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Abstract
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I Introduction

This paper studies the transmission of sectoral shocks in the United Kingdom economy,

using an epidemiological modeling framework that combines insights from a network-based

approach and a statistical approach. We are interested in understanding whether macroe-

conomic sectors that are highly interconnected in a network sense through large flows of

assets and liabilities are necessarily statistically more likely to spread shocks in an economic

sense. By considering both approaches together, we are able to distinguish between different

sources that contribute to the systemic risk in the economy.

Economists have historically held the view that when studying the effect of aggregate shocks

on the macroeconomy, the effect of shocks at the micro level, i.e., to individuals, firms or sec-

tors, could be ignored (e.g., Lucas, 1995). More recently, however, a literature has emerged

that demonstrates a role for micro-level shocks as the origin of aggregate fluctuations. Very

broadly, the literature studying the transmission of sectoral shocks within a country (or,

equivalently, the transmission of country-level shocks to other countries, or the transmission

of firm-level shocks to the rest of the economy) can be divided into two main approaches.

The first approach focuses on the underlying network structure that describes the various

interactions between sectors of the economy.1 The second approach uses sector-specific (or

firm or country-specific) variables and statistical/econometric methods such as factor mod-

els, vector autoregressions (VARs) or cluster analysis to analyze the transmission of shocks

between sectors/firms/countries (e.g., Canova, 2005; Foerster et al., 2011; Billio et al., 2012;

Diebold and Yılmaz, 2014; Mitchener and Richardson, 2019). Another approach that falls

into this latter category is the epidemiological model, formalized by Kermack and McK-

endrick (1927) to study how a disease spreads within a population. In economics this model

1Some important contributions to this literature on macroeconomic and financial networks include Allen

and Gale (2000), Gabaix (2011), Acemoglu et al. (2012), Carvalho and Gabaix (2013), Elliott et al. (2014)

and more recently Baqaee and Farhi (2019), Liu (2019), Acemoglu and Azar (2020), and Dhyne et al. (2020).
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has been used, for example, by Toivanen (2013) and Glasserman and Young (2015) to model

how shocks spread across European banks, and Demiris et al. (2014) to study the spillover

of currency crises across countries.

In an epidemiological model where all sectors (or, depending on the application, firms, coun-

tries, or individuals) are allowed to have heterogeneous contact rates, the number of param-

eters grows quadratically with the number of sectors in the economy. Depending on the

number of events (labeled as contaminations and recoveries) that have occurred in the data,

this dimensionality can mean that in practice some of the parameters cannot be identified

from the data. This problem is similar to the issue that appears in large-dimensional VAR

models, where the number of parameters grows rapidly with the number of lags and vari-

ables. Researchers have used Bayesian techniques (known as Bayesian VAR) to improve the

inference and the forecasting performance of their VAR models, as well as to avoid overfitting

or other ill-behaved estimation problems. This is often done using Bayesian priors that have

an effect comparable to the frequentist notion of regularization (Bańbura et al., 2010; Koop,

2013; Ghosh et al., 2019).

In a spirit similar to Bayesian VAR models, this paper proposes to inform the parameters of

an epidemiological model using Bayesian priors. However, instead of shrinking the contam-

ination probabilities to zero, as would be the case with LASSO or ridge-type regularizers

often used in Bayesian VAR models, in our Bayesian framework contamination probabili-

ties are “steered” towards values determined from an external data source in an intuitive

way.2 For the construction of the priors it is assumed that contact rates between sectors,

also known as contamination probabilities, are proportional to the strength of the actual

2The effect on the parameter estimates in our approach shares similarities with regularization approaches

such as LASSO because the inclusion of priors helps to distinguish between more and less likely channels of

shock transmission. It does not, however, necessarily lead to lower variances (although this can still occur),

which is often one of the other objectives of regularization methods.
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economic ties between pairs of sectors and the strength of the sector that is targeted.3 To

incorporate the fact that economic ties relate proportionally to the contamination probabil-

ities, but are likely not one-to-one, we allow for and jointly estimate sector-specific scaling

factors that measure the proportionality between the priors and the posterior contamination

probabilities. The prior information encapsulates the idea that sectors that have only a weak

economic connection are less likely to have a large contamination probability between them,

and that an infected sector will have a harder time infecting a very large sector relative to

a small sector. As such, these priors are consistent with the mechanism proposed in the

network-based models of Allen and Gale (2000), Baqaee and Farhi (2019), Liu (2019), and

Acemoglu and Azar (2020), where shocks spread through the economic system because (in

the case of our paper) sectors are directly connected through, e.g., lending and borrowing.

By using Bayesian priors that are informative regarding the economic ties between sectors,

and by updating the estimates of the contamination probabilities using observed changes in

the economic conditions of the sector, we can explore whether a statistical model like the

epidemiological model that quantifies (statistical) shock transmission and a network-based

model that measures the direct economic linkages between sectors imply similar channels of

shock transmission in the system of sectors studied. For example, if a sector appears likely

to infect another sector in the epidemiological setting, is it then also the case that these two

sectors have strong economic ties? The combined approach furthermore helps to distinguish

whether economic shock transmission seems to be driven by actual economic linkages or

if there is an alternative mechanism at play. If the estimates indicate that the priors are

relatively unimportant, it suggests that other factors are more relevant to explain how shocks

transmit between sectors, such as, for example, the so-called animal spirits.

3This is analogous to the assumption made by Garas et al. (2010) in their network-based epidemiological

model.
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Concretely this paper employs two related but different datasets to estimate both a tradi-

tional and a Bayesian epidemiological model for the seven major macroeconomic sectors in

the United Kingdom, and a sector representing the rest of the world. The first data set

describes the assets and liabilities between these sectors and is used to construct the prior

distributions. The second data set describes the total assets and liabilities held by these

sectors. The epidemiological model captures how negative net worth growth shocks spread

through the system. By having the balance sheets and measuring the bilateral flows between

these eight sectors, these two datasets are ideally suited for studying both economic and sta-

tistical linkages, and for then estimating a Bayesian model, for which it is essential that the

priors incorporate other information than the information that is used for the updating of

the posterior distributions.

Some of our main findings are the following. We initially find that based on the traditional

epidemiological approach, the Insurance and Pension Funds sector in the UK is highly sus-

ceptible to shocks from all other sectors in the economy. Incorporating information on the

actual economic linkages, however, we find that the main source of contagion to the Insur-

ance and Pension Funds sector is the Household sector, in that weakness in the Household

sector will likely lead to a deterioration of economic conditions in the Insurance and Pension

Funds sector. The bilateral network structure thus reveals that while in principle multiple

sectors could be the catalyst for slow growth in the Insurance and Pension Funds sector, it

is most likely the Household sector via the close economic connection between these two sec-

tors. Only through the combined approach can one obtain this insight. The combination of

approaches also highlights an important role for the Monetary Financial Institutions sector

as a shock absorber by revealing that this sector is susceptible to shocks from various sectors

in the system, while it is unlikely to generate spillovers to any of the other sectors, except

for the Rest of the World sector. Regarding the main question of interest, the conclusion is

that often when there is a significant economic connection from one to another sector, the

Bayesian epidemiological model confirms that economic shock transmission between these
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sectors is likely. However, there are some connections for which this is not the case. For

example, the data on bilateral economic connections shows a strong connection from the

Government sector to the Insurance and Pension Funds sector, while this is not reflected in

the combined approach. Overall, the results show that economic connections go a long way

in explaining shock transmission but are not the sole mechanism at play.

The paper proceeds as follows. The next section is the methodology section, describing

the basic statistical epidemiological model, the network-based priors for the epidemiological

model and the methodology this paper proposes that combines both approaches. The em-

pirical application follows, with Section III describing the data and Section IV providing the

estimation results. The paper then concludes.

II Estimation of the Bayesian epidemiological model

II.a A simple epidemiological model

One way of modelling the transmission of shocks across the sectors is via the two-level

epidemiological model with immediate recovery, used, for example, in Janssens et al. (2017).4

The main idea of this model is that a sector is assumed to be in one of three states: susceptible

(S), initial slow growth (D) and protracted slow growth (C). In the slow growth states, a

sector is ‘infectious’ and is possibly able to push other – currently susceptible – sectors

into the initial slow growth state. A sector in the initial slow growth state either recovers

and enters the susceptible state again, or, if it fails to recover, enters the protracted slow

growth state. Similarly, once having entered the protracted slow growth state, a sector either

recovers and becomes susceptible again, or fails to recover and stays in the protracted state.

The states are assumed observable. In the application below, changes in each sector’s net

worth will be used to classify the state it is in.

4There is nothing special about our choice of this model as a baseline to represent the traditional

epidemiological approach. Any Markov-based epidemiological model can be used, but this section follows

the notation and assumptions of the specific model mentioned.
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In this model, there are four main sets of parameters that are of interest and describe the

transmission mechanisms of shocks between sectors. The first set contains the probabilities

that the i sectors are able to recover from an initial slow growth period, denoted by pi, for

i = 1, . . . , N withN the total number of sectors in the economy. The second set of parameters

contains the probabilities of each sector recovering from a protracted slow growth period,

analogously denoted qi. Third are the set of contamination probabilities pij, describing the

probability that sector i infects sector j, i.e., the probability that sector i ‘contaminates’

sector j so that sector j enters the initial slow growth state in the next period. Finally, there

is the parameter called ‘nature’, denoted n, that quantifies the probability of exogenous

contamination. Combining these two contamination probabilities, the overall probability

of sector i becoming contaminated at a given point in time is given by p̃it = 1 − (1 −

n)
∏

j∈Infectioust−1
(1−pji), where the set Infectioust−1 contains all sectors that were infectious

(i.e., in an initial or protracted slow growth period) at time t − 1, and the product of an

empty set is defined to be equal to 1.

From the estimated parameters, the expected number of sectors that a sector will contam-

inate in an otherwise susceptible system can be computed; this quantity is called the basic

reproduction number in the epidemiological literature and is denoted by R0. We can distin-

guish between the R0 measured from the moment the sector enters an initial slow growth

period, Rd
0, versus when the sector is in a protracted slow growth period, Rc

0:

Rc
0 =

1

qi

∑
j 6=i

pij (1)

Rd
0 =

∑
j 6=i

pij + (1− pi)
1

qi

∑
j 6=i

pij (2)

The parameters in this model can be obtained via maximum likelihood estimation using data

describing the state each sector i, for i = 1, . . . , N , is in at time t = 1, . . . , T . Maximum

likelihood estimates are equivalent to the mode of the Bayesian posterior when using an

6



uninformative prior; thus making it an intuitive starting point for the Bayesian approach

we will use. Therefore, the maximum likelihood parameters and their standard errors are

computed as the mode and standard errors of the posterior distribution, averting the need

for asymptotic approximations such as the delta method. More details on the posterior

distributions of the parameters will be given in the next subsection.

II.b Constructing the priors and updating the posteriors

Alternatively, when one also observes actual economic linkages between sectors (as opposed

to only observing the states each individual sector is in), a sector’s contagiousness can be

characterized via the underlying network structure of the assets and liabilities connecting

all sectors. Adopting the methodology of Garas et al. (2010), this network structure can be

used to determine the network-based contamination probabilities between all sectors over

time. These are computed as follows: consider sectors i = 1, . . . , N. Let liabij denote the

liabilities from sector i to sector j. Note that liabilities from sector i to sector j are equal

to assets from sector j to sector i. Thus for each sector i over the whole network, we can

compute aggregate liabilities and assets, respectively, as:

liabi =
∑
j 6=i

liabij, and asseti =
∑
j 6=i

liabji. (3)

Next, define wijtot = liabij + liabji, with the interpretation of implied bilateral contact rates,

and w̃itot = liabi + asseti, representing the economic importance of sector i.

Following Garas et al. (2010), the contamination probabilities take the form:

pij ∝
wijtot

w̃jtot
(4)

which says that the probability of sector i contaminating sector j is proportional to the ratio

of the bilateral contact rate to sector j’s economic importance.
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We now propose using a Bayesian approach to link the network-based contamination prob-

abilities of Equation (4) with the simple epidemiological model described above. The moti-

vation behind this Bayesian approach is as follows. For two sectors i and j that share large

bilateral flows, the numerator of the ratio in Equation (4) will be higher and thus it will be

more likely that a slow growth period will spread from sector i to sector j. However, if sector

j is a large sector relative to the overall shared assets and liabilities between the two sectors,

the denominator of the ratio will be large, thereby reducing the likelihood of spread. Thus

the contamination probability of Garas et al. (2010) is a combination of these two effects –

the magnitude of the bilateral flows versus the relative size of one of the sectors to the other.

This information can be used to inform the estimation of the contamination probabilities

in the epidemiological model, which are based on the statistical occurrence of contamina-

tions, i.e., the sequence of slow growth periods across multiple sectors, irrespective of the

relative size of the sectors to the overall economy and without regard to the bilateral flows.

Specifically, this information will be incorporated by using the network-based contamination

probabilities in Equation (4) as priors for the estimation of the contamination probabilities

of the simple epidemiological model described above.

As can be seen from Equation (4), the ratio of the bilateral contact rates only pins down the

contamination probabilities up to a scale factor. In the interpretation of Garas et al. (2010),

this scale is time-varying and represents the intensity of the crisis that has hit the global

economy. In the setting of the epidemiological model that we adopt, all initial slow growth

periods are assumed to have the same intensity over time and their severity is determined

by which and how many sectors are hit by the shock, how contagious these sectors are and

how quickly these sectors are able to recover. However, even though the contamination

probabilities are assumed to be time-invariant, the methodology still has to deal with the

fact that we only have prior information on the contamination probabilities up to a scale.

Therefore, we postulate that the network-based contamination probabilities are of the form

pij = ziqij with
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qij =
wijtot

w̃jtot
, (5)

so as to allow for some flexibility by letting the scale-factor be sector-specific, but not time-

varying and specify zi as a random parameter that is sampled alongside the other parameters

in the model.5 By allowing the scale factors to vary across sectors, the parameters zi have an

intuitive interpretation: if zi is low for a sector, it means that despite sector i having a large

economic connection to another sector j (i.e., a large qij), the linkage does not necessarily

result in a large contamination probability (pij). Relating this to the discussion in the

Introduction, if zi is low, it indicates that for this sector, actual economic connections are

less relevant for explaining shock transmission.

Using the network-based contamination probabilities of Garas et al. (2010) to construct

priors for the epidemiological model ensures that a higher probability density is attributed

to larger values of contamination probabilities if the respective sectors also have a mean-

ingful economic connection and a lower probability density results if the receiving sector

is very large relative to the magnitude of the bilateral relationship. In effect, what this

prior information does is encapsulate the ideas that (a) sectors that have only a weak eco-

nomic connection are less likely to have a large contamination probability between them, and

(b) an infected sector is going to have a harder time infecting a very large sector relative

to a small sector. The Bayesian approach also mitigates another drawback of the purely

epidemiological approach: that a large number of parameters need to be estimated, increas-

ing quadratically in the number of sectors. Depending on the time span for which the data

employed is available, some of these parameters may not be identified, or are estimated on

the basis of very few events.6 By using a Bayesian approach to incorporate the network

5Results for the restricted case when zi = 1 are provided in the Supplemental Appendix; this also allows

us to infer from the results the necessity of estimating zi along with the other parameters.

6For example, for the contamination probability from sector i to j to be identifiable, an event should

have taken place at least once where sector i was in a slow growth period (and therefore infectious) and

sector j was in a susceptible state at the same time, i.e., sector i must have had ample opportunity to infect

sector j in the observable data.
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structure as additional information when estimating the contamination probabilities, iden-

tification of these parameters is aided, similar to the role of regularization methods in a

frequentist setting.

As a first step, priors need to be specified for all parameters that are going to be estimated,

including both the recovery probabilities and the contamination probabilities. The time

series of network-based contamination probabilities qij is constructed for all sectors in the

network by computing the expression in Equation (4) at each point in time. Because the

network-based contamination probabilities are time-varying, we denote them by qij,t, where

the subscript t refers to the time dimension. Next, these network-based contamination

probabilities qij,t, t = 1, ..., T are used to construct a prior. To obtain the exact choice

of the prior for every contamination probability pij = ziqij, a Beta distribution is fitted

to the constructed time series qij,t, t = 1, . . . , T for every i = 1, . . . , N and j = 1, . . . , N ,

i 6= j, resulting in the implied (αij, βij) parameters.7 For the parameters zi, i = 1, . . . , N ,

uninformative priors are used. The Bayesian analysis will attribute higher probability mass

to large values of pij when (a) there are more successful contaminations from sector i to

j in a statistical sense, and/or when (b) αij is larger, so when the qij,t-statistic of Garas

et al. (2010) indicates that the connection between sector i and j is ‘economically’ relevant.

Furthermore, the more stable the economic relationship between sectors i and j over time

(a low variance of the time series qij,t), the larger the coefficients αij and βij will be and

thus, the more influential the network-based information of Garas et al. (2010) will be to the

shape of the posterior of the contamination probabilities pij = ziqij’s.

7There are two reasons why the Beta(α, β)-distribution is most suitable as prior distribution. First, the

support of the Beta distribution is between zero and one, and can take many shapes, making this distribution

suitable to model priors on parameters that represent probabilities. Second, in the special case that in the

data sector i is always the only infectious sector when sector j becomes infected, zi = 1, and exogenous

contamination by nature is ruled out (n = 0), it can be shown that the Beta distribution would be the

conjugate prior of pij , motivating this prior as a natural choice.
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Priors are also needed for the recovery probabilities pi and qi for all sectors. However, a

similarly intuitive way to define priors on the probability of recovering from slow growth

episodes (either initial or protracted) is not available, because the network structure of

the sectors does not provide any information about their intrinsic likelihood of recovering

from these episodes without making additional assumptions. Turning to the epidemiological

model, the assumed Markov structure implies that the recovery of a sector is not affected

by what happens in the other sectors, so in that sense the probability of recovery is not

affected by the underlying network structure. Note that this is different from the probability

of becoming contaminated in a certain period; this probability depends on all other sectors

that were contagious the previous sector. This independence also implies that the estimation

of pi and qi is independent of the estimates of the pij’s. Therefore, a non-informative prior

(Beta(1,1), which coincides with the uniform distribution) can be used for these recovery

probabilities, such that the posterior distributions are given by

π(pi|y) ∝ p
∑

t I(Xit=S and Xit−1=D)+1
i (1− pi)

∑
t I(Xit=C and Xit−1=D)+1 (6)

and

π(qi|y) ∝ q
∑

t I(Xit=S and Xit−1=C)+1
i (1− qi)

∑
t I(Xit=C and Xit−1=C)+1 (7)

where I(·) is the indicator function, ’S’ refers to the susceptible state, ’D’ to the initial

slow growth state, and ’C’ to the protracted slow growth state. Since the Bayesian analysis

also uses an uninformative prior for pi and qi, and these recovery probabilities are indepen-

dent of the pij (contamination probability) estimates, maximum likelihood estimation and

the Bayesian estimation procedure will give the same posterior distributions for the set of

parameters {pi, qi}Ni=1.

Parameter n, the exogenous contamination probability, will also be estimated using an unin-

formative prior (Beta(1,1)). However, given that n cannot be estimated independently from

the sector-specific contamination probabilities, pij, the estimates of n obtained from the
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Bayesian estimation procedure will differ from those obtained from the maximum likelihood

estimation procedure.

Appendix A describes how one can sample from the posterior distributions and how to sample

the scale-parameters zi when they are not assumed to be equal to one. A combination of

Gibbs sampling and the Metropolis-Hastings algorithm is used. It should be stressed that the

priors are constructed from a different data set than the data used to update the posterior

distribution, as should be the case in Bayesian inference. Both data sets will be introduced

below in the next section.

III Data

We use two datasets from the Office for National Statistics (ONS) in the United Kingdom:

the UK Economic Accounts: Flow of Funds data and the ONS Enhanced Financial Accounts

(Flow of Funds) data, containing quarterly time series balance sheet data for the total

financial accounts from 1993-2019.8 Both datasets consist of the aggregate asset (total

due from all the other sectors) and liability (total due to all the other sectors) positions

of nine different sectors: (i) Public Corporations, (ii) Private Non-Financial Corporations,

(iii) Monetary Financial Institutions (MFIs), (iv) Financial Institutions Other than MFIs

and Insurance Corporations and Pension Funds (henceforth referred to as ‘Other Financial

Intermediaries’), (v) Insurance Corporations and Pension Funds, (vi) Central Government,

(vii) Local Government, (viii) Households and Non-Profit Institutions Serving Households

(henceforth referred to as ‘Households’) and (ix) Rest of the World.9 The first data set

is described by the ONS as the “official” dataset. The latter dataset is described by the

ONS as “experimental” – using the first dataset as its starting point but supplemented with

8These data are available at https://www.ons.gov.uk/economy/nationalaccounts/

uksectoraccounts. For an extensive description of these data, see Bowers and Foster (2015), Bow-

ers et al. (2015) and Burrows et al. (2015).

9Due to the presence of the “Rest of the World” sector, the Flow of Funds data represent a closed

macroeconomic system.

12



Solvency II, commercial, and survey data – and has the added advantage of containing the

bilateral asset and liability amounts between every pair of sectors. Thus this latter dataset

provides information on the economic linkages that may enhance or augment the inference

gleaned from the aggregate official Flow of Funds dataset. The subset of assets and liabilities

that cannot be attributed to sector-pairs by ONS, labeled as ‘unknown’, is not used in the

analysis. Furthermore, because of its experimental nature, the ONS Enhanced Financial

Accounts will be used only in the cases that the analysis requires inference on bilateral

connections between sectors. In all other cases, we rely on the official Flow of Funds data.

We exploit the tight connection between Local and Central Government and aggregate these

two sectors’ assets and liabilities into one ‘Government’ sector. This aggregation reduces

the number of sectors and as such the total number of parameters to be estimated in the

epidemiological model discussed above. Using the asset/liability information between the

eight sectors, it is possible to determine the net worth (assets minus liabilities) of each

sector. The development of the net worth over time will be used to determine the states of

the sectors for the epidemiological model.

Figure 1 displays the contributions of the different sectors to the total amount of assets (a)

and liabilities (b) in the economy, based on the UK Economic Accounts: Flow of Funds

data set. The different sectors in the model vary considerably in their contribution to the

overall economy as well as in the role they play in lending to and borrowing from other

sectors. In 2019Q2 for example, the Public Corporations sector held about 0.34% of total

liabilities and only 0.05% of total assets. The largest sector, on the other hand, the Monetary

Financial Institutions sector, had around 28.68% of total assets and 28.22% of total liabilities.

The Households sector had a large share, 14.46%, of total assets, but only 4.17% of total

liabilities. These results also indicate large differences in the leverage ratio between sectors.

In this same period, the Public Corporations sector had a ratio of total liabilities to total

assets of 7.12, while the ratio for the Household sector was 0.29.
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[Insert Figure 1]

III.a Descriptive statistics of the network structure

The flows of assets and liabilities between the eight sectors can be characterized in a network

sense as a weighted directed graph, where the sectors are nodes and the edges show these

flows. As an example, Figure 2 shows the asset-liability network in the second quarter of

2019 with each sector represented by a node in the network and arrows corresponding to

assets received by that sector from other sectors. Asset-liability connections that are smaller

than 0.25% of the total assets in the economy are not visualized to improve readability. This

threshold corresponds to approximately 100 billion pounds. The values inside the nodes

describe the intra-sector transactions (assets and liabilities within the sector). An arrow

that enters sector j from sector i shows the assets received from sector j, that is, the arrow

represents a liability of sector i to sector j. Thus, assets are denoted in the same color as the

node they belong to. Given the chosen (100bn pound) threshold, it is interesting to note that

four sectors seem to have very few inward arrows, namely the Public Corporations, Private

Non-Financial Corporations, Other Financial Intermediaries and Government sectors. In

particular, the Public Corporations sector has no asset connections (inward pointing arrows)

larger than 100 billion pounds, and only has a single liability connection (outward pointing

arrow) above 100bn pounds, with the Government sector. Recall from Figure 1 that it is

also the smallest sector in terms of both total assets and total liabilities. The Private Non-

Financial Corporations sector has the lowest net worth (total assets minus total liabilities)

in this period, while the Household sector has the highest net worth value.

[Insert Figure 2]

It is also apparent from Figure 2 that assets primarily flow to the Insurance Corporations

and Pension Funds, Monetary Institutions, and Household sectors, as well as to the Rest of

the World.
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III.b Descriptive statistics of slow growth periods

Figure 3 visualizes the states of each sector over time, where white depicts the periods of

positive net worth growth (that is, the susceptible state), grey indicates periods of initial

slow growth and black indicates that a sector is in a protracted slow growth state. The

figure already suggests relevant heterogeneity between sectors: some (e.g., the Public Cor-

porations sector) have incurred long periods of protracted slow growth (recognizable as wide

black bars), while others (e.g., the Households sector) experienced at most three consecutive

periods of protracted slow growth.10 The sectors in the latter category will likely have higher

recovery probabilities from protracted slow growth periods than the former.

[Insert Figure 3]

Figure 4 depicts the coincidence of sectors experiencing protracted slow growth in each quar-

ter over time. As can be seen from this figure, the largest number of sectors experiencing a

prolonged period of slow growth at the same time is five. This happened in five quarters, dur-

ing three distinct periods, namely 1994Q2-Q4, 2002Q3 (early 2000s recession), and 2008Q3

(Great Recession). Other notable periods are 2018Q3-Q4 (developments around Brexit such

as failure to ratify the withdrawal agreement) and 1989Q2 (early 1990s recession) with four

sectors in a protracted slow growth state at the same time.

[Insert Figure 4]

IV Results

In this section we present the empirical results, first by applying the epidemiological and

Garas et al. (2010) methods separately to the different data sets. Next, the approaches are

combined in the way described in Section II and results from the combined approach are

presented.

10This heterogeneity also likely reflects differences in policy response to slowdowns in different sectors.
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IV.a Epidemiological model

The parameter estimates for the epidemiological model are provided in Table 1. The top

portion of the table contains the probabilities that slow growth in a row sector will transmit

to the column sector in the subsequent period. The probability of exogenous contamination,

n, is estimated to be 0.0003 (the posterior mode, although the distribution is left skewed –

the posterior mean is 0.003 with a standard deviation of 0.003). This implies that at any

point in time, entering a slow growth period due to an exogenous source is extremely unlikely.

Based on the statistical model alone, this parameter thus seems unnecessary for modeling

spillovers in the UK.11 In Table 1, the estimates of pij for which the posterior attributes less

than 10% probability mass to the region 0 < pij < 0.05 are marked in bold, to provide an

indication of which contamination probabilities deviate significantly from zero.12

[Insert Table 1]

The estimates for pi and qi, the probability that a sector recovers from an initial period

of slow growth and protracted slow growth, respectively, sketch a worrisome picture. Once

a sector experiences an initial period of slow growth (defined as one consecutive period of

negative net worth growth), the Insurance and Pension Funds sector, the Other Financial

Intermediaries sector and the Public Corporations sector have estimated probabilities of

recovering below 0.5, meaning that for these sectors, the probability they will have another

period of negative net worth growth is greater than the probability of recovery. For six out of

eight sectors, the estimate of qi is below pi, implying that once these sectors enter a protracted

11Janssens et al. (2017) find a probability of exogenous contamination for the US of 0.07 (standard

deviation of 0.013), which is considerably higher.

12The use of t-statistics and/or the assumption of asymptotic normality to evaluate significance of the

pij parameters in the different models presented in Table 1, Table S1 and Table 3 is not appropriate due

to the highly right-skewed posterior distributions and the support (between 0 and 1) of the distributions.

Therefore, this alternative measure of significance is employed.
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slow growth period, they are even less likely to recover than when they are in an initial slow

growth period. The sectors that are most likely to recover from slow growth periods are the

Households sector, the Private Depository Institutions sector and the Government sector.

Only in around 30-34% of the cases will these sectors slide from an initial slow growth period

into a protracted slow growth period. Furthermore, the first two of these sectors will spend

on average only 1.67 (=1/0.567) periods in a protracted slow growth period. This perhaps

reflects the historical tendency for policymakers to be quick to provide economic stimulus

to the Household sector to assist with its recovery. Recall also from Section III.b that this

sector never experienced more than three consecutive protracted slow growth periods. The

Other Financial Intermediaries sector has the highest probability of recovering once it enters

a protracted slow growth period. Recall that these recovery probability estimates pi and qi

will remain the same throughout the different models estimated in this paper, as discussed

in the Methodology section.

[Insert Figure 5]

Based on their basic reproduction numbers, R0, the Public Corporations, Rest of the World,

Government and Household sectors are the most infectious. Notice that there is quite a

discrepancy between the mode and mean estimates of R0 in Table 1, caused by the posterior

distribution of the R0 estimates being highly left-skewed. The overall infectiousness of all

sectors is visualised in Figure 5, showing all contamination probabilities greater than 0.2.13

Sectors with many arrows pointing into them are most likely to be affected by slow growth

in other sectors while those with many arrows pointing away from them are most likely to

transmit slow growth episodes to other sectors. The thickness of the lines represents the

magnitude of the estimated mode of the contamination probabilities (a thicker arrow is a

13There is nothing special about the choice of 0.2 as a cutoff for visualization in the figure; it was chosen

to balance the figure’s (and later figures’) legibility with the representation of the connections. A lower

(higher) threshold would of course depict more (fewer) connections.
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higher probability) and the size of the sector node reflects the estimated basic reproduction

numbers when a sector initially enters a slow growth period.

This visualization shows us that the Rest of the World and the Insurance and Pension Funds

sector are relatively likely to be pushed into a slow growth state by almost all of the other

sectors in the economy. This is depicted by seven inward arrows for both sectors, implying

that all other sectors have a probability of contaminating these sectors that is above our cut-

off value of 0.2. This means that in the observable data, whenever any sector experienced a

period of negative net worth growth, more than 20% of the time the Rest of the World sector

and/or the Insurance and Pension Funds sector experienced a decline in net worth growth

in the following period. This high probability of entering a period of negative net worth

growth seems particularly worrisome in combination with the low recovery probabilities of

the Insurance and Pension Funds sector, and the large overall infectiousness of the Rest of the

World sector as measured by its reproduction numbers (RD
0 and RC

0 ). Also highly susceptible

to contamination are the Other Financial Intermediaries sector and the Monetary Financial

Institutions sector; both have five probabilities of being contaminated that are larger than

0.2. Least susceptible to contamination are the Households and the Public Corporations

sectors. This is an interesting finding, corroborating the earlier observation in Section III.a

that these sectors have relatively few liability and asset arcs towards the other sectors in the

economy and are thus relatively more insulated.

Most notable from the individual contamination probabilities are the estimated 48.6% prob-

ability that the Rest of the World sector will contaminate the Insurance and Pension Funds

sector (standard deviation of 0.102) and the 54.6% probability that slow growth in the

Household sector will be followed by slow growth in the Private Non-Financial Corporations

sector (standard deviation of 0.195). In general, however, many contamination probabilities

are estimated to be low (i.e., 26 contamination probabilities are equal to or below 0.2) and

often with large standard errors. This motivates why introducing additional information
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through the specification of priors may be a valuable resource for learning more about the

transmission probabilities in this economy. For example, as one of the G7 countries, it is

plausible that the UK economy leads many of the economies of the rest of the world. In the

above Granger causal set-up, the results suggest that the Rest of the World sector is highly

susceptible to infections from sectors in the UK, although the actual spillovers (measured

by economic linkages) from most of the sectors in the UK to the rest of the world may be

limited. The combined Bayesian approach will be able to identify to which sectors the Rest

of the World sector is most susceptible, based on both statistical occurrences and economic

linkages.

IV.b Priors: network-based contamination probabilities

Table 2 reports the implied mean and standard deviation of the contamination probabilities,

estimated by fitting a beta distribution to the network-based contamination probabilities of

Garas et al. (2010) as described in Section II.b; these time-varying probabilities are visualized

in Figure 6. Note that these estimates serve as inputs (i.e., determine the prior distribution)

for the Bayesian approach described in Section II.

[Insert Table 2]

As can be seen from Table 2, the mean (unscaled) contamination probabilities obtained from

the methodology of Garas et al. (2010) are in the range of [0, 0.787]. As noted above, the

Garas et al. (2010) contamination probabilities are only identified up to a scaling factor;

however, the range [0,0.787] is comparable to the contamination probabilities obtained via

the maximum likelihood method as presented in Table 1 when taking into account the

uncertainty around the parameter estimates, which could motivate the choice of fixing the

scaling factor to 1 for all sectors.14

14The Supplemental Appendix presents the estimation results obtained under the assumption that the

scaling factor zi = 1 for all sectors, but in the main paper we focus on the joint estimation of the scaling

factor for each sector along with the other parameters.
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Figure 6 shows that most network-based contamination probabilities have remained relatively

stable over time. Some interesting exceptions include the build-up in exposure of the Other

Financial Intermediaries sector towards the Monetary Financial Intermediaries sector during

the period 2002-2009. The probability of the Other Financial Intermediaries sector infecting

the Monetary Financial Institutions sector gradually increases from 0.4 to 0.7 during that

period and a similar but reversed pattern is visible for the probability of the Other Financial

Intermediaries sector infecting the Rest of the World sector. The interpretation of this

finding is that during the build-up to the financial crisis, the Other Financial Intermediaries

sector saw a shift from having a high exposure to the Rest of the World sector to having

high exposure to the Monetary Financial Institutions sector, a pattern that reversed after

its peak in 2009.

[Insert Figure 6]

The findings from the network-based approach of Garas et al. (2010) seem to share a number

of similarities with the epidemiological model estimates for the UK Economic Accounts: Flow

of Funds data set. For example, the sectors that are most susceptible to a change in net worth

of the Private Non-Financial Corporations sector are the Monetary Financial Institutions,

the Rest of the World and the Insurance and Pension Funds sectors, as measured by the

contamination probabilities in Table 1. These three sectors are also most connected to the

Private Non-Financial Corporations sector according to the network-based contamination

probabilities in Table 2. Some other similarities are that the Government sector is second

most likely to be infected by the Public Corporations sector in the statistical epidemiological

model; it is the most likely in the analysis based on the network data. Similarly, the Insurance

and Pension funds sector is highly susceptible to shocks from the Household sector in both

methodologies.

However, not all levels of contagiousness and contamination probabilities from the statistical

epidemiological approach coincide with levels of interconnectedness and connection ‘strength’

from the network approach. For example, according to the estimates in Table 1, the Rest of
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the World sector is highly contagious towards the Insurance and Pension Funds sector, with a

contamination probability of 0.486. According to the network-based contamination measure,

the Insurance and Pension Funds sector should be much less susceptible to the Rest of the

World sector (contamination probability of 0.06); taken together these results imply that

important spillovers may occur even in the absence of significant economic linkages. As a

second example of differences between the two approaches, in the statistical epidemiological

model of Table 1, both the Rest of the World sector and the Insurance and Pension Funds

sector were very likely to be contaminated by all the other sectors in the economy. In the

network-based approach of Table 2, the Insurance and Pension Funds sector only seems to

be highly exposed to the Household sector (estimated probability of 0.486), and modestly

to the Private Non-Financial Corporations and Government sectors (probabilities of 0.201

and 0.283, respectively). The Rest of the World does show high exposure towards multiple

sectors, although fewer than seen from the maximum likelihood estimates, including the

Private Non-Financial Corporations, Monetary Financial Institutions, and Other Financial

Intermediaries sectors, with network-based contamination probabilities of 0.537, 0.460 and

0.422 respectively.

IV.c Results Bayesian procedure

This subsection presents results that are obtained by estimating sector-specific scaling fac-

tors, zi, along with the contamination probabilities and recovery probabilities, i.e., pij =

zi
wij

tot

w̃j
tot

= ziqij, using Beta-distributed priors for the parameters qij where the mean and stan-

dard deviations of the Beta distribution are given in Table 2. The methodology underpinning

these results is described in Appendix A and Section II.15

15In the Supplemental Appendix, detailed estimates and discussion are provided regarding the special

case where the scaling factor is fixed and set to zi = 1 for all sectors. This special case forces the scale

of the contamination probabilities of Garas et al. (2010) to correspond one-to-one with the contamination

probabilities of the epidemiological model.
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[Insert Table 3]

The estimation results are summarized in Table 3. The exogenous contamination proba-

bility n has a posterior mode (standard deviation) of 0.11 (0.05), showing that the model

attributes a considerably larger role to contamination by exogenous factors than the model

that ignores network information. This large probability of exogenous contamination high-

lights the importance of this parameter in an economic epidemiological model. For all the

parameters (except the recovery probabilities due to their independence), the variance of

the posterior distribution is larger than when the scaling factor is fixed to be equal to one,

as displayed in Table S1 in the Supplemental Appendix. This larger variance comes from

the uncertainty that is introduced by estimating the N additional parameters (the scaling

factors zi, for i = 1, ..., N).

The estimates of the scaling factor show there is some heterogeneity across sectors; for seven

sectors, the estimate of zi is above one, while only for the Public Corporations sector, is

it below one. The differences between the zi’s of the different sectors highlight the fact

that the importance of the between-sector economic connection for the estimation of the

overall contamination probabilities between sectors is sector-specific. Given that for most

sectors the posterior mode of the scaling factor, zi, is estimated to be different than one, it

follows that the simplifying assumption of setting zi equal to one would introduce a bias in

all contamination probabilities, albeit for most sectors this bias is small, depending on the

actual deviation of the zi mode from one. For example, the Public Corporations sector has a

posterior mode for its scaling factor equal to 0.622 (standard deviation 0.566), implying that

the estimated non-scaled probabilities will overstate the overall infectiousness of the Public

Corporations sector.

Visualizations comparing the prior and posterior distributions for all bilateral sector con-

tamination probabilities and recovery probabilities are given in the Figures B1 and B2 re-

spectively, in Appendix B. For a selection of cases (16 of the 56 contamination probabilities),
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the prior distribution indicates that there is little or no evidence of an economic connection,

and this lack of connection typically results in the posterior distribution also attaching most

posterior weight to values of contamination probabilities close to zero. Stated differently, the

data on observed slowdowns does not contain enough evidence to update the network-based

prior to a different direction and as such, these priors have a similar effect as a LASSO

regularizer. For example, in the first column, containing the probabilities that the Public

Corporations sector becomes contaminated, almost all contamination probabilities (except

for contamination by the Government sector) have prior and posterior distributions with

probability mass piled up at zero. Note that the maximum likelihood estimates of these

contamination probabilities were also already relatively low, see Table 1.

To help better understand the role of the prior distributions on the epidemiological estimates,

we highlight an example of two other cases that can occur, shown in Figure 7: (a) the

posterior distribution suggests lower contamination probabilities to be more likely than the

prior does, and (b) the posterior suggests higher contamination probabilities to be more

likely than the prior does. In the first case, in Figure 7(a), depicting the probability of the

Government sector contaminating the Monetary Financial Institutions sector, the posterior

(black line) implies a lower contamination probability than the prior (red, dashed line).

This occurs when the network-based contamination probabilities are higher than the ones

implied by the epidemiological model. This means that the economic linkages that connect

the two sectors (i.e., as measured by the assets and liabilities between them) provide more

support for a high contamination probability than what actually seems to be statistically

observed in the data on slow growth periods. The reverse is the case for the contamination

probability from the Public Corporations sector to the Households sector in Figure 7(b).

These two examples show that through application of our procedure, we identify both cases

where the information on economic connections indicates less and more shock transmission,

respectively, than supported by the data on net worth growth shock transmission alone.
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[Insert Figure 7]

Comparing Table 3 with Table 1 and the network representation of these obtained estimates

in Figure 8 with Figure 5, the most important difference is the change in the overall level

of contagiousness of the sectors, summarized in the Rd
0 statistics (the basic reproduction

number following an initial slow growth period). The overall infectiousness of the sectors

has largely decreased, as a result of also using information regarding the underlying network

structure of the sectors and their actual economic connections. Note that due to the use

of uninformative priors for the recovery probabilities and the independence between the

recovery probabilities and the other parameters, the estimation of the recovery probabilities

is not affected. This invariance of the recovery probabilities implies that the decrease in

overall infectiousness is driven by the decrease in contamination probabilities; for example,

many of the contamination probabilities are no longer above 0.20, the threshold chosen in

both directed graphs. Furthermore, it is noticeable that the Public Corporations sector is no

longer the single highly infectious sector; there are six sectors with comparably high basic

reproduction numbers.

[Insert Figure 8]

While the differences in overall contagiousness between sectors are not very pronounced after

introducing the scaling factor and the prior distributions, the methodology does highlight

several strong connections between sectors. Consequently, the model estimates suggest that

measures aimed at avoiding the spread of negative growth shocks between sectors in the UK

can focus on the most important economic connections between sectors (the largest pij’s),

rather than looking at the biggest spreaders as measured by the basic reproduction number

R0. Three connections will be discussed below. In the Supplemental Appendix we show that

these connections also are present in a model without the estimated scaling factor, and are

thus robust to introducing this model feature.
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First of all, there is a high probability of the Public Corporations sector pushing the Govern-

ment sector into a slow growth period, with a mode (standard deviation) posterior estimate

equal to 0.323 (0.253). This sensitivity of the Government sector to changes in net worth

growth of the Public Corporations sector was already visible in the (pure) epidemiolog-

ical approach, but is more pronounced thanks to the inclusion of information about the

economic connections between these two sectors. While these two sectors are intrinsically

closely connected, being aware of this connection is still important for mitigating systemic

shock propagation, since negative net worth growth in the Government sector has a high

probability of spilling over to the Insurance and Pension Funds sector and the Rest of the

World sector.

The second important connection is represented by the high contamination probability from

the Households sector to the Insurance and Pension Funds sector (with mode (standard

deviation) probability of 0.442 (0.253)) and from the Insurance and Pension Funds sector to

the Households sector (with mode (standard deviation) probability of 0.532 (0.252)). The

pure epidemiological approach only highlighted the strong connection from the Households

to the Insurance and Pension Funds sectors, but introducing data on economic connections

suggests a strong bilateral connection. Given the high overall contagiousness of the Insurance

and Pension Funds sector, this seems to be a connection that if reduced in strength, would

also reduce the overall connectedness of the system.

Third, we observe a strong bilateral connection between the Monetary Financial Institu-

tions and Rest of the World sectors, as well as between the Other Financial Intermediaries

and Rest of the World sectors. These bilateral connections only become evident through

the introduction of the network data to the estimation procedure. The Monetary Financial

Institutions sector is one of the less contagious sectors of the economy because of its high

recovery probabilities. In fact, Figure 8 indicates a role for the Monetary Financial Insti-

tutions sector as shock absorber, by virtue of being highly susceptible to shocks of other
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sectors such as the Households and Other Financial Intermediaries sectors but having high

recovery probabilities and generally low probabilities of spilling shocks to other sectors in

the economy.

The posterior distributions of Rd
0 and Rc

0 are visualized in Figure 9. It is notable that the

posterior distributions of the basic reproduction numbers Rd
0 and Rc

0 of the Public Corpora-

tions sector do attach considerable probability mass to values above 10, while for the other

sectors, this is not the case. Thus, while the modes of the R0 values of most sectors are com-

parable, very high values of R0 are considerably more plausible for the Public Corporations

sector than for the other sectors.

[Insert Figure 9]

V Conclusion

This paper has combined statistical and network-based epidemiological models through

Bayesian estimation techniques. Using network information obtained from the financial

accounts of the eight major macroeconomic sectors in the UK, priors have been formed for

contamination probabilities between these sectors. These priors attribute more probability

mass to large values of the contamination probability between two sectors if these sectors

are economically connected through large assets/liability flows. Next, the probabilities are

updated based on observed ‘statistical’ contaminations that have taken place, i.e., if sector i

entered a slow growth period in the period after sector j was already in a slow grow period,

we say that sector j contaminated sector i and hence increase the probability going into the

next iteration.

This Bayesian epidemiological model bridges the gap between the approaches of Garas et al.

(2010) and a standard epidemiological model and leads to important new insights. First

of all, in general, the combination of both approaches leads to results that emphasize that

sometimes important spillovers between sectors can occur, even in the absence of a signifi-
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cant economic connection and that sometimes important economic connections do not mean

that spillovers of net worth growth slowdowns are inevitable. While the actual economic

connection can be a good starting point in evaluating spillovers between sectors in an econ-

omy, it should not be the single tool used in analysis. For example, the pure network-based

approach overstates the infectiousness of the Public Corporations sector, as does the pure

statistical approach.

However, combining both sources of information highlights that most of the contagious-

ness of the Public Corporations sector runs through the Government sector and the overall

contagiousness of the Public Corporations sector is limited. The combined approach also

highlights that there is not a single highly contagious sector, but rather, there are several

strong connections in the system that can lead to spread of negative shocks. This finding

differs from that using the pure statistical approach, that finds many low, but non-zero

contamination probabilities. As such, introducing network data into the pure statistical ap-

proach works as a regularizer. For example, while the epidemiological approach suggested

high susceptibility of the Insurance and Pension Funds sector towards and from almost all

other sectors in the economy, the combined approach of this paper highlights that in par-

ticular, the very strong dependence between the Households sector and the Insurance and

Pension Funds Corporations sector is notable; slow growth in the Households sector will in

many cases (44% of the time) push the Insurance and Pension Funds sector into a state of

slow growth too. Given the low recovery probability of the Insurance and Pension Funds

sector, and its infectiousness towards other sectors, the linkage from the Households sector

to this sector is important for understanding the transmission of shocks within the complete

system.

By closely comparing prior and posterior distributions of the parameters in the epidemiolog-

ical model, one can assess whether the risk of contamination between sectors arises because

of the underlying network structure connecting the respective sectors, or because of another
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factor that has caused many contaminations to occur in the past. This can be useful for

policymakers both in seeking to pre-emptively stave off the development of a potential crisis

and in determining to which sectors scarce resources should be directed in the event of an

economic slowdown. Such models may also prove useful in the analysis of banking networks,

where a comparison of the economic connections between banks (e.g., derived from their

trading network structure) with the spillovers that have actually occurred over time might

be used to understand drivers of systemic risk. We leave this for further research.
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Figure 1: Shares of assets and liabilities of each sector over time

(a) Asset share of each sector over time (assets per sector divided by the total amount of assets in the economy)

(b) Liability share of each sector over time (liabilities per sector divided by the total amount of liabilities in the economy)
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Figure 2: Visualization of the asset-liability network of the eight sectors of the United Kingdom in 2019Q2. Only connections larger
than 100 billion pounds are shown. Values within the node describe the intra-sector transactions (asset and liability transfers within the
sector). An arrow directed from sector i to sector j represents a liability of sector i to sector j, and thus an asset of sector j. Thus,
liability connections are given the same color as the node these assets belong to.
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Figure 3: Development of (initial) slow growth episodes (grey) and protracted slow growth periods
(black) over time for each sector.

Figure 4: The number of protracted slow growth episodes over time, relative to a total of 8 sectors
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Figure 5: Representation of transmission probabilities between sectors (depicted by a connection between the sector nodes when the
contamination probability pij in Table 1 is larger than 0.20), and basic reproduction numbers Rd0 upon initial entry into a slow growth
period (depicted by the size of the sector node – a larger node has a higher reproduction number, with the value given in the node), based
on the mode estimates of Table 1.
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Figure 6: Proxies for the contamination probabilities, pij,t ∝
wij

tot,t

w̃j
tot,t

over time. In each graph, the colored lines show the probabilities pij,t

that sector i (the sector name indicated by the graph title) will infect sector j (the sector name can be found by comparing the color in
the legend to the color of the line in the graph) over time as determined by the network-based contamination probability measure of Garas
et al. (2010).
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Figure 7: Prior (red, dashed) and posterior (black) distributions of some selected contamination
probabilities based on the model with estimated sector-specific scaling factor. The blue dotted line
represents the proposal distribution from which the posterior proposal draws are generated in the
Metropolis-Hastings algorithm, showing good overlap with the posterior.

(a) Government to Monetary Financial Institutions

(b) Public Corporations to Households
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Figure 8: Representation of transmission probabilities pij between sectors (depicted by a connection between the sector nodes when the
contamination probability pij in Table 3 is larger than 0.20) and basic reproduction numbers Rd0 upon initial entry into a slow growth
period (depicted by the size of the sector node, with the value given in the node), based on the posterior mode estimates of Table 3.
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Figure 9: Posterior distributions of Rd0 (panel a) and Rc0 (panel b), the basic reproduction numbers, using an informative prior for the
contamination probabilities and z = 1 for all sectors (black solid line), using an informative prior for the contamination probabilities and
sector-specific scaling factors zi (red dashed line) and an uninformative prior (the MLE density, blue dotted line). This basic reproduction
number measures the expected number of contaminations from a sector from the moment it has entered an initial slow growth period
(panel a), or from the moment it has entered a protracted slow growth period (panel b), in an otherwise uncontaminated system.

(a) Rd0

(b) Rc0
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Table 1: Mode and standard error of posterior distributions based on uninformative priors (i.e., in this case, the mode coincides with
the MLE estimate) of the contamination probabilities pij, recovery probabilities pi and qi and the basic reproduction numbers R0 as in
Equations (1)-(2). pij is the probability that slow growth in a row sector will transmit to the column sector in the subsequent period. R0

estimates are based on simulations. Standard errors are in parentheses, based on the standard deviation of the posterior distribution.
Estimates of pij for which the probability that pij < 0.05 is smaller than 0.1 are marked in bold.

Public Private Non- Monetary Other Financial Insurance & Government Households Rest of
pij Corp. Financial Corp. Financial Inst. Institutions Pension Funds the World

Public Corp. 0.205 0.318 0.125 0.255 0.216 0.161 0.251
(0.075) (0.095) (0.061) (0.094) (0.077) (0.091) (0.088)

Private Non-Financial Corp. 0.179 0.312 0.206 0.214 0.077 0.187 0.274
(0.067) (0.093) (0.086) (0.129) (0.056) (0.116) (0.076)

Monetary Financial Inst. 0.171 0.090 0.343 0.248 0.136 0.073 0.323
(0.059) (0.042) (0.085) (0.085) (0.052) (0.047) (0.065)

Other Financial Intermediaries 0.134 0.192 0.220 0.270 0.196 0.152 0.320
(0.050) (0.069) (0.083) (0.093) (0.062) (0.061) (0.093)

Insurance & Pension Funds 0.077 0.150 0.219 0.178 0.115 0.119 0.214
(0.040) (0.050) (0.065) (0.071) (0.045) (0.050) (0.056)

Government 0.135 0.311 0.169 0.315 0.254 0.162 0.488
(0.060) (0.092) (0.076) (0.075) (0.114) (0.078) (0.109)

Households 0.142 0.546 0.185 0.230 0.424 0.110 0.268
(0.072) (0.195) (0.092) (0.098) (0.128) (0.071) (0.095)

Rest of the World 0.114 0.230 0.300 0.365 0.486 0.228 0.182
(0.056) (0.069) (0.102) (0.114) (0.102) (0.069) (0.060)

pi 0.474 0.699 0.546 0.444 0.444 0.657 0.631 0.563
(0.107) (0.079) (0.085) (0.082) (0.086) (0.091) (0.091) (0.078)

qi 0.322 0.567 0.417 0.656 0.513 0.500 0.567 0.553
(0.083) (0.121) (0.081) (0.087) (0.081) (0.110) (0.120) (0.091)

mean 4.295 2.368 2.981 2.801 2.277 3.259 3.267 3.501
Rd

0 mode 3.763 2.187 2.789 2.675 2.167 2.996 3.140 3.298
st.dev. (1.153) (0.493) (0.592) (0.445) (0.416) (0.637) (0.691) (0.570)
mean 5.198 2.830 3.486 2.338 2.157 3.984 3.613 3.600

Rc
0 mode 4.325 2.374 3.046 2.199 1.977 3.461 3.114 3.295
st.dev. (1.682) (0.861) (0.868) (0.449) (0.478) (1.143) (1.091) (0.774)
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Table 2: Mean and standard deviation (between parentheses) of the prior distributions that are based on the network-based contamination
probabilities of Garas et al. (2010). pij represents the probability that slow growth in a row sector will transmit to the column sector in
the subsequent period.

Public Private Non- Monetary Other Financial Insurance & Government Households Rest of
pij Corp. Financial Corp. Financial Inst. Institutions Pension Funds the World

Public Corp. 0.061 0.147 0.010 0.007 0.787 0.001 0.031
(0.046) (0.116) (0.051) (0.045) (0.106) (0.001) (0.016)

Private Non-Financial Corp. 0.000 0.144 0.075 0.201 0.004 0.026 0.537
(0.003) (0.017) (0.018) (0.058) (0.001) (0.004) (0.043)

Monetary Financial Inst. 0.000 0.049 0.124 0.016 0.016 0.136 0.460
(0.001) (0.014) (0.039) (0.002) (0.010) (0.040) (0.031)

Other Financial Intermediaries 0.000 0.065 0.316 0.072 0.013 0.073 0.422
(0.002) (0.020) (0.090) (0.019) (0.007) (0.028) (0.055)

Insurance & Pension Funds 0.000 0.177 0.044 0.079 0.071 0.478 0.145
(0.002) (0.055) (0.017) (0.030) (0.005) (0.013) (0.027)

Government 0.103 0.014 0.155 0.055 0.283 0.103 0.197
(0.044) (0.004) (0.075) (0.031) (0.073) (0.008) (0.054)

Households 0.000 0.024 0.355 0.073 0.486 0.028 0.034
(0.000) (0.005) (0.017) (0.016) (0.032) (0.008) (0.008)

Rest of the World 0.000 0.203 0.516 0.185 0.060 0.022 0.014
(0.000) (0.055) (0.070) (0.034) (0.011) (0.009) (0.001)
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Table 3: Posterior estimates (mode and standard deviation) derived from the procedure as described in Appendix A of the contamination
probabilities pij, recovery probabilities pi and qi and the basic reproduction numbers R0 as in Equations (1)-(2). pij is the probability that
slow growth in a row sector will transmit to the column sector in the subsequent period. The R0 estimates are based on the Metropolis-
Hastings draws from the posterior distributions of the contamination probabilities pij, scaling factors zi and the recovery probabilities pi
and qi and Equations 1 and 2. Estimates of pij for which the probability that pij < 0.05 is smaller than 0.1 are marked in bold.

Public Private Non- Monetary Other Financial Insurance & Government Households Rest of
pij Corp. Financial Corp. Financial Inst. Institutions Pension Funds the World

Public Corp. 0.087 0.090 0.015 0.104 0.323 0.047 0.027
(0.147) (0.125) (0.093) (0.188) (0.253) (0.101) (0.035)

Private Non-Financial Corp. 0.032 0.142 0.062 0.163 0.004 0.027 0.621
(0.044) (0.077) (0.045) (0.124) (0.002) (0.014) (0.257)

Monetary Financial Inst. 0.003 0.038 0.165 0.016 0.017 0.117 0.471
(0.002) (0.032) (0.094) (0.010) (0.016) (0.075) (0.250)

Other Financial Intermediaries 0.027 0.065 0.229 0.054 0.020 0.064 0.364
(0.021) (0.049) (0.185) (0.052) (0.018) (0.054) (0.237)

Insurance & Pension Funds 0.010 0.153 0.052 0.081 0.086 0.532 0.131
(0.005) (0.105) (0.033) (0.061) (0.040) (0.252) (0.080)

Government 0.083 0.014 0.054 0.096 0.287 0.086 0.229
(0.092) (0.012) (0.098) (0.082) (0.220) (0.071) (0.156)

Households 0.006 0.024 0.309 0.065 0.442 0.021 0.033
(0.011) (0.015) (0.188) (0.045) (0.253) (0.018) (0.022)

Rest of the World 0.001 0.149 0.506 0.165 0.065 0.027 0.017
(0.000) (0.129) (0.246) (0.128) (0.042) (0.019) (0.009)

zi 0.622 1.066 1.102 1.062 1.078 1.145 1.167 1.110
(0.566) (0.515) (0.566) (0.609) (0.535) (0.685) (0.537) (0.590)

pi 0.474 0.699 0.546 0.444 0.444 0.657 0.631 0.563
(0.107) (0.079) (0.085) (0.082) (0.086) (0.091) (0.091) (0.078)

qi 0.322 0.567 0.417 0.656 0.513 0.500 0.567 0.553
(0.083) (0.121) (0.081) (0.087) (0.081) (0.110) (0.120) (0.091)

mean 4.403 2.212 2.228 2.288 2.636 2.618 2.599 2.296
Rd

0 mode 2.412 2.231 2.241 1.893 2.540 2.409 2.596 1.929
st.dev (2.780) (1.168) (1.195) (1.215) (1.362) (1.541) (1.367) (1.210)
mean 4.543 1.994 2.215 1.712 2.210 2.470 2.039 1.992

Rc
0 mode 2.470 1.708 1.981 1.672 2.266 2.070 1.920 1.600
st.dev. (3.019) (1.150) (1.244) (0.933) (1.190) (1.556) (1.162) (1.092)
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Appendix A. Metropolis-Hastings Sampling Algorithm

This section describes how posterior distributions of the parameters in the epidemiological

model can be obtained when postulating that the network-based probabilities are of the form

pij = ziqij with

qij =
wijtot

w̃jtot
.

As in the main text of Section II, we impose prior distributions based on the observed

network by first computing the ratio of bilateral contact rates for all combinations of sectors

for each observed time period. By fitting a Beta-distribution on these series, for each qij, we

can postulate a prior of the form Beta(αij, βij). We do not have any prior information on zi,

so we use an uninformative prior for these parameters. When sampling from the posterior

distribution, however, we have to reject all draws that result in a pij larger than one or below

zero, so as to obtain a posterior distribution truncated to only attribute positive probability

mass to values between [0, 1].

First of all, we will make use of the principle of Gibbs sampling, which implies that we

can sample a draw from the posterior of qij conditional on the previous draw of {zi}∀i 6=j,

n and all other contamination probabilities qkj, k 6= i, j, and vice versa. Note here that

conditional on the other parameters {zi}∀i 6=j and n, the kernel of qij only depends on the

other contamination probabilities relating to sector j, that is, qkj, k 6= i, j, but not all other

contamination probabilities. Second, because the kernel of the posterior distributions of zi,

n and qij is not of known form, a Metropolis-Hastings algorithm with candidate-generating

density functions is used to sample from the conditional distributions.

For zi and n, a truncated normal distribution centered around the previous draw is used as the

candidate-generating density. The variance of this normal distribution is a tuning parameter

that can be chosen so as to obtain good acceptance ratios. For qij, the candidate-generating

density is the Beta(αij+Iij, βij+Nij) density. This is the posterior distribution when zi is set
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equal to one, exogenous contamination n is ruled out, and sector i is always the only sector

that can contaminate sector j, in other words, this candidate-generating density ignores that

there are other sectors (and exogenous factors) that could have played a role in infecting

sector j. Here Iij is the number of successful infections from sector i to sector j and Nij the

number of failed infections in the observed data. We do have to truncate this distribution so

as to reject all draws for which pij = ziqij > 1. All parameters have an individual acceptance

probability, denoted by γ(·), where the subscript indicates the respective parameter. To

decide whether to accept a proposal draw from the candidate-generating function, a draw

is generated from the uniform distribution: u ∼ U(0, 1). If u < γ(·), the proposed draw is

used. Otherwise, the previous draw will be used. All probabilities γ(·) will be defined below.

This results in the following algorithm for obtaining draws from the posterior of n, zi and

qij, where the convention is adopted that the product over an empty set is equal to one:

1. Start with initial parameter draws for n, {zi}Ni=1 and {qij}∀i,j,i6=j: n(m), z
(m)
i and q

(m)
ij

for i, j = 1, ..., N , j 6= i. Set m = 0. N is the total number of sectors and m indexes

the current draw.

2. Generate a proposal draw q∗ij from the candidate-generating density g(qij) =Beta(αij +

Iij, βij+Nij). If p∗ij = z
(m)
i q∗ij > 1, generate a new proposal draw. Accept this proposal

draw with probability γqij (defined below in Equation (A.1)). If the draw is accepted,

q
(m+1)
ij = q∗ij, else, q

(m+1)
ij = q

(m)
ij . Do this for all i, j = 1, . . . , N, i 6= j.

3. Generate a proposal draw z∗i . The candidate-generating density from which to generate

this draw has to be truncated at zero from below and at 1/maxj=1,...,N 6=i{q(m+1)
ij }

from above. We use a truncated normal distribution centered around the previous

draw, z
(m)
i , g(z∗i |z

(m)
i , {q(m+1)

ij }j=1,...,N 6=i), defined below in Equation (A.2). Accept this

proposal draw with probability γzi , defined below in Equation (A.3). If the draw is

accepted, z
(m+1)
i = z∗i , else, z

(m+1)
i = z

(m)
i . Do this for all i = 1, . . . , N .
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4. Generate a proposal draw n∗. The candidate-generating density from which to generate

this draw has to be truncated at zero from below and at one from above. We use a

truncated normal distribution centered around the previous draw, n(m), g(n∗|n(m)),

defined in Equation (A.4). Accept this draw with probability γn, defined below in

Equation (A.5), If the draw is accepted, n(m+1) = n∗, else, n(m+1) = n(m).

5. Set m = m+ 1 and return to step 2.

In the algorithm above, the following functions are used:

γqij = min

(
f(q∗ij|{z

(m)
i }∀k,k 6=i, n(m), {qkj}∀k,k 6=i)g(q

(m)
ij )

f(q
(m)
ij |{z

(m)
i }∀k,k 6=i, n(m), {qkj}∀k,k 6=i)g(q∗ij)

, 1

)
, (A.1)

where f(qij|{z(m)
i }∀k,k 6=i, n(m), {qkj}∀k,k 6=i) is the kernel of the posterior distribution of q con-

ditional on n, given by

f(qij|{z(m)
i }∀k,k 6=i, n(m), {qkj}∀k,k 6=i) ∝∏

(t): i∈Infectioust−1, j∈Susceptiblet−1

p̃
I(j: S→D)
jt (1− p̃jt)I(j: S→S)q

αij

ij (1− qij)βij ,

where p̃jt = 1− (1−n)
∏

k∈Infectioust−1
(1− ziqkj) and the notation (t) : i ∈ Infectioust−1, j ∈

Susceptiblet−1 contains the set of all time instances where sector j was susceptible to con-

tamination and sector i was contagious. I(j : S → D) and I(j : S → S) are indicator

functions indicating whether the sector j was contaminated (switched to state D) or remained

susceptible.

g(z∗i |z
(m)
i , {q(m+1)

ij }j=1,...,N 6=i) =

φ

(
z∗i −z

(m)
i

σz

)
Φ

(
1/max{q(m+1)

ij }−z(m)
i

σz

)
− Φ

(
−z(m)

i

σz

) , (A.2)

where σz is a tuning parameter that will be adjusted to obtain a good acceptance ratio of
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the Metropolis-Hastings sampler.

γzi = min

(
f(z∗i |{q

(m+1)
ij }i,j=1,. . . ,N,i 6=j, n

(m), {z(m)
k }∀k,k 6=i)g(z

(m)
i |z∗i , {q

(m+1)
ij }j=1,. . . ,N,i 6=j)

f(z
(m)
i |{q

(m+1)
ij }i,j=1,. . . ,N,i 6=j, n(m), {z(m)

k }∀k,k 6=i)g(z∗i |z
(m)
i , {q(m+1)

ij }j=1,. . . ,N,i 6=j)
, 1

)
(A.3)

and

f(zi|{qij}i,j=1,. . . ,N,i 6=j, n, zk∀k,k 6=i) ∝
∏

(t,j), j 6=i: i∈Infectioust−1, j∈Susceptiblet−1

p̃
I(j: S→D)
jt (1−p̃jt)I(j: S→S)

is the kernel of the posterior distribution of zi conditional on {qij}i,j=1,. . . ,N,i 6=j and n. Here

p̃jt = 1−(1−n)
∏

i∈Infectioust−1
(1−ziqij) and the notation (t, j), j 6= i : i ∈ Infectioust−1, j ∈

Susceptiblet−1 contains the set of all time instances and sectors j 6= i where sector i had the

opportunity to infect a sector.

g(n∗|n(m)) =
φ
(
n∗−n(m)

σn

)
Φ
(

1−n(m)

σn

)
− Φ

(
−n(m)

σn

) (A.4)

σn is a tuning parameter that will be adjusted to obtain a good acceptance ratio of the

Metropolis-Hastings sampler.

γn = min

(
f(n∗|{q(m+1)

ij }i,j=1,. . . ,N,i 6=j, {z(m+1)
i }i=1,. . . ,N)g(n(m)|n∗i )

f(n(m)|{q(m+1)
ij }i,j=1,. . . ,N,i 6=j, {z(m+1)

i }i=1,. . . ,N)g(n∗|n(m))
, 1

)
. (A.5)

f(n∗|{q(m+1)
ij }i,j=1,. . . ,N,i 6=j, {z(m+1)

i }i=1,. . . ,N) denotes the kernel of the posterior distribution

of n conditional on the other parameter estimates, given by:

f(n|{qij}i,j=1,. . . ,N,i 6=j, {zi}i=1,. . . ,N) ∝
∏
(t,j)

p̃
I(j: S→D)
jt (1− p̃jt)I(j: S→S),

with all notation defined above.
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The resulting acceptance ratios of the employed Metropolis-Hastings sampler vary from 15%

to 80% for the contamination probabilities before scaling qij.
16

Because the contamination probabilities and recovery probabilities enter the likelihood in-

dependently, the posterior distribution of the recovery probabilities is not affected by the

change in the definition of the contamination probabilities. Sampling of the recovery proba-

bilities therefore can be done independently from the contamination probabilities. Again, we

postulate a non-informative prior (Beta(1,1), which coincides with the uniform distribution),

such that the posterior distributions are given by

π(pi|y) ∝ p
∑

t I(Xit=S and Xit−1=D)+1
i (1− pi)

∑
t I(Xit=C and Xit−1=D)+1 (A.6)

and

π(qi|y) ∝ q
∑

t I(Xit=S and Xit−1=C)+1
i (1− qi)

∑
t I(Xit=C and Xit−1=C)+1. (A.7)

When adjusting this sampling algorithm for the maximum likelihood case (that is, when

using uninformative priors), one simply replaces the sector-specific prior parameters αij and

βij by 1 for all i, j = 1, . . . , N . Furthermore, both in the case where there is no scale factor

zi and in the maximum likelihood case, zi is just fixed to 1 for all sectors i and the step

where zi is sampled is omitted.

16Roberts et al. (1997) have shown that for a Gaussian target distribution, optimal acceptance ratios are

between 23-50%. Although our target distribution is not Gaussian, the range of 23-50% is an often-used rule

of thumb for all types of Metropolis-Hastings samplers.
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Appendix B. Prior-posterior plots of Bayesian procedure with scaling factor

Figure B1: Prior (red dashed) and posterior (black) distribution functions for the contamination probabilities for the Bayesian epidemio-
logical model with scaling factor this paper estimates. The prior distributions are based on the network-based contamination probabilities
of Garas et al. (2010). The proposal distribution (blue dotted) represents the distribution used in the Metropolis-Hastings algorithm to
sample proposal draws from. pij represents the probability that slow growth in a row sector will transmit to the column sector in the
subsequent period. x-axis runs from 0 to 1 in all figures.
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Figure B2: Prior (red) and posterior (blue) distributions for recovery probabilities in the epidemi-
ological model.

(a) Probability of recovering from an initial slow
growth period pi

(b) Probability of recovering from a protracted
slow growth period qi
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Supplemental Appendix

Estimations with priors, without scaling factor

This section discusses the results obtained from the Bayesian procedure without an estimated

scaling factor, that is, assuming that zi = 1 for all sectors, as is consistent with the procedure

described in Section II. This assumption forces the scale of the contamination probabilities

of Garas et al. (2010) to correspond one-to-one with the contamination probabilities of the

epidemiological model. Table S1 reports the mode and standard deviation of the posterior

parameter distributions that result from this procedure when using Beta-distributed priors

for the parameters pij, with the mean and standard deviations of the Beta distribution

given in Table 2 of the main paper. The probability of exogenous contamination, n, has a

posterior mode of 0.081, and a posterior standard deviation of 0.017. Note that the posterior

distribution attributes substantially more probability mass to higher values of n than was

estimated in the maximum likelihood setting, but is quite comparable to the estimate of 0.11

(0.05) obtained when estimating the scale factors zi instead of fixing them to equal one.

Visualizations comparing the prior and posterior distributions for all bilateral sector con-

tamination probabilities and recovery probabilities are given in Figure S1 below and Figure

B2 of the Appendix to the main paper. Note that the posterior distributions of the recovery

probabilities are unchanged, as they are estimated independently from the other parameters

and are not affected by scaling factor zi. Comparing the prior and posterior distributions

of the contamination probabilities in Figure S1, we see that typically, the posterior is more

dispersed than the prior distribution. This is similar to the results in the main paper where

the scaling factors were estimated along with the other parameters.

Next, analogous to the representation for the maximum likelihood estimates (Figure 5), the

Bayesian estimates are visualized in a directed graph, see Figure S2. Comparing this to

Figure 5, there are several differences. The overall infectiousness of the sectors largely has
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decreased, as a result of also using information regarding the underlying network structure

of the sectors and their actual economic connections. Note that the use of uninformative

priors for the recovery probabilities and the independence between the recovery probabilities

and the other parameters means that the estimation of the recovery probabilities is not

affected. Given that the recovery probabilities thus remain unaffected, the decrease in overall

infectiousness must be driven by the decrease in contamination probabilities; for example,

many of the contamination probabilities in Figure S2 are no longer above 0.20, the threshold

chosen in both directed graphs.

The most contagious sector based on the combined approach is the Public Corporations

sector, with large contagiousness towards the Government sector, and low recovery proba-

bilities (pi = 0.474, qi = 0.322, see the first column of Table S1), similar to the results in

the maximum likelihood setting. This is notable considering that it is the smallest sector

in the economy and that its size is directly used in the computation of the prior distri-

butions. The second-most contagious sector is the Insurance and Pension Funds sector,

driven by its large contamination probabilities towards the Households sector and the Pri-

vate Non-Financial Corporations sector, also in combination with low recovery probabilities

(pi = 0.444, qi = 0.513). The high infectiousness of the Public Corporations sector in this

model is clearly driven by fixing the scaling factor zi to one, because, as seen in the main

paper, when the scaling factor of the Public Corporations was estimated it turned out to be

below one, leading to a lower overall infectiousness of this sector. Furthermore, for the other

sectors, the scaling parameter was estimated to be above one. Consequently, the results

in the main paper demonstrate that when the scaling factor is included as an additional

parameter and allowed to be estimated, the Public Corporations sector is not particularly

more infectious than several other sectors in the economy.

Because the network representation figures (Figures 5 and S2) have focused only on the

mode of the posterior distributions, Figure 9 in the main paper shows posterior densities
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of the basic reproduction numbers Rd
0 and Rc

0, for all sectors, simulated from the estimated

transmission probabilities pij. The densities are simulated first from the pij estimates of

the epidemiological model (akin to using an uninformed prior) and second using an informed

prior that encodes the network information. As expected, with the informed prior there is less

parameter uncertainty, resulting in a tighter posterior distribution. Furthermore, because

the network information suggests fewer economically relevant connections than the statistical

approach does, in general the estimated posterior distributions in Figure 9 have a smaller

mode and mean when using the network-informed priors versus the maximum likelihood

estimates. Interestingly, for the Public Corporations sector the posterior distributions in

both cases (MLE and Bayes) are very similar, despite the fact that the underlying pij’s, that

is, the probabilities corresponding to the sectors towards which the Public Corporations

sector is contagious, have changed substantially. In Figure 5, the Public Corporations sector

had many (relatively thin) outward arrows; in the informed-prior setting of Figure S2, it is

only contagious towards the Government sector, albeit with a large contamination probability

of 0.414.
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Table S1: Posterior estimates (mode and standard deviations) of the contamination probabilities pij, recovery probabilities pi and qi and
the basic reproduction numbers R0, derived from the procedure as described in Section III.d. pij is the probability that slow growth in a
row sector will transmit to the column sector in the subsequent period. The R0 estimates are based on simulations from the posterior
distributions of the contamination probabilities pij and the recovery probabilities pi and qi and Equations 1 and 2. The prior distribution
of the pij-parameters is a Beta distribution with means and standard errors of the distribution given in Table 2. Estimates of pij for
which the probability that pij < 0.05 is smaller than 0.1 are marked in bold.

Public Private Non- Monetary Other Financial Insurance & Government Households Rest of
pij Corp. Financial Corp. Financial Inst. Institutions Pension Funds the World

Public Corp. 0.048 0.077 0.021 0.037 0.414 0.019 0.030
(0.066) (0.076) (0.071) (0.108) (0.078) (0.046) (0.014)

Private Non-Financial Corp. 0.013 0.148 0.074 0.134 0.004 0.026 0.518
(0.032) (0.017) (0.018) (0.054) (0.001) (0.004) (0.041)

Monetary Financial Inst. 0.001 0.038 0.061 0.016 0.008 0.098 0.453
(0.001) (0.014 (0.043) (0.002) (0.011) (0.030) (0.030)

Other Financial Intermediaries 0.019 0.028 0.114 0.064 0.009 0.052 0.275
(0.015) (0.020) (0.070) (0.019) (0.008) (0.024) (0.053)

Insurance & Pension Funds 0.007 0.111 0.030 0.043 0.073 0.470 0.081
(0.015) (0.045) (0.014) (0.031) (0.005) (0.013) (0.027)

Government 0.098 0.011 0.051 0.051 0.180 0.103 0.160
(0.040) (0.004) (0.061) (0.036) (0.066) (0.008) (0.051)

Households 0.001 0.023 0.353 0.076 0.493 0.027 0.035
(0.008) (0.005) (0.017) (0.016) (0.032) (0.008) (0.009)

Rest of the World 0.000 0.146 0.444 0.116 0.060 0.013 0.014
(0.000) (0.047) (0.060) (0.038) (0.011) (0.011) (0.001)

pi 0.474 0.699 0.546 0.444 0.444 0.657 0.631 0.563
(0.107) (0.079) (0.085) (0.082) (0.086) (0.091) (0.091) (0.078)

qi 0.322 0.567 0.417 0.656 0.513 0.500 0.567 0.553
(0.083) (0.121) (0.081) (0.087) (0.081) (0.110) (0.120) (0.091)

mean 3.449 1.657 1.589 1.758 2.117 1.838 2.026 1.935
Rd

0 mode 2.951 1.524 1.489 1.695 2.016 1.716 1.860 1.834
st.dev (1.146) (0.334) (0.293) (0.290) (0.344) (0.390) (0.432) (0.350)
mean 4.287 2.068 1.740 1.540 2.034 2.043 2.024 2.139

Rc
0 mode 3.593 1.634 1.532 1.411 1.841 1.713 1.665 1.889
st.dev. (1.666) (0.742) (0.453) (0.336) (0.465) (0.639) (0.648) (0.533)
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Figure S1: Prior (red dashed) and posterior (black) distribution functions for the contamination probabilities for the Bayesian epidemi-
ological model without scaling this paper estimates. The prior distributions are based on the network-based contamination probabilities
of Garas et al. (2010) and posteriors are updated as described in Appendix A. The proposal distribution (blue dotted) represents the
distribution used in the Metropolis-Hastings algorithm to sample proposal draws from. pij represents the probability that slow growth in
a row sector will transmit to the column sector in the subsequent period. x-axis runs from 0 to 1 in all figures.
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Figure S2: Representation of transmission probabilities pij between sectors (depicted by a connection between the sector nodes when the
contamination probability pij in Table S1 is larger than 0.20) and basic reproduction numbers Rd0 upon initial entry into a slow growth
period (depicted by the size of the sector node, with the value given in the node), based on the posterior mode estimates of Table S1.
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