ⇣ = 0 and its maximum at ⇣ = 1. Because a
m(0,�) = a

c(0,�) and

a
m(1,�) = a

m(1,�), the rest of the proof is the same as for ac(⇣,�).

Finally, note that

a
c(⇣,�)� a

m(⇣,�) =
⇣(1� ⇣)�2

�

(1 + (1� �)�)(1 + �⇣�+ (1� �)�)
� 0.

Thus, when � > 0, ac(⇣,�) = a
m(⇣,�) if and only if ⇣ = 0 or ⇣ = 1.

A.8 Proof of Proposition 4

We focus here on the case where ⇣(y) is unique for all y. The more complicated

case where Z(y) may contain multiple elements is analyzed in Appendix B.5. First,

we present a useful technical lemma; then, we show that the necessary conditions in

Proposition 3 are also su�cient, under some regularity conditions; finally, we show

that our benchmark technology satisfies these regularity conditions.

A.8.1 A Technical Lemma

The first two parts of the following lemma are trivial, whereas the third part is non-

trivial and critical for our results.

Lemma 12. (i) If ⇢ > 1, then 1
((1 + )⇢ � 1) is strictly increasing for  > 0; (ii) if

⇢ 2 (0, 1), then 1
((1 + )⇢ � 1) is strictly decreasing for  > 0; and (iii) if ⇢ 2 (0, 1),

then
�
1
 + 1�⇢

2

�
((1 + )⇢ � 1) is strictly increasing for  > 0.

Proof. For (i) and (ii), define g() = (1 + )⇢, which is strictly concave if ⇢ 2 (0, 1)

and strictly convex if ⇢ > 1. Observe that ((1 + )⇢ � 1)/ = (g()� g(0))/(� 0),

which is strictly increasing in  if g() is strictly convex, and strictly decreasing in 

if g() is strictly concave.

For (iii), direct computation gives

d

d

✓
1


+

1� ⇢

2

◆
((1 + )⇢ � 1)

�
=

2(1 + )1�⇢
� 2� (1� ⇢)(2� ⇢)

22(1 + )1�⇢
.

The numerator on the right-hand side equals zero for  = 0. Moreover, its derivative

is d
d [2(1+ )1�⇢

� 2� (1� ⇢)(2� ⇢)] = 2(1� ⇢)[(1+ )�⇢
� (1� ⇢)] > 0, because

convexity of (1+ )�⇢ implies (1+ )�⇢
� (1� ⇢) > 0. Hence, the numerator on the

right-hand side is strictly positive for  > 0, which proves (iii).
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A.8.2 Su�ciency of the Necessary Conditions

Since we assumed ⇣(y) is unique for all y, it is also continuous by the Theorem of

the Maximum. If PAC/PAM holds locally at all interior points, then by continuity,

it also holds globally along the equilibrium path. The following lemma establishes

that—subject to regularity conditions—the necessary conditions (30) and (31) imply

that PAC/PAM holds locally at all interior points, so they are also su�cient.

Lemma 13. Let i = c or i = m. If, for any µ and �, we have

a
i 1

m0

✓
�µ
�µ�

�µµ
� ��

◆
�

1

m00

✓
�
2
µ�

�µµ
� ���

◆
� max(1� a

i
, 0), (48)

then (30) implies that (29) always holds in equilibrium (i.e. PAC/PAM).

If (i) ��/�µ is weakly decreasing in µ, (ii) 0  a
i
< 1, and (iii) for any µ and �,

a
i 1

m0

✓
�µ
�µ�

�µµ
� ��

◆
�

1

m00

✓
�
2
µ�

�µµ
� ���

◆
 0, (49)

then (31) implies that (29) holds in equilibrium with  instead of � (i.e. NAC/NAM).

Proof. Recall (y) ⌘ �f/f
1. Throughout this proof, we will then use the following

inequalities which result from rewriting (2):

(1 + (y))⇢ � 1

(y)


f
1�fy

f 1
y�f


(1 + (y))⇢ � 1

(y)
. (50)

First, consider PAC/PAM. Assume the necessary condition (30) holds, i.e. ⇢ � a
i.

Since ai � 0, this implies that�fy � 0 (i.e. f is supermodular) such that the left-hand

side of (29) is positive. We now prove a stronger version of (29), i.e.

f
1�fy

f 1
y�f

� a
i
1� 1

m0

⇣
�µ

�µ�

�µµ
� ��

⌘
�fy
f1
y

1� 1
m00

⇣
�2
µ�

�µµ
� ���

⌘
�f
f1

,

where a
i(⇣,�) is replaced by its supremum a

i. This is justified because if the second

factor on the right-hand side is negative then we have nothing to prove; if it is positive,

then we have a stronger version of the original inequality. Firms’ SOC implies that
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the denominator of this factor is positive. Rearranging terms therefore gives

f
1�fy

f 1
y�f

+
�fy

f 1
y


a
i 1

m0

✓
�µ
�µ�

�µµ
� ��

◆
�

1

m00

✓
�
2
µ�

�µµ
� ���

◆�
� a

i
. (51)

Consider now two subcases, determined by the value of ⇢. If ⇢ � 1, then

f
1�fy

f 1
y�f

�
(1 + (y))⇢ � 1

(y)
� ⇢ � a

i
,

where inequalities follow from of Lemma 1, ⇢ � 1 (see part (i) of Lemma 12), and

the necessary condition (30), respectively. Since (48) implies that the term in square

brackets in (51) is positive, (51) holds, which then implies (29).

In contrast, if ⇢ 2 (0, 1), then (48) implies that the term in the square brackets

in (51) is greater than 1�a
i, which is greater than 1�⇢ � 0, because of the necessary

condition (30). Hence, the left-hand side of (51) is greater than

(1 + (y))⇢ � 1

(y)
+ ((1 + (y))⇢ � 1) (1� ⇢),

which reaches its minimum value ⇢ at (y) = 0, by part (iii) of Lemma 12. Hence, (51)

holds (recall we assume ⇢ � a
i), which subsequently implies (29).

Next, consider NAC/NAM. Note that condition (i), i.e. ��/�µ being weakly de-

creasing in µ, is equivalent to �µ
�µ�

�µµ
��� � 0, as can be seen by taking the derivative

with respect to µ. We now distinguish two subcases based on the sign of �fy.

If �fy  0, then the left-hand side of (29) is negative. The numerator on the

right-hand side is positive because �µ
�µ�

�µµ
� �� � 0, while the denominator is positive

because of the firm’s SOC. Thus, it follows immediately that (29) holds with  .

In contrast, if �fy � 0, we prove the inequality

1 

1� 1
m0

⇣
�µ

�µ�

�µµ
� ��

⌘
�fy
f1
y

1� 1
m00

⇣
�2
µ�

�µµ
� ���

⌘
�f
f1

, (52)

which is equivalent to

f
1�fy

f 1
y�f

1

m0

✓
�µ
�µ�

�µµ
� ��

◆
�

1

m00

✓
�
2
µ�

�µµ
� ���

◆
 0. (53)

44



To do so, note that f1�fy
f1
y�f 

(1+(y))⇢�1
(y)  ⇢  a

i, where the three inequalities follow

from (50), part ii) of Lemma 12, and our assumption ⇢  a
i, respectively. Hence, (53)

and (52) follow from (49). Therefore,

f
1�fy

f 1
y�f

 ⇢  a
i
 a

i
 a

i
1� 1

m0

⇣
�µ

�µ�

�µµ
� ��

⌘
�fy
f1
y

1� 1
m00

⇣
�2
µ�

�µµ
� ���

⌘
�f
f1

.

Hence, we have proved the case of NAC/NAM.

A.8.3 Verification of the Regularity Conditions in Lemma 13

If �(µ,�) satisfies (7), ac = a
m = (1 + �)/2 and a

c = a
m = (1 � �)/2, by Lemma 8.

Plugging (7) into the left-hand side of (48) yields

(1� �)(1 + �)2(2 + (1� �)�)

4(1 + (1� �)�)(1 + �µ+ (1� �)�)
�

(1� �)(1 + �)(2 + (1� �)�)

4(1 + (1� �)�)
�

(1� �)

2
,

where the first inequality is because the denominator reaches its maximum at µ = �,

and the second one is because 1 + � � 1 + (1� �)�. This proves (48).

The regularity conditions for NAC/NAM in Lemma 13 are satisfied because (i)

��/�µ = �(1��)µ/(1+(1��)�) which is decreasing in µ, (ii) ai = (1��)/2 2 [0, 1),

and (iii) plugging (7) into the left-hand side of (49) yields

�
�(1 + �)2(1� �)2

4(1 + (1� �)�)(1 + �µ+ (1� �)�)
 0.

Hence the necessary conditions in Proposition 3 are also su�cient.
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Appendix B Online Appendix

B.1 Proof of Lemma 2

Given queue length �, a firm’s number of applicants nA in our benchmark model

follows a geometric distribution with support N0 and mean �, i.e. P [nA � n |�] =
�

�
1+�

�n
for n = 0, 1, 2, . . . . We will make this proof more general by assuming that

the application process is governed by a general invariant technology, which Lester

et al. (2015) and Cai et al. (2017) define as follows: applications are invariant if

and only if the probability that a firm with queues (µ,�) receives at least one high-

type applicant depends only on µ (and not on �). Hence, it equals the probability

P [nA � 1 |µ] that a firm receives at least one applicant when the queue has length µ

and consists only of high-type workers. That is,

P [nA � 1 |µ] = 1�
1X

n=0

P [nA = n |�]
⇣
1�

µ

�

⌘n

= 1�
1X

n=0

P [nA � n |�]
⇣
1�

µ

�

⌘n
+

1X

n=0

P [nA � n+ 1 |�]
⇣
1�

µ

�

⌘n

=
1X

n=1

P [nA � n |�]
µ

�

⇣
1�

µ

�

⌘n�1

. (54)

where the first equality uses the definition of invariance and the fact that the prob-

ability that an applicant is high-type is µ/� and is independent across applicants,

while the second and the third equality follow from summation by parts.

A firm’s potential number of interviews, nC , follows a geometric distribution with

support N1 and mean (1� �)�1. That is, P[nC � n | �] = �
n�1 for n = 1, 2, . . . .

Since interviewing might be constrained by the number of applications, the firm’s

actual number of interviews is nI = min{nA, nC} 2 N0, distributed according to

P [nI � n |�, �] = P [nA � n |�] �n�1. An interview reveals a high-type worker with

probability µ/�, independently across applicants. The firm therefore interviews at

least one high-type worker with probability

�(µ,�) = 1�
1X

n=0

P [nI = n|�, �]
⇣
1�

µ

�

⌘n
=

1X

n=1

P [nI � n|�, �]
µ

�

⇣
1�

µ

�

⌘n�1

,
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where the second equality follows from summation by parts, analogous to (54).

Substituting P [nI � n |�, �] = P [nA � n |�] �n�1 yields

�(µ,�) =
µ

�µ+ (1� �)�

1X

n=1

P [nA � n |�]
�µ+ (1� �)�

�

✓
1�

�µ+ (1� �)�

�

◆n�1

=
µ

�µ+ (1� �)�
P [nA � 1 | �µ+ (1� �)�] . (55)

Since P [nA � 1 | �µ+ (1� �)�] = �µ+(1��)�
1+�µ+(1��)� in our baseline model, equation (7)

then follows from (55).

B.2 Proof of Lemma 3

Given U1/w1 and U2/w2, consider then the level curves  2(�⇣,�) = U2/w2 and

 1(�⇣,�) = U1/w1 in the �-⇣ space. Note that

 1(�⇣,�) =
1 + (1� �)�

(1 + �)(1 + (1� � + �⇣)�)
and  2(�⇣,�) =

1

1 + (1� � + �⇣)�
,

both of which are strictly decreasing in ⇣. We now show that the two curves intersect

at most once so that there exists exactly one solution (µ,�). At any intersection

point, the di↵erence between the slopes of the two level curves is

�
@ 1(�⇣,�)/@�

@ 1(�⇣,�)/@⇣
+
@ 2(�⇣,�)/@�

@ 2(�⇣,�)/@⇣
=

1 + (1� � + �⇣)�

�(�+ 1)(1 + (1� �)�)
> 0.

Hence, by a standard single-crossing argument, the two level curves cross each other

at most once. Note that we can also derive the solution (µ,�) explicitly. However,

with this approach we need to discuss the conditions under which we have a corner

solution (µ = 0 or µ = �) or an interior solution (0 < µ < �).

B.3 Proof of Lemma 6

We prove this result and discuss it extensively in Cai et al. (2020). Here, we state

the single-crossing condition and briefly argue why it leads to Lemma 6. To do so,

we define H(µ,�) as the right-hand side of (16), i.e.

H(µ,�) ⌘
��� � �

2
µ�/�µµ

�m00 . (56)
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Cai et al. (2020) then show that Lemma 6 holds whenever a meeting technology

satisfies Property A0, A1, A2 and the following A3.

A3. (single-crossing condition) At any point (⇣,�) where H(�⇣,�) > 0, we have

@H(�⇣,�)/@� > 0 and

�
@�µ(�⇣,�)/@⇣

@�µ(�⇣,�)/@�
< �

@H(�⇣,�)/@⇣

@H(�⇣,�)/@�
. (57)

Note that Property A0 states that @�µ(�⇣,�)/@⇣ < 0, while Property A2 states that

@�µ(�⇣,�)/@� < 0, making the left-hand side of (57) strictly negative. When �(µ,�)

is given by (7), direct computation reveals that both H(�⇣,�) and the right-hand

side of (57) are strictly positive. Thus, Property A3 is trivially satisfied in this case.

The idea of the proof of Cai et al. (2020) is then as follows. Suppose that the

equilibrium payo↵—or equivalently the marginal contribution to surplus—of a given

firm y is R⇤(y). Property A3 then implies that level curve R(�⇣,�, y) = R
⇤(y) crosses

the level curve H(�⇣,�) = 1/(y) at most once and from the left, as illustrated

in Figure 1 of Cai et al. (2020). If the intersection exists, denote it by (�⇤, ⇣⇤).

Along the level curve R(�⇣,�, y) = R
⇤(y), the second-order condition (16) is then

satisfied for ⇣ > ⇣
⇤ and violated for ⇣ < ⇣

⇤. The only feasible submarket when

⇣ < ⇣
⇤ is therefore the corner solution ⇣ = 0. Furthermore, along the level curve

R(�⇣,�, y) = R
⇤(y), T2(�⇣,�, y) is monotonically decreasing in ⇣ for ⇣ � ⇣

⇤. Since the

marginal contribution of high-type workers must be the same among all submarkets

containing such workers, there can exist only one submarket with ⇣ � ⇣
⇤. Hence,

there exist at most two submarkets: one with ⇣ = 0 and the other with ⇣ � ⇣
⇤.

B.4 About the Second Term on the Right-Hand Side of (27)

Equation (27) characterizes how firms of di↵erent types take advantage of produc-

tion complementarity by adjusting their queue length and queue composition. The

second term on the right-hand side reflects the complicated interaction between meet-

ing externalities and production complementarity and is also present in the sorting

condition (29). Below we analyze whether it is greater than 1.

First, consider the case ⇢ � (1 + �)/2, under which condition the equilibrium

exhibits PAC/PAM by Proposition 4. Note that the second term on the right-hand
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side of equation (27) is less than 1 if and only if

�fyf
1

�ff 1
y

�
1

m00

✓
�
2
µ�

�µµ
� ���

◆
/

✓
1

m0

✓
�µ
�µ�

�µµ
� ��

◆◆
,

where the right-hand side is smaller than (1 + �)/2 by equation (48). When worker

types are close, the left-hand side of the above inequality is approximately ⇢(x, y),

which is greater than ⇢ and hence greater than the right-hand side. Thus, in this

case, the term under consideration is smaller than 1.

Next, consider the case ⇢  (1 � �)/2, under which condition the equilibrium

exhibits NAC/NAM by Proposition 4. Equation (52) in the proof of Proposition 4

states that the term under consideration is greater than 1.

B.5 General Analysis with Multiplicity Points

For our sorting analysis, we need to distinguish between the optimal queue composi-

tion ⇣(y) being (i) unique and interior, and (ii) not unique. The first case has been

analyzed in Section 4.3 and 4.4; here, we complete the analysis by discussing the

second case. We do not discuss the case in which ⇣(y) is unique but a corner solution,

i.e. Z(y) = {0} or Z(y) = {1}, because ⇣(·) is not necessarily di↵erentiable at such

points. However, as Lemma 14 below shows, we do not need to consider such points

for our global sorting analysis because of continuity. We focus on the conditions

for PAC/PAM; the analysis for NAC/NAM is similar with reversal of the relevant

inequalities and is spelled out only when necessary.

Local PAC/PAM. Consider a point ym where Z(ym) is not a singleton. By

Lemma 6, it then has two elements, with one of them equal to zero. Denote these

elements by ⇣0 and ⇣1, satisfying 0 = ⇣0 < ⇣1, and their corresponding queue lengths

by �0 and �1, respectively. By the Theorem of the Maximum, Z(y) is an upper hemi-

continuous correspondence. Therefore, for firm types y close to ym, Z(y) is either the

corner solution 0, or some ⇣ close to ⇣1, or both. We now define when PAC/PAM

holds locally at a multiplicity point ym. Note that the definition is the same for PAC

and PAM.

Definition 6. Consider a point ym for which Z(ym) is not unique. PAC/PAM then

holds locally at ym if, for y su�ciently close to ym, the corner solution 0 is the only

solution for y < ym, but does not belong to Z(y) for y > ym.
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In other words, local PAC/PAM for a multiplicity point means that firms with

y slightly below ym have a unique optimal ⇣ equal to zero and firms with y slightly

above ym have a unique optimal ⇣ close to ⇣1. This definition is local in the sense that

we only require that the previous statement holds for y su�ciently close to ym. Note

that the definition does not require that, for y slightly above ym, we have ⇣(y) � ⇣1

(PAC) or h(⇣(y),�(y)) � h(⇣1,�1) (PAM); these inequalities are implied the fact that

we also require PAC/PAM to hold locally for y > ym (see Lemma 14 below for the

detailed proof).

From Local to Global. Our next result then shows that if PAC/PAM holds lo-

cally according to our Definition 5 and 6, then the equilibrium exhibits PAC/PAM;

alternatively, we say that PAC/PAM holds globally in that case.

Lemma 14. If PAC/PAM (resp. NAC/NAM) holds locally at all points where Z(y)

is either unique and interior or contains multiple points, then PAC/PAM (resp.

NAC/NAM) holds globally.

Proof. By the Theorem of Maximum, Z(y) is an upper hemi-continuous correspon-

dence: if yk ! y
⇤ and ⇣k ! ⇣

⇤ with ⇣k 2 Z(yk), then ⇣⇤ 2 Z(y⇤). As we discussed

after Definition 6, when PAC/PAM holds locally at some multiplicity point ym, then

all points su�ciently close to ym, but not equal to ym, have a unique optimal ⇣.

Thus, if PAC/PAM holds locally at all multiplicity points, then multiplicity points

are isolated from each other.

Next, we prove that there exists at most one multiplicity point. Suppose otherwise.

Because multiplicity points are isolated, consider two consecutive multiplicity points

y
0
m and y

00
m with Z(y0m) = {0, ⇣ 01} and Z(y00m) = {0, ⇣ 001}. By construction, Z(y) is

then unique for all y between y
0
m and y

00
m and hence continuous. Furthermore, since

PAC/PAM holds locally at the two points y0m and y
00
m, we have limy#y0m = ⇣

0
1 > 0 (left

limit) and limy"y00m = 0 (right limit).

If ⇣(y) is interior for all y 2 (y0m, y
00
m), then by assumption ⇣ 0(y) � 0 and hence ⇣(y)

is continuously increasing, which contradicts with limy#y0m = ⇣
0
1 > 0 and limy"y00m = 0.

More generally, if ⇣(y) is a corner solution for some y 2 (y0m, y
00
m), then ⇣(y) is piecewise

di↵erentiable, and whenever it is di↵erentiable, it is (weakly) increasing. We again

have a contradiction. Similar logic applies for the NAC/NAM case.

Proof of Proposition 4 with Multiplicity Points. We now extend the proof of

Proposition 4 to allow for multiplicity points. By Lemma 14, we only need to show
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that ⇢ � (1+�)/2 and ⇢  (1��)/2 are su�cient for PAC/PAM and NAC/NAM to

hold locally at multiplicity points, respectively. For the former, below we show that

(⇢ > 1/2) is already su�cient.

Suppose that Z(ym) is not a singleton and denote the two optimal queues again

by (⇣0,�0) and (⇣1,�1), where 0 = ⇣0 < ⇣1. Since firm ym must be indi↵erent, the

expected payo↵—or, equivalently, the marginal contribution to surplus—must be the

same for the two queues. By (14), we have

m(�0)� �0m
0(�0) = m(�1)� �1m

0(�1) +

✓
�(⇣1�1,�1)� �1

d�(⇣1�1,�1)

d�

◆
�f

f 1
, (58)

where �f = f(x2, ym)�f(x1, ym) and f
1 = f(x1, ym). The left-hand side is the firm’s

marginal contribution to surplus with a queue (0,�0), divided by f(x1, ym), and the

right-hand side is the corresponding value with a queue (⇣1,�1).

If ⇣1 2 (0, 1), then low-type workers are present in both queues and their marginal

contribution to surplus must be the same. Equation (12) then yields

m
0(�0) = m

0(�1) + ��(⇣1�1,�1)
�f

f 1
if ⇣1 2 (0, 1). (59)

Low-type workers are not present in the shorter queue if ⇣1 = 1. In this special case,

optimality requires that the left-hand side of (59) is larger than the right-hand side.

The requirement in Definition 6 can be characterized by the envelope theorem: a

su�cient condition is ⇧y(0,�0, ym) < ⇧y(⇣1,�1, ym), where ⇧(⇣,�, y) is the expected

profit of a firm y with queue (⇣,�) as defined in equation (11).42 The condition

⇧y(0,�0, ym) < ⇧y(⇣1,�1, ym) can be written as

m(�0) < m(�1) + �(⇣1�1,�1)
�fy

f 1
y

, (60)

where �fy = f(x2, ym) � f(x1, ym) and f
1
y = fy(x1, ym). If the reverse inequality

42The envelope theorem states that if a firm with type y close to ym is constrained to choose
only ⇣ close to ⇣1, then its maximum expected profit is approximately (first-order) ⇧(⇣1,�1, ym) +
⇧y(⇣1,�1, ym)�y where �y = y � ym. Similarly, if the firm is constrained to choose ⇣ = 0,
then its maximum expected profit is approximately ⇧(0,�0, ym) + ⇧y(0,�0, ym)�y. Recall that
⇧(⇣1,�1, ym) = ⇧(0,�0, ym). When ⇧y(⇣1,�1, ym) > ⇧y(0,�0, ym), then a firm type y > ym strictly
prefers to choose ⇣ around ⇣1 instead of zero, and a firm type y < ym strictly prefers zero. As men-
tioned before, by continuity, it is without loss of generality to constrain the firm to choose between
zero and all ⇣ close to ⇣1. See Milgrom and Segal (2002) for a discussion of envelope theorems.
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⇧y(0,�0, ym) > ⇧y(⇣1,�1, ym) holds, then the opposite is true (NAC/NAM holds

locally at point ym), i.e. for y slightly above ym, Z(y) is unique and equals zero, and

for y slightly below ym, Z(y) is unique and equals some ⇣ around ⇣1.

Consider first the case in which ⇣1 = 1. The sorting conditions for this case are

equivalent to the ones in Eeckhout and Kircher (2010a), even though the meeting

technology is not bilateral. The proof of Proposition 8 in Appendix B.7 shows that

equation (58) implies (60) when ⇢ > 1/2, while equation (58) implies (60) with reverse

inequality when ⇢ < 1/2. Hence, assortative sorting holds locally at ym under the

su�cient conditions in Proposition 4.

Next, consider the case in which ⇣1 < 1, such that (59) holds with equality.

From (58) and (59), we can solve for (ym) and �0 in terms of ⇣1 and �1. This yields

(ym) =
4�(1 + �1 � �1�(1� ⇣1))2

(1 + �1)(�1 � � � �1�(1� ⇣1) + 1)2
, (61)

�0 =
�1(�1 + �(��1 + (�1 + 2)⇣1 � 1) + 1)

1� � � �1(1� � � �⇣1)
. (62)

Rewrite (60) as

1 +
m(�0)�m(�1)

�(⇣1�1,�1)
<

fy(x2, ym)

fy(x1, ym)
. (63)

Consider PAC/PAM first. If ⇢ > 1/2, then fy(x2, ym)/fy(x1, ym) > (1 + (ym))1/2

by (2). Note that

(1 + (ym))�

✓
1 +

m(�0)�m(�1)

�(⇣1�1,�1)

◆2

=
4�1�3(1� ⇣1)(1 + �1(1� �(1� ⇣1)))

(1 + �1)2(1� � + �1(1� �(1� ⇣1)))2
> 0,

hence (63) holds.

For NAC/NAM, note that fy(x2, ym)/fy(x1, ym) < (1 + (ym))⇢ by (2). We have

(1 + (ym))
⇢
� 1�

m(�0)�m(�1)

�(⇣1�1,�1)
<

1� �

2
(ym)�

m(�0)�m(�1)

�(⇣1�1,�1)

= �
2�2

�1(1� �(1� ⇣1))(1 + �1(1� �(1� ⇣1)))

(1 + �1) (1� � + �1(1� �(1� ⇣1)))
2

 0,

where the first inequality follows from (1+)⇢ < 1+ ⇢  1+ 1��
2 , and the equality
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follows from equations (61) and (62). Hence, (60) holds with >. We thus have proved

that assortative sorting holds locally at all multiplicity points under the su�cient

condition in Proposition 4.

B.6 Proof of Lemma 9

Since �(µ,�) = µm(�)/�, we have �µ(µ,�) = m(�)/�, which in turn implies that

@�µ(⇣�,�)/@⇣ = 0. Therefore, by equation (25), am(⇣,�) = a
c(⇣,�) for any ⇣ and �.

Next, consider ac(⇣,�) as given by equation (24). Since �µµ(µ,�) = 0 and �µ�(µ,�) =

(m(�)/�)0 = (�m0(�) �m(�))/�2, we obtain equation (34) for ac(⇣,�) and a
m(⇣,�).

A discussion of why the right-hand side in equation (34) equals the elasticity of

substitution of the total number of matches in a submarket can be found in Eeckhout

and Kircher (2010a).

B.7 General Bilateral Technologies

Under bilateral technologies, the firm’s problem is solved by attracting either low-

or high-type workers, but not both.43 Therefore, we do not need need to consider

the scenario where Z(y) is unique and interior; we only need to consider multiplicity

points, where the optimal ⇣ is 0 or 1, but not any number in between. Denote such

a multiplicity point by y
EK .44 Using ⇣1 = 1, the indi↵erence condition (58) of a firm

with type y
EK then becomes

(m(�0)� �0m
0(�0)) f(x1, y

EK) = (m(�1)� �1m
0(�1)) f(x2, y

EK). (64)

Further, the local condition for PAC/PAM (60) reduces to

m(�1)
fy(x2, y

EK)

fy(x1, y
EK)

> m(�0), (65)

i.e. firms with types slightly above y
EK strictly prefer high-type workers, while firms

with types slightly below y
EK strictly prefer low-type workers. If this holds for all

multiplicity points, then there exists at most one such point and PAC/PAM holds

globally (see Lemma 14). The following proposition establishes the necessary and suf-

ficient conditions for robust sorting. These conditions were first derived by Eeckhout

43This result follows from firms’ SOC: with bilateral meetings, �µµ = 0; the right-hand side of (16)
is therefore zero and never satisfied for an interior ⇣.

44The superscript refers to Eeckhout and Kircher (2010a), who first analyzed the bilateral case.
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and Kircher (2010a) in a framework with a continuum of worker types; we establish

that the same conditions arise with two types.

Proposition 8 (Eeckhout and Kircher, 2010a). Suppose meetings are bilateral, i.e.

�(µ,�) = m(�)µ/�. The equilibrium then exhibits robust PAC/PAM if (resp. only if)

⇢ is strictly (resp. weakly) larger than a
c = a

m = a
EK. In contrast, the equilibrium

exhibits robust NAC/NAM if (resp. only if) ⇢ is strictly (resp. weakly) smaller than

a
c = a

m = a
EK.

For our benchmark technology with � = 0, we have a
EK(�) = 1/2 for any �.

Proposition 8 therefore reveals that Proposition 3 gives the right sorting conditions

for this special case (by continuity), even though Proposition 3 was derived under the

assumption that the meeting technology is not bilateral (� > 0) to avoid the technical

issue of division by �µµ(µ,�) = 0.45

Proof. We focus on PAC/PAM; the logic for NAC/NAM is similar. Consider first the

su�cient condition. We need to show that equation (64) implies (65) when ⇢ > a
EK .

To see this, take logs to rewrite equation (64) as

log f
�
x2, y

EK
�
� log f

�
x1, y

EK
�
= log (m(�0)� �0m

0(�0))� log (m(�1)� �1m
0(�1)) ,

which, by the fundamental theorem of calculus, can be rewritten as

Z x2

x1

fx(x, yEK)

f(x, yEK)
dx =

Z �0

�1

��m
00(�)

m(�)� �m0(�)
d�. (66)

By the definition of ⇢, we have fxy(x,yEK)
fy(x,yEK) � ⇢

fx(x,yEK)
f(x,yEK) � 0. Similarly, by the definition

of aEK , we have 0 �
m0(�)
m(�) � a

EK ��m00(�)
m(�)��m0(�) , where the right-hand side is strictly

greater than m0(�)
m(�) � ⇢

��m00(�)
m(�)��m0(�) , because we assume ⇢ > a

EK . We thus have

Z x2

x1

fxy(x, yEK)

fy(x, yEK)
� ⇢

fx(x, yEK)

f(x, yEK)
dx >

Z �0

�1

m
0(�)

m(�)
� ⇢

��m
00(�)

m(�)� �m0(�)
d�,

45There is a subtlety: in Proposition 3, when � > 0, the necessary and su�cient conditions exactly
coincide, because the supremum and the infimum are never attained as maximum and minimum,
respectively. However, when � = 0, we have ac(⇣,�) = ac(⇣,�) = aEK(�) = 1/2 for any ⇣,�,
making firms indi↵erent between low- and high-type workers when f is CES with ⇢ = 1/2, as can
been seen from (38). This indi↵erence makes it necessary to distinguish between necessary and
su�cient conditions for bilateral technologies.

54



because the integrand on the left-hand side is weakly positive, and integrand on the

right-hand side is strictly negative. Combing the above inequality with (66) yields

Z x2

x1

fxy(x, y)

fy(x, y)
dx >

Z �0

�1

m
0(�)

m(�)
d�, (67)

which is the same as (65), by the same logic as what gave us (66) from (64).

Next, consider the necessary condition.46 Towards a contradiction, suppose that

⇢ < a
EK . Then there exist an x

⇤
, y

⇤ and �
⇤ such that ⇢(x⇤

, y
⇤) < a

EK(�⇤), and

by continuity there exists some ✏ > 0 such that ⇢(x, y⇤) < a
EK(�) holds for all x

and � with |x � x
⇤
|, |� � �

⇤
| < ✏. To derive the contradiction, we then construct an

endowment of agents such that NAC/NAM holds globally (i.e. PAC/PAM fails).

Step 1: Set y
EK = y

⇤; by continuity, we can find some �x,�� < ✏ such that

x1 = x
⇤
��x, x2 = x

⇤ +�x, �0 = �
⇤ +��, �1 = �

⇤
��� and equation (64) holds.

Step 2: Set the market utilities U1 = m
0(�0)f(x1, y

EK) and U2 = m
0(�1)f(x2, y

EK).

Step 3: Define ⇡i(y), i = 1, 2, as the maximum expected profit by attracting

workers of type xi only. That is, ⇡i(y) = max��0 m(�)f(xi, y) � �Ui, where Ui is

given by Step 2. By construction, we have then ⇡1(yEK) = ⇡2(yEK), which then

implies that ⇡0
1(y

EK) = m(�0)f(x1, y
EK) > m(�1)f(x2, y

EK) = ⇡
0
2(y

EK) by the same

logic that equation (64) implies (65), except that now we reverse all the inequalities

and only require that ⇢(x, yEk) < a
EK(�) for x1  x  x2 and �1  �  �0.

Hence, by continuity, we can find a �y small enough such that ⇡1(y) < ⇡2(y) for

y 2
⇥
y
EK

��y, y
EK
�
and ⇡1(y) > ⇡2(y) for y 2

�
y
EK

, y
EK +�y

⇤
.

Step 4: Choose any firm type distribution J(y) on [yEK
��y, y

EK +�y]. When

y > y
EK , the demand of labor is given by the FOC m

0(�)f(x2, y) = U2, and when

y < y
EK , the demand of labor is given by the FOC m

0(�)f(x1, y) = U1.

Step 5: Set the measure of workers (`1, `2) equal to firms’ demand of labor, which

then ensures that U1 and U2 are indeed the equilibrium market utilities of workers.

B.8 Proof of Lemma 10

The desired expression for ac follows readily from equations (24) and (35). To derive

the expression for a
m, note that �(µ,�) = m(µ) implies that �µ(µ,�) = m

0(µ) and

46A proof of necessity is required because Proposition 3 restricts attention to the case in which
�(µ,�) is strictly concave in µ, implying that the meeting technology is not bilateral.
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h(⇣,�) = m(⇣�)/m(�). Therefore, the last factor in (25) can be rewritten as

1�
@�µ/@⇣

@�µ/@�

@h/@�

@h/@⇣
= 1�

�m
00(⇣�)

⇣m00(⇣�)

⇣m0(⇣�)m(�)�m(⇣�)m0(�)
m(�)2

�m0(⇣�)/m(�)
=

m(⇣�)m0(�)

⇣m0(⇣�)m(�)
=

"0(�)

"0(⇣�)
.

Note that ac(1,�) = a
m(1,�) = 1 which implies that ac, am � 1.

Next, consider a
c and a

m. Since m(µ) is strictly concave and strictly increas-

ing, "0(µ) is strictly positive, and "1(µ) is strictly negative when µ > 0. Hence,

a
c(⇣,�) and a

m(⇣,�) are always nonnegative. By L’Hopital’s rule and m
0(0) > 0,

we have limµ!0 "1(µ) = limµ!0 µm
00(µ)/m0(µ) = 0, where, as we argued in foot-

note 38, limµ!0 µm
00(µ) = 0 for invariant technologies. Similarly, limµ!0 "0(µ) =

limµ!0 µm
0(µ)/m(µ) = limµ!0 1 + µm

00(µ)/m0(µ) = 1. Thus, lim⇣!0 a
c(⇣,�) =

lim⇣!0 "1(�⇣)/"1(�) = 0, and lim⇣!0 a
m(⇣,�) = lim⇣!0 "1(�⇣)/"1(�) · "0(�)/"0(�⇣) =

0. Hence, ac = a
m = 0.

B.9 Proof of Proposition 5

The necessary conditions directly follows from Proposition 3, as its proof is valid for

any non-bilateral technology (i.e. � is strictly concave in µ). Hence, we only need to

prove su�ciency. As mentioned in the main text, when the technology is invariant,

the firms’ problem is strictly concave so that the solution is always unique. For

PAC/PAM, we therefore only need to verify (29), which now reduces to

f
1�fy

f 1
y�f

� a
i
. (68)

where we have used the fact that ��(µ,�) = 0 and hence �µ� = ��� = 0.

Note that ⇢ � a
i by assumption. Further, ai � 1, by Lemma 10. Therefore,

f
1�fy

f 1
y�f

�
(1 + (y))⇢ � 1

(y)
� ⇢ � a

i
� a

i
,

where the first inequality is because of (2), and the second inequality follows from

part i) of Lemma 12.

Next, consider NAC/NAM, where we have assumed that ⇢  0 = a
c = a

m (see
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Lemma 10). Again by (2), we have

f
1�fy

f 1
y�f


(1 + (y))⇢ � 1

(y)
 0 = a

i
 a

i
.

B.10 Invariant Technologies with N Worker Types

Our analysis of invariant technologies can easily be extended to the case in which

there are N > 2 worker types, i.e. x1 < x2 < · · · < xN . To do so, define µi as the

queue length of workers with type xi or higher, for i = 1, 2, . . . , N . That is, the queue

length of workers of type xi is µi � µi+1, with the convention that µN+1 = 0, and the

total queue length is µ1.

Consider then a firm of type y that faces a queue (µ1, µ2, . . . , µN). With proba-

bility m(µ1), the firm meets at least one worker, which generates a surplus of at least

f(x1, y); with probability m(µ2) the firm meets at least one worker with a type higher

than or equal to x2, which generates an additional surplus of at least f(x2, y)�f(x1, y),

and so on. Using the convention f(x0, y) = 0, expected surplus therefore equals

S(µ1, . . . , µN , y) =
NX

i=1

m(µi)[f(xi, y)� f(xi�1, y)], (69)

which generalizes equation (8) and is strictly concave in (µ1, . . . , µN).

From equation (69), we can proceed as before. Adding more workers of type xi

increases µ1, . . . , µi simultaneously, which implies that the marginal contribution to

surplus of such workers is
Pi

k=1 m
0(µk)[f(xk, y)�f(xk�1, y)]. Since the firm’s problem

is strictly concave in (µ1, . . . , µN), the optimal queue is unique and is denoted by

(µ1(y), . . . , µN(y)). Assuming an interior solution to simplify exposition, µi(y) is

determined by the FOC m
0(µi(y))[f(xi, y) � f(xi�1, y)] = Ui � Ui�1, where Ui is the

market utility of workers of type xi, with the convention U0 = 0.

Defining ⇣i(y) = µi(y)/µ1(y) and �(y) = µ1(y), di↵erentiation of this FOC along

the equilibrium path yields

�
m

00(⇣i(y)�(y))

m0(⇣i(y)�(y))
(⇣ 0i(y)�(y) + ⇣i(y)�

0(y)) =
fy(xi, y)� fy(xi�1, y)

f(xi, y)� f(xi�1, y)
,
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which replicates (26) for the case of invariant technologies. Setting i = 1 and using

the fact that ⇣1(y) = 1, the above equation implies

�
m

00(�(y))

m0(�(y))
�
0(y) =

fy(x1, y)

f(x1, y)
,

which replicates (27). Combing the above two equations yields

m00(⇣i(y)�(y))
m0(⇣i(y)�(y))

(⇣ 0i(y)�(y) + ⇣i(y)�0(y))
m00(�(y))
m0(�(y)) �

0(y)
=

fy(xi, y)� fy(xi�1, y)

f(xi, y)� f(xi�1, y)

f(x1, y)

fy(x1, y)
,

which replicates (28). Then, by Lemma 7, the condition for PAC/PAM is

f
1

f 1
y

fy(xi, y)� fy(xi�1, y)

f(xi, y)� f(xi�1, y)
� a

i (⇣i(y),�(y)) . (70)

where i = c for PAC and i = m for PAM. From Proposition 5 (the case of N = 2),

we have that ⇢ � a
i is necessary, now we show that this is also su�cient for any N .

Since f(x, y) is log-supermodular, we have f(x1, y)/fy(x1, y) � f(xi�1, y)/fy(xi�1, y).

Therefore, we only need to show that

f(xi�1, y)

fy(xi�1, y)

fy(xi, y)� fy(xi�1, y)

f(xi, y)� f(xi�1, y)
� a

i (⇣i(y),�(y)) ,

which is a replication of equation (68). Hence, by the same argument as in the proof

of Proposition 5, Proposition 5 and Corollary 2 continue to hold for general N .

B.11 Proof of Proposition 6

First, we consider the unconditional probability that an applicant generates a positive

signal ex2. The probability of this event equals P(ex2) =
µ
� +

��µ
� (1� ⌧), and the queue

length of such applicants is e� = �P(ex2) = µ + (� � µ)(1 � ⌧). Given a positive

signal (ex2), the probability that an applicant is of high type (x2) is P(x2 | ex2) =

P(x2)P(ex2 | x2)/P(ex2) = µ/e�, where the first equality is simply Bayes’ rule.

Next, we consider the probability that the firm interviews at least one high-type

worker, �(µ,�). For this, we can ignore the existence of applicants with negative

signals; they are low-type workers for sure and do not a↵ect the meeting process

between firms and workers with positive signals. By equation (7), the probability
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that a firm interviews someone from the queue µ of high-type applicants, given a

queue e� of applicants with positive signals, is �(µ,�) = µ/(1+ �µ+ (1� �)e�), which
yields the desired result after substitution of e�.

B.12 Proof of Lemma 11

By L’Hospital’s Rule, lim!0 ⌦() = lim!0
1
2 +

1p
+

p
1+

⇣
1

2
p
 + 1

2
p
1+

⌘
(1+) = 1.

In contrast, when  ! 1, we have  ⇡ 1 +  and lim!1 ⌦() = lim!1
1
2 +

ln(
p
+

p
)

ln() = 1.

Next, we prove that ⌦() is strictly decreasing. By direct computation,

⌦0() =
ln(1 + )� 2

p 
1+ ln(

p
+

p
1 + )

4
p
(1 + ) ln(1 + )

.

The derivative of the numerator above is � ln(
p
+

p
1 + )

q
1+
 (1 + )�2

< 0. At

 = 0, the numerator is zero, which implies that it is strictly negative and hence

⌦0() < 0 when  > 0.

B.13 Proof of Proposition 7

Our proof consists of three parts. First, we provide the details regarding a firm’s

optimal choice of � that we omitted from the main text. Subsequently, we move to

the analysis of NAC/NAM. The final part concerns PAC/PAM.

B.13.1 Individual Firm’s Problem

Consider a firm of type y which thinks about choosing � = 1. As we illustrate in

Figure 2, there are four possibilities regarding the firm’s optimal applicant pool:

(i) No applicants. If f(x1, y)  U1 and f(x2, y)  U2, then the firm will not attract

any applicants, such that ⇡(y) = 0.

(ii) Only low-type applicants. If f(x1, y) > U1 and f(x2, y)�f(x1, y)  U2�U1, the

firm will attract low-type workers, but not high-type workers as their marginal

product is less than their marginal cost; in this case, ⇡(y) = ⇡1(y).

(iii) Only high-type applicants. If f(x2, y) > U2 and f(x2, y)/f(x1, y) � U2/U1, the

firm will attract only high-type workers since their relative productivity is higher

than their relative cost; in this case, ⇡(y) = ⇡2(y).

(iv) Both types of applicants. If f(x2, y)�f(x1, y) > U2�U1 and f(x2, y)/f(x1, y) <
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Figure 2: Optimal applicant pool for a firm, conditional on � = 1.

U2/U1, then the firm strictly prefers a mix of both types of workers in their

application pool. By the FOCs, the optimal queue is given by µ =
p
�f/�U�1

and � =
p

f 1/U1 � 1. In this case, ⇡(y) is given by (40).

Clearly, a necessary condition for � = 1 to yield higher profits than � = 0 is that

the firm attracts both types of applicants. In what follows, we will therefore focus on

this case, which occurs when

⇡(y)� c > max{⇡1(y), ⇡2(y)} () �f > �U and
f(x2, y)

f(x1, y)
<

U2

U1
. (71)

As the red dashed line in Figure 2 shows, the region described by (71) is divided into

two parts by the curve ⇡1(y) = ⇡2(y), or equivalently

p
f 2 �

p
f 1 =

p
U2 �

p
U1. (72)

We therefore have to distinguish between two cases when calculating the di↵erence in

profits between � = 0 and � = 1 in this region, i.e. �⇡(y) ⌘ ⇡(y)�max{⇡1(y), ⇡2(y)}.

The following lemma formalizes this.

Lemma 15. If a firm is indi↵erent between attracting low- and high-type workers

conditional on � = 0, i.e. ⇡1(y) = ⇡2(y) or equivalently (72) holds, then this firm

attracts both types of workers conditional on � = 1, i.e. (71) also holds. In the region
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characterized by (71), the di↵erence in profits between � = 1 and � = 0 equals

�⇡(y) =

8
><

>:

⇣p
�f �

p

�U

⌘2
if ⇡1(y) � ⇡2(y),

2
⇣p

f 2U2 �

p
f 1U1 �

p
�f�U

⌘
if ⇡1(y)  ⇡2(y).

(73a)

(73b)

Proof. Equation (72) can be rewritten as
p
f 2/f 1 � 1 =

p
U1/f

1(
p

U2/U1 � 1).

Since U1/f
1
< 1, it follows that

p
U2/U1 � 1 >

p
f 2/f 1 � 1, and thus U2/U1 >

f
2
/f

1. Similarly, (72) can also be rewritten as (f 2
� f

1)/(
p
f 2 +

p
f 1) = (U2 �

U1)/(
p
U2 +

p
U1). Because f

1
> U1 and f

2
> U2, we have �f > �U. Hence, (71)

holds. Equation (73) then follows from substituting the relevant version of (38) into

�⇡(y) = ⇡(y)�max{⇡1(y), ⇡2(y)}.

The characterization of �⇡(y) completes the analysis of the firm’s choice problem

given by (37): the firm’s optimal � is 1 if�⇡(y) > c, 0 if�⇡(y) < c, and indeterminate

in the knife-edge case �⇡(y) = c. If the optimal � is 1, then the optimal (µ,�) must

be interior, and given by µ =
p
�f/�U �1 and � =

p
f 1/U1�1. When the optimal

� is 0, then the firm will attract either only low-type or only high-type workers,

depending on whether
p
f 2�

p
f 1 is larger than

p
U2�

p
U1, as discussed after (38).

B.13.2 The Analysis of NAC/NAM

As mentioned in the main text, necessity of submodularity of f(x, y) for NAC/NAM

follows from the special case c = 0 (see Proposition 4). Next, we show that strict

submodularity of f(x, y) is su�cient for NAC/NAM. From the discussion after equa-

tion (38), it follows that when f(x, y) is strictly submodular, and thus strictly square-

root submodular, there exists a unique y
EK which solves (72). Furthermore, ⇡2(y) >

⇡1(y) for firms with y < y
EK , and vice versa.

Since f is strictly submodular, both f
2
�f

1 and f
2
/f

1 are strictly decreasing in y.

The first part of Lemma 15 states that yEK must belong to the region characterized

by (71). There exists at most one y
0
< y

EK such that f(x2, y
0)/f(x1, y

0) = U2/U1

(otherwise set y0 = y), and at most one y
00
> y

EK such that f(x2, y
00) � f(x1, y

00) =

U2 � U1 (otherwise set y00 = y). The region characterized by (71) is thus y 2 (y0, y00).

The following Lemma establishes that �⇡(y) is single-peaked at y = y
EK .

Lemma 16. Suppose that f(x, y) is strictly submodular. In the region characterized

by (71), �⇡(y) is strictly increasing in y for y  y
EK and strictly decreasing in y for
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y � y
EK.

Proof. For submodular f , ⇡2(y) > ⇡1(y) if y < y
EK , and vice versa. As we remarked

before, the region characterized by (71) is (y0, y00), which contains yEK . Hence,

�⇡0(y) =

8
>>>>><

>>>>>:

 
1�

p
�U

p
�f

!
�fy if y > y

EK
,

�

 s
�U

�f
�

s
U2

f 2

!
f
2
y +

 s
�U

�f
�

s
U1

f 1

!
f
1
y if y < y

EK
.

(74a)

(74b)

To establish the sign of (74a), note that �fy = f
2
y � f

1
y < 0 when f is strictly

submodular; hence, �⇡0(y) < 0 for y > y
EK . To establish the sign of (74b), note that

f
2
/f

1
< U2/U1 is equivalent to �U/�f > U1/f

1 or �U/�f > U2/f
2. The coe�cient

of f 2
y in (74b) is therefore negative. Since f is submodular, f 2

y  f
1
y , and we have

�⇡0(y) � �f
1
y

 s
�U

�f
�

s
U2

f 2

!
+ f

1
y

 s
�U

�f
�

s
U1

f 1

!
= f

1
y (
p
U2/f

2 �

p
U1/f

1),

where the right-hand side is strictly positive because U2/U1 > f
2
/f

1. Hence,�⇡0(y) >

0 for y < y
EK , i.e. �⇡(y) is strictly increasing in y for y  y

EK .

This result implies that firms with type yEK have the strongest incentive to screen.

If all firms choose � = 1 in equilibrium, then su�ciency follows from Proposition 4;

if all firms choose � = 0 in equilibrium, then su�ciency follows from Proposition 8 or

Eeckhout and Kircher (2010a). In the remaining case, where the equilibrium features

both firms choosing � = 1 and firms choosing � = 0, we must have �⇡(yEK) > c

(otherwise all firms will choose � = 0). There exist then two firm types y
s and y

s

with y
0
 y

s
< y

EK
< y

s
 y

00, where firms of type y
s and y

s are indi↵erent between

choosing � = 0 and 1, i.e. �⇡(ys) = �⇡(ys) = c. Firms with y < y
s will choose

� = 0 and attract only high-type workers; firms with y 2 (ys, ys) will choose � = 1

and attract both types of workers; finally, firms with y > y
s will choose � = 0 and

attract only low-type workers. Since all firm types y between y
s and y

s choose � = 1,

submodularity implies that NAC/NAM holds within this interval. Combining the

above results implies that NAC/NAM holds globally.

Note that we can not weaken the requirement of strict submodularity to mere

submodularity for the su�cient condition. To see this, set f(x, y) = x + y and
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initially set c large enough so that all firms choose � = 0. Then for y � y
EK , �⇡(y)

is a constant by equation (73a). If we set c = �⇡(yEK), all firms with y � y
EK are

indi↵erent between choosing � = 0 with low-type applicants and � = 1 with both

types of applicants. This indeterminacy violates NAC/NAM.

B.13.3 The Analysis of PAC/PAM

First, with a slight abuse of notation, given x1 and x2, we define ⇢(x1, x2, y) as the

solution to

fy(x2, y)

fy(x1, y)
=

✓
f(x2, y)

f(x1, y)

◆⇢(x1,x2,y)

. (75)

By Lemma 1, ⇢(x1, x2, y) 2 [⇢, ⇢]. Note that ⇢(x1, x2, y) is the discrete version of

⇢(x, y) defined in (1). We have ⇢(x1, x2, y) ! ⇢(x, y) when x1, x2 ! x.

We now provide a claim which is stronger than the statements in Proposition 7.

Claim. Consider a log-supermodular function f . Given an endowment of agents and

a screening cost c, PAC/PAM holds in equilibrium as long as, for each y,

⇢(x1, x2, y) � ⌦((y)). (76)

In contrast, given x1, x2 and J(y), if for some y
⇤
2 (y, y), we have

⇢(x1, x2, y
⇤) < ⌦((y⇤)), (77)

then we can find (`1, `2) and c such that PAC/PAM fails in equilibrium.

Since ⌦(·) is strictly decreasing and with log-supermodular f , (y) is increasing in

y), the right-hand side of (76) reaches its maximum at y = y. Also since ⇢(x1, x2, y) �

⇢, the su�cient condition (42) in Proposition 7 then implies (76). On the other hand,

given any log-supermodular function, whenever x1, x2 ! x, then (y) ! 0 and

⌦((y)) ! 1, and (77) holds for all y⇤ 2 [y, y], which, by the above claim, implies

that we can find (`1, `2) and c such that PAC/PAM fails in equilibrium.

Note that for a CES production function, (76) reduces to ⇢ � ⌦((y)) and and

(77) reduces to ⇢ < ⌦((y)). Thus, although the su�cient condition (42) is slightly

weaker than (76), it is still sharp in the special case of CES production functions.

Before we move to the detailed proof, we first give a brief sketch. Under the
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su�cient condition (76), �⇡(y) is single-peaked at y = y
EK , so PAC/PAM follows

from the same logic that was used for the case of NAC/NAM. In contrast, if (77)

holds, then we can find (`1, `2) and a large c such that all firms choose � = 0 in

equilibrium, and �⇡(y) reaches its maximum at some point ey > y
EK (note that the

maximum is between 0 and c here). Now decrease c gradually till firms near ey find

it optimal to choose � = 1 and screen ex-post while firms with types slightly above

y
EK will continue choosing � = 0 and accordingly attract high-type applicants only.

PAC/PAM then fails in this case. Below, we prove this claim formally.

Similar to the analysis of NAC/NAM, since f(x, y) is log-supermodular, and

therefore strictly square-root supermodular, there exists a unique y
EK which solves

(72). The first part of Lemma 15 states that y
EK must belong to the region char-

acterized by (71). Furthermore, f
2
� f

1 is strictly increasing so that there ex-

ists at most one y
0
< y

EK such that f
2
� f

1 = U2 � U1 (otherwise set y
0 = y).

Since we only assume weak log-supermodularity, f
2
/f

1 is weakly increasing. Set

y
00 = min{y |f

2
/f

1
� U2/U1} (if this set is empty, then set y00 = y). The region char-

acterized by (71) is then y 2 (y0, y00). The following Lemma establishes that under

the su�cient condition (76), �⇡(y) is single-peaked at y = y
EK .

Lemma 17. Suppose that f(x, y) is log-supermodular. In the region characterized by

(71), �⇡(y) is strictly increasing in y for y  y
EK, and if condition (76) holds for

each y 2 (y, y), then it is strictly decreasing in y for y � y
EK.

Proof. If y 2 (y0, yEK ], then �⇡(y) is given by (73a) and its derivative is given

by (74a), so it is strictly increasing in y since �fy > 0. If y 2 [yEK
, y

00), then �⇡(y)

is given by (73b) and its derivative is now given by (74b) and can be rewritten as

�⇡0(y) = f
1
y

s
�U

(y)f 1

"
�(1 + (y))⇢(y)

 
1�

s
(y)

1 + (y)

r
U2

�U

!
+ 1�

s
(y)

�U/U1

#
,

where, to simplify notation, we shorten ⇢(x1, x2, y) as ⇢(y), and we used the identities

f
2
/f

1 = 1 + (y) and f
2
y /f

1
y = (1 + (y))⇢(y).

Furthermore, define

�(y) ⌘

s
(y)

�U/U1
, (78)

64



which implies
p

U2/�U =
p

((y) + �(y)2)/(y), and �⇡0(y) can be rewritten as

�⇡0(y) = f
1
y

s
�U

(y)f 1

"
(1 + (y))⇢(y)

 s
(y) + �(y)2

1 + (y)
� 1

!
+ 1� �(y)

#

= f
1
y

s
�U

(y)f 1

h
(1 + (y))⇢(y)�

1
2

p
(y) + �(y)2 �

�
(1 + (y))⇢(y) � 1 + �(y)

�i

= f
1
y

s
�U

(y)f 1

(1 + (y))2⇢(y)�1 ((y) + �(y)2)�
�
(1 + (y))⇢(y) � 1 + �(y)

�2

(1 + (y))⇢(y)�
1
2

p
(y) + �(y)2 + ((1 + (y))⇢(y) � 1 + �(y))

.

Thus, �⇡0(y) has the same sign as the numerator of the last factor in the last line.

Single out the numerator and define

S(�,, ⇢) = (1 + )2⇢�1
�
+ �

2
�
� ((1 + )⇢ � 1 + �)2 , (79)

which is a quadratic function of � with a strictly positive second-order coe�cient since

we assume ⇢ � 1 (log-supermodularity). Note that S(1,, ⇢) = 0 and @S(�,,⇢)
@�

��
�=1

=

2(1 + )⇢((1 + )⇢�1
� 1) � 0. Therefore, if S(0,, ⇢)  0, then S(�,, ⇢) < 0 for all

� 2 (0, 1). Note that S(0,, ⇢) =  (1 + )2⇢�1
� ((1 + )⇢ � 1)2 , Thus S(0,, ⇢)  0

if and only if
p 

1+(1 + )⇢  (1 + )⇢ � 1, or equivalently ⇢ � ⌦().

If for each y 2 (y, y), we have ⇢(y) � ⌦((y)), then by the above argument,

S(�(y),(y), ⇢(y)) < 0 and hence �⇡0(y) < 0 for y 2 [yEK
, y

00).

Similar to the case of NAC/NAM, we only need to consider the case where the

equilibrium features both firms choosing � = 1 and firms choosing � = 0. Then there

exist two firm types y
s and y

s that are indi↵erent between choosing � = 0 and 1,

where y0  y
s
< y

EK
< y

s
 y

00. Firms with y < y
s will choose � = 0 and attract only

low-type workers; firms with y 2 (ys, ys) will choose � = 1 and attract both types

of workers; finally, firms with y > y
s will choose � = 0 and attract only high-type

workers. Since all firms of y between y
s and y

s choose � = 1, log-supermodularity

implies that PAC/PAM holds within this interval. Combining the above results then

implies that PAC/PAM holds globally.

For the second part of the claim, we first prove the following. Given a log-

supermodular function f(x, y) and an endowment of agents, a necessary condition

for PAC/PAM to hold for all c is that �⇡0
+(y

EK)  0 when c is su�ciently large (for

example, c � f(x2, y)) so that all firms choose � = 0, where �⇡0
+(y

EK) is the right
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derivative of �⇡(y) at point yEK .

Suppose otherwise that �⇡0
+(y

EK) is strictly positive; the maximum value of

�⇡(y) must then be reached at some point ey > y
EK , since �⇡(y) is always strictly

increasing when y 2 (y0, yEK) (see Lemma 17 ). Now define ec = �⇡(ey) and gradually

decrease it from f(x2, y) to values around ec. What is the impact of this change on

the sorting pattern? As long as c � ec, no firm is willing to invest in screening, so the

equilibrium allocation remains the same. When c is slightly below ec, then firms with

types su�ciently close to ey will choose � = 1. Note that the equilibrium market util-

ities U1 and U2 will change slightly, so that yEK also changes only slightly. As before,

firms with types slightly above y
EK will therefore choose � = 0 and hire high-type

workers only, while firms with types su�ciently close to ey will attract both types of

workers. Hence, PAC/PAM fails to hold when c is slightly below ec.
Below, we complete the proof by showing that for any log-supermodular function

f(x, y) and (x1, x2, J(y)), if (77) holds for some y
⇤
2 (y, y), then we can choose

(`1, `2) such that �⇡0
+(y

EK) > 0 when c is su�ciently large that all firms choose

� = 0. The idea of construction is similar to the counterexample for the necessity

part of Proposition 8 (the bilateral case).

Step 1: Since ⇢(y⇤) < ⌦((y⇤)), we have S (0,(y⇤), ⇢(y⇤)) > 0, where S is defined

in equation (79). Thus, by continuity, we can find a �
⇤ small enough such that

S(�⇤,(y⇤), ⇢(y⇤)) > 0. Next, we construct (U1, U2) from the following two equations,

p
f(x2, y

⇤)�
p
f(x1, y

⇤) =
p
U2 �

p
U1

�
⇤ =

s
(f(x2, y

⇤)� f(x1, y
⇤))/f(x1, y

⇤)

(U2 � U1)/U1
.

These equations are reminiscent of (72) and (78), respectively. The main di↵erence is

that there we considered the market utilities as known and solved for yEK and �(y);

here we treat y⇤ and �⇤ as known and solve for market utilities instead. Denote the

unique solution by (U⇤
1 , U

⇤
2 ).

Step 2: Given (U⇤
1 , U

⇤
2 ), y

⇤ is then the firm type that corresponds to y
EK de-

fined before. Since f is log-supermodular and hence strictly square-root supermod-

ular, firms with types y > y
⇤ will attract only high-type applicants, and firms

with types y < y
⇤ will attract only low-type applicants. The firms’ problem is

max� m(�)f(x1, y) � �U
⇤
1 for y  y

⇤, and max� m(�)f(x2, y) � �U
⇤
2 for y � y

⇤.
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Denote the solution by �(y) for all y.

Step 3: Set `1 =
R y⇤

y �(y)dJ(y) and `2 =
R y

y⇤ �(y)dJ(y). Then, by construction,

(U⇤
1 , U

⇤
2 ) are indeed the market utilities, y

⇤ = y
EK for the particular equilibrium

where all firms choose � = 0, and �⇡0
+(y

EK) > 0 because S(�⇤,(y⇤), ⇢(y⇤)) > 0 and

y
⇤ = y

EK
.
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