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Abstract

We analyze output growth risk with respect to financial conditions across U.S.

manufacturing industries. Using a multi-level quantile regression approach, we

find strong heterogeneity in growth risk, particularly between the more vulnerable

durable goods sector and the more resilient nondurable goods sector. Moreover, we

show that industry characteristics significantly explain these differences. Large, or

material intensive durable goods producing, or energy intensive nondurable goods

producing industries are more vulnerable to adverse financial conditions, while in-

dustries engaging in labor hoarding, or with a high capital or overhead labor inten-

sity are less susceptible.
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1 Introduction

In light of the Great Recession, quantifying and monitoring the evolution of risks to

economic activity has become an essential task of policy makers and private sector par-

ticipants. For example, investors need to understand and oversee macroeconomic risks in

order to build well-diversified portfolios (Amenc et al., 2019), while central bankers and

other policy makers strive for economic and financial stability by putting additional em-

phasis on minimizing risks rather than only focussing on optimizing expected outcomes

(Kilian and Manganelli, 2008; Sánchez and Röhn, 2016; Prasad et al., 2019).1 The risk

of an economic downturn is theoretically and empirically associated with deteriorating

financial conditions (Bernanke et al., 1999; Gilchrist and Zakraǰsek, 2012; Arellano et al.,

2018). In particular, downside risks to the economy increase as a function of tightening

financial conditions, while upside potential seems to remain stable (Giglio et al., 2016;

Adrian et al., 2019). Consequently, analyzing the relationship between downside macroe-

conomic risks and financial conditions has become a focal point of research (Delle Monache

et al., 2020; Plagborg-Møller et al., 2020; Falconio and Manganelli, 2020).

Most empirical work on downside macroeconomic risks and their relationship with

financial conditions addresses the aggregate (often countrywide) level. However, we argue

that analyzing disaggregate data is useful as well and can offer additional insights. There

is indeed strong empirical evidence that aggregate economic fluctuations can originate

from industry-specific shocks (Foerster et al., 2011; Acemoglu et al., 2012; Carvalho and

Gabaix, 2013). At the same time, Bloom (2014) shows that an economic downturn

substantially increases the cross-sectional dispersion in growth rates across industries.

To understand this increased heterogeneity at the advent of and during a recession, we

believe that more attention should be given to the issue how downside macroeconomic

risks with respect to financial conditions differ across industries and how these differences

can be explained. This is what we will do in this paper.

To address this issue, we use a multi-level quantile regression approach to analyze

and explain the differences in growth risk across U.S. manufacturing industries and their

1For direct evidence, see the statement in the August 2020 speech of Jerome H. Powell, chair of
the Board of Governors of the Federal Reserve System: ”our policy actions continue to depend on the
economic outlook as well as the risks to the outlook, including potential risks to the financial system that
could impede the attainment of our goals.” (https://www.federalreserve.gov/newsevents/speech/
powell20200827a.htm)
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relationship with financial (market) conditions. More specifically, following Adrian et al.

(2019), we first use quantile regressions to quantify industry-level output growth risk as

a function of current financial and economic conditions. Next, inspired by Petersen and

Strongin (1996), we analyze the heterogeneity in these growth vulnerabilities by linking

them to industry characteristics that could signal why some industries are more at risk

than others.

We consider monthly industrial production (IP) growth of 74 U.S. manufacturing

industries at the four-digit level of the North American Industry Classification System

(NAICS) over the period January 1973 to July 2020. We use the National Financial

Conditions Index (NFCI) of the Federal Reserve Bank of Chicago to gauge U.S. financial

conditions. Our main findings are as follows. First, we document significant heterogeneity

across industries in how strongly their output growth is affected by the NFCI. For the

large majority of industries, we find a pronounced nonlinear relationship between output

growth and the NFCI. Deteriorating financial conditions have a much stronger negative

effect on downside risks than on the central parts of the growth distribution, while upside

potential is almost not affected at all. On average, a one standard deviation positive

shock in the NFCI leads to a decline in the 5 percent quantile and median of three-month

ahead IP growth of 0.773% and 0.237%, respectively, and an increase in the 95 percent

quantile growth of 0.042%. By contrast, some industries seem to be completely unaffected

by the NFCI across all parts of the growth distribution.

Second, we show that the growth vulnerability differences can be significantly and

meaningfully explained by industry characteristics. We find that the durable goods sec-

tor is more vulnerable to adverse financial conditions than the nondurable goods sector,

where the average impact of the NFCI on the 5 percent quantile of three-month ahead IP

growth is in fact twice as strong for durable goods industries as for nondurables. Based on

all manufacturing industries, we find that large industries have more vulnerable growth,

whereas capital intensive, overhead labor intensive, or in labor hoarding engaging indus-

tries have less susceptible growth. When we compare the durable with the nondurable

goods sector, we observe different characteristic effects. In particular, within the durable

goods sector, the industry size, materials intensity, energy intensity, overhead labor in-

tensity and labor hoarding significantly explain part of the variation in the effects of the

NFCI on downside production growth. Within the nondurable goods sector, on the other

2



hand, only the energy intensity explains part of the variation.

These findings have implications for policy makers who strive for economic stability in

the manufacturing sector. For example, in order to minimize downside growth risks with

respect to financial conditions, it might be more effective to opt for industry-level policy

rather than nationwide policy as there is large industry heterogeneity (OECD, 2003, Ch.

3).2 These policies can in turn be based on the industry characteristics that signal which

industries are more at risk. Alternatively, investors could exploit the heterogeneity across

industries in their construction of industry-rotation strategies within the manufacturing

sector that are less vulnerable to adverse shocks in the financial market.

Our work is strongly related to and builds on two strands of literature. First, it re-

lates to the existing literature on industry heterogeneity in output growth. For example,

Berman and Pfleeger (1997) show that some industries are more sensitive to the business

cycle than others, particularly industries in the durable goods sector are far more cyclical

than industries in the nondurable goods sector (Mitchell, 1951; Lucas, 1977; Bernanke,

1983; Petersen and Strongin, 1996). Within the durable goods sector, Petersen and Stron-

gin (1996) show that industries with a larger share of variable costs relative to fixed costs

are more cyclical, whereas industries engaging in labor hoarding, that is, the retaining

of employees due to sunk costs of searching, hiring and training (Becker, 1962; Oi, 1962;

Rosen, 1968), are less cyclical. In addition, nonproduction workers require, on average,

more firm-specific investments than production workers (Parsons, 1986) and are thus

more subject to labor hoarding (Rotemberg and Summers, 1990), making overhead labor

intensive industries also less cyclical (Petersen and Strongin, 1996). Another important

driver of cyclical fluctuations is an industry’s market structure such as its concentration

ratio (Domowitz et al., 1985, 1988). Lastly, Korenok et al. (2009) and Chang and Hwang

(2015) show that there are large differences across industries in the duration of recessions

and expansions as well as how strong this asymmetry is within an industry, while there is

also heterogeneity in the leads and lags of industry cycles (Fok et al., 2005; Camacho and

Leiva-Leon, 2019) and the effects of monetary policy on industry-level output (Dedola

and Lippi, 2005).

2For practical motivation, see also McKinsey’s ”How to compete and grow: A sector guide
to policy” (https://www.mckinsey.com/industries/public-and-social-sector/our-insights/
how-to-compete-and-grow)
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Second, our work is related to the more recent and rapidly expanding literature on

downside macroeconomic risks (also known as growth-at-risk) and their relationship with

current market conditions. A substantial part of this literature employs quantile regres-

sions to quantify downside macroeconomic risks as a function of financial and economic

conditions (Giglio et al., 2016; Adrian et al., 2018, 2019; Loria et al., 2019; Adams et al.,

2021; De Santis and Van der Veken, 2020; Figueres and Jarociński, 2020; Reichlin et al.,

2020). In turn, the quantile regression approach could be extended to a multivariate case

by means of quantile vector autoregressions (Chavleishvili and Manganelli, 2019; Falco-

nio and Manganelli, 2020; Chavleishvili and Kremer, 2021) or to a data-rich environment

by including a large number of predictors with variable selection or dimension-reduction

techniques (Cook and Doh, 2019; Plagborg-Møller et al., 2020; Chen et al., 2021). Al-

ternatively, Adrian et al. (2021) consider a nonparametric approach to examine the joint

distribution of economic and financial conditions, whereas Brownlees and Souza (2020),

Carriero et al. (2020a,b) and Delle Monache et al. (2020) follow a fully parametric ap-

proach to forecast downside risks.

We contribute to both strands of literature. First and foremost, we provide new

insights in the macroeconomic risk literature by focusing on industry-level output growth

risk instead of only aggregate growth risk. By doing so, we allow for heterogeneity across

industries in their growth vulnerability and to what extent their downside risk is related

to current financial and economic conditions. Second, we extend the work of Petersen and

Strongin (1996), who analyze in a linear setting why some industries are more cyclical than

others. Instead, we allow for a more flexible and possibly nonlinear relationship between

output growth and current market conditions, after which we examine which industry

characteristics explain why some industries are more vulnerable to these conditions for

specific parts of the growth distribution.

Our paper is organized as follows. Section 2 introduces our multi-level quantile re-

gression approach. Section 3 discusses the NFCI and U.S. manufacturing industry data.

Section 4 presents the industry-level results and shows how to explain the heterogeneity

in growth vulnerability across industries. Section 5 summarizes our main conclusions.
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2 Multi-level quantile regression approach

Following Adrian et al. (2019), we employ quantile regressions (Koenker and Bassett,

1978) to study the conditional distribution of industry-level output growth as a func-

tion of economic and financial conditions. In addition, we extend the set-up of Adrian

et al. (2019) with a second level, linking the quantile regression coefficients to industry

characteristics. By doing so, we can investigate whether these characteristics explain the

differences in the effects of financial conditions across industries. We refer to these two

levels as the multi-level quantile regression approach, despite the fact that we estimate

them sequentially in two steps rather than simultaneously.3

Let yi,t denote the monthly output growth of industry i in month t, ȳi,t+h = 1
h

∑h
j=1 yi,t+j

the average output growth of industry i between months t and t+h, and NFCIt the na-

tional financial condition index (NFCI) in month t. Then, following Adrian et al. (2019),

we express the τth quantile of ȳi,t+h conditional on xi,t =
(
1, NFCIt, yi,t

)′
as

Qȳi,t+h|xi,t
(τ | xi,t) = αi(τ) + βi(τ)NFCIt + φi(τ)yi,t, (1)

for i = 1, . . . , N and t = 1, . . . , T − h, where N is the number of industries and T the

number of observations. For notational simplicity, we suppress the dependence of the

quantile regression coefficients on the horizon h.

The coefficients βi(τ) and φi(τ) in equation (1) measure the effect of current financial

and economic conditions, respectively, on the τth quantile of average output growth of

industry i over the next h months. In other words, they measure how vulnerable the

growth of a specific industry is to the current market conditions. We implement the

quantile regressions in equation (1) for different values of τ covering the complete range

between 0 and 1. However, given the focus of policymakers and investors on downside

risks in output growth, we are particularly interested in these effects for smaller values

of τ .

We also consider two alternative quantile regression models. First, we consider an

extended quantile regression, where we add additional lags of yi,t as well as other macro-

financial control variables. Specifically, we follow Gilchrist and Zakraǰsek (2012) and we

3A possible way to estimate a multi-level quantile regression model in a one-step approach would be
to put it in a Bayesian estimation framework, see for example Chang (2015).
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consider the term spread, real federal fund rate, credit spread and excess bond premium.

This extended quantile regression leads to qualitatively similar results for the relationship

between industry output growth and financial conditions, see Appendix G for complete

details. Second, we consider the heterogeneous panel quantile regression model with

interactive fixed effects of Ando and Bai (2020), where the unobserved heterogeneity is

modelled with a latent factor structure. Similarly, this model generates qualitatively com-

parable results as the industry-specific quantile regressions in equation (1), see Appendix

H for further details.

For each industry i and a given quantile τ , we estimate the quantile regression coef-

ficients as

θ̂i(τ) = arg min
θi(τ)

1

T

T−h∑
t=1

ρτ

(
ȳi,t+h − x′i,tθi(τ)

)
, i = 1, . . . , N, (2)

where θi(τ) =
(
αi(τ), βi(τ), φi(τ)

)′
and ρτ (u) = u

(
τ − I{u ≤ 0}

)
is the standard check

function of quantile regressions (Koenker and Bassett, 1978).4

Next, we consider in a second level, for a specific quantile τ , the cross-sectional re-

gression of the form

βi(τ) = δ(τ)′wi + ηi, i = 1, . . . , N, (3)

wherewi is a (K+1)×1 vector containing a constant and K time-invariant industry char-

acteristics of industry i. The industry characteristics are standardized with mean 0 and

variance 1 for interpretation purposes. We estimate this second level by plugging in the

estimated quantile coefficients β̂i(τ) of the first-level quantile regressions and conducting

ordinary least squares (OLS) estimation with White (1980) standard errors to deal with

potential heteroskedasticity across the industries. For each industry i and quantile τ , the

coefficients δk(τ) for k = 2, . . . , K+1 measure the effect of the kth industry characteristic

on the quantile regression coefficient corresponding to the NFCI. Hence, they indicate

how strongly an industry characteristic attributes to the output growth vulnerability of

a specific industry with respect to financial market conditions.

4We minimize the objective function using the interior point (Frisch-Newton) algorithm via the
Matlab package available on Roger Koenker’s website: http://www.econ.uiuc.edu/~roger/research/
rq/rq.html
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3 Data

We consider monthly growth rates of industrial production (IP) indices for 74 U.S. man-

ufacturing industries over the period January 1973 to July 2020. The data is obtained

from the Federal Reserve.5 We select the industries that are available at the four-digit

level of the 2012 North American Industry Classification System (NAICS).6 In case the

four-digit NAICS level is not available, we take the three-digit NAICS level instead. The

final selection of U.S. manufacturing industries is the same as used by Chang and Hwang

(2015), see Appendix A for a complete overview.

To measure financial conditions, we use the National Financial Conditions Index

(NFCI) of the Federal Reserve Bank of Chicago. The NFCI is a weekly gauge of the

conditions in U.S. money markets, debt and equity markets, and the traditional and

shadow banking systems.7 A positive NFCI value indicates tighter-than-average finan-

cial conditions, whereas negative values indicate looser-than-average financial conditions.

The NFCI is constructed with a large dynamic factor model that is estimated with the

quasi-maximum likelihood approach of Doz et al. (2012) and can be obtained from the

Federal Reserve Bank of St. Louis.8 We refer to Brave and Butters (2011) for more

details on the construction of the NFCI. The weekly observations are averaged to obtain

monthly NFCI observations over the period January 1973 to July 2020, where the rule

of the Federal Reserve Bank of St. Louis states that the weeks overlapping two months

are assigned to the later month.

Figure 1 shows the time series of the average industrial production growth rate be-

tween months t and t+ 3 (that is, ȳi,t+3) and the NFCI in month t for a selection of four

industries. For plastic products, alumina, and motor vehicle parts, we clearly observe that

positive values of the NFCI coincide with large negative industrial production growth,

which is consistent with the findings of Adrian et al. (2019) for aggregate GDP growth.

At the same time, it seems that the strength of this relationship varies across indus-

tries, with growth in motor vehicle parts showing a much stronger response than alumina

5https://www.federalreserve.gov/releases/g17/current/default.htm
6We also consider disaggregation at a lower (three-digit) and higher (six-digit) NAICS level. Our

results are robust to the choice of disaggregation level (see Appendix J), but we focus on the four-digit
NAICS level to have a large enough cross-section, while keep having data available for all industry
characteristics as the capital intensity is not available at the six-digit NAICS level.

7https://www.chicagofed.org/publications/nfci/index
8https://fred.stlouisfed.org/series/NFCI
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and especially plastics products. In fact, for dairy products this relationship seems to

be nonexistent altogether. Hence, Figure 1 already indicates some heterogeneity across

industries in their sensitivity to financial conditions.

Figure 1: Time series of three-month average IP growth and the NFCI

To analyze why some industries might be more at risk, we select a set of industry char-

acteristics that are considered to be informative about the variation in industry business

cycles. These characteristics can be divided in several categories: (i) production input

factors, that is, capital intensity, materials intensity, energy intensity and production

labor intensity; (ii) labor hoarding, that is, overhead labor intensity and a correlation

based labor hoarding measure, (iii) market power and (iv) industry size.

The production input factors, labor hoarding measures and industry size can be con-

structed with data from the NBER-CES Manufacturing Industry Database (Bartelsman

and Gray, 1996), which contains annual observations on output, employment, payroll

and other inputs costs, investments, capital stocks, total factor productivity and various
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industry-specific price indices for the period 1958-2011.9 We supplement this database

with more recent observations over the period 2012-2018 from the Annual Survey of

Manufacturers (ASM) of the U.S. Census Bureau.10 The materials (excluding energy)

intensity, energy intensity, and production and overhead labor intensities are computed

as the total cost of the respective input divided by the total value added of that indus-

try. Moreover, we follow Petersen and Strongin (1996) by including an alternative labor

hoarding measure that is computed as the negative correlation between the change in

materials usage (measured as total cost of materials, including energy) and the change

in production-worker hours. This implies that a correlation coefficient of 1 corresponds

to no labor hoarding, which we multiply by minus 1 to make the direction of the effect

consistent with a high overhead labor intensity. The size of an industry is measured

as the percentage of total value added with respect to total value added of the entire

manufacturing sector. The capital intensity is constructed using annual data from the

multi-factor productivity (MFP) tables of the U.S. Bureau of Labor Statistics (BLS) for

the period 1987-2018 by dividing the total cost of capital by the total cost of labor.11

Lastly, market power is measured as the four-firm concentration ratio, which measures

the percentage of value added of the four largest firms, and is taken from the Economic

Census conducted every five-years by the U.S. Census Bureau, where we consider the

years 2002, 2007 and 2012.12

Following Petersen and Strongin (1996) and Fok et al. (2005), we ignore time-variation

in the industry characteristics and focus on the low-frequency aspects of the data by tak-

ing the average of the values over the available period of each characteristic. Moreover,

we follow the recommendation of Petersen and Strongin (1996) to also examine a sepa-

ration between the durable and nondurable goods sector to allow for different effects of

these characteristics within each sector. We follow the classification of durable and non-

durable goods sectors from the Federal Reserve, which results in 45 industries classified

as durables and 29 industries as nondurables.13

9https://www.nber.org/research/data/nber-ces-manufacturing-industry-database
10https://www.census.gov/programs-surveys/asm.html
11https://www.bls.gov/mfp/
12https://www.census.gov/programs-surveys/economic-census.html
13https://www.federalreserve.gov/releases/g17/SandDesc/sdtab1.pdf
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Table 1 shows summary statistics of the industry characteristics.14 We observe that

the energy intensities, production and overhead labor intensities, and concentration ratios

are roughly similar across durable and nondurable goods sectors, with some small differ-

ences for the latter three characteristics. In contrast, the industry size, and capital and

material intensities exhibit clear differences between the durable and nondurable goods

sectors, particularly the mean, median and standard deviation are substantially larger

for nondurable goods (except for the standard deviation of industry size). Comparing

the mean and median, we observe a skewed distribution of the industry sizes and ma-

terials intensities in the durable goods sector, whereas for the nondurable goods sector

the capital and materials intensities have a skewed distribution. The mean of the labor

hoarding measure is -0.73 for the durable goods industries and -0.45 for nondurable goods

industries, which indicates the presence of labor hoarding in both sectors. Still, the non-

durable goods sector exhibits, on average, more labor hoarding as it is further away from

absence of labor hoarding (that is, a value of -1).

Table 1: Summary statistics of U.S. manufacturing sector industry characteristics

VA Cap. Mat. Energy ProdL OverL LH CR

Panel A: Total manufacturing sector (74 industries)

Mean 1.35 1.40 1.22 0.05 0.25 0.13 -0.62 0.31
Median 1.09 0.87 1.05 0.02 0.25 0.13 -0.72 0.28
Std. 1.01 1.95 0.74 0.05 0.08 0.05 0.28 0.17

Panel B: Durable goods sector (45 industries)

Mean 1.24 0.82 1.06 0.05 0.27 0.15 -0.73 0.29
Median 0.91 0.76 0.87 0.02 0.26 0.15 -0.78 0.25
Std. 1.06 0.37 0.50 0.05 0.06 0.05 0.23 0.17

Panel C: Nondurable goods sector (29 industries)

Mean 1.52 2.31 1.46 0.05 0.21 0.11 -0.45 0.33
Median 1.45 1.67 1.20 0.04 0.19 0.10 -0.49 0.34
Std. 0.91 2.88 0.97 0.04 0.10 0.03 0.26 0.16

Notes: This table shows the summary statistics of annual (or quinquennial) average industry
characteristics over their respective available period for the durable goods sector, nondurable goods
sector or total manufacturing sector. We include the following characteristics: Value added (VA),
capital intensity (Cap.), materials intensity (Mat.), energy intensity (Energy), production labor
intensity (ProdL), overhead labor intensity (OverL), labor hoarding (LH) and concentration ratio
(CR).

14The cross-correlations of the industry characteristics are given in Appendix B. In short, multi-
collinearity is not an issue at the four-digit NAICS level.
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4 Manufacturing growth risk

In this section we first analyze the results related to the industry-specific quantile re-

gressions to assess how vulnerable manufacturing industries are with respect to financial

conditions and how much heterogeneity there is among industries. Next, we examine

which industry characteristics are able to explain this heterogeneity in growth risk.

4.1 Industry-specific growth risk

We start our analysis by presenting the estimated industry-specific NFCI quantile re-

gression coefficients (β̂i(τ)) in equation (1) for the durable and nondurable goods sectors

in Figures 2 and 3, respectively. More specifically, we present the quantile regression

coefficients for a small number of selected values of τ , that is, 5%, 50% and 95%, while

results for the complete range of quantiles are discussed later. For comparison, we also

display the OLS estimates of the corresponding linear regression coefficients. In general,

we focus on three-month ahead IP growth (that is, h = 3), while the results for longer

horizons (that is, h = 6 and 12) are given in Appendix I. In short, we generally find

similar results for h = 6 and 12 as for h = 3, although the effects become less pronounced

as the horizon increases.

Figures 2 and 3 show that, for both the durable and nondurable goods sectors, the

NFCI has a much stronger negative effect on the 5% quantile of three-month ahead IP

growth than on the central part of the growth distribution (as represented here by the

mean and median). Indeed, the average 5% quantile regression coefficient across all

industries is −0.773, while it is only −0.309 and −0.237 for the linear and 50% quantile

regression coefficients, respectively. For the 5% coefficients, we find that 56 out of 74

industries (that is, 75.7%) are significantly different from zero (at the 5% significance

level), whereas for the linear regression and median coefficients this is the case for 54

industries (that is, 73.0%) and 27 industries (that is, 36.5%), respectively.15 By contrast,

the 95% quantile regression coefficients display a mix of positive and negative values

with an average value of 0.042, where only 24 industries (that is, 32.4%) have significant

coefficients. Interestingly, the industries with large negative 5% coefficients seem to have

large positive 95% coefficients, although this is most obvious for iron, motor vehicles, fiber

15For details on the estimation of the asymptotic covariance matrix of the quantile regression coeffi-
cients needed to compute the p-values, see Appendix C.
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and resin. The correlation between the 5% and 95% coefficients based on all industries

is equal to −0.551, where it reduces to −0.247 when we leave out iron, motor vehicles,

fiber and resin. Hence, there is some weak evidence that industries with large downside

production growth risk are also inclined to have more upside potential in times of tight

financial conditions, albeit this upside potential is generally smaller than the increased

downside risks.

Comparing Figures 2 and 3, we find that these effects seem to be stronger for the

durable than for the nondurable goods sector. The average 5%, 50% and 95% NFCI

quantile regression coefficients in the durable goods sector are −0.958, −0.312 and 0.028,

respectively, while they are −0.484, −0.120 and 0.065 in the nondurable goods sector.

Hence, the durable goods sector is, on average, twice as sensitive in the left tail of the

growth distribution to adverse financial conditions than the nondurable goods sector.

This result is consistent with the fact that the durable goods sector is generally more

cyclical than the nondurable goods sector (Petersen and Strongin, 1996), albeit that we

specifically focus on the role of financial conditions. We obtain that 37 out of 45 durable

goods producing industries (that is, 82.2%) have significant 5% coefficients, while this

holds for 19 out of 29 nondurable goods producing industries (that is, 65.5%). In addition,

84.4%, 53.5% and 35.6% of the durable goods producing industries have significant mean,

median and 95% NFCI coefficients, respectively, whereas this is the case for 55.2%, 10.3%

and 27.6% of the nondurable goods producing industries. Overall, the durable goods

sector is more affected by the NFCI than the nondurable goods sector.
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Figure 2: Estimated linear and quantile regression coefficients of the effect of the NFCI
on three-month ahead IP growth (h = 3) for durable goods producing industries
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Figure 3: Estimated linear and quantile regression coefficients of the effect of the NFCI
on three-month ahead IP growth (h = 3) for nondurable goods producing industries
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The distinction between durable and nondurable goods sectors is not the only rele-

vant factor for differences in growth vulnerability. Within both subsets of industries, we

observe substantial additional heterogeneity, see again Figures 2 and 3. For durables, for

example, the downside production growth risk of motor vehicles, motor bodies, and motor

parts are all strongly affected by the NFCI with 5% quantile regression coefficients below

-2. In contrast, the 5% coefficients for the computer and aerospace industry are both

statistically indistinguishable from zero. Similarly for nondurables, the downside growth

risk of resin and fiber production is strongly affected by the NFCI with coefficients be-

low -1.5, while most of the food industries are unaffected by financial market conditions.

More generally, the standard deviations of the quantile regression coefficients across all

industries are 0.571, 0.182 and 0.401 for the 5%, 50% and 95% quantiles, respectively,

while the interquartile ranges are 0.657, 0.259 and 0.323. Comparing these dispersion

measures with the average industry and total manufacturing sector coefficients, we thus

find strong heterogeneity across the industries. For the durable goods sector, the stan-

dard deviations (interquartile ranges) of the coefficients are 0.516 (0.407), 0.178 (0.148)

and 0.479 (0.441) for the 5%, 50% and 95% quantiles, respectively, whereas they are 0.537

(0.629), 0.113 (0.151) and 0.239 (0.252) for the nondurable goods sector. Hence, there

seems to be slightly more heterogeneity in the 5% quantile regression coefficient for the

nondurable goods sector relative to the durable goods sector, while it is the other way

round for the 50% and especially the 95% coefficients. Overall, we conclude that some

industries have more vulnerable production growth with respect to financial conditions

than others.

The quantile regression coefficients corresponding to current IP growth (φ̂i(τ)) in

equation (1) are given in Appendix F. Similarly as for the NFCI coefficients, we find

substantial heterogeneity in these coefficients across industries, particularly the absolute

magnitudes of the IP coefficients are larger for the durable goods sector than for the

nondurable goods sector. Yet, we find no clear differences between the 5% and 50%

coefficients.

To assess the effect of the NFCI on different parts of the distribution of three-month

ahead IP growth more fully, we plot the estimated NFCI quantile regression coefficients

across the quantiles [0.05, 0.10, . . . , 0.90, 0.95] in Figure 4 for a selection of 23 industries

and the total manufacturing sector. Corresponding graphs of the other industries are
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shown in Appendix D. We also include the OLS estimates of the linear regression co-

efficients, which are, by nature, constant across quantiles, and the corresponding 95%

confidence bounds based on 1,000 bootstrap samples. More specifically, the confidence

bounds are based on the approach of Adrian et al. (2019) and correspond to the null

hypothesis that the true data generating process is a VAR(4) process for the NFCI and

IP growth, where the parameters are estimated based on the full sample. Consequently,

quantile coefficient estimates that lie outside these confidence bands provide evidence of

a nonlinear relationship between IP growth and the NFCI.

We find for a large number of industries (for example fiber, sawmills, rubber and

motor parts) that the NFCI quantile coefficients are significantly different from the linear

regression coefficient for quantiles in the left and/or right tails of the distribution. In fact,

45 of the 74 industries (that is, 60.8%) have a 5% quantile coefficient that is significantly

different from the OLS estimate. As a result, the production growth rates of these

industries all have a nonlinear relationship with the NFCI. We find that 34 of the 45

durable industries (that is, 75.6%) have significantly different 5% coefficients from the

mean estimates, whereas this holds for only 10 of the 29 nondurable industries (that

is, 34.5%). Hence, the industries in the durable goods sector are more prone to have a

nonlinear relationship with the NFCI than the nondurable goods producing industries.

The output growth of the total manufacturing sector also has a nonlinear relationship

with the NFCI, which concurs with the results of Adrian et al. (2019) for aggregate

GDP growth. Yet, for the other industries (for example dairy, leather and computer),

the NFCI quantile regression coefficients are not significantly different from the linear

regression coefficient. In fact, for most of these industries there seems to be no effect of

the NFCI on any part of the distribution of future IP growth.
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Figure 4: Estimated linear and quantile regression coefficients of the effect of the NFCI
on three-month ahead IP growth (h = 3) across quantiles (with 95% bootstrap confidence
bounds (CB) based on a VAR(4) model for IP and NFCI as data-generating process)

To formally test whether the quantile regression coefficient estimates are different

across industries, we conduct the quantile slope homogeneity test of Galvao et al. (2018).

Specifically, they derive a Swamy-type test (Swamy, 1970) and a standardized Swamy-

type test (Pesaran and Yamagata, 2008; Blomquist and Westerlund, 2013) for a quantile

regression fixed effects panel data model. For further details on the specification of this
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test, see Appendix C.

Table 2 shows the p-values corresponding to these slope homogeneity tests. We see

that the NFCI slope coefficients are significantly different across industries in the durable

goods sector as well as the total manufacturing sector for all quantiles. For the nondurable

goods sector, though, the slope coefficients are only significantly different for quantiles

smaller than 50% and larger than 85%, while there is no evidence of heterogeneity for

the other quantiles. In conclusion, the differences across manufacturing industries in how

strongly they are affected by financial conditions are significant and we now turn to the

question how these differences can be explained.

Table 2: p-values of slope homogeneity tests across industries for the NFCI coefficients

Durable goods Nondurable goods All manufacturing

Quantile S ∆ S ∆ S ∆

0.05 0.00 0.00 0.00 0.00 0.00 0.00
0.10 0.00 0.00 0.00 0.00 0.00 0.00
0.15 0.00 0.00 0.00 0.00 0.00 0.00
0.20 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.00 0.00 0.00 0.00 0.00 0.00
0.30 0.00 0.00 0.00 0.00 0.00 0.00
0.35 0.00 0.00 0.00 0.00 0.00 0.00
0.40 0.00 0.00 0.00 0.00 0.00 0.00
0.45 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.01 0.01 0.10 0.23 0.00 0.00
0.55 0.00 0.00 0.33 0.82 0.00 0.00
0.60 0.01 0.02 0.22 0.56 0.00 0.00
0.65 0.00 0.00 0.18 0.45 0.00 0.00
0.70 0.02 0.03 0.33 0.83 0.00 0.00
0.75 0.00 0.00 0.19 0.47 0.00 0.00
0.80 0.00 0.00 0.63 0.59 0.00 0.00
0.85 0.00 0.00 0.06 0.12 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00

Mean 0.00 0.00 0.00 0.00 0.00 0.00

Notes: This table shows the p-values of the Swamy (S) and standardized Swamy (∆) slope
homogeneity tests across industries for the NFCI coefficients at the horizon h = 3. The
asymptotic variance-covariance matrix estimator is based on Galvao and Kato (2016) with the
uniform kernel and the Bofinger bandwidth rule, and the lag truncation parameter is based
on Yoon and Galvao (2020). A bluer (darker) shade indicates a higher p-value and hence less
evidence of slope heterogeneity over the industries. A bold p-value indicates insignificance at
the 5% level.
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4.2 Heterogeneity in growth risk and industry characteristics

To examine which industry characteristics provide a signal for the extent of growth risk,

we first take a look at the correlations of the NFCI coefficients with the industry charac-

teristics in Table 3.

First, we discuss the correlations related to the total manufacturing sector. Here we

find that the NFCI quantile regression coefficients are significantly correlated with capital

and production labor intensity, labor hoarding and durability for most quantiles below

75%. In particular, the capital intensity and labor hoarding measure have a positive

correlation, while the production labor intensity and durability dummy have a negative

correlation. Indeed, this negative correlation of the durability dummy confirms our ob-

served differences between the durable and nondurable goods sectors in Figures 2 and 3.

We find similar correlation signs and significance patterns for the OLS estimates. The

materials intensity is positively correlated with the 95% coefficient and value added with

the 50% and 75% coefficients. On the other hand, energy intensity is negatively corre-

lated with the 5% coefficient and overhead labor intensity with the 95% coefficient. The

concentration ratio is uncorrelated with all coefficients.

Second, we consider the correlations based on the durable goods sector. We observe

that the materials and overhead labor intensities both have significant correlations across

all quantiles, except the 75% quantile. More specifically, the materials intensity has a

negative correlation for the 5%, 25% and 50% quantiles and a positive correlation for

the 95% quantile, while it is the other way around for the overhead labor intensity. In

addition, capital and production labor intensities have a significant negative correlation

with the 5% quantile coefficient. Hence, there are more industry characteristics that

correlate with the NFCI coefficients for lower quantiles than is the case for central or

higher quantiles. For the OLS coefficients, we find correlation signs that are consistent

with the predicted cyclicality relationships of Petersen and Strongin (1996). That is, a

positive correlation with the NFCI coefficient corresponds to a negative correlation with

their cyclicality measure, and vice versa.

Third, the nondurable goods sector generally has smaller correlation magnitudes than

the durable goods sector. Nonetheless, both energy and production labor intensity are

negatively and significantly correlated with the NFCI coefficients for the 5% and 25%

quantiles. In contrast to the durable goods sector, capital intensity is positively correlated
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with the NFCI coefficient of the nondurable goods sector for the 25% and 50% quantiles.

The OLS coefficients, on the other hand, are correlated with the production labor intensity

and labor hoarding measure.

Table 3: Correlations of NFCI quantile and OLS coefficients with industry characteristics

Quantile coefficients OLS

5% 25% 50% 75% 95%

Panel A: All manufacturing (74 industries)

Value added 0.09 0.12 0.24 0.33 0.16 0.18
Capital intensity 0.31 0.30 0.34 0.25 -0.06 0.32
Materials intensity -0.12 -0.11 -0.03 0.20 0.31 -0.01
Energy intensity -0.25 -0.11 -0.12 -0.16 0.19 -0.18
Production labor intensity -0.47 -0.45 -0.41 -0.15 0.18 -0.47
Overhead labor intensity 0.16 0.16 0.09 -0.19 -0.33 0.11
Labor hoarding 0.33 0.38 0.41 0.38 0.04 0.43
Concentration ratio 0.02 0.02 0.08 0.19 0.16 0.10
Durability -0.41 -0.49 -0.52 -0.39 -0.05 -0.53

Panel B: Durable goods (45 industries)

Value added 0.05 0.02 0.20 0.40 0.28 0.14
Capital intensity -0.31 -0.23 -0.09 0.19 0.34 -0.16
Materials intensity -0.68 -0.62 -0.51 0.21 0.49 -0.53
Energy intensity -0.22 -0.10 -0.19 -0.35 0.11 -0.24
Production labor intensity -0.34 -0.28 -0.27 0.07 0.23 -0.33
Overhead labor intensity 0.70 0.68 0.63 0.05 -0.39 0.71
Labor hoarding 0.03 0.07 0.16 0.21 0.06 0.12
Concentration ratio -0.21 -0.17 -0.09 0.12 0.19 -0.09

Panel C: Nondurable goods (29 industries)

Value added 0.02 0.17 0.21 0.06 -0.29 0.09
Capital intensity 0.36 0.39 0.45 0.18 -0.35 0.34
Materials intensity 0.05 0.03 0.11 0.02 0.21 0.14
Energy intensity -0.48 -0.37 -0.17 0.17 0.48 -0.29
Production labor intensity -0.41 -0.49 -0.34 -0.12 0.28 -0.40
Overhead labor intensity -0.13 -0.17 -0.24 -0.23 -0.18 -0.22
Labor hoarding 0.33 0.46 0.34 0.29 -0.09 0.44
Concentration ratio 0.23 0.24 0.28 0.22 0.06 0.27

Notes: This table shows the correlations of the NFCI quantile and OLS coefficients with the
industry characteristics at the horizon h = 3. A green (dark) shade indicates high positive
correlations, a red (dark) shade indicates high negative correlations, and white (no shade)
indicates no strong correlation. A bold value indicates significance at the 5% level.
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We now turn to the second-level regression results based on equation (3), where the

NFCI coefficients are linked to the industry characteristics.16 Figure 5 shows the es-

timated industry-characteristic effects (δ̂i(τ)) on the NFCI coefficients based on all 74

industries in the manufacturing sector across quantiles with the corresponding 95% con-

fidence intervals. First, we find that the intercept is negative for almost all quantiles,

where the magnitude of the intercept becomes larger for lower quantiles. Hence, for aver-

age values of all industry characteristics (that is, a value of zero due to the standardization

of the characteristics) the NFCI quantile regression coefficient becomes more negative for

lower quantiles and hence implies a nonlinear average relationship between the NFCI and

manufacturing output growth. This indeed agrees with our findings in Figures 2 and 3,

and the fact that over 60% of all industries have a significant nonlinear relationship with

the NFCI.

Second, we find significant negative effects of industry size (as measured by value

added) and the durability dummy on lower quantile NFCI coefficients, albeit the latter

is also significant for higher quantiles. This means that the downside production growth

of large or durable goods producing industries is, on average, more vulnerable to adverse

financial conditions than for small or nondurabele goods producing industries. The reason

that larger industries have more vulnerable growth is due to mean reversion (Braun

and Larrain, 2005). In particular, if an industry is larger than the average size of the

manufacturing industries, then its growth is more likely to fall. The effect of the durability

dummy, on the other hand, is due to the fact that durable goods production is more

cylcical than nondurable goods production (Petersen and Strongin, 1996).

Third, the effects of the overhead labor intensity and labor hoarding measure on the

NFCI coefficients are both positive for lower and central quantiles, although the effect

is less strong for the labor hoarding measure. In other words, the downside production

growth of overhead labor intensive industries or industries engaging in labor hoarding is,

on average, less vulnerable to financial conditions. This agrees with the explanation that

industries that practice labor hoarding retain their trained employees and hence have

a lower incentive to reduce production during a recession, or, in our case, during tight

financial conditions. Similarly, nonproduction workers corresponding to overhead labor

require, on average, more investments in terms of hiring and training (Parsons, 1986)

16The complete tables with estimated regression coefficients and R2’s are given in Appendix E
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than production workers, and therefore they are more eligible for labor hoarding. Hence,

we obtain the positive effect of the overhead labor intensity.

Lastly, capital intensity also has a positive effect on lower and middle quantile NFCI

coefficients such that capital intensive industries are, on average, less vulnerable to finan-

cial conditions. One explanation for this observation is that capital intensive industries

have higher fixed costs relative to variable costs such that they have less incentives to

reduce production. In addition, industries with a high capital intensity can provide more

collateral assets that could serve as protection for loans. Indeed, Braun and Larrain

(2005) show that, among high external finance dependent industries, low capital inten-

sity industries with less tangible assets are more affected by a recession than high capital

intensity industries with more tangible assets. Note that all other industry characteristics

are generally not significant in the analysis based on all 74 manufacturing industries.

Figure 5: Estimated industry-characteristic effects on NFCI quantile coefficients based
on h = 3 across quantiles based on all 74 industries in the manufacturing sector (with
95% confidence bounds (CB) based on White standard errors)

Next, we consider the estimated industry-characteristic effects based on the 45 indus-

tries in the durable goods sector in Figure 6. We again find that the intercept is negative

for all quantiles and becomes more negative for lower quantiles. Furthermore, industry

size still has a significant negative effect on low quantile NFCI coefficients in the durable

goods sector, whereas overhead labor intensity and labor hoarding still have a positive

effect. In other words, large durable goods producing industries have more vulnerable
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growth, while overhead labor intensive or in labor hoarding engaging durable goods pro-

ducing industries are less vulnerable. However, for the durable goods sector we also find

a significant negative effect of the materials intensity on lower quantile NFCI coefficients.

Hence, material intensive durable goods producing industries have more downside pro-

duction growth risk in times of tight financial conditions. This finding complements the

results of Baptist and Hepburn (2013), who show that there is a negative relation between

materials intensity and total factor productivity, where we show that there also exists

a negative relationship between the materials intensity and production growth, at least

for the durable goods sector. Finally, we also find a significant, albeit small, positive

effect of energy intensity for some lower quantiles. This is the opposite result of the pre-

dicted relation between energy intensity and industry cyclicality proposed by Petersen

and Strongin (1996). A possible explanation for this difference follows from Deichmann

et al. (2019), who show that the negative relation between energy intensity and economic

growth has become less steep during the past 20 years due to changes in energy efficiency

in high income countries such as the U.S. Indeed, Evert and Schwartzman (2017) find

that energy intensive industries are not more or less correlated with the business cycle

than low energy intensity industries, confirming a possibly flatter relationship relative to

what Petersen and Strongin (1996) found.
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Figure 6: Estimated industry-characteristic effects on NFCI quantile coefficients based
on h = 3 across quantiles for the durable goods sector (with 95% confidence bounds (CB)
based on White standard errors)

Moving to the industry effects based on the 29 industries in the the nondurable goods

sector in Figure 7, we find that the intercept is still negative across quantiles, although

less strong than for the durable goods sector. Moreover, industry size, materials intensity,

production and overhead labor intensity and labor hoarding are all insignificant across

the entire range of quantiles. For lower quantiles, only energy intensity seems to have a

significant negative effect, while for higher quantiles only capital intensity and concen-

tration ratio have significant effects. One reason that the industry characteristics are

not able to explain the differences in the NFCI coefficients within the nondurable goods

sector follows from the fact that these industries are generally less affected by financial

conditions (see Figure 3). Indeed, Petersen and Strongin (1996) also find that they are

not able to explain why some industries in the nondurable goods sector are more cyclical

than others.
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When comparing the effects in the durable goods sector with the nondurable goods

sector, we clearly observe substantial differences. For example, the energy intensity has a

positive effect on the low quantile NFCI coefficients for the durable goods sector, while it

is negative for the nondurable goods sector. Moreover, the effects of capital intensity are

also reversed, albeit being not statistically significant for most quantiles. Such a reversal

could, for instance, follow from the fact that the nondurable goods sector is more capital

intensive than the durable goods sector (see Table 1). Consequently, this changes the

anchor point from which the industry-characteristic effect is evaluated.

Figure 7: Estimated industry characteristic effects on NFCI quantile coefficients based
on h = 3 across quantiles for the nondurable goods sector (with 95% confidence bounds
(CB) based on White standard errors)
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5 Conclusions

In this paper we document substantial heterogeneity in the sensitivity of output growth

risk to financial market conditions across U.S. manufacturing industries. Using a multi-

level quantile regression approach, we also analyzed how this heterogeneity can be ex-

plained by industry characteristics such as size and labor hoarding. In particular, we

employed industry-specific quantile regressions to link output growth risk with current

financial and economic conditions, after which we link the corresponding quantile co-

efficients to industry characteristics. By doing so, our modelling approach allows for

differences in growth vulnerability across industries and a way to explain these differ-

ences.

Our results show that it is indeed important to allow for heterogeneity in downside

production growth risks across industries. In particular, we find significant differences in

how strongly output growth risk is affected by financial conditions, where some industries

seem to have a strong nonlinear relationship while other industries are unaffected. More-

over, we show that part of these differences can be explained by industry characteristics.

Specifically, large or durable goods producing industries have more vulnerable growth,

whereas capital and overhead labor intensive industries as well as industries engaging in

labor hoarding have less vulnerable growth. Additionally, the materials intensity is an

important feature explaining the differences in downside growth risk in the durable goods

sector, whereas the energy intensity is important for the nondurable goods sector.

From a practical point of view, these findings will help policy makers to identify

which industries are more at risk and, particularly, why these industries are more at

risk. At the same time, it provides investors with a straightforward approach to gain

additional insights in the strengths and weaknesses of industries to construct a well-

diversified industry-rotation strategy in the manufacturing sector.
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A Manufacturing industries

Table A.1: Overview of U.S. manufacturing sector industries

Industries NAICS Code Selection

3-digit 4-digit 6-digit

Food 311 V

Animal food 3111 V V

Grain and oilseed milling 3112 V V

Sugar and confectionery product 3113 V V

Fruit and vegetable preserving and specialty food 3114 V V

Dairy product 3115 V

Fluid milk 311511 V

Creamery butter 311512 V

Cheese 311513 V

Dry, condensed, and evaporated dairy product 311514 V

Ice cream and frozen dessert 31152 V

Animal slaughtering and processing 3116 V

Animal (except poultry) slaughtering and meat 311611-3 V

Poultry processing 311615 V

Bakeries and tortilla 3118 V V

Other food 3119 V V

Beverage and tobacco product 312 V

Beverage 3121 V V

Tobacco 3122 V V

Textile mills 313 V

Fiber, yarn, and thread mills 3131 V V

Fabric mills 3132 V V

Textile and fabric finishing and fabric coating mills 3133 V V

Textile product mills 314 V

Textile furnishings mills 3141 V V

Other textile product mills 3149 V V

Apparel 315 V V V

Leather and allied product 316 V V V

Wood product 321 V

Sawmills and wood preservation 3211 V V

Veneer, plywood, and engineered wood product 3212 V V

Other wood product 3219 V

Millwork 32191 V

Wood container and pallet 32192 V

All other wood product 32199 V
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Table A.1: Continued

Industries NAICS Code Selection

3-digit 4-digit 6-digit

Paper 322 V

Pulp, paper, and paperboard mills 3221 V

Pulp mills 32211 V

Paper mills 32212 V

Paperboard mills 32213 V

Converted paper product 3222 V

Paperboard container 32221 V

Paper bag and coated and treated paper 32222 V

Other converted paper products 32223,9 V

Printing and related support activities 323 V V V

Petroleum and coal products 324 V V

Petroleum refineries 32411 V

Paving, roofing, and other petroleum and coal 32412,9 V

Chemicals 325 V

Basic chemical 3251 V

Organic chemicals 32511,9 V

Industrial gas 32512 V

Synthetic dye and pigment 32513 V

Other basic inorganic chemical 32518 V

Resin, synthetic rubber, and synthetic fibers 3252 V

Plastics material and resin 325211 V

Synthetic rubber 325212 V

Artificial and synthetic fibers and filaments 32522 V

Pesticide, fertilizer, and other agricultural chemical 3253 V V

Pharmaceutical and medicine 3254 V V

Paints and other chemical products 3255,9 V V

Soap, cleaning compound, and toilet preparation 3256 V V

Plastics and rubber products 326 V

Plastics product 3261 V V

Rubber product 3262 V

Tire 32621 V

Rubber products ex. tires 32622,9 V

Nonmetallic mineral product 327 V

Clay product and refractory 3271 V

Pottery, ceramics, and plumbing fixture 32711 V

Clay building material and refractories 32712 V

Glass and glass product 3272 V V

Cement and concrete product 3273 V

Cement 32731 V

Concrete and product 32732-9 V

Lime and gypsum product 3274 V V

Other nonmetallic mineral product 3279 V V
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Table A.1: Continued

Industries NAICS Code Selection

3-digit 4-digit 6-digit

Primary metals 331 V

Iron and steel products 3311,2 V V

Alumina and aluminum production and processing 3313 V V

Nonferrous metal (except aluminum) production
3314 V V

and processing

Foundries 3315 V V

Fabricated metal product 332 V

Forging and stamping 3321 V V

Cutlery and handtool 3322 V V

Architectural and structural metals 3323 V V

Hardware 3325 V V

Spring and wire product 3326 V V

Machine shops; turned product; and screw, nut, and bolt 3327 V V

Coating, engraving, heat treating, and allied activities 3328 V V

Other fabricated metal product 3329 V V

Machinery 333 V

Agriculture, construction, and mining machinery 3331 V

Agricultural implement 33311 V

Construction machinery 33312 V

Mining and oil and gas field machinery 33313 V

Industrial machinery 3332 V V

Commercial and service industry machinery and
3333,9 V V

other general purpose machinery

Ventilation, heating, air-conditioning, and
3334 V V

commercial refrigeration equipment

Metalworking machinery 3335 V V

Engine, turbine, and power transmission equipment 3336 V V

Computer and electronic product 334 V

Computer and peripheral equipment 3341 V V

Communications equipment 3342 V V

Audio and video equipment 3343 V V

Semiconductor and other electronic component 3344 V V

Navigational, measuring, electromedical,
3345 V V

and control instruments
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Table A.1: Continued

Industries NAICS Code Selection

3-digit 4-digit 6-digit

Electrical, equipment, appliance, and component 335 V

Electric lighting equipment 3351 V V

Household appliance 3352 V

Small electrical appliance 33521 V

Major appliance 33522 V

Electrical equipment 3353 V V

Other electrical equipment and component 3359 V

Battery 33591 V

Communication and energy wire and cable 33592 V

Other electrical equipment 33593,9 V

Transportation equipment 336 V

Motor vehicle 3361 V

Automobile 336111 V

Light truck and utility vehicle 336112 V

Heavy duty truck 33612 V

Motor vehicle body and trailer 3362 V V

Motor vehicle parts 3363 V V

Aerospace product and parts 3364 V V

Railroad rolling stock 3365 V V

Ship and boat building 3366 V V

Other transportation equipment 3369 V V

Furniture and related product 337 V

Household and institutional furniture and kitchen cabinet 3371 V V

Office and other furniture 3372,9 V V

Miscellaneous 339 V V V

Total manufacturing sector 31-33
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B Cross-correlations of industry characteristics

Table B.1 shows the cross-correlations and variance inflation factors (VIF) of the industry

characteristics for the three levels of disaggregation. For the four-digit and six-digit

NAICS levels, these correlations and VIFs are quite low. Hence, multi-collinearity is not

an issue here. For the three-digit NAICS level, however, we find high VIFs for the capital

intensity, production labor intensity and overhead labor intensity. Therefore, we remove

the production labor intensity in the regression of the three-digit NAICS level, which

brings down the VIFs to a sufficient level.

Table B.1: Correlation matrix and VIFs of industry characteristics

Correlations VIF

Panel A: Three-digit NAICS (21 industries)

VA Cap. Mat. Energy ProdL OverL LH CR Dur.
VA 1.00 2.01
Cap. 0.07 1.00 11.66
Mat. -0.07 0.48 1.00 1.93
Energy -0.12 0.26 0.58 1.00 3.11
ProdL -0.44 -0.81 -0.30 -0.11 1.00 10.90
OverL 0.29 -0.54 -0.50 -0.62 0.17 1.00 5.66
LH 0.12 0.68 0.30 0.06 -0.71 -0.35 1.00 2.95
CR -0.03 0.73 0.46 0.25 -0.50 -0.41 0.44 1.00 2.52
Dur. 0.23 -0.39 -0.27 -0.11 0.19 0.53 -0.24 -0.36 1.00 1.84

Panel A: Four-digit NAICS (74 industries)

VA Cap. Mat. Energy ProdL OverL LH CR Dur.
VA 1.00 1.24
Cap. 0.09 1.00 2.56
Mat. -0.01 0.11 1.00 1.29
Energy -0.12 0.02 0.25 1.00 1.37
ProdL -0.30 -0.58 -0.11 0.02 1.00 2.36
OverL 0.22 -0.47 -0.37 -0.44 0.12 1.00 2.61
LH 0.16 0.33 0.29 0.06 -0.54 -0.34 1.00 1.81
CR -0.01 0.57 0.25 0.09 -0.44 -0.33 0.31 1.00 1.73
Dur. -0.13 -0.38 -0.27 -0.07 0.38 0.46 -0.49 -0.13 1.00 1.74

Panel A: Six-digit NAICS (101 industries)

VA Cap. Mat. Energy ProdL OverL LH CR Dur.
VA 1.00 1.26
Cap. - -
Mat. -0.13 - 1.00 1.24
Energy -0.22 - 0.05 1.00 1.26
ProdL -0.18 - -0.08 -0.15 1.00 1.71
OverL 0.33 - -0.32 -0.42 0.16 1.00 1.91
LH 0.07 - 0.21 0.13 -0.48 -0.32 1.00 1.54
CR -0.19 - 0.35 0.18 -0.40 -0.45 0.32 1.00 1.62
Dur. 0.01 - -0.25 -0.18 0.41 0.43 -0.46 -0.23 1.00 1.58

Notes: This table shows the correlations and variance inflation factors (VIF) of the
industry characteristics at the three-digit, four-digit and six-digit NAICS levels. The VIFs
are computed as the diagonal of the inverse of the correlation matrix (see e.g. Mansfield
and Helms, 1982)
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C Testing for slope homogeneity across industries

We consider the quantile regression slope homogeneity test of Galvao et al. (2018) to test

whether the quantile slope coefficients are significantly different across industries. Since

the test is performed for a fixed and given τ , we suppress the dependence on τ in this

section for notational convenience. For each industry i, we denote the quantile slope

coefficients as γ̂i = Ξθ̂i, where the matrix Ξ selects the K slope coefficients of interest

and θ̂i is obtained from equation (2). For a given quantile τ , we test the null hypothesis

of slope homogeneity across industries H0 : γ0i = γ0 for a fixed vector (or scalar) γ0 for

all i, against the alternative H1 : γi0 6= γj0 for at least some i, j.

The Swamy-type and standardized Swamy-type test statistics of Galvao et al. (2018)

are respectively given by

Ŝ(τ) =
N∑
i=1

(γ̂i − γ̂MD)′
(

V̂i
T − h

)
(γ̂i − γ̂MD) ,

and

∆̂(τ) =
√
T − h

(
1

T−h Ŝ(τ)−K
√

2K

)
,

where

γ̂MD =

(
N∑
i=1

V̂ −1
i

)−1 N∑
i=1

V̂ −1
i γ̂i,

is the fixed effects minimum distance (MD) estimator of Galvao and Wang (2015) and

V̂i = ΞṼiΞ
′ with Ṽi being a consistent estimator of the asymptotic variance-covariance

matrix of the quantile regression coefficients. Then, Galvao et al. (2018) prove that

Ŝ(τ)
d−→ χ2

(T−h−1)K and ∆̂(τ)
d−→ N (0, 1) such that the tests can easily be performed.

To estimate the asymptotic variance-covariance matrix of the quantile regression co-

efficients, we consider the consistent estimator proposed by Galvao and Kato (2016),
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i.e.

Ṽi = Γ̂−1
i Ω̂iΓ̂

−1
i ,

Γ̂i =
1

T − h

T−h∑
t=1

KBT−h
(ûi,t)xi,tx

′
i,t,

Ω̂i =
τ(1− τ)

T − h

T−h∑
t=1

xi,tx
′
i,t +

∑
1≤|j|≤MT−h

(
1− |j|

T − h

)

×

 1

T − h

min{T−h,T−h−j}∑
t=max{1,−j+1}

(τ − I(ûi,t ≤ 0)) (τ − I(ûi,t+j ≤ 0))xi,tx
′
i,t+j

 ,
where ûi,t = yi,t − x′i,tθ̂i and KBT−h

(·) = (1/BT−h)K(·/BT−h).

We follow Kato (2012) and take the uniform kernel K(u) = 1
2
I(|u| ≤ 0) with either the

Bofinger (1975) or Hall and Sheather (1988) bandwidth rule to determine BT−h. More

specifically, for a given sample size n, the Bofinger bandwidth rule is

Bn = n−1/5

[
4.5φ4(Φ−1(τ))

(2Φ−1(τ)2 + 1)2

]1/5

,

while the Hall-Sheather bandwidth rule is

Bn = n−1/3z2/3
α

[
1.5φ2(Φ−1(τ))

(2Φ−1(τ)2 + 1)

]1/3

,

where φ(·) and Φ(·) are the standard normal probability and cumulative density functions,

respectively, and zα satisfies Φ(zα) = 1− α
2

with α denoting the desired size of the test,

which we set equal to 0.05.1

Lastly, we follow the approach of Andrews (1991), which is augmented for quantile

regressions by Yoon and Galvao (2020), to determine the lag truncation parameter MT−h

of the Bartlett kernel. More specifically, for a given sample size n, the bandwidth selec-

tion rule is M̂n = 1.1447(α̂(1)n)1/3, where α̂(1) is estimated based on an approximating

parametric model for zi,t = (τ − I(ûi,t ≤ 0))xi,t. We follow Yoon and Galvao (2020) and

consider an AR(1) model for each element zi,t,j (with different parameters for each j)

1In the main text, we use the Bofinger bandwith rule, but unreported results show that the results
are qualitatilely similar for the Hall and Sheather bandwith rule.
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such that

α̂(1) =
J∑
j=2

4ρ̂2
j σ̂

4
j

(1− ρ̂j)6(1 + ρ̂j)2

/
J∑
j=2

σ̂4
j

(1− ρ̂j)4
,

where ρ̂j and σ̂2
j denote the autoregressive and innovation variance parameters, respec-

tively, of the AR(1) processes of the elements zi,t,j for j = 2, . . . , J . Note that we start

at j = 2 and hence do not include the intercept of the quantile regression.
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D Additional NFCI quantile coefficient estimates

Figure D.1: Estimated linear and quantile regression coefficients of the effect of the
NFCI on three-month ahead IP growth (h = 3) across quantiles (with 95% bootstrap
confidence bounds (CB) based on a VAR(4) model for IP and NFCI as data-generating
process)
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Figure D.2: Estimated linear and quantile regression coefficients of the effect of the
NFCI on three-month ahead IP growth (h = 3) across quantiles (with 95% bootstrap
confidence bounds (CB) based on a VAR(4) model for IP and NFCI as data-generating
process)
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E Regressions on industry characteristics

Table E.1: Regression of the NFCI quantile and OLS coefficients on industry charac-
teristics based on the total manufacturing sector (74 industries)

Quantile OLS

5% 25% 50% 75% 95%

Intercept -0.77∗∗∗ -0.43∗∗∗ -0.24∗∗∗ -0.12∗∗∗ 0.04 -0.31∗∗∗

(0.04) (0.02) (0.01) (0.01) (0.04) (0.02)

Value added -0.13∗∗ -0.07∗∗ -0.01 0.05∗∗∗ 0.16∗∗∗ -0.03
(0.06) (0.03) (0.02) (0.02) (0.06) (0.02)

Capital intensity 0.21∗∗∗ 0.13∗∗∗ 0.08∗∗∗ 0.02 -0.12∗∗ 0.07∗∗

(0.06) (0.04) (0.02) (0.02) (0.05) (0.02)

Materials intensity -0.05 -0.04∗ -0.01 0.01 0.07 -0.01
(0.05) (0.02) (0.01) (0.02) (0.05) (0.01)

Energy intensity -0.02 0.06∗ 0.02 -0.03∗ -0.02 0.01
(0.05) (0.03) (0.01) (0.02) (0.07) (0.02)

Production labor intensity -0.12∗ -0.03 0.02 0.05∗∗ 0.11∗∗ -0.01
(0.07) (0.04) (0.03) (0.02) (0.05) (0.03)

Overhead labor intensity 0.32∗∗∗ 0.24∗∗∗ 0.12∗∗∗ -0.01 -0.21∗∗∗ 0.14∗∗∗

(0.08) (0.04) (0.03) (0.03) (0.08) (0.03)

Labor hoarding 0.11∗ 0.09∗∗∗ 0.05∗∗∗ 0.04∗∗ -0.01 0.06∗∗∗

(0.06) (0.03) (0.02) (0.02) (0.04) (0.02)

Concentration ratio -0.11∗ -0.05 -0.01 0.02 0.11∗ -0.01
(0.06) (0.04) (0.03) (0.02) (0.06) (0.03)

Durability dummy -0.25∗∗∗ -0.19∗∗∗ -0.10∗∗∗ -0.03∗∗ 0.04 -0.12∗∗∗

(0.06) (0.03) (0.02) (0.02) (0.04) (0.02)

#observations 74 74 74 74 74 74
R2 0.54 0.64 0.57 0.38 0.38 0.59

Notes: This table shows the estimated coefficient of the regressions of the NFCI quantile and OLS
coefficients on industry characteristics based on the total manufacturing sector for the horizon h = 3.
The White standard errors are given in parentheses. The asterisks ∗, ∗∗, and ∗∗∗ indicate significance
at the 10%, 5% and 1% level respectively. A bold coefficient indicates significance at the 5% level.
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Table E.2: Regression of the NFCI quantile and OLS coefficients on industry charac-
teristics based on the durable goods sector (45 industries)

Quantile OLS

5% 25% 50% 75% 95%

Intercept -0.96∗∗∗ -0.55∗∗∗ -0.31∗∗∗ -0.17∗∗∗ 0.03 -0.40∗∗∗

(0.04) (0.02) (0.02) (0.01) (0.05) (0.02)

Value added -0.10 -0.10∗∗∗ -0.02 0.04∗∗ 0.18∗∗∗ -0.04∗

(0.06) (0.03) (0.02) (0.02) (0.06) (0.02)

Capital intensity -0.08 0.08 0.09∗∗∗ 0.12∗∗∗ 0.27∗∗∗ 0.07∗∗∗

(0.07) (0.05) (0.03) (0.02) (0.09) (0.02)

Materials intensity -0.23∗∗∗ -0.11∗∗∗ -0.05∗∗ 0.04∗∗ 0.17∗∗∗ -0.05∗∗

(0.05) (0.03) (0.02) (0.02) (0.06) (0.02)

Energy intensity 0.08 0.10∗∗ 0.03 -0.06∗∗∗ -0.04 0.03
(0.05) (0.04) (0.02) (0.01) (0.09) (0.02)

Production labor intensity -0.12∗∗ 0.06 0.07∗ 0.12∗∗∗ 0.29∗∗∗ 0.05
(0.05) (0.05) (0.04) (0.02) (0.07) (0.03)

Overhead labor intensity 0.27∗∗∗ 0.32∗∗∗ 0.18∗∗∗ 0.07∗∗ 0.00 0.20∗∗∗

(0.08) (0.05) (0.03) (0.03) (0.08) (0.03)

Labor hoarding 0.04 0.06∗∗∗ 0.04∗∗∗ 0.04∗∗∗ 0.03 0.04∗∗∗

(0.03) (0.02) (0.01) (0.01) (0.03) (0.01)

Concentration ratio 0.01 -0.02 -0.01 -0.02 -0.05 -0.01
(0.04) (0.04) (0.03) (0.02) (0.05) (0.03)

#observations 45 45 45 45 45 45
R2 0.75 0.75 0.60 0.56 0.58 0.67

Notes: This table shows the estimated coefficient of the regressions of the NFCI quantile and OLS
coefficients on industry characteristics based on the durable goods sector for the horizon h = 3. The
White standard errors are given in parentheses. The asterisks ∗, ∗∗, and ∗ ∗ ∗ indicate significance at
the 10%, 5% and 1% level respectively. A bold coefficient indicates significance at the 5% level.
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Table E.3: Regression of the NFCI quantile and OLS coefficients on industry charac-
teristics based on the nondurable goods sector (29 industries)

Quantile OLS

5% 25% 50% 75% 95%

Intercept -0.48∗∗∗ -0.23∗∗∗ -0.12∗∗∗ -0.05∗∗∗ 0.06∗∗ -0.17∗∗∗

(0.07) (0.03) (0.02) (0.02) (0.02) (0.02)

Value added -0.05 0.00 0.01 0.00 0.01 0.00
(0.07) (0.03) (0.02) (0.02) (0.02) (0.03)

Capital intensity 0.19∗ 0.10∗ 0.09∗∗ 0.04 -0.30∗∗∗ 0.05
(0.10) (0.05) (0.04) (0.04) (0.06) (0.04)

Materials intensity 0.09 0.01 0.01 -0.02 0.01 0.02
(0.05) (0.03) (0.02) (0.02) (0.02) (0.02)

Energy intensity -0.29∗∗∗ -0.08∗∗ -0.02 0.02 0.06 -0.06∗∗

(0.09) (0.03) (0.02) (0.02) (0.03) (0.03)

Production labor intensity -0.13 -0.03 0.02 0.04 0.02 -0.01
(0.11) (0.04) (0.03) (0.03) (0.03) (0.04)

Overhead labor intensity -0.08 -0.04 -0.01 -0.02 -0.05 -0.04
(0.10) (0.04) (0.03) (0.03) (0.03) (0.03)

Labor hoarding 0.12 0.09∗∗ 0.04 0.06∗ -0.07 0.06∗

(0.08) (0.04) (0.03) (0.03) (0.04) (0.03)

Concentration ratio -0.21 -0.11 -0.06 -0.02 0.26∗∗∗ -0.05
(0.15) (0.07) (0.05) (0.05) (0.08) (0.06)

#observations 29 29 29 29 29 29
R2 0.49 0.52 0.37 0.20 0.68 0.39

Notes: This table shows the estimated coefficient of the regressions of the NFCI quantile and OLS
coefficients on industry characteristics based on the nondurable goods sector for the horizon h = 3.
The White standard errors are given in parentheses. The asterisks ∗, ∗∗, and ∗∗∗ indicate significance
at the 10%, 5% and 1% level respectively. A bold coefficient indicates significance at the 5% level.
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F Results of current IP growth
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Figure F.1: Estimated linear and quantile regression coefficients of the effect of current
IP growth on three-month ahead IP growth (h = 3) for the durable goods sector
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Figure F.2: Estimated linear and quantile regression coefficients of the effect of current
IP growth on three-month ahead IP growth (h = 3) for the nondurable goods sector
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Figure F.3: Estimated industry-characteristic effects on current IP growth quantile
coefficients based on h = 3 across quantiles for the total manufacturing sector (with 95%
confidence bounds (CB) based on White standard errors)

Figure F.4: Estimated industry-characteristic effects on current IP growth quantile
coefficients based on h = 3 across quantiles for the durable goods sector (with 95%
confidence bounds (CB) based on White standard errors)
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Figure F.5: Estimated industry-characteristic effects on current IP growth quantile
coefficients based on h = 3 across quantiles for the nondurable goods sector (with 95%
confidence bounds (CB) based on White standard errors)

G Controlling for additional variables

Beside the quantile regression approach of Adrian et al. (2019), we also consider a more

extensive quantile regression with additional control variables taken from Gilchrist and

Zakraǰsek (2012) (henceforth GZ). More specifically, we add additional lags of yi,t and

four control variables, namely the term spread (TS), real federal fund rate (RFFR),

credit spread (CS) measure of GZ and the excess bond premium (EBP ) measure of GZ.

The corresponding τth quantile of ȳi,t+h conditional on these variables is given by

Qȳi,t+h|xi,t,mt(τ |xi,t,mt) = αi(τ) + βi(τ)NFCIt +

p−1∑
k=0

φi,k(τ)yi,t−k + κi(τ)′mt,

for t = 1, . . . , T−h−p+1 and industries i = 1, . . . , N , wheremt =
(
TSt, RFFRt, CSt, EBPt

)′
and we set the lag length equal to p = 3.
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We obtain the term spread, defined as the difference between the 3-month and 10-

year Treasury constant maturity yields, effective federal funds rate and core Personal

Consumption Expenditure (PCE) price index series from the Federal Reserve Bank of St.

Louis.2 We follow Gilchrist and Zakraǰsek (2012) and obtain the real federal fund rate

as the effective federal funds rate minus the year-on-year changes of the core PCE index.

Furthermore, we obtain the credit spread and excess bond premium (EBP) measures

proposed in Gilchrist and Zakraǰsek (2012) again from the Federal Reserve.3 The time

series are given in Figure G.1.

(a) Financial condition (b) Stance of monetary policy

Figure G.1: Time series of U.S. financial condition and the stance of monetary policy
over the period January 1973 to July 2020

2https://fred.stlouisfed.org/
3https://www.federalreserve.gov/econresdata/notes/feds-notes/2016/

updating-the-recession-risk-and-the-excess-bond-premium-20161006.html
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Figure G.2: Estimated linear and quantile regression coefficients of the effect of the
NFCI on three-month ahead IP growth (h = 3) after controlling for GZ variables for the
durable goods sector
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Figure G.3: Estimated linear and quantile regression coefficients of the effect of the
NFCI on three-month ahead IP growth (h = 3) after controlling for GZ variables for the
nondurable goods sector
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Figure G.4: Estimated industry-characteristic effects on NFCI quantile coefficients after
controlling for GZ variables based on h = 3 across quantiles for the total manufacturing
sector (with 95% confidence bounds (CB) based on White standard errors)

Figure G.5: Estimated industry-characteristic effects on NFCI quantile coefficients after
controlling for GZ variables based on h = 3 across quantiles for the durable goods sector
(with 95% confidence bounds (CB) based on White standard errors)
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Figure G.6: Estimated industry-characteristic effects on NFCI quantile coefficients after
controlling for GZ variables based on h = 3 across quantiles for the nondurable goods
sector (with 95% confidence bounds (CB) based on White standard errors)
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H Controlling for unobserved heterogeneity

To allow for unobserved heterogeneity, we also consider the heterogeneous panel quantile

regression model with interactive fixed effects of Ando and Bai (2020). Specifically, the

τth quantile of ȳi,t+h conditional on xi,t and the latent factor structure is given by

Qȳi,t+h
(τ |xi,t,λi(τ),ft(τ)) = αi(τ) + βi(τ)NFCIt + φi(τ)yi,t + λi(τ)′ft(τ),

for t = 1, . . . , T − h and industries i = 1, . . . , N , where ft(τ) and λi(τ) are r(τ) × 1

vectors with unobservable quantile-dependent factors and factor loadings, respectively.

We follow the frequentist estimation approach proposed in Ando and Bai (2020) to jointly

estimate αi(τ), βi(τ), φi(τ) and λi(τ) for i = 1, . . . , N and ft(τ) for t = 1, . . . , T − h.

Moreover, for each τ , we select r(τ) that minimizes the information criterion proposed

by Ando and Bai (2020), where the maximum number of common factors is set to 12.

We find for all quantiles that one common factors is optimal.

(
)

(
)

(
)

(
)

Figure H.1: Estimated linear and quantile regression coefficients of the effect of the
NFCI on three-month ahead IP growth (h = 3) after controlling for unobserved hetero-
geneity for the durable goods sector
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Figure H.2: Estimated linear and quantile regression coefficients of the effect of the
NFCI on three-month ahead IP growth (h = 3) after controlling for unobserved hetero-
geneity for the nondurable goods sector

Figure H.3: Estimated industry-characteristic effects on NFCI quantile coefficients after
controlling for unobserved heterogeneity based on h = 3 across quantiles for the total
manufacturing sector (with 95% confidence bounds (CB) based on White standard errors)
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Figure H.4: Estimated industry-characteristic effects on NFCI quantile coefficients after
controlling for unobserved heterogeneity based on h = 3 across quantiles for the durable
goods sector (with 95% confidence bounds (CB) based on White standard errors)
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Figure H.5: Estimated industry-characteristic effects on NFCI quantile coefficients after
controlling for unobserved heterogeneity on h = 3 across quantiles for the nondurable
goods sector (with 95% confidence bounds (CB) based on White standard errors)
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I Alternative horizons

I.1 Six months ahead (h = 6)
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Figure I.1: Estimated linear and quantile regression coefficients of the effect of the
NFCI on six-month ahead IP growth (h = 6) for the durable goods sector
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Figure I.2: Estimated linear and quantile regression coefficients of the effect of the
NFCI on six-month ahead IP growth (h = 6) for the nondurable goods sector
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Figure I.3: Estimated industry-characteristic effects on NFCI quantile coefficients based
on h = 6 across quantiles for the total manufacturing sector (with 95% confidence bounds
(CB) based on White standard errors)

Figure I.4: Estimated industry-characteristic effects on NFCI quantile coefficients based
on h = 6 across quantiles for the durable goods sector (with 95% confidence bounds (CB)
based on White standard errors)
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Figure I.5: Estimated industry-characteristic effects on NFCI quantile coefficients based
on h = 6 across quantiles for the nondurable goods sector (with 95% confidence bounds
(CB) based on White standard errors)

27



I.2 One year ahead (h = 12)
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Figure I.6: Estimated linear and quantile regression coefficients of the effect of the
NFCI on one year IP growth (h = 12) for the durable goods sector
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Figure I.7: Estimated linear and quantile regression coefficients of the effect of the
NFCI on one year IP growth (h = 12) for the nondurable goods sector
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Figure I.8: Estimated industry-characteristic effects on NFCI quantile coefficients based
on h = 12 across quantiles for the total manufacturing sector (with 95% confidence bounds
(CB) based on White standard errors)

Figure I.9: Estimated industry-characteristic effects on NFCI quantile coefficients based
on h = 12 across quantiles for the durable goods sector (with 95% confidence bounds (CB)
based on White standard errors)
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Figure I.10: Estimated industry-characteristic effects on NFCI quantile coefficients
based on h = 12 across quantiles for the nondurable goods sector (with 95% confidence
bounds (CB) based on White standard errors)

30



J Alternative NAICS disaggregation levels

J.1 Three-digit NAICS level
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(
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Figure J.1: Estimated linear and quantile regression coefficients of the effect of the
NFCI on three-month ahead IP growth (h = 3) for the total manufacturing sector at the
three-digit NAICS level
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Figure J.2: Estimated industry-characteristic effects on NFCI quantile coefficients based
on h = 3 across quantiles for the total manufacturing sector at the three-digit NAICS
level (with 95% confidence bounds (CB) based on White standard errors)
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J.2 Six-digit NAICS level
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Figure J.3: Estimated linear and quantile regression coefficients of the effect of the NFCI
on three-month ahead IP growth (h = 3) for the durable goods sector at the six-digit
NAICS level
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Figure J.4: Estimated linear and quantile regression coefficients of the effect of the
NFCI on three-month ahead IP growth (h = 3) for the nondurable goods sector at the
six-digit NAICS level
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Figure J.5: Estimated industry-characteristic effects on NFCI quantile coefficients based
on h = 3 across quantiles for the total manufacturing sector at the six-digit NAICS level
(with 95% confidence bounds (CB) based on White standard errors)
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Figure J.6: Estimated industry-characteristic effects on NFCI quantile coefficients based
on h = 3 across quantiles for the durable goods sector at the six-digit NAICS level (with
95% confidence bounds (CB) based on White standard errors)
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Figure J.7: Estimated industry-characteristic effects on NFCI quantile coefficients based
on h = 3 across quantiles for the nondurable goods sector at the six-digit NAICS level
(with 95% confidence bounds (CB) based on White standard errors)
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