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Abstract

We introduce a new and general methodology for analyzing vector autoregressive models with time-varying
coefficient matrices and conditionally heteroskedastic disturbances. Our proposed method is able to jointly
treat a dynamic latent factor model for the autoregressive coefficient matrices and a multivariate dynamic
volatility model for the variance matrix of the disturbance vector. Since the likelihood function is available
in closed-form through a simple extension of the Kalman filter equations, all unknown parameters in this
flexible model can be easily estimated by the method of maximum likelihood. The proposed approach is
appealing since it is simple to implement and computationally fast. Furthermore, it presents an alternative
to Bayesian methods which are regularly employed in the empirical literature. A simulation study shows the
reliability and robustness of the method against potential misspecifications of the volatility in the disturbance
vector. We further provide an empirical illustration in which we analyze possibly time-varying relationships
between U.S. industrial production, inflation, and bond spread. We empirically identify a time-varying
linkage between economic and financial variables which are effectively described by a common dynamic
factor. The impulse response analysis points towards substantial differences in the effects of financial shocks
on output and inflation during crisis and non-crisis periods.
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1 Introduction

The development of dynamic stochastic general equilibrium models to study structural interactions between

economic and financial variables has gained much interest in economic research; Gertler and Kiyotaki (2011)

and Brunnermeier et al. (2013) provide overviews of this extensive literature. In empirical studies, the reduced

form of these relations are typically formulated in terms of a vector autoregressive (VAR) model for a selection

of macroeconomic and financial variables. The VAR model has been introduced in the seminal paper of Sims

(1980). The econometrics of the VAR model has been reviewed, among others, by Stock and Watson (2001).

The VAR analysis has become popular in empirical work due to its convenience in evaluating the potential

impact of shocks by means of analyzing impulse response functions; see, for example, Inoue and Kilian (2013).

Furthermore, in many empirical studies it has been concluded that VAR models form a good basis for obtaining

accurate forecasts; see, for example, Chauvet and Potter (2013) and Clements and Galvão (2013).

The empirical macroeconometric literature has increasingly focused on capturing time-variation in VAR

coefficient matrices, see, for instance, Primiceri (2005), Canova and Ciccarelli (2004), Hubrich and Tetlow

(2015), Prieto et al. (2016), Galvão and Owyang (2018). Furthermore, as argued by Justiniano and Primiceri

(2008), among others, a crucial feature in macroeconomic and financial variables is the presence of volatility

changes. These studies have provided overwhelming evidence of parameter instability in the context of VAR

models. These instabilities may originate from model misspecifications due to the existence of nonlinear rela-

tionships which are not appropriately addressed in reduced form VAR representations of structural interactions

between variables. Also, time-varying features may be implied from structural changes in economic policy

and persistent changes in the volatility of financial and commodity markets. The econometric challenge is to

properly account for this time-variation in parameters of VAR models in order to enhance estimation accuracy

but also to obtain reliable impulse response functions.

Since the seminal article of Primiceri (2005), it has become common practice to use Bayesian Markov

chain Monte Carlo (MCMC) methods for the analysis of time-varying VAR models. In this and related studies,

Gibbs sampling is adopted for repeatedly sampling features of the model: sampling one feature or parameter in

each step of the chain, conditionally on the other features and parameters, until convergence. Since Primiceri

(2005), there is a growing literature on Bayesian treatments of VAR models with stochastically time-varying

parameters, for both autoregressive coefficients and covariances; see, for instance, Canova and Ciccarelli (2004,

2009). It is widely acknowledged that Bayesian methods require computationally intensive algorithms that
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are not necessarily trivial to implement. Eickmeier et al. (2015) and Abbate et al. (2016) consider a factor-

augmented vector autoregressive model with time-varying parameters. Their estimation approaches are more

classical but also somewhat restrictive: they rely on equation by equation methods and variance changes are

driven by lagged factors only.

In this study we propose a new and simple approach to VAR modeling with time-varying parameters. We

consider an unobserved factor process to specify the time-variation in the VAR coefficients and a generalised

autoregressive conditionally hetereoskedastic (GARCH) specification for the modeling of volatility in the dis-

turbance vector. An appealing feature of our proposed model is its simplicity in terms of interpretation as well

as implementation. We show that the paramters in the model can be estimated straightforwardly by the method

of maximum likelihood. We show how a closed form expression of the log-likelihood function is obtained by

extending the Kalman filter equations. We also derive impulse response functions that allow us to account for

the time-varying factors and the uncertainty in the estimated factors.

We illustrate the effectiveness and reliability of the method through a simulation study. In particular, the

experiment highlights how the estimation of the unobserved factors is robust against potential mis-specification

of the volatility of the error term. In an empirical application, we study financial-macro linkages in a three-

dimensional VAR for two U.S. macroeconomic variables, industrial production and inflation, and the corporate

bond spread as financial variable. The sample includes monthly data from January 1970 until January 2019.

The time-variation of the VAR coefficients is driven by unobserved factors that have a structural economic

interpretation. Since estimation is likelihood-based, standard model selection criteria such as BIC can be used

to determine the optimal number of factors and the lag order. We find that the spillover strength of financial

shocks to the two macro variables is driven by a common dynamic factor. Additional factors capture time-

variation in the persistence of each variable and the linkage between the two macro variables. Impulse response

analysis shows that the impacts of financial shocks differ substantially depending on whether the economy is

in crisis or not. Furthermore, the financial crisis 2008/09 is found to be different from other crises.

The remainder of the paper is structured as follows. Section 2 introduces the factor VAR model with

conditionally heteroskedastic errors and the estimation approach. Section 3 illustrates how to derive impulse

response functions. Section 4 presents two simulation studies where the reliability of the proposed method is

tested. Section 5 presents the empirical application that describes time-variation in macro-financial linkages.

Section 6 concludes.
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2 Vector Autoregressive Model with Time-Varying Parameters

In our study we consider the vector autoregressive (VAR) model for a time series of N -dimensional vectors

{yt}t∈Z. In particular, we specify the VAR model of order p, as denoted by VAR(p), through the equation

yt = A1yt−1 + . . .+Apyt−p + ut, t ∈ Z,

where Ai, for i = 1, . . . , p, is the N × N matrix of autoregressive coefficients, {ut} is an independent and

identically distributed (iid) sequence of N -dimensional normal random disturbance vectors with mean vector 0

and covariance matrix H . For convenience of exposition, we rewrite the VAR(p) model equation as

yt = ΦYt−1:p + ut, (1)

where Yt−1:p = (y′t−1, . . . , y
′
t−p)

′ is an (Np × 1)-dimensional vector in which the lagged values of yt are

stacked, and where Φ = (A1, . . . , Ap) is theN×Np coefficient matrix containing the corresponding coefficient

matrices for the lags 1, . . . , p. We refer to Hamilton (1994) and Lütkepohl (2005) for a review on the stochastic

properties of the VAR(p) model, the estimation of the autoregressive coefficient matrix Φ and covariance matrix

H , and the forecasting and impulse response analysis for the VAR(p) model.

2.1 Time-varying factor-driven coefficient matrices

We introduce a time-varying autoregressive coefficient matrix in the VAR(p) model specification by having

equation (1) replaced by

yt = ΦtYt−1:p + ut, (2)

where the N × Np matrix Φt has the same dimension as Φ and varies with time-index t. We assume that the

time-variation of Φt relies on an (r × 1)-dimensional vector of unobserved factors ft = (ft,1, . . . , ft,r)
′ as

Φt = Φc + Φf
1ft,1 + · · ·+ Φf

r ft,r, (3)

where N ×Np matrices Φc and Φf
i , for i = 1, . . . , r, are the “factor loading” coefficient matrices and ft,i is a

time-varying scalar (the ith element of vector ft), for i = 1, . . . , r. We specify the unobserved factor as another
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vector autoregressive process which we formulate as

ft+1 = ϕft + ηt, (4)

where ϕ = diag{ϕ1, . . . , ϕr} is a r × r diagonal matrix of autoregressive coefficients ϕ1, . . . , ϕr, and where

{ηt} is an iid sequence of r-dimensional disturbance vectors of normal random variables with mean vector 0

and covariance matrix Ση. We assume that the factor ft is a stationary process and therefore we impose |ϕi| < 1

for i = 1, . . . , r. For identification purposes, we restrict the covariance matrix of ηt to be Ση = Ir−ϕϕ′, where

Ir is an r × r identity matrix. This restriction implies that the r factors in ft are orthogonal and have a unit

unconditional variance, we have Var(ft) = Ir. Furthermore, we assume that the disturbance vector series ut

and ηt are uncorrelated, that is E(ut η
′
s) = 0 for all t, s ∈ Z.

The proposed time-varying VAR process as specified in the equations (2), (3) and (4) can be referred to as

the dynamic factor VAR (DFVAR) model. The model specification is very general. It nests the standard VAR

model by setting r = 0 such that equation (3) reduces to Φt = Φc. On the other hand, by having r = p ×N2

and setting the loading matrices Φf
i , for i = 1, . . . , r, as unique selection matrices for all elements in Φt, each

entry of Φt can be specified as a distinct unobserved autoregressive process. Hence, the general specification

of Primiceri (2005) can be considered in our modeling framework. Many other choices of the loading matrices

allow different entries of Φt to depend on one dynamic factor or on a subset of dynamic factors. For instance,

in the empirical application of Section 5, we specify the time-varying linkage between macro and financial

variables through one common dynamic factor. The specification (3) also allows for the factor-based time-

varying VAR model as suggested in Canova (2007, Section 10.4).

The loading matrices Φf
i , for i = 1, . . . , r, are not typically specified as full matrices of coefficients since

restrictions are needed for identification. Such restristictions are reminiscent of dynamic factor analysis; see,

for example, Stock and Watson (2011). We typically specify the loading matrices Φf
i as selection matrices or as

sparse and parsimoniously designed matrices. In the remainder of this section, we discuss stability conditions

of the DFVAR model and the estimation of parameters. In the next section, the model is extended to include

conditional heteroskedasticity in the disturbance vector ut.
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2.2 Stationarity conditions for the DFVAR process

We establish the stationarity conditions for the DFVAR model. For this purpose, we define the stochastic

Np×Np matrix

Φ̃t =

 Φt

IN(p−1) 000N(p−1),N

 , (5)

where Ik is the k × k identity matrix, for any k ∈ N, and 000k,m is the k ×m matrix of zeros, for any m ∈ N.

Furthermore, we denote the matrix norm operator by ‖ · ‖. The theorem below delivers sufficient conditions for

the existence of a strictly stationary solution for the DFVAR model.

Theorem 2.1. Let |ϕi| < 1, for i = 1, . . . , r, and let the following Lyapunov coefficient be strictly negative

γm =
1

m
E log ‖Φ̃t−1Φ̃t−2 · · · Φ̃t−m‖ < 0,

for somem ∈ N. Then, the DFVAR process as specified by equations (2) and (3), with time-index t ∈ Z, admits

a unique stationary solution.

Proof. We consider the following Markov representation of the DFVAR process

Yt:(p−1) = Φ̃tYt−1:p + ũt,

where ũt = (u′t,0001,N(p−1))
′. Then the result follows immediately by an application of Theorem 1.1 of Bougerol

and Picard (1992). In particular, we note that {ft}t∈Z is a stationary process given the assumption that |ϕi| < 1,

for i = 1, . . . , r. Hence, we have that {Φ̃t}t∈Z is a stationary sequence of matrices. Furthermore, it is immediate

to see that E‖Φ̃t‖ < ∞ since each element of the matrix Φ̃t can be expressed as a linear combination of the

Gaussian process ft, which has finite moments of any order. Therefore, given that γm < 0 for some m ∈ N,

we conclude that all the assumptions of Theorem 1.1 of Bougerol and Picard (1992) are satisfied.

We can verify the stationarity condition of γm < 0 in practical settings through simulations. We start by

choosing a large value form. Then, we replace the expectation E in Theorem 2.1 with the sample average, over

a sufficient number of Monte Carlo draws for yt from the DFVAR model. The time series length is typically

set to a relatively large value.
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2.3 Estimation of the parameters in the DFVAR model

Assume that we observe a sample of size T ∈ N, we have {yt}Tt=1, and our aim is to estimate the parameters

in the DFVAR model. The parameter vector is denoted by ψ and collects all parameters in the matrices Φc,

Φf
1 , . . . ,Φ

f
r , H , ϕ and Ση. The parameter vector ψ can be estimated by Maximum Likelihood (ML) straight-

forwardly by state space methods. The first step is to express the model in state space form. The Kalman filter

equations can then be employed to obtain the likelihood function via the prediction error decomposition.

We define ỹt = yt − ΦcYt−1:p and rewrite the DFVAR model equation for ỹt as

ỹt =
[
Φf
1ft,1 + . . .+ Φf

r ft,r

]
Yt−1:p + ut

= Φf
∗ (ft ⊗ INp)Yt−1:p + ut

=
(
Y ′t−1:p ⊗ Φf

∗

)
vec (ft ⊗ INp) + ut

=
(
Y ′t−1:p ⊗ Φf

∗

)
J ft + ut, (6)

where ⊗ denotes the Kronecker matrix product and vec(·) denotes the column vectorization operator, with

N × Npr matrix Φf
∗ =

[
Φf
1 , . . . ,Φ

f
r

]
collecting the loading matrices for the time-varying coefficient matrix

Φt and N2p2r × r selection matrix J as given by

J =


Ir ⊗ e1

...

Ir ⊗ eNp

 ,

where ej , for j = 1, . . . , Np, is the jth column of the identity matrix INp. In the development towards

equation (6), we use the well-known property that vec(ABC) = (C ′ ⊗ A)vec(B), for any appropriate set of

matrices A,B,C; see Magnus and Neudecker (2019, Section 18.11). The matrix J effectively carries out the

vectorization of the matrix ft ⊗ INp. Finally, given the expression in (6), we can obtain the linear Gaussian

state space representation of the DFVAR model. It consists of two equations: the measurement and transition

equations which are given respectively by

ỹt = Ztft + ut, ft+1 = ϕft + ηt, (7)
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withN×r matrix Zt =
(
Y ′t−1:p ⊗ Φf

)
J , vector ft playing the role of the r×1 state vector, r×r time-invariant

transition matrix ϕ, and with the properties for the disturbance vectors ut and ηt as discussed above. We notice

that the system matrix Zt has relatively low dimensions and can be constructed in a computationally fast way

given that matrix J is a selection matrix consisting of zeroes and ones. Furthermore, matrix Zt is constant

conditional on the σ-field generated by past observations Ft−1 = σ(ys, 0 < s ≤ t − 1). Therefore, we can

apply the Kalman filter to derive the conditional mean and variance of ỹt.

The one-step ahead prediction error for the DFVAR model is defined and given by

vt = yt − E(yt|Ft−1;ψ)

= yt − ΦcYt−1:p − E(ỹt|Ft−1;ψ)

= ỹt − ZtE(ft|Ft−1;ψ) = ỹt − Zt at

(8)

where at = E(ft|Ft−1;ψ) for t = p + 1, . . . , T . The actual computation of the prediction error vt can only

start at t = p+1 since only then the data vector Yt−1:p is complete. It follows that the variance of the prediction

error is defined and given by

Ft = Var(ỹt − Zt at|Ft−1;ψ)

= ZtVar(ft − at|Ft−1;ψ) + Var(ut|Ft−1;ψ)

= ZtPtZ
′
t + Var(ut;ψ) = ZtPtZ

′
t +H,

(9)

where Pt = Var(ft|Ft−1;ψ) for t = p + 1, . . . , T . When the model is correctly specified, the sequence

{vp+1, . . . , vT } is serially uncorrelated. For a given vector ψ and t = p + 1, . . . , T , the Kalman filter update

equations for at+1 and Pt+1 are given by

at+1 = ϕat +Ktvt, Pt+1 = ϕPt(ϕ−KtZt)
′ + Ση, (10)

where the Kalman gain matrix is defined as Kt = ϕPtZ
′
tF
−1
t ; see Durbin and Koopman (2012, Section 4.2)

for derivations of the Kalman filter. Given the unconditional properties of ft, we can initialize the Kalman filter

with ap+1 = 0 and Pp+1 = Ir.

The Kalman filter effectively carries out the prediction error decomposition based on the linear Gaussian

state space representation of the DFVAR model. It follows that the conditional log-likelihood function `(ψ)
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can then be computed by

`(ψ) =
T∑

t=p+1

`t(ψ), `t(ψ) = −N
2

log 2π − 1

2
log |Ft| −

1

2
v′t F

−1
t vt, (11)

where | · | denotes the determinant of a matrix. The ML estimator is defined as the maximizer of the log-

likelihood function which can be obtained using standard numerical optimization routines. The gravity of this

estimation challenge depends on the number of parameters in ψ and on how informative the observations are

about ψ. The econometrician can consider different strategies of exploring ways to establish a satisfactory

model specification. In our empirical study in Section 5, we show for a concrete and relevant analysis that

parameter estimation does not cause much concern. We conclude by emphasizing that the computation of the

log-likelihood function `(ψ) in (11), for the DFVAR model with a given ψ, is straightforward, simple and fast.

2.4 Conditional heteroskedastic disturbances: the CH-DFVAR model

In empirical analyses of macroeconomic and financial time series data, it is often concluded that it is crucial

to account for time-varying scales (or variances). To address these concerns in empirical studies, we allow

for conditional heteroskedasticity for the disturbance vector ut in equation (2) of the DFVAR model. For this

purpose we extend the model to include time-variation in the conditional covariance matrix of the disturbance

vector ut. In effect, we replace theN×N covariance matrixH of ut by a conditionally time-varying covariance

matrix Ht. In case we have a univariate model with a single disturbance variance, we could have considered

the generalized autoregressive conditional heteroskedastic (GARCH) model for the time-varying variance; see

Bollerslev (1986). There are various multivariate extensions of the GARCH model available to us, in order

to treat a time-varying covariance matrix. Here, we consider the multivariate GARCH specification of (Engle

and Kroner, 1995) as it is a convenient extension for our purposes and in the context of the DFVAR model. In

particular, this specification allows us to update the covariance matrix Ht by the prediction error and, hence,

within the Kalman filter. Koopman et al. (2010) have considered a similar adjustment for the Kalman filter in

the context of GARCH and a different modeling framework.

The DFVAR model with conditional heteroskedastic disturbances (CH-DFVAR) remains specified as yt =

ΦtYt−1:p + ut but with disturbance vector ut that is assumed to have a time-varying covariance matrix Ht that
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is specified by the dynamic matrix equation

Ht = Ω +BHt−1B
′ +Avt−1v

′
t−1A

′, t = 1, . . . , T, (12)

where N ×N matrix Ω is symmetric and positive-definite, N ×N matrices A and B are coefficient matrices,

and vt = yt−E(yt|Ft−1;ψ) is defined as in equation (8). This specification is proposed by (Engle and Kroner,

1995) and is usually referred to as the BEKK model. The updating equation for Ht is simple and it ensures that

Ht remains a symmetric and positive-definite matrix, for all t = 1, . . . , T . A more parsimonious specification

of the conditional variance is the scalar BEKK model as given by

Ht = Ω + β2Ht−1 + α2vt−1v
′
t−1, t = 1, . . . , T, (13)

where β and α are scalar coefficients. We will consider this scalar BEKK model specification in the simulation

study as well as in the empirical study.

2.5 Estimation of the parameters in CH-DFVAR model

The BEKK model forHt enables us to retain a closed form of the log-likelihood function. Hence, our approach

to parameter estimation remains unaltered. We only require an extension of the Kalman filter to incorporate the

BEKK updating for Ht. The main recursive equations of the Kalman filter, for t = p + 1, . . . , T , only need

minor adjustments. The details are as follows.

1. For time-index t, and for given values of at, Pt and Ht, we compute

vt = ỹt − Ztat, Ft = ZtPtZt +Ht,

as in equations (8) and (9), respectively, but with H replaced Ht.

2. We apply the Kalman updating equations (10) to obtain at+1 and Pt+1.

3. We update the conditional covariance matrix using the scalar BEKK filtering equation

Ht+1 = Ω + β2Ht + α2vtv
′
t.
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The covariance matrix updating is initialized with Hp+1 = Ω / (1 − β2 − α2). The log-likelihood function is

computed as in (11). The parameters for H are replaced by those for Ω, α and β in the parameter vector ψ.

3 Impulse Response Functions

For a given DFVAR model, with the unknown parameters replaced by their ML estimates, we discuss how

to obtain the orthogonalized impulse response function (IRF). The orthogonalized IRF is discussed as early

as in Sims (1980) and further explored in Cooley and LeRoy (1985) and Pagan (1987); the default method

for orthogonalization is the Cholesky decompostion which has been used in influential macroeconomic studies

such as Christiano et al. (1996).

The IRF allows us to assess how a unit shock in the error term at time τ is expected to propagate to the

observed variables over time. Under stationarity conditions, the DFVAR model admits a vector moving average

(VMA) process of an infinity length, that is a VMA(∞). In case of the “future” observation yτ+h, h ∈ N, we

have the representation

yτ+h =
∞∑
i=0

Ψτ−i(h)uτ+h−i,

where Ψτ (h) = IN and Ψτ−i(h) is defined as the N × N matrix containing the submatrix given by the first

N rows and N columns of the Np × Np matrix
∏i
j=1 Φ̃τ+h−j+1 with matrix Φ̃τ being defined in (5). As it

is implied by equation (3) that Φt is a function of ft, matrix Ψτ−i(h) is a function of fτ+h−i+1, . . . , fτ+h for

i = 1, 2, . . .. The orthogonal IRF is based on the Cholesky decomposition of the covariance matrixHτ as given

by Hτ = QτQ
′
τ where Qτ is an N × N lower-triangular matrix, with strictly-positive diagonal values. We

obtain the VMA(∞) representation with orthogonal errors by

yτ+h =
∞∑
i=0

Ψτ−i(h)Qτ+h−iQ
−1
τ+h−iuτ+h−i =

∞∑
i=0

Ψ∗τ−i(h)ετ+h−i,

where Ψ∗τ−i(h) = Ψτ−i(h)Qτ+h−i and ετ+h−i = Q−1τ+h−iuτ+h−i such that the covariance matrix for ετ+h−i

equals the identity matrix IN . It follows that the impact on yτ+h of a unit shock of the k-th element of ετ is

given by
∂yτ+h
∂εk,τ

= Ψ∗τ−h(h)ek, (14)

where ek denotes the k-th column of the identity matrix IN . Equation (14) provides the definition of the
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orthogonal IRF, for a fixed τ and as a function of h ∈ N and k = 1, . . . , N .

In practice, the IRF in equation (14) cannot be used directly since in our DFVAR model the time-varying

coefficient matrices {Ψ∗τ−h(h)}h∈N are subject to the random shocks η1, . . . , ητ+h which is apparent from

equations (3) and (4). Hence we only obtain the IRF by taking the expectation of (14) conditional on the

observed data before the shock occurs Fτ−1, that is

IRFτ (h, k) = E
(
Ψ∗τ−h(h)|Fτ−1

)
ek = E

(
Ψτ−h(h)|Fτ−1

)
Qτek.

In practice, it is not feasible to obtain a closed form expression for the conditional expectation in the above

equation. But it can be computed via Monte Carlo simulation. We first notice that for a given sequence

f τ+h = {f1, . . . , fτ+h} where the ft’s are generated by the DFVAR model, with the unknown parameter

vector being replaced by the corresponding ML estimates, all matrices Ψτ−h(h) can be computed. We have

E
(
Ψτ−h(h)|Fτ−1

)
=

∫
Ψτ−h(h)p(f τ+h|Fτ−1)df τ+h,

where p(f τ+h|Fτ−1) is the conditional density of f τ+h given the observed data before the shock at time

τ . Given that the DFVAR model admits a linear state space representation as in equation (7), and given the

normality of the random disturbance vectors ut and ηt, the conditional density p(f τ+h|Fτ−1) is Gaussian. The

Monte Carlo estimator for the IRF is then simply obtained by

Ê
(
Ψτ−h(h)|Fτ−1

)
= M−1

M∑
i=1

Ψi
τ−h(h), f τ+hi ∼ p(f τ+h|Fτ−1),

where {f τ+h1 , . . . , f τ+hM }, for someM ∈ N, is a series of independent draws from p(f τ+h|Fτ−1), and Ψi
τ−h(h)

is the matrix Ψτ−h(h) that is computed by having f τ+h = f τ+hi . Under standard regularity conditions, the

Monte Carlo estimator converges to the conditional expectation for an increasing M .

As long as the vector autoregressive process is stable, for which the conditions are provided in Theorem

2.1, the impulse response function IRFτ (h, k) converges to zero as h goes to infinity. Hence, the impact of a

shock vanishes over time. This approach of deriving impulse response functions allows us to take into account

the uncertainty of the estimated factor and does not require the estimated coefficient matrix Φt to have spectral

radius smaller than one. In fact, at some given points in time, the time-varying autoregressive coefficient matrix
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Φt can have spectral radius equal to or greater than one, which can occur in periods of high persistence of

shocks. However, this will occur only locally as long as the overall DFVAR process is stationary. Finally, we

can use the quantiles of the distribution of Ψτ−h(h) to derive confidence intervals for the impulse response

function. In practice, this is easily incorporated in the presented Monte Carlo method for estimating the IRF.

4 Monte Carlo Evidence

We have carried out two simulation studies. The detailed descriptions of both studies and their results are

presented. In the first study, we evaluate the small sample properties of the ML estimator of the parameter

vector ψ to verify the overall reliability of our proposed estimation method. In the second study, we verify

how the specification of the conditional variance Ht can effectively capture time-variation in the variance of

the error term and how robust the estimation of the dynamic factor ft is to possible misspecifications of Ht.

4.1 Small sample properties of the maximum likelihood estimator

We investigate the properties of the ML estimator through a simulation experiment. We consider a two-

dimensional CH-DFVAR model with one lag dependence, one factor ft for the time-varying autoregressive

coefficient matrix, and with the time-varying Ht specification given by the scalar BEKK in equation (13); we

have N = 2 and p = r = 1. This basic CH-DFVAR model specification can be given by

yt = Φtyt−1 + ut, Φt = Φc + Φfft, ft = φft−1 + ηt, Ht = Ω + β2Ht−1 + α2vt−1v
′
t−1,

where Var(ut) = Ht and Var(ηt) = 1− φ2, for t = 2, . . . , T . We set the true parameter values as follows

Φc = 0.3I2 + 0.1J2, Φf = 0.2I2, φ = 0.95, Ω = 0.3I2 + 0.2J2, β2 = 0.75, α2 = 0.1,

where J2 is a 2×2 matrix with diagonal elements equal to zero and its off-diagonal element equal to unity. This

specification entails a common factor that determines time-variation in the autoregressive coefficient matrix.

The total number of parameters that we estimate is 12: 4 in Φc, 2 in Φf , 3 in Ω and 3 scalar parameters. The

ML estimation of the parameters is considered for three sample sizes: T = 500, 1000, 2500. This Monte Carlo

experiment consists of 1000 replications of simulating data (based on true parameters) and estimation of the
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parameters by treating the simulated data as the observation data.

We obtain for each parameter a set of 1000 ML estimates based on the 1000 simulated data sets. The

distributions of these ML estimates are reported in Figure 1, for each parameter, and for the three sample

sizes. As the sample size increases, we observe that the distributions of these estimates are collapsing towards

their corresponding true parameter values. It provides some suggestion that our proposed estimation method

provides consistent estimators. Furthermore, the distributions appear to be symmetric and normally shaped for

most parameters, even at the smallest sample size. An exception is the estimate of the autoregressive coefficient

φ for the factor ft: the distribution exhibit some left skewness. This finding is not highly surprising since small

sample bias and left skewness are typical features when estimating autoregressive parameters that are close to

one, leading to a persistent process for ft. Overall, we can conclude that our ML estimation method delivers

reliable parameter estimates.
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Figure 1: Kernel densities for the ML estimates of the twelve parameters, obtained from 1000 Monte Carlo
replications, and for three different sample sizes T = 500, 1000, 2500. The dashed vertical line in each plot
indicates the true parameter value.
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4.2 Accuracy of filtering the conditional heteroskedasticity

We next focus on the accuracy of filtering the conditional heteroskedasticity in the CH-DFVAR model. We

evaluate the performance of the scalar BEKK specification for Ht, as in equation (13), in treating different

forms of time-variation in the variances of the disturbance vector ut. We further assess the robustness of the

signal extraction of ft under the misspecification of the conditional covariance matrix Ht.

To focus on these aims of this second Monte Carlo experiment, we slightly simplify the earlier bivariate

CH-DFVAR model and consider the true model as given by

yt = Φtyt−1 + ut, Φt = Φfft, ft = φft−1 + ηt, Ht = htH,

where Var(ut) = Ht and Var(ηt) = 1 − φ2, for t = 2, . . . , T , and where {ht} is a variance scaling sequence

that determines the time-variation in Ht. We set the true parameter values as follows

Φf = 0.25I2, φ = 0.95, H = I2 + 0.5J2.

We consider the following three specifications for the sequence {ht}:

(a) Sine function: ht = 0.5 sin(πt/250) + 1,

(b) Step function: ht = I(sin(πt/250) > 0) + 0.5,

(c) Constant: ht = 1,

where I(·) denotes the indicator function. We adopt this model, with the three variants for ht, to simulate the

data. For a simulated data set, we estimate the parameters for the DFVAR model as given above, but with

the specification for Ht replaced by the scalar BEKK equation (13). Hence, this model is misspecified for

estimation when the model for simulation takes ht as the sine or the step function. The model for parameter

estimation is correctly specified when ht = 1 since the CH-DFVAR model is nested with the DFVAR model,

with a constant covariance matrix H . In this case, the nesting conditions are α2 = β2 = 0 in (13).

Figure 2 presents the summary statistics of the extracted scalar sequences for the conditional variances

{Ht} and for the unobserved dynamic factors {ft}, for the three different specifications of ht as described

above. These extracted sequences are obtained from the 1000 Monte Carlo replications and for a sample size

of T = 1000. In this experiment, the dynamic factor sequence {ft} is simulated only once and its full path is
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(c) Constant
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Figure 2: Left plots: the red line displays the true scaling variance ht for the three different specifications (sine,
step and constant functions). The solid black line is the median and the grey areas represent the distribution of
the estimates of Ht obtained from the scalar BEKK model that is embedded in the Kalman filter; see Section
2.4. Right plots: the red line displays the true unobserved factor ft. The factor is the same in all configurations
(a), (b) and (c). The solid black line is the median and the grey areas represent the estimated factors for ft
obtained from the Kalman filter, that is E(ft|Ft−1, ψ̂).
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kept fixed across all 1000 Monte Carlo replications. In this way, we can graphically depict both the variance

scaling {ht} and the true dynamic factor {ft}. In these plots, we also present some summary statistics (median,

80% and 99% percentiles) from the distribution of the estimates of ht and ft. We learn from Figure 2 that

the BEKK specification of the conditional variance is effective in capturing the time-variation in ht. The plots

(a) and (b) in Figure 2 show this rather convincingly. Furthermore, we do not find any relevant differences

in the estimates of the factor ft for the three configurations of time-variation in ht (sine, step and constant

functions). The case with a constant variance ht = 1 represents the situation where the model is correctly

specified. From this Monte Carlo experiment we can conclude that the estimation of the unobserved factor ft

is robust to possible misspecification of Ht. Further confirmation of this finding is presented in Table 1 where

we report the precision of the estimates in this Monte Carlo experiment. More specifically, we report the root

mean squared errors (RMSE) for the estimate of the factor ft and the variance scaling ht, for the different

specifications of ht, for different sample sizes T = 500, 1000, 2500. The RMSE is computed as the average

over t = 2, . . . , T , and over all 1000 Monte Carlo replications. We observe that the accuracy of the estimates

remains similar across the different specifications of ht. Also, the accuracy of the estimates increases with the

sample size. Overall we can conclude that our methods are feasible and are robust to model misspecification.

Table 1: The average root mean squared error (RMSE) for the estimates of the factor ft and the scaling variance
ht, for the different sample sizes T = 500, 1000, 2500. The estimates of ft are obtained from the Kalman filter,
that is E(ft|Ft−1), while the estimates of ht are obtained from the scalar BEKK specification that is embedded
in the Kalman filter; see Section 2.4.

T = 500 T = 1000 T = 2500
ft ht ft ht ft ht

Sine 0.820 0.225 0.800 0.214 0.787 0.213
Steps 0.828 0.299 0.803 0.306 0.790 0.303
Constant 0.820 0.059 0.797 0.039 0.784 0.024

5 Empirical Study: Dynamic Macro-Financial Linkages and Spillovers

Time-varying parameter vector autoregression (VAR) models are frequently used to analyze whether changes

in financial market conditions affect the transmission mechanisms of shocks to the real economy; for instance,

Hubrich and Tetlow (2015), Prieto et al. (2016) and Galvão and Owyang (2018) provide empirical evidence

of the existence of such macro-financial linkages. In these studies, parameter estimation and signal extraction
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is based on Bayesian Markov chain Monte Carlo (MCMC) methods such as Gibbs sampling; see the semi-

nal work of Primiceri (2005). To show and illustrate that a frequentist approach is also feasible in analyzing

macro-financial linkages and spillovers, we provide an empirical illustration for a three-dimensional vector

autoregressive model of the U.S. economy. We consider the two macroeconomic variables of industrial produc-

tion (IP) growth and headline CPI inflation, together with the single financial variable of spread between “BAA”

rated corporate bond rates and the ten-year treasury bill rate. This selection of variables is inspired by the study

of Galvão and Owyang (2018) where a two-dimensional smooth transition VAR model is considered for IP

growth rates and inflation, using a financial index as the transition variable. The index is extracted from a large

set of financial variables, but it is shown that the corporate bond spread is a good proxy for this index. Hence,

we consider corporate bond spread to represent the financial shocks in our three-dimensional VAR model. From

Table 2 of Galvão and Owyang (2018) we learn that the posterior inclusion probabilities of the bond spread is

highest, with 98%. The three variables are obtained from the FRED data base (https://fred.stlouisfed.org/) and

they all have a monthly frequency. The three time series span from January 1970 until January 2019; each time

series consists of 589 observations. Figure 3 presents the time series graphs of the three variables.

5.1 Selection of model specification

In our empirical study for the three time series variables, we consider the modeling framework provided by

the equations (2), (3) and (4) for the DFVAR model and equation (13) for the multivariate GARCH model.

This general model requires various choices, in particular, for the number of lags p in equation (2), the number

of factors r and the composition of the typically sparse matrices Φf
1 , . . . ,Φ

f
r in equation (3). After some

initial experimentation where parameters are estimated and results are empirically validated, we have decided

to focus on the vector autoregressive model with p = 2 in equation (2). Other empirical aspects of the model

are investigated in detail below. Given that N = 3 and p = 2, the number of parameters in Φc of equation (3)

is N2p = 18, in ϕ of equation (4) is r, and in Ω, α, β of equation (13) is 2 + N(N + 1)/2 = 8. Hence, the

total number of parameters is 26 + r plus the number of parameters in matrices Φf
1 , . . . ,Φ

f
r of equation (3).

In the modeling process, we are considering the different choices for the number of factors r and the sparse

designs of the matrices Φf
1 , . . . ,Φ

f
r . Since we have adopted a frequentist approach in parameter estimation

that is based on the straightforward numerical maximisation of the log-likelihood function (11), see Section

2.5 for more details, we base our various model decisions on standard information criteria. Decisions on the

18

https://fred.stlouisfed.org/


−
4

−
3

−
2

−
1

0
1

2

ip
 g

ro
w

th

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

1.
5

cp
i i

nf
la

tio
n

−
1

0
1

2
3

1970 1980 1990 2000 2010 2020

bo
nd

 s
pr

ea
d

Time

Figure 3: The three time series variables are from the U.S. economy: IP growth (the growth rates of industrial
production), inflation (headline CPI inflation) and bond spread (the spread between BAA-rated corporate bond
rate and 10-year Treasury rate). The time series are monthly and the sample ranges from January 1970 until
January 2019 (589 observations). The data are obtained from the FRED data base (https://fred.stlouisfed.org/).

lag length p, the number of factors r, the compositions of loading matrices Φf
1 , . . . ,Φ

f
r are all done using the

Bayesian Information Criterion (BIC). We could also have adopted the Akaike Information Criterion (AIC) but

empirically it is found that the BIC is somewhat more conservative as it opts for more parsimonious models.

Different specifications of the CH-DFVAR model, with N = 3 and p = 2, are considered and for a

selection of these we report their features and goodness-of-fit results in Table 2. From the perspective of

selecting the model with the lowest BIC, specification (1) is preferred. In this specification, we have the

conditional heteroskedasticity included by the scalar BEKK updating in equation (13), and the time-variation of

the autoregressive coefficients facilitated by five dynamic factors (r = 5). The interpretability and identification

of each factor is ensured by a set of restrictions imposed on the factor loading matrices Φf
i , i = 1, . . . , 5. We
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treat each Φf
i as a zero matrix on the outset. In Table 2, the non-zero elements for Φf

i are listed for the first N

columns, the same non-zero elements are also imposed to the second set of N columns which represents the

autoregressive coefficients associated with lag 2. In case of our preferred specification (1), the interpretation

is as follows. Dynamic factor ft,1 captures time-variation in the spillover intensity of financial shocks to the

real economy, that is the impact of lagged bond spreads on IP growth and inflation. The factors ft,2, ft,3, ft,4

account for the respective time-varying persistence in each of the three variables in yt: IP growth, inflation and

bond spread. The last factor ft,5 captures the common changes in the spillovers from IP growth to inflation,

and vice versa. For other specifications, some other variants of restrictions on the factor loading matrices Φf
i ,

i = 1, . . . , 5 are explored, in particular those for specifications (2) to (5). The results indicate that specification

(4) is preferred in terms of AIC: it introduces different financial spillover factors for IP growth and inflation.

However, specification (4) requires an additional parameter compared to specification (1) and this this may not

be justified in view of a parsimonious model, according to BIC. The specifications (6) and (7) are provided in

Table 2 to show the strong support for the time-variation of the autoregressive coefficients and the conditional

heteroscedasticity in the CH-DFVAR model. Although the standard VAR(2) model, with or without the scalar

BEKK, has a lower number of parameters, the fit is much worse.

5.2 Time-varying autoregressive parameters

The estimated coefficients, together with their asymptotic standard errors, of the parameters in the CH-DFVAR

specification (1) are obtained using the maximum likelihood method as discussed in Section 2 and are presented

in Table 3. The estimates of Φc, the constant long-run part of the autoregressive coefficient matrices in equation

(3) for lags 1 and 2, are for more than half of all coefficients in Φc significantly different from zero, at the

5% significance level. For example, we find that the bond spread significantly affects both macro variables

at both lags. It is well established that interpreting reduced-form coefficients is of limited economic use. We

therefore present an orthogonalized impulse response function analysis below. The specification of the time-

varying autoregressive coefficients and their estimates are also presented in Table 3. For each factor ft,i, for

i = 1, . . . , 5, we have at least one loading in Φf
i that is estimated as being significantly different from zero.

Overall, the coefficients of the factor loading matrices Φf
i corresponding to lag 2 of yt, appear to be more

significantly exposed to time-variation. Since lag 2 has a particular impact on cyclical dynamics, we may

conclude that the time-varying parameter features may be implied from business cycle features in IP growth,
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Table 2: Different CH-DFVAR Model Specifications and Fit
The CH-DFVAR model is for yt = (IP growth, inflation, bond spread)′ and it is given by the equations (3), (4) and (13). We consider

seven different specifications of the model. We indicate whether some features are included in the model specification, we report the

design of the factor loading matrices Φf
i in equation (3) by indicating their non-zero entries, and we provide the maximized value

of the log-likehood function together with the corresponding information criteria AIC and BIC. The latter criterion selects the first

specification as preferred. The specifications (6) and (7) are performing most poorly amongst these seven specifications.

Specification (1) (2) (3) (4) (5) (6) (7)
Features of Model

# lags 2 2 2 2 2 2 2
Φc X X X X X X X
Φf X X X X X

Scalar BEKK X X X X X X
# factors 5 6 3 6 5 0 0

# parameters 45 46 39 46 45 26 24

Nonzero Entries in Factor Loading Matrices Φf
i for Lags 1 and 2

Φf
1 (1,3) , (2,3) (1,3) , (2,3) (1,3) , (2,3) (1,3) (1,3)

Φf
2 (1,1) (1,1) (2,2) (2,3) (2,3)

Φf
3 (2,2) (2,2) (1,2) , (2,1) (1,1) (1,1) , (3,3)

Φf
4 (3,3) (3,3) (2,2) (2,2)

Φf
5 (1,2) , (2,1) (1,2) (3,3) (1,2) , (2,1)

Φf
6 (2,1) (1,2) , (2,1)

Model selection criteria

log likelihood -199.21 -200.46 -227.33 -197.41 -201.82 -275.27 -407.3369
AIC 488.42 492.91 532.67 486.82 493.64 606.54 862.6738
BIC 685.30 694.17 703.29 688.08 690.52 729.04 967.6744

inflation and bond spread. The estimates of the autoregressive coefficients φ1, . . . , φ5 for the dynamic factors

ft,1, . . . , ft,5, respectively, imply persistent time-variation for the first and third factors; these are associated

with financial-macro spillovers and inflation persistence, respectively. The other three factors do not appear

to be persistent. These finding are confirmed in Figure 4 where we present the estimated factors from the

Kalman filter smoother. We clearly observe the high persistence in the financial-macro spillover factor and in

the financial persistence factor while the remaining three factors are more noisy. The financial-macro spillover

factor ft,1 shows a temporary but strong increase during the financial crisis. The inflation persistence factor

ft,3 is high during the 1970s, a period of high inflation rates, and it is low during the early 2000s, a period

of low inflation rates. The spillover macro shock factor ft,5 exhibits stronger variation in the first part of our

sample, up to approximately 1983. This feature may be indicative of the overall decline in macroeconomic

volatility from the mid-1980s, which is known as the “Great Moderation”; see Blanchard and Simon (2001) for

a discussion.
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Table 3: Parameter Estimation Results for Final CH-DFVAR Model
The CH-DFVAR model is for yt = (IP growth, inflation, bond spread)′ and it is given by the equations (3), (4) and (13). We consider

the preferred model specification (1) from Table 2, withN = 3, p = 2 and r = 5, for which we present the design of the factor loading

matrices Φf
i , for i = 1, . . . , 5, and a short description of its interpretation. All parameter estimates are provided with their asymptotic

standard errors in parantheses below.

Factor Loading Matrices Φf
i for i = 1, . . . , 5, with nonzero elements indicated by *

Factor 1 Φf
1 Factor 2 Φf

2 Factor 3 Φf
3 Factor 4 Φf

4 Factor 5 Φf
5

financial-real shock spillover - persistence IP growth - persistence inflation rate - persistence bond spread - spillover macro shocks0 0 ∗ 0 0 ∗
0 0 ∗ 0 0 ∗
0 0 0 0 0 0

 ∗ 0 0 ∗ 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 0 0 0 0 0 0
0 ∗ 0 0 ∗ 0
0 0 0 0 0 0

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 ∗ 0 0 ∗

 0 ∗ 0 0 ∗ 0
∗ 0 0 ∗ 0 0
0 0 0 0 0 0


Parameter Estimates

DFVAR Φc DFVAR Φf
i Factors ϕi Scalar BEKK

in equation (3) in equation (3) in equation (4) in equation (13)

Lag 1 Lag 2 Lag 1 Lag 2 α2, β2,Ω

Φc(1, 1) 0.089 0.098 Φf
1 (1, 3) -0.2771 0.2726 ϕ1 0.8788 α2 0.0735

(0.054) (0.051) (0.313) (0.068) (0.0716) (0.013)
Φc(2, 1) -0.026 -0.006 Φf

1 (2, 3) -0.0989 0.4638 ϕ2 0.0607 β2 0.8532
(0.016) (0.015) (0.0893) (0.0771) (0.1619) (0.0226)

Φc(3, 1) -0.027 -0.024 Φf
2 (1, 1) 0.0907 -0.4232 ϕ3 0.9771 Ω(1, 1) 0.1214

(0.010) (0.010) (0.327) (0.0979) (0.0141) (0.0187)
Φc(1, 2) -0.009 -0.291 Φf

3 (2, 2) 0.1126 0.0513 ϕ4 0.0042 Ω(2, 1) -0.0033
(0.118) (0.121) (0.1045) (0.0262) (0.1569) (0.0059)

Φc(2, 2) 0.426 0.158 Φf
4 (3, 3) 0.3979 0.205 ϕ5 0.1756 Ω(3, 1) -0.0032

(0.047) (0.108) (0.076) (0.1711) (0.1891) (0.0038)
Φc(3, 2) -0.017 0.005 Φf

5 (2, 1) 0.1448 0.0609 Ω(2, 2) 0.0535
(0.024) (0.025) (0.086) (0.0252) (0.0064)

Φc(1, 3) -0.656 0.504 Φf
5 (1, 2)) -0.0432 -0.7517 Ω(3, 2) -0.0032

(0.162) (0.153) (0.0479) (0.1677) (0.0031)
Φc(2, 3) -0.160 0.104 Ω(3, 3) 0.0324

(0.056) (0.055) (0.0046)
Φc(3, 3) 1.294 -0.339

(0.050) (0.048)

The index pair (i, j) refers to the matrix element (i, j) with i, j = 1 (IP growth), 2 (inflation), 3 (bond spread).

5.3 Time-varying variances and covariances

In Table 3 we also report estimates for the coefficients of the scalar BEKK parameters in equation (13). The

estimates for the diagonal elements of the variance intercept matrix Ω are all strongly significant, as well

as those for the persistence parameter β2 and the parameter capturing the impact of innovations, α2. We

expect macroeconomic and financial volatility to follow persistent processes and we confirm that the overall

persistence is α2 + β2 = 0.93. The three estimated covariances in Ω are negative but they are not significantly

different from zero. The filtered estimates of the variances and covariances in Ht are provided in Figure 5.

The time-varying variance estimates show high volatility levels during the rescession periods in the 1970s and
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Figure 4: The CH-DFVAR model is for yt = (IP growth, inflation, bond spread)′ and it is given by the
equations (3), (4) and (13). We consider the preferred model specification (1) from Table 2 and with the
estimated parameters reported in Table 3, where also the features of the model and the interpretation of the
factors are provided. We present the estimated factors which are obtained from the Kalman filter smoother.

early 1980s, and in particular, during the financial crisis and its aftermath. We observe strong variations in the

filtered estimates of the covariances over time, but they fluctuate around a long-term mean of zero.

5.4 Impulse response function analysis

To conclude our analysis, we carry out an impulse response function (IRF) analysis based on the CH-DFVAR

model with the parameters replaced by their corresponding estimates as reported in Table 3. Similarly to Prieto

et al. (2016), we identify the shocks by carrying out a Cholesky decomposition of the covariance matrix, see
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Figure 5: The CH-DFVAR model is for yt = (IP growth, inflation, bond spread)′ and is the same as the one
used for Figure 4. We present conditional variances and covariances which are obtained as discussed in Sections
2.4 and 2.5.

the discussion in Section 3. We also adopt their reasoning of ordering the macro variables before the financial

ones, because the impact of financial shocks on macroeconomic variables often occurs with a delay. Therefore,

the order in the chain is IP growth → inflation rate → bond spread. Due to the time-variation in both the

autoregressive coefficient matrices and covariance matrices, the obtained impulse response functions differ

from period to period. We are particularly interested in the potentially adverse impacts of financial shocks on

macro variables, which have been found to be more pronounced during crisis periods; see the discussion in

Hubrich and Tetlow (2015). Therefore, we average the time-varying responses of IP growth and the inflation

rate to financial shocks over the recession months as defined by the National Bureau of Economic Research

(NBER); the dates are obtained from the FRED data base https://fred.stlouisfed.org/. In Figure 6 we present

the average impulse responses with 68% confidence intervals. We find that financial shocks, which imply

a widening of the bond spread, have bigger impacts in times of crises, in terms of magnitude as well as in

terms of persistence. While the deflationary effect of positive financial shocks is significant, both in crisis and

non-crisis periods, we find a strong significant effect on output growth only for the recession period 2008/09.

24

https://fred.stlouisfed.org/


0 10 20 30 40 50 60

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

noncrisis periods

0 10 20 30 40 50 60
−

0.
30

−
0.

25
−

0.
20

−
0.

15
−

0.
10

−
0.

05
0.

00

other crisis periods

0 10 20 30 40 50 60

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

2008/09 crisis period

0 10 20 30 40 50 60

−
0.

08
−

0.
06

−
0.

04
−

0.
02

0.
00

noncrisis periods

0 10 20 30 40 50 60

−
0.

08
−

0.
06

−
0.

04
−

0.
02

0.
00

other crisis periods

0 10 20 30 40 50 60

−
0.

08
−

0.
06

−
0.

04
−

0.
02

0.
00

2008/09 crisis period

Figure 6: The CH-DFVAR model is for yt = (IP growth, inflation, bond spread)′ and is the same as the one
used for Figure 4. We present impulse responses, with 68% confidence intervals, of IP growth (upper panels)
and inflation rate (lower panels)) to the bond spread shock. The impulse responses are averages over different
sub-periods in our sample: noncrises, crises, and the financial crisis (2008/09) periods.

6 Conclusion

We have considered a vector autoregressive (VAR) model with time-varying autoregressive coefficient matrices

and with conditionally heteroskedastic disturbances. The specification for the time-varying VAR matrices relies

on dynamic factors and is flexible as it allows a range of different specifications. All elements in the VAR ma-

trices can vary while our framework also allows for more parsimonious formulations of the dynamic evolution

of the autoregressive coefficients. The conditions for identification are easily verified. The analysis relies on

the maximum likehood estimation method and the estimation of the dynamic factors (signal extraction) is done

via the Kalman filter and related methods. The full estimation process is computationally fast and it offers an

alternative to the widely used Bayesian methods of analysis. We carry out a Monte Carlo study to confirm the

reliability of the estimation method. In the empirical study, we find that financial shocks in the U.S. economy

have larger impacts during recession periods, both in terms of magnitude and in terms of persistence.
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