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The social cost of carbon (SCC) is the expected present discounted value of all 

future marginal damages resulting from emitting one ton of carbon today.1 The risk-

adjusted SCC incorporates uncertainties2 associated with climate and the economy. 

If global warming is the only market failure, it is optimal in a decentralized 

economy to set the price of carbon emissions (e.g., a specific carbon tax or the price 

in a competitive permit market) to the SCC. To evaluate the SCC, one must know 

how much of one ton of carbon emitted today is still left in the atmosphere at each 

future time; the effect of the atmospheric carbon stock on temperature; the effect of 

temperature on damages to aggregate output and consumption; and the marginal 

utility of consumption at all instants of time. All of these effects are subject to 

uncertainty. 

Our aim is to derive a closed-form expression for the optimal risk-adjusted SCC 

from a simple analytic yet quantitatively calibrated integrated assessment model of 

climate and the economy, where attitudes to risk aversion differ from attitudes to 

intertemporal fluctuations in consumption. We allow for a wide range of 

uncertainties, regarding macroeconomic growth, the carbon stock, the climate 

sensitivity, the damage ratio (global warming damages as fraction of GDP) and the 

correlations between these uncertainties. We highlight the effects of time-varying 

and skewed distributions and the convexity of damages in temperature on the SCC. 

We derive the SCC as the social optimum of a Dynamic Stochastic General 

Equilibrium (DSGE) model with recursive preferences, which seperate aversion to 

risk from aversion to intertemporal fluctuations (Kreps and Porteus, 1978; Epstein 

and Zin, 1989; Duffie and Epstein, 1992). Our closed-form expression for the 

optimal SCC is in the spirit of the rule derived by Golosov et al. (2014).3 It has the 

 
1 Along an optimal allocation path the SCC corresponds to the Pigouvian tax on emissions, but the SCC can also be evaluated 

along other (e.g., business as usual) paths. 
2 We use the terms risk and uncertainty interchangeably. 
3 Our solution is an approximate closed-form expression derived from a DSGE model with endogenous growth, whereas 

Golosov et al. (2014) derive an exact closed-form expression from a DSGE model with convex growth and multiple fuel 
sectors. If the damage ratio is proportional to the stock of carbon as in Result 1 below, this is similar in spirit to the 

assumptions made about damages in Golosov et al. (2014). Result 2 extends this to more general damages.  
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usual precautionary, insurance and risk-exposure determinants of the risk-adjusted 

social discount rate and the SCC resulting from macroecomic uncertainty but adds 

multiplicative adjustment factors to allow for the uncertainties regarding the carbon 

stock, climate sensitivity, and the damage ratio.  

Our methodological contribution is to show how perturbation methods can be 

used to solve DSGE models with more than a few states (four states plus time, here). 

The so-called small parameter of our perturbation, which measures the size of the 

perturbation, is the damage ratio.4 As our small parameter goes to zero, we return 

to a known solution, in this case the endogenous growth model with investment 

adjustment costs of Pindyck and Wang (2013), which has a closed-form solution. 

Our full DSGE model extends this to allow for fossil fuel use, climate change and 

damages. We make use of power functions to capture a damage ratio that is convex 

in temperature and power-function transformations of normally distributed shocks 

to capture the right-skew of the long-run climate sensitivity. We use mean-reverting 

processes to capture that uncertainty in climate sensitivity is larger and more right-

skewed on long than short horizons.5 Our perturbation method offers a powerful 

alternative to both numerical methods (reviewed below), which are computationally 

intensive for many states and do not lend analytical insight, and other perturbation 

methods that rely on a high-order multi-variate Taylor-series expansion in the 

states, which can be prohibitively complex (see Appendix A.5 for a comparison). 

We derive two main results.6 By focusing on the leading-order effects of 

uncertainty, that is, those that dominate in the limit of small uncertainty relative to 

the mean, Result 1 gives a closed-form solution for the optimal SCC if the damage 

ratio is proportional to the atmospheric carbon stock and there is no delay in the 

 
4 We will show in Fig. 3 that this damage ratio is typically only a few percentage points and can rise to 10% at most.  
5 Specifically, we use Ornstein-Uhlenbeck processes. We abstract from fat tails, so that Weitzman’s (2009) ‘dismal theorem’ 

does not apply.  
6 Our third and most general result, Result A in Appendix A, gives a general expression for the optimal SCC without the 
assumption of leading-order uncertainty and can be evaluated by numerical solution of a multi-dimensional integral. The 

assumptions leading to Result A and, from there, to Results 1 and 2 are laid out precisely in Appendix A.  
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deterministic temperature response to emissions. Result 2 generalizes this result for 

convex dependence of damages on the carbon stock and for a delayed deterministic 

temperature response.  

Results 1 and 2 imply that policy makers should employ a lower discount rate 

and a higher SCC in case of uncertainty about future economic growth if aversion 

to intertemporal fluctuations exceeds one (cf. Gollier, 2002, 2010; Jensen and 

Traeger (2014)). In asset pricing theory, the opposite assumption is made (i.e., the 

elasticity of intertemporal substitution exceeds one) in which case macroeconomic 

uncertainty depresses the SCC, just like it depresses share prices.  

Results 1 and 2 also imply that temperature uncertainty and damage ratio 

uncertainty call for a higher SCC, where the adjustment to the SCC is larger if 

damages are more convex, the distribution of uncertainty is wider and more right-

skewed, uncertainty arises on shorter horizons, and the risk-adjusted social discount 

rate and carbon decay rate are smaller. Finally, Results 1 and 2 imply that, if 

positive shocks to the economy are associated with positive (negative) shocks to 

temperature, the optimal SCC is lower (higher) if relative risk aversion exceeds one 

(cf. Lemoine, 2020). If shocks to future damages are negatively (positively) 

correlated with future shocks to asset returns, the optimal SCC is higher (lower), if 

relative risk aversion exceeds one. 

Most previous approaches to the optimal SCC have either used models where 

intergenerational consumption smoothing and risk aversion coincide, or where they 

are separated, but the intertemporal elasticity is assumed to be one. Jensen and 

Traeger (2014), who also combine analytic formula and quantitative assessment, 

only deal with economic uncertainty, and Cai and Lontzek (2019) combine 

economic and climate uncertainty but do not yield analytic insight. We offer a 

closed-form expressionfor the optimal SCC for a range of economic, climate and 

damage uncertainties.Moreover, our analysis has the potential to go beyond the 

correlation analysis of Dietz et al. (2018) and Lemoine (2020). Dietz et al. (2018) 
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examine the effects of the elasticity of damages with respect to output in the DICE 

integrated assessment model but without recursive preferences.  

Different authors have performed numerical calculations of the optimal SCC 

under multiple sources of uncertainty, first with Monte-Carlo simulations (e.g., 

Nordhaus, 1994; Nordhaus and Popp, 1997; Ackerman and Stanton, 2012; Dietz 

and Stern, 2015). Others have used stochastic dynamic optimization methods from 

macroeconomics (e.g., Kelly and Kohlstad, 1999; Pizer, 1999) or advanced 

numerical methods (e.g., Crost and Traeger, 2013; Traeger, 2014a; Jensen and 

Traeger, 2014; Hambel et al., 2017; Lemoine and Traeger, 2014, 2016a; Lontzek et 

al., 2015; Cai et al., 2016; Cai and Lontzek, 2019).7 Cai and Lontzek (2019) 

represent the state of the art in advanced numerical methods and also allow for 

recursive preferences. Our objective is complementary: we offer an approximate 

closed-form solution for the optimal SCC under a range of economic, climatic and 

damage uncertainties that may be correlated. In contrast to Cai and Lontzek (2019) 

we do not allow for tipping points, but we do allow for skewed distributions. 

Our contribution is also related to the analytical literature on discounting under 

uncertainty and simple rules for the optimal carbon price, which typically deals with 

one uncertainty at a time, for example about future economic growth  (e.g., Gollier, 

2002, 2012; Traeger, 2014b). Golosov et al. (2014) obtained a simple rule for the 

optimal SCC reacting to world GDP only, making bold assumptions including 

logarithmic utility8, which imply that economic growth uncertainty does not affect 

the SCC (cf. Traeger, 2017). Gerlagh and Liski (2016) also derive a simple rule and 

allow for learning about uncertain impacts. Jensen and Traeger (2019) show how 

the effect of climate sensitivity on the risk premium in the SCC depends on 

prudence and convexity of marginal damages. Lemoine (2020) decomposes the 

 
7 Lemoine and Trager (2016b) deal with ambiguity aversion and find only small effects on the optimal carbon tax.  
8 They have a discrete-time (decadal) model, assume logarithmic utility, Cobb-Douglas production, 100% depreciation of 

capital each period, and total factor productivity as an exponential function of the atmospheric carbon stock. 
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SCC into different components due to uncertain warming, damages and economic 

growth. He shows that the sign of the effect of the normalized covariances of 

different climatic uncertainties with the rate of economic growth on the SCC 

depends on whether relative risk aversion is greater than one or not.9 In both the 

decompositions by Jensen and Traeger (2019) and Lemoine (2020) consumption is 

set exogenously. Recently, two important complementary studies to ours have also 

obtained a simple analytical rule for the risk-adjusted SCC in a general equilibrium 

model. Traeger (2017) develops an integrated assessment model with a range of 

climate uncertainties, in which consumption is determined endogenously, less than 

full capital depreciation in each period and the restriction that the model is linear in 

the states with additively separable controls. Bretschger and Vinogradova (2019) 

extend an endogenous macroeconomic growth model to allow for Poisson shocks 

in the capital stock in their analysis of optimal carbon pricing. 

Finally, we make the proviso that we do not allow for (Bayesian) learning about 

economic and climatic uncertainty. Kelly and Kolstad (1999) find that learning of 

climate sensitivity takes a very long time (90 years). Kelly and Tan (2005) confirm 

this but find that “tail learning” can be fast as observations near the mean provide 

evidence against fat tails. The damage ratio could also be learned (Nordhaus and 

Popp, 1997). Lemoine and Rudik (2017) give a comprehensive overview of 

uncertainty and learning in climate policy. They highlight that policy makers learn 

expectations of future temperature increase better if temperature has been observed 

to rise, how temperature changes affect the ability to smooth welfare in response to 

the signal that is received about the climate sensitivity, and how active learning 

affects mean and precision of beliefs. Lemoine and Traeger (2014) and Cai and 

Lontzek (2020) allow for learning about irreversible changes in climate sensitivity 

after passing an unknown temperature threshold. If there is learning about “tail” 

 
9 Alternatively, it depends on whether the risk-insurance effect dominates the offsetting risk-exposure effect resulting from 

damages being proportional to GDP (cf. Lemoine, 2020). 
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uncertainty, then our results might suggest that the optimal SCC will be 

substantially reduced once learning has taken place.  

 Section I presents our model. Section II discusses our perturbation method for 

deriving the optimal SCC. Section III presents Results 1 and 2. After discussing our 

calibration in Section IV, Section V estimates the optimal SCC and discusses the 

effects of the different uncertainties. Section VI concludes. 

I. A DSGE Model of Global Warming and the Economy 

We start from the DSGE model with endogenous AK-growth of Pindyck and 

Wang (2013) and add fossil fuel use as a production factor. Fossil fuel use gives 

rise to global warming and damages to output. The coefficient of relative risk 

aversion,  = CRRA   0, may differ from the coefficient of relative 

intergenerational inequality aversion, IIA = 1/EIS =    0, where EIS is the 

elasticity of intertemporal substitution. We use the continuous-time version of 

recursive preferences (Duffie and Epstein, 1992), where the recursive aggregator 

( , )f C J  depends on consumption C and the value function 

(1)   ( )E ( ), ( ) d
t

tJ f C s J s s

 
=  

 
   with ( )

( )( )

( )( )

1
1 1

1
1

1

11
,

1
1

.f
C J

J

C J


 





 




−
− −

−
−

−

− −

−
−

=  

The dynamics of the aggregate capital stock follow from  

(2)     1

21
d d d    with   (

2
) ,, )( ,K

I
K t K W I KI K I K

K
 =  = − − +  

 

where K denotes the capital stock, I investment, 0   the depreciation rate of 
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physical capital, and 0   the adjustment cost parameter. 10,11 Adjustment costs 

are quadratic and homogenous of degree one in capital and investment. Capital is 

subject to continuous geometric shocks with relative volatility ,K  and 1W   is a 

Wiener process, representing both economic growth and asset return uncertainty in 

the context of the AK-model considered. Investment is ,I Y C bF= − −  where Y is 

aggregate production, F fossil fuel use, and b the production cost of fossil fuel. 

Fossil fuel is supplied inelastically at fixed cost. The final goods production 

function is 
1  with 0 1Y AK F  −=    and 

*(1 )A A D −  is total factor 

productivity. Since we focus on endogenous growth, we abstract from labour-

augmenting technical progress and population growth and thus omit time indices. 

Damages as share of pre-damage aggregate output D  increase in global mean 

temperature relative to the preindustrial T. We use the power-function specification  

(3)            11
( , )    with   1   and   1,T

TD T T 

   ++
=  −  −  

 

where the (positive) stochastic damage ratio parameter   captures the uncertain 

nature of the damage ratio at given temperature T. Convexity of the damage ratio 

(3) with respect to temperature corresponds to / 0.TT TT TD D   12 To allow for 

potential skewness in the damage distribution assuming   has a symmetric 

distribution, we raise  to the power 1 .+  

The part of atmospheric carbon, S, associated with man-made emissions is 

PI ,E S S −  where PIS  is the preindustrial carbon stock. This is often referred to 

as the concentration or pollution stock above preindustrial. The rate of carbon 

 
10 With AK-growth, shocks to the capital stock and productivity are equivalent. To avoid an extra state, we introduce volatility 

directly in the capital dynamics (cf. Pindyck and Wang, 2013). 
11 For ease of presentation, we first introduce the separate evolution equations for the four stochastic variables before 
introducing the covariance matrix of these four state variables. 
12 Subscripts of functions denote partial derivatives. 
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emissions is exp( ),F gt−  where F is fossil fuel use and exp( )gt−  the emission 

intensity which declines at the endogenous economic growth rate g. A proportion 

0 1   of fossil fuel emissions ends up in the atmosphere. Atmospheric carbon 

decays at the rate 0.   The carbon stock dynamics is 

(4)        
2( d d ,)d g

E

tFe EE Wt  − += −   

where 2W  denotes a second Wiener process, so the carbon stock is described by a 

Arithmetic Brownian motion with absolute volatility 0.E  13, 14 This specification 

ensures that the expected value of the carbon stock returns to its preindustrial value 

when emissions cease. We have for temperature 

(5)      
1 1

PI( , ) ( / )    with   1   and   1,E

ET E E S 

   
+ +=  −  −   

 

where the (positive) stochastic variable  captures the uncertain nature of 

temperature for a given carbon stock. We will use a negative value of E  to capture 

the concave dependence of temperature on the carbon stock. The parameter 
  

captures skewness of the climate sensitivity distribution assuming  has a 

symmetric distribution (see (8a) below). The climate sensitivity is the temperature 

increase from doubling the carbon stock from its preindustrial level, i.e. 

1

2 ( , ) .PIT T E S  
+

= =  It is a stochastic variable and depends on the stochastic 

climate sensitivity parameter . Its leading-order mean is 

 
13 One can allow for a permanent and one (Golosov et al., 2014), two (Gerlagh and Liski, 2018) or three (Millar et al., 2017) 

temporary basins of atmospheric carbon. Appendix F3 shows that our 1-box model reproduces historical atmospheric carbon 

stocks well, and section IV illustrates how it captures all the key features of future projections, although a value of  

substantially smaller than one may lead to too rapid initial decay of the carbon stock due to  a marginal emission. Millar et 

al. (2017) allow the speed at which oceans absorb atmospheric carbon (akin to our ) to fall with warming. We ignore such 

positive feedback effects and associated multiplicative uncertainty. 
14 Although ,E   and   in (4), (8a) and (8b) can formally become zero or negative with finite probabilities due to their 

Gaussian distributions, we will show in section IV that these probabilities are negligibly small. Formally, all three variables 
are truncated in our model, so that they can only take positive values, and the model is well posed. For simplicity of 

presentation, we avoid additional notation to describe this truncation, which we do apply.  
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  ( )1 2

2 2E 11 ( )( / )T 

       
+

+ = +  (see Appendix E.5) and skewness is 

 
3( )3 41

2skew 3 ( ) / ,1 ( )T 

       
+

= +  where   and   are the mean and 

volatility of the equilibrium value of . Both increase in the skewness parameter 
  

and the coefficient of variation / .   Combining equations (3) and (5), the 

reduced-form damage ratio becomes 

(6)     
1 1 1( , , ) ( / )    with   .T ET

PI T T TD E E S 
  

          
+ + +=  + +   

The parameter ET E T E T     + +  captures the combined effect of the concave 

relationship between temperature and the carbon stock ( 1 0E−   ) and the 

convex relationship between damages and temperature ( 0T  ). It is positive or 

negative depending on which effect dominates. We refer to 0ET =  as proportional 

damages and 0ET   as convex damages, reflecting the reduced-form dependence 

of damages on the carbon stock. The parameter 
T  captures the joint effect of 

skewness of climate sensitivity ( 0  ) and convexity of the damage function 

with respect to temperature ( 0T  ). From (6), total factor productivity and 

aggregate output are a decreasing function of the carbon stock and the climate 

sensitivity and damage ratio parameters: 

(7)   ( )1 111 *( , , )  with   ( , , ) 1 ( / ) .TET

PIY A E K F A E A E S  
       
+ ++−=  −   

 

Uncertainties in the climate sensitivity and the damage ratio are driven by 

truncated (see footnote 14) mean-reverting stochastic Ornstein-Uhlenbeck 

processes with means , ,  mean reversion coefficients , , and volatilities 

, ,  
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(8a)             
3d ( )d d ,t W     = − +  

(8b)             
4( )d d d ,t W     = − +  

 

where 3W  and 4W  are two Wiener processes. 15 Together with 
1

T 
+

  in (5), the 

process (8a) captures two features of the actual climate sensitivity distribution. 

First, the expected response of temperature to increases in the carbon stock is 

delayed in time, from the (lower) transient climate response (TCR) at initial times 

to a steady state associated with the (higher) equilibrium climate sensitivity (ECS)16 

We allow for a delayed response of temperature to increases in the carbon stock via 

the time-varying dynamics of the stochastic process for the random variable . If 

0 ,   then temperature (cf. (5)) will start low . Over time and in the absence of 

uncertainty, mean reversion ensures that  gradually increases to its steady-state 

value, and this leads to gradual increase in temperature. Second, the uncertainty and 

skewness of the climate sensitivity distribution grow with time from the narrow and 

symmetric TCR to the wide and skew ECS in steady state, which like the steady 

state of the mean is reached as 1t   with 1   the e-folding time.17 Note that 

our formulation implies that temperature increases are independent of when carbon 

is added to the atmosphere. In our model, temperature responds immediately to 

changes in the atmospheric carbon stock (cf. (5)); it does not suffer from the inertia 

in response of temperature to marginal emissions for which a number of integrated 

 
15 Equation (8a) has solution 0( ) (1 )

t t
t e e  

  
− −

= + − +  
3

0
exp( ( ))d ( ),

t

t s W s  − − and similarly for (8b). The variables 

( )t and ( )t  have distributions 
2~ ( )( ) ,t      and 

2~ ( )( ) ,t     . Mean and variance of ( )t  are 

0 (1 )
t t

e e  

  
− −

= + −  and ( )2 2 1 exp( 2 ) 2t     = − −  with steady-state limits  →  and  
2 2 2 .    →   

16 We thus include potential effects of temperature lags from ocean heating, which affect estimates of the long-run climate 

sensitivity (e.g., Roe and Bauman, 2011). In reality, the response to small emissions is much faster and on a decadal scale 

(Ricke and Caldeira, 2014) than the response to larger emissions (Zickfeld and Herrington, 2015), reflecting nonlinearity in 

the system, which is not captured by our Ornstein-Uhlenbeck process (8a). Clearly, our parsimonious climate model cannot 
capture all features of state-of-the-art climate models, and we discuss its limitations in section VI. 
17 The e-folding time is how long it takes for an exponentially growing quantity to rise by a factor 2.27. 
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assessment models have recently been criticized (Mattauch et al., 2020), although 

the magnitude of the response is allowed to increase slowly with time.For all three 

uncertain climatic processes E ,   and  , the uncertainties are exogenously given 

and cannot be learned in our model. Fundamentally, both statistical (or aleatoric) 

uncertainty and systemic (or epistemological) uncertainty play a role in reality, but 

their contributions cannot always be separated.18 For all three processes, we use in 

our calibration the most high-level or ‘consensus’ range of uncertainty estimates 

available, which also do not make this distinction (see section IV). For example, 

the ‘consensus’ uncertainty range for the climate sensitivity (e.g., IPCC, 2014, AR5, 

Chapter 12, Box 12.2) captures both statistical uncertainty in individual climate 

models and (some) epistemological uncertainty arising from considering different 

climate models. The carbon stock, climate sensitivity and damage ratio uncertainty 

we examine are aggregate measures of uncertainty that capture present-day 

disagreement in the scientific literature.  

Equations (2), (4) and (8) are part of a multi-variate Ornstein-Uhlenbeck process: 

(9)         ( ) d ,d d d tt t= − − +α ν μ Sx Wx  

 

where the states are , , ,( )Tk E  x , with ( )0logk K K , and  denotes the 

elementwise product. The growth rates of this process are 

(10)                    
  2
d 1

, , 0, 0 .
E

d

1

2

T

t gt

K

K
Fe

t K
 −

 
  
 

−α  

 

The vector of mean reversion rates and the vector of means of this process are 

 
18 Statistical uncertainty describes genuinely stochastic and continuously fluctuating processes, whereas systemic uncertainty 
is potentially learnable. Climate sensitivity is not learnable in our model. There are likely aspects of climate sensitivity that 

are difficult or impossible to learn (cf. Roe and Baker, 2007). 
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(11)                   (0, , , )T

   ν    and   (0,0, , ) .T μ   

 

The covariance matrix 
T

SS  of the components of this multivariate process is 

(12)   

2

2

2

2

1
d d ,E

d

K E

E E E E

KE K K K K K

KE K E ET T

t

K K E

K K E

E

E

t

   

   

       

       

         

         

         

         

 
 
   = =   
 
 
 

x x SS  

 

where , , , , , ,ij i j i j K E   =  denote partial correlation coefficients. The 

covariances imply that unexpected shocks to, for example, climate sensitivity (or 

temperature) may lead to unexpected shocks in the growth of the economy (or asset 

returns), which occurs on top of the direct effect of temperature shocks on economic 

activity via the damage ratio.19 

The optimal solution from a social planner’s perspective must satisfy the 

Hamilton-Jacobi-Bellman (HJB) equation 

(13)           ( ) ( )
,

1
max , d , , , 0,

d
E ,t

C F
f C J J t K E

t
 

   =   
+   

 

where ( )  1 d dEtt J  is Ito’s differential operator applied to .J  Using 

1( , , , , ) ( , , ),I C F K E A E K F C bF     −= − −  and Ito’s lemma gives20 

 
19 An alternative interpretation of the covariances is that human behavioural bias (e.g., overconfidence or publication bias) 

may tilt prediction errors in the same direction for climatic and economic uncertainty. 
20 Strictly, (13) is not continuously differentiable, due to the truncation discussed in footnote 14, but we will ignore the 

(negligibly small) probability atoms at zero values of the states here (see section IV). 
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(14)  

( ) ( )

2 2 2 2

,

2

max , ( , , , , ), ( )

1 1 1 1
( ) ( )

2 2 2

,

2

gt

E

KK K

K t

E

F

EE

C
J Fe E

J J J K J J

f C J J I

J

C F K E K J

      

  

   



     

−  + − + 

+ + +

+

− − + + +
  

0.

K E K K K EKE EK

EE

KE K K E

E

J K J K J K J

J J

   

   

 

 





        

 

 





  

+ + + +

+ + =
 

The optimality conditions with respect to C  and F  imply that the marginal value 

of investment and consumption must be the same, i.e.

( )( )
( 1) ( )

1 ( , ),C K If JC J I K
   
−− −

= − =   and that the marginal product of energy 

equals its social cost, (1 ) / ,gtY F b Pe −− = +  where the optimal SCC is defined as 

the marginal disvalue of emitting an additional ton of carbon divided by the 

marginal value of consumption, i.e. / 0.CE
fP J −   Our command optimum 

corresponds to the outcome in a decentralized market economy if emissions are 

priced at the SCC that results from the optimal solution, revenues are rebated in 

lump-sum manner, and no other externalities or market failures exist. We thus use 

the terms ‘carbon price’ and SCC interchangeably. 

II. Perturbation Theory Solutions for the Optimal Risk-Adjusted SCC 

A closed-form solution to the stochastic dynamic optimal control problem (14) 

does not exist.21 Our approach to solving the HJB equation (14) is to use 

perturbation theory. Perturbation theory is a method for finding an approximate 

solution to a complicated problem by starting with the exact solution of a related, 

simpler problem, which in our case is that of the stochastic AK-model of Pindyck 

and Wang (2013). The complicated problem is thus not solved exactly, but instead 

 
21 Solving (14) numerically by approximating the value function and its derivatives in 5-dimensional space (time and the four 
states) is challenging due to the curse of dimensionality and does not yield analytical insight into the stochastic drivers of the 

optimal SCC. 
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so-called ‘small’ terms are added to adjust the solution of the simpler, exactly 

solvable problem. Perturbation theory provides a formal framework to control how 

small these adjustment terms are. A so-called small parameter  must be defined so 

that we return to the simpler, exactly solvable problem in the limit 0→ .  

In Appendix A, we lay out in detail and from first principles how perturbation 

theory can be applied to (14). Crucially, we identify a single small parameter 

corresponding to the initial damage ratio (from (6)): 

(15)           1 1

00 0

1

0 ( / ) ,T ET

PID E S 
   
+ + +

 =   

where the subscript 0 denote values at 0.t =  As we will show in Section IV, where 

we calibrate the model,  damages only ever make up a few percent of GDP and are 

typically less than 10% even in the worst scenario (Nordhaus and Moffat (2017)), 

which justifies our choice of  as small parameter. The solution for the value 

function takes the form of a series with terms of increasing order in , i.e.  

(16)           
(0) (1) 2( ),J J J= + +   

where we only evaluate the zeroth- and first-order terms, and the error between 

the unknown complicated problem J  and our approximation 
(0) (1)J J+  is said 

to be 
2( ). The first two terms are sufficient to evaluate a so-called leading-

order estimate of the optimal SCC known as Result A in Appendix A.22  

III. A Closed-Form Solution for The Optimal Risk-Adjusted SCC 

Although Result A is amenable to rapid numerical evalation, we can obtain 

closed-form solutions for the optimal SCC if we make three additional 

 
22 This result involves evaluation of a high-dimensional integral, which is much less computationally demanding than using 

numerical methods to solve the Hamilton-Jacobi-Bellman equation (14) directly. In Section III, we further assume that the 
relative uncertainty in the three climate variables can be modelled as small parameters in order to get a tractable closed-form 

expression for the SCC. 
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assumptions23, as explained in detail in Appendix A. These closed-form solutions 

are known as Results 1 and 2, and their accuracy compared to Result A is less than 

2% even in the most demanding case we consider in Appendix F 

We first assume proportional damages ( 0ET = ), so that marginal damages do 

not depend on the carbon stock, and no delayed deterministic response of 

temperature to increases in the carbon stock ( 0 = ).  

Result 1: If 0ET =  and 0 =  , the optimal SCC is 

(17)                        CK*

0
CC(

 
)1P

Y
P

r
 




== + + ++ 

+


 with 

1

E

D

D
 

−
, 

 

where * (0 2)( 1) )
2

(
1

,Kr g  = −+ −  
2

*

( )1
1 ,

2 2
( )T T

r



  



 
 

 +
= +

+
    

 =  
*

2( )1
1 ,

2
( )

2r


 



 





+
+

+
 

CC *
1( )T

r

  



 

   


 
 = +

+ + +
 and 

 CK * *
( 1) (1 ) (1 ) .K

K K
T

r r

   








     
 


 

 

 
 = − − + + +  + + + + 

        

 

Without uncertainty, *

0
( ) 

P
P Y r 

=
+=   with 

* (0)( 1) .r g + −=  This 

expression shows the well-known geophysical ( and ), economic (Y and 
(0)g ), 

damage () and ethical ( and ) determinants of the optimal deterministic SCC. 

 
23 First, we assume the future atmospheric carbon stock does not inherit any of the uncertainty from new emissions through 

its dependence on the stochastic capital stock (Assumption I). Second, we will include only the leading-order effects of 

uncertainty (Assumption II) by performing an additional perturbation expansion. Third, we set the initial and steady-state 

values of the damage ratio parameter 
0  and   to  be equal, so deterministic damages are not subject to a delay 

(Assumption III), but do not make the same assumption for the climate sensitivity parameter  . 
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More patience (lower ) boosts the SCC. 24 Rising affluence (higher g(0)) pushes up 

the discount rate if intergenerational inequality aversion exceeds one, and thus 

curbs the appetite of current generations for ambitious climate policy (the 
(0)g   

term in 
*r ). Higher economic growth also implies growing damages and a lower 

(growth-corrected) discount rate (the 
(0)g−  term in 

*r ), which increases the 

optimal SCC. Economic growth thus depresses the SCC if 1.   Higher economic 

activity (Y) and normalized marginal damage ratio  () also push up the SCC. A 

small fraction of emissions that stays in the atmosphere (  ) and fast decay of 

atmospheric carbon (higher  ) curb the SCC.  

A. Effects of economic growth uncertainty on the optimal SCC 

Including economic, but not climatic uncertainty, Result 1 boils down to 

0

*/ ) (
P

P Y r 
=

=  +  where the risk-adjusted discount rate can be written as 

(18)      * (0) (0) 2 2

impatience rising affluence growing d

prudenc

a

e

mages insurance

1
(1 ) .

2
K Kr g g    = + − − + +  

 

The first two terms are the familiar Keynes-Ramsey terms, the third term corrects 

for damages growing in line with output, the fourth term is the prudence term, 

 
24 In contrast to exogenous Ramsey growth models such as Golosov et al. (2014) and Nordhaus (2017), our rate of economic 

growth g(0) is endogenous. Hence, there are indirect effects on the optimal SCC via the growth rate g(0). For example, the 

direct effect of a higher rate of pure time preference  is to lower the SCC and the indirect effect is to raise the SCC as 

economic growth is lowered (for 1  ). Together, the effect of a higher rate of pure time preference on the discount rate is 

always positive * 1 1 /) 1( gr      + = − =  with 1/g    = −  (and thus always negative on the SCC). Although the 

optimal SCC does not depend directly on the share of fossil fuel in value added, the cost of fossil fuel, adjustment costs or 

the depreciation rate of physical capital, it does depend on adjustment costs and the depreciation rate via their effect on the 

endogenous rate of economic growth, which we treat as fixed in the analysis below. Furthermore, Ramsey growth models 

with an exogenous long-run growth rate include a second time scale associated with economic convergence, which will 
typically be faster than the climatic time scales. We conjecture that our formula for the optimal SCC derived in an AK-growth 

model will therefore be a good approximation to the optimal SCC for a Ramsey growth model. 
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which increases in the coefficient of relative prudence 1 +  and risk aversion  (cf. 

Leland, 1968; Kimball, 1990), and the insurance term  stems from perfect 

correlation between damages and output. Impatience, rising affluence and 

insurance depress the SCC but growing damage and prudence boost the SCC. For 

1  , the prudence effect dominates the insurance effect so growth uncertainty 

curbs the discount rate and boosts the SCC (cf. Nordhaus, 2017; Gollier, 2018). 25 

If EIS = 1/ > 1, growth uncertainty depresses the SCC;   as in the asset pricing 

literature, it depresses the price-dividend ratio.26 Our equation for 
*r  in Result 1 

corresponds to equation (13) in Barro (2009) for the dividend-price ratio 

(abstracting from the risk of macroeconomic disasters). Result 1 shows that this 

equation is still relevant with climate uncertainties. 

Dietz et al. (2018)  allow the elasticity of damages with respect to output denoted 

by  0 1D   to differ from one.27 If , =  equation (18) becomes28 

(18)     (0) (0) 2 2 2

insurance
prudencegrowing damage

*

s

1 1
( ) (1 ) .1

2 2
D D K K D Kg gr         + − −
 

= − + 
 

− +  

 
25 With logarithmic preferences ( 1 = ) and proportional damages, 

CK
0 =  and (17) simplifies to 

0
( ) / ( .1 )

CCP
P Y

 
 

=
+= +   +  +  Economic growth uncertainty and the covariance of climate sensitivity and the 

damage ratio with respect to the economy do not affect the optimal SCC, but climate sensitivity and damage ratio uncertainty 

and their correlation do. The simple rule put forward by Golosov et al. (2014) does not consider these uncertainties and in 

our case reduces to 
0

/ ( ). 
P

P Y 
=

= +  When we use a 2-box carbon cycle with a permanent and a temporary reservoir, we get 

in this case that  
0

(1 ) / / ( )
P

P Y     
=

− += + with  is the fraction of emissions that goes into the temporary reservoir. 

26 Bansal et al. (2012) argue that values of EIS < 1 give rise to the wrong sign of several risk premia in asset markts. 
27 Dietz et al. (2018) use Monte Carlo simulations of DICE (Nordhaus, 2008) and find that, with emissions-neutral technical 

change, future states with rapid technical progress imply more emissions, more warming and a greater benefit from curbing 

emissions. The positive correlation between consumption and the benefits of mitigation implies a positive climate beta. This 
beta is close to one if damages are proportional to GDP, but closer to zero if damages are additive. Our section III.C analyses 

the effects of correlations between temperature, damage and economic shocks more generally. 
28 A similar expression is derived by Svenssen and Traeger (2014) and Dietz et al. (2018). Rewriting (18), the risk-adjusted 

discount rate becomes 
* (0) 2 2 2 2

rf / 2 / 2( )D K K D Kr gr     = − − − −  with ( )(0) (0) 2

rf 1 / 2Kr g    = + − +  the risk-free 

interest rate, corresponding to Proposition 1 in Dietz et al. (2018). We only show (18) for illustrative purposes and do not 

derive it as part our model. 
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A value of D  lower than 1 curbs the negative effect of growing damages on the 

discount rate and raises the SCC by less than if 1.D =  The insurance term is 

smaller for 1D  , so this pushes up the SCC relative to when 1.D = 29 

B. Climate and damage uncertainties 

The term 2 *( )((1/ 2) 1 / / 2) ( )T T r         = + + +  in (17) is the climate 

sensitivity risk adjustment and depends on 
T TT      + + , which combines 

positive skewness of the (equilibrium) climate sensitivity distribution ( 0  ) and 

convex dependence of damages on temperature ( 0T  ). This adjustment is 

positive and larger for a more convex damage function, a more skewed climate 

sensitivity distribution with higher uncertainty (  ), a smaller discount rate (
*r ), 

and slower carbon decay rate (). The damage ratio risk adjustment 

2 *(1/ 2) 1 ( ) 2( ) / ( )r         = + ++  in (17) is zero if the distribution of 

the damage ratio is not skewed ( 0 = ). A right-skewed distribution requires an 

increase in the SCC, more so if damages are more uncertain. When keeping the 

steady-state uncertainties / 2      and / 2      fixed, higher  rates 

of mean reversion  
  and   increases the risk adjustments as the near future 

becomes more uncertain. 

C. Risk-insurance and risk-exposure effects 

 
29 The SCC increases if  

D
  is decreased depending on the sign of  

( 2
.

* 0)/ (1 2 / 22 )D D Kr g    = − + − +  
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We can rewrite the term in Result 1 that adjusts for correlations between climate 

and damage ratio risks, on the one hand, and economic risks, on the other hand, as  

(19)    2

, ,( 1)CK K   = − −   with 
( ) ( )2 2

, , * *
,

1 1T K

K

K

K
r r

  

 

 

 



 


 

 
   +


+ +


+ +


+ +

 

where ( )K K K       and ( )K K K       denote the normalized 

covariances of the climate sensitivity and damage ratio shocks, respectively, with 

shocks to the rate of economic growth.30 The sign of (19) depends on whether 

relative risk aversion  exceeds one, i.e. on whether the risk-insurance effect (

2

, ,K   ) dominates the risk-exposure effect 2

, ,( )K    due to growing damages (cf. 

Lemoine, 2020).  

Turning to the risk-insurance ( 2

, ,K   ) effect first, we note that a negative 

correlation between climate sensitivity and economic shocks ( 0)K   implies that 

asset returns are low in future states of nature in which temperature is high. It is 

then optimal to insure these investments more by raising the SCC. If the world 

economy benefits from higher temperature in future states, this correlation is 

positive ( 0),K   so the SCC is lower. An example of such a positive correlation 

may be volcanic eruptions, which can be seen as a combination of a negative shock 

to the climate sensitivity through particulate emissions and a negative shock to the 

economy. Another example could be innovation leading to increased installation of 

solar panel, which boosts both the economy and temperature (due to albedo effect 

of dark panels). The adjustment is large if risk aversion is high, climate sensitivity 

is more uncertain and skew, damages are more convex, and the normalized 

covariance for the climate sensitivity is large (high , , , ,T      
K ) and is non-

 
30 Consistent with our perturbation scheme, the volatility of GDP is given to leading order by the volatility of the capital 

stock neglecting the effect of climate damages and thus the carbon stock, climate sensitivity and damage uncertainties on this 
volatility. These betas are defined analogously to the betas in asset pricing theory (e.g., Lucas, 1978; Breeden, 1979), but 

they are related to ‘hedging’ of the climate asset against the only risky ‘financial asset’ in our model (capital).  
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zero even for a symmetric climate sensitivity distribution and a damage ratio that 

depends linearly on temperature ( 0).T =   

A negative correlation between damage ratio and economic shocks ( 0)K   

implies that asset returns will be low in future states of nature in which the damage 

ratio is high (over and above the effect of damages being proportional to GDP). 

This justifies a higher SCC. One example of this negative correlation may be the 

Covid-19 pandemic, which was unexpected and may lower asset returns and make 

more areas of the economy vulnerable to climate change (e.g., food supply chains 

or health systems). In the hypothetical case that the world economy benefits from 

climate damage (e.g., through ingenious water engineering in response to damages 

that improves living conditions), there is a positive correlation ( 0)K   and 

carbon should be priced less vigorously. The adjustment is large if risk aversion is 

high, the damage ratio has high uncertainty and skewness (high , ,    ) and is 

non-zero even for a symmetric damage ratio distribution ( 0 = ).  

The offsetting risk-exposure effects ( 2

, ,K   ) in (19) occur because future states 

of nature that are associated with high asset returns are associated with large 

damages (as damages are proportional to GDP). E.g., if 0,K  future states of 

nature with negative GDP shocks are associated with lower damages, which 

requires a lower SCC. Risk-insurance effects dominate risk-exposure effects if  risk 

aversion is large enough, i.e. 1  .31 

 
31 Sandsmark and Vennemo (2007) have one stochastic parameter (the loss of GDP for given temperature) and additive 

damages ( 0
D

 = ). High future damages are then associated with low future aggregate consumption, so the corresponding beta 

is negative. It relies on the product of the change in marginal utility due to damages and marginal damages themselves, which 

is ( )2  in our perturbation scheme and too small to be included. Nordhaus (2011) argues that “those states in which the 

global temperature increase is particularly high are also ones in which we are on average richer in the future”, suggesting a 

positive beta. In our perturbation theory approach this effect does not feature in our correction factors, since it requires the 
integration of a Geometric Brownian Motion (for K), when solving the differential equation for the carbon stock, which 

cannot conveniently be done in closed form. If 0,
ET

 =  this effect is zero as marginal damages are no longer proportional 

to the carbon stock E and enhanced uncertainty of this term due to uncertain new emissions does not contribute to the SCC. 
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D. Correlation between temperature and damage ratio risks 

The term *

CC ( ) )1 ( / )(/ )(T r             = + + + +  in (19) of Result 

1 captures the effect of correlation between temperature and damage ratio 

uncertainty on the SCC. This is positive if high temperature shocks are associated 

with a disproportionally high damage ratio (e.g., extreme weather/climate events 

such as hurricanes and fires as far as they are not captured by the convex 

dependence of damages on temperature), in which case the optimal SCC is higher. 

Risk aversion  plays no role, since there is no possibility of self-insuring. 

E. Result 2 

Result 2 relaxes the two assumption underlying Result 1 ( 0ET =  and 0 = ), 

while still only considering the leading-order effects of uncertainty.32 

Result 2: The optimal SCC if damages are not proportional to the carbon stock

( 0)ET   and with a delayed deterministic temperature response 0( )   is 

(20)     
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where 
* (1 ) ,ETr r  + +  

2( 1) Kr r    + − −  and ( )
1

(0)
1

(1 )F b A K= −  is 

optimal fossil fuel use without climate policy (to zeroth order of approximation). 

Like in (17), the  -terms in (20) are the uncertainty adjustments and are given by 

 

For the case 0,
ET

   we examine this effect by numerically solving the stochastic differential equations and the integral in 

Result A and find it to be small (see Appendix F). 
32 These two assumptions are known as Assumptions IV and V in Appendix A. We could also allow for the initial damage 

ratio not to be at its steady state, but this would lead to a more cumbersome expression. We allow for this in Result A. 
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(A4.1)-(A4.5) in Appendix A. We distinguish two types of multiplicative correction 

factors, for 0ET   and for 0 ,   which can be linearly combined, for example: 

0, 0 ,ET        +  , where   is the correction factor by which   in Result 

1 has to be multiplied to obtain   in Result 2. These correction factors are given 

in (D3.4)-(D3.5) in Appendix D. 

The effects of convexity of reduced-form damages ( 0ET  ) in Result 2 are 

fourfold. First, the  normalized marginal damage ratio rises with the stock of 

atmospheric carbon so that the time path for the carbon price is steeper than of 

world GDP. The correction factor 0 0
ET    reflects the more harmful effect of 

future emissions when the stock is higher. Second, convex damages boost the 

effective discount rate, since the marginal damage of a unit of carbon decays more 

quickly than the unit itself, depressing the SCC. Third, if damages are not too 

convex 10 ),( ET   the adjustment for carbon stock uncertainty is negative instead 

of zero as in Result 1. Fourth, the adjustments for the other two climatic 

uncertainties are multiplied by correction factors that are greater than one, reflecting 

rising marginal damages.  

Result 2 also captures the delay in the deterministic temperature response 

0( )  ) by the multiplicative correction factors. If Result 1 is evaluated with the 

generally higher value  , it ignores this delay and overestimates the SCC. Further 

discussion of the effects captured by Result 2 can be found in Appendix A.4.2. 

IV. Calibration 

Table 1 summarizes our calibration starting from base year 2015 with further 

details in Appendix E. To calibrate the non-climatic part of our model to match 

historical asset returns, we follow Pindyck and Wang (2013) but abstract from 

catastrophic shocks to economic growth (see Appendices E.1 and E.2). This gives 
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a coefficient of relative risk aversion of  =4.3, intergenerational inequality 

aversion of  = 1.5, pure time preference of  =  5.8% per year, trend growth of 

(0)g =  2.0% per year, volatility of asset returns of K =  12% per year1/2 and a risk 

premium of (0) (0) 2

rf Kr r − = =  6.4% per year (with (0)r  the risky and (0)

rfr  the risk-

free rate). In line with the specification in (4), we assume the global ratio of CO2 

emissions to GDP declines at a rate of 2.0% per year, which matches recent data.33 

Following Nordhaus (2017), we use world GDP at PPP of 116 trillion US dollars in 

2015. Table 1 gives details for investment, depreciation and fossil fuel costsil fuel. 

 

TABLE 1 – SUMMARY OF BASE CASE CALIBRATION 

Impatience and aversion to intergenerational inequality and risk  = 5.8%/year, IIA = 1/EIS =   = 1.5, RRA = η = 4.3 

World economy A* = 0.113 /year, GDP PPP= 116$T/year, g(0) = 2.0 %/year 

Investment, depreciation and adjustment cost i(0) = 2.8%/year,  = 0.33%/year,  = 12.5 year 

Asset volatility and returns 
K = 12%/year1/2, (0)r  = 7.2%/year,   

(0)

rfr  = 0.80%/year,  
(0)(0)

rfr r−  = 
2

K  = 6.4%/year   

Share of fossil fuel and production cost 1 −  = 4.3%, b = $5.4×102 /tC 

Preindustrial and 2015 (t = 0) carbon stocks 

Concavity of Arrhenius’law & stochastic carbon stock dynamics 

SPI = 596 GtC, S0 = 854 GtC, E0 = 258 GtC,  

0.36,E = −   = 0.65,   = 0.35%/year, 
E = 13 ppmv/year1/2 

Distribution of the climate sensitivity 
0 = 1.11,  = 1.26, 

 = 2.0%/year1/2  

 = 0.86%/year, 
  = 3.0 

Distribution of the damage ratio 
T = 0.56 ( 0ET = ),  = 0.21, 

 = 2.3%/year1/2, 
 = 2.7,  

 = 0.20/year 

Initial damage ratio and initial normalized marginal damage ratio D0 =0.29%, 0 = 2.07% GDP/TtC 

Conversion factors 1 ppmv CO2 = 2.13 GtC, 1 tC = 3.664 tCO2 

 

A. Carbon stock uncertainty 

To calibrate our 1-box model for carbon stock dynamics (4), we use the 17 linear 

impulse response functions from the survey in Joos et al. (2013) and find  =0.65 

and  =0.35%/year.34 We use the 90% confidence range 794-1149 ppmv in 2100 

 
33 The global ratio of CO2 emissions to GDP ratio declined at 2.1% per year during 2000-2015 versus a decline of 0.8% per 
year in the decade before. Nordhaus (2017) uses a decline of 1.5% per year. 
34 It is possible to estimate these values from historical data too (see Appendix E3). 
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predicted by simulations for the high-temperature scenario RCP 8.5 (Chapter 

12.4.8.1, IPCC, 2014 AR5) to calibrate E = 13 ppmv/year1/2.Fig. 1a shows the 

impulse response function for our 1-box model and Fig. 1b shows the stock of 

atmospheric carbon, including 95%-confidence bounds.35 Fig. 1 shows that our 

simple 1-box model compares well with the 4-box model fitted to the same data by 

Aengenheyster et al. (2018) and the 2-box model of Golosov et al. (2014).36,37,38 

Our confidence bands are much wider than those in Joos et al. (2013)39 and still 

much wider than the uncertainty range obtained from historical data,40 suggesting 

that model uncertainty may far exceed any inherent variability.  

 

 
35 From ( )E t = (1149-794)/3.29 = 108 ppmv, ( )exp(( ) 2 1 2 )E E tt   − == − 13 ppmv CO2 /year1/2 with t = 2100−

2005 = 95 years and using  = 0.35%/year, which corresponds to a steady-state uncertainty of 2E E  = = 155 ppmv 

CO2. The confidence band from IPCC (2014, AR5) is shown centred around the (different) mean of our prediction and 

translated in time to 2110 to reflect different initial times. Note that the RCP 8.5 scenario is associated with higher emissions 

than in our base case as can be gauged from Fig. 1b. We nevertheless use the standard devation from the RCP 8.5 scenario 

to act as an upper bound on atmospheric stock uncertainty. The probability of a value of 0E   is indeed negligibly small, 

as previously assumed, and we formally have a negligibly small atom at 0E = . 

36 For a linear N-box carbon cycle 
0

N

i i
S S

=
=  by d d i ii

gt

i t FeS S −= − , Aengenheyster et al. (2018) obtain  =

{0.2173, 0.2240, 0.2824, 0.2763},  = {0, 0.25, 2.74, 23.23}%/year with ( 0)S t = = {328, 40, 27, 5}ppmv scaled so 

( 0)S t = = 401 ppm. We adapt Golosov et al. (2014) to continuous time and get  = {0.2, 0.3215},  = {0, 0.23}%/year 

and ( 0)S t = = {0.85, 0.15}401 ppm, ignoring its third box for carbon that decays within the first decadal period.  
37 We set the initial atmospheric carbon concentration to 

0S = 401 ppm of CO2 (May 2015), corresponding to 0.854 TtC or 

3.13 TtCO2, and the preindustrial atmospheric carbon concentration to 280 ppm CO2, 0.596 TtC or 2.19 TtCO2, so that 
0E =

121 ppm CO2, 0.258 TtC or 0.94 TtCO2. Updated and historical values can be found online at 

http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html.  
38 Although our calibration for   and   captures the long-term impulse response (Fig. 1a) and stock build-up (Fig. 1b), the 

resulting underestimation of the impulse response for small time (Fig. 1a could lead to an underestimate of the SCC, 

especially for high discount rates. Although the impulse response function is less well captured by our 1-box model, this 
must be time integrated (after discounting) to evaluate the SCC. Agreement of the time path of the atmospheric stock (Fig. 
1b) is thus more important, especially if 0ET   and the dependence on the stock is nonlinear. 

39 Using the distribution at t = 95 years and  = 0.35%/year, we get 
E = 3.7 ppm/year1/2 , which is much higher than the 

value of 
E = 0.65 ppm/year1/2  obtained by Aengenheyster et al. (2018) based on Joos et al. (2013). 

40 Based on the historical Law Dome Ice Core 2000-year dataset for emissions and concentrations, we estimate 
E = 0.1-

0.15 ppmv CO2/year1/2 (see Appendix E3). Using the same dataset but fitting a Geometric Brownian Motion, Hambel et al. 

(2017) find a much larger volatility of 0.78 %/year1/2. Estimating this volatility, we find 1.4, 0.5 and 0.2 %/year1/2 for the 
periods 1800-2004, 1900-2004 and 1959-2004. This large variation of volatility with time suggest that historical volatility in 

the atmospheric carbon concentrations is better described by an Arithmetic Brownian Motion, as in (6). 

http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
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                        (a) Impulse response function                       (b) Stock of atmospheric carbon 

FIGURE 1. ATMOSPERHIC CARBON CYCLE AND UNCERTAINTY 

 

Nevertheless, we will show in section V that even with our high value of E , the 

adjustment to the optimal SCC is small for 0ET   (it is zero for 0ET = ) .41 

B. Climate sensitivity uncertainty 

We calibrate our temperature model (5) and (8a) to capture the key features of 

both the transient climate response (TCR) and the equilibrium climate response 

(ECS).42 The ECS is the equilibrium or long-term change in annual mean global 

temperature following a gradual doubling of the atmospheric carbon stock relative 

to pre-industrial levels. The TCR is the change in temperature following an increase 

of 1% in the atmospheric stock of carbon each year at the time of doubling (i.e., 70 

years). The distributions of the ECS and the TCR capture both statistical and 

modelling uncertainties, but are in our view the best characterized measures of the 

 
41 The adjustment to the SCC is potentially larger than we calculate here, since there is a risk that as global warming continues 
(sudden) releases of greenhouse gases (e.g., from thawing permafrost) and reductions in the capacity of oceans to absorb CO2 

cause additional global warming. The existing modelling of such positive feedbacks “do not yield coherent results beyond 

the fact that present-day permafrost might become a net emitter of carbon during the 21st century under plausible future 
warming scenarios (low confidence)” (IPCC, 2014, AR5, Chapter 12.4.8.1) and we thus exclude it here. 

42 From (7), 
1

2 ( , )PIT T E E  
+

 = =  with   normally distributed with time-varying mean 
0 exp( )t   = −  

( )exp( )1 t −+ −  and standard deviation ( )1 exp( 2 ) 2t     = − − , and its skewness is given to leading-order by 

 ( )
3 3(1 )3 6

2 2 2
41 ( )skew E E 3 ( ) / ( ).T T T


     

   
+

+    − = +      
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uncertainty associated with predicted temperature increase in the climate science 

literature.  

 
 

         (a) Transient climate response                                     (b) Equilibrium climate sensitivity 
FIGURE 2. CLIMATE SENSITIVITY (PROBABILITY DENSITY FUNCTION) 

 

Fig. 2 shows the range of probability density functions proposed for the TCR and 

ECS in IPCC (2014, AR5).43 We take the mean of these distributions and fit our 

model to the first two moments of the TCR (mean and variance) and the first three 

moments of the ECS (mean, variance and skewness), as well as an initial 

temperature of 0T = 0.89°C above preindustrial. Reflecting our different initial CO2 

concentration from the TCR scenario, we ensure that our model matches the 

uncertainty of the TCR at the time the concentration reaches twice preindustrial, 

i.e., at t = 17 years from initial time (2015), rather than the original definition of 70 

 
43 We take the 7 distributions for the TCR and the 13 distributions for the ECS from Fig. 10.20 in Chapter 10.8 of IPCC 

(2014, AR5). The grey area in Fig. 2 corresponds to one standard deviation either side of the mean of these different 

distributions (negative values not shown). More recent climate model simulations find a higher range for the ECS which is 
due to cloud feedback and the interaction with aerosol forcing (Meehl et al., 2020). These effects are not captured by our 

calibration. 
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years from preindustrial.44,45 Tables 2 and 3 show that we match these moments 

well, and are in line with the consensus likelihood ranges in IPCC (2014, AR5). 

Fig. E2 in Appendix E plots the distribution of temperature as function of time.  

 
TABLE 2. CLIMATE SENSITIVITY UNCERTAINTY 

 TCR ECS 

 IPCC (2014, AR5) Our calibration IPCC (2014, AR5) Our calibration 

E[T2] 1.7°C 1.7°C 2.8°C 2.8°C 

var[T2] 0.19°C2 0.20°C2 1.5°C2 1.7°C2 

skew[T2] 0.16°C3 0.054°C3 2.4°C3 2.5°C3 

 
TABLE 3. CLIMATE SENSITIVITY LIKELIHOOD 

  IPCC (2014, AR5) Our calibration 

TCR 1-2.5°C ‘very likely’ (90-100%) 91% 

 > 3°C ‘extremely unlikely’ (0-5%) 0.72% 

ECS 1.5-4.5°C ‘likely’ (66-100%) 75% 

 < 1°C ‘extremely unlikely’ (0-5%) 4.2% 

 > 6°C ‘very unlikely’ (0-10%) 2.3% 

C. Damage ratio uncertainty 

To calibrate the damage ratio and its uncertainty given in (3), we use the survey 

by Nordhaus and Moffat (2017) (henceforth NM17) including their subjective 

weights to reflect the reliability of different estimate shown in Fig. 3.46 From these 

data, we estimate a mean 
0 = =0.21, standard deviation .


 = .0.036, damage 

convexity T  = 0.56 and skewness parameter  = 2.7 of the damage ratio,47 which 

we take to correspond to the steady state, setting the mean-reversion coefficient   

 
44 To capture these and initial temperature, we match the TCR at 

PI 0ln(2 / ) / 0.02t S S= =  17 years from 2015 (instead of 70 

years from preindustrial). We thus deviate from the formal definition of TCR, but argue this is justified as the high-level 

uncertainties in TCR and ECS are by far the best characterized of all summary statistics. This gives 
0 = 1.11,  = 1.26, 

0
T = 0.89°C, 

 = 2.0%/year1/2, 
 = 3.0 and 


 =  0.86% per year corresponding to an e-folding scale of ( )1/ 2  = 58 

years. Climate sensitivity (as a proxy for temperature) is initially below its long-run value (
0  ). 

45 The probability of 0   is indeed negligibly small, as previously assumed. Since the truncated variable max[ ,0]

cannot take negative values, we formally have a negligibly small atom at 0 =  (and 
2 0T = ). 

46 Since our formulation does not allow for negative damages, we omit these estimates, which were given low weights of 0.1 

by NM17. Fig. 3a shows omitted estimates in open circles and included estimates in closed circles. Since   cannot take 

negative values,  there is a negligibly small atom at  = 0 (and D = 0). 
47 Ackerman and Stanton (2012) and Weitzman (2012) used a damage function which is even more convex at high 

temperatures. NM17 examines evidence for thresholds or large convexities in the damage function, but did not find any. 
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to a large value of 20%/year (so 2   = = 2.3%/year1/2). The distribution has 

a positive standardized skewness  *skew | 3 /D T  =  = 0.29. 

The continuous red line in Fig. 3a denotes the expected damage ratio with the red 

shaded area corresponding to the 90% confidence band.48 Fig. 3a also shows 

NM17’s preferred regression
2( 0.0018 ),D T= which agrees closely with our 

expected damage ratio. Finally, following Nordhaus and Sztorc (2013) and NM17, 

we adjust damages shown in Fig. 3a upwards by 25% at all temperatures to reflect 

damages not included in current estimates. Combined with our calibrated value of 

0.36E = −  (see Appendix E4), we obtain proportional damages ( 0)ET =  from 

this calibration.  

 
(a) Proportional damages ( 0.56, 0T ET = = )                     (b) Convex damages ( 1, 0.28T ET = = )  

FIGURE 3. DAMAGE RATIO UNCERTAINTY 

 

Fig. 3b also gives a calibration in which the damage ratio is constrained to be 

quadratic in temperature, so convex damages ( 1,T =  0.28).ET = 49 Our estimates 

imply  normalized marginal damage ratio 
0 0( , , )E   of 2.1% and 1.8% GDP/TtC 

 
48 Further details are given in Appendix E6. 
49 Setting 1T = , we obtain 06.3, 0.43, 0.039,    === =  1/22.5%/year , 0.20/year  = = and 0.28.ET = This 

corresponds to a standardized skewness  *skew | 0.27D T =  (similar to the unconstrained case). See Fig. 3b.  
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for proportional and convex damages, respectively. The normalized marginal 

damage ratio and the optimal SCC rise as the atmospheric carbon stock rises with 

continued emissions (for 0ET  ) and as the expected climate sensitivity rises to 

equilibrium, as captured by the two correction factors in Result 2. Golosov et al. 

(2014, p. 67-68) have a constant   = 2.4% GDP/TtC, which includes an upward 

adjustment for tipping risk. 

V. Estimates of the Optimal Risk-Adjusted SCC 

A. Market- versus. ethics-based calibration 

Using Result 2 and the calibration in Table 1, Table 4 reports estimates of the 

optimal SCC derived from the market-based calibration (base case, with 

proportional damages), where all risk mark-ups in this and the other tables below 

are a percentage of the deterministic SCC.50 The table shows the important role of 

the initial value of the climate sensitivity parameter 0 : if it is mistakenly set to the 

higher steady-state value  , the optimal SCC roughly doubles. This replicates a 

result found in Traeger (2017), who models temperature delay explicitly; hence our 

simplified modelling of temperature delay in (5) and (8a) seems to work well. 

Similarly, if one does not allow for the lags in reaching the ECS and its distribution 

(by setting 
 → ), the optimal risk-adjusted SCC is considerably increased (cf. 

column 3), as the large uncertainties associated with the ECS are then experienced 

instantly. The SCC of $6.6/tCO2 is low, since it is based on market rates of return. 

Our calibration has EIS = 1/1.5 < 1. Asset pricing theory (ATP) typically assumes 

EIS > 1 to ensure that macroeconomic uncertainty depresses share prices, in which 

case macroeconomic uncertainty also lowers the SCC. To match the same risky and 

 
50 To assess the accuracy of the approximations made in Result 1 and 2 used in Tables 4-8 relative to that of Result A, we 

evaluate Result A numerically and show that the error is small (see Appendix F for details).  
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risk-free financial rates of return, the rate of impatience   drops to 4.8% per year 

if we set EIS = 1.5. The ATP column in Table 4 then confirms that the adjustment 

for macroeconomic uncertainty is −1.5 $/tCO2 (negative), and the deterministic 

SCC is higher at 6.9 $/tCO2 (cf. Results 1 and 2 and Jensen and Traeger (2014) and 

Cai and Lontzek (2019).   

 
TABLE 4. ESTIMATES OF THE SCC: MARKET-AND ETHICS-BASED 

 

Market-based calibration Ethics-based calibration 

base case 0 =   =   ATP: EIS > 1 
base 

case 
0 =   =   

Deterministic SCC ($/tCO2) 4.1 8.4 8.4 6.9 11.5 20.8  20.8 

due to economic uncertainty ($/tCO2) 1.3 2.4 2.4 -1.5 18.7 26.2 26.2 

due to carbon stock uncertainty  0 0 0 0 0 0 0 

due to climate sensitivity uncertainty 0.4 0.6 2.6 0.4 4.7 6.4 11.2 

due to damage ratio uncertainty 0.7 1.4 1.7 0.7 4.9 7.5 8.1 

Risk-adjusted SCC ($/tCO2) 6.6 12.8 15.0 6.6 39.8 61.0 66.3 

Economic risk mark-up 
Climate sensitivity risk mark-up 

Damage ratio risk mark-up 

Total risk mark-up 

32% 
9% 

18% 

59% 

29% 
7% 

17% 

53% 

29% 
31% 

20% 

80% 

-21% 
7% 

13% 

-4.9% 

163% 
41% 

43% 

247% 

126% 
31% 

36% 

193% 

126% 
54% 

39% 

219% 

Discount rate r(0) (per year) 7.2% 7.2% 7.2% 7.2% 2.9% 2.9% 2.9% 

Estimates are for proportional damages ( 0
ET

 = ), asset return volatility (
K

 = 12%/year1/2), and  = 5.8%/year (market-

based) or  = 1.5%/year (ethics-based), except for APT (asset pricing theory), which has EIS = 1.5 and  = 4.8%/year. 

 

The two market-based calibrations (the base and APT)imply a growth-corrected 

discount rate of 5.2% per year, which is very high; this is why the SCC is very low. 

This is the inevitable result of deriving policy-maker preferences from decisions 

made in financial markets. This is not necessarily a consensus view. For example, 

Drupp et al. (2018) found that three quarters of climate experts found a social 

discount rate of 2% per year acceptable. We therefore continue with what we call 

an ethics-based calibration, in which we use a much lower rate of pure time 

preference (1.5% instead of 5.8% or 4.8% per year), which corresponds to a risk-

adjusted (not growth-corrected) discount rate 
(0) * (0)r r g= +  of only 2.9% (instead 

of 7.2% per year in the market-based cases).51 Although not modelled here, this 

 
51 Appendix G also shows outcomes for the optimal SCC under common alternative calibrations. 
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would require policy makers to also implement a capital subsidy attain the socially 

optimal outcome and correct for the fact that households save too little from a social 

perspective (Belfiori, 2018; Barrage, 2018).52 As shown in Table 4, this pushes up 

the deterministic SCC to $11.5/tCO2 and the risk-adjusted SCC to $39.8/tCO2. 

Using market-based volatility, the mark-up for asset price risk is 163%, which 

exceeds that for climate sensitivity (41%) and damage ratio risk (43%). Starting off 

at the long-run value of the climate sensitivity parameter 0( ) =  boosts the 

deterministic SCC considerably as before but lowers all risk mark-ups. Ignoring 

both deterministic stochastic temperature delays so that the ECS and its distribution 

is reached instantaneously (setting 
 → ), the risk-adjusted carbon price rises to 

$66.3/tCO2. In our calibration, the large uncertainty and skewness of the ECS (vs. 

the TCR) only arise in the relatively long run (with an e-folding time of 58 years). 

From comparing the market- and ethics-based calibrations, we find that the ECS 

plays a more significant role for lower ethics-based discount rates, as is clear from 

the case in which the distribution of the ECS is achieved instantenously ( ). →  

B. Volatility from asset returns vs. GDP 

The most important drawback of our AK-model is that asset returns (capital 

growth) and GDP growth have the same volatility (see also the discussion in 

Pindyck and Wang (2013)), while the former is empirically much greater. Ideally, 

we would have a model general enough to calibrate asset returns and GDP growth 

separately but it is not trivial to extend Result 1 and 2 for this.53 However, if we 

calibrate to GDP volatility, Table 5 shows that the mark-up for economic risk drops 

 
52 E.g., Gollier (2018) relies on ethical arguments to use a zero or much lower discount rates as an alternative to discount 

rates derived from asset market returns. To analyse this problem, the government should maximize expected welfare using 

low ethically-motivated discount rates subject to the constraints of the decentralized market economy, which is characterized 

by a higher discount rate. An alternative is to adjust  when lowering  to ensure that the risky and safe interest rates are still 

matched to the data, but this would not affect the optimal SCC given in Results 1 or 2. 
53 One way of obtaining a higher asset price volatility than GDP volatility is to assume that dividends are a leveraged function 

of output or consumption (e.g., Bansal and Yaron, 2004; Wachter, 2013).  
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dramatically.54 Due to the higher risk-adjusted discount rate 
(0)r , the mark-ups for 

climate sensitivity and damage ratio uncertainty and the risk-adjusted SCC are also 

considerably reduced.  

TABLE 5. ESTIMATES OF THE SCC: ASSET RETURN VS. GDP VOLATILITY 

 

Asset return volatility  

(
K

 = 12%/ year1/2) 

GDP growth volatility  

(
K

 = 1.5%/ year1/2) 

base case 6.0 =  2.0 =  base case 6.0 =  2.0 =   = 0.1%/year 

Deterministic SCC ($/tCO2) 11.5 11.5 8.1 11.5 11.5 8.1 25.5 

Risk-adjusted SCC ($/tCO2) 39.8 92.2 87.2 14.6 14.6 10.2 34.1 

Economic risk mark-up 
Climate sensitivity risk mark-up 

Damage ratio risk mark-up 

Total risk mark-up 

163% 
41% 

43% 

247% 

492% 
112% 

101% 

705% 

691% 
149% 

134% 

974% 

1% 
11% 

15% 

27% 

1% 
11% 

15% 

28% 

1% 
9% 

15% 

25% 

2% 
15% 

16% 

34% 

Discount rate r(0) (per year) 2.9% 2.3% 2.3% 4.5% 4.5% 5.5% 3.1% 

Estimates in this table are for proportional damages ( 0
ET

 = ) and  = 1.5%/year (ethics-based calibration), except for 

the last column, which considers a lower rate of impatience. 

 

With asset return volatility, an increase in RRA55 from 4.3 to 6.0 depresses the 

discount rate 
(0)r from 2.9% to 2.3% per year and pushes up the risk-adjusted SCC 

to $92.2/tCO2, corresponding to a total risk mark-up of 705%, whereas with GDP 

volatility this effect is negligibly small. With asset return volatility, an increase in 

IIA from 1.5 to 2.0 also pushes down the discount rate 
(0)r  to 2.3% per year and 

the risk-adjusted SCC up to $87.2/tCO2. With GDP volatility, a similar increase in 

IIA instead increases the discount rate 
(0)r  (from 4.5% to 5.5% per year), pushes 

down the deterministic SCC from $11.5 to $8.1/tCO2 and the risk-adjusted SCC 

from $14.6 to $10.2/tCO2.  

Summarizing, the effect of RRA on the risk-adjusted SCC depends crucially on 

the magnitude of economic volatility and is very substantial for asset return 

volatility but negligibly small for GDP growth volatility. More IIA substantially 

 
54 Historical data for the growth rate of world GDP for 1961-2015 imply 

K = 1.5 %/year1/2, which we use here. 
55 We use the short-hands RRA and IIA to denote relative risk aversion (RRA = ) and intergenerational inequality aversion 

(IIA = ), respectively.  
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boosts the risk-adjusted SCC for asset return volatility,56 but decreases for GDP 

growth volatility. This accords with Crost and Traeger (2013), Ackerman et al. 

(2013) and Hambel et al. (2017), who all use uncertainty based on GDP.57  

 
TABLE 6. ESTIMATES OF THE SCC: CONVEXITY OF THE DAMAGE FUNCTION 

 
Proportional damages 

 ( 0ET = )  

Convex damages  

( 0.28ET = ) 

Highly convex damages 

(AS12, 0.63ET = ) 

Deterministic SCC ($/tCO2) 25.5 26.8 45.9 

Risk-adjusted SCC ($/tCO2) 34.1 41.9 87.6 

Economic risk mark-up 
Carbon stock risk mark-up 

Climate sensitivity risk mark-up 

Damage ratio risk mark-up 
Total risk mark-up 

2% 
0% 

15% 

16% 
34% 

1% 
-1% 

30% 

26% 
56% 

-1% 
-1% 

61% 

21% 
91% 

Discount rate r(0) (per year) 3.1% 3.1% 3.1% 

Estimates in this table are for  = 0.1%/year (ethics-based calibration) and GDP growth volatility (
K

 = 1.5%/ 

year1/2).   

C. Convexity of the damage function 

Table 6 considers the effect of our convex damage function ( ET = 0.28) on the 

SCC. Generally, the SCC is larger due to larger damages for higher temperatures 

(cf. Fig. 3b), which is felt more strongly for lower discount rates.58 There is now a 

small negative adjustment for carbon stock uncertainty due to the convexity of 

marginal damages for ET = 0.28 (cf. (A4.1), Result 2).59 The climate sensitivity 

risk mark-up increases considerably due to the more convex damages-temperature 

 
56 As 

2
0

K
g −  (cf. (18), when written as 

* (0) 2 / 2)( 1)(
K

r g  + −= − ). 

57 With GDP growth volatility, it is possible to use an even lower ethics-based value of impatience of  = 0.1%/year 

without negative discount rates and unbounded value of the SCC, which we will use below. 
58 This effect more than compensates the higher effective discount rate due to atmospheric decay of carbon in the case of 

convex damages (cf. 
* (1 )

ET
r r  + +  in Result 2). 

59 IPCC (2014, AR5) suggests that carbon cycle uncertainty and climate sensitivity uncertainty contribute about equally to 

uncertainty in temperature. From our temperature model (5), we obtain ( ) ( )/ E[ ] / / E[ ]1 1T E ET E     = +  + +   and 

from Table 1 we estimate the first term to be 48% and the second term to be 36% at a typical value of the future carbon stock 

of E[E] = 550 ppmv (see Fig. 1b), thus also of comparable magnitude. However, this does not mean that both terms contribute 
equally to the SCC. With proportional damages, carbon cycle uncertainty has zero effect (Result 1). With convex damages, 

climate sensitivity has a large and positive effect on the SCC, whilst carbon cycle uncertainty has only a small negative effect. 
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relationship ( T = 1.0 vs. 0.56 for proportional damages). If we consider the highly 

convex damage function of Ackerman and Stanton (2012) (i.e. AS12) with damages 

rapidly rising above 1°C, we get an even larger deterministic SCC of $45.9/tCO2, a 

climate sensitivity risk mark-up of 61% and a risk-adjusted SCC of $87.6/tCO2.
60,61  

D. Correlation of climate sensitivity and damage risks with the economy 

Table 7 shows that, if the elasticity of damages with respect to world GDP is cut 

from 1 to D = 0.8, two opposing effects occur: damage shocks are no longer fully 

insured, depressing the risk-adjusted discount rate (the insurance term in (18)) and 

pushing up the SCC, and damages now grow less rapidly than GDP, pushing up the 

discount rate (the growing-damages term in (18)) and depressing the SCC. Table 

7 shows that the insurance-effect dominates if economic volatility is based on asset 

returns, and the growing-damages effect if it is based on GDP growth. 

Taking economic volatility based on GDP growth, the SCC drops from $40.1 to 

$28.1/tCO2 as the correlation coefficient between the climate sensitivity and GDP, 

is increased from its minimum to its maximum value (
K  from -1 to 1). The 

reason is that, as correlation between climate sensitivity shocks and GDP increases 

and flips from negative to positive, the scope for insurance increases, and carbon 

 

60 The damage function of AS12 is 
2 6 6.76 1

1 (1 0.00245 5.021 10 )D T T
− −

= − + +  . As our formulation has power-law damage 

functions, we fit 
,AS

AS

1 1
( )

T
D T C




+ +
=  to the AS12 damage function over the range 0-4.0°C to obtain 

,AST
 = 1.54 and 

AS
C = 0.99, as illustrated in Fig. E4a. We retain the distribution for  and the value of 


  for proportional damages given 

in Table 1.  
61 As an alternative to our multiplicative uncertainty, Crost and Traeger (2014) have argued that the power-coefficient in the 

relationship between damages and temperature should be uncertain. To illustrate this, we calibrate 
0

D D T


=  with 

2
~ ( , )N

 
   , to obtain 

0
D = 0.20, 


 = 1.1 and 


 = 0.59, as shown in Fig. E4b. Since damages cannot be stochastic at 

1.0°C, we only use damage estimates for which temperature exceeds 1.1°C. From a leading-order expansion in , we obtain 

a standardized skewness which rises with temperature, i.e. skew*( | ) 3 log( )D T T


=  (e.g., to 2.45 at 4C), which is much 

higher than our (constant) value of 0.29, especially at higher temperatures. Fig. E4b indicates that this alternative gives a 

damage ratio distribution that is also more uncertain (wider confidence bands) at temperatures higher than 3C or 4C 

compared to convex damages. Both the higher skewness and higher uncertainty push up the optimal SCC for low discount 

rates, but this effect is like our case of convex damages (Fig. 3b).  
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can be priced less. Similarly, the SCC drops from $36.5 to $31.7/tCO2 as the 

correlation coefficient between the damage ratio and GDP is increased from its 

minimum to its maximum value ( K  from -1 to 1). Finally, if we vary  from -

1 to 1, the SCC increases from $29.2 to $39.0/tCO2, with the largest value 

corresponding to the case when future climate sensitivity shocks are perfectly 

(positively) correlated with future damage ratio shocks.62 

 
TABLE 7. ESTIMATES OF THE SCC: CORRELATED RISK 

 
Asset return 

volatility  

GDP growth volatility  

(
K

 = 1.5%/ year1/2) 

 base 
D  

base 
D  

K  
K  

  

0.8 0.8 -1 1 -1 1 -1 1 

Deterministic SCC ($/tCO2) 11.5 9.9  25.5 19.0 25.5 25.5 25.5 25.5 25.5 25.5 

Risk-adjusted SCC ($/tCO2) 39.8 122.9  34.1 25.3 40.1 28.1 36.5 31.7 29.2 39.0 

Economic risk mark-up 

Climate sensitivity risk mark-up 

Damage ratio risk mark-up 
Total risk mark-up 

163% 

41% 

43% 
247% 

811% 

181% 

156% 
1147%  

2% 

15% 

16% 
34% 

3% 

14% 

16% 
33% 

2% 

15% 

40%
57% 

2% 

15% 

-7% 
10% 

2% 

15% 

26%
43% 

2% 

15% 

7% 
24% 

2% 

15% 

-3% 
15% 

2% 

15% 

36%
53% 

Discount rate r(0) (per year) 2.9% 2.2% 3.1% 3.5% 3.1% 3.1% 3.1% 3.1% 3.1% 3.1% 

Estimates in this table are for proportional damages ( 0
ET

 = ), for  = 1.5%/year in the case of asset return volatility (

K
 = 12%/ year1/2), and for  = 0.1%/year in the case of GDP growth volatility (

K
 = 1.5%/ year1/2). 

 

VI. Concluding Remarks 

Using perturbation methods, we have derived a tractable closed-form 

approximate solution for the optimal risk-adjusted SCC under economic and 

climatic uncertainties allowing for skewed distributions and accounting for the time 

scales on which the uncertainties arise and their correlation. Our solution is a better 

approximation if damages are a small fraction of world GDP, which they are for 

most available estimates. Our solution offers new analytical insights and 

complements insights from numerical solutions of stochastic, dynamic, nonlinear 

systems. We have calibrated our uncertainties based on high-level surveys (IPCC 

 
62 The effects of ,

EK E
   and 

E
  on the risk-adjusted SCC are very small in our calibation, so we omit these here. 
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(2014, AR5) for atmospheric carbon stock and climate sensitivity uncertainties and 

Nordhaus and Moffat (2017) for damage ratio uncertainty. 

We confirm earlier results that the optimal SCC decreases with increasing 

intergenerational inequality aversion if economic growth adjusted for its 

uncertainty is positive, but increases in risk aversion if economic growth (or asset 

returns) are volatile provided the elasticity of intertemporal substitution is less than 

one. If damages are proportional to GDP, there is an insurance effect which curbs 

the optimal SCC. If the elasticity of damages with respect to GDP is below one, 

there is less insurance potential, which increases the SCC, but damages grow less 

rapidly, which reduces the SCC (cf. Dietz et al., 2018). In our simulations, the first 

effect dominates if economic volatility is derived from asset returns, but the second 

effect dominates if volatility is derived from GDP growth.  

Uncertainty in atmospheric carbon stock dynamics only requires adjustments to 

the SCC if damages are convex, but these effects are negligible if based on historical 

uncertainty and negative and small if based on future projections. Uncertain climate 

sensitivity increases the SCC significantly, especially due to the skewness of the 

equilibrium climate sensitivity distribution, further enhanced by the convex 

dependence of damages on temperature. The magnitude of this mark-up depends 

crucially on the time scale on which it arises, and the much larger and more skew 

equilibrium climate sensitivity only plays a role for lower ethics-based discount 

rates.  There is some evidence that the distribution damage ratio is right-skewed 

with an increase in the optimal SCC as a result. These results are complementary 

to those of Traeger (2017). 

Our solution for the optimal SCC also allows for correlated risks. If relative risk 

aversion exceeds one, the risk-insurance effects dominate the offsetting risk-

exposure effects resulting from damages being proportional to GDP. It is thus 

optimal to insure and raise the SCC if climate sensitivity and economic shocks are 

negatively correlated. If risk aversion exceeds one, we also show that the optimal 
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SCC is higher if damage ratio and economic shocks are negatively correlated. This 

occurs if asset returns are high in future states of nature in which the damage ratio 

is lower than expected. If risk aversion equals one, correlation of damage ratio or 

climate sensitivity risks with economic risks do not affect the SCC as in Lemoine 

(2020), but correlation between climate sensitivity and damage ratio risks does. 

We have made two crucial simplifications in our analysis. First, we have assumed 

that all forms of climatic uncertainty that might exist are captured by present-day 

disagreement in the scientific literature about four key metrics: the atmospheric 

carbon stock in 2100 (given an emission scenario), the transient climate response, 

the equilibrium climate sensitivity and the climate damage ratio. We thus capture 

only ‘known unknowns’, and present-day disagreement may underestimate future 

uncertainty (cf. ‘unknown unknowns’). 63 If, on the other hand, learning takes place, 

we may be overestimating uncertainty. Furthermore, through our use of stochastic 

processes of the Ornstein-Uhlenbeck type to model climatic uncertainty, we impose 

a particular shape of the (joint) probability distribution and its variation in time. In 

doing so, we have ruled out ‘ab-normal’ events associated with the (fat) tail of the 

probability distribution, including tipping. We have also ruled out climatic 

uncertainty that grows continuously with increasing time horizons (as for example 

captured by geometric vs. arithmetic Brownian motions or even more rapidly as in 

long-run risk models).  

Second, our analysis is based on a very parsimonious representation of the 

climate, which captures some but not all features of state-of-the-art climate models. 

Our 1-box atmospheric carbon stock model (similar to Golsov et al. 2014) does not 

fully capture the slowing rate of carbon decay with time, potentially causing an 

underestimate of (short-term) temperature increase. Yet, our temperature response 

 
63 In a different context, Rich and Tracy (2010) find little evidence that disagreement among inflation forecasters is a useful 

proxy for uncertainty about forecasts.  
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does not suffer from the inertia for which many integrated assessment models have 

recently been criticized (Mattauch et al., 2020).  

 Future research should be aimed at models with ethics-based discounting for 

policy makers and market-based discounting for the private sector that are general 

enough to distinguish volatility of equity returns and GDP growth. We have 

abstracted from long-run risk in economic growth (Bansal and Yaron, 2004) and a 

downward-sloping term structure resulting from mean reversion in economic 

growth (Gollier and Mahul, 2017), both of which tend to boost the SCC.64 We need 

robust empirical estimates and more structural underpinning of correlations 

between climate sensitivity and damage ratio shocks with the economy. Other 

challenges are to allow for compound Poisson shocks to temperature and damages 

(cf. Hambel et al., 2018; Bretschger and Vinogradova, 2019; Bansal et al., 2016), 

positive feedbacks such as the CO2 absorption capacity of the oceans declining with 

temperature (Millar et al., 2016), the timing of climatic uncertainty, the risk of 

tipping points (e.g., Lemoine and Traeger, 2014, 2016a; Lontzek et al., 2016; Cai 

et al., 2016; van der Ploeg and de Zeeuw, 2018; Cai and Lontzek, 2019), which may 

further increase the optimal SCC. Finally, future research may attempt to 

distinguish between modelling disagreement and statistical uncertainty. Robust 

optimal control techniques may also be used to deal with modelling uncertainties 

in climate policy (e.g., Rudik, 2020). 
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ONLINE APPENDIX 

THE RISK-ADJUSTED CARBON PRICE 

Ton van den Bremer and Frederick van der Ploeg 

 

Appendix A. Perturbation Theory 

A.1. General framework 

Perturbation theory is a method for finding an approximate solution to a complicated 

problem by starting with the exact solution of a related, simpler problem. The problem is 

thus not solved exactly, but instead so-called ‘small’ terms are added to adjust the solution 

of the simpler, exactly solvable problem. Perturbation theory provides a formal framework 

to control how small these adjustment terms are. 

In general, after substitution of the optimality conditions for the forward-looking variables, 

any HJB equation takes the form 

(A1.1)   ( ), 0J =x x ,  

where the ‘operator’  is typically nonlinear, includes first- and second-order derivatives 

of the value function J  with respect to the vector of states x , which may include time, and 

is also a function of x  directly. Provided a (single) small parameter , defined so that we 

return to the simpler, exactly solvable problem in the limit 0→ , can be identified, we 

can solve this HJB for the value function ( )J x  using perturbation theory. Following 

practice in perturbation theory (e.g., Van Dyke, 1975; Kevorkian and Cole, 1996; Bender 

and Orszag, 1999; Nayfeh, 2004), the solution for the value function then takes the form 

of a series in  

(A1.2)  
(0) (1) 2( ) ( ) ( ) ( ),JJ J= + +x x x  

where the dependence of the value function on the states x  continues to be nonlinear. To 

be clear, (A1.2) is not a Taylor-series expansion. Instead, (A1.2) expresses the solution as 

a series of adjustments (depending on the small parameter ) to the so-called zeroth-order 

solution 
(0) ( )J x , which corresponds to the solution of the simpler, exactly solvable 

problem referred to above. In the limit 0→ , 
(0)( ) ( )J J→x x . The zeroth-order solution 
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is said to be (1)  since 
0 1=  and thus ‘not small’. The subsequent terms in (A1.2) adjust 

the solution if 0 , where the first-order term 
(1) ( )J x  is the so-called ‘leading-order’ 

adjustment to the solution. Formally, in the limit of an infinite number of terms in (A1.2), 

the solution of the simpler problem plus all its adjustments, provided the series is 

convergent, become equal to the exact solution of the complicated problem ( )J x . In 

practice, only a finite number of terms gives a reasonable approximation, and the series 

solution is truncated. In (A1.2), the series solution is accurate up to first order in , and the 

error is thus 2( ) .  

Having expanded the value function in (A1.2), we also expand the operator : 

(A1.3)  
(0) (1) 2( ),= + +  

where 
(0)

 contains all operations that leave the order unchanged and 
(1)

 contains all 

operations that increase the order by . Combining (A1.2) and (A1.3), the general form of 

the HJB (A1.1) becomes 

(A1.4)  ( )(0) (1) 2 (0) (1) 2( ) ( ) ( ,) ( 0),J J+ + +  =+ x x x which can be 

expressed as a series solution itself by expanding out the brackets 

(A1.5)  ( )(0) (0) (0) (1) (1) (0) 2

( ) )1 (

( ) 0.( ), ( ), ( ),

O O

JJJ     + + +      =x x x x x x  

We note that the term 
2 (1) (1) ( ),J  x x  that arises from (A1.4) is small and of the same 

order as terms previously ignored in (A1.2) and (A1.3), and can therefore also be ignored 

in (A1.5); this term is contained in the 
2( )  error in (A1.5). Solving the HJB equation 

using perturbation theory then amounts to solving (A1.5) successively at each order. For 

the first two orders the resulting two equations are 

(A1.6)  
(0) (0)(1) : 0,( ),J  = x x  

(A1.7)  
(0) (1) (1) (0)( ), ( )( ,) : 0.J J   +    =x x x x  

We first solve (A1.6) for the zeroth-order solution and then solve (A1.7) for the first-order 

solution 
(1) ( )J x  using the (now known) zeroth-order solution 

(0) ( )J x  from (A1.6).  

A.2. Perturbation theory applied to our model 

To apply the framework introduced in section A.1, we take several steps. First, we 

identify the small parameter , which we find by writing the problem in non-dimensional 

form (section A.2.1). Second, we must choose the structure of our perturbation expansion, 

depending on how and where the small parameter  appears in the HJB equation (section 
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A.2.2). Third, we perform the perturbation expansion and then solve the HJB equation at 

zeroth order (section A.2.3) and first order (section A.2.4), respectively.  

A.2.1. Non-dimensional form and identification of the small variable 

Following standard practice in the physical sciences, we begin by writing the HJB 

equation (14) in non-dimensional form1. To do so, we normalize the four states K , E ,   

and    by their initial values (at 0t = ):2 

(A2.1)  
0 0 0 0

ˆˆ ˆ ˆ,  ,  ,  ,
K E

K E
K E

 
 

 
     

so that all four hatted variables are equal to 1 at 0t = . We define non-dimensional time 

0t g t  with ( )00 0 0, ,g g E E     = = =  the growth rate of the economy without 

additional climate change (this growth rate is constant in time). We define the non-

dimensional forward-looking variables as 

(A2.2)  
0 0

ˆˆ ,  
F C

F C
F C

  ,  

where ( ) ( )( )0 0

11

0 1F A E b K −  and 0 0 0C g K  (these are not the initial values of F 

and C, as initial values of the forward-looking variables are not known at this stage in the 

solution procedure).  In accordance with the non-dimensional form (A2.1)-(A2.2), we 

further define 
1

0 0 ,ˆ Jg CJ −  
0 ,I I C 0

ˆ ,C    0Ŷ Y C ,  0
ˆ g   and  

0 ,i i g

where / K   and / .i I K   

In non-dimensional form, the HJB equation (14) now becomes 

(A2.3)

( )

( )

ˆˆ

ˆ ˆ ˆ
ˆ ˆ, 1

2

1

2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1

1 1

1

(11 ˆ0 ( ) ( )
1

(1 )

1 1 1 1

ˆ ˆˆ )
ˆ ˆ ˆ ˆ ˆˆˆmax

ˆ

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆ (ˆ ˆ ˆ ˆ ˆ( ) )
2 2 2 2

gt

t K E
C F

K EKK EE

C J
J J J Fe E

J

J J J K J J J

i K



 





      

 
 




     



   

−

− −

−

−

−
−


− −

= + −
− −





+ +

+ +


+ +− − + +


 

 
1 Through normalizing all variables by typical values these variables may take, we remove the 

physical dimensions (e.g., time) and therefore the measurements units (e.g., years) of these variables 

in a process known as non-dimensionalization.  
2 We do not distinguish between  ,   and max( , 0) , max( , 0)  here for simplicity, as we show in 

section IV that the probabilities of    and   becoming zero or negative are negligibly small.  
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ˆ ˆ ˆ ˆ ˆˆˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ,

K E K K EK KE K K E

E

E K EK

EE

J K J K J K J

J J

    

  

 

 

          

   

+ + + +

+ +
 

where 1ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ( , , ) ˆI CY bF C A E K bF F   −= − − = − − and 
2

ˆ ˆˆ(1/ 2)i i  = − −  with 

1 1

0 0 0
ˆ .A AF g K − −  The resulting non-dimensional parameters are 

(A2.4)

0
0

0 0 0 0 0

0 0 0 0 0 0 0 0 0

0

0

0 0 0 0

ˆ ˆ ˆ 

.

,  ,  ,  ,  ,

 

ˆ ˆˆ ˆ,  

,

,  ,  

ˆˆ ,  ,  ˆ ˆ ˆ ˆ ,  ,  ˆ,  K E
K E

bF g
b g

g g K g g g E g g

F
g

g g g E g g






 





  

   


 
  


  






  

      

  = 





 

Except for b̂ , ̂ ,   and 
ˆ , which respectively measure the relative cost of fossil fuel use, 

the relative contribution of new emissions to the total atmospheric carbon stock, and the 

ratios of the steady-state and initial values of the climate sensitivity and the climate damage 

parameters, the non-dimensional parameters in (A2.4) measure the different rates in the 

economy relative to the growth rate 0g . We assume all these non-dimensional parameters 

are (1)O . That is, they are not small parameters, and their effects must be fully accounted 

for in our solutions and cannot be approximated using perturbation theory.  

Having assumed that all non-dimensional parameters in (A2.4) are (1),  it is not 

immediately obvious how we can use perturbation theory to simplify the solutions to the 

HJB equation (A2.3). However, one additional non-dimensional parameter arises when we 

define non-dimensional damages and total factor productivity3 

(A2.5) 
1 1 1ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ETTD E E

    
+ ++

   and 
1 1* 1* ,ˆ ˆ(1 1ˆ ˆ) )ˆˆ(ˆ ET TA A D A E
  
++ + − = −  

where 0D̂ D D D = , ( )1 1

0 0 0Â AF g K − −  and ( )* * 1 1

0 0 0Â A F g K − − .  

Assumption A: The final additional non-dimensional parameter, which we will assume to 

be the small parameter of our problem, is defined as 

(A2.6)    
1 0

0 0

1

1

0 .T

ET

PI

E
D

S





 +

+

+


 
 





 

 
3 The term ‘normalization’ or ‘scaling’ is perhaps more appropriate than ‘writing in non-dimensional 

form’ for the damage ratio D, which is already non-dimensional. We avoid this ambiguity by using 

the three terms interchangeably. 
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The small parameter  equals the initial damage ratio 0 ,D  which is known a priori and 

empirically also small (see section IV). The limit 0→  thus corresponds to the case in 

which climate damages are zero. In this limit, the value function does not depend on the 

climatic states Ê , ̂  and ̂ , and all terms in the HJB equation (A2.3) involving derivatives 

with respect to Ê , ̂  and ̂  disappear: 

(A2.7) 
( )

( )

1

1 1

1

1

2 2

ˆ ˆ ˆ ˆ
ˆ ˆ, 1

ˆ ˆˆ )
ˆ ˆ ˆ ˆ ˆm ,

ˆ

(11 1ˆ( ) 0
1 2

(

a

1

x

)

Kt K KK
C F

C J
JiJ J K

J

K



 














−

−

− −

−

−


− − 

= +
− 

+

 −


+  

which can be solved for the value function in closed form (e.g., Pindyck & Wang, 2013) to 

give the solution to the simpler, exactly solvable problem we perturb here. Note, however, 

that a small but non-zero value of the small parameter  reduces total factor productivity 

via the damage ratio according to (A2.5) and introduces the solution’s dependence on Ê , 

̂  and ̂ . In the original HJB equation (A2.3),  will change the investment level i , which 

directly affects the term ˆ (ˆ ˆ)
K

J i K  and indirectly all others. Perturbation theory now allows 

us to re-introduce  into (A2.7) in a controlled fashion. Before we do so, we emphasize 

that except for the small variable , all (hatted) variables in the HJB (A2.4) are (1) . 

 

A.2.2. Perturbation expansion 

We now seek a perturbation series solution for the value function of the following form: 

(A2.8) ( )(0) (1) 2ˆ ˆ ˆˆ ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ, , , , , ( , , ,( ) ( , (, ) )) ,J K E t J K D E J K E t     = + +  

where the structure of the solution is based on the underlying HJB (A2.3), as explained 

below. Because the zeroth-order solution will only be affected by the climatic states Ê , ̂  

and ̂  through the total factor productivity of capital (A2.5), the zeroth-order solution only 

depends on these three states through the damage ratio 
1 1 1ˆ ˆˆ ETTD E




   
+ +

+

= . Moreover, in 

the functional dependence of the zeroth-order solution
(0)Ĵ , the (1)  damage ratio D̂  is 

always multiplied by the small parameter  (i.e. the functional dependence is on ˆ ).D D=   

Importantly, as a result, changes in the climatic states Ê , ̂  and ̂  have a smaller effect 
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on the zeroth value function than changes in the capital stock K̂ . To illustrate this, consider 

the expected rate of change of the zeroth-order value function through its total derivative: 

(A2.9)         
)

(0) (0) (0

ˆ

(1) (1
( )

)

ˆ ˆ

1

1 1ˆˆ ˆ ˆ ˆ ˆ ˆˆˆE d , , , , E d
ˆ ˆd d

( ) tt t K
J K E t J J K

t t
   =  +  

                        (0)

ˆ ˆ ˆ

(1) (1)( )

( ) (1)
1) (1) (1)(1

...,
ˆ ˆ ˆ1 1 1 ˆˆ ˆ ˆE d E d E d
ˆ ˆˆ ˆ ˆˆd d d

D t t t

D D D
J E

t t tE
 

 


+ + +



 

 
+
 

 

 

where we have left out the stochastic terms for ease of exposition. The contributions to the 

rate of change of the zeroth-order value function (left-hand side of (A2.9)) from changes 

in time 
0t g t  (the first term on the right-hand side) and in the capital stock K̂  (the second 

term) are (1),  whereas the contributions from changes in the climatic states Ê , ̂  and 

̂  (the remaining terms on the right-hand side) are ( )  and thus smaller than the first two 

terms by a factor . The functional dependence of 
(0)Ĵ  on the climatic states is said to be 

‘slow’. When solving the HJB equation (A2.3) using perturbation methods, this means that 

some of the derivatives of 
(0)Ĵ  with respect to the climatic states Ê , ̂  and ̂  can be 

ignored because their order in  is too high. For the first-order term 
(1)Ĵ  in (A2.8), we do 

not assume a slow dependence on any of the states a priori. Precisely which terms in (A2.3) 

will be included at which order is considered in detail in sections A.2.3 and A.2.4 below, 

where we set out to find the zeroth- and first-order solutions. 

To cast the HJB equation (A2.3) into the form  ( ), 0J =x x  in (A1.1), we must first 

find solutions for the forward-looking variables. The optimality conditions of (A2.3) with 

respect to Ĉ  and F̂  are, respectively, 

(A2.10) 

( )( )
( ) ( ) ( )( )

1

ˆ ˆ

1
1

1

1
1

ˆ
,0 ˆ    ˆ

ˆ

1ˆ ˆ

1
K K

C
J C J J

J

i i

  
 





 



−−

−

−

−

−
−

−

 
− =  

 

 
=  −

−

  

(A2.11)  ( )( ) ( )
1

ˆ ˆ

1
ˆˆ 1ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ1 0    ,

ˆ ˆ ˆˆexp( )

gt

K E
J AK F b J e F A Ki

b P gt


  


  −−

 −
− − = + =   + −




 

where we define the optimal SCC in non-dimensional form as 0 0 0
ˆ ( )P F P g K , which is 

given by 
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(A2.12) 
ˆ

ˆ

ˆ
ˆ ˆ .

) ˆ(

E

K

J
P

Ji




= −   

Upon substituting equations (A2.10)-(A2.11) into the HJB equation (A2.3) and recognizing 

that  ˆ ˆˆ ˆ ˆˆ,  ,  ,  ,   and J C F A i P  are functions of the state variables collected in x , we obtain 

an equation of the form  ( ), 0J =x x  as in (A1.1).  

By substituting our series solution for the value function (A2.8) into (A2.12), the leading-

order estimate of the optimal SCC is given by: 

(A2.13) 

(0) (1)

ˆ ˆ 2

(0)
(0)

ˆ

ˆ ˆ
ˆ ˆ ( ),

( ) ˆ

E E

K

J
P

i

J

J


+

− +


=  

which is accurate up to 
2( ).  For completeness, we note that both (0)

ˆ
ˆ

E
J  and (1)

ˆ
ˆ

E
J  are ( ).

We therefore need to obtain both the zeroth- and the first-order solution for the value 

function to obtain a consistent leading-order estimate of the SCC. 

A.2.3. Zeroth-order solution (see also appendix B) 

Substituting the series solution for the value function (A2.8) into the HJB equation 

(A2.3), in which we have substituted for the forward-looking variables from (A2.10)-

(A2.11), and collecting zeroth-order terms in , we obtain a nonlinear second-order 

ordinary differential equation (as the dependence on time has disappeared) given by (B1) 

in Appendix B, which we can write generally as 
(0) (0) ( ), 0J  = x x  (cf. (A1.6)). We 

can solve 
(0) (0) ( ), 0J  = x x  to give a solution of the form (see Appendix B): 

(A2.14) 
(0) 1

0 (ˆ )ˆJ KD  −= , 

where the function 0
ˆ( )D  captures the slow dependence on the climatic states through 

1 1 1ˆ ˆˆ ETTD E



   

+ +
+

=   (see explanation in beginning of section A.2.2) and is given by (B3) 

in Appendix B.  

A.2.4. First-order solution (see also Appendix C) 

We proceed to collect terms in the HJB that are first order in  (cf. (A1.7)). First, we 

ignore those derivatives of the zeroth-order value function with respect to the climatic states 

Ê , ̂  and ̂  that result in terms of 
2( )  and higher. Second, we perform Taylor-series 
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expansions in  (about 0= ) of any nonlinear function of the value function, again 

ignoring those terms of order 
2( )  and higher. To illustrate this second step, consider the 

optimality condition (A2.10), which becomes at )(  

(A2.15)  
( )

( )

(1)(0) (1)
ˆ(1) (1) (1)

(0) (0)(0)
ˆ

ˆ1 1 1
 

ˆˆ
ˆ ˆ ˆ

ˆ ˆˆ 1

K

K

Ji J
C C i

J Ji

 

   






=



 −
− − 
 − 

−


 

where we have used the product and chain rules of differentiation repeatedly ((A2.10) is 

the product of three functions), noting that we have used the expansions 

(0) (1) 2ˆ ˆ ˆ ( )C C C += + , (0) (1) 2ˆ ˆ ( )i i i+ += , (0) (1) 2

ˆ ˆ ˆ
ˆ ˆ ˆ ( )

K K K
J J J += +  and, of course, 

(1) (1) 2ˆ ˆ ˆ ( )J J J += + .  A single nonlinear term in the HJB equation can thus give rise to 

multiple terms upon expansion. Performing the first and second step explicitly and 

consistently is straightforward yet cumbersome, and details are given in Appendix C. 

Because we have chosen 
1 1 1ˆ ˆˆ ETTD E




   
+ +

+

=  to be a product of power functions, we can 

solve the resulting partial differential equation in closed form.  

A.3. Result A 

Combining the zeroth- and first-order solutions for the value function according to 

(A2.13), we obtain the following (dimensional) leading-order estimate of the optimal SCC 

(corresponding its non-dimensional equivalent (C3.19) in Appendix C). We present results 

in dimensional form here, so that they can be referred to directly by the reader of the main 

paper.  

Result A: The optimal risk-adjusted SCC is: 

(A3.1)          20

11* 1

 ( , , )
1 ( ),

ET ET

P
E Y

P
r E K  

  

 
=

++ −

  
= − + 

 
 

where / (1 )ED D −  and 
* (0) (0) ( 20)( 1)( / 2).Kr r g g   − − = + −  Further, 

(A3.2)  
( )

dE
r s t

t

t

se 


− − 

 =  
 
  with  ( )* (0) 2( ) / 2 ,( 1) Kr r i     − +− −  

where 
2 2 ,K ii  − = −  /i I K= . The term  is given dimensionally by 
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(A3.3)   

(

)

(0)

1

1
1

1 2

2 2

2 2 1

)

(1 ) ( ) ( )

1 1
1

2 2

1

1
(

(

)

)

1
1

(

2

ET

ET ET

ET

K K

K K

g t

ET ET ET E

K E

A K E e K E
b

   

      



       


  

     

     

      


  

 

 − −

−

− −−

+ −

− −

− − −

   −   − − 

  −  −  

  

− 
 −  

 
− −

  

 

        ( )( ) 111 ,ET

EET KE E EK E E K E

                −−− + +−   

where  
1 ET +   and 

1
. +

    

 

The term in (A3.1) in front of the brackets is the net present value of marginal damages 

if only economic growth or asset return uncertainty is considered, and the atmospheric 

carbon stock does not decay; the second term in the large brackets is the mark-up for carbon 

stock, climate sensitivity and damage ratio uncertainties and carbon stock decay. The 

integral to evaluate  is discounted with a rate r  that differs from 
*r  in that it corrects 

for net growth in the capital stock (including a term depending on risk aversion and the 

volatility of the capital stock) and the rate of decay of atmospheric carbon. 

The optimal SCC given in (A3.1) is proportional to world GDP, which is given to leading 

order by its value when there is no climate policy ( 0P = ) and depends on the stock of 

atmospheric carbon and the climate sensitivity and damage ratio parameters through the 

function ( , , )E   . It depends on preferences (,  and ), geophysical parameters (,  

and  ), and the properties of the stochastic processes driving GDP, the carbon stock, 

climate sensitivity and damages. The optimal SCC depends on the growth-corrected return 

on capital 
*r , which is given to leading order by its value when there is no climate policy 

( 0P = ). The expected return on investment 
(0)r  is the risk-free rate,  

((0)

rf

0)r g = +

2(1 ) / 2,K − +  plus the risk premium 
2 .K 4 

Result A indicates that the absolute error in our expression for the optimal SCC is 
2( )  

and that the error as fraction of the SCC (which is ( )  itself) is thus  ( ). Consistently, 

we can ignore the slow dependence of the discount rate on the atmospheric carbon stock 

(via the marginal productivity of capital) when evaluating the discounting integral in Result 

 
4 The investment and growth rates of GDP are given to leading order by their values without climate policy (cf. (C7)). 

Implicitly, we get from the Euler and capital accumulation equations 
0

(0)

K P
Yi

=
= ( )( )(0) (0) 2( 1) ( ) / 2Kq i   − + − −  with 

( )
(1 )/1/

0
( , , ) (1 ) /K P

Y A E b
    
−

=
= −  and 

(0) (0)g i= −  
0) 2(( ) / 2i −  

(0)( ).i  Tobin’s q is ( ) 1/ '( ).q i i=  
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A. As 0,→  the SCC in Result A becomes exact. Generally, a closed-form solution to 

the 5-dimensional integral (over time and to evaluate the 4-dimensional expectations 

operator over the stochastic states in ) is unavailable, so Result A must be evaluated 

numerically.5  

A.4. Results 1 and 2 (see also Appendix D) 

To simplify Result A, we make three additional assumptions.  

Assumption I: The future atmospheric carbon stock does not inherit any of the uncertainty 

from new emissions through its dependence on the stochastic capital stock.  

Assumption II: We include only the leading-order effects of uncertainty by performing an 

additional perturbation expansion.6  

Assumption III: We set the initial and steady-state values of the damage ratio parameter 

0  and   to be equal, so deterministic damages are not subject to a delay. (We do not 

make the same assumption for the climate sensitivity parameter  ).  

Owing to Assumptions I-III, we can derive closed-form solutions for the optimal risk-

adjusted SCC by evaluating the 4-dimensional integral in Result A explicitly with all details 

in Appendix D. In doing so, we derive Results 1 and 2. We show in Appendix F that Results 

1 and 2 only have minimal quantitative errors compared to Result A and that Assumptions 

I, II and III are therefore justified ex post.  

A.4.1. Result 1 

 Result 1 gives the simpler case under two additional assumptions. 

Assumption IV: Proportional reduced-form damages ( 0ET = ). 

Assumption V: An initial climate sensitivity parameter that is equal to its steady-state 

value ( 0 = ).  

So-called reduced-form damages (or simply ‘damages’ below) are obtained when the 

temperature-carbon stock relationship ( )T E  is substituted into the damage-temperature 

relationship ( )D T , and damages become a direct function of the carbon stock: ( )D E . 

Under Assumption IV, damages are proportional to the atmospheric carbon stock (i.e. 

 
5 This requires five-dimensional numerical integration over the probability space corresponding to the four states and with 

respect to time. If the processes are independent, the integrals over the probability space of states can be evaluated 

independently.   
6 For completeness, we note that in the limit of small uncertainty in which Results 1 and 2 are valid, the atoms of probability 

associated with all non-negativity constraints disappear. 
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D E ), and marginal damages are constant (i.e. ( )ED f E ) and thus unaffected by 

future emissions. Under Assumption V, the deterministic climate sensitivity parameter does 

not vary with time (i.e. 
0  = = ). We emphasize that expected climate sensitivity

  1

2(E E )( )t t sT 
+  = ) does increase the further we are looking into the future ( )s t  

due to increased uncertainty on longer horizons and the convex dependence of climate 

sensitivity 2T   on the climate sensitivity parameter  . Under Assumption V only 

deterministic delays in the climate sensitivity are thus ignored motivated by simplicity 

alone. Result 1 and its ‘risk adjustments’ are given in dimensional form in (17) in the paper. 

A.4.2. Result 2 

Result 2 allows for convex damages ( 0ET  ) and an initial climate sensitivity 

parameter that differs from its steady-state value ( 0  ) and thus relaxes Assumptions 

IV and V. In addition to ‘risk adjustments’, the SCC in Result 2 given by (20) in the paper 

includes additional so-called ‘correction factors’, which can be evaluated as simple, one-

dimensional integrals. We distinguish two types of so-called ‘correction factors’, denoted 

by the symbol   with subscripts again denoting the state variable(s) from which the risk 

originates: for 0ET   and for 0  .  

Result 1 and 2 are different in three ways. First, the correction factors in Result 2, 0ET    

and 
0  , provide deterministic corrections for 0ET   and 0  , respectively. 

Second, in Result 2, the adjustments for uncertainty in the carbon stock, climate sensitivity, 

the damage ratio and the interaction between the two are now multiplied by their respective 

correction factors ( ). Third, the effective discount rate 
*r  in Result 1 is replaced by 

* (1 )ETr r  + +  (and 
2( 1) Kr r   + − − ) in Result 2. The risk adjustments in 

Result 2 are given by: 

(A4.1)               

2
1

(1 )
2 2

1E
EE ET ET EE

E r


 



 
 = − −  

− 
, 

(A4.2)    
( )

2

0
( )

1
1

2 2
T T

r



   



 
 




+
= +  ,   

( )
2

01
1 )

2 2
(

r
   







 
 


+

+
 =  ,  

 

(A4.3)    ( ) ( )
2 2

1
1 1

4 2 2
T T

 

       

 

 
   

 
  = + +  . 
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The adjustments for correlated climate and economic risk are 

(A4.4) 0 0
CK ( 1) (1 ) ( ) .1

( )

K K

E T

E
E

T

K

KE K KK
E

r r r

 
 

   

 

   
 

  


 
 

 
 
  = − − + +



 + +
 − + +


 

 

The adjustment for correlated climate sensitivity and damage ratio risk is 

(A4.5)      

( )
( )

0

CC

0 00

(1 )

1 1 .

( )

( )
( )

E

ET T

E

E

E

E

E
T E T

r

r E r

r

r E r r

 

 



   
   

  

   
 



       
  





  

 +
+ −

 
+ + + +  + − + +

=

 







    

 

The correction factors ( ) in (A.4.1)-(A4.5) multiply a risk adjustment ( ) and must 

be linearly combined with unity, so that, for example, 
0, 0 ,1

ET       +  + . These 

combined correction factors are equal to unity when 0ET   and 0   (e.g., 1  ). 

We give the correction factors in terms of dimensional quantities given in (D3.4)-(D3.5) in 

Appendix D.  

 

 Convexity of damages ( 0ET  ) (Assumption IV) causes Result 2 to be different from 

Result 1 in four ways. First, it changes the normalized marginal damage ratio ( )E . From 

(6), we obtain ( ) 12 11)1/( ) (1 ( / ) ET T

EE P T ET PI IE SSE   
   +− +

 = +  to leading order in our 

small parameter. With convex damages ( 0ET  ), the normalized marginal damage ratio 

thus rises with the stock of atmospheric carbon. The time path for the carbon price is then 

steeper than that of world GDP. Its effect on the deterministic SCC is captured through the 

correction factor 0 0
ET   , reflecting the more harmful effect of future emissions (when 

the stock is higher). Second, convex damages boost the effective discount rate 
(0)( 1) (1 )ETr g   = + − + + , because the marginal damage of a unit of CO2 decays 

more quickly than the unit itself, depressing the SCC. Combining the first and second 

effects, the net effect on the SCC is positive for small decay rates of atmospheric carbon. 

Third, a new adjustment (A4.1) needs to be made for carbon stock uncertainty. For damages 

that are not too convex ( 0 1ET  ), this adjustment is negative, reflecting concave 
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marginal damages (1 ) ET

E ET ED  +  with 
2 ,(( 1) 1 ) 0ET

EEE ET ET ETD E   −−  + which 

holds for 0 1ET   (see section IV). We emphasize that with proportional damages

( 0),ET =  the adjustment to the SCC for carbon stock uncertainty is zero in Result 1. 

Fourth, the adjustments for the other two climatic uncertainties in (A4.2) are now 

multiplied by correction factors that are greater than unity, reflecting rising marginal 

damages due to future emissions, as in the deterministic case. The same applies to the terms 

adjusting for correlations in (A4.4)-(A4.5), with new correlation terms with the carbon 

stock arising there. Finally, Result 2 allows for a higher-order term (A4.3), which is may 

be non-negligibly small if T  is large enough (see also Appendix D).  

 The effect of the initial climate sensitivity parameter differing from its steady-state 

value 0( )   (Assumption V) is captured as follows. The normalized marginal ratio    

is evaluated at the initial (low) temperature. The term multiplying 
0

0    is positive 

and captures this delayed deterministic temperature rise. Similarly, all the adjustments are 

corrected by their respective correction factors to take this delayed deterministic 

temperature increase into account. 

 

A.5. Comparison with other types of perturbation theory in economics 

The type of perturbation theory we apply is different (but not fundamentally so) from the 

types of perturbation theory that are commonly applied in (macro-)economics and finance 

(e.g., Judd, 1996, 1998). Typically, in this literature, the value function is expanded in 

powers of the states themselves (e.g., ( ) ( )
1

0

n

n
N

nJ K c K K
=

= − ), sometimes preceded by 

a transformation of variables using a logarithm or power function). Examples are Judd and 

Guu (1997), Schmitt-Grohé and Uribe (2004) and van Binsbergen et al. (2012). Our 

approach is different, as we retain the nonlinear dependence on the states without 

approximation at every order in , which is made possible because of our use of power 

functions.  Sometimes in the literature, the relative standard deviation of the stochastic 

process is the small parameter of the perturbation expansion (e.g., Judd and Guu, 2001).7 

Both methods (expansion in the states and expansion in the small relative standard 

deviation) can be combined (e.g., Boragan Aruoba, Fernandez-Villaverde and Rubio-

Ramirez, 2006). Although we choose a different small parameter, our approach is similar 

to Judd and Guu (2001) with one fundamental difference: we also make use of the concept 

of slow functional dependence and slow derivatives (from slow-fast dynamics in the 

 
7 We also use this type of perturbation expansion to take only leading-order climatic uncertainty 

into account (i.e. Assumption II) when we obtain Results 1 and 2 from Result A. 
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differential equations literature), which we have not seen applied in economics although it 

has been used in financial mathematics (e.g., Fouque, Papanicolaou and Sircar (2000)). 
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Appendix B: Derivation of Zeroth-Order Solution (For Online Publication) 

After substituting the series solution for the value function (A2.8), the Hamilton-Jacobi-

Bellman equation (A2.3) can be written at (1)  as 

(B1)   

( ) ( ) ( )

( )

(0) (0) (0) ( 10)

ˆ
(0) (0) (0)

ˆ

1 1

1

1

1

ˆ ˆ

(0)

(0

1

) 2 2

1

ˆ

(1 ) (1 )

(1 (

,

ˆ

1 )

1
ˆ

2

ˆ ˆ ˆ ˆˆ ˆ( )
ˆˆ ˆˆ( )

ˆ)

ˆ ˆ 0

K

t K

KKK

i J J J
J J i K

J

J K

    

   





   


 



− − − −

− −

−

− −

−
−


+ +

− − −

−

=

−

+

 

where we have substituted for the forward-looking variables Ĉ  and F̂  at (1)  from 

(A2.10) and (A2.11) and we have used 

(B2)  

)

(0)

(

ˆ

1

1 ˆˆ ˆˆE d ( )
ˆd

t
K i K

t
 


=


. 

In (B1)-(B2), 
(0)î  is the (constant) optimally chosen investment rate. We note that there is 

no variation with time t̂  in equation (B1), so (0)

ˆ
ˆ 0

t
J = , and (B1) is a second-order ordinary 

differential equation in K̂ . Equation (B1) has a power-law solution of the form 
(0)

1

0 ,ˆJ K  −=  and following some algebraic manipulation we obtain 

(B3) 
(0) 1

0
ˆ ˆJ K  −=  with ( )

( )

( )

1

1
(0) (0 2

1
)

0

1 ˆ ˆˆ ˆˆ ˆ( ) ( ) ,
1

1
1

2
Ki i






     


−
−

− − −  
=  − − 

−   
−   

where 
0 0( )D̂ =  is a slow function of D̂  through 

(0) (0) ( ).ˆˆ ˆi i D=  From the first-order 

optimality condition for ˆ ,C  i.e. (A2.10), at (1) , we obtain 

(B4)  
((0) 0)ˆ ˆˆC c K=  with (0) (0) 2

(0)

ˆ ˆˆˆ ˆ( ) ( )
ˆ ˆ

1 1
1

( ) 2
Kc i

i
   



 
= − 

 
−  


−

 
, 

where ( ) ( )ˆ ˆ1q i i=   denotes Tobin’s q, the price of capital in consumption terms.8  

We can thus write the value function (B3) as 

 
8 The value of the capital stock is ˆˆ ,qK or dimensionally ,qK  where ˆ ˆˆ 1/ '( ) 1 ( )q i i = =   is already a fraction and is left 

unchanged by the normalization (cf. q̂ q=  or ˆˆi i = ).  
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(B5)  ( ) ( )
1

(0) (0) 1

1
(0)

1 1
1 ˆ ˆˆ ˆ( )

1
.J i c K

 


 


−

−
−

−

−

−
−


−

=  

Substituting in for F̂  from the first-order optimality condition (A2.11), we obtain from 

ˆˆˆ ˆ ˆ :I Y C bF= − −   

(B6)  (0) (0) (0) (0) (0) (0) 2

mpk mpk

1
1 ,ˆ ˆ ˆˆ ˆˆˆ ˆ ˆ ˆ ˆ( )

2
( ) Ki r c r q i     

 
+ − + − − − 



 
= = −

 
 


 

where ( ) ( )
11

(0) (0)

ˆmpk
ˆˆ ˆ ˆˆ ˆ ˆˆ )1( ) (

K
r D Y A D b



   
−

=− − −  denotes the marginal productivity 

of capital net of depreciation9 at zeroth order, which is a slow function of D̂  through its 

dependence on the total factor productivity. Equation (B6) implicitly defines the optimally 

chosen investment rate 
(0)ˆ .i  From (B4), the leading-order endogenous growth rate of 

capital and hence of consumption is 

(B7)  

( )

(0) (0)

ˆ

1

ˆˆ ˆˆ E d ( )
1

ˆ d

1
t

t
g K i

K
 

 
= =  and hence ( )(0) (0)ˆ ˆˆ 1.g i= =  

In equilibrium, the marginal propensity to consume 
(0)(0)ˆ ˆc q  equals the expected return on 

investment 
(0)r̂  minus the growth rate of the economy

(0)ˆ .g  The expected return on 

investment (0)r̂ , in turn, equals the sum of the risk-free rate 
(0)

rfr̂  and the risk premium 

(0)ˆ .r  Hence, 
(0)(0) (0) (0) (0) (0) (0)

rf
ˆ ˆ ˆ ˆ ˆ ˆ ˆc q r g r r g= − = + − , and with a risk premium of 

(0) 2ˆ ˆ
Kr  =  in the absence of any climate risk at zeroth-order, the risk-free rate is: 

(B8)  
(0) (0) 2

rf
ˆˆ ˆ ˆ(1 ) 2Kr g   = + − + .  

Although (0)

ˆ
ˆ

E
J  can be computed from (B5), a consistent leading-order estimate of the 

optimal SCC also requires (1)

ˆ
ˆ

E
J  and thus the next order in the perturbation expansion.  

 

  

 
9 Dimensionally, we have 

(0) (0)

mpk mpk 0
ˆ .r r g=  
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Appendix C: Derivation of First-Order Solution (For Online Publication) 

To derive the first-order solution, we follow the following steps. We first find the 

evolution equations for K̂  and Ê  (section C1). We then solve the multi-variate Ornstein-

Uhlenbeck process that describes all our states (section C2). In section C3, we will 

substitute all these results into the HJB equation and retain only terms at ( ) . It will 

become clear there that we only need to derive the evolution equation for K̂  up to ( )  

and for Ê  at (1)  in section C1. The terms associated with uncertainty of the climatic 

variables and their covariances only need to be derived at (1)  in section C2. 

C1. Expected evolution equations for K̂  and Ê  

We consider the expected evolution equations of the states K̂  and Ê  at ( )  and (1),  

respectively. At this order, we have for the expected evolution of ˆ :K  

(C1.1)   

( )

(1) (1)(0) (0)
ˆ(0) (1) (0) (1)

ˆ (0) (0)(0)
ˆ

(0)

1
,

ˆˆ ˆˆ ˆ( )ˆ ˆ ˆˆ ˆˆ ˆ( ) ( )
ˆ ˆˆ

ˆ ˆ(

ˆE d
ˆd 1

)

K

t

K

J Ji c
i I i C K

J Jc

i

K
t

  
 








 
 

−
  = = − =


+ 




 − 
−

 

 

 

where the first identity makes use of 
(1) (1) (0) (1) (0)ˆˆ ˆ ˆ ˆ ˆˆ ˆˆ ( )I I I K I i  = = −  at ( ).  We 

further note from ˆ ˆˆ ˆ ˆI Y bF C= − −  that 
(1) (1)ˆˆ ,I C= −  since production net of fossil fuel costs 

is unaffected by the SCC in our formulation: 

(C1.2)    

ˆ 0

1 1

1 1

ˆ 0

ˆˆ ˆ
ˆ

1ˆˆ ˆˆ
ˆ ˆ

.
ˆˆ ˆˆ ˆˆ ˆexp( ) e )

1 ˆ 0
xp(

P

P

Y bF
P

A K b A
P b P gt b P gt

K



 
 

 

=

−

=


 −
 

 
    − −        +



=

− + − 

−

 


=




 

 

The identity in (C1.2) relies on the Cobb-Douglas nature of the production function. The 

third identity in (C1.1) follows from a Taylor-series expansion of ˆ ,C  given by (A2.10), 

with respect to the small parameter  (about 0= ): 
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(C1.3)             
( )

(1) (1)
ˆ(1) (0) (1)

(0) (0)(0)
ˆ

1ˆ ˆ1 1ˆˆ ˆ .
ˆˆ 1ˆˆ

K

K

J J
c c i

J Ji

 

   

 
 = − −



−

−
−

 
 

  

 

Noting that 
(1) (1) ,ˆ ˆi c= −  we can rearrange this linear equation to give 

(C1.4)                   

(1) (1)(0)
ˆ(1)

(0) (0)(0)
ˆ

(0)

ˆ ˆˆ 1
ˆ ,

ˆ ˆˆ1

ˆ ˆ( )

1

1
1

K

K

J Jc
c

J Jc

i

 

  

 

 
= − − 

   



−

−
−

 

 

which is used in the third identity in (C2.1).  

For ˆ ,E  we have at (1) : 

(C1.5)                     

( )

(0) ˆˆ

ˆ

1

1
1

1
.

ˆ
ˆ ˆd

1 ˆˆ ˆˆE
dˆ

g t

t
KAE e E

t b


 

 −− 
=    

  −


  

C2. Solution to multi-variate Ornstein-Uhlenbeck process at (1)  

We define ( )0
ˆ log /k k K K  , so the vector of states   ˆ ˆˆ ˆd d ,d ,d ,d

T

k E  =x  is 

described by a multi-variate Ornstein-Uhlenbeck process (9), which in non-dimensional 

form is 

(C2.1)  ( ) ˆ ,d ˆd d d
t

t t= − − +α ν Sx μ Wx  

where we note that we have not included time t̂  in the vector x̂  (unlike in Appendix A). 

The growth rate vector (10), relevant to the capital and atmospheric carbon stock processes 

only, is given in non-dimensional form by 

(C2.2) 

2

1
1

ˆ

ˆ2

ˆ

ˆ
,

1 1 1
E d E d

ˆ ˆ ˆd d

1ˆ

1ˆ ˆˆ , , 0,

2
ˆ ˆ

0 ,
2

1
ˆ , , 0, 0ˆ ˆ( )

ˆ

T

t t

T

gt

K

K
t tK

i A Ke
b

K E







  −

 
=  

 






−  =   

  −
   



−




α
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the mean reversion rate vector by ( )ˆ0, , ,
T

   =ν , the vector of means by 

ˆˆˆ (0,0, , ) ,T T  =  and the covariance matrix 
T

SS  has the form 

(C2.3)  

2

2

2

2

ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ1
.E

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆd

ˆ ˆ ˆ ˆ ˆ ˆ

d d

ˆ

K E

E E E E

KE K K K K K

T T
KE K E E

t

K K E

K K E

E

E

t

   

   

       

       

         

         

         

         

 
 
   = =
   
 
 
 

x x SS    

 

We begin by integrating the multi-variate Ornstein-Uhlenbeck process (C2.1), including 

only terms at zeroth order, so that the coefficients are constant, and a closed-form solution 

is available. It will become apparent in section C3 that (1)  solutions to (C2.1) are 

sufficient to obtain the HJB equation at ( ) . Specifically, we have at (1)  that 

1/
(0)

(0) 2 1/1ˆ ˆˆ ˆ ˆ( ) 2, ,,0,0
ˆ

T

Ki A
b




  

−



−  






= 
 
 

α  where we have relied on the solution for 

K̂  from the zeroth-order problem (cf. (B7)). The slow dependence of productivity Â  on 

the states Ê , ̂   and ̂  can be neglected when integrating with respect to time at (1) . 

For constant coefficients, (C2.1) can be integrated to give: 

(C2.4)                 ( ) ( ) ( )
ˆ

ˆˆˆ
0 ˆ

0

d .

t
u tt

ut t e e
−

= + + − + 
νν

x μ α μ S Wx  

 

The quantity ˆ( )tx  is therefore normally distributed with covariance matrix ( )tΣ : 

(C2.5)                             ( )( ) ( )( )
ˆ

ˆ ˆˆ ˆ

0

ˆ( ) d

t T
u t u t

t e e u
− −

= =
ν ν

Σ S S  

( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

( ) ( )

ˆˆ ˆˆ ˆˆ

ˆˆ ˆ ˆˆ ˆˆ ˆˆ ˆ2

ˆ

2

2

ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆˆ ˆ
ˆˆ 1 1 1

ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ
1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ
1 1

ˆ

tK K tt K KKE K

t tEt t EKE K

tK K E

E

E
K

EE E

E

t e e e

e e e e

e e

 

 



    

 

       

 

    

 

       


 

        

     

     

  

− −−

− + − +− −

− +−

− − −

− − − −
+ +

− −
+

( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )

ˆˆ ˆ ˆˆ2

ˆˆ ˆ ˆˆˆ ˆˆ
2

ˆ ˆ2

2ˆ ˆ ˆ
1 1

ˆ ˆ2

ˆ ˆˆ

.

ˆ ˆ ˆ ˆ
1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ2

t tt

tt t tK K E E

e e

e e e e

 

   

    

  

           

    

   

 

        

     

−−

−− −

+

+ + −

 
 
 


−


 
 
 
 
 +
 


− −

− − −


  + + 
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C3. The Hamilton-Jacobi-Bellman equation 

Substituting for the forward-looking variables Ĉ  from (A2.10) and F̂  from (A2.11), the 

Hamilton-Jacobi-Bellman equation (A2.3) becomes at ( ) : 

(C3.1)   

( )

( )
( )

(0) (0)

* (1) (1) (0) (1) (1)

ˆ ˆ ˆ(0) (0)

ˆ ˆ ˆ
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ( ) ( )

ˆ ˆˆ / (
)

)
(

t K K

i c
f J J J K i KJ J

c i


  

  
−


+ + + +

−
 

             ( ) ( )
(0)

1/

ˆˆ(0) (1) 1/ (0) (1)

ˆ ˆ ˆ ˆ
ˆ( )

1 ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ
ˆ

g t

E E
J J A Ke E J J

b





  


    −
 − 

+ + + +    
−



−



     

( ) ( )

( ) ( ) ( )

( )

(0) (1) (1) 2 2 (0) (1) 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

(0) (1) 2 (0) (1) 2 (0) (1)

(0)

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ

( )

ˆ

1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

1 1
( )

2 2

1 1

2 2

K EKK EE EE

KE K EKE KE

K KK K K

J J J K J J E

J J J J J J K

J J K J

 

    

  

    

    

  

+ ++ − + +

+

+ ++ + + +

+ + ( )

( ) ( ) ( )

ˆ ˆˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ

(0) (1)

(0) (1) (

ˆ

0) (1) 0

ˆ ˆ

(

ˆ

) (

ˆ

1) 0,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
E E

K KK

E EE E E E

J K

J J J J J J

  

           

  

        

+

+ + + + + + =

 

 

where we have used the identity ˆ ˆ ˆk K K=     (chain rule), substituted the evolution 

equations for K̂  at subsequent orders  ((B2) and (C1.1)) and Ê  at zeroth-order (C1.5), 

and defined ( ) ( )* *ˆ ˆ ˆ ˆ,f f C JJ   with Ĉ  optimally chosen. From (1) and (A2.10), ( )*f̂ J  

is 

(C3.2)                ( ) ( )ˆ

1 1

1* 1 1
(1 .)ˆ ˆ ˆ ˆ ˆˆ ˆ(

1
)

1K
f i J J J

  

  


  
 

−
−

−−

= 
−

−
− −

−   

A Taylor-series expansion of ( )*f̂ J  in  (about 0= ) gives 

(C3.3)  

( ) ( )

( )

(0) (0) (0) (1) (1)
ˆ ˆ* (1) (1)

(0) (0)(0)
ˆ

(0) (0) (0)

1 1

1

( )

(1)

ˆ(0) (0)

(0)

ˆ ˆ ˆˆ ˆ( ) ˆ ˆ
ˆ ˆˆ ˆ

ˆ ˆ ˆˆ ( )( )( )

ˆ ˆ
ˆ

(

ˆ

1

ˆ ˆ ˆ( )

ˆ

) 1

ˆ

1 1 1

ˆ
ˆ ˆ

( )

K K

K

K

i J J J J
f i J

J Ji

i c c
KJ

i c

i

  

       


   

 


 




−

−

−
−

  −
− − + −



 
−

−   −
=  

 − − − 

+



−


( )( )

( )
(1) (1) (1) (1)

ˆ

1
,

1
ˆ ˆ ˆ ˆ ˆ

1
ˆ

K
J KJ J J

  
 

 

 
 

− −



−
−

 − −
 



+ −



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where we have substituted for 
(1) (1)ˆ ˆi c= −  from (C2.4) and used the identity: 

(C3.4)                  
( ) ( )(0) (0) (0)

ˆ
(0) (0)

(0)

ˆ

1 1

1ˆ

.

ˆ ˆˆ( )
ˆ ˆ ˆ(

ˆ

(1 )
)

ˆ

K

K

i J J
i c

KJ

  

   


−

−

−
−

−
=   

Substituting from (C3.2), two of the terms in (C3.1) simplify to 

(C3.5)         

( )

* (0) (0) ( 1

( )

0) ( )

ˆ ˆ

1ˆ ˆˆ ˆˆ ˆˆ( ) ( ) .
1 ˆE d ( ) 1
ˆd 1

tK
f J i c

t
JK     


 −  +
 −

 + = − −
 

 

Using (C3.5), (C3.1) can be written as an equation with (derivatives of) the unknown first-

order value function on the left-hand side and (derivatives of) the known zeroth-order value 

function on the right-hand side (cf. (A1.7)): 

(C3.6)      

( ) ( )

( ) ( )(0)

(0) (0) (1) (1) (1) (0)

ˆ ˆ

ˆˆ(1) (1) (1)

ˆ ˆ ˆ

(1) 2 2 (1) 2 2

ˆ

1

ˆ ˆ ˆ ˆ ˆ

1

1 ˆ ˆˆ ˆ ˆ ˆˆ ˆˆˆ( ) ( )
1

1 ˆˆ ˆˆ ˆ ˆ ˆ ˆˆˆ ˆˆ
ˆ

ˆ ˆ ˆ ˆ

1

1 1 1

2 2 2
ˆˆ ˆ

t K

g t

E

K EKK EE

i c J J J K i

J A Ke E J J
b

J K J E J




  



     



      

 

−

 −  + + +
 −

 
−   + − + −   

 

+

− −

−

+ +

( )

(1) 2 (1) 2

ˆ ˆ

ˆ ˆ ˆ ˆˆˆ

ˆ ˆ ˆˆˆ ˆ

(1) (1) (1)

(1) (1) (1)

ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ , , , , ,

1

2

KE K E K K K KKE K K

E E EE E E

J

J K J K J K

J J J G t K E

  

    

        

 

        

          

+ +

+ +

+

+ = −

 

where we will refer to the right-hand side as (minus) the ‘forcing’. The forcing is defined 

as 

(C3.7) 

(0) ˆˆ(0) (0)

ˆ ˆ

(0) (0) 2 (0) 2 (0) 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

1
1

(

ˆ

0) (0)

1ˆ ( )

1 1 1ˆ( )

, ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ( , , , )
ˆ

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
2 2

ˆ ˆ

ˆ

2
ˆ

g t

E

E KE K E K KEE KE K

K

G t K E J A Ke E J
b

J J J J J K J K

J




 

      


     

          

− − +

− +

 
−   + −   



+



+ + + +

(

ˆ ˆ ˆˆˆ ˆ

(0) (0) 0) (0) .ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
EK K E EE EE

K J J J          
           + + +

 

To obtain derivatives of the zeroth-order value function with respect to Ê , ̂  and ˆ,  

we first differentiate with respect to the marginal productivity of capital (0)

mpk
ˆ ,r  which slowly 
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depends on these three variables via D̂  (i.e. the chain rule of differentiation). From (B5), 

we obtain: 

(C3.8)                   ( )
(0) (0)

(0) (0) (0)(

)

0)
m k

(0
(0)

p mpk

ˆˆ ˆ ˆ( ) 1ˆ 1 .
ˆ ˆˆ ˆ ˆ( )

J i i
J

r c ri

 
 



  − 
= − − +

 


  
 


 

 

Since the investment rate is implicitly defined, we obtain from (B6) by implicit 

differentiation:  

(C3.9)                             
(0)

(0) (0) (0) (0)
mpk

ˆ 1
.

ˆ ˆˆ ˆˆ ˆ ( ) / ( )

i

r c i i  


=

 −  
 

 

Combining equations (C3.8) and (C3.9), we obtain  

(C3.10)              ( ) ( )(

1(0)
(

)

0) 1

1
1

0) (0) 1

(0) (0

m

1

pk

ˆ 1 ˆˆ ˆˆ ˆ(
ˆ ˆ

)
J

J i c K
r c

 


 



−

− −

−− − −
− −

= = 


.  

 

Using the chain rule of differentiation, we find the individual terms that contribute to the 

forcing (C3.7) at ( ) : 

(C3.11)               
( )

( ) ( )

( )

( ) ( )

(0)1
1 mpk(0) (0) (0) 1

ˆ

2 (0)1

ˆ

1

1 1

1 mpk(0) (0) (0)

1

1 1 1

ˆ 2

ˆ
ˆˆ ˆˆ ˆ(  and

ˆ

ˆ
ˆˆ (

)

ˆˆ ˆ ,
ˆ

)

E

EE

r
J i c K

E

r
J i c K

E

 


 

 


 





−

− −

−

− −

−
−− −

−

−− − −
−


= 




= 



 

 

and similarly for derivatives with respect to ̂  and ˆ,  as well as cross-derivatives. From 

the zeroth-order solution ( ) ( )
( )11

(0)

mpk
ˆˆ ˆ ˆˆ ˆˆ 1, , ( )r A E b

 

    
−

= − − , we obtain 

(C3.12a)   

( )

( )

1
(0) 1

1mpk

1
2 (0) 1

1mpk

*

1*

2

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( ),

ˆ ˆ

ˆ
ˆ

1 ˆ1

1 ˆ1 ,ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( )
ˆ ˆ

ET

ET

ET

ET ET

r
A E A E

E b

r
A E A E

E b












    


     

−

−

−

−
−

 −
+ 

−

 
= −  

  

  
= −   +




 
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(C3.12b)          

1
(0) 1

1mpk 1*

ˆ

1
2 (0) 1

1mpk 1*

ˆ ˆ2

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( ),

ˆˆ

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( ),

1

ˆ
ˆˆ

ˆ

1

ET

ET

r
A A E E

b

r
A A E E

b
















   




   



−

−
+

−

−
+

  
= −  

  

  
= −  

−

 

−






 

(C3.12c)         

1
(0) 1

1mpk 1*

ˆ

1
2 (0) 1

1mpk 1*

ˆ ˆ2

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( ),

ˆ ˆ

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( ),

ˆ

ˆ
ˆ ˆ

1

1

ET

ET

r
A A E E

b

r
A A E E

b
















   




   



−

−
+

−

−
+

−


−


  
= −  

  

  
= −  

  

 

(C3.12d)        

( )

( ) ( )

1
2 (0) 1

1mpk

ˆ

1
2 (0) 1

1mpk

ˆ

2 (0) 1
1m k
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p *

*

ˆ
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ˆ ˆˆ

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ,

ˆ ˆˆ

ˆ
ˆ ˆ ˆˆ ˆ( , , )

ˆ

1 ˆ1

1 ˆ1

1

ˆˆ

ET

ET

ET

ET

r
A E A E

E b

r
A E A E

E b

r
A A E

b


















    




    




 

 

−

−

−

−

−

  
= −  

   

  
= −  

   




−
+ 

−
+ 

−
= −

  
( )

1

1

ˆ ˆ ,ˆ ˆˆ ˆˆ( )ETE






 
 

−

+
 



  

 

where have used the following short hands 
1ˆ ˆ T
+

  and 
1ˆˆ , +

   so 

1 ˆˆ ˆ ˆˆ( ) ( ).ˆETD E   + =   Equations (C3.11) and (C3.12) can be substituted into (C3.7): 

(C3.13)  

( ) ( )
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1
1

1
(0) (0)

2 2
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ˆ ˆ

ˆ
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ˆ ˆ ˆ ˆ

ˆ
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ˆ

2 2

ˆ ˆ ˆ)
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      

   





  
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   
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−
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− 
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 

+

−

 − +  − 

+
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
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+
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+
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(
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ˆ ˆ
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ˆ

1

1

1

ˆ

ˆ ˆˆ ˆ ˆ ˆ
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ˆ
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ˆ
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ˆ

ˆ
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ˆ
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K
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ET KE K E E

E

ET E

ET E

K E

A E e K E
b

E

K

K



    


  



  

 

    


    

        

   

+

− −

−

−−

−

+  

+ +  + + 

+ − +  + + 

+

− 
 



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

)1 1 .ˆ ˆ ˆET ETK E K E  − − 

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Because we are ultimately interested in (1)

ˆ
ˆ

E
J  for the computation of the social cost of 

carbon, we first differentiate (C3.6) with respect to Ê  and seek a solution for (1)

ˆ
ˆ

E
J  of the 

form ( )(1)

ˆ 1
ˆˆ ˆ ˆ ˆ ˆˆ( , , , , )1 ETE

J K E t   = +  , which gives (from (C3.6)):10 

(C3.14)    ( )(1)

ˆ ˆ1

1ˆ ˆˆ ,ˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆˆ ˆˆ( , , , , ) E ( , , , , )
ˆ

1 d
d

ET tE
J K E t r K E t

t
     

 = +  = −
 

 − +    

 

where we have introduced the effective discount rate 

(C3.15)               (0) (0) (0) 2ˆ ˆ ˆˆ ˆ ˆ ˆ(
1

(1 )
2

) Kr r g i    −
 

 − − +
 

+  , 

 

and the coefficient 

(C3.16)           ( ) ( )
1

1
1

(0) (0

11
1

* 1)

1
1ˆ ˆ ˆˆ ˆˆ ˆ( ., , ) ( )

ˆ

1
A A E c i

b






 




   
−−

− −
−

−
−

−

− 
 






−
 

 

The normalized forcing is defined by11 

(C3.17)  ( 2

ˆ ˆ ˆ ˆ

ˆˆ ˆˆ ˆ ˆˆ ˆ ˆ
1ˆ ˆˆˆ ˆ ˆ( , , , , ) ( ˆ ˆˆ ˆ ˆ ˆˆ(1 ) ) ( )
2

ETK E t     
         +  −    −    − − −      
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1
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1 2
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ˆ ˆ ˆ ˆ ˆ ˆ
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ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

1 ˆ ˆ ˆ ˆ ˆˆ ( )
ˆ

ˆ ˆ ˆ ˆ

1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ1 1
2

1ˆ ˆˆ ˆˆ1
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ˆ ˆˆ ˆ1

ET

ET ET

E

K K K K

g t

ET ET ET E

ET KE K E E

K E

A K E e K E
b



           


  

 

           


   

      



−

− −− − −

−  −   − −  −





−  − − 

− − 

−

− 
 


 +   ) 11

ˆ .ˆ ˆˆ ˆˆˆ ET

E E K E

  
    −−+

 

 

Equation (C3.14) has the closed-form solution: 

(C3.18)                          
( )ˆˆ ˆ

ˆ

ˆ

ˆˆ ˆ ˆˆ ˆ ˆ ˆE ( , , , , ) .d
r s t

t

t

eK E s s  


− − 

 =  
 
  

 

 
10 Dimensionally, we have 

1 1 1

0 0 0 0
ˆTETE K 

   
+ + −=  . 

11 Dimensionally, we have 1 11 1

0 0 0 0 0
ˆ.TETE gK 

   
+ ++ − =    
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We can now compute the SCC according to ( )
(0)

(0) (1) (0)

ˆ ˆ ˆ( )ˆ ˆ ˆ ˆˆ
E E K

iP J J J 


= +− : 

(C3.19)   
( ) ( )

( )
ˆˆ 0

* 1

ˆˆ ˆ ˆ ˆˆ ˆˆˆ ˆ , , , ,ˆˆ ˆ ˆ
,

ˆˆ( , , , , )ˆ ˆ1  with 
ˆˆ ˆ ˆˆ ˆˆ ˆˆ ˆ( ) 1( ) ˆ, ,ET

EP
E Y D EK E t

P
r E K D E

 

     

   

=

−

  
= −   

−
  

 

 

where we have introduced 
* (0) (0)ˆ ˆ ˆr r g− . Dimensionally, equations (C3.17), (C3.18) and 

(C3.19) correspond to Result A. 
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Appendix D: Leading-Order Effects of Uncertainty (For Online Publication) 

To evaluate the 4-dimensional integral in Result A in closed form and thus derive Results 

1 and 2, we take three steps. First, we evaluate the expected carbon stock dynamics as a 

function of time in section D1. Second, in section D2, we evaluate the forcing (C3.17)-

(C3.18) of the first-order problem in Appendix C. In this section, we invoke three 

assumptions: we ignore the uncertainty in the carbon stock arising from the uncertainty of 

future emissions (Assumption I), we take account of climatic uncertainty only to leading 

order (Assumption II), and we set 0 =  (Assumption III). Finally, we combine the zeroth- 

and first-order value functions and evaluate our leading-order estimate of the SCC in 

section D3. This is known as Result 2. Result 2 further simplifies to Result 1 for 

proportional damages ( 0ET = ) (Assumption IV) and with the initial climate sensitivity 

parameter equal to its steady-state value ( 0 = ) (Assumption V). 

D1. Expected carbon stock dynamics 

The expected value of the carbon stock is governed by the differential equation (C1.5) 

with solution 

(D1.1)  *

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆE ( ) ( )exp( ) ( ) 1 exp( ) / ( )exp( ) ( ),

t
E s E t s K t s E t s e s      = −  + − −  = −  
 

 

 

with new short hands ( )
1 1

* ˆ ˆˆ ˆ (1 ) b A   −  , ˆˆ ˆs s t  −  and 

* ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) 1 ( ( ) ( ))(exp( ) 1) .e s K t E t s   = +  −  Dimensionally, we define 
*  so that 

(0) *KF = , where   does not have units and 
*  has units TtC$-1year-1. We can then 

obtain ( )( )
1* 1A b


  −=  or ( )* *

0 0 0 .ˆ K Eg =    

D2. Forcing of the first-order problem with only leading-order uncertainty 

To identify only leading-order contributions of uncertainty, we expand in 

 ˆ
ˆE ,ˆ ˆ

t
    −  ˆ

ˆ ˆEˆ
t

   
 

  −  and ˆEˆ ˆ ˆ
t

E E E  −
 

  with the corresponding 

covariance matrix given by (C2.5) (Assumption II). As in footnote 15 of the paper, we will 

use short-hand notation for the expected values of ̂  and ̂ , namely 

  ( )ˆ
ˆˆ ˆˆ ˆ ˆˆ xE exp( ) 1 e p( )

t
t t       − + −= −  and 
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( )ˆ

ˆˆ ˆ ˆˆ ˆˆ exp( ) 1 exp( ) ,E
t

t t       − + − =
 

− and we note that ˆ 1 =  (Assumption III).12  

We begin by considering terms that only involve capital stock uncertainty, which are 

evaluated without approximation. The probability density function for time ˆ,s  but with the 

expectation operator evaluated at time ˆ,t  is 

(D2.1)                  
2

22

( )1 1
exp ,

2

ˆ ˆ ˆ

ˆ ˆˆ ˆ2
k

k

KK

k s
f

ss





  
= −    

  

−


 

 

where 
(0) 2ˆ ˆˆ ˆ( ) 2.k Ki  = −  Combining with the discount factor ( )ˆ ˆexp r s−   in (C3.18) 

and an additional factor accounting for the decay of the atmospheric carbon stock, we have 

without further approximation 

(D2.2) 
( )( ) ( )

( ) ( )

1
1

ˆ

2
2 (0)

ˆ

ˆ ˆ ˆˆˆ ˆ ˆ ˆE exp ( ) exp( )   and

ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆE exp ( ) ( ) exp( ),( 1)

ETt

ETt

K r s K t r s

K r g s K t r s







 

 

−
−



−
−



  −  = − 
 

  − =

+

+  − 
 

+ −

 

 

where 
* (0) (0)ˆ ˆˆ ˆ ( ˆ1 ) (1ˆ )ET ETr r r g   += −+ + +  and 

 
(0) (0) 2 ˆˆ ˆ ˆ (1 ) ˆ

K ETr r g    − +− −  
2( ) ˆˆ ˆ1 Kr   −− −+ . We use alternative star symbols 

 as superscripts to denote rates corrected for atmospheric carbon stock decay. To leading 

order, we have for the terms involving the carbon stock: 

(D2.3)  

( ) ( )

( ) ( )( )

2

4

ˆ ˆ

ˆ
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ˆ ˆ

1
1
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ˆ1ˆ ˆ ˆE E 1 (1 ),
ˆ2 E

1

2

ET
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ET ET Et t

t

ET ET Et t
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E
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E E
E

E E
E







 

 
−

−

−

  −

  
     = + + 

       
  



 

  
   = + + 

     
    

−


 

      ( ) ( )( )
2

2

2

4

ˆ ˆ

ˆ

ˆ1ˆ ˆ ˆE E 1 ( ),
ˆ2 E

2 3
ET

ET

ET ET Et t

t

EE E
E


  

−
−  − −

  
   = + + 

     



 


  

  

 

 
12 Consistent with the other non-dimensional variables,  0

ˆ
     and 0

ˆ
    . 
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where we let the subscript on 
2

 denote the relevant elements of the covariance matrix Σ  

(C2.35) and we have ignored any contributions to uncertainty from new emissions through 

their dependence on uncertain future GDP (Assumption I). Making Assumption II more 

precise, we retain terms up to second order in a perturbation expansion in  .13 The 

following terms also make a contribution to the forcing (C3.17)-(C3.18): ˆ
ˆ ˆˆ ˆ, ,  

( ) ˆ ,ˆ ˆˆ ˆˆ ˆ ,  
 −    ( ) ˆ ,

ˆ ˆˆˆ
 

 −  ˆ ˆ
ˆˆ

   and ˆ ˆ .
ˆˆ


  Keeping only those terms 

contributing to the leading-order effect of climatic uncertainty, we have 

(D2.4a)    

2

1 4
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ˆ1ˆ ˆˆ ˆ( ) 1 ( ) ( ),
ˆ2
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

   


     


+
+

+

  
   = + +        

  
   = + +        

+ −
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+

−

  
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    

    = +   

  +
 
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(D2.5a)        
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
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 
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

 
     



   


     


+
+

+

  
    = + +        

  
    = + +        
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(D2.5b)             
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 
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ˆ
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 
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



   

     


   

+

−

  
 −  = +      

  =

  +
 

+ + 
 

 

 

Using (D2.2)-(D2.5), we now consider the terms in the forcing (C3.17) consecutively 

and let the subscript indices correspond to the sequence of terms in (C3.17) (left to right). 

 
13 We also retain the term proportional to 

2 2ˆ ˆ
   , which is fourth order, although this is inconsistent from a perturbation 

theory perspective. We know from comparison to Result A, which we can evaluate exactly numerically (see Appendix F), 
that this term is the largest higher-order term (notably, in the case of highly convex damages) we otherwise ignore. We thus 

increase the accuracy of Results 1 and 2 by a few percent (see Appendix F).  
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To consider the covariance terms in the forcing (C3.17), we also expand in 

( )(0) 2ˆ ˆ ˆ ˆ ˆˆ( ) 2Kk k i t   − −  and only consider deviations from the zeroth-order mean 

consistent with our search for leading-order terms only. The following terms arise:  

(D2.6)        ( )
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where elements of the covariance matrix have been substituted from (C2.5). 

D3. Leading-order solution (Results 1 and 2) 

Combining all the leading-order terms in the forcing equation (D2.6)-(D2.18) and 

substituting into (C3.19), further assuming 0 = , so that ˆ 1 =  (Assumption III), we 

obtain Result 2 after considerable manipulation (including integrating by parts).  

 

Result 2: The optimal risk-adjusted SCC is 
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where we distinguish six so-called ‘risk adjustments’ denoted by the symbol   with 

subscripts denoting the state variable(s) from which the risk originates.  

D3.1. Risk adjustments 

The risk adjustments for atmospheric carbon stock uncertainty ( EE ), climate sensitivity 

uncertainty (  ), damage ratio uncertainty (  ), the interaction of climate sensitivity 

and damage ratio uncertainty (   ), the correlation between economic risk and all three 

climatic risks ( CK ), and the correlation between the three climatic risks themselves ( )CC
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D3.2. Correction factors  

In addition to ‘risk adjustments’, we distinguish two types of so-called ‘correction 

factors’, denoted by the symbol   with subscripts again denoting the state variable(s) from 

which the risk originates: for 0ET   and for 0  . In equation (D3.1), the correction 

factors 0ET    and 
0   are deterministic corrections for 0ET   and 0  , 

respectively. The remaining correction factors ( ) in (D.3.2) multiply a risk adjustment

( )  and must be linearly combined with unity, so that, for example, 
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0, 0 ,1
ET       +  + . These combined correction factors are equal to unity if 

0ET   and 0   (e.g., 1  ). We give the correction factors in terms of dimensional 

quantities below (using the definitions in Appendix A.2.1), so that they can be used directly 

in Result 2 given dimensionally in Appendix A.4.  

The correction factors for 0ET   are 
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where ( ) 1i =  for i =  and ( ) 0i =  for i   (cf. indicator function), the function 

that takes into account future changes to the mean carbon stock 
*( ) 1 ( ( ) ( ))(exp( ) 1)e s K t E t s   = +  − , and the time-varying mean climate sensitivity 

1( ) ( )ex )p( ) exp( ( )s t s s         = −  + − − .  

The correction factors for 0   are: 
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 We do not explicitly give the correction factors for the correlation terms involving 

carbon stock uncertainty. Equation (D3.1) together with (D3.2)-(D3.5) gives the optimal 

SCC according to Result 2. 
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Appendix E: Calibration (For Online Publication) 

E1. Asset returns, risk aversion and intertemporal substitution 

We follow the calibration of Pindyck and Wang (2013), but ignore the effect of 

catastrophic shocks.14,15 Using monthly asset data from the S&P 500 for the period 1947-

2008, we obtain an annual return on assets (capital gains plus dividends) of 
(0)r =

7.2%/year with annual volatility of K = 12%. For a return on safe assets of 0.80%/year 

based on the annualized monthly return on 3-months T-bills, we obtain a risk premium of 
0(0) (0) ( )

rfrr r− =  6.4%/year and calibrate the coefficient of relative risk aversion as  =  

4.3 (cf. 
(0) 2

Kr = ). Taking the growth rate to be equal to the historical growth rate of 

(0)g =  2.0%/year, the equation 
((0) 2

rf

0) (1 ) 2Kr g   = + − +  (cf. (B9)) defines the 

combinations of  and   that are consistent with historical asset returns. Setting the 

coefficient of elasticity of intertemporal substitution EIS 2 / 3= , we obtain 
1EIS −= = 1.5 

and thus a rate of time preference is  = 5.8%/year. In section V.A we also consider an 

alternative calibration where EIS = 1.5 (larger than one as is assumed in asset pricing 

theory) and adjust  = 4.8%/year, so that the same risky and risk-free financial returns are 

matched. 

E2. Productivity, fossil fuel, adjustment costs and the depreciation rate 

To calibrate total factor productivity, we consider the production function in the absence 

of climate damage that can be obtained by setting 0P =  (i.e. at zeroth order), namely 

*(0)Y A K=  with ( )
(1 )/* 1/ (1 ) /A A b

  
−

= − . Pindyck and Wang (2013) use empirical 

estimates of the physical, human and intangible capital stocks and find 
* 0.113A = /year, 

which we adopt. Based on emissions of 
(0)

0F = 9.1 GtC/year in 2015, energy costs making 

up a share 1 − =4.3% of world GDP at PPP in 2015 of $116 trillion/year, we estimate the 

 
14 Pindyck and Wang (2013) use Poisson shocks to capture small risks of large disasters (cf. Barro, 2016) and thus match 

skewness and kurtosis of asset returns. These shocks are responsible for approximately 1%-point of the risk premium. 
15 The alternative is to calibrate our AK-model to the observed volatility of consumption or output (cf. Gollier, 2012), which 
are generally much less volatile than capital (asset returns). Because the volatilities of capital, consumption and output are 

equal to the volatility of capital in an AK-model, this alternative calibration gives a much lower volatility and, consequently, 

a higher coefficient of relative risk aversion to match the equity premium (see also the discussion in Pindyck and Wang, 

2013). Historical data for the growth rate of world GDP for 1961-2015 imply a volatility of K = 1.5%/year1/2 and thus a 

much higher value of risk aversion of  = 2.8
210  for an equity premium of 6.4%/year. Kocherlota (1996) obtains K =  

3.6%/year1/2 from US annual consumption growth during 1889-1978, which gives  = 49. We use K = 1.5%/year1/2, but 

not the corresponding high values of risk aversion.  
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fossil fuel cost to be 
2(0)(0)

0 0
(1 $ 4) 0. 15b FY = − = /tC.16 The gross marginal 

productivity of capital is thus *(0)

0K t
AY 

=
= = 0.11/year.17 Using Pindyck and Wang’s 

(2013) consumption-investment ratio 
(0) (0)c i = 2.84 and the identity 

) )* (0 (0 ,A c i = + we 

obtain initial values of 
(0)c =  8.0%/year and 

(0)i = 2.8%/year. Using 
(0) (0) (0) (0)( )q rc g= − =  1.5 and 

(0) (0) 1(1 )q i −= − , we get the adjustment-cost parameter 

 = 12.5 year. Finally, we find the depreciation rate that is consistent with the assumed rate 

of economic growth: 
(0) ( 20) (0)( ) 2i i g = − − = 0.33%/year. 

E3. Atmospheric carbon stock and uncertainty 

Here we calibrate our carbon stock model (4) to the Law Dome Ice Core 2000-year data 

set and historical emissions. The first column of Fig. E1 shows maximum-likelihood 

estimates, from which it is evident that estimates displaying a certain linear relationship 

between    and  are of comparable likelihood.18  

These loci of maximum likelihood are shown separately in Fig. E2, with the overall 

maximum denoted by a red circle and corresponding values given in Table E1. The 

remaining columns in Fig. E1 show the predicted and observed rate of change of the 

atmospheric carbon stock (second column), the predicted and observed atmospheric carbon 

stock (third column) and the remaining variability (fourth column).19 

 

  

 
16 We estimate the share of energy costs from data for energy use and energy costs from BP Statistical Review of World 

Energy 2017. Data for emissions are obtained from the same source available online at 

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. Our estimate of energy 
costs as a percentage of GDP is in good agreement with data from the U.S. Energy Information Administration available 

online at https://www.eia.gov/totalenergy/data/annual/showtext.php?t=ptb0105.  
17 This is in line with Caselli and Feyrer (2007), who estimate annual marginal products of capital of 8.5% for rich countries 

and 6.9% for poor countries, and an observed annual risk premium of 5-7%. They use a depreciation rate of 6.0% to calculate 

the capital stock from investment, include the share of reproducible capital rather than the share of total capital, account for 
differences in prices between capital and consumption goods and correct for inflation. 
18Annual data from the Law Dome firn and ice core records and the Cape Grim record are available online at 

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law2006.txt.This data is based on spline fits to different dataset 
with different spline windows across time reflecting changes in the temporal resolution of the data. The discrete nature of the 

fitted data is evident for the early years. Annual carbon emissions from fossil fuel consumption and cement production are 

available online at http://cdiac.ornl.gov/trends/emis/tre_glob_2013.html. 
19 By setting φ = 0, we can estimate the fraction   of emissions that stays in the atmosphere forever, whilst the remainder 

is instantaneously absorbed by the oceans and other carbon sinks. Calibrating to this data, we find μ = 0.68, 0.64, 0.56 and 

0.43 for the periods 1750-2004, 1800-2004, 1900-2004 and 1959-2004, respectively. Performing a similar analysis, Le 
Quéré et al. (2009) find that, between 1959 and 2008, 43% of each year's CO2 emissions remained in the atmosphere on 

average. 

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.eia.gov/totalenergy/data/annual/showtext.php?t=ptb0105
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law2006.txt
http://cdiac.ornl.gov/trends/emis/tre_glob_2013.html
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FIGURE E1. HISTORICAL ATMOSPHERIC CARBON STOCK CALIBRATION 

 



A40 

 

 

FIGURE E2. LOCI OF BEST FIT OF TMOSPHERIC STOCK CALIBRATION 

 

Fig. E1 indicates that our model (4) captures the observed historical variations in the 

atmospheric carbon stock reasonably well, including for very long time periods. The final 

column in Table F1 shows volatility as percentage of the initial carbon stock, from which 

we note that the stochastic carbon stock adjustment to the optimal SCC will be tiny if 

estimated from historical emissions. 

TABLE E1. ATMOSPHERIC CARBON STOCK CALIBRATION 

Time    [%/year]  1/2 [GtC year ]E  1/2
0  [% year ]E S  1/2

0  [% year ]E E  

1750-

2004 

1.0 0.66 0.31 0.036 0.12 

1800-

2004 

0.75 0.00 0.26 0.029 0.10 

1900-

2004 

0.59 0.00 0.21 0.025 0.081 

1959-

2004 

0.79 0.91 0.23 0.027 0.089 

 

E4. Calibration of the curvature of the temperature-carbon stock relationship 

The curvature of our temperature relationship (5), 
1 1

PI( , ) ( / ) ET E E S  
+ +

= , is 

constant: ( , ) ( , )EE EE ET E T E   . The radiative law for global mean temperature, 
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( )PI PI PIln( / ) / ln(2) ln ( ) / / ln(2)T S S E S S+   (Arrhenius, 1896)20 gives 

/ ( ).E PIE E S = − +  If we evaluate the temperature relationship at double (quadruple) the 

pre-industrial stock  PIE S=  ( PI3E S= ), we obtain 0.50E = −  (or 0.75E = − ).21 For 0S =

0.854 TtC or 0E = 0.258 TtC (Fiven PIS = 0.596 TtC), we get 0.30.E = −  We set 

0.36E = −  for our base case calibration. 

E.5. Climate sensitivity and uncertainty 

If climate sensitivity parameter   is normally distributed with mean    and standard 

deviation  , the climate sensitivity 
1

2T 
+

=  is described by the probability density 

function 

 (E1) ( )
( )2

2
1

2

2 2

1

2

1
exp .

1
; ,

2
, / 2

1
T Tf T T



 



 

    

 

  
 

+ +
−   

   − − 
  


+  

=



 

 

Unlike for fat-tailed distributions, which typically have algebraically decaying tails, all 

moments of (E1) are defined due to its exponential tail (for 1  − ), so that Weitzman’s 

(2009) ‘dismal theorem’ does not apply. Positive values of   result in a positively skewed 

(non-Gaussian) distribution with more probability mass at high temperatures. Leading-

order central moments of climate sensitivity can be obtained from performing Taylor-series 

expansions of 
1

2T 
+

=  about its mean  : 

(E2a)  
1 2 4

2 (1 )( / ) ( ),
1

1
2

E T O

        
+  

+   


= + +


 

(E2b)    ( ) 2(1 )2

2

2 4

2 2

2

v 1ar ( / ) ( ),( )T E T E T O

      
+  +   − = +

 
 

 
20 In their table 6.2, IPCC (2001) propose a logarithmic relationship for radiative forcing as a function CO2, also given in 

IPCC (1990, chapter 2, where original sources are cited), among two other non-logarithmic, but generally concave 

parametrizations. IPCC (1990, chapter 2, page 51) note that for “low/moderate/high concentrations, the form   is well 
approximated by a linear/square-root/logarithmic dependence”, where the limit of validity of the logarithmic calibration is 

said to be 1000 ppm. For other greenhouse gases alternative parametrizations are proposed: a square-root dependence for 

methane and a linear dependence for halocarbons. 
21 Whereas the normalized curvature of Arrhenius’s (1896) logarithmic radiative law with respect to the atmospheric carbon 

stock S, namely ( ) ( )SS SST S T S   is constant and equal to -1, this limit is only reached for large carbon stock in our case, in 

which ( , ) ( , ).EE EE ET E T E     
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(E2c)    ( ) 3(1 )3 3 6

2

4

2 2skew 3 ( ) / ( ),1 ( )T E T E T O

        
+ = +   − +

 
 

(E2d)      ( )
3/2* 3

2 2 2skew skew / var 3 / ( ).( )T T T O     +=   

Our calibration of the distribution of the climate sensitivity are based on a wide range of 

distributions reported and used by the IPCC (2014, AR5) (see Fig. 2 in section IV.B). 

Combining (E1) with the expected carbon stock dynamics in our model, Fig. E3 shows the 

exceedance probability of temperature in our model as a function of time. The rapid 

broadening of the distribution with time reflects our calibration to the TCR for short time 

and the ECS for long time (see section IV.B).  

 

FIGURE E3. CONDITIONAL EXCEEDANCE PROBABILITY OF TEMPERATURE 

IN OUR MODEL 

The skewness of the temperature distribution is evident from the expected temperature 

(dashed line) being greater than the median temperature, which is shown by the contour 

with an exceedance probability of 0.5.  

E6. Climate damage uncertainty 

In addition to the two calibrations of our model in Fig. 3, two additional calibrations have 

been considered in footnotes 60 and 61: a calibration based on Ackerman and Stanton 

(2012) that is of form ,1 1
( )T AS

ASD T C 
 
+ +

=  and a calibration that is of the form 0D D T =  

with 
2~ ),(N      (see footnotes 60 and 61 for details). Fig. E4 illustrates these two 

alternative calibrations with the continuous lines corresponding to expected damages, the 

shaded areas to the 90% confidence intervals, and the blue dashed line labelled AS12 to 

the original damage function of Ackerman and Stanton (2012). Also shown are the 

expected damages for the convex damage case of our model as continuous red lines and 

the corresponding 90% confidence bands as dashed red lines (cf. Fig. 3b). 
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(a) Based on Ackerman and Stanton (2012)  (b) Based on parameter uncertainty 

 (
0D D T


= )  

FIGURE E4. ALTERNATIVE DAMAGE FUNCTION CALIBRATIONS 
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Appendix F: Accuracy of Results 1 and 2 (For Online Publication) 

Result A is evaluated numerically by discretization in time before evaluating the 

expectation operator numerically exactly and summing up the discounted contributions of 

every time step. Whereas the stochastic processes for   and   are autonomous, the 

stochastic process for K  remains autonomous in Result 1, and all three have (independent) 

probability distributions available in closed form, the probability distribution of E  at any 

time period in the future must combine all uncertain emissions (proportional to K ) before 

that time. As the time integral of a Geometric Brownian motion does not have a closed-

form solution, we update the probability distribution function of E  every time step with 

the stochastic emissions and the decay in that period according to the differential equation 

for E  and project on a fixed grid for E  to enable transfer of the probability density 

function between time periods. Of course, the validity of Result A itself still relies on the 

parameter  being small. Consistent with our perturbation scheme, all our optimal risk-

adjusted carbon prices in Results A, 1 and 2 are evaluated along the business-as-usual path 

for which 0P = . We assess the accuracy of Results 1 and 2 for some of the calibrations 

examined in section V. By choosing the grid size sufficiently small and the grid sufficiently 

large in each case, we ensure that discretization errors for Result A are negligible.  

 TABLE F1. ACCURACY OF RESULT 1 OR 2 COMPARED TO RESULT A 

Impatience ρ [/year] 5.8% 1.5% 0.1% 0.1% 0.1% 

Economic volatility K  

[/year1/2] 

12% 12% 1.5% 1.5% 1.5% 

Damages 

Proportional Proportional Proportional Convex 

 

Highly 

convex 

(AS12) 

Total error in risk-adjusted 

SCC 

-0.02% -2.0% 0.73% 1.9% -1.3% 

 

Two factors determine the accuracy of using Result 1 or 2 instead of Result A. First, in 

Results 1 and 2 we ignore any uncertainty in the atmospheric carbon stock that arises 

because of the uncertain nature of future economic growth and thus of future emissions 

(Assumption I) For our base case calibration with proportional damages ( 0ET = ) 

(Assumption IV), the stochastic nature of E does not lead to a change in the SCC. Second, 

in Results 1 and 2 we only consider leading-order terms in the climate sensitivity 

uncertainty (Assumption II).  We can confirm from Table F1 that the combined effect of 

these two errors is sufficiently small to be ignored for all practical purposes. As expected, 

it is larger for low discount rates, higher economic volatility, and convex damages. 
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Appendix G: Carbon pricing with some common calibrations 

In Table G1, we evaluate the optimal risk-adjusted SCC for different calibrations in the 

literature. Golosov et al. (2014) use proportional damages, logarithmic utility (IIA = RRA 

= 1), and  = 1.5% per year, which gives a risk-adjusted discount rate 
(0)r of 3.5% per year. 

With logarithmic utility, neither the expected rate of growth nor uncertainty about the 

future rate of growth influences the optimal SCC. Gollier (2012) uses RRA = IIA = 2 and 

 = 0 and calibrates to GDP volatility, which gives a risk-adjusted discount rate 
(0)r  of 4% 

per year and a risk-adjusted SCC of $18.5/tCO2. If the model were to be calibrated to asset 

return volatility, the risk-adjusted discounted rate drops to 2.5% per year and the risk-

adjusted SCC rises to $62.6/tCO2. The discount rate is only substantially lowered for asset 

return uncertainty; asset return uncertainty depresses the discount rate and increases the 

risk-adjusted SCC as IIA 1  in this calibration. 
 

TABLE G1. ESTIMATES OF THE SCC: COMPARISON WITH OTHER CALIBRATIONS 

Model Base 
Golosov et 
al. (2014) 

Gollier (2012) 
Stern (2007) 

+AS12 

Volatility based on 
asset 

returns 
- 

asset 

returns 
GDP GDP 

Deterministic SCC ($/tCO2) 11.5 19.0 14.4 14.4 51.6 

Risk-adjusted SCC ($/tCO2) 39.8 24.6 62.6 18.5 102.9 

Economic risk mark-up 

Carbon stock risk mark-up 

Climate sensitivity risk mark-up 
Damage ratio mark-up 

Total risk mark-up 

163% 

0% 

41% 
43% 

247% 

0% 

0% 

13% 
16% 

29% 

225% 

0% 

57% 
54% 

336% 

1.1% 

0% 

12% 
16% 

29% 

0.3% 

-1.1% 

66% 
21% 

90% 

Discount rate r(0) (per year) 2.9% 3.5% 2.5% 4.0% 3.0% 

Estimates in this table are for proportional damages ( 0
ET

 = ), except for the final column, which assumes 

highly convex AS12 damages. The base case is for  = 1.5%/year (ethics-based calibration). 

 

Our analytical results can also be used for stochastic carbon pricing with very convex 

damages, i.e., those used in Ackerman and Stanton (2012). The last column of Table 8 uses 

IIA = RRA = 1.45 and a very low rate of time preference of  = 0.1%/year corresponding 

to a discount rate 
(0)r  of 2.5% per year (for GDP-based economic volatility). These choices 

reflect the low discount rate and convexity of damages used by Stern (2007). This gives a 

very high deterministic SCC of $52 and an even higher risk-adjusted SCC of $103/tCO2. 


