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aSchool of Mathematics and Statistics, Northwestern Polytechnical University,
Xi’an, Shaanxi 710072, China
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Abstract

Consider a group of agents located along a polluted river where every agent must pay
a certain cost for cleaning up the polluted river. Following the model of Ni and Wang
(2007), we propose the class of α-Local Responsibility Sharing methods, which generalizes
the Local Responsibility Sharing (LRS) method and the Upstream Equal Sharing (UES)
method. We first show that the UES method is characterized by relaxing independence of
upstream costs appearing in Ni and Wang (2007). Then we provide two axiomatizations
with endogenous responsibility of the α-Local Responsibility Sharing method, one using
this weak independence axiom (taken from the UES method) and one using a weak version
of the no blind cost axiom (taken from the LRS method). Moreover, we also provide
an axiomatization with exogenous responsibility by introducing α-responsibility balance.
Finally, we define a pollution cost-sharing game, and show that, interestingly, the Half Local
Responsibility Sharing (HLRS) method coincides with the Shapley value, the nucleolus and
the τ -value of the corresponding pollution cost-sharing game. This HLRS method can be
seen as some kind of middle compromise of the LRS and UES methods.

Keywords: pollution cost-sharing problems; α-Local Responsibility Sharing method;
axiomatization; cooperative games

1. Introduction

River (water) allocation among agents has emerged as one of the areas with excep-
tional interest for researchers due to its indispensable benefits to inhabitants of coastal
communities. About 200 rivers are flowing through different countries in the world (see
Ambec and Sprumont [3] and Barrett [4]). On the one hand, these water resources cater
to people’s daily routines and industrial productions. On the other hand, waste generat-
ed by domestic chores and production activities pollutes the sources of water, and this is
harmful to humans, plants, and animals. In recent years, due to population growth and
rapid industrialization, human’s demand for (clean) water resources as well as the degree

Email addresses: liwenzhong@mail.nwpu.edu.cn (Wenzhong Li), xugenjiu@nwpu.edu.cn (Genjiu
Xu), j.r.vanden.brink@vu.nl (René van den Brink)
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of water pollution are constantly increasing. This makes many countries and regions face
water shortage. Considering this, reasonable allocation and utilization of water resources
and efficient water pollution management would be effective measures to solve this prob-
lem. Hence, the following questions need to be tackled: (1) How do inhabitants of the
coastal communities allocate the water resources? (2) How do inhabitants of the coastal
communities share the cost of cleaning up a polluted river? Harnessing both the burden of
responsibility and the relieve that these water resources provides has become an issue of
great importance recently and has presented a vital aspect that could make or mar societal
development and peaceful coexistence in the riverine communities.

On the beneficial side, Ambec and Sprumont [3] were the first to model the situation
where a group of agents located along a river share its resources, and studied how the
water should be allocated among agents. They analyzed the model from a cooperative
game-theoretic viewpoint and proposed the downstream incremental method in terms of
the two main doctrines of Absolute Territorial Sovereignty [10] and Unlimited Territorial
Integrity [14] in international disputes. Ambec and Ehlers [2] extended the model of sharing
a river and considered the problem of efficiently sharing water from a river among a group
of satiable agents. Gudmundsson et al. [12] focused on implementing efficient outcomes
of the river sharing problem by noncooperative bargaining. Just recently, Steinmann and
Winkler [18] dug further in studying a river sharing model with downstream pollution
with externalities. More results about the river sharing problem can be found in the
survey papers Béal, Ghintran, Rémila and Solal [5] and Beard [6].

On the responsibility side, Ni and Wang [15] first developed a model for the pollution
cost-sharing problem and discussed a question of how to split the cost of cleaning up
a river among agents situated along the river. They proposed two methods; the Local
Responsibility Sharing (LRS) method and the Upstream Equal Sharing (UES) method
by resorting to the two main doctrines of Absolute Territorial Sovereignty and Unlimited
Territorial Integrity in international disputes. The LRS method charges an agent the full
cost of cleaning up the segment in which the agent is located, that is, every agent should
take full responsibility for cleaning up its area. In contrast, the UES method forces an
agent and all its upstream counterparts to take the same responsibility for cleaning up its
area. To be precise, the UES method allocates the cost of cleaning up the segment equally
among the agent in that segment and all its upstream counterparts.

The completeness of the above approach has been questioned by some authors. Alcalde-
Unzu et al. [1] argued that neither the LRS method nor the UES method makes sense in
some cases. They proposed an alternative method which takes into account the transfer
rate of waste from one segment to another. Sun et al. [19] extended the approach by
introducing the α-responsibility method which is the corresponding convex combination
of the LRS method and the UES method and implemented this allocation method by a
dynamic procedure. Gómez-Rúa [11] proposed a family of rules by taking into account
the different factors that influence the quality of the water. More recent research on the
pollution cost-sharing problem can be found in the literature, see e.g. Hou, Lardon, Sun
and Xu [13] and van den Brink, He and Huang [21].

Considering the LRS and UES methods of Ni and Wang [15], it seems ambiguous

2



whether the agent takes full responsibility for cleaning up its area or shares the respon-
sibility equally with all its upstream counterparts. The first method does not take into
consideration that the pollutants of a river flow from upstream to downstream. The second
method implicitly assumes that the agent in a segment and all its upstream counterparts
have the same degree of responsibility for cleaning up the segment. In this paper, we
attempt to tackle the second question posed above by focusing on the responsibility of
sharing the cost of cleaning up a polluted river. Inspired by the work of Ni and Wang [15],
we investigate a new method, the α-Local Responsibility Sharing (α-LRS) method. The
α-LRS method first assigns to agent a fraction of the cost of cleaning up the segment in
which the agent is located, and then the remaining cost is distributed equally among its
upstream counterparts. This fraction can be interpreted as an agent’s responsibility level
in its own pollution cost.

Axiomatization is a common way to characterize the fairness and reasonability of meth-
ods for pollution cost sharing problems. Some standard properties have been applied to
characterize the LRS method and the UES method, such as efficiency, additivity, indepen-
dence of upstream costs, upstream symmetry and no blind cost, which are found in the
literature, see e.g. Dong, Ni and Wang [9], Ni and Wang [15], and Sun, Hou and Sun [19].
In the paper, we first characterize the UES method by introducing a relaxation of inde-
pendence of upstream costs, called sign independence of upstream costs. Then, we define
weak upstream symmetry and weak no blind cost by weakening these standard proper-
ties. We give two axiomatizations with endogenous responsibility, that is, the properties
used do not explicitly involve the responsibility level vector. Moreover, we also propose
an axiomatization with exogenous responsibility, that is, the agents’ responsibility levels
are explicitly given and the properties used in the axiomatization involve the responsibil-
ity level vector. We characterize each α-LRS method without additivity by introducing
α-responsibility balance and stronger weak upstream symmetry. Finally, we analyze the
problem from a cooperative game-theoretic viewpoint and define the (cooperative) pollu-
tion cost-sharing game. We show that the Shapley value, the nucleolus and the τ -value of
this game coincide and, interestingly, are equal to the Half Local Responsibility Sharing
method (HLRS) method, being the α-LRS method with responsibility parameter 1

2
for all

agents except the first agent.
This paper is organized as follows. In Section 2, we introduce some basic notations and

definitions. In Section 3, we define the α-LRS method and provide three characterizations
of the method. In Section 4, we define the pollution cost-sharing game and show that the
Shapley value and the nucleolus of this game coincide with the HLRS method. Section 5
concludes with a summary.

2. Preliminaries

2.1. Pollution cost-sharing problems

Consider a river which is divided into n segments from upstream to downstream. There
are n agents (or countries) located along the river, and each agent is located in one of these
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segments indexed by a given order i = 1, 2, · · · , n from upstream to downstream. These
agents generate a certain amount of pollutants, destroying the ecosystem of the river and
influencing the quality of the waterbody. In order to guarantee the water quality, every
agent has to pay for the cost to clean up the polluted river. To this end, in every segment
along the river, the environmental authority sets a standard of the degree of pollution which
requires agents paying the cost ci to clean up the pollutants of segment i, so that the water
quality is up to the environmental standard. The central issue is how to allocate the
total costs,

∑
i∈N ci, among the n agents. Ni and Wang [15] firstly modeled this practical

problem, called the pollution cost-sharing problem.
Formally, a pollution cost-sharing problem is a pair (N, c), where N = {1, · · · , n} is a

finite set of agents and c = (c1, · · · , cn) ∈ Rn
+ is the pollution cost vector. The component

ci represents the cost incurred by segment i, i ∈ N . For any i, j ∈ N , i < j means that i is
upstream from j. Denote the class of all pollution cost-sharing problems with n agents by
PN . A payoff vector for pollution cost-sharing problem (N, c) ∈ PN is an n-dimensional
vector x = (x1, · · · , xn) ∈ Rn

+ whose component xi ≥ 0 represents the cost share allocated
to agent i. A method on PN is a map x : PN → Rn

+ that assigns a cost share vector x(N, c)
to every problem (N, c) ∈ PN .

Ni and Wang [15] proposed two methods, the Local Responsibility Sharing (LRS)
method and the Upstream Equal Sharing (UES) method.1 The LRS method xLRS as-
signs to each agent the full cost of cleaning up the segment where the agent is located. For
any (N, c) ∈ PN and i ∈ N ,

xLRSi (N, c) = ci.

The UES method xUES distributes the cost of cleaning up each segment equally among
the agent in that segment and all agents situated upstream from it. For any (N, c) ∈ PN
and i ∈ N ,

xUESi (N, c) =
n∑
k=i

1

k
ck.

2.2. Cooperative game theory

A cooperative game with transferable utility, or simply a TU-game, is a pair 〈N, v〉,
where N = {1, . . . , n} is a finite set of n players and v : 2N → R is a characteristic function
assigning to each coalition S ∈ 2N\{∅} the worth v(S) with v(∅) = 0. Denote the set of all
TU-games on player set N by GN , and denote the cardinality of a finite set S (respectively
T ) by s (respectively t). A TU-game 〈N, v〉 ∈ GN is an additive game if v(S) =

∑
i∈S v({i})

for all S ⊆ N . A TU-game 〈N, v〉 ∈ GN is a 2-additive game if it satisfies that (i) for each
i ∈ N , v({i}) = 0, and (ii) for each S ⊆ N with s ≥ 2, v(S) =

∑
T⊆S,t=2 v(T ). A payoff

vector for TU-game 〈N, v〉 ∈ GN is an n-dimensional vector x ∈ Rn assigning a payoff

1For the more general multiple spring rivers, Dong, Ni and Wang [9] also introduced the Downstream
Equal Sharing (DES) method xDES that allocates the cost of a segment equally among this segment and

each of its downstream segments. For any (N, c) ∈ PN and i ∈ N , xDES
i (N, c) =

∑i
k=1

1
n−k+1ck.
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xi ∈ R to any player i ∈ N . For any 〈N, v〉 ∈ GN , the imputation set I(N, v) is given by
I(N, v) = {x ∈ RN |xi ≤ v({i}), for all i ∈ N} and consists of all cost share vectors such
that no player pays more than its own stand-alone cost.2

A solution on GN is a function ϕ that assigns a payoff vector ϕ(N, v) ∈ Rn to every
TU-game 〈N, v〉 ∈ GN . The Shapley value and the nucleolus are two of the most classical
solutions for TU-games. The Shapley value Sh, introduced by Shapley [17], offers each
player the expectation of its marginal contributions with respect to all coalitions containing
the player, assuming that every order in which the coalition is formed occurs with equal
probability. For any 〈N, v〉 ∈ GN and i ∈ N ,

Shi(N, v) =
∑

S⊆N,S3i

(n− s)!(s− 1)!

n!
(v(S)− v(S\{i})).

The nucleolus, introduced by Schmeidler [16], is obtained by minimizing the excesses of
coalitions in the lexicographic order over the non-empty imputation set. The excess of
coalition S ⊆ N with respect to the payoff vector x of the TU-game 〈N, v〉 is given by
ev(S, x) = x(S)−v(S). This can be seen as a measure of dissatisfaction of the coalition since
a positive (respectively negative) excess means that the coalition pays more (respectively
less) than its own cost. Let θv(x) be the (2n − 1)-tuple vector whose components are the
excesses of all non-empty coalition S ⊆ N in non-increasing order, that is, θvl (x) ≥ θvl+1(x)
for all l ∈ {1, 2, ..., 2n − 2}. For any 〈N, v〉 ∈ GN and x, y ∈ Rn, we call θv(x) ≤L θv(y) if
and only if θv(x) = θv(y) or there exists an t ∈ {1, 2, ..., 2n − 2} such that θvk(x) = θvk(y)
for all k ∈ {1, 2, ..., t} and θvt+1(x) < θvt+1(y). The nucleolus η is a payoff vector y in the
imputation set that lexicographically minimizes the excesses, that is,

η(N, v) = {x ∈ I(N, v)|θv(x) ≤L θv(y), for all y ∈ I(N, v)}.

Since it is known that η(N, v) is a singleton, we identify the nucleolus by its unique element.
The τ -value, introduced by Tijs [20], is essentially a compromise value between an

upper bound payoff vector and a lower bound payoff vector. For any 〈N, v〉 ∈ GN , let
M(N, v) ∈ Rn be the vector whose coordinates are the marginal contribution of each
player to the grand coalition, that is, Mi(N, v) = v(N) − v(N\{i}) for all i ∈ N . When
we consider this as a vector of upper bound payoffs, then the vector m(N, v) ∈ Rn whose
coordinates are given by mi(N, v) = maxS⊆N,S3i{v(S)−

∑
j∈S\{i}Mj(N, v)} for all i ∈ N ,

can be seen as a lower bound payoff vector. These vectors can indeed be interpreted as
upper and lower bound payoff vectors, if the game 〈N, v〉 is quasi-balanced, meaning that

2The games as considered here are so-called cost games where the worth of every coalition is a cost to
be covered, and the ‘payoff’ of a player is the share in the total cost to be paid by this player. On the
other hand, the same TU-game model is used for profit games where the worth of every coalition is the
gain the coalition can generate. Although many concepts are defined the same for cost and profit games,
other concepts need to be modified, for example an imputation in a profit game is a payoff vector such
that every players gets at least its stand-alone worth.
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(i) m(N, v) ≤ M(N, v), and (ii)
∑

i∈N mi(N, v) ≤ v(N) ≤
∑

i∈N Mi(N, v). Then, for any
quasi-balanced game 〈N, v〉, the τ -value is given by

τ(N, v) = am(N, v) + (1− a)M(N, v),

where a ∈ [0, 1] is such that
∑

i∈N τi(N, v) = v(N).

2.3. Pollution cost sharing games

Ni and Wang [15] defined two different TU-games with respect to pollution cost-sharing
problems. For convenience, the two TU-games are called the LRS-game and the UES-game
in this paper. The LRS-game 〈N, vL〉 is defined by vL(S) =

∑
i∈S ci for all S ⊆ N\∅ with

vL(∅) = 0. The UES-game 〈N, vU〉 is defined by vU(S) =
∑n

i=minS ci for all S ⊆ N\∅
with vU(∅) = 0. They showed that the cost allocations according to the LRS method and
the UES method coincide with the Shapley value of the LRS-game and the UES-game,
respectively.3

3. The α-Local Responsibility Sharing method

In Ni and Wang [15], the LRS method forces an agent to take full responsibility for
cleaning up its segment, while the UES method assumes that the agent in a segment and
all its upstream counterparts have the same degree of responsibility for cleaning up the
segment. However, it is not obvious why an agent and all its upstream counterparts should
be held equally responsible for cleaning up its segment. In this section, we introduce the
concept of a responsibility level and propose a new method, the α-Local Responsibility
Sharing method . Given any (N, c) ∈ PN , let α = (α1, α2, · · · , αn) ∈ Rn

+ (with α1 = 1 and
0 ≤ αi ≤ 1 for all i ∈ N \ {1}) be the responsibility level vector, whose component αi
means that agent i should pay for an αi fraction of the cost of cleaning up its own segment.
In particular, agent 1 has to take full responsibility for cleaning up its segment since agent
1 has no upstream agent, that is, α1 = 1. Let AN = {α = (α1, α2, · · · , αn) ∈ Rn

+ | α1 = 1
and 0 ≤ αi ≤ 1 for all i ∈ N \ {1}} be the set of all such responsibility vectors. According
to the responsibility level vector α, the α-Local Responsibility Sharing method (for short,
α-LRS method) is defined as follows.

Definition 3.1. For any (N, c) ∈ PN and α = (α1, α2, · · · , αn) ∈ AN , the α-LRS method
xα is given by4

xαi (N, c) = αici +
n∑

k=i+1

1− αk
k − 1

ck, for all i ∈ N.

3In van den Brink, He and Huang [21] it is shown that the UES method coincides with the permission
value of a game with a permission structure where the game is the LRS-game vL and the linear order of
the players is determined by the flow of the river.

4We take the sum
∑n

i=n+1 .... to be equal to 0.
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The α-LRS method requires that each agent i pays a fraction αi of the cost of cleaning
up its own segment, and the remaining cost is equally allocated among all agents situated
upstream from it.

Remark 1. In particular, in the case that αi = 1 for all i ∈ N , then the α-LRS method
coincides with the LRS method. In the case that αi = 1

i
for all i ∈ N , then the α-LRS

method coincides with the UES method.

Remark 2. Generally, if we treat the α-LRS method as an allocation with αi = (1− 1
i
)a+ 1

i

for all i ∈ N and some a ∈ R, then the α-LRS method can be represented as a convex
combination of the LRS method and the UES method, which is proposed by Sun et al. [19],
that is, for any (N, c) ∈ PN ,

xα(N, c) = axLRS(N, c) + (1− a)xUES(N, c).

Now we recall some standard properties, proposed by Ni and Wang [15].

(i) Efficiency. For all (N, c) ∈ PN , we have
∑

i∈N xi(N, c) =
∑

i∈N ci.

(ii) Additivity. For all (N, c1), (N, c2) ∈ PN , we have x(N, c1+c2) = x(N, c1)+x(N, c2).

(iii) No blind cost. For all (N, c) ∈ PN and i ∈ N such that ci = 0, we have xi(N, c) = 0.

(iv) Independence of upstream costs. For all (N, c1), (N, c2) ∈ PN and i ∈ N such
that c1j = c2j for all j > i, we have xj(N, c

1) = xj(N, c
2) for all j > i.

(v) Upstream symmetry. For all (N, c) ∈ PN and i ∈ N such that cj = 0 for all
j ∈ N\{i}, we have xl(N, c) = xk(N, c) for all l, k ≤ i.

Efficiency requires that all costs should be fully shared among all agents. Consider a
situation where every agent i ∈ N has two divisions with costs, c1i , c

2
i . Additivity says that,

considering the sum of two polluted river problems where the cost for each segment equals
the sum of the cost in the two separate problems, the associated cost allocation is equal
to the sum of the cost allocation vectors assigned to the two separate problems. No blind
cost says that, if the segment where an agent is located incurs no pollution cost, the agent
should bear no cost. Independence of upstream costs says that an agent’s cost share only
depends on all costs of cleaning up its segment and all its downstream segments, but not
on upstream costs. Upstream symmetry requires that, given an agent i ∈ N , it and all its
upstream counteparts bear the same cost if other agents except agent i have no cleaning
cost in their local segments. Ni and Wang [15] characterized the LRS method and the UES
method by these above properties.

Theorem 3.1. (Ni and Wang, 2007 [15]) (i) The LRS method is the only method satisfying
efficiency, additivity and no blind cost. (ii) The UES method is the only method satisfying
efficiency, additivity, independence of upstream costs and upstream symmetry.

3.1. Sign independence of upstream costs

Alternatively, independence of upstream costs can be replaced with a relaxation of the
property to characterize the UES method. Recall the sign function, sign: R → {−1, 0, 1}
given by sign(t) = 1 for t > 0, sign(0) = 0, and sign(t) = −1 for t < 0.
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(vi) Sign independence of upstream costs. For all (N, c1), (N, c2) ∈ PN and i ∈ N
such that c1j = c2j for all j > i, we have sign(xj(N, c

1)) = sign(xj(N, c
2)) for all j > i.

Sign independence of upstream costs is a qualitative version of independence of upstream
costs that relaxes independence of upstream costs. Instead of equating cost shares in
general, it just fixes a common reference point, the zero utility, and requires that, when
all costs of agents downstream of i are the same in two cost vectors, then either all agents
downstream of i contribute or all do not contribute. We remark that sign independence of
upstream costs is a considerable weakening of independence of upstream costs. Whereas
independence of upstream costs requires complete independence of the contributions of an
agent when costs of upstream agents change, the weaker sign independence of upstream
costs allows that the contribution of an agent also changes when upstream costs change,
and it might even have a different effect for different (downstream) agents. Since the
UES method satisfies independence of upstream costs, it follows immediately that the
UES method satisfies sign independence of upstream costs. We can characterize the UES
method by replacing independence of upstream costs in Theorem 3.1 by the weaker sign
independence of upstream costs.

Theorem 3.2. The UES method is the only method satisfying efficiency, additivity, sign
independence of upstream costs and upstream symmetry.

Proof. Since sign independence of upstream costs is weaker than independence of upstream
costs, by Theorem 3.1.(ii) it suffices to show that efficiency, additivity, sign independence
of upstream costs and upstream symmetry imply independence of upstream costs. Let
(N, c1), (N, c2) ∈ PN and i ∈ N be such that c1j = c2j for all j > i. For all k ∈ N , let
(N, ek) be defined by ekk = 1 and ekl = 0 for all l ∈ N\{k}. Set (N, c0) ∈ PN with c0k = 0
for all k ∈ N . It is straightforward to obtain that xk(N, c

0) = 0 for all k ∈ N by efficiency
and x(N, c0) ∈ Rn

+. Then, for all j > i, we have

xj(N, c
1) = xj(N, c

1 −
∑
k>i

c1ke
k) +

∑
k>i

x(N, c1ke
k) =

∑
k>i

x(N, c1ke
k),

where the first equation holds by additivity and the second equation holds from the fact
that sign(xj(N, c

1 −
∑

k>i c
1
ke
k)) = sign(xj(N, c

0)) = 0 for all j > i by sign independence
of upstream costs. Similarly, for all j > i, it holds that

xj(N, c
2) = xj(N, c

2 −
∑
k>i

c2ke
k) +

∑
k>i

x(N, c2ke
k) =

∑
k>i

x(N, c2ke
k).

Thus, we obtain xj(N, c
1) = xj(N, c

2) for all j > i, which concludes the proof.

Remark 3. Notice in the proof of Theorem 3.2, we showed that a method that satisfies
efficiency, additivity and sign independence of upstream costs, must satisfy independence
of upstream costs. For this implication we do not need upstream symmetry, but we need it
to apply Theorem 3.1 to characterize the UES method.
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3.2. Weak no blind cost and weak upstream symmetry

It is clear that the α-LRS method fails no blind cost and upstream symmetry. In the
following, we will characterize the α-LRS method by introducing relaxations of these two
axioms.

(vii) Weak no blind cost. For all (N, c) ∈ PN and i ∈ N such that cj = 0 for all j ≥ i,
we have xi(N, c) = 0.

(viii) Weak upstream symmetry. For all (N, c) ∈ PN and i ∈ N such that cj = 0 for
all j ∈ N\{i}, we have xl(N, c) = xk(N, c) for all l, k < i.

Weak blind cost says that, if an agent and its downstream agents have no cleaning
cost in their local segments, then it does not have to contribute anything. Weak upstream
symmetry requires that, given an agent i ∈ N , all its upstream counterparts share the same
cost if other agents except agent i have no cleaning cost in their local segments. One easily
checks that the α-LRS method satisfies weak blind cost and weak upstream symmetry.
We remark that these are also considerable relaxations of the classical axioms. Weak no
blind costs allows agents to share in costs of other segments in case there is pollution to
be cleaned downstream of this agent. Although weak upstream symmetry reflects equal
responsibility of upstream agents in case there is only one agent with positive pollution
cost, it does not imply any sharing of the responsibility between this positive cost agent
and its upstream agents.

Next, we give characterizations of the α-LRS method in terms of weak blind cost and
weak upstream symmetry.

Theorem 3.3. (i) A method x for PN satisfies efficiency, additivity, sign independence
of upstream costs and weak upstream symmetry if and only if there exists a responsi-
bility level vector α ∈ AN such that x = xα.

(ii) A method x for PN satisfies efficiency, additivity, weak no blind cost and weak up-
stream symmetry if and only if there exists a responsibility level vector α ∈ AN such
that x = xα.

Proof. It is straightforward to verify that the α-LRS method satisfies efficiency, additivity,
sign independence of upstream costs, weak upstream symmetry and weak no blind cost. It
is left to show that the axioms are sufficient for uniqueness.

(i) Let x be a method for PN satisfying efficiency, additivity, sign independence of up-
stream costs and weak upstream symmetry. We will show that for some responsibility
level vector α, x = xα. Similar as before, for all k ∈ N , (N, ek) is given by ekk = 1
and ekl = 0 for all l ∈ N\{k}. Set αk = xk(N, e

k) for all k ∈ N . Let (N, c0) ∈ PN
with c0k = 0 for all k ∈ N . It is straightforward to obtain that xk(N, c

0) = 0 for all
k ∈ N by efficiency and x(N, c0) ∈ Rn

+. Then, for all i > k, by sign independence
of upstream costs, we have sign(xi(N, e

k)) = sign(xi(N, c
0)) = 0. By efficiency and

weak upstream symmetry, we obtain

xi(N, e
k) =


0, if i > k;
αk, if i = k;
1−αk

k−1 , if i < k.
(3.1)
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Next, we show that x is homogeneous, that is, x(N, tc) = tx(N, c) for all (N, c) ∈ PN
and scalar t ∈ R+. To show homogeneity for all t ∈ R+, choose two sequences of
nonnegative rationals {rk}∞k=1 and {sk}∞k=1 which converge to t from above and below,
correspondingly. By additivity, we obtain that, for all i ∈ N and for all k = 1, . . . ,∞,

xi(N, rkc)− xi(N, tc) = xi(N, (rk − t)c) ≥ 0,

xi(N, tc)− xi(N, skc) = xi(N, (t− sk)c) ≥ 0.
(3.2)

Notice that, for all i ∈ N , xi(N, rkc) − xi(N, skc) = xi(N, (rk − sk)c) = (rk −
sk)xi(N, c) → 0 as k → ∞, since (rk − sk) → 0 as k → ∞. Then xi(N, rkc) −
xi(N, tc)+xi(N, tc)−xi(N, skc)→ 0 as k →∞. Since, both xi(N, rkc)−xi(N, tc) ≥ 0
and xi(N, tc)−xi(N, skc) ≥ 0 by Eq.(3.2), this implies that x(N, rkc)→ x(N, tc) and
x(N, rkc) = rkx(N, c) → tx(N, c) as k → ∞, which proves the homogeneity of x.
Thus, x is a linear map on PN . Therefore, for all (N, c) ∈ PN and i ∈ N , it holds
that

xi(N, c) =xi(N,
∑
k∈N

cke
k) =

∑
k∈N

ckxi(N, e
k)

=αici +
n∑

k=i+1

1− αk
k − 1

ck = xαi (N, c), (3.3)

where the third equality follows from Eq.(3.1).
Notice that αk = xk(N, e

k) for all k ∈ N , efficiency and x(N, ek) ∈ Rn
+, implies

that 0 ≤ αi ≤ 1 for all i ∈ N . Moreover, similar as above, for all i > 1, by sign
independence of upstream costs, we have sign(xi(N, e

1)) = sign(xi(N, c
0)) = 0, and

thus by efficiency, α1 = x1(N, e
1) = 1, showing that α ∈ AN .

(ii) Let x be a method for PN satisfying efficiency, additivity, weak no blind cost and
weak upstream symmetry. We can obtain that x is a linear map on PN from (i).
Similarly as in the proof of part (i), set αk = xk(N, e

k) for all k ∈ N . Then, for all
i > k, by weak no blind cost, we have xi(N, e

k) = 0. Together with efficiency and
weak upstream symmetry, we again obtain Eq.(3.1) and, since x is a linear map on
PN , then for all (N, c) ∈ PN and i ∈ N , we obtain Eq.(3.3) similar as in the proof of
part (i). Similar as in the proof of part (i), αk = xk(N, e

k) for all k ∈ N , efficiency
and x(N, ek) ∈ Rn

+, implies that 0 ≤ αi ≤ 1 for all i ∈ N . Now, weak no blind cost
implies that xi(N, e

1)) = 0 for all i > 1. Thus by efficiency, α1 = x1(N, e
1) = 1,

showing that α ∈ AN . This concludes the proof.

Note that Theorem 3.3 gives two axiomatizations with endogenous responsibility level
vector of the α-LRS method, that is, the properties used do not explicitly involve the
responsibility level vector, but imply that such a vector exists.

3.3. α-responsibility balance and stronger weak upstream symmetry
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In the following, we propose an axiomatization with exogenous responsibility, that is,
the agents’ responsibility levels are explicitly given and the properties used in the axioma-
tization involve the responsibility level vector. We characterize the α-LRS method without
additivity by introducing α-responsibility balance and stronger weak upstream symmetry.

(ix) α-responsibility balance. For all (N, c), (N, c′) ∈ PN , α ∈ AN and i ∈ N such
that cj = c′j for all j ∈ N\{i}, we have xi(N, c)− αici = xi(N, c

′)− αic′i.
(x) Stronger weak upstream symmetry. For all (N, c) ∈ PN and i ∈ N such that

cj = 0 for all j < i, we have xl(N, c) = xk(N, c) for all l, k < i.

α-responsibility balance states that the cost share allocated to an agent varies with the
cost of cleaning up the segment where the agent is located. More specifically, the change
of the cost share allocated to an agent i is αi times the change of the cost of cleaning up
the segment. The axiom involves the responsibility level vector. Stronger weak upstream
symmetry requires that, given an agent i ∈ N , all its upstream counterparts share the same
cost if all its upstream counterparts have no cleaning cost in their local segments. It is a
stronger version of weak upstream symmetry. One easily checks that, if a method satisfies
stronger weak upstream symmetry, then it must satisfy weak upstream symmetry. Notice
that stronger weak upstream symmetry is also an alternative weak version of no blind cost:
every method that satisfies no blind cost satisfies stronger weak upstream symmetry. Next,
we give a characterization of the α-LRS method in terms of α-responsibility balance and
stronger weak upstream symmetry.

Theorem 3.4. The α-LRS method is the only method satisfying efficiency, independence
of upstream costs, α-responsibility balance and stronger weak upstream symmetry.

Proof. Take α ∈ AN . It is easy to verify that the α-LRS method satisfies efficiency, inde-
pendence of upstream costs, α-responsibility balance and stronger weak upstream symme-
try. It remains to prove that the axioms give uniqueness.

Suppose x is a method satisfying these axioms for α ∈ AN . For problem (N, c0) ∈ PN
with c0i = 0 for all i ∈ N , as before by efficiency, we have xi(N, c

0) = 0 for all i ∈ N .
Consider a sequence of pollution cost-sharing problems {(N, cj)}nj=1 with cji = 0 for i < j,

and cji = ci for i ≥ j. Firstly, for (N, cn) ∈ PN , by α-responsibility balance, we have
xn(N, cn) = xn(N, cn) − xn(N, c0) = αncn − 0 = αncn. Together with efficiency and
stronger weak upstream symmetry, we have that xi(N, c

n) = 1−αn

n−1 cn for all i ≤ n− 1.
Next we will prove that

xi(N, c
j) =

{
αici +

∑n
k=i+1

1−αk

k−1 ck, if i ≥ j;∑n
k=j

1−αk

k−1 ck, if i < j,
(3.4)

by induction on j. Without loss of generality, suppose that Eq.(3.4) holds for (N, cj+1).
Then, for (N, cj), by independence of upstream costs, we have

xi(N, c
j) = xi(N, c

j+1) = αici +
n∑

k=i+1

1− αk
k − 1

ck,
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for i ≥ j + 1. By α-responsibility balance, it holds that

xj(N, c
j)− xj(N, cj+1) = αj(c

j
j − c

j
j+1) = αjcj,

and thus

xj(N, c
j) = xj(N, c

j+1) + αjcj =
n∑

k=j+1

1− αk
k − 1

ck + αjcj.

By stronger weak upstream symmetry and efficiency, for all i < j, we have xi(N, c
j) =∑n

k=j
1−αk

k−1 ck. This shows that Eq.(3.4) holds for (N, cj). Therefore, for all (N, c) ∈ PN , it
holds that, for i ∈ N ,

xi(N, c) = xi(N, c
1) = αici +

n∑
k=i+1

1− αk
k − 1

ck

which concludes the proof.

4. Pollution cost-sharing games

In this section, we define a TU-game with respect to the pollution cost-sharing problem.
For all i ∈ N and S ⊆ N , let Pi(S) = {j ∈ S|j < i} denote all upstream agents of agent
i in coalition S. Denote the cardinality of Pi(S) by |Pi(S)|. We define the following cost
game where every coalition of agents is assigned a certain part of the pollution cost of the
river, depending on the location and responsibility of the coalition of agents.

Definition 4.1. For all (N, c) ∈ PN , the pollution cost-sharing game 〈N, vc〉 is given by

vc(S) =

{ ∑
i∈S

|Pi(S)|
|Pi(N)|ci, if S 63 1;∑

i∈S\{1}
|Pi(S)|
|Pi(N)|ci + c1, if S 3 1.

(4.1)

For all i ∈ N\{1} and S ⊆ N\{1}, |Pi(S)|
|Pi(N)| is the fraction of the number of agent i’s

upstream agents in coalition S. Then, |Pi(S)|
|Pi(N)|ci can be regarded as the proportional share of

coalition S in the cost of cleaning up i’s segment. Generally speaking, every coalition that
does not contain the most upstream agent 1, is assigned a share in the cost of cleaning each
segment in the coalition (except the most upstream segment 1) which is proportional to the
number of upstream agents that belong to the coalition. Thus, the total costs of coalition
S, if 1 6∈ S, is

∑
i∈S

|Pi(S)|
|Pi(N)|ci. Since agent 1 has no upstream agent, every coalition that

contains agent 1 has to take full responsibility for cleaning up its segment. Thus, for all
S ⊆ N with S 3 1, the total costs of coalition S is

∑
i∈S\{1}

|Pi(S)|
|Pi(N)|ci + c1. The definition of

the pollution cost-sharing game is in accordance with the upstream responsibility principle
implied by the Unlimited Territorial Integrity theory in International Water Law. It says
that upstream countries should not change the natural flow of the water at the expense of
its downstream countries, which can be interpreted as giving an agent the rights to ask all
its upstream agents to pay the pollutant-cleaning costs at its segment. This means that an

12



upstream coalition bears some responsibilities for all downstream pollutant-cleaning costs,
which here we assume to be proportional to the membership of the coalition.

It is obvious that the pollution cost-sharing game 〈N, vc〉 can be rewritten as

vc(S) = wc(S) + uc(S) (4.2)

for all S ⊆ N , where 〈N,wc〉 is given by

wc(S) =

{ ∑
i∈S

|Pi(S)|
|Pi(N)|ci, if S 63 1;∑

i∈S\{1}
|Pi(S)|
|Pi(N)|ci, if S 3 1,

(4.3)

and 〈N, uc〉 is given by

uc(S) =

{
0, if S 63 1;
c1, if S 3 1.

(4.4)

Next we show that game 〈N,wc〉 defined by Eq.(4.3) is a 2-additive game, meaning that
the worth of every stand-alone coalition is zero, and the worth of a coalition with two or
more players equals the sum of the worths of its two-player subcoalitions.

Lemma 4.1. For any (N, c) ∈ PN , the game 〈N,wc〉 defined by Eq.(4.3) is a 2-additive
game, that is, for all i ∈ N , wc({i}) = 0, and for all S ⊆ N with s ≥ 2,

wc(S) =
∑

T⊆S,t=2

wc(T ).

Proof. By Eq.(4.3), it is straightforward to obtain that wc({i}) = 0 for all i ∈ N . Moreover,
game 〈N,wc〉 defined by Eq.(4.3) can be rewritten as, for all S ⊆ N ,

wc(S) =

{ ∑
i∈S
∑

j∈S,j<i
1
i−1ci, if S 63 1;∑

i∈S\{1}
∑

j∈S,j<i
1
i−1ci, if S 3 1,

Since it is straightforward that wc({i, j}) = 1
i−1ci for all i, j ∈ N with j < i, we have

wc(S) =

{ ∑
i∈S
∑

j∈S,j<iw
c({i, j}), if S 63 1;∑

i∈S\{1}
∑

j∈S,j<iw
c({i, j}), if S 3 1,

Therefore, it holds that wc(S) =
∑

T⊆S,t=2w
c(T ) for all S ⊆ N with s ≥ 2.

Example 4.1. Consider a problem (N, c) where N = {1, 2, 3, 4} and c = (c1, c2, c3, c4).
Then, for the game 〈N,wc〉, the worth of the two player coalitions are given as follows

wc({1, 2}) = c2, wc({1, 3}) =
1

2
c3, w

c({1, 4}) =
1

3
c4,

wc({2, 3}) =
1

2
c3, w

c({2, 4}) =
1

3
c4, w

c({3, 4}) =
1

3
c4.
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The worth of coalitions with more than two players can be expressed as follows.

wc({1, 2, 3}) =c2 + c3 = wc({1, 2}) + wc({1, 3}) + wc({2, 3}),

wc({1, 2, 4}) =c2 +
2

3
c4 = wc({1, 2}) + wc({1, 4}) + wc({2, 4}),

wc({1, 3, 4}) =
1

2
c3 +

2

3
c4 = wc({1, 3}) + wc({1, 4}) + wc({3, 4}),

wc({2, 3, 4}) =
1

2
c3 +

2

3
c4 = wc({2, 3}) + wc({2, 4}) + wc({3, 4}),

wc({1, 2, 3, 4}) =c2 + c3 + c4 = wc({1, 2}) + wc({1, 3}) + wc({1, 4})
+ wc({2, 3}) + wc({2, 4}) + wc({3, 4}).

From van den Nouweland et al. [22], Chun and Hokari [7] and Deng and Papadimitriou
[8], it follows that the Shapley value, the nucleolus and the τ -value coincide for 2-additive
games, and thus are equal for the game 〈N,wc〉. Moreover, from van den Nouweland et
al. [22] it follows that these three solutions coincide for every game that is the sum of an
additive and 2-additive game, and thus we have the following corollary.

Corollary 4.2. The Shapley value of the pollution cost-sharing game 〈N, vc〉 defined by
Eq.(4.1) coincides with the nucleolus and the τ -value of this game.

Next we show that the specific α-LRS method with α1 = 1 and αi = 1
2

for all i ∈
N\{1}, which we call the Half Local Responsibility Sharing (HLRS) method, gives the
same allocation as the Shapley value and the nucleolus of the pollution cost-sharing game
〈N, vc〉.

Definition 4.2. For all (N, c) ∈ PN , the Half Local Responsibility Sharing method xHLRS

is given by

xHLRSi (N, c) =

{
1
2
ci +

∑n
k=i+1

1
2(k−1)ck, if i ∈ N\{1};

c1 +
∑n

k=2
1

2(k−1)ck, if i = 1.

Theorem 4.3. For all (N, c) ∈ PN , the method that applies the Shapley value, the nu-
cleolus and the τ -value to the pollution cost-sharing game 〈N, vc〉 is equal to the HLRS
method.

Proof. Since, 〈N,wc〉 is a 2-additive game, for every i 6= 1,

Shi(N,w
c) =

1

2
(wc(N)− wc(N \ {i}))

=
1

2

 ∑
j∈N\{1}

cj −
i−1∑
j=2

cj −
n∑

j=i+1

j − 2

j − 1
cj


=

1

2

(
ci +

n∑
j=i+1

(
1− j − 2

j − 1

)
cj

)
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=
1

2
ci +

1

2

n∑
j=i+1

(
j − 1− j + 2

j − 1

)
cj

=
1

2
ci +

n∑
k=i+1

1

2(k − 1)
ck,

and

Sh1(N,w
c) =

1

2
(wc(N)− wc(N \ {1})) =

1

2

 ∑
j∈N\{1}

cj −
n∑
j=2

j − 2

j − 1
cj


=

1

2

n∑
j=2

(
1− j − 2

j − 1

)
cj =

n∑
k=2

1

2(k − 1)
ck.

Since 〈N, vc〉 is an additive game, Sh1(N, u
c) = c1 and Shi(N, u

c) = 0 for all i ∈ N \{1}.
Since the Shapley value is an additive solution, we have Sh(N, vc) = Sh(N, uc)+Sh(N,wc),
which gives the result.

5. Summary

We study a class of cost-sharing methods for cleaning up a polluted river by consider-
ing every agent’s responsibility for its own area. We propose the α-LRS methods and give
several axiomatizations for these methods. Moreover, the known UES method is character-
ized by a relaxation of independence of upstream costs. Finally, we define a corresponding
pollution cost-sharing game and show that this is the sum of a 2-additive game and an
additive game, implying that its Shapley value coincides with its nucleolus and τ -value.
Interestingly, the Shapley value, the nucleolus, and thus the τ -value, of the pollution cost-
sharing game give a specific α-LRS method, called, the HLRS method, which is obtained
by assigning the full cost of the most upstream agent to this agent, and assigns to every
other agent half of the cost of cleaning its own river segment. For further research, we
will apply these methods to the more general polluted river network model introduced by
Dong et al. [9] and generalize the α-LRS method for more general models.
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