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Abstract

Agents participating in different kind of organizations, usually take different positions in

some network structure. Two well-known network structures are hierarchies and communi-

cation networks. We give an overview of the most common models of communication and

hierarchy restrictions in cooperative games, compare different network structures with each

other and discuss network structures that combine communication as well as hierarchical

features. Throughout the survey, we illustrate these network structures by applying them

to cooperative games with restricted cooperation.

Key words: Networks, games, communication, hierarchy, cooperative TU-game, Shapley

value
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1 Introduction

A cooperative game with transferable utility, or simply a TU-game, consists of a finite set of

players and for every subset (coalition) of players a worth representing the total payoff that

the coalition can obtain by cooperating. A main question is how to allocate the worth that

can be earned by all players cooperating together, over the individual players. A (single-

valued) solution is a function that assigns to every game a payoff vector which components

are the individual payoffs to each player. A solution is efficient if it assigns to every game a

payoff vector such that the sum of the payoffs is equal to the worth of the ‘grand coalition’

consisting of all players. One of the most applied efficient solutions for cooperative TU-

games is the Shapley value (Shapley, 1953), which is exposed and highlighted by Algaba,

Fragnelli and Sánchez-Soriano (2019a, 2019b).

In its classical interpretation, a TU-game describes a situation in which every coali-

tion S (i.e subset) of N can be formed and earn its worth. In the literature, various

restrictions on coalition formation have been developed. Two main forms of restricted co-

operation that have been studied are communication restrictions and hierarchies. Myerson

(1977) introduced the well-known model of a communication graph game that consists of

a TU-game and an undirected (communication) graph where it is assumed that only coali-

tions that are connected in the communication graph are feasible. A restricted game is

defined where the worth of every feasible (i.e. connected) coalition equals its worth in the

original game, while the worth of a nonconnected coalition equals the sum of the worths

of its maximally connected subsets (also known as components) of the coalition. Further,

he showed that the solution that assigns to every communication graph game the Shapley

value of the restricted game is the only solution that satisfies component efficiency (mean-

ing that every maximally connected subset of players earns its own worth) and fairness

(meaning that deleting a communication link between two players has the same effect on

the individual payoffs of these two players). Algaba, Bilbao, Borm and López (2001, 2002)

introduce and analyze union stable systems being set systems or network structures that

satisfy the property that the union of every pair of nondisjoint coalitions is also feasible,

a property that is satisfied by the set of connected coalitions of any undirected graph.

This led to a generalization of the characterization of the Shapley value for communication

graph games1.

A model that studies restrictions in cooperation arising from hierarchies is that of a

game with a permission structure. In those games it is assumed that the players are part of a

1For union stable systems where all singletons are feasible Algaba, Bilbao and López (2001a) unified

two important lines of restricted cooperation: the one introduced by Myerson (1977) and the one initiated

by Faigle (1989). Moreover, the relationship among union stable systems and hypergraphs is established

by Algaba, Bilbao and López (2004).
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hierarchical organization, where some players might need permission or approval from other

players before they are allowed to cooperate. Two approaches to games with a permission

structure are considered. In the conjunctive approach as developed in Gilles, Owen and van

den Brink (1992) and van den Brink and Gilles (1996), it is assumed that each player needs

permission from all its predecessors before it is allowed to cooperate with other players.

This implies that a coalition is feasible if and only if for every player in the coalition it holds

that all its predecessors belong to the coalition. Alternatively, in the disjunctive approach

as developed in Gilles and Owen (1994) and van den Brink (1997), it is assumed that each

player (except the top-players) needs permission from at least one of its predecessors before

it is allowed to cooperate. Consequently, a coalition is feasible if and only if every (non-

top) player in the coalition has at least one predecessor who also belongs to the coalition.

In Algaba, Bilbao, van den Brink and Jiménez-Losada (2004) it is shown that the sets

of feasible coalitions arising from these permission structures are antimatroids being well-

known combinatorial structures representing hierarchies, see Dilworth (1940) and Edelman

and Jamison (1985). A set of feasible coalitions is an antimatroid if it contains the empty

set, satisfies accessibility (meaning that every nonempty feasible coalition has at least one

player that can leave the coalition and the result is a feasible subcoalition) and is union

closed (meaning that the union of two feasible coalitions is also feasible). An overview of

games with a permission structure is given in van den Brink (2017)2

In the field of restricted cooperation, van den Brink (2012) made clear the distinction

between hierarchies and communication networks by showing that the network structures

that can be the set of connected coalitions in some undirected graph are exactly those

network structures that, besides containing the empty set, satisfy the above mentioned

union stability and 2-accessibility (meaning that every feasible coalition with two or more

players has at least two players that can leave the coalition such that the remaining set of

players is still a feasible coalition). So, compared to communication feasible sets network

structures that can be obtained as the set of connected coalitions in some undirected

graph), antimatroids satisfy a stronger union property (since union closedness implies union

stability) but a weaker accessibility property (since 2-accessibility implies accessibility).

In view of this last result, Algaba, van den Brink and Dietz (2018) considered net-

works that are represented by network structures that take the weaker of the two union

and accessibility properties for network structures considered above, i.e. union stability

2An alternative to restricting the coalitions (i.e. sets of players) that are feasible, Faigle and Kern (1992)

introduce games under precedence constraints where (i) the game is defined on a restricted domain that

is determined by the hierarchy, and (ii) the possible orders in which coalitions can be formed is restricted.

In this setting Algaba, van den Brink and Dietz (2017) define a class of new values in which the removal

of certain ‘irrelevant’ players does not effect the payoffs of the remaining players. A comparison between

the two models is given in Algaba and van den Brink (2019).
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(from communication feasible sets) and accessibility (from antimatroids). They study these

so-called accessible union stable network structures . Obviously, all sets of connected coali-

tions of some (undirected) communication graph as well as all antimatroids fall into this

class. It is also shown that augmenting systems (Bilbao (2003)) are accessible union stable

network structures, but not every accessible union stable is an augmenting system. This

brings us to the conclusion that, under union stability, augmentation implies accessiblity

(i.e. if a coalition can grow from the empty set to the grand coalition by letting players

enter one by one, then also from the grand coalition players can leave one by one until we

reach the empty set), but not the other way around.

Throughout this paper, we compare these different network structures by consider-

ing their impact on coalition formation in cooperative TU-games with restricted cooper-

ation. We specifically consider the solution that assigns to every cooperative game on a

certain network structure, the Shapley value of an associated restricted game where the

worths are generated only by feasible coalitions.

This survey is organized as follows. Section 2 gives some basic definition of cooperative

TU-games. Section 3 considers games with restrictions in cooperation arising from com-

munication restrictions, while Section 4 considers restrictions arising from hierarchies. In

Section 5, we combine communication and hierarchical restrictions in one type of network

structure. Finally, Section 6 contains concluding remarks.

2 Cooperative TU-games and restricted cooperation

The main goal of this survey is to review and compare various network structures, specif-

ically those modelling communication networks and hierarchies and, moreover, we will il-

lustrate most concepts by their effect on coalition formation in cooperative games. Firstly,

in this section, we give some basic preliminaries on cooperative transferable utility games.

A situation in which a finite set of players can obtain certain payoffs by cooperation

can be described by a cooperative game with transferable utility, or simply a TU-game, being

a pair (N, v), where N ⊆ IN is a finite set of players and v : 2N → IR is a characteristic

function on N satisfying v(∅) = 0. For every coalition S ⊆ N , v(S) is the worth of coalition

S, meaning that the members of coalition S can obtain a total payoff of v(S) by agreeing

to cooperate. Since we take the player set to be fixed, we denote a TU-game (N, v) just

by its characteristic function v. We denote the collection of all TU-games on player set N

by GN .

A payoff vector of an n-player TU-game v ∈ GN is an n-dimensional vector x ∈ IRN

giving a payoff xi ∈ IR to any player i ∈ N . A (single-valued) solution for TU-games is a

3



mapping f that assigns to every game v ∈ GN a payoff vector f(v) ∈ IRN . One of the most

well-known solutions for TU-games is the Shapley value (Shapley (1953)) given by

Shi(v) =
∑
S⊆N

i∈S

(|N | − |S|)!(|S| − 1)!

|N |!
(v(S)− v(S \ {i})) for all i ∈ N.

Equivalently, the Shapley value can be written as the average marginal contribution vector

over all permutations (orders of entrance) of the players:

Shi(v) =
1

|N |!
∑

π∈Π(N)

(v({j ∈ N | π(j) ≤ π(i)})− v({j ∈ N | π(j) < π(i)})) for all i ∈ N,

where Π(N) is the collection of all permutations π : N → N of the player set.3 For an

updating on theoretical and applied results about the potential and versatility of this

appealing value, see Algaba, Fragnelli and Sánchez-Soriano (2019a). Likewise a review

of the main classical properties can be found in Algaba, Fragnelli and Sánchez-Soriano

(2019b). In a TU-game any subset S ⊆ N is assumed to be able to form a coalition

and earn the worth v(S). However, in most economic and political organizations not

every set of participants can form a feasible coalition. Therefore, cooperative game theory

models have been developed that take account of restrictions on coalition formation. This

is modeled by considering a set of feasible coalitions F ⊆ 2N that need not contain all

subsets of the player set N . For a finite set N , a set system or network structure over N

is a pair (N,F) where F ⊆ 2N is a family of subsets. The sets belonging to F are called

feasible. A network structure F ⊆ 2N without any further requirement can be seen as

the most general type of network structure, and is called conference structure in Myerson

(1980). However, intuitively when we consider applications of a network structure, it

satisfies certain properties. In this survey, we will consider some of such properties that

we encounter in applications in Economics and Operations Research.

A triple (N, v,F) with v ∈ GN and F ⊆ 2N is a game with restricted cooperation.

Again, since we take the player set to be fixed, we denote a game with restricted cooperation

(N, v,F) by (v,F).

3 Communication restrictions

In this section, we consider communication networks represented by undirected graphs

and the more general union stable systems, and consider their role in defining cooperation

networks in cooperative games.

3Another common expression of the Shapley value is using the so-called Harsanyi dividends (see

Harsanyi (1959)) but we will not use that in this survey.
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3.1 Communication graphs

One of the most well-known models of restricted cooperation are the games with commu-

nication restrictions as introduced in Myerson (1977), see also Owen (1986). In this model,

a communication network on the set of players in a cooperative game is given, and a coali-

tion S is feasible if and only if the players in S are connected within this communication

network. This communication network is represented by an undirected graph on the set of

players.

An undirected graph is a pair (N,L) where N is the set of nodes and L ⊆ {{i, j}|i, j ∈
N, i 6= j} is a collection of subsets of N such that each element of L contains precisely two

elements. The elements of L represent bilateral communication links and are referred to as

edges or links . Since in this paper the nodes in a graph represent the positions of players

in a communication network we refer to the nodes as players. If there is a link between two

players, we call them neighbours . A sequence of k different players (i1, . . . , ik) is a path

in (N,L) if {ih, ih+1} ∈ L for h = 1, . . . , k − 1. Two distinct players i and j, i 6= j, are

connected in graph (N,L) if there is a path (i1, . . . , ik) with i1 = i and ik = j. A coalition

S ⊆ N is connected in graph (N,L) if every pair of players in S is connected by a path

that only contains players from S, i.e. for every i, j ∈ S, i 6= j, there is a path (i1, . . . , ik)

such that i1 = i, ik = j and {i1, . . . , ik} ⊆ S. In other words, a coalition S is connected in

(N,L) if the subgraph (S, L(S)), with L(S) = {{i, j} ∈ L|{i, j} ⊆ S} being the set of links

between players in S, is connected. A maximally connected subset of coalition S in (N,L)

is called a component of S in that graph, i.e. T ⊆ S is a component of S in (N,L) if and

only if (i) T is connected in (N,L(S)), and (ii) for every h ∈ S \ T the coalition T ∪ {h}
is not connected in (N,L(S)).

A sequence of players (i1, . . . , ik), k ≥ 2, is a cycle in (N,L) if (i1, . . . , ik) is a path

in (N,L) and {ik, i1} ∈ L. A graph (N,L) is cycle-free when it does not contain any cycle.

Example 3.1 Consider the communication graph (N,L) on N = {1, . . . , 5} given by

L = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {4, 5}}, see Figure 1. Players 1 and 5 are connected by

two paths: (1, 2, 4, 5) and (1, 3, 4, 5). Coalition {1, 4, 5} has two components: {1} and

{4, 5}. This communication graph has a cycle (1, 2, 4, 3). 2

3.1.1 Communication graph games

A triple (N, v, L) with (N, v) a TU-game and (N,L) an undirected communication graph

is called a communication graph game. Since, again we take the player set to be fixed,

we denote a communication graph game (N, v, L) just by (v, L). In the communication

graph game (v, L), players can cooperate if and only if they are able to communicate with

5
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Figure 1: Communication graph (N,L) of Example 3.1

each other, i.e. a coalition S is feasible if and only if it is connected in (N,L). In other

words, the set of feasible coalitions in a communication graph game (N, v, L) is the set of

coalitions FL ⊆ 2N given by

FL = {S ⊆ N | S is connected in (N,L)}. (3.1)

We refer to this set as the communication feasible set of communication graph (N,L).

Myerson (1977) introduced the restricted game of a communication graph game (v, L) as

the TU-game vL in which every feasible coalition S can earn its worth v(S). Whenever S

is not feasible it can earn the sum of the worths of its components in (N,L). Denoting the

set of components of S ⊆ N in (N,L) by CL(S), the restricted game vL corresponding to

communication graph game (v, L) is given by

vL(S) =
∑

T∈CL(S)

v(T ) for all S ⊆ N. (3.2)

Note that CL(S) is a partition of S. A solution for communication graph games assigns a

payoff vector to every communication graph game. Applying any TU-game solution to the

restricted game vL gives a solution for communication graph games (v, L). The solution

given by Myerson (1977) is obtained by taking for every communication graph game the

Shapley value of the corresponding restricted game, a solution that was later named the

Myerson value µ for communication graph games, i.e. µ(v, L) = Sh(vL).

Example 3.2 Consider the communication graph game (v, L) with L as given in Example

3.1 and game v given by

v(S) =

{
1 if {1, 5} ⊆ S

0 else,

This can represent a supply chain where player 5 is a retailer who can generate worth

(normalized to be equal to 1) when she has a product in store. To get the product from

the factory (player 1) one of the two distributors (players 2 or 3) can be used to bring the

6



product to the wholesaler (player 4) who delivers the product to the retailer. The Myerson

restricted game is the game (N, vL) given by

vL(S) =

{
1 if S ∈ {{1, 2, 4, 5}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}}
0 else,

So, the coalitions that generate the worth one are those coalitions that connect the retailer

with the factory. Applying the Shapley value to this game gives the payoffs according to the

Myerson value:

µ(v, L) =

(
3

10
,

1

20
,

1

20
,

3

10
,

3

10

)
.

One can argue whether the allocation of the payoffs in the example above are fair

and reasonable. One way to motivate solutions is by giving axiomatic characterizations.

Myerson (1977) axiomatized his value by component efficiency and fairness. Component

efficiency means that every maximally connected set of players (component) earns exactly

its worth. Fairness means that deleting (or adding) a link has the same effect on the payoffs

of the two players on that link.4 Other axiomatization of the Myerson value with another

kind of fairness axiom, component-efficiency, a kind of null player property and additivity

can be found in Selculk and Suzuki (2014).5

3.2 Union stable systems

Union stable systems are generalizations of communication graphs where the smallest unit

of cooperation might have a size larger than 2. Let N = {1, . . . , n} be a finite set of players

or nodes, and F ⊆ 2N a set system or network structure of feasible coalitions. Union stable

systems are introduced and developed in Algaba, Bilbao, Borm and López (2000, 2001)

as generalizations of communication networks, where for every two nondisjoint feasible

coalitions, also their union is feasible.

Definition 3.3 A network structure F ⊆ 2N is a union stable system if it satisfies

(union stability) S, T ∈ F with S ∩ T 6= ∅ implies that S ∪ T ∈ F .

4For general TU-games, van den Brink (2001) axiomatized the Shapley value by efficiency, the null

player property and a fairness axiom that requires that the payoffs of two players change by the same

amount if to a game v we add another game w such that the two players are symmetric in game w.

Deleting an edge from a communication graph, the two players on the deleted edge are symmetric in the

difference between the two communication restricted games.
5Another type of motivation for a solution is by strategic implementation. A strategic implementation of

the Myerson value can be found in Slikker (2007), who modified the bidding mechanism of Pérez-Castrillo

and Wettstein (2001) for the Shapley value to communication graph games.
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Union stable systems can be used to model restricted cooperation, where the small-

est units of cooperation are not the singletons and edges as with communication graphs,

but it can be that a coalition with more than two players is feasible while none of its subsets

are feasible. Many real world situations find their natural framework in these structures as

shown in the next example, that is taken from Algaba, Bilbao, van den Brink and López

(2012).

Example 3.4 Consider a situation where player 1 is a homeowner who wants to sell

his/her house. Player 1 has signed a contract with a real estate agent represented by

player 2. So, player 1 only can sell his/her house by means of player 2. There are two

buyers, players 3 and 4. In this application, the family of feasible coalitions that can gen-

erate a surplus are only those which make possible that the seller can sell his/her house.

Therefore, the coalitions which can trade are those coalitions that contain the homeowner,

the real estate agent and at least one of the buyers:

F = {{1, 2, 3} , {1, 2, 4} , {1, 2, 3, 4}} . (3.3)

Notice that for every communication graph (N,L), the set of connected coalitions

FL is a union stable system6. Obviously, if S and T are two connected coalitions, then there

is a path from every player in S to every player in S ∩ T , and there is a path from every

player in S∩T to every player in T , and therefore there is a path from every player in S to

every player in T , i.e. S ∪ T is connected. However, a union stable system cannot always

be modelled by a communication graph. (In Section 5 we characterize exactly the union

stable systems that can be the set of connected coalitions in a communication graph.)

3.2.1 The supports of a union stable system

Similar as the set of edges of an undirected graph determine the set of all connected

coalitions, a union stable system can be fully determined by its basis as determined in

Algaba, Bilbao, Borm and López (2000, 2001). For each union stable system F , the

following set is well-defined:

E (F) = {G ∈ F : G = A ∪B, A 6= G, B 6= G, A,B ∈ F , A ∩B 6= ∅},

being the set of those coalitions in F that can be written as the union of two other feasible

coalitions. The set B (F) = F \ E (F) , is called the basis of F , and the elements of B (F)

are called supports of F ,i.e. these are the coalitions that cannot be written as the union

of two other feasible coalitions.

6Another application of union stable systems can be found in Algaba, Béal, Remila and Solal (2019).
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Inductively, the following families are defined7

G(0) = B(F), G(m) =
{
S ∪ T : S, T ∈ G(m−1), S ∩ T 6= ∅

}
, (m = 1, 2, . . . ) .

Notice that G(0) ⊆ G(m−1) ⊆ G(m) ⊆ F , since F is union stable. So, starting with

the basis G0 = B(F), the collection G1 is obtained by adding to G0 all coalitions that

can be obtained as the union of any pair of nondisjoint coalitions in G, G2 is obtained by

adding to G1 all coalitions that can be obtained as the union of any pair of nondisjoint

coalitions in G1, etc, continuing untill all unions of nondisjoint pairs of coalitions in the

set also belong to the set. In fact, Algaba, Bilbao, Borm and López (2000) define G by

G = G(k), where k is the smallest integer such that G(k+1) = G(k). We remark that the

basis B (F) is the minimal subset of the union stable system F such that B (F) = F .
As mentioned, the set of connected coalitions in an undirected graph or communi-

cation feasible set, is a union stable system. The basis of a communication feasible set is

exactly the set of edges (feasible coalitions of size two) and singletons (feasible coalitions of

size one). The components of an undirected graph can be generalized to union stable sys-

tems as follows. Let F ⊆ 2N be a network structure and let S ⊆ N . A set T ⊆ S is called

a F -component of S if (i) T ∈ F , and (ii) there exists no T ′ ∈ F such that T ⊂ T ′ ⊆ S.

Therefore, the F -components of S are the maximal feasible coalitions that belong to F
and are contained in S. We denote by CF(S) the collection of the F -components of S.

Union stable systems can be characterized in terms of the F -components of a coalition in

the following way: The network structure F ⊆ 2N is union stable if and only if for every

S ⊆ N with CF(S) 6= ∅, the F -components of S are a collection of pairwise disjoint subsets

of S, see Algaba, Bilbao, Borm and López (2000). So, if F is a union stable system, such

that for every i ∈ N , there is an S ∈ F with i ∈ S, then the F -components form a partition

of the player set N .

3.2.2 Cooperative games on a union stable system

A union stable cooperation structure or a game on a union stable system is a triple (N, v,F)

where N = {1, . . . , n} is the set of players, (N, v) is a TU-game and F is a union stable

system. Again, we assume that the player set is fixed and denote game on union stable sys-

tem (N, v,F) just as (v,F). For convenience, we assume from now on that the underlying

game (N, v) is zero-normalized, i.e., v({i}) = 0, for all i ∈ N .

Let B(F) be the basis of F and C(F) = {B ∈ B(F) : |B| ≥ 2}. If there is no

confusion we will just write B and C. Extending the approach of Myerson (1977) for

communication graph games to games on a union stable system, the F -restricted game,

7Algaba, Bilbao, Borm and López (2000) inductively apply the union stability operator to any network

structure G ⊆ 2N which always ends up in a union stable system.
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vF : 2N → R, is defined on the player set N and is given by vF(S) =
∑

T∈CF (S) v(T ), where

vF(S) = 0, if CF(S) = ∅.

A solution for games on a union stable system is a map that assigns a payoff vector

to each game on a union stable system. The Myerson value for communication graph

games can be extended straightforward by applying the Shapley value to the associated

F -restricted game, see van den Nouweland, Borm and Tijs (1992) and Algaba, Bilbao,

Borm and López (2001). Given a game on a union stable system (v,F), the Myerson

value,8 denoted by µ (v,F) ∈ IRN , is defined by

µ (v,F) = Sh
(
vF
)
.

In order to characterize the Myerson value using a fairness axiom, we introduce the

following axioms in this framework.

Component efficiency of a solution on a class of games on union stable systems

states that for every game with restricted cooperation in this class, the total payoff to

every component equals its worth. A player i ∈ N is called a component dummy in union

stable system F if this player does not belong to any maximal component of the grand

coalition, i.e., i /∈
⋃
M∈CF (N) M . A solution satisfies component dummy if every component

dummy is assigned a zero payoff.

For games on a union stable system, Algaba, Bilbao, Borm and López (2001) pre-

sented a generalized version of the fairness axiom presented in Myerson (1977), requiring

that for union stable systems all players in a support B lose or gain the same amount

if the support B and all coalitions that are obtained by union stability using support B

are deleted. They characterized the Myerson value for games on a union stable system

by component efficiency, component dummy and fairness. Notice that this generalizes the

axiomatization of Myerson (1977) for communication graph games since component effi-

ciency and fairness boil down to the corresponding axioms for communication graph games,

while component dummy becomes void since in a communication graph all singletons are

connected/feasible.

Another axiom that is used in characterizing the Shapley value for TU-games, but

also on various network restrictions is balanced contributions and variations. We briefly

8The Myerson value for union stable systems is a particular case of the class of Harsanyi power solutions

for union stable systems, as introduced by Algaba, Bilbao and van den Brink (2015), which generalizes

the class of Harsanyi power solutions for communication graph games presented by van den Brink, van

der Laan and Pruzhansky (2011b). Moreover, the class of Harsanyi power solutions has been studied, for

a particular case of union stable systems derived from the family of winning coalitions associated with a

voting game, in Algaba, Béal, Rémila and Solal (2019). In fact, this setting allows for studying situations

in which there exists a feedback between the economic influence of each coalition of agents and its political

power
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get back to this in Section 5.

4 Hierarchies

In this section, we review some models of hierarchical cooperation structures, specifically

permission structures and the more general antimatroids, and consider their role in defining

cooperation networks in cooperative games.

4.1 Permission structures

A model that studies restrictions in coalition formation arising from hierarchies is that of a

game with a permission structure. In those games, it is assumed that players are part of a

hierarchical organization in which there are players that need permission or approval from

certain other players before they are allowed to cooperate. For a finite set of players N

such a hierarchical organization is represented by an irreflexive directed graph (N,D) with

D ⊆ N ×N such that (i, i) 6∈ D for all i ∈ N , referred to as a permission structure on N .

Since, again we take the player set to be fixed, we denote a permission structure (N,D)

just by its binary relation D. The directed links (i, j) ∈ D are called arcs . The players in

FD(i) = {j ∈ N | (i, j) ∈ D} are called the successors or followers of player i, while the

players in PD(i) = {j ∈ N | (j, i) ∈ D} are called the predecessors of i. A sequence of

different players (i1, . . . , ik) is a directed path between players i and j, i 6= j, in a permission

structure D if i1 = i, ik = j and (ih, ih+1) ∈ D for all 1 ≤ h ≤ k−1. A permission structure

D is acyclic if there exists no directed path (i1, . . . , ik) with (ik, i1) ∈ D. Note that in

an acyclic permission structure there can be more than one directed path from player i to

player j 6= i. Also note that in an acyclic permission structure D, there always exists at

least one player with no predecessors, i.e. TOP (D) = {i ∈ N | PD(i) = ∅} 6= ∅. We refer

to these players as the top-players in the permission structure.

Two approaches to games with a permission structure have been considered. In

the conjunctive approach as developed in Gilles, Owen and van den Brink (1992) and van

den Brink and Gilles (1996), it is assumed that each player needs permission from all its

predecessors in order to cooperate. This implies that a coalition S ⊆ N is feasible if and

only if for every player in S all its predecessors belong to S. The set of feasible coalitions

in this approach is therefore given by

Φc
D = {S ⊆ N | PD(i) ⊂ S for all i ∈ S} ,

which we refer to as the conjunctive feasible set of D.

Alternatively, in the disjunctive approach as developed in Gilles and Owen (1994)

and van den Brink (1997), it is assumed that each player (except the top-players) needs

11
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Figure 2: Permission structure D of Example 4.1

permission from at least one of its predecessors before it is allowed to cooperate with other

players. Consequently, a coalition is feasible if and only if every player in the coalition

(except the top-players) has at least one predecessor who also belongs to the coalition.

Thus, the feasible coalitions are the ones in the set

Φd
D = {S ⊆ N | PD(i) ∩ S 6= ∅ for all i ∈ S \ TOP (D)} ,

which we refer to as the disjunctive feasible set of D.

Example 4.1 Consider the permission structure D on N = {1, 2, 3, 4} given by D =

{(1, 2), (1, 3), (2, 4), (3, 4)}, see Figure 2. Then Φc
D = {{1}, {1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 3, 4}}

and Φd
D = Φc

D ∪ {{1, 2, 4}, {1, 3, 4}}. 2

Both the conjunctive and disjunctive feasible sets are union closed , i.e. for every two

feasible sets, also the union is feasible. This gives rise to an interesting difference between

the communication feasible sets in Myerson (1977) as mentioned in Section 3, and the

conjunctive and disjunctive feasible sets arising from permission structures. Whereas in a

communication graph every coalition can be partitioned in maximally connected subsets

(components), in the conjunctive and disjunctive feasible sets every coalition has a unique

largest feasible subset.9

4.1.1 Games with a permission structure

A game with a permission structure is a triple (N, v,D), where N = {1, . . . , n} is the set

of players, (N, v) is a TU-game and (N,D) is a permission structure. Again, we assume

that the player set is fixed and denote game with a permission structure (N, v,D) just as

the pair (v,D).

9In van den Brink, Katsev and van der Laan (2011) union closed systems are considered where the only

requirement of a set of feasible coalitions is that it is union closed. They exploit this property that every

feasible coalition has a unique largest feasible subset.

12



As mentioned above, union closedness of the conjunctive and disjunctive feasible

sets implies that every coalition has a unique largest feasible subset in each of the two

approaches. An approach using restricted games similar to the approach of Myerson (1977)

for communication graph games (see Section 3), assigns to every coalition in a game with a

permission structure the worth of its largest feasible subset. structure every coalition has

a unique largest feasible subset.

This gives two restricted games. The conjunctive restriction rcv,D of v on D assigns to

every coalition the worth of its largest conjunctive feasible subset. Similar, the disjunctive

restriction rdv,D assigns to every coalition the worth of its largest disjunctive feasible subset.

A solution for games with a permission structure assigns a payoff vector to every game with

permission structure. Similar as in Myerson (1977)’s approach to communication graph

games, we can apply any TU-game solution to the restricted games. Here, we focus on the

Shapley value10 , yielding two solutions, the conjunctive, respectively, disjunctive (Shapley)

permission value:

ϕc(v,D) = Sh(rcv,D) and ϕd(v,D) = Sh(rdv,D).

Example 4.2 Consider the game with permission structure (N, v,D) on N = {1, 2, 3, 4}
with permission structure D as given in Example 4.1 and game v given by

v(S) =

{
1 if S 3 4

0 else.

This models a situation where player 4 needs to be activated in order to earn a worth of 1,

but 4 needs approval from its predecessors. The conjunctive restricted game is given by

rcv,D(S) =

{
1 if S = {1, 2, 3, 4}
0 else,

with corresponding conjunctive permission value payoffs

ϕc(v,D) =

(
1

4
,
1

4
,
1

4
,
1

4

)
.

The disjunctive restricted game is given by

rdv,D(S) =

{
1 if S ∈ {{1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}}
0 else,

with corresponding disjunctive permission value payoffs

ϕd(v,D) =

(
5

12
,

1

12
,

1

12
,

5

12

)
.

10Core properties are considered in Derks and Gilles (1995).
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Several axiomatizations of the conjunctive and disjunctive permission value can be

found in the literature. Here, we just focus on a difference between the two permission val-

ues by an axiom similar to Myerson’s fairness for communication graph games as mentioned

in Section 3.11

In van den Brink (1992) an axiomatization of the disjunctive permission value is

given showing that the disjunctive permission value satisfies disjunctive fairness which

implies that deleting (or adding) an arc (such that the successor on the arc has at least one

other predecessor) has the same effect on the payoffs of the two players on that arc.12. On

the other hand, in van den Brink (1999) an axiomatization of the conjunctive permission

value is given showing that the conjunctive permission value satisfies conjunctive fairness

implying that deleting (or adding) an arc has the same effect on the payoffs of the successor

on the arc and every ‘other’ predecessor of this successor13.

4.2 Antimatroids

Algaba, Bilbao, van den Brink and Jiménez-Losada (2004) show that the conjunctive and

disjunctive feasible sets in acyclic permission structures are antimatroids . Antimatroids

were introduced by Dilworth (1940) as particular examples of semimodular lattices. Since

then, several authors have obtained the same concept by abstracting various combinatorial

situations (see Korte, Lovász, and Schrader (1991) and Edelman and Jamison (1985)).

Definition 4.3 A network structure A ⊆ 2N is an antimatroid if it satisfies the following

properties

(feasible empty set) ∅ ∈ A,

(union closedness) S, T ∈ A implies that S ∪ T ∈ A,

(accessibility) S ∈ A with S 6= ∅, implies that there exists i ∈ S such that S \ {i} ∈ A.

11Axiomatizations of the two permission values using conjunctive, respectively disjunctive, fairness to-

gether with efficiency, additivity, the inessential player property, the necessary player property and (weak)

structural monotonicity can be found in van den Brink (1997, 1999). These axioms have a natural inter-

pretation in several applications such as, for example, polluted river problems of Ni and Wang (2007) and

Dong, Ni and Wang (2012), see van den Brink, He and Huang (2018).
12The disjunctive fairness axiom is stronger and also requires an equal change in the payoff of every

‘complete superior’ of the predecessor on the arc, being those superiors that are on every path from a top

player to this predecessor.
13Similar as mentioned for disjunctive fairness in the previous footnote, the full axiom also requires equal

changes on the payoffs of every ‘complete superior’ of these other predecessors.
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Union closedness means that the union of two feasible coalitions is also feasible.

Accessibility means that every nonempty feasible coalition has at least one player that can

leave such that the set of remaining players is a feasible subcoalition.

Besides these characterizing properties, in a game theory context the network struc-

ture is usually such that every player/node belongs to at least one feasible coalition.

(normality) for every i ∈ N there exists an S ∈ A such that i ∈ S.

Note that normality and union closedness imply that N ∈ A. In the following

we refer to normal antimatroids simply as antimatroids. The conjunctive and disjunctive

feasible sets corresponding to an acyclic permission structure are antimatroids.

Theorem 4.4 (Algaba, Bilbao, van den Brink and Jiménez-Losada, 2004) If D is an

acyclic permission structure on N then Φc
D and Φd

D are antimatroids on N .

Next question is if antimatroids are really more general than permission structures.

First, we exactly characterize those antimatroids that can be the conjunctive or disjunctive

feasible set of some permission structure. It turns out that conjunctive feasible sets are

exactly those that are closed under intersection. These are well known structures, also

known as poset antimatroids .14

Theorem 4.5 (Algaba, Bilbao, van den Brink and Jiménez-Losada, 2004) Let A be an

antimatroid. There is an acyclic permission structure D such that A = Φc
D if and only if

A satisfies

(intersection closedness) S, T ∈ A implies that S ∩ T ∈ A.

An alternative way to characterize poset antimatroids is by using paths. An extreme

player of S ∈ A is a player i ∈ S such that S \ {i} ∈ A. So, extreme players are those

players that can leave a feasible coalition S keeping feasibility. By accessibility, every

feasible coalition has at least one extreme player. Coalition S ∈ A is a path in A if it has a

unique extreme player. The path S ∈ A is a i-path in A if it has i ∈ N as unique extreme

player.

14Games on intersection closed set systems are studied in Béal, Moyouwou, Rémila and Solal (2020).

Intersection closedness is one of the characterizing properties of the important network structures called

convex geometries. Convex geometries are a combinatorial abstraction of convex sets introduced by Edel-

man and Jamison (1985). A network structure G ⊆ 2N is a convex geometry if it satisfies the following

properties: (i) (feasible empty set) ∅ ∈ G, (ii) (intersection closed) S, T ∈ G implies that S ∩ T ∈ G, and

(iii) (augmentation’) S ∈ G with S 6= N , implies that there exists i ∈ N \ S such that S ∪ {i} ∈ G. (In

Section 5, we consider another augmentation property.)
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The paths form the basis of an antimatroid in the sense that every feasible coalition

in an antimatroid is either a path, or can be written as the union of other feasible coalitions.

So, if we know the paths, then we generate the full antimatroid by applying the union

operator.

Example 4.6 Consider the permission structure of Example 4.1, whose conjunctive and

disjunctive feasible set was given in Example 4.2. The paths of the conjunctive feasible set

Φc
D are {1}, {1, 2}, {1, 3} and {1, 2, 3, 4}. The paths in the disjunctive feasible set Φd

D are

{1}, {1, 2}, {1, 3}, {1, 2, 4} and {1, 3, 4}.

In Example 4.6, we see that the conjunctive feasible set has exactly four paths,

one for each player. This property characterizes the conjunctive feasible sets among all

antimatroids.

Theorem 4.7 (Algaba, Bilbao, van den Brink and Jiménez-Losada, 2004) Let A be an

antimatroid. There is an acyclic permission structure D such that A = Φc
D if and only if

for every player i ∈ N there is a unique i-path in A.

Obviously, the disjunctive feasible set does not satisfy this property. Looking at Example

4.6, we see that {1, 2, 4} and {1, 3, 4} are both paths of player 4. On the other hand, in the

disjunctive feasible set Φd
D we see that, given a path, leaving out the unique extreme player,

we have again a path, see for example the sequence of coalitions {1, 2, 4}, {1, 2}, {1}, ∅
in Examples 4.2 and 4.6. In this example, this is not satisfied by the conjunctive feasible

set Φc
D since deleting the unique extreme player from the path {1, 2, 3, 4}, we are left with

{1, 2, 3} which is not a path since both players 2 and 3 are extreme players (it is the union

of the feasible coalitions {1, 2} and {1, 3}). It turns out that this ‘path property’ is typical

for disjunctive feasible sets. In fact, we need a stronger property to characterize them.

Theorem 4.8 (Algaba, Bilbao, van den Brink and Jiménez-Losada, 2004) Let A be an

antimatroid. There is an acyclic permission structure D such that A = Φd
D if and only if

1. Every path S has a unique feasible ordering, i.e. S = (i1 > · · · > it) such that

{i1, . . . , ik} ∈ A for all 1 ≤ k ≤ t. Furthermore, the union of these orderings

for all paths is a partial ordering of N .

2. If S, T and S \ {i} are paths such that the extreme player of T equals the extreme

player of S \ {i}, then T ∪ {i} ∈ A.

Next we show that antimatroids are really more general than permission structures by

giving an example of an antimatroid that does not satisfy the properties of Theorems 4.7

and 4.8 that characterize the conjunctive and disjunctive feasible sets.
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Example 4.9 Ordered partition voting Consider player set N = {1, 2, 3, 4, 5}. Sup-

pose that the player set is partitioned in two levels: Level 1 consists of players 1, 2 and 3,

while Level 2 consists of players 4 and 5. Suppose that all subsets of Level 1 are feasible,

but every subset of Level 2 needs approval of a majority (two-player) coalition of Level 1.

So, the set of feasible coalitions is

A =


∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3},
{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5},
{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}

 .

This is an antimatroid. However, it is not a conjunctive feasible set (poset antimatroid)

since {1, 2, 4}, {1, 3, 4} and {2, 3, 4} are all paths of player 4. It is also not a disjunctive

feasible set since taking out the unique extreme player (4) from the path {1, 2, 4} gives

coalition {1, 2} which is not a path. 2

It is not difficult to prove that the conjunctive and disjunctive approach coincide if and

only if the permission structure is a forest.

Theorem 4.10 (Algaba, Bilbao, van den Brink and Jiménez-Losada, 2004) Let D be an

acyclic permission structure. Then Φc
D = Φd

D if and only if |PD(i)| ≤ 1 for all i ∈ N .

Games with a permission tree (i.e. a connected forest) are studied in van den Brink,

Herings, van der Laan and Talman (2015), Alvarez-Mozos, van den Brink, van der Laan

and Tejada (2017) and van den Brink, Dietz, van der Laan and Xu (2017)15. Peer group

games where, moreover, the original game is an additive or inessential game, are studied

in Brânzei, Solymosi and Tijs (2005) and in Brânzei, Fragneli and Tijs (2002) for the

special case of a rooted line-graph. These games have many applications in Economics and

Operations research, as we will mention in our concluding remarks.

4.2.1 Games on an antimatroid

A game on an antimatroid is a triple (N, v,A) where (N, v) is a TU-game, and A is an

antimatroid on player set N . Since we take the player set to be fixed, we denote a game

15Although van den Brink, Dietz, van der Laan and Xu (2017) consider permission tree games, they

distinguish solutions that are based on a communication or hierarchy approach. For cycle-free communica-

tion graph games, Demange (2004) introduces the so-called hierarchical outcomes, that are extreme points

of the core of the restricted game if the game is superadditive and the graph is cycle-free. Nonemptines of

the core of a superadditive, cycle-free graph game was shown, independently, in Demange (1992) and Le

Breton, Owen and Weber (1992). Herings, van der Laan and Talman (2008) consider the average of the

hierarchical outcomes.
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on an antimatroid just as a pair (v,A). The antimatroid is the set of feasible coalitions in

the game, and thus reflects the restricted cooperation possibilities. Since the conjunctive

and disjunctive feasible sets derived from an acyclic permission structure are antimatroids,

this model generalizes the games with an acyclic permission structure.

As mentioned before, by union closedness every coalition has a unique largest fea-

sible subset. For antimatroids, Korte, Lóvasz and Schrader (1991) introduce the interior

operator intA : 2N → A that assigns to every set its largest feasible subset, i.e.

intA(S) =
⋃

{T∈A|T⊆S}

T for all S ⊆ N. (4.4)

Using this operator16 we can easily generalize the definition of the conjunctive and

disjunctive restricted game for games with a permission structure to games on antimatroids.

The restriction of game v on antimatroid A is the game vA that assigns to every coalition

the worth of its largest feasible subset, and thus is given by

vA(S) = v(intA(S)) for all S ⊆ N.

A solution f for games on antimatroids assigns a payoff vector to every game on

an antimatroid (v,A) on N . We consider the solution Sh that assigns to every game on

antimatroid (v,A), the Shapley value of the restricted game, i.e.

Sh(v,A) = Sh(vA).

Algaba, Bilbao, van den Brink and Jiménez-Losada (2004) introduce a fairness

axiom for games on an antimatroid that generalizes both conjunctive as well as disjunctive

fairness, by requiring that deleting a feasible coalition from an antimatroid, such that what

is left is still an antimatroid, has the same effect on the payoffs of all players in the coalition

that is deleted.17 1819

16The interior operator is characterized by: (i) intA(∅) = ∅, (ii) intA(S) ⊆ S, (iii) if S ⊆ T then

intA(S) ⊆ intA(T ), (iv) intA(intA(S)) = intA(S), and (v) if i, j ∈ intA(S) and j ∈ intA(S \ {i}) then

i /∈ intA(S \ {j}).
17In antimatroid A, the path S is covered by path T if S ⊂ T with |T | = |S|+1, and the unique extreme

player of T is the player in T \ S. For a coalition S to be deleted leaving behind an antimatroid, the

deleted coalition should be a path (otherwise union closedness will be violated) that is not covered by a

path (otherwise accessibility will be violated, since if paths S is covered by path T ⊃ S with |T | = |S|+ 1,

after deleting S from the antimatroid, T has no extreme player).
18One can see that applying this fairness to the sets Φc

D, respectively Φd
D of a game with permission

structure gives the corresponding conjunctive, respectively disjunctive, fairness as follows. Deleting an arc

(i, j), with |PD(j)| ≥ 2, in a permission structure leads to more (respectively less) feasible coalitions in Φc
D

(respectively Φd
D) and every coalition that is ‘gained’ (respectively ‘lost’) contains player j and all other

predecessors h ∈ PD(j) \ {i} (respectively player i).
19They characterize the Shapley value for games on an antimatroid by this fairness axiom together with

axioms generalizing efficiency, additivity, the inessential player property and the necessary player property

for games with a permission structure as mentioned in Footnote 11.
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Finally, notice that an antimatroid is a union stable system, since union closedness

implies union stability. In the next section, we compare different structures.20

5 Communication and hierarchies

In this section, we explore the possibilities to combine communication features with hier-

archy.

5.1 Comparing communication and hierarchies

Let F ⊆ 2N be an arbitrary set of feasible coalitions. Since all singletons in a com-

munication graph are connected, it follows that communication feasible sets arising from

communication graphs contain the empty set and satisfy normality, i.e. every player be-

longs to at least one feasible coalition. Further, communication feasible sets also satisfy

accessibility. They even satisfy the stronger 2-accessibility meaning that every feasible

coalition with two or more players has at least two players that can leave the coalition

such that the set of remaining players is a feasible coalition. Communication feasible sets

are not union closed (as is illustrated by the two connected coalitions {1, 2} and {5} in

Example 3.1 whose union is not connected). However, as mentioned before (see Section 3),

communication feasible sets satisfy the weaker union stability . In van den Brink (2012) it

is shown that a network structure is a communication feasible set if and only if it contains

the empty set and satisfies normality, union stability and 2-accessibility.

Theorem 5.1 [van den Brink (2012)] Let F ⊆ 2N be a normal network structure on

N ⊂ IN. Then F is the communication feasible set of some communication graph if and

only if it satisfies the following properties:

(feasible empty set) ∅ ∈ F ,

(union stability) S, T ∈ F with S ∩ T 6= ∅ implies that S ∪ T ∈ F ,

(2-accessibility) S ∈ F with |S| ≥ 2 implies that there exist i, j ∈ S, i 6= j, such that

S \ {i} ∈ F and S \ {j} ∈ F .

Usually the set of links in an undirected communication graph/communication fea-

sible set, being coalitions of size two, is considered as the basis of a communication network.

20For results of games on antimatroids we refer to Algaba, Bilbao, van den Brink and Jiménez-Losada

(2003, 2004). For antimatroids that are not normal, similar results can be stated restricted to the class of

players that belong to at least one feasible coalition.
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Note that by repeated application of 2-accessibility untill we are left with coalitions of size

two and one, we can generate these bilateral links from any communication feasible set.

Also note that given 2-accessibility, normality implies that {i} ∈ F for all i ∈ N as

is the case for communication feasible sets.

Adding other properties characterizes the sets of connected coalitions in special

graphs. For example adding closedness under intersection yields those communication

feasible sets arising from cycle-complete communication graphs .21 Other special types of

graphs, such as cycle-free graphs and line-graphs, are characterized in van den Brink (2012).

For example,

(i) a communication feasible set is the set of connected coalitions in some communication

line-graph if and only if it satisfies path union stability (meaning that the union of

every pair of paths that have a nonempty intersection is also a path22);

(ii) a communication feasible set is the set of connected coalitions in some communication

cycle-free communication graph if and only if it satisfies weak path union stability

(meaning that the union of two feasible paths that have an endpoint in common, is

also a path);

(iii) a communication feasible set is the set of connected coalitions in some communication

tree (i.e. connected cycle-free graph) if and only if it satisfies connectedness (meaning

that for every pair of players, there is a feasible coalition containing both players).

Comparing Theorem 5.1 with Definition 4.3, we conclude that communication fea-

sible sets are characterized by properties similar to the ones used in defining antimatroids.

Besides normality and feasibility of the empty set, both satisfy an accessibility and a union

property. Obviously, 2-accessibility implies accessibility and therefore communication fea-

sible sets satisfy a stronger accessibility property. However, antimatroids satisfy union

closedness instead of union stability, and therefore antimatroids satisfy a stronger union

property.

5.2 Accessible union stable network structures

Considering Theorem 5.1, a natural network structure that combines hierarchy with com-

munication restrictions, is to consider network structures that satisfy the weaker union and

accessibility properties that characterize antimatroids and communication feasible sets, and

21A graph is cycle-complete if, whenever there is a cycle, the subgraph on that cycle is complete, see

Figure 3.
22The context makes clear if we consider paths in a communication graph or paths in an antimatroid.
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Figure 3: A cycle-complete communication graph

Table 1. This gives the following network structure/set system that is introduced in Algaba,

van den Brink and Dietz (2018).

Antimatroids Communication

∅ is feasible ∅ is feasible

union closed ⇒ union stable

accessible ⇐ 2-accessible

Table 1: Comparing communication with hierarchy

Definition 5.2 A network structure F ⊆ 2N is an accessible union stable network struc-

ture if it satisfies the following properties:

(feasible empty set) ∅ ∈ F ,

(union stability) S, T ∈ F with S ∩ T 6= ∅, implies that S ∪ T ∈ F ,

(accessibility) S ∈ F with S 6= ∅, implies that there exists i ∈ S such that S \ {i} ∈ F .

Obviously, antimatroids and communication feasible sets are accessible union stable

network structures. In these network structures, union stability reflects communication

in the sense that players that belong to the intersection of two coalitions can generate

communication through the full (i.e. union) coalition. Accessibility reflects asymmetry

between the players, specifically between the players that can, and those that cannot,

leave the coalition keeping feasibility. Thus, accessible union stable network structures

seem to be a natural network structure to model organizations with communication as well

as hierarchy features. By definition, we have the following obvious proposition.

Proposition 5.3 (i) An accessible union stable network structureis an antimatroid if and

only if it is union closed. (ii) A normal accessible union stable network structure is a

communication feasible set if and only if it satisfies 2-accessibility.
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Since accessible union stable network structures generalize communication feasible

sets as well as antimatroids, they can help us to study organizations that have hierarchical

as well as communication features. A class that contains communication feasible sets and

antimatroids are the augmenting systems introduced by Bilbao (2003).

Definition 5.4 A network structure F ⊆ 2N is an augmenting system if it satisfies the

following properties:

(feasible empty set) ∅ ∈ F ,

(union stability) S, T ∈ F with S ∩ T 6= ∅, implies that S ∪ T ∈ F ,

(augmentation) S, T ∈ F with S ⊂ T, implies that there exists i ∈ T \ S such that

S ∪ {i} ∈ F .

Algaba, Bilbao and Slikker (2010) establishes that an augmenting system, where all

singletons are feasible, is a communication feasible set.

Augmentation23 establishes that, whenever there are two feasible coalitions such

that one is contained in the other, we can keep adding players from the ‘bigger’ coalition

to the ‘smaller’ coalition one by one, such that after each addition the new coalition is

feasible. This property can be used in defining solutions for games that are based on

marginal vectors, such as the Shapley value. Assuming that the ‘grand coalition’ N is

feasible one can, starting with the empty set and adding one player at each step, define a

sequence of feasible coalitions ending up in the ‘grand coalition’. This means that we can

always define a permutation π : N −→ N such that {π(1), . . . , π(k)} is a feasible coalition

for every k ∈ {1, . . . , n}. We will see later that the same cannot be done for arbitrary

accessible union stable network structures.

Players who can be joined to a feasible coalition S ∈ F keeping feasibility are called

augmentation players , i.e. a player i ∈ N \ S, with S ∪ {i} ∈ F ⊆ 2N , is called an

augmentation player of coalition S in F .

Note that augmentation implies accessibility. Indeed, for T ∈ F with T 6= ∅, by the

augmentation property, we have that there exists a sequence of coalitions T0, T1, . . . , Tt,

with Th ∈ F , |Th| = h, 0 ≤ h ≤ t, such that ∅ = T0 ⊂ T1 ⊂ · · · ⊂ Tt−1 ⊂ Tt = T .

Therefore, there exists a player i ∈ T such that T \ {i} = Tt−1 ∈ F . This shows that

augmenting systems satisfy accessibility, and therefore they are accessible union stable

network structures.

23Notice the difference with the augmentation property that is used as a defining property of a convex

geometry, see Footnote 6.
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Proposition 5.5 (Algaba, van den Brink and Dietz (2018)) If F ⊆ 2N is an augmenting

system then F is an accessible union stable network structure.

However, accessibility does not imply augmentation, and therefore not every acces-

sible union stable network structure is an augmenting system, see Example 5.6.

So, interpreting augmentation as the possibility to grow and accessibility as the

possibility to shrink, the possibility to grow from the empty set to the grand coalition by

players entering one by one, implies the we can shrink from the grand coalition to the

empty set by players leaving one by one. But the possibility to shrink does not imply

the possibility to grow. This has an important impact on solutions that are defined using

marginal vectors such as the Shapley value.

The next example discusses an application of accessible union stable network struc-

tures that are neither an augmenting system nor an antimatroid nor a communication

feasible set.

Example 5.6 (Exploring and careful societies) Let K = {1, 2} be a society of ex-

plorers, and M = {3, 4, 5} a society of careful players. Assume that all coalitions within

each society are feasible, but a coalition containing players from both societies can only be

formed if it contains all players of M (and any subset of K). Therefore, we can consider

society K as a society of ‘explorers’ who each can go individually or with any group to the

‘outside world’, and society M as a ‘careful’ society consisting of players who can only go

out together.

The corresponding set of feasible coalitions is

F = {∅, {1}, {2}, {1, 2}, {3}, {4}, {5}, {3, 4}, {3, 5}, {4, 5}, {3, 4, 5},
{1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}},

(where the first row of F contains K, M and all their subsets, while in the second row are

the coalitions that contain players from both societies.)

This network structure is union stable since (i) any union of two coalitions that are

either a subset of K or a subset of M are feasible, and (ii) the union of two nondisjoint

feasible coalitions containing players from K and M must contain all players from M

(since at least) one of these two coalitions must contain players from K and M , and thus

the union must contain all players from M), and therefore is feasible.

The network structure is accessible since (i) for each non-empty feasible coalition

that is a subset of K or M every player in this coalition is an extreme player (i.e., it can be

deleted keeping feasibility), and (ii) for every feasible coalition that contains players from

both K and M each player from K can be deleted. The resulting coalition still contains all

players from M , and therefore is feasible.
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To show that the network structure F is not a communication feasible set, consider

for example feasible coalition {2, 3, 4, 5}. This coalition contains one player from K, player

2, and all players from M . But since none of the players of M can be deleted, player 2 is

the only extreme player, so the network structure does not satisfy 2-accessibility.

To show that the network structure F is not an antimatroid, consider for example

coalitions {1} and {3}. These are proper subsets of K, respectively M , so their union

contains a player from K and a player from M but does not contain all players from M ,

and therefore is not feasible, showing that F does not satisfy union closedness.

Finally, to show that the network structure F is not an augmenting system, consider

coalitions K = {1, 2} and K ∪M = {1, 2, 3, 4, 5}. Then no single player from M can be

added to K to get a feasible coalition since the players of M only join K as group, showing

that it does not satisfy augmentation.

5.2.1 The supports of an accessible union stable network structures

Since accessible union stable network structures are union stable systems, they can be

described by the supports as defined in Section 3.

Example 5.7 Consider the accessible union stable network structure F on N = {1, 2, 3, 4, 5}
given by

F =

{
∅, {1}, {2}, {4} , {5} , {1, 2} , {3, 4} , {4, 5} , {2, 3, 4} ,

{3, 4, 5} , {1, 2, 3, 4} , {2, 3, 4, 5} , N

}
.

The supports of F are given by

B (F) = {∅, {1} , {2} , {4} , {5} , {1, 2} , {3, 4} , {4, 5} , {2, 3, 4}} .

We introduced accessible union stable network structures as a model that general-

izes communication feasible sets as well as antimatroids in such a way that two defining

properties reflect communication (union stability), respectively, hierarchy (accessibility).

An interesting question is to see how these features influence the basis of the system. As

mentioned in Section 3, the supports of a communication feasible set are exactly those el-

ements that have cardinality one or two, the first type being the singletons and the second

type being the links or edges of the communication graph. The full communication feasible

set is obtained from the supports by repeatedly applying the union stability operator. An

antimatroid can be fully described by its paths, being those feasible coalitions that have

exactly one extreme player, and applying the union operator.

Applying accessibility, it holds that every nonempty feasible coalition in an acces-

sible union stable network structure has an extreme player. For accessible union stable
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network structures it turns out that every support either has cardinality at most two or

is a path. (In the accessible union stable network structure of Example 5.7, the supports

with cardinality at most two are those in B(F) \ {{2, 3, 4}}, while support {2, 3, 4} is a

path.)

Proposition 5.8 (Algaba, van den Brink and Dietz (2018)) Let F ⊆ 2N be an accessible

union stable network structure. If B ∈ B (F) with |B| > 2 then B is a path.

The reverse is not true, i.e., not every path with more than two players is a support.

Example 5.9 Consider the set N = {1, 2, 3, 4} and the accessible union stable network

structure given by F = {{1} , {2} , {4} , {1, 2} , {3, 4} , {2, 3, 4} , N}.
Its basis is B(F) = {{1} , {2} , {4} , {1, 2} , {3, 4} , {2, 3, 4}}. Since the only extreme

player of the ‘grand coalition’ N is player 1, the grand coalition is a path but it is not a

support, since it is the union of {1, 2} and {2, 3, 4}.

This ‘hybrid’ form of the basis of accessible union stable network structures make

these structures in some sense more difficult than the other structures mentioned before.

Specifically, (i) the basis of a union stable system is formed by the supports being the

coalitions that are not the union of two nondisjoint feasible coalitions, (ii) communication

feasible sets are determined by the singletons and the links, while (iii) antimatroids are

described by their paths. This is useful, specifically for the fairness type of axioms for

solutions for games with restricted cooperation which compare two different structures

where one of these is obtained by deleting certain feasible coalitions from the other. In

the case of union stable systems, deleting a support, what is left is still a union stable

system. For antimatroids, taking out any path that is not covered by another path. In

the mentioned literature, it is shown that in these structures, we have enough possibilities

to delete coalitions and apply the fairness axiom mentioned earlier in this survey to get

uniqueness with some other axioms. In the next subsection, we mention some problems

that we encounter when applying fairness for games on accessible union network structures.

5.2.2 Cooperative games on accessible union stable network structures

A game on an accessible union stable network structures is a triple (N, v,F) where (N, v)

is a TU-game, and F ⊆ 2N is an accessible union stable network structure. Since, again

we take the player set to be fixed, we denote a game on an accessible union stable network

structure (N, v,F) by (v,F).

Since accesible union stable systems are union stable systems, we can directly apply

the approach of Section 3, and define a restricted game associated to games on an accessible
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union stable network structure as follows. Let v : 2N → IR be a cooperative game and let

F ⊆ 2N be an accessible union stable network structure. The restricted game vF : 2N → IR,

is defined by

vF(S) =
∑

T∈CF (S)

v(T ) for all S ⊆ N.

Notice that, if F is an accessible union stable network structure, then for every

S ⊆ N such that CF(S) = ∅, we have vF(S) = 0. If F is a communication feasible set, then

the game vF is the graph-restricted game of Myerson (1977) and Owen (1986), see Section

3. Since an antimatroid A is union closed, every subset S ⊆ N has a unique component

given by the interior operator int (S), see (4.4). The restricted game vA : 2N → IR, is the

game defined by vA (S) = v (int(S)), see Section 4.

A solution for games on an accessible union stable structure is a function that assigns a

payoff vector to every game on an accessible union stable network structure. Following

the previous sections, we consider the solution that assigns to every game on an accessible

union stable network structure the Shapley value of the corresponding restricted game:

ϕ (v,F) = Sh(vF) for every game on accessible union stable network structure (v,F).

Clearly, the value ϕ for games on accessible union stable network structures general-

izes the Myerson value for games restricted by communication graphs and the (conjunctive

and disjunctive) permission value for games with a permission structure.

As mentioned before, if F is a union stable system then the components of N in F
form a partition of a subset of N . (If F is, moreover, normal then the components form a

partition of N).

Notice that we cannot just apply fairness since, besides union stability, we now also

need to take care that, after deleting a coalition/support, the remaining network structure

still satisfies accessibility.

Before considering a fairness type of axiom for games on an accessible union stable

network structure, we consider a balanced contributions type of axiom. Balanced contri-

butions axioms balance mutual dependence of two players on each other in the sense that

they equalize the effect of the removal of one player on the payoff of the other player. Given

a network structure F ⊆ 2N and a player i ∈ N, the network structure

F−i = {S ∈ F | i /∈ S}

consisting all those feasible coalitions in F which do not contain player i. This operation has

the nice feature that the reduced structure F−i is still an accessible union stable network

structure.
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Proposition 5.10 (Algaba, van den Brink and Dietz (2018)) If F ⊆ 2N is an accessible

union stable network structure and i ∈ N, then F−i is an accessible union stable network

structure.

This proposition allows us to define the following axiom. A solution f for games on

an accessible union stable network structure has balanced contributions if for every game

on accessible union stable network structure (v,F) and any two players i, j ∈ N with i 6= j,

we have

fi (v,F)− fi (v,F−j) = fj (v,F)− fj (v,F−i) .

The ‘freedom’ to ‘isolate’ any player in an accessible union stable network structure

gives us the positive characterization result that the Shapley value is the unique value for

games on an accessible union stable network structures that satisfies component efficiency,

component dummy, and has balanced contributions, see Algaba, van den Brink and Dietz

(2018).

Above, using balanced contributions, we considered the effects of deleting all coali-

tions containing one particular player from the set of feasible coalitions, on the payoffs of

another player. For accessible union stable network structures, we can define various types

of fairness axioms. Here, we consider the folllowing. Comparing payoffs of two players, we

can, similar as balanced contributions, consider the effect on their payoffs when we delete

all coalitions containing both players. So, for an accessible union stable network structure

F and two players i, j ∈ N , we consider the network structure

F−ij = {S ∈ F | {i, j} 6⊆ S}

being the collection of feasible coalitions in F that do not contain both players i and j.

Next, we define a version of fairness where we delete all coalitions containing two particular

players, and require the payoffs of these two players to change by the same amount. Then

a solution f for games on an accessible union stable network structure satisfies fairness if

fi(v,F)− fi(v,F−ij) = fj(v,F)− fj(v,F−ij)

for all games on accessible union stable network structure (v,F) and i, j ∈ N such that

F−ij is an accessible union stable network structure.

The restriction that F−ij is an accessible union stable network structure implies

that not all feasible coalitions can be deleted. It turns out that F being accessible implies

that F−ij is accessible.

Proposition 5.11 (Algaba, van den Brink and Dietz (2013)) If F ⊆ 2N is an accessible

network structure then F−ij is accessible.
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However, for an arbitrary accessible union stable network structure F the network

structure F−ij need not be union stable as the following example shows.

Example 5.12 Consider the accessible union stable network structure F of Example 5.6.

Take a player from N and one from M , for example players 2 and 4.

Then F−24 = F \ {{2, 3, 4, 5}, {1, 2, 3, 4, 5}}, which is not union stable since {1, 2}
and {1, 3, 4, 5} both belong to F−24 but their union does not.

This creates problems for axiomatizing the Shapley value for games on an accessible

union stable network structure, since we are restricted in the coalitions that can be deleted

from an accessible union stable network structure.

Notice that fairness as defined above for the class of accessible union stable network

structures is not the same as Myerson’s fairness for communication graph games, since

if F = FL for some communication graph L then F−ij, in general, is not the set of

connected coalitions in L \ {{i, j}}. Consider, for example, the communication graph L on

N = {1, 2, 3, 4} given by L = {{1, 2}, {2, 3}, {3, 4}, {1, 4}}. Then {1, 2, 3, 4} ∈ FL\{{1,2}} \
(FL)−12. Therefore, on the class of communication graph games this axiom is not the same

as Myerson’s fairness. However, it can be shown that for (sets of connected coalitions in)

cycle-free graphs the two fairness axioms are the same. Therefore, it is known that for these

set systems, fairness and component efficiency characterize the Shapley value. Similar, it

follows that for the class games on cycle-free accessible union stable network structures, the

Shapley value is characterized by component efficiency, component dummy and fairness.

6 Concluding remarks

The main goal of this survey is to review and compare various network structures, specif-

ically those that model communication networks and hierarchies. We illustrated most

concepts by their effect on coalition formation in cooperative (transferable utility) games.

We discussed (undirected) communication graphs and the more general union stable

systems as models of communication networks, and we discussed permission structures and

the more general antimatroids as models of hierarchical structures. Also, we discussed the

model of an accessible union stable network structure as a model that combines communi-

cation with hierarchy. In the survey, we already mentioned several other network structures

and their relation with the structures reviewed her, such as union closed network struc-

tures, convex geometries, intersection closed network structures and augmenting systems.

Other models in the literature are, for example, the games in coalition structure of Au-

mann and Drèze (1974) and Owen (1977), where the player set is partitioned into a-priori

28



unions (which can also be modeled as an undirected graph where there is a link between

two players if and only if they belong to the same a-priori union), or its generalization

to level structures in Winter (1989), where there is a sequence of coalition structures, the

next one finer than the previous one.

It is interesting to observe that cooperative games in itself are a generalization of

undirected graphs. In fact, cooperative games are a generalization of hypergraphs. To be

precise, a hypergraph is a simple cooperative game, being a game (N, v) with v(S) ∈ {0, 1}
for all S ⊆ N . A simple cooperative game then represents hypergraph (N,F), F ⊆ 2N , if

v(S) = 1 if S ∈ F . In game terminology, S is called a coalition, while in graph terminology

it is called a hyperlink. Undirected graphs are a special type of hypergraphs where the

hyperlinks have size one or two. Representing an undirected graph (N,L) by its collection

FL of connected coalitions, this can also be represented by the so-called 2-additive game

(N, v) given by (i) v(S) = 1 if |S| = 2 and S ∈ L, (ii) v(S) = 0 if |S| = 2 and S 6∈ L, or

|S| ≤ 1, and (iii) v(S) =
∑

T⊂S,|T |=2 v(T ) if |S| > 2, see Deng and Papadimitriou(1994). In

this context, undirected graphs are usually called bilateral graphs or networks. Summariz-

ing, the class of undirected bilateral graphs is contained in the class of hypergraphs which

is contained in the class of cooperative games. Specifically, hypergraphs are simple coop-

erative games, while undirected bilateral graphs are 2-additive simple cooperative games.

Obviously, 2-additive cooperative games (that are not simple) coincide with the so-called

weighted undirected graphs where the links have weights expressing their importance.24

A very general approach to games with restricted cooperation is followed by Derks

and Peters (1993) who consider a restriction as a mapping ρ : 2N → 2N that assigns to

every coalition an associated ‘feasible’ coalition. One of the characterizing properties of a

restriction σ is that ρ(ρ(S)) = ρ(S) for all S ⊆ N .25 This approach contains the games on a

union closed system, and thus games on an antimatroid and permission structure, where to

every coalition it assigns the largest feasible subset. It does not contain the communication

graph games but, for example, it also does not contain the games with a local permission

structure of van den Brink and Dietz (2014), where the role of a player as value generator

is separated from its role as authorizer in the sense that a player can give permission to its

subordinates to act, but still needs permission from its own predecessors to be active.26

24Applications of weighted graphs, considering weights on links as well as on nodes can be found in,

for example, Lindelauf, Hamers, and Husslage (2013), who measure the importance of terrorists based on

their centrality in a terrorist network.
25The other characterizing properties are that ρ(S) ⊆ S for all S ⊆ N , and ρ(S) ⊆ ρ(T ) for all

S ⊆ T ⊆ N .
26For example, in the line permission treeD = {(1, 2), (2, 3)} onN = {1, 2, 3} the feasible part of coalition

{2, 3} is singleton {3} since its direct predecessor is in the coalition, while the predecessor of 2 is not in

the coalition. In this case ρ({1, 2, 3}) = {1, 2, 3}, ρ({1, 2} = ρ({1, 3}) = ρ({1}) = {1}, ρ({2, 3}) = {3} and

ρ({2}) = ρ({3}) = ∅. Thus ρ(ρ({2, 3})) = ρ({3}) = ∅ 6= {3} = ρ({2, 3}).
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In this survey, we focussed on comparing different network structures. We want to

mention that in many applications in Economics and Operations Research, also looking

at more specific network structures gives insight into these Economics and OR problems.

Without going into detail, we mention some of these applications. Regarding communica-

tion networks, van den Brink, van der Laan and Vasil’ev (2007) show that, for example the

river games of Ambec and Sprumont (2002), and the sequencing games of Curiel, Potters,

Rajendra Prasad, Tijs and Veltman (1993, 1994), can be seen as communication graph

games where the underlying communication graph is a line graph. Looking at it in this

way, we can see that, for example, the downstream incremental solution for river games

(Ambec and Sprumont (2002)) and the drop-out monotonic solution for sequencing games

(Fernández, Borm, Hendrickx and Tijs (2005)) boil down to the same solution, being the

marginal vector where players enter consecutive in the order of the line. Regarding appli-

cations of hierarchies, Brânzei, Fragnelli and Tijs (2002) and Brânzei, Solymosi and Tijs

(2005)) show several applications of peer group games, being games with a permission

strcutrure where the permission structure is a rooted tree and the game is an additive

game, such as the auction games of Graham, Marshal and Richard (1990) and the ATM-

games of Bjorndal, Hamers and Koster (2004). Other appplications are, for example, the

polluted river problems of Ni and Wang (2007) and Dong, Ni and Wang (2012), mentioned

in Footnote 11.27 Other approaches to additive games on a rooted tree can be found in,

e.g the hierarchical ventures in Hougaard, Moreno-Ternero, Tvede and Osterdal (2017).

A way to generalize peer group games is keeping a rooted permission tree but al-

lowing any game giving the permission tree games as mentioned in the paragraph after

Theorem 4.10. A special case of a permission tree game that is not a peer group game, are

the hierarchically structured firms in van den Brink (2008) being games with a permission

structure where the permission structure is a rooted tree, and the game is any convex game

on the ‘lowest level’ of the hierarchy (i.e. all players that are not on the lowest level are

null players in the game), with the interpretation that the lowest level players are workers

that generate value, while the other players are managers who do not physically produce,

but organize the production process. The above mentioned applications are just some of

the applications of games on communication or hierarchy networks that one can find in

the literature.

The usefulness of the Myerson graph game approach is also shown in van den Brink

and Pintér (2015) who show that axiomatizations of the Shapley value for TU-games are

27Although they are not games with a permission structure, the airport games of Littlechild and Owen

(1973), respectively, the joint liability problems of Dehez and Ferey (2013) are the duals of auction games,

respectively polluted river games. This also makes the graph game approach to these applications useful, in

particular for self-dual solutions such as the Shapley value. A comparison between these four applications,

based on anti-duality relations, can be found in Oishi, Nakayama, Hokari and Funaki (2016).
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invalid on the class of assignment games (see Shapley and Shubik (1972)) in the sense

that they do not give uniqueness, but Myerson’s component efficiency and fairness do

characterize the Shapley value for assignment games (when we consider these games as

restriction to the bipartite graph where two players are linked if and only if one is a seller

and the other is a buyer).

An important relation between network structures that we did not consider in this

survey is the duality relation. The dual structure of a network structure F ⊆ 2N is the set

system Fd given by Fd = {S ⊆ N | N \ S ∈ F}. It is, for example, well known that the

dual of an antimatroid is a convex geometry, see Footnote 6. Algaba, van den Brink and

Dietz (2018) show that the dual structures of accessible union stable network structures

form a class of network structures that contains all convex geometries.28
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