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Abstract
Statistics Netherlands uses a state space model to estimate the Dutch unemployment by using monthly

series about the labour force surveys (LFS). More accurate estimates of this variable can be obtained by
including auxiliary information in the model, such as the univariate administrative series of claimant
counts. Legislative changes and economic crises may affect the relation between survey-based and aux-
iliary series. This time-changing relationship is captured by a time-varying correlation parameter in the
covariance matrix of the transition equation’s error terms. We treat the latter parameter as a state variable,
which makes the state space model become nonlinear and therefore its estimation by Kalman filtering
and maximum likelihood infeasible. We therefore propose an indirect inference approach to estimate the
static parameters of the model, which employs cubic splines for the auxiliary model, and a bootstrap filter
method to estimate the time-varying correlation together with the other state variables of the model. We
conduct a Monte Carlo simulation study that shows that our proposed methodology is able to correctly
estimate both the time-constant parameters and the state vector of the model. Empirically we find that
the financial crisis of 2008 triggered a deeper and more prolonged deviation between the survey-based
and the claimant counts series, than a legislative change in 2015. Promptly tackling such changes, which
our proposed method does, results in more realistic real-time unemployment estimates.

Keywords: bootstrap filter, cubic splines, indirect inference, nonlinear state space, time-varying
parameter, unemployment.

1 Introduction

Official statistics about the labour force, as published by national statistical institutes, are generally based
on survey data collected via a rotating panel design in combination with direct estimation procedures, such

*This work was funded by the European Union under grant no. 07131.2017.003-2017.596. The views expressed in this paper
are those of the authors and do not necessarily reflect the policy of Statistics Netherlands. Previous versions of this paper have
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World Congress of the Econometric Society 2020, BigSurv2020, and internal seminars organised by Maastricht University and
Statistics Netherlands. We thank conference and seminar participants for their useful feedbacks.
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as the general regression (GREG) estimator (Särndal et al., 1992). Direct or design-based estimators have
nice statistical properties under large sample sizes, but the variance of these estimates rapidly become un-
acceptably large in case of small sample sizes (Rao and Molina, 2015). Small sample sizes typically occur
if estimates for short reference periods or estimates at a detailed regional level are required. As a result
most national statistical institutes publish quarterly or rolling quarterly figures about the labour force. Since
monthly figures are more timely and relevant for policy makers and GREG estimates for monthly labour
force figures are not precise enough, Statistic Netherlands implemented a state space model for the produc-
tion of official monthly labour force figures. This model is used as a form of small area estimation (Rao
and Molina, 2015), by using the labour force survey (LFS) data collected over many months to improve
the estimates for the current month. The model also accounts for rotation group bias (Bailar, 1975), and
serial correlation in the survey errors due to the rotating panel design of the Dutch LFS (Pfeffermann, 1991;
van den Brakel and Krieg, 2015).

The aforementioned state space model estimates the Dutch unemployed1 as an unobserved trend and
seasonal component. The state space structure allows to model not only the unemployment itself, but also its
change, its seasonality, the survey errors, and the rotation group bias that affects the observed series from the
labour force survey. The estimation accuracy of the unemployment can be further improved by augmenting
the model with auxiliary series that might be related to it. Harvey and Chung (2000), van den Brakel and
Krieg (2016) and Schiavoni et al. (2021) show that the monthly univariate auxiliary series of claimant counts,
which is a registry source, can significantly improve the estimation accuracy of the unemployment.

In this paper we augment the Dutch labour force state space model with the auxiliary series of claimant
counts, and we model the relationship between survey-based and auxiliary series as time-varying. This is
the main novelty of the paper. Modeling relationships between variables as time-varying allows to tackle
changes that are triggered, for instance, by economic crises. Time-changing relations between different
sources of data that aim at measuring the same variables, can also be due to legislative changes.

We let the time-varying relation be captured by a time-varying correlation in the covariance matrix of the
disturbances of the state space model’s transition equation. Solving our problem, i.e., extracting this time-
varying state correlation, is therefore already challenged by the fact that this parameter relates innovations
of components that are unobserved. Additionally, data and respective log-likelihood functions, are much
less informative about correlations than other parameters, such as means or variances.

We treat the time-varying correlation that enters this covariance matrix as an additional state variable
with its own dynamic equation, which makes this parameter random, i.e. subject to its own source of error.
The state space model therefore becomes nonlinear. The nonlinearity of the model hampers the estimation
of the state variables by standard Kalman filtering, which in turns makes the likelihood function (needed
to estimate the static parameters of the model) intractable. There are several frequentist methods that can
be employed in order to estimate nonlinear state space models. Importance sampling (see Jungbacker and
Koopman (2007), Koopman et al. (2015), and Koopman et al. (2018)) and the Extended Kalman filter
(explained in Durbin and Koopman (2012, Chapter 10)) are some examples, and they allow to estimate both
the state variables and the time-constant parameters of the nonlinear model. The reprojection method of
Gallant and Tauchen (1998) is another technique that can be employed in order to estimate the state vector
but not the static parameters of nonlinear state space models. Nonetheless, the implementation of these
methods in our setting is hampered by the nonlinearity being in the transition equation and involving not
only state variables but also disturbance terms (as will become clear at the beginning of Section 3). The
above-mentioned methods are more suited to solve nonlinearities appearing in the observation equation or
involving only state variables. Shifting our nonlinear problem from the transition to the observation equation
is non-trivial. Alternatively, sequential Monte Carlo methods, such as particle filtering, can be employed

1Throughout the paper, we use the terms “unemployment”, “unemployed” and “unemployed labour force” interchangeably to
indicate the total number of unemployed people.

2



(and we do) for the estimation of the state vector, but the resulting log-likelihood function is not continuous
with respect to the static parameters of the nonlinear model, which hinders their estimation via this approach
(Creal, 2012). We circumvent this problem by estimating the time-constant parameters by indirect inference,
before applying particle filtering.

The indirect inference method, originally proposed by Gourieroux et al. (1993), requires the use of an
auxiliary model which approximates the true one, but which can also be easily estimated. In our case the
auxiliary model employs a deterministic specification for the time-varying correlation, which preserves the
linearity of the state space model. This deterministic specification assumes a smooth change over time for
the correlation, and is based on the cubic splines estimation method. The latter approach requires the change
points in time to be chosen a priori, and can already be employed, by itself, in estimating the time-varying
state correlation. Koopman et al. (2006) and Proietti and Hillebrand (2017) already utilised this method for
modeling time-varying parameters in state space models. However, the use of cubic splines for the auxiliary
model in the indirect inference estimation of static parameters, not only in state space models, has not been
explored before. Once the time-constant parameters have been estimated by indirect inference, we employ a
Rao-Blackwellised (Chen and Liu, 2000) bootstrap filter (Gordon et al., 1993), which is a type of sequential
Monte Carlo algorithm, and more specifically of particle filter, in order to estimate the state variables of the
model. The Rao-Blackwellisation of the bootstrap filter is needed in order to simplify the estimation of the
state vector when this is large, which is the case in the Dutch labour force model extended with the claimant
counts series.

Monfardini (1998) and Gagliardini et al. (2017) are very close works to our paper as they both employ
indirect inference in order to estimate the static parameters of nonlinear state space models, where the non-
linearity arises from stochastic variances in the innovations of the observation equation. In the former paper
Autoregressive and Moving Average (ARMA) are employed as auxiliary models, whereas the latter work
makes use of Mixed Data Sampling (MIDAS) regressions and Autoregressive Conditional Heteroskedasti-
city (ARCH) models, and it also provides a filtering step for the estimation of state variables based on the
reprojection method of Gallant and Tauchen (1998). Stochastic variances are a rather common source of
nonlinearity in state space models and there are many, also applied, papers that deal with them. Stock and
Watson (2007) and Antolin-Diaz et al. (2017) are two examples, and they consider nonlinear state space
models, respectively for US inflation and a set of US macroeconomic variables, where both the innova-
tions in the measurement and transition equations have stochastic variances. The models are estimated via
the Bayesian approach of Markov Chain Monte Carlo (MCMC), which could probably also be employed
to estimate our nonlinear model, but we do not venture into Bayesian techniques. Both papers show how
recession periods can play a big role in triggering changes in parameters, in their cases by boosting volatil-
ities. To the best of our knowledge, our paper is the first one to deal with the estimation of a stochastic state
correlation, and that therefore employs particle filtering for this purpose.

We conduct a Monte Carlo simulation study in order to assess the performance of our proposed es-
timation methods: the one purely based on cubic splines, and the one which combines indirect inference
and Rao-Blackwellised bootstrap filtering. We investigate not only how they are able to estimate the time-
constant parameters of the model as well as the true time-varying relation, but also to which extent estimating
this relation as time-varying, instead of time-constant, yields gains in the estimation accuracy of unobserved
components of interest. We then conduct an empirical study to estimate the Dutch unemployment by means
of the labour force state space model augmented with the auxiliary series of claimant counts, while modeling
the relationship between survey-based and auxiliary series as time-varying, with our proposed methods.

The paper is structured as follows. Section 2 presents a description of the state space model used by
Statistics Netherlands for estimating monthly unemployment figures, and its extension with the univariate
auxiliary series of claimant counts. Section 3 describes our proposed methods for the estimation of the time-
varying correlation, together with the remaining state variables and the static parameters of the nonlinear
state space model. Sections 4 and 5 report the results of, respectively, the Monte Carlo simulation study and
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the empirical application. Finally, Section 6 concludes the paper.

2 The Dutch labour force model and its extension

The Dutch LFS is conducted according to a rotating panel design. Each month a new sample, drawn accord-
ing to the stratified two-stage cluster design described in van den Brakel and Krieg (2015) and Schiavoni
et al. (2021), enters the panel and is interviewed five times at quarterly intervals. After the fifth interview, the
sample leaves the panel. The sample that is interviewed for the jth time is called the jth wave of the panel,
for j = 1, ..., 5. This rotation design implies that in each month five samples are observed, which over time
generate a five-dimensional time series of the survey-based unemployed labour force, defined as population
total (see Schiavoni et al. (2021) for a visualisation of the rotation panel design of the Dutch LFS).

Let yj,t denote the general regression (GREG) estimate (Särndal et al., 1992) for the Dutch unemploy-
ment in month t based on the sample observed in wave j. Now yt = (y1,t, . . . , y5,t)

′ denotes the vector with
the five GREG estimates for the Dutch unemployment in month t. This five-dimensional vector of GREG
estimates is cast in a state space model whose measurement equation takes the expression:

yt = ı5θy,t + λt + et, (2.1)

where ı5 is a five-dimensional column vector of ones, and θy,t is a common unobserved state variable
among the five-dimensional waves of the survey-based unemployed labour force, and it represents the Dutch
unemployment itself. As such, it is our variable of interest, and as unobserved component, it is assumed
to be unknown and estimable. The reason why the unemployment is re-estimated by means of a state
space model, using the GREG estimates as observed series, is because the latter are considered too volatile
to produce sufficiently reliable monthly estimates for the unemployed labour force at monthly frequency.
The additional estimation method via state space models, which was originally proposed by Pfeffermann
(1991), improves the precision of the monthly estimates for the unemployment with sample information
from previous periods, and can therefore be seen as a form of small area estimation (Rao and Molina, 2015).

The state variable of interest, θy,t, is assumed to be composed of a trend and a seasonal component
(which means that strictly speaking θy,t is the sum of state variables, but for simplicity we refer to it as state
variable throughout the paper):

θy,t = Ly,t + Sy,t.

The exclusion of an innovation term in the formula above is motivated by Bollineni-Balabay et al.
(2017). The transition equations for the level (Ly,t) and the slope (Ry,t) of the trend are, respectively:

Ly,t+1 = Ly,t +Ry,t,

Ry,t+1 = Ry,t + ηR,y,t, ηR,y,t ∼ N
(
0, σ2R,y

)
.

The random walk specification for the slope means that the latter is assumed to be integrated of order 1,
I(1), which implies that its first differences are assumed to be stationary (i.e., mean-reverting). Consequently,
the level of the trend, which is expressed as the cumulative sum of the slope, is integrated of order 2, I(2),
implying that its second differences are stationary. The absence of an innovation term for the trend’s level
is motivated in van den Brakel and Krieg (2016) as being the result of Likelihood Ratio testing, and implies
a smoothness assumption on the level of the unemployment’s trend.

The trigonometric stochastic seasonal component allows for the seasonality to vary over time, and it is
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modeled as in Durbin and Koopman (2012, Chapter 3):

Sy,t =
6∑
l=1

S1,y,l,t,(
S1,y,l,t+1

S2,y,l,t+1

)
=

[
cos(hl) sin(hl)
− sin(hl) cos(hl)

](
S1,y,l,t
S2,y,l,t

)
+

(
η1,ω,y,l,t
η2,ω,y,l,t

)
,

(
η1,ω,y,l,t
η2,ω,y,l,t

)
∼ N

(
0, σ2ω,yI2

)
,

where hl = πl
6 , for l = 1, . . . , 6, and I2 is a 2× 2 identity matrix.

Rotating panel designs can induce Rotation Group Bias (RGB), i.e., systematic differences among the
observations in the subsequent waves (Bailar, 1975). van den Brakel and Krieg (2015) argue that, for the
Dutch LFS, the estimates for the unemployment based on the first wave are systematically larger compared to
the estimates based on the follow-up waves. Some of the reasons that trigger this phenomenon are discussed
in Schiavoni et al. (2021), and they suggest that the answers from the first wave of interviews have to be
considered as being the most reliable ones and not to be affected by the RGB. The five-dimensional state
vector λt in equation (2.1) accounts for the RGB in the second to fifth wave, as proposed in Pfeffermann
(1991), and its last four elements are modeled as a random walk because they are supposed to capture the
time-dependent differences with respect to the first wave:

λ1,t+1 = 0,

λj,t+1 = λj,t + ηλ,j,t, ηλ,j,t ∼ N
(
0, σ2λ

)
, j = 2, . . . , 5.

Notice that λ1,t+1 = 0 because it is assumed that the first wave is not affected by the RGB.
The rotating panel design also induces autocorrelation among the survey errors in the follow-up waves.

In order to account for this autocorrelation, the survey errors, which are represented by the five-dimensional
vector et in equation (2.1), are treated as state variables. The transition equation for the survey errors takes
the following form:

ej,t = cj,tξj,t, cj,t =
√

var (yj,t), j = 1, . . . , 5,

ξ1,t+1 ∼ N
(
0, σ2ν1

)
,

ξj,t+1 = δξj−1,t−2 + νj,t, νj,t ∼ N
(

0, σ2νj

)
, j = 2, . . . , 5, |δ| < 1,

var (ξj,t) = σ2νj/
(
1− δ2

)
, j = 2, . . . , 5.

The survey errors of all waves, ej,t, are assumed to be proportional to the standard errors of the GREG
estimates,

√
var (yj,t), for j = 1, . . . , 5, in order to account for heterogeneity in their variances, which are

caused by, for instance, changing sample sizes over time. The scaled sampling errors ξj,t, j = 1, . . . , 5, cap-
ture the serial autocorrelation induced by the sampling overlap of the rotating panel. Since in the first wave
of interview samples are observed for the first time, the survey errors of the first wave are not autocorrelated
with survey errors of previous periods. The survey errors of the second to fifth wave are, instead, correlated
with the survey errors of the previous wave three months before. For this reason van den Brakel and Krieg
(2009), following an approach proposed by Pfeffermann et al. (1998), suggest to model the survey errors
with an auto-regressive process of order 3, AR(3), without including the first and second lag.

In order to achieve more accurate estimates, or forecasts, of the unemployment, it is possible to augment
the model with auxiliary series that are related to this variable. Harvey and Chung (2000), van den Brakel
and Krieg (2016) and Schiavoni et al. (2021) show that including in the model the univariate auxiliary
series of monthly claimant counts, which represents the number of people claiming unemployment benefits
and which is a registry source, can significantly improve the accuracy of estimation (and nowcast) of the
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unemployment. Only unemployed people who have worked enough time, and therefore paid enough taxes,
can receive unemployment benefits in the Netherlands, for a maximum of three years and two months,
despite being employed or not, at the end of this period. The claimant counts therefore tend to underestimate
the Dutch long-term unemployment. Figure 1 displays the monthly time series of the GREG estimates and
the claimant counts, from January 2004 until March 2020. It is possible to see how the two series overall
tend to follow the same trend over time, but deviate from each other between 2010 and 2016.

Figure 1: Monthly GREG estimates for the Dutch unemployment based on the labour force survey (black), yt, and the
univariate time series of claimant counts in the Netherlands (red).

If we let xCC,t be the univariate series of monthly claimant counts, the labour force model augmented
with this auxiliary series, looks as follows:(

yt
xCC,t

)
=

(
ı5θy,t
θCC,t

)
+

(
λt
0

)
+

(
et
εCC,t

)
, εCC,t ∼ N

(
0, σ2ε,CC

)
, (2.2)

(
θy,t
θCC,t

)
=

(
Ly,t
LCC,t

)
+

(
Sy,t
SCC,t

)
, (2.3)(

Ly,t+1

LCC,t+1

)
=

(
Ly,t
LCC,t

)
+

(
Ry,t
RCC,t

)
, (2.4)(

Ry,t+1

RCC,t+1

)
=

(
Ry,t
RCC,t

)
+

(
ηR,y,t
ηR,CC,t

)
, (2.5)

with

cov

(
ηy,R,t
ηCC,R,t

)
=

[
σ2R,y ρσR,yσR,CC

ρσR,yσR,CC σ2R,CC

]
. (2.6)

The augmented state space model above shows that the series of claimant counts is also supposed to be
composed of a level and a seasonal component, which are assumed to have the same transition equations of
the level and the seasonal components of θy,t.
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The static parameters (which are also referred to as “hyperparameters” in the state space literature) and
the state variables of the model defined by equations (2.2)-(2.6) are estimated, respectively, by maximum
likelihood using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimisation algorithm, and by the Kal-
man filter (details about these estimation methods are provided in Section 3). A diffuse initialisation of the
Kalman filter is used for all state variables of the model, except for the 13 state variables that define the
autocorrelation structure of the survey errors, for which we use the exact initialisation of Bollineni-Balabay
et al. (2017).

The transition equation (2.5) implies that the trend’s slopes of the survey-based and the claimant counts
series have the same order of integration: they are both I(1). Their innovations are allowed to be correlated,
as their covariance matrix in equation (2.6) shows. Harvey and Chung (2000) show, via simulations, that
if the magnitude of this correlation parameter is large, there are gains in the accuracy of estimation and
nowcast, respectively in terms of MSE and MSFE, of the Kalman filter estimators of θy,t, Ly,t and Ry,t. In
the special case where the absolute value of the correlation parameter is equal to 1, the covariance matrix of
equation (2.6) is not full rank any more, which means that the corresponding state variables have the same
source of error, and are said to be cointegrated. This correlation parameter is of key importance in our study,
because it represents the mean for the Dutch labour force model to exploit auxiliary information.

Notice that the smooth trend model specification for the claimant counts’ trend implies that the claimant
counts series is I(2).

We employ the method proposed by Harvey and Chung (2000) in order to incorporate auxiliary inform-
ation in the model, by augmenting the observed series with the auxiliary one. Alternatively, the claimant
counts series could be added as a regressor in the measurement equation. However, with this latter option the
main part of the unemployment’s trend would be explained by the auxiliary series, and its filtered estimates
would contain a residual trend instead of the unemployment’s trend. Since trend estimates are published as
part of the monthly official labour force figures, this approach is not an option for Statistics Netherlands,
and we do not consider it in this paper.

Model (2.1) has been used by Statistics Netherlands since 2010 for the production of official labour force
figures. To further improve the precision of the time series model estimates, Statistics Netherlands decided
in 2014 to augment this model with the series of Dutch claimant counts. Until the end of 2014, survey-based
and auxiliary series were actually cointegrated. In February 2015, some changes were implemented in the
registration of claimant counts. Namely, since then people that find a job can receive unemployment benefits
up to two months after having found the job. These people are therefore still part of the claimant counts for
those two additional months despite being actually employed. This resulted in systematic higher time series
estimates for the unemployed labour force in the second quarter of 2015, compared to the model without
claimant counts. It was anticipated that this legislative change disturbed the relationship between the survey-
based and the claimant counts series, and that a model assuming a time constant correlation incorrectly
did not not observe the drop in this parameter during the first months after the legislative change. As a
result, Statistics Netherlands went back to the model without claimant counts in June 2015, and revised the
monthly figures that were published from March until May 2015. This model has been used for publishing
official monthly figures about the Dutch labour force since then. Hence the main purpose of this paper to
model the relationship between survey-based and auxiliary series as time-varying, by proposing a method
for the estimation of time-varying state correlations in state space models. The correlation parameter in the
covariance matrix of equation (2.6) is therefore, hereinafter, assumed to be time-varying.

3 Method for the estimation of a time-varying state correlation

This section describes our proposed approach to model a time-varying state correlation, when this is assumed
to be random. For sake of generality, the auxiliary series included in the model will be indicated as xt (which
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in the case of the claimant counts is just a scalar). Additionally, we need to impose a restriction on the space
of ρt, namely of being between -1 and 1. We therefore re-parametrise the correlation parameter as

ρt = tanh (γt) ,

for t = 1, . . . , T , and where tanh is the hyperbolic tangent, which is a time-invariant, continuous, invertible,
and twice differentiable function.

We let zt = (y′t,x
′
t)
′ be the n×1 vector that collects all observed series, and Zt−1 = {z1, . . . ,zt−1} be

the available information set at time t. The Dutch labour force model (2.2)-(2.6) can be compactly written
as

zt = Zαt +Mεt, εt ∼ N (0,H)

αt+1 = Tαt +Rηt, ηt ∼ N (0,Qt) ,
(3.1)

for t = 1, . . . , T , where T is the sample size, αt is the p × 1 vector of state variables and ηt is the
corresponding r × 1 vector of disturbances. The respective covariance matrix, Qt, is varying over time
because it contains the time-varying correlation parameter, ρt. The p × p matrix T defines the dynamic
structure of the state variables, and R is a p × r selection matrix. The n × p matrix Z links the observed
series to the state vector, εt is the q × 1 disturbance vector of the observation equation, with covariance
matrix H , and M is a n × q selection matrix. We assume the matrices Z, M , H , T and R to be non-
stochastic2. If we also assume Qt to be non-stochastic, which happens if ρt is actually constant, or if we
assume a deterministic specification that captures the time-variation of ρt, then the state space model (3.1)
is linear. We indicate with β the vector of unknown time-constant parameters of the linear model (which are
contained in the above-listed matrices). Then, conditionally on the information set and β, the observations
and the state vector are Gaussian: zt|Zt−1;β ∼ N (Zat,Ft) and αt|Zt−1;β ∼ N (at,Pt). Therefore, the
log-likelihood function for zt takes the form3

` =
T∑
t=1

`t, (3.2)

with

`t = log p (zt|Zt−1;β) = −n
2

log (2π)− 1

2
log (detFt)−

1

2
v′tF

−1
t vt, (3.3)

for t = 1, . . . , T , where the prediction error vt and its covariance matrix Ft are evaluated by the following
Kalman Filter recursions:

vt = zt −Zat
Ft = ZPtZ

′ +MHM ′

Kt = TPtZ
′F−1t

at|t = at + PtZ
′F−1t vt

Pt|t = Pt − PtZ ′F−1t ZPt

at+1 = Tat +Ktvt

Pt+1 = TPt (T −KtZ)′ +RQtR
′,

(3.4)

for t = 1, . . . , T . The vector at|t represents the filtered estimate of αt, and Pt|t is its estimated covariance
matrix. The one-step-ahead prediction of the state vector, together with its predicted covariance matrix, are

2The exact expressions for all these matrices in the extended Dutch labour force model, can be found in Schiavoni et al. (2021).
3In case of a diffuse initialisation of the Kalman filter, we employ the following diffuse log-likelihood (Harvey, 1989), instead

of equations (3.2)-(3.3):

`d = −Tn
2

log(2π)− 1

2

T∑
t=d+1

[
log (detFt)−

1

2
v′tF

−1
t vt

]
,

with d being the number of nonstationary state variables of the target observed series (in the empirical application of Section 5, d
is the number of unobserved components of the GREG estimates for which a diffuse initialisation is used).
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instead represented, respectively, by at+1 and Pt+1. Assuming normality of the innovations is standard
in state space models because it allows to estimate β by maximising the log-likelihood (3.2). Under the
normality assumption, the Kalman filter yields the minimum variance unbiased estimator of the state vector.
However, if the Gaussianity of the innovations is not met, then the Kalman filter still provides the minimum
variance linear unbiased estimator of the state vector, as long as the model is linear (Durbin and Koopman,
2012, Chapter 4).

The correlation parameter, ρt, can be assumed to be stochastic, instead of deterministic, by treating γt
as an additional state variable with its own transition equation:

γt+1 = γt + ηγ,t, ηγ,t ∼ N
(
0, σ2γ

)
(3.5)

for t = 1, . . . , T . The state vector hence becomesα∗t = (α′t, γt)
′, yielding what we refer to as the “nonlinear

state space model”:
zt = Z∗α∗t +Mεt, εt ∼ N (0,H)

α∗t+1 = T ∗α∗t +R∗η∗t , η∗t ∼ N (0,Q∗t ) ,
(3.6)

for t = 1, . . . , T , where η∗t = (η′t, ηγ,t)
′, and Z∗, T ∗,R∗ andQ∗t are straightforwardly obtained by adding

γt as additional state variable and ηγ,t as additional state innovation. We let τ be the parameter vector that
collects all the static parameters of the nonlinear model, i.e., the time-constant parameters appearing in H ,
T ∗, and Q∗t (including σγ) of model (3.6). Notice that the matrices M and H are the same as the ones
specified for the linear state space model (3.1). Model (3.6) is nonlinear in its transition equation. To see
this, let us define with CQ,t the Cholesky decomposition of Q∗t (i.e., such that CQ,tC ′Q,t = Q∗t ). Then
η∗t ∼ N (0,Q∗t ) can be re-written as CQ,tη∗t ∼ N (0, Ir+1), where CQ,tη∗t involves multiplications (i.e.,
nonlinear structures) of random components (ρt and ηt). This implies that the state vector of the nonlinear
model,α∗t , cannot be estimated by the standard Kalman filter recursions (3.4), and the consequent evaluation
of the log-likelihood (3.2) is therefore precluded. As already mentioned in the Introduction, we solve this
problem by proposing an indirect inference approach, which makes use of cubic splines for the auxiliary
model, in order to estimate τ , and then estimating the state vector,α∗t , with the Rao-Blackwellised Bootstrap
filter (RBBF). The next two sub-sections explain our proposed methodology in detail.

3.1 Indirect inference with a cubic splines approximate model

When the likelihood function needed to estimate the static parameters of a model is intractable, which, as
explained above, is the case for a nonlinear state space model, Gourieroux et al. (1993) propose to indir-
ectly estimate these parameters via the optimisation of an “incorrect criterion”. This can be, for instance,
the exact log-likelihood of an approximate model, which can therefore be easily estimated. In our case a
natural approximate model would be a linear Gaussian state space model, which assumes a deterministic
specification for the time-varying correlation. We do so by means of cubic splines.

Cubic splines are continuous piecewise polynomial functions of cubic order whose function values and
first and second derivatives agree at the points where they join (Smith, 2008). The abscissas of these joint
points are called knots and are chosen to determine the complexity of the approximation. A common choice
is to set the knots to evenly partition the support 1, . . . , T of t. Specifically, in the Monte Carlo simulation
and empirical studies, we specify two choices for the location of the knots: at the quartiles and septiles of
the sample size. We then let an information criterion decide on the best choice of knots’ location4. If the
date of a structural change in the time-varying parameter is known, it can be used as (additional) knot. The
polynomial order controls for the smoothness of the splines and is treated as fixed (Hansen, 2019).

The deterministic time-varying specification for γt, based on cubic splines, is

γt = w′tφ, (3.7)
4The information criteria that we employ are the Akaike and the Bayesian, respectively given by the following expressions
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wherewt is a k×1 vector of known weights, which depends on t, on the position of the knots and the distance
between them; it corresponds to the tth row of a T ×k matrixW of splines weights constructed as in Poirier
(1973), where k is equal to the number of knots. Moreover, φ is a k×1 vector of coefficients. Each element
φj of φ, represents the value of γt at the jth knot, for j = 1, . . . , k. We use a natural cubic spline which
restricts the spline functions to be linear beyond the boundary knots, in order to decrease the large variance
that affects cubic splines at the boundaries, while paying the price for a larger bias (Hastie et al., 2009,
Chapter 5). Notice that the weights wt make sure that γt varies over time, but they are all pre-specified,
which means that there is no stochastic component in specification (3.7). This makes sure that the state
space model remains linear. Equations (3.1) and (3.7) define what we refer to as the “approximate/auxiliary
model” or the “cubic splines model”. The parameter vector β of this approximate linear model therefore
contains the time-constant parameters appearing in H , T , and Qt of model (3.1), together with φ. Vectors
β and τ only differ because the latter contains σγ instead of φ. Very importantly, β is easily estimated by
maximising the log-likelihood (3.2). We indicate with β̂ the maximum likelihood estimate of β. The cubic
splines estimate for ρt is therefore equal to ρ̂CS,t = tanh(w′tφ̂).

In the context of state space models, a cubic splines approach to estimate time-varying parameters has
already been employed by Koopman et al. (2006) and Proietti and Hillebrand (2017). They use this method
to model, respectively, time-changing volatilities and smoothly changing parameters over the seasons of the
year.

After β has been estimated by maximum likelihood on the observed series, ZT , the indirect inference
approach proceeds by simulating, for a given value of τ , S paths of ZT according to the nonlinear model.
The nonlinear model is therefore required to be simulable (which is the case for model (3.6)). The cubic
splines model is re-estimated on every simulated path Z

(s)
T (τ ), for s = 1, . . . , S, yielding S different

maximum likelihood estimates, β̂(s)(τ ). The parameter vector of the nonlinear model, τ , is then estimated
as

τ̂ = argmin
τ∈T

(
µ̂− 1

S

S∑
s=1

µ̂(s)(τ )

)′(
µ̂− 1

S

S∑
s=1

µ̂(s)(τ )

)
, (3.8)

where T is the parameter space of τ . The vector µ̂ =
(
β̂\φ̂,Var(φ̂)

)
, where β̂\φ̂ corresponds to the vector

β̂ without φ̂, and Var(φ̂) = 1
k−1

∑k
j=1(φ̂j −

¯̂
φ)2 is the variance of φ̂, with φ̂j being its jth element and

¯̂
φ = 1

k

∑k
j=1 φ̂j . In the literature about indirect inference, the minimisation (3.8) is generally applied to

β̂ directly5, instead of a modified version of it, which in our case is µ̂. However, in our setting matching
the estimates for φ, based on true and simulated data, is inadvisable since this parameter vector bears
information about the evolution of γt over time, not only about σγ , which we instead aim at estimating by
indirect inference. The goal at this stage is to only estimate the time-constant parameters of the nonlinear
model, not the evolution of its state variables over time, which we instead need in the filtering step (described
in Section 3.2). This is the reason why the simulated paths, Z(s)

T (τ ), only need to depend on the values of
τ and need not be conditioned on the observed data, ZT ; the maximum likelihood estimates for φ can be

(Durbin and Koopman, 2012, Chapter 7):

AIC =
1

T
[−2`d + 2 (d+ dim(β))]

BIC =
1

T
[−2`d + log (T ) (d+ dim(β))] ,

where dim(β) is the dimension of β. We use the former criterion in the Monte Carlo simulation study of Section 4, and the latter
in the empirical application of Section 5.

5In this case Gourieroux et al. (1993) show that τ̂ is a consistent estimator of τ , and that, for S fixed,
√
T (τ̂ − τ ) is asymp-

totically normally distributed with covariance matrix depending on the function relating β and τ , which is (as in our case) often
unknown.
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very different for distinct simulated paths, even if these paths are generated based on the same value of τ ,
and therefore of σγ . We therefore need a measure which is a function of φ̂, but that is informative only
about σγ ; the statistics Var(φ̂) achieves this goal since φ̂j represents the value of the cubic splines estimate
of γt at the jth knot, for j = 1, . . . , k, and Var(φ̂) is therefore a measure of the cubic splines estimate’s
spread. Intuitively, the larger σγ , the more volatile we would expect the cubic splines estimate of γt to be,
and therefore the larger the value of Var(φ̂)6.

Finally, notice that dim(µ) ≥ dim(τ ), in order for τ to be idenitifiable (Gourieroux et al., 1993). In our
case the two vectors have the same dimension7.

Algorithm 1 reports the detailed steps for the implementation of the indirect inference estimation of τ .
We conclude this sub-section by remarking that other non-random time-varying specifications, than the

one based on cubic splines, could potentially be used for the approximate model in the indirect inference
approach. For instance, we also followed the idea of Delle Monache et al. (2016), who estimate time-varying
parameters in state space models with the score-driven method of Creal et al. (2013) and Harvey (2013), by
assuming that the time-varying correlation depends on its past values and past values of the score function
(i.e., the scaled derivative of the log-likelihood with respect to the correlation). Nevertheless, Monte Carlo
simulations’ results, which we do not report in this paper, show that this method does not satisfactorily
estimate the time-varying correlation. Moreover, this approach is computationally much more expensive
than the one based on cubic splines. We therefore decided to not pursue it.

3.2 Rao-Blackwellised bootstrap filter

Once the static parameters of the nonlinear model have been estimated, we can proceed with the filtering
step in order to estimate ρt, together with the other state variables of the model. The nonlinearity of the state
space model remains also after the estimation of τ , which means that alternative filters than the Kalman
filter, need to be used. As already anticipated in the Introduction, we employ the bootstrap filter of Gordon
et al. (1993), which is a type of particle filter.

Before proceeding with the explanation of the method, we point out that the bootstrap filter is always
applied to the nonlinear model (3.6), evaluated at the indirect inference estimate, τ̂ , even when we do
not make this explicit in what follows. We therefore indicate with T̂ ∗, Ĥ , and Q̂∗t the indirect inference
estimates for the corresponding matrices of model (3.6). Notice that Q̂t (from model (3.1)) is equivalent to
Q̂∗t without its last row and column.

The idea of bootstrap filtering is to simulate, at time t and unconditionally on the data, zt, M values
for each state variable of model (3.6), from the density distribution implied by their transition equation:
α

(m)∗
t ∼ N

(
T̂ ∗α

(m)∗
t−1 ,R

∗Q̂∗tR
∗′
)

, for m = 1, . . . ,M . These M generated values are called particles. Of
course, since the particles are simulated unconditionally on the data, some of them will be far from the true
values of the state variables, and some other will be close. To make sure that the latter happens,M should be
large. In order to understand which of the particles are closer to the true values, we compute the likelihood

for each one of them: p
(
zt|α(m)∗

t , τ̂
)(m)

, for m = 1, . . . ,M . The larger the likelihood, the more likely
the corresponding particle is close to the true value of α∗t . We then build M weights that are proportional to

the respective likelihoods, w̃(m)
t = w

(m)
t−1p

(
zt|α(m)∗

t , τ̂
)(m)

, and we standardise them: w(m)
t =

w̃
(m)
t∑M

m=1 w̃
(m)
t

,

6Monte Carlo simulations’ results, that we do not report in this paper, suggest that other measures, such as the variance of the
cubic splines estimate of γt, can alternatively be employed in order to achieve the same goal.

7We choose a random walk specification for γt, given in equation (3.5), because it is a rather flexible one, and it allows for
structural changes in the correlation parameter. Generally, an AR(1) specification could be employed instead. However, in the latter
case the inequality would not hold anymore, because the AR(1) specification implies that at least one additional parameter in the
nonlinear model needs to be estimated.
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Algorithm 1 INDIRECT INFERENCE ESTIMATION OF τ

1: Estimate the cubic splines model on the observed data, ZT , by Kalman filter and maximum likelihood.
Store the maximum likelihood estimate, β̂.

2: Generate standard normal errors ε̃(s)t ∼ N(0, Iq), and η̃(s)∗t ∼ N(0, Ir+1), for t = 1, . . . , T and
s = 1, . . . , S. These simulated errors are used for all values of τ in minimisation (3.8), which means
that they have to be stored before performing the minimisation (otherwise the objective function used in
equation (3.8) is not continuous with respect to τ ).

3: for τ ∈ T do
4: for s ∈ {1, ..., S} do
5: Set initial valuesα(s)∗

0 = 0. Then generate new series Z(s)
T according to the nonlinear model (3.6).

This is done as follows:
6: for t ∈ {1, ..., T} do
7: Let CH be the Cholesky decomposition ofH . Get ε(s)t = CH ε̃

(s)
t .

8: Get η(s)γ,t = σγ η̃
(s)
γ,t , and then γ(s)t = γ

(s)
t−1 + η

(s)
γ,t .

9: Evaluate Q(s)∗
t at γ(s)t . Let U (s)

Q,t be the Cholesky decomposition of Q(s)∗
t without its last row

and column (which is Q(s)
t ). Get η(s)t = U

(s)
Q,tη̃

(s)
t (notice that η̃(s)t is equal to η̃(s)∗t without its

last element, which is η̃(s)γ,t ).

10: Get α(s)
t = Tα

(s)
t−1 +Rη

(s)
t .

11: Get z(s)t = Zα
(s)
t +Mε

(s)
t .

12: end for
13: Let Z(s)

T = {z(s)1 , . . . ,z
(s)
T }. Estimate the cubic splines model on the simulated data, Z(s)

T , by Kal-
man filter and maximum likelihood. Store the maximum likelihood estimate, β̂(s), and respective
µ̂(s).

14: end for
15: Store

(
µ̂− 1

S

∑S
s=1 µ̂

(s)
)′ (

µ̂− 1
S

∑S
s=1 µ̂

(s)
)

.
16: end for
17: Find the value of τ which minimises

(
µ̂− 1

S

∑S
s=1 µ̂

(s)
)′ (

µ̂− 1
S

∑S
s=1 µ̂

(s)
)

. This can be done for
a grid of values of τ , or, more appropriately, with a gradient/Hessian-based optimisation algorithm that
finds the solution numerically.
Notice that, for notation simplicity, in the algorithm we omitted the dependence on τ of all simulated
series and respective maximum likelihood estimates. However, it should be kept in mind that all ele-
ments with an (s)-superscript depend on τ .

for m = 1, . . . ,M . Finally, we resample with replacement M particles with probabilities corresponding
to the normalised weights

{
w

(1)
t , . . . , w

(M)
t

}
, in order to make sure that we keep the particles that yield a

larger likelihood. The bootstrap filter estimate for α∗t at time t is equal to 1
M

∑M
m=1α

(m)∗
t , where α(m)∗

t ,
for m = 1, . . . ,M , are the resampled particles. These resampled particles are then used at time t + 1 in
the expected value of the normal distribution from which new M vectors α(m)∗

t+1 are generated. The entire
procedure then repeats again until t = T .

However, we do not stop at standard bootstrap filtering because when the state vector is large, which is
the case for the extended Dutch labour force model, then the bootstrap filter can become computationally
costly. We therefore notice that if γt is known at time t, then model (3.6) becomes linear again, as it is only
γt that triggers the nonlinearity of the model. Therefore, if we could condition on γt at time t, then the other
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state variables, αt, could be predicted by standard Kalman filtering, which is a very efficient estimation
method. This conditioning can be achieved by Rao-Blackwellising the bootstrap filter, as proposed by
Chen and Liu (2000). Namely, at time t we generate M particles only for γt: γ

(m)
t ∼ N

(
γ
(m)
t−1 , σ̂γ

)
,

for m = 1, . . . ,M . Then the one-step ahead forecasts of the other state variables, a(m)
t+1, together with their

variances,P (m)
t+1 , can be obtained by running the prediction step of the Kalman filter recursions (3.4), applied

to the linear model (3.1) evaluated at τ̂ and with γt replaced by γ(m)
t .

At time t + 1, for each set of particles
{
γ
(m)
t ,a

(m)
t+1,P

(m)
t+1

}
, it is then possible to obtain the prediction

error, v(m)
t+1 , together with its covariance matrix, F (m)

t+1 , for m = 1, . . . ,M . These two elements can be used
in order to evaluate the following likelihood:

p
(
zt+1|γ(m)

t ,a
(m)
t+1,P

(m)
t+1 , τ̂

)(m)
= exp

(
−n

2
log(2π)− 1

2
log
(

detF
(m)
t+1

)
− 1

2
v
(m)′

t+1

(
F

(m)
t+1

)−1
v
(m)
t+1

)
,

(3.9)
for m = 1, . . . ,M . The M likelihood values can in turn be employed to build the same standardised
weights used in the standard bootstrap filter, which allow to resample with replacement the sets of particles{
γ
(m)
t ,a

(m)
t+1,P

(m)
t+1

}
, for m = 1, . . . ,M , that yield larger likelihood values. The resampled particles can

then be used in order to repeat the procedure again for the next period in time. Notice that we also need
to resample a(m)

t+1 and P (m)
t+1 because they need to be used as inputs in the prediction step of the Kalman

filter, in order to obtain a(m)
t+2 and P (m)

t+2 , for m = 1, . . . ,M . The Rao-Blackwellised bootstrap filter (RBBF)
estimate of γt at time t, which we indicate with γ̂RBBF,t, is again obtained by taking the average of the M
resampled particles γ(m)

t . Algorithm 2 outlines the Rao-Blackwellised bootstrap filter estimation of ρt in
detail.

Some remarks are now in place. First, the likelihood (3.9) for zt at time t is conditioned on γ(m)
t−1 ,

i.e., on values for the time-varying correlation at the previous point in time. This is due to the Kalman
filter recursions (3.4), where the prediction errors, vt, and respective covariance matrix, Ft, depend on
Qt−1, which contains γt−1, not Qt. Therefore, it is only possible to obtain the RBBF estimate of γt for
t = 1, . . . , T − 1, and not for the last point in time, T . This is a consequence of the Rao-Blackwellisation
as this issue does not arise in standard bootstrap filtering. In the latter case all state variables are generated
simultaneously, whereas in the former only predictions of αt+1 can be obtained based on sampled values
for γt.

Second, the final estimates for the state vector αt, can be obtained by running the standard Kalman
filter recursions (3.4) applied to the linear model evaluated at τ̂ and with γt replaced by γ̂t,RBBF, for t =
1, . . . , T − 1 (notice that the estimate for αt at time T is also unavailable). Although we do not cover it in
this paper, we would like to point out that a prediction for γT could be obtained, for instance, by taking the
unweighted (i.e., not depending on likelihood values) average of the M particles γ(m)

T , which in turn could
be employed to predict αT .

Third, a more efficient particle filter could be obtained by generating particles for γt, conditionally on
the observed data, zt. This can be done by, for instance, using a sequential importance sampling approach,
instead of the bootstrap filter. However, as pointed out in the Introduction, the type of nonlinearity we
are dealing with challenges the quest for an importance density (i.e., a linear model that approximates the
nonlinear one, in a more sophisticated way than the cubic splines model), which is needed in order to
implement the above-mentioned approach (see Durbin and Koopman (2012, Chapter 12) and Creal (2012)
for details about this and other methods).

Fourth, the resampling step of the algorithm is sometimes necessary in order to avoid the degeneracy
of the particle filter over time (see again Durbin and Koopman (2012, Chapter 12) and Creal (2012) for
an in-depth discussion of this problem). More sophisticated resampling methods, than the generalised one

13



discussed above, can be employed. Li et al. (2015) provide an extensive review of all existing resampling
methods for particle filtering. The ones that are shown to yield the particle filters with lowest Monte Carlo
variation, are the stratified resampling of Kitagawa (1996) and the residual resampling of Liu and Chen
(1998). We employ the former. However, before performing stratified resampling, we include an additional
step. As mentioned in the Introduction, the likelihood function for zt, given in equation (3.9), is not that
sensitive to different values of γ(m)

t−1 : in other words, the M particles γ(m)
t−1 yield different values for the

likelihood, but these differences are not large. Therefore, the corresponding normalised weights are similar
to each other and any kind of resampling method will tend to select most of the particles, yielding a final
RBBF estimate for γt that looks rather constant over time. In order to avoid this problem we first increase
the differences among the normalised weights, which in turn increases the probability of resampling those
particles that yield slightly larger likelihood values. We do so by following Chen et al. (2001), who take
functions of the normalised weights,

[
w

(m)
t

]pt
for m = 1, . . . ,M , where pt ≥ 0 and depends on the

coefficient of variation, which takes the expression

CVt =

[
1

M

M∑
m=1

(
Mw

(m)
t − 1

)2]0.5
,

and is a measure of weight instability. It varies between 0 and
√
M − 1. If all weights are equal, then CVt

is equal to its lower bound (Creal, 2012). If the goal is to give more presence to the particles with larger
weights, which is our case, then pt > 1 if the coefficient of variation is low, otherwise pt < 1. We use
pt = ln

(√
M−1
CVt

)
in order to achieve this goal. Once the weights have been transformed according to this

function, they have to be re-standardised before performing stratified resampling.
Finally, for simplicity we sometimes state, throughout the paper, that the RBBF is employed to estimate

the entire state vector of the nonlinear model. However, it should be now clear that it is really only ρt that
is estimated by the RBBF, and the remaining part of the state vector is estimated by Kalman filtering with
ρt replaced by its RBBF estimate. The above-mentioned simplification therefore only helps us to point out
that it is the the RBBF that solves the nonlinearity of the model, and that therefore allows us to estimate the
state vector.

4 Monte Carlo simulation study

We conduct a Monte Carlo simulation study to assess the performance of the two estimation methods
proposed in Section 3: the cubic splines method, which already is, per se, an estimation method of the
time-varying state correlation, and the method based on the combination of indirect inference and Rao-
Blackwellised bootstrap filtering. The performance of the methods is evaluated in several ways. First, we
want to assess whether the indirect inference approach appropriately estimates the static parameters of the
nonlinear model. Secondly, we check if the proposed methods are able to estimate the true time-varying re-
lationships, and, in case, to which level of accuracy. Finally, since in the empirical application our variable
of interest, the Dutch unemployment, is assumed to be unknown and therefore enters the model as unob-
served component, we want to understand to which extent the accuracy of the estimation of state variables
of interest changes if we take the time-varying relationships between observed series into account.

For sake of computational time, in the Monte Carlo simulation study we consider the following bivariate
local level model, which is more simple than the Dutch Labour Force model:

zt = Zαt + εt, εt ∼ N (0,H)

αt+1 = Tαt + ηt, ηt ∼ N (0,Qt) , t = 1, . . . , T,
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Algorithm 2 RAO-BLACKWELLISED BOOTSTRAP FILTER ESTIMATION OF ρt

1: Initialise the filter at t = 0 with w̃(m)
0 = 1 (which implies w(m)

0 = 1/M ), for m = 1, . . . ,M . First
sample γ(m)

0 ∼ N
(
γ̂, σ̂2γ

)
, where γ̂ is the maximum likelihood estimate of γ from the model where this

parameter is treated as static. Then a1 ∼ N
(
0, Q̂

(m)
0

)
, and set P (m)

1 = Q̂
(m)
0 , for m = 1, . . . ,M .

In this case at is the one-step ahead prediction of the Kalman filter for αt, with Pt being its predicted
covariance matrix, and Q̂(m)

0 is evaluated at γ(m)
0 . We need initialisations for both at and Pt in order to

implement the Kalman filter.
2: for t ∈ {1, ..., T} do
3: Use

{
γ
(m)
t−1 ,a

(m)
t ,P

(m)
t

}
in order to run the prediction step of the Kalman filter applied to the linear

model evaluated at τ̂ , which yields v(m)
t and F (m)

t . Then compute

p
(
zt|γ(m)

t−1 ,a
(m)
t ,P

(m)
t , τ̂

)(m)
= exp

(
−n

2
log(2π)− 1

2
log
(

detF
(m)
t

)
− 1

2
v
(m)′

t

(
F

(m)
t

)−1
v
(m)
t

)
,

for m = 1, . . . ,M .
4: Compute the weights

w̃
(m)
t = w

(m)
t−1p

(
zt|γ(m)

t−1 ,a
(m)
t ,P

(m)
t , τ̂

)(m)

for m = 1, . . . ,M . Then obtain the normalised weights

w
(m)
t =

w̃
(m)
t∑M

m=1 w̃
(m)
t

,

for m = 1, . . . ,M .
5: Resample M particles

{
γ
(m)
t−1 ,a

(m)
t ,P

(m)
t

}
, with m = 1, . . . ,M , with replacement, based on the

modified stratified resampling technique described at the end of Section 3.2
6: Reset w(m)

t = 1/M for m = 1, . . . ,M .
7: Compute

γ̂RBBF,t−1 =
1

M

M∑
m=1

γ
(m)
t−1 ,

which is the Rao-Blackwellised bootstrap filter estimate for γt−1. To get the corresponding estimate
for ρt−1 we take the hyperbolic tangent of γ̂RBBF,t−1.

8: Draw γ
(m)
t ∼ N

(
γ
(m)
t−1 , σ̂

2
γ

)
and use it with the resampled particles

{
a
(m)
t ,P

(m)
t

}
in order to run the

prediction step of the Kalman filter applied to the linear model evaluated at τ̂ and with γt replaced
by γ(m)

t , which yields
{
a
(m)
t+1,P

(m)
t+1

}
, for m = 1, . . . ,M .

9: end for
10: The final estimates forαt can be obtained by running the usual Kalman filter applied to the linear model

evaluated at τ̂ and with γt replaced by γ̂t,RBBF, for t = 1, . . . , T − 1.

where zt = (yt, xt)
′,αt = (Ly,t, Lx,t)

′, εt and ηt are all 2×1 vectors,Z = T = I2,H = diag(σ2ε,y, σ
2
ε,x),

with σε,y = σε,x = 1, and Qt =

[
σ2η,y ρtση,yση,x

ρtση,yση,x σ2η,x

]
, with ση,y = ση,x = 1 (we are also implicitly

imposingM = R = I2).
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In the model above, zt represents the observed vector, αt the vector of state variables, εt the vector of
innovations in the measurement equation, and ηt the vector of innovations in the transition equation. We
assume that the state variable of the first observable series, Ly,t, is the unobserved component of interest.

We consider the following data generating processes (DGPs) for the time-varying parameter, ρt, which
are partly inspired by Creal et al. (2011) and Delle Monache et al. (2016):

1. Constant: ρt = 0.9

2. Sine: ρt = 0.5 + 0.4 cos(2πt/(T/3))

3. Fast sine: ρt = 0.5 + 0.4 cos(2πt/(T/6))

4. Step: ρt = 0.9− 0.5(t > T/2)

5. Ramp: ρt = 2/T mod (t/(T/2))

6. Random walk: ρt = tanh(γt), where γt = γt−1 + ηγ,t, with ηγ,t ∼ N(0, σ2γ) ,

for t = 1, . . . , T . We consider two different sample sizes: T = 200, which is close to the sample size
of our empirical application, and T = 500. For the random walk specification of ρt, we set σγ = 0.1
when T = 200 and σγ = 0.05 when T = 500, to make sure that ρt does not become too volatile with
a larger sample size (since the variance of a random walk process increases with time). An improvement
in estimation performance is to be expected with a larger sample size. We run nsim = 500 Monte Carlo
simulations and always use S = 3 simulations for the indirect inference method, and M = 5000 particles
for the RBBF. We use the BFGS algorithm to solve the minimisation problem, given in equation (3.8), that
finds the indirect inference estimates.

We start the discussion of the Monte Carlo simulations’ results by looking at the performance of the
indirect inference approach in estimating the static parameters of the nonlinear model. Figure 2 shows the
density distributions of the indirect inference estimators of the elements of τ = (ση,y, ση,x, σε,y, σε,x, σγ)′,
based on the Monte Carlo replicates, together with the true values of these parameters, when the DGP for
ρt is a random walk. All distributions are centered around the true values, and their spread decreases with
the sample size. For σγ , the distribution of its indirect inference estimator is skewed to the right and shows
a bump around values of the parameter close to zero, which tends to be less pronounced, but does not
disappear, with a larger sample size . This issue seems somewhat similar to the pile-up problem discussed,
among others, by Shephard and Harvey (1990) and Stock and Watson (1998): if the scale parameter (in our
case σγ) of a coefficient that varies stochastically over time by following a random walk specification, is
small, then its maximum likelihood estimator has a point mass at zero, and this probability mass decreases
with a larger sample size. The results shown in Figure 2 are obtained by using the true values of the
parameters as initial values in the BFGS algorithm. In practice, a good starting value for σγ is difficult to
find. Figure A.1 therefore reports the same results when the initial value for σγ is twice as big as its true one.
When T = 200, the algorithm gets stuck around the initial value half of the times, making the distribution
of the indirect inference estimator of σγ look bimodal. This problem, however, does not occur anymore
when the sample size increases; in this case the distribution is very similar to the one shown in Figure 2.
We therefore advise practitioners who deal with small sample sizes, to first evaluate the objective function
that needs to be minimised in order to find the indirect inference estimates (from equation (3.8)), for a grid
of values for σγ , in order to come up with a good starting value for this parameter (we do so ourselves in
the empirical application of Section 5). Figures A.2-A.6 show the same results for the remaining five DGPs
of ρt. All distributions, for all parameters except σγ , are again symmetrical and centered around the true
values of the parameters, and their spread decreases with the sample size. In these cases, however, we do not
know the true value for σγ , so we cannot assess whether its indirect inference estimator is centered around
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it. The shapes of the distributions for the latter estimator are similar to the ones observed for the random
walk specification of ρt. The BFGS algorithm in these cases is initialised at σγ = 0.1 when T = 200 and
σγ = 0.05 when T = 500.

(a) T = 200

(b) T = 500

Figure 2: Distribution of the indirect inference estimators of the static parameters of the nonlinear model, τ =
(ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo replicates, when the DGP of ρt is a random walk; S = 3,
nsim = 500. The red lines represent the true values of the parameters.

Next we investigate the accuracy of our methods in estimating the time varying correlation and whether
treating ρt as time-varying also improves the estimation of the state variable of interest. We indicate with
L̂y,t the Kalman filter estimator (i.e., the first element of at|t from the Kalman filter recursions (3.4)) of Ly,t,
and with ρ̂t the estimator of ρt (whether this estimator is based on the cubic splines or the RBBF method,
will be clear in the discussion that follows). The Mean Squared Error (MSE) and the squared bias of ρ̂t are
computed as follows:

MSE (ρ̂t) =
1

T − 1− d

T−1∑
t=d+1

(
1

nsim

nsim∑
s=1

(ρ̂t,s − ρt,s)2
)
,

bias2 (ρ̂t) =
1

T − 1− d

T−1∑
t=d+1

(
1

nsim

nsim∑
s=1

(ρ̂t,s − ρt,s)

)2

.

The same measures of fit are obtained also for L̂y,t by substituting ρt by Ly,t in the formulae above
(d = 0 for the measures of ρ̂t, and d = 1 for the measures of L̂y,t, since Ly,t is the only state variable of
the target series which requires a diffuse initialisation). The MSE captures both the variance and the bias
of the estimators, and therefore gives an indication (also) of their volatility. The squared bias, instead, is
supposed to only capture the difference between the estimated and the true values. We use the square of
the bias because we deal with estimators of time-varying parameters/variables, and therefore averaging the
biases over time, without taking their squared values, would provide a misleading measure of comparison
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among different methods. Table 1 reports these measures of fit, obtained with both the cubic splines and the
RBBF methods, relative to the same measures observed while estimating the correlation as time-constant
(i.e., by maximum likelihood). We refer to Table A.1 for the absolute figures. We indicate with “ideal Rao-
Blackwellised bootstrap filter” the setting where the static parameter vector τ is not estimated by indirect
inference, but it is treated as known (which is only possible when the DGP of ρt is a random walk), hence the
term “ideal”. This should allow us to quantify the influence that the estimation of the static parameters by
indirect inference has on the performance of the RBBF. The Tables show that, when T = 200, the MSE of ρ̂t
is almost always better when the correlation parameter is estimated as constant, since the other two methods
are, because of their time-varying nature, obviously more volatile. The latter methods, however, tend to
strongly beat the time-constant estimation of the correlation in terms of squared bias, indicating that they
are able to capture its time-variation (when this is present). The cubic splines shows a better performance
than the RBBF, due to its milder volatility, except when the true DGP for ρt is a fast sine; the RBBF seems
therefore more suited than the cubic splines method in estimating rapidly-changing time variations in the
correlation parameter. The ideal RBBF only shows a marginal improvement over the RBBF, suggesting that
the estimation of the static parameters by indirect inference does not strongly influence the performance
of the filter. All measures of fit for the two methods improve when the sample size increases, also with
respect to estimating ρt as time-constant. When the true correlation is static, however, estimating it as such
is preferred.

T = 200 T = 500
0.9 Sine Fast sine Step Ramp Random walk 0.9 Sine Fast sine Step Ramp Random walk

Cubic splines

MSE(ρ̂t) 25.769 1.688 2.194 1.269 1.345 0.920 8.114 0.615 1.364 0.454 0.643 0.574
bias2(ρ̂t) 45.540 0.086 1.016 0.069 0.178 0.505 29.112 0.123 1.003 0.062 0.165 0.001
MSE(L̂y,t) 1.015 1.002 1.015 0.983 0.993 0.982 1.004 0.983 1.003 0.970 1.019 0.988
bias2(L̂y,t) 0.948 1.048 0.982 0.948 0.978 0.955 0.997 0.991 0.988 0.953 1.000 1.043

Rao-Blackwellised bootstrap filter

MSE(ρ̂t) 28.118 1.835 1.716 1.565 1.775 1.269 15.317 1.504 1.207 1.048 1.457 1.074
bias2(ρ̂t) 47.041 0.623 0.845 1.813 0.442 1.191 97.757 0.370 0.878 0.228 0.337 0.003
MSE(L̂y,t) 1.889 1.121 1.083 1.296 1.236 1.175 1.057 1.074 1.011 1.051 1.087 1.026
bias2(L̂y,t) 1.858 1.095 0.991 1.403 1.098 1.030 1.001 1.036 0.995 1.018 1.039 1.063

Ideal Rao-Blackwellised bootstrap filter

MSE(ρ̂t) 1.183 1.118
bias2(ρ̂t) 1.070 0.002
MSE(L̂y,t) 0.997 1.004
bias2(L̂y,t) 1.017 1.043

Table 1: Mean squared error and squared bias for the cubic splines and the Rao-Blackwellised bootstrap filter estim-
ators of ρt, and the Kalman filter estimator of Ly,t, relative to the same measures of fit obtained while estimating ρt
as time-constant. The second row lists the DGPs for ρt. “Ideal Rao-Blackwellised bootstrap filter” indicates that the
static parameter vector τ is treated as known. S = 3, M = 5000, nsim = 500.

Since time-variation is the focal point of this paper, it is also interesting to investigate how the two
estimation methods perform over time. Figures 3 and 4 display, for each deterministic DGP of ρt, the 5%,
20%, 80% and 95% percentiles of the Monte Carlo simulation estimates (which we loosely call confidence
bands), together with the median, obtained, respectively, with the cubic splines and the RBBF methods,
when T = 200 (Figures A.7 and A.8 show the same results when T = 500). The results discussed above
are confirmed by these Figures. Both methods are able to pick up the true time-variation of the correlation
parameter, and their estimation performance improves with a larger sample size. The RBBF is therefore
robust to misspecifications of the dynamic structure of ρt since none of the true correlations displayed in
the Figures is a random walk. The confidence bands for the cubic splines are narrower, except towards the
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end of the sample, and less volatile than their RBBF’s counterparts, but the fast sine DGP of ρt is estimated
almost as constant by the cubic splines method, contrary to the RBBF. Notice also that the RBBF is slightly
delayed in time with respect to the true time variation in ρt, which is to be expected from filters, since
they are only based on past information, contrary to the time-constant estimation and the cubic splines (a
particle smoother would not show this delay). Although the indirect inference method estimates the static
parameters based on the entire sample, the RBBF can therefore be considered a real-time estimator. For
this reason the time-constant and cubic splines methods are rewarded too much by the simulations study,
with respect to the RBBF. A real-time comparison of the methods would tend to favour more the latter. In
a simulation study, van den Brakel and Krieg (2016) showed that with a time constant correlation between
survey and claimant counts data, it takes more than a year before the maximum likelihood estimate for the
correlation picks up a change in the relation between the two series. However, for computational purposes,
we only perform such a comparison in the empirical application of Section 5, since it is also of interest for
the production of official statistics. The scope of the simulation study is just to understand to which extent
the employed methods appropriately estimate, on average, the (time-varying) parameters.

Figures A.9-A.12 report the absolute MSE and squared bias of ρ̂t, over time, for all estimations methods
(including the method that estimates the correlation as static). These pictures reveal an information that
was hidden in Tables 1 and A.1, but already partly discovered from Figures 3, 4, A.7 and A.8: a better
performance of the RBBF over the cubic splines, in terms of MSE, at the end of the sample, when T = 200.
This is due to the large uncertainty that affects the cubic splines at the boundaries of the sample (we cannot
conclude the same for the start of the sample because the performance of the RBBF there very much depends
on the initial values for γt). In terms of squared bias and when T = 500, the two methods tend instead to
perform similarly while approaching the end of the sample. What also appears from these Figures is that,
when there are structural changes (i.e., when the true DGP of ρt is either a step or a ramp function) the
RBBF is much worse in estimating the correlation at the change point in time, with respect to the other
methods, due to its delayed behaviour. However, a real-time comparison would, also in this case, reward
less the methods based on maximum likelihood.

Finally, the relative MSE and squared bias of L̂y,t in Table 1 are generally around 1 for all DGPs of ρt
and for both estimation methods, also when the sample size is large. This result indicates that estimating
the correlation as time-varying, also when appropriate, instead of time-constant, does not have an impact on
the estimation accuracy of the state variable of interest, probably due to the Kalman filter’s high accuracy in
estimating unobserved components, irrespectively of the parameters’ estimates. Nonetheless, results from
Section 5 suggest that in a real-time estimation these conclusions would be different. Figures A.13-A.16
show the absolute MSE and the squared bias of L̂y,t over time, for all estimation methods. Except for a
slightly worse performance, in terms of MSE, of the RBBF when T = 200, and a slightly better one of the
cubic splines when T = 500, it is almost impossible to tell the difference, among methods, in the estimation
accuracy of Ly,t. What appears evident from these Figures, however, is how the magnitude of the MSE
tends to follow the time-varying pattern of ρt (for its deterministic DGPs): the MSE is lower when the
magnitude of the correlation is larger, as the auxiliary series brings in this case more information about the
state variable of interest.

In conclusion, the Monte Carlo simulation study shows that our proposed indirect inference method is
able to correctly estimate the time-invariant parameters of the nonlinear model. Only the finite-sample dis-
tribution of the indirect inference estimator of σγ is not symmetrical, suggesting that it is not normal either.
Nevertheless, since we do not carry out any inference on this parameter, we do not need normality of the
estimator to hold8. Both the cubic splines and the RBBF approaches are suited to estimate a time-varying

8Notice that providing theoretical properties for the indirect inference estimators is beyond the scope of this paper. However,
we point out that the knowledge of such asymptotic distribution would allow to test for time-constancy in the correlation parameter,
by testing whether σγ = 0.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp

Figure 3: True process of ρt (black) together with the 95% (red), 80% (green) confidence bands, and the median (blue)
of the simulation estimates for the cubic splines estimator of ρt. T = 200, S = 3, M = 5000, nsim = 500.

(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp

Figure 4: True process of ρt (black) together with the 95% (red), 80% (green) confidence bands, and the median (blue)
of the simulation estimates for the Rao-Blackwellised bootstrap filter estimator of ρt. T = 200, S = 3, M = 5000,
nsim = 500.
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state correlation. The former method, on average, always beats the latter, in terms of estimation accuracy
of ρt, due to the strong volatility that affects the RBBF, except when it comes to estimate correlations that
change rapidly over time. Moreover, with small sample sizes, the RBBF yields more precise estimates
for ρt towards the end of the sample, which is relevant when the focus is on exploring how the relationship
between the observed series has evolved in recent times. The estimation accuracy of all methods (indirect in-
ference, cubic splines and RBBF) improves with the sample size. Appropriately estimating the time-varying
correlation as such, instead of as time-constant, does not affect the estimation accuracy of state variables
of interest. The RBBF is a real-time estimator of the correlation (i.e., it only exploits past information),
whereas the time-constant and cubic splines methods estimate this parameter based on the entire sample.
The simulation results here obtained therefore tend to reward too much the latter approaches. In real-time,
the RBBF would yield an even better performance with respect to the other two methods. Such a real-time
comparison is not explored in the Monte Carlo simulation study, but is investigated in the upcoming Section.

5 Empirical application to the extended Dutch labour force model

In this Section we perform the in-sample estimation of the Dutch labour force model extended with the
univariate series of claimant counts, described in Section 2. We model the time-varying correlation with our
proposed methodology based on indirect inference and Rao-Blackwellised bootstrap filtering. As done in
the Monte Carlo simulation study, we compare the results so obtained to estimating the correlation parameter
as time constant, and with the cubic splines method only. We also investigate the sensitivity of our results to
the location of the cubic splines’ knots. Specifically, we first consider the case where the (five, as suggested
by the BIC) knots correspond to the quartiles of the sample. Then, we examine the case when February 2015
is one of the knots (since we know that a potential change in the correlation happened on this date), and the
remaining (four) knots are chosen accordingly in order to keep an approximately equal distance between
each pair of knots. Finally, we compare the performance of the methods when the estimation of the model
is conducted in real-time, and not only on the entire sample. We use monthly data from January 2004 until
March 2020 (T = 195) for both the GREG estimates and the claimant counts, S = 5 simulations for the
indirect inference method, and M = 5000 particles for the RBBF.

Figure 5 displays the estimated correlation, ρt, and its unbounded counterpart, γt, with all three methods,
when the knots are located at the quartiles of the sample. The time-constant estimate for ρt is positive
and very large, but it hides the decrease of the correlation parameter that occurred in the middle of the
sample. Indeed, both the cubic splines and the RBBF estimates of ρt indicate that the two types of observed
series started deviating from each other in 2010, that is, around two years after the financial crisis of 2008.
Recession periods can induce long-term unemployment, and in the Netherlands unemployment benefits
cannot be claimed for more than three years and two months, despite being unemployed or not, at the end
of this period. However, not everyone is entitled to receive benefits for the maximum amount of time.
The long-term unemployment caused by the economic crisis of 2008 is therefore not entirely picked up by
the claimant counts series, which hence starts deviating from the GREG estimates around two years after
the burst of the crisis. The magnitude of the correlation increased again in 2013, and stabilized around
its ante-crisis levels from 2017 until the most recent times. Remember from the results of the Monte Carlo
simulation study, that it is the RBBF estimate that provides the most reliable information on the behaviour of
the parameter towards the end of the sample, which is indeed when the RBBF and the cubic splines estimates
deviate the most from each other. We also notice how the RBBF, but not the cubic splines, captures a drop
in the correlation after the legislative change of February 2015. New legislations often apply to new claims
of unemployment benefits, which explains why the correlation does not drop immediately in February 2015,
but shorty after. This decrease is, however, not as deep and prolonged as the one caused by the financial
crisis of 2008.
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(a) ρ̂t

(b) γ̂t

Figure 5: Time constant (blue), cubic splines (red) and RBBF (black) estimates of ρt and γt, from the Dutch labour
force model extended with the auxiliary series of claimant counts (described in Section 2). Monthly data from January
2004 until March 2020 (T = 195), S = 5, M = 5000. The knots for the cubic splines approach correspond to the
quartiles of the sample. The first shaded area represent the recession period due to the financial crisis of 2008, whereas
the second one refers to the legislative change of February 2015.

Noteworthy, Figure 5 further shows how the RBBF method yields a much more volatile estimate for
ρt, than the cubic splines, which partly reflects estimation error. We already concluded from the simulation
study of Section 4, that the volatility of the RBBF estimator represents its Achilles’ heel. Although we do not
implement them in the paper, we here give two suggestions that could potentially correct for this problem.
First, a bootstrap smoother (instead of a filter) should yield, as its name gives away, a smoother estimate for
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(a) θ̂y,t (b) v̂ar
(
θ̂y,t
)

(c) L̂y,t (d) v̂ar
(
L̂y,t

)

(e) R̂y,t (f) v̂ar
(
R̂y,t

)
Figure 6: Kalman filter estimates (left panels) and respective estimated variances (right panels) of the state variables
of interest θy,t, Ly,t and Ry,t, in the Dutch labour force model extended with the auxiliary series of claimant counts
(described in Section 2). The results are obtained when the correlation parameter is estimated as constant (blue),
with the cubic splines method (red), and with the RBBF (black). Monthly data from January 2004 until March 2020
(T = 195), S = 5, M = 5000. The knots for the cubic splines approach correspond to the quartiles of the sample.
The first d months are not displayed because of the Kalman’s filter diffuse initialisation.

ρt. Second, we explain in Section 3.2 how we modify the resampling step of the RBBF’s algorithm, in order
to keep particles that yield slightly larger likelihood values. We mentioned that without this modification,
the filtered estimate for the correlation would almost be constant over time. We arbitrarily decided to take
the pt = ln

(√
M−1
CVt

)
power of the normalised weights in order to achieve our goal. However, this function

may increase the differences among weights too much and therefore make the RBBF too volatile. Many
other functions of the normalised weights can be applied instead and potentially diminish the volatility of
the filter.
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Knots at quartiles Knots include February 2015

Maximum likelihood Indirect inference Maximum likelihood Indirect inference

Constant Cubic splines Cubic splines

σ̂R,y 2719.916 3011.516 2996.161 2953.373 2971.015
σ̂ω,y 0.016 0.028 0.02 0.044 0.044
σ̂λ 3778.169 3739.127 3831.573 3695.226 3690.149
σ̂ν1 1.335 1.322 1.261 1.328 1.331
σ̂ν2 1.309 1.304 1.260 1.3 1.272
σ̂ν3 1.199 1.192 1.106 1.186 1.176
σ̂ν4 1.234 1.234 1.173 1.235 1.229
σ̂ν5 1.219 1.214 1.179 1.22 1.22
δ̂ 0.378 0.38 0.327 0.378 0.375
σ̂R,CC 3422.074 3453.365 3371.296 3485.617 3282.554
σ̂ω,CC 0.019 0.021 0.02 0.01 0.01
σ̂ε,CC 1499.447 1481.391 1479.833 1462.325 1466.448
ρ̂ 0.851
φ̂1 0.367 -0.629
φ̂2 2.484 2.39
φ̂3 0.127 -0.098
φ̂4 1.697 1.386
φ̂5 0.333 0.269
σ̂γ 0.081 0.127

Log-likelihood -12549.42 -12546.34 -12476.98 -12547.15 -12475.59

Table 2: The columns named “Maximum likelihood” report the maximum likelihood estimates of the static parameters
of the Dutch labour force model extended with the auxiliary series of claimant counts (described in Section 2), when
the correlation parameter is estimated as time constant and with the cubic splines method. The remaining columns
show the indirect inference estimates of the static parameters (including σγ). “Knots at quartiles” means that the
knots for the cubic splines approach correspond to the quartiles of the sample; they are otherwise approximately
equally distant by fixing February 2015 as knot. The log-likelihood values are obtained by evaluating the Kalman
filter recursions (3.4) at the corresponding estimates for ρt and the static parameters.

Figure B.1 compares the cubic splines and RBBF estimates for ρt that have been discussed above, with
the ones obtained for the second choice of knots’ location (which uses February 2015 as one of the knots).
The estimates are not sensitive to the location of the knots, if not for a slightly larger volatility of the cubic
splines estimate with the second choice of knots’ location, which is inherited also by the RBBF estimate.

Table 2 reports the estimates of the static parameters for each considered model. The indirect infer-
ence estimate for σγ is indeed larger when February 2015 is part of the knots. The table also displays the
log-likelihood values that are obtained by evaluating the Kalman filter recursions (3.4), and subsequent like-
lihood function (3.2), at the corresponding estimates for ρt and the static parameters. Although we cannot
perform a formal test on these log-likelihood values, because we are comparing non-nested models, we can
still conclude that the estimation based on indirect inference and RBBF always yields a better fit of the data.

We employ the BFGS and a conjugate gradient optimisation algorithm when we estimate the static
parameters, respectively, by maximum likelihood and by indirect inference. The complexity of the Dutch
labour force model hampers its estimation by indirect inference with the BFGS algorithm. When estimating
the static parameters by maximum likelihood, we use their estimates from the labour force model obtained
in van den Brakel and Krieg (2015), as initial values. The initial values of the static parameters in the indirect
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inference estimation are instead equal to the corresponding maximum likelihood estimates obtained with the
cubic splines model.

Figure 6 plots the Kalman filter estimates and respective estimated variances (i.e., the corresponding
elements of at|t and Pt|t in the Kalman filter recursions (3.4)) of the state variables of interest θy,t, Ly,t and
Ry,t, in the extended Dutch labour force model. The results refer to the setting where the knots correspond to
the quartiles of the sample. The point estimates of the state variables are slightly sensitive to the estimation
method of ρt, especially in the middle of the sample where the difference between time-constant and time-
varying estimates for ρt is largest. The estimated variances are much more dependent on the magnitude of
the correlation’s estimates: they are larger when the estimated correlation shrinks, i.e., when the claimant
counts bring less information about the Dutch unemployment. This is especially evident for Ry,t, than
the other two state variables, since the slopes of the series’ trends are directly related to each other via ρt.
The estimated variances, when the correlation is estimated as time-constant, are generally very low (given
the large value of the correlation’s estimate). This may suggest that treating ρt as time-constant improves
the estimation accuracy of state variables of interest. However, these variances are, in this case, wrongly
estimated if the true process for ρt is time-varying. The variance estimates obtained with the cubic splines
and the RBBF methods, although larger in the middle of the sample, are therefore more realistic as they
reflect the economic uncertainty of that period. We again notice a better performance of the RBBF, with
respect to the cubic splines method, in the estimation accuracy of the state variables towards the end of the
sample. Notice that these estimated variances do not also reflect the additional uncertainty of using estimates
for ρt and the static parameters.

Finally, Figure B.2 compares the estimated correlation, when this is treated as static, to the same es-
timates obtained with shorter samples. Namely, we use five sub-samples that include observed monthly
data form January 2004 up until and including years 2010-2014 (notice that extending the sample with one
additional year corresponds to including twelve additional monthly observations). The time-constant cor-
relation model shows a delay of around four years in picking up the deviation between the survey-based
data and the claimant counts. This result further stresses the need for an approach that is able to capture the
time-variation of the correlation in a more timely manner, which is achieved by the RBBF rather than the
cubic splines method. We therefore conduct a real-time exercise where we estimate the state variables of
interest for the sub-samples mentioned above, while estimating the correlation as static and with the RBBF9.
We compare these results to the ones obtained with the Dutch labour force model that does not include any
auxiliary series10. Figures B.3-B.5 and B.6-B.8 respectively show the Kalman filter estimates of the three
state variables of interest, and their estimated variances, obtained for all models and sub-samples (as well as
for the entire sample, which ends in March 2020)11. We notice that, until the end of 2010 and from 2014,
the RBBF and the time-constant correlation models both yield close estimates to the ones obtained with the
model that does not include auxiliary series. Between these years, however, the latter estimates are much
closer to the ones provided by the model which employs the RBBF, rather that the time-constant correlation
one. This deviation is due to the incapability of the static correlation estimation method to quickly detect
and capture the change in the correlation parameter, contrary to the RBBF. We here use the model without
auxiliary series as benchmark, not because we treat is as the true one, but because too large deviations
between the states’ estimates that it yields and the ones obtained with other models, are an indication that

9We do not also perform the real-time analysis with the cubic splines estimation method for the correlation, since the large
uncertainty that affects cubic splines at the end of the sample makes this method unsuited for real-time estimation.

10Whenever we add an additional year of observations, we re-estimate the static parameters, by maximum likelihood, of the
time-constant correlation model and the one without auxiliary series. The static parameters of the model that employs the RBBF
are instead, for computational purposes, always kept equal to the ones obtained by indirect inference for the entire sample (and with
knots corresponding to the quartiles of the sample).

11Notice that in these Figures the (variance) estimate for the last point in time is not reported when the RBBF is employed,
because the algorithm used for the RBBF does not provide such estimate. This issue is discussed in Section 3.2.
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some time-varying characteristics are not being taken into account. The variance estimates for θy,t and Ly,t
are always larger, except in the middle of the sample, for the model that does not include auxiliary series as
it does not exploit any additional information. The estimation of Ry,t is instead affected by a much stronger
uncertainty, represented by larger variance estimates, when the RBBF is employed for the estimation of the
correlation.

6 Conclusions

This paper proposes a new methodology to estimate nonlinear state space models, where the nonlinearity
arises from a stochastic state correlation. The static parameters are estimated with an indirect inference
approach, which employs a cubic splines specification for the time-varying correlation as auxiliary model.
The stochastic correlation and remaining state variables are instead estimated with the Rao-Blackwellised
bootstrap filter (RBBF). We perform a Monte Carlo simulation study and an empirical application to Dutch
unemployment estimation, in order to evaluate the performance of our methodology. In the empirical ana-
lysis the correlation represents the relationship between survey-based data about the unemployed labour
force, and the series of claimant counts. We compare our method to estimating the time-varying correlation
by means of cubic splines only, and as time-constant.

The Monte Carlo simulation study shows that both the cubic splines and the RBBF methods are able
to capture the true time-varying pattern of the correlation. This parameter is, on average, more accurately
estimated by the former approach. The latter is affected by a strong volatility that tends to deteriorate its
performance. This issue also arises from the results of the empirical application. In Section 5 we therefore
mention two possible solutions that could correct for this problem. Nevertheless, the RBBF beats the cubic
splines method in estimating correlations that change rapidly over time, and in yielding more accurate
estimates for the correlation towards the end of the sample, especially when sample sizes are small. These
latter results already highlight the usefulness of the RBBF in case of real-time estimation.

Both the cubic splines and the RBBF estimators of the correlation are more volatile that the time-constant
one, due to their time-varying nature. Hence, in small samples they beat the latter method in terms of squared
bias but not in terms of mean squared error (which also captures the volatility of an estimator).

The indirect inference estimators appropriately estimate the static parameters, as their finite-sample
distributions are centered around them. Although these distributions are not all symmetrical when sample
sizes are small, their shape improves with a larger sample size. So does the performance of the cubic splines
and the RBBF estimators, also with respect to estimating the correlation as static.

The point estimates of state variables of interest, when the estimation is not conducted in real-time, do
not depend on the method that is employed for the estimation of the time-varying correlation, as much as
their estimated variances do. The larger the magnitude of the estimated correlation, the lower the variance
estimates of the state variables. In other words, the more information the auxiliary series brings about the
variables of interest, the more accurate the estimates for the latter are. Results from the empirical application
suggest that the states’ estimates can instead be rather different when obtained in real time, depending on the
method used for the estimation of the correlation. Specifically, the RBBF promptly detects changes in the
correlation parameter, thus yielding more reliable states’ estimates. The static estimation of the correlation
parameter, on the other hand, is affected by a strong delay in tackling such changes, which is reflected in
unrealistic real-time estimates of the state variables. Moreover, the cubic splines method is not suited for
real-time estimation because of its uncertainty in estimating the correlation towards the end of the sample.
Real-time estimation of variables is important in the context of official statistics, and finding a method that
is reliable for this purpose, such as the RBBF, is an important result.

Empirically, the cubic splines and RBBF agree in estimating a strong and positive correlation in the first
and last years of the sample. They capture a deviation between the two types of observed series in the middle
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of the sample, which is caused by the financial crisis of 2008. The long-term unemployment induced by this
recession period can indeed not be completely picked up by the claimant counts. Moreover, only the RBBF
manages to tackle an additional drop in the correlation parameter after the implementation of a legislative
change that affected the claimant counts series in 2015. This decrease is, however, less protracted and of
smaller magnitude than the one triggered by the financial crisis.

In this paper we employ only one auxiliary series in the state space model, and hence deal with estimating
only one time-varying correlation parameter. Our proposed method can theoretically be extended to the case
where more than one auxiliary series are included in the model, and therefore several correlation parameters
need to be estimated. However, the indirect inference and the RBBF are both simulation-based methods
and are, as such, computationally rather expensive. Hence, the model should not be too complex in order to
guarantee a successful performance of our proposed method.
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A Additional results from the Monte Carlo simulation study

T = 200 T = 500
0.9 Sine Fast sine Step Ramp Random walk 0.9 Sine Fast sine Step Ramp Random walk

Cubic splines

MSE(ρ̂t) 0.041 0.159 0.206 0.092 0.130 0.124 0.005 0.053 0.116 0.030 0.057 0.051
bias2(ρ̂t) 0.001 0.007 0.081 0.004 0.015 1.4e-04 3.9e-05 0.010 0.080 0.004 0.014 1.1e-04
MSE(L̂y,t) 0.508 0.597 0.608 0.565 0.592 0.585 0.500 0.584 0.595 0.555 0.583 0.586
bias2(L̂y,t) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Rao-Blackwellised bootstrap filter

MSE(ρ̂t) 0.045 0.172 0.161 0.113 0.172 0.171 0.009 0.129 0.103 0.070 0.129 0.095
bias2(ρ̂t) 0.001 0.050 0.067 0.019 0.037 3.4e-04 1.3e-04 0.030 0.070 0.014 0.028 2.2e-04
MSE(L̂y,t) 0.946 0.669 0.649 0.746 0.737 0.700 0.527 0.638 0.600 0.602 0.622 0.609
bias2(L̂y,t) 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001

Ideal Rao-Blackwellised bootstrap filter

MSE(ρ̂t) 0.159 0.099
bias2(ρ̂t) 3.1e-04 1.3e-04
MSE(L̂y,t) 0.594 0.596
bias2(L̂y,t) 0.001 0.001

Constant

MSE(ρ̂t) 0.002 0.094 0.094 0.072 0.097 0.135 0.001 0.085 0.085 0.067 0.089 0.089
bias2(ρ̂t) 1.7e-05 0.080 0.080 0.063 0.083 2.9e-04 1.4e-06 0.080 0.080 0.062 0.083 0.083
MSE(L̂y,t) 0.501 0.596 0.599 0.575 0.597 0.596 0.498 0.594 0.593 0.572 0.572 0.594
bias2(L̂y,t) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table A.1: Mean squared error and squared bias for the cubic splines, the Rao-Blackwellised bootstrap filter and the
constant estimators of ρt, and the Kalman filter estimator of Ly,t. The second row lists the DGPs for ρt. “Ideal Rao-
Blackwellised bootstrap filte” indicates that the static parameter vector τ is treated as known. S = 3, M = 5000,
nsim = 500.
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(a) T = 200

(b) T = 500

Figure A.1: Distribution of the indirect inference estimators of the static parameters of the nonlinear model, τ =
(ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo replicates, when the DGP of ρt is a random walk and the BFGS
algorithm is not started at the true values; S = 3, nsim = 500. The red lines represent the true values of the parameters.

(a) T = 200

(b) T = 500

Figure A.2: Distribution of the indirect inference estimators of the static parameters of the nonlinear model, τ =
(ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo replicates, when the DGP of ρt is constant and equal to 0.9;
S = 3, nsim = 500. The red lines represent the true values of the parameters.
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(a) T = 200

(b) T = 500

Figure A.3: Distribution of the indirect inference estimators of the static parameters of the nonlinear model, τ =
(ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo replicates, when the DGP of ρt is a sine function; S = 3,
nsim = 500. The red lines represent the true values of the parameters.

(a) T = 200

(b) T = 500

Figure A.4: Distribution of the indirect inference estimators of the static parameters of the nonlinear model, τ =
(ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo replicates, when the DGP of ρt is a fast sine function; S = 3,
nsim = 500. The red lines represent the true values of the parameters.
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(a) T = 200

(b) T = 500

Figure A.5: Distribution of the indirect inference estimators of the static parameters of the nonlinear model, τ =
(ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo replicates, when the DGP of ρt is a step function; S = 3,
nsim = 500. The red lines represent the true values of the parameters.

(a) T = 200

(b) T = 500

Figure A.6: Distribution of the indirect inference estimators of the static parameters of the nonlinear model, τ =
(ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo replicates, when the DGP of ρt is a ramp function; S = 3,
nsim = 500. The red lines represent the true values of the parameters.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp

Figure A.7: True process of ρt (black) together with the 95% (red), 80% (green) confidence bands, and the median
(blue) of the simulation estimates for the cubic splines estimator of ρt. T = 500, S = 3, M = 5000, nsim = 500.

(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp

Figure A.8: True process of ρt (black) together with the 95% (red), 80% (green) confidence bands, and the median
(blue) of the simulation estimates for the Rao-Blackwellised bootstrap filter estimator of ρt. T = 500, S = 3,
M = 5000, nsim = 500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure A.9: MSE of the cubic splines (red), the Rao-Blackwellised bootstrap filter (black) and the constant (blue)
estimators of ρt, over time. T = 200, S = 3, M = 5000, nsim = 500.

(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure A.10: Squared bias of the cubic splines (red), the Rao-Blackwellised bootstrap filter (black) and the constant
(blue) estimators of ρt, over time. T = 200, S = 3, M = 5000, nsim = 500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure A.11: MSE of the cubic splines (red), the Rao-Blackwellised bootstrap filter (black) and the constant (blue)
estimators of ρt, over time. T = 500, S = 3, M = 5000, nsim = 500.

(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure A.12: Squared bias of the cubic splines (red), the Rao-Blackwellised bootstrap filter (black) and the constant
(blue) estimators of ρt, over time. T = 500, S = 3, M = 5000, nsim = 500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure A.13: MSE, over time, of the Kalman filter estimator of Ly,t when ρt is estimated by the cubic splines (red)
and the Rao-Blackwellised bootstrap filter (black) methods, and as time-constant (blue). T = 200, S = 3, M = 5000,
nsim = 500.

(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure A.14: Squared bias, over time, of the Kalman filter estimator of Ly,t when ρt is estimated by the cubic splines
(red) and the Rao-Blackwellised bootstrap filter (black) methods, and as time-constant (blue). T = 200, S = 3,
M = 5000, nsim = 500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure A.15: MSE, over time, of the Kalman filter estimator of Ly,t when ρt is estimated by the cubic splines (red)
and the Rao-Blackwellised bootstrap filter (black) methods, and as time-constant (blue). T = 500, S = 3, M = 5000,
nsim = 500.

(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure A.16: Squared bias, over time, of the Kalman filter estimator of Ly,t when ρt is estimated by the cubic splines
(red) and the Rao-Blackwellised bootstrap filter (black) methods, and as time-constant (blue). T = 500, S = 3,
M = 5000, nsim = 500.
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B Additional results from the empirical application

(a) Cubic splines

(b) RBBF

Figure B.1: Cubic splines and RBBF estimates of ρt, from the Dutch labour force model extended with the auxiliary
series of claimant counts (described in Section 2). Monthly data from January 2004 until March 2020 (T = 195), S =
5, M = 5000. The dashed lines refer to the setting where the knots for the cubic splines approach are approximately
equally distant by fixing February 2015 as one of them, otherwise they correspond to the quartiles of the sample. The
first shaded area represent the recession period due to the financial crisis of 2018, whereas the second one refers to the
legislative change of February 2015.
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Figure B.2: Estimates of the correlation parameter when this is treated as time-constant, obtained with monthly data
observed from January 2004 up to and including the year displayed on the horizontal axis. The results refer to the
Dutch labour force model extended with the auxiliary series of claimant counts (described in Section 2).
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2020

Figure B.3: Kalman filter estimates of θy,t in the Dutch labour force model (described in Section 2). The green lines
refer to the model without auxiliary series. The blue and black lines refer to the model extended with the auxiliary
series of claimant counts, when the correlation is estimated as time constant and with the RBBF, respectively. Each
panel shows the results obtained with monthly data observed from January 2004 up to and including the year displayed
in the respective caption. We do not always show estimates for all time periods in order to facilitate the comparison
among panels.
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2020

Figure B.4: Kalman filter estimates of Ly,t in the Dutch labour force model (described in Section 2). The green lines
refer to the model without auxiliary series. The blue and black lines refer to the model extended with the auxiliary
series of claimant counts, when the correlation is estimated as time constant and with the RBBF, respectively. Each
panel shows the results obtained with monthly data observed from January 2004 up to and including the year displayed
in the respective caption. We do not always show estimates for all time periods in order to facilitate the comparison
among panels.
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2020

Figure B.5: Kalman filter estimates of Ry,t in the Dutch labour force model (described in Section 2). The green lines
refer to the model without auxiliary series. The blue and black lines refer to the model extended with the auxiliary
series of claimant counts, when the correlation is estimated as time constant and with the RBBF, respectively. Each
panel shows the results obtained with monthly data observed from January 2004 up to and including the year displayed
in the respective caption. We do not always show estimates for all time periods in order to facilitate the comparison
among panels.
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2020

Figure B.6: Estimated variances, v̂ar
(
θ̂y,t

)
, of the Kalman filter estimates of θy,t in the Dutch labour force model

(described in Section 2). The green lines refer to the model without auxiliary series. The blue and black lines refer to
the model extended with the auxiliary series of claimant counts, when the correlation is estimated as time constant and
with the RBBF, respectively. Each panel shows the results obtained with monthly data observed from January 2004
up to and including the year displayed in the respective caption. We do not always show estimates for all time periods
in order to facilitate the comparison among panels.
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2020

Figure B.7: Estimated variances, v̂ar
(
L̂y,t

)
, of the Kalman filter estimates of Ly,t in the Dutch labour force model

(described in Section 2). The green lines refer to the model without auxiliary series. The blue and black lines refer to
the model extended with the auxiliary series of claimant counts, when the correlation is estimated as time constant and
with the RBBF, respectively. Each panel shows the results obtained with monthly data observed from January 2004
up to and including the year displayed in the respective caption. We do not always show estimates for all time periods
in order to facilitate the comparison among panels.
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2020

Figure B.8: Estimated variances, v̂ar
(
R̂y,t

)
, of the Kalman filter estimates of Ry,t in the Dutch labour force model

(described in Section 2). The green lines refer to the model without auxiliary series. The blue and black lines refer to
the model extended with the auxiliary series of claimant counts, when the correlation is estimated as time constant and
with the RBBF, respectively. Each panel shows the results obtained with monthly data observed from January 2004
up to and including the year displayed in the respective caption. We do not always show estimates for all time periods
in order to facilitate the comparison among panels.

47


