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Abstract

In several scientific fields, like bioinformatics, financial and macro-economics, important
theoretical and practical issues exist that involve multimodal data distributions. We pro-
pose a Bayesian approach using mixtures distributions to approximate accurately such data
distributions. Shape and other features of the mixture approximations are estimated includ-
ing their uncertainty. For discrete data, we introduce a novel mixture of shifted Poisson
distributions with an unknown number of components, which overcomes the equidispersion
restriction in the standard Poisson which accomodates a wide range of shapes such as multi-
modality and long tails. Our simulation-based Bayesian inference treats the density features
as random variables and highest credibility regions around features are easily obtained. For
discrete data we develop an adapted version of the Reversible Jump Markov Chain Monte
Carlo (RIMCMC) method, which allows for an unknown number of components instead of
the more restrictive approach of choosing a particular number of mixture components using
information criteria. Using simulated data, we show that our approach works successfully for
three issues that one encounters during the estimation of mixtures: label switching; mixture
complexity and prior information and mode membership versus component membership. The
proposed method is applied to three empirical data sets: The count data method yields a
novel perspective of the data on DNA tandem repeats in Schaap et al. (2013); the bimodal

distribution of payment details of clients obtaining a loan from a financial institution in Spain
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in 1990 gives insight into the repayment ability of individual clients; and the distribution of
the modes of real GDP growth data from the PennWorld Tables and their evolution over time
explores possible world-wide economic convergence as well as group convergence between the
US and European countries. The results of our descriptive analysis may be used as input for

forecasting and policy analysis.

JEL codes: C11, C14, C63.

Keywords: Multimodality, mixtures, Markov Chain Monte Carlo, Bayesian Inference.

1 Introduction

In several scientific fields there exist important theoretical and practical issues that involve
multimodal distributions. In bioinformatics it is known, for instance, that more than half of
the human genome consists of repetitive DNA. Tandemly repeated DNA sequences comprise
a substantial proportion thereof. In different populations one can identify commonalities and
differences of so-called Macro-Satellite Repeats (MSRs) as a particular group of repetitive DNA
sequences with evidence of multimodal size distributions. Observed deviations in the configu-
rations of MSRs may indicate diseases, see Bruce et al. (2009) and Balog et al. (2012) among
several others.

In finance, the probability that a client of a bank is able to repay a loan may depend on the
uncertainty that exists with respect to the number of defaulted payments. Analysis of this issue
may involve bi- or multimodal data characteristics of the distribution due to the heterogeneity
of the population of bank clients, see e.g. Dionne et al. (1996).

Thirdly, in the field of international economic growth, there exists the fundamental question
whether or not convergence takes place between a set of countries when the observed distribution
of Gross Domestic Product (GDP) growth is multimodal and changing over time, see for instance
Quah (1996) and Paap and Van Dijk (1998) for evidence of multi-modality in growth after World
War II.

Thus, in several empirical applications one deals with data from distributions that have
multimodal densities. Standard exploratory data analysis and inference may be misleading if

such a property of the data is not taken into account. Despite its importance for empirical



applications, assessing shape and other features of a multimodal probability density function is
not straightforward. One aspect is the distinction between density estimation itself, aiming for
a good fit to the data, and the estimation of such features as the relevant number of modes,
the classification issue of belonging to a particular mixture component and accurate estimation
of tail probabilities. These issues give rise to separate estimation problems (Good and Gaskins,
1980).

Existing methods to analyze multimodal densities are mostly limited to continuous distri-
butions, see e.g. Silverman’s test and its extensions (Silverman, 1981; Fischer et al., 1994), the
DIP test (Hartigan and Hartigan, 1985; Hartigan, 1985), and the ‘smooth bootstrap’ test (Efron
and Tibshirani, 1994) for ‘bump hunting’ or counting the number of modes in a probability
density. Furthermore, even when the number of modes are estimated, most existing methods
do not reveal uncertainty around these values (Fischer et al., 1994; Hall and Ooi, 2004), with a
few exceptions based on nonparametric density estimates (Miiller and Sawitzki, 1991; Minnotte,
1997; Chaudhuri and Marron, 1999). We refer to McLachlan and Peel (2004) for an extensive
summary of frequentist and Bayesian methods for determining the number of modes.

This paper proposes a Bayesian approach to estimate shape and other features of a multi-
modal density and the uncertainty around these values. The method we propose is applicable
for continuous and discrete data distributions. For continuous multimodal data, we show that
estimates based on mixtures of normal densities with an unknown number of components pro-
vide a straightforward method to evaluate density features. For discrete such data, we introduce
a novel mixture of shifted Poisson distributions with an unknown number of components, which
overcomes the equidispersion restriction in the standard Poisson. This implies that our shifted
Poisson mixture accommodates a wide range of shapes such as multimodality and long tails.

Density estimates of the mixture distribution are obtained using simulation-based Bayesian
inference with density features treated as random variables and highest credibility regions around
features are automatically obtained without any extra computational effort. For discrete data
we develop an adapted version of the Reversible Jump Markov Chain Monte Carlo (RJMCMC)
of Green (1995). Our method allows for an unknown number of components instead of the more
restrictive approach of choosing a particular number of mixture components using information

criteria as done in Schaap et al. (2013).



Using simulated continuous and discrete data, we focus on three issues that one encounters
during the estimation of mixtures. Label switching between mixture components due to weak or
no identification of individual components is tackled through parameter restrictions defined by
flexible priors. This worked well in all cases considered. On the issue of mixture complexity and
prior information we show conclusive evidence that our methodology is robust to alternative
parameter specifications when the number of prior components is known. For the case of an
unknown number of components we show that in our experiments the number of models with
the highest posterior probability correspond to the true number of modes for each data set
that we consider. As third issue we report results on mode membership versus component
membership, making use of the K-means algorithm as in (Fruhwirth-Schnatter, 2006, p. 97 and
Fruwirth-Schnatter(2011).

The proposed methods are applied to three empirical data sets. First, the count data method
yields a novel perspective on the data of DNA tandem repeats in Schaap et al. (2013). We show
that posterior distributions of the number of modes and quantiles are concentrated around their
true value in all our diverse DNA examples. We compare results of the proposed method with two
well-known frequentist tests, the Silverman test (Silverman, 1981) and the DIP test (Hartigan
and Hartigan, 1985) and show that our approach performs better than both of these frequentist
tests. Note that this also holds for the simulated data.

Next, payment details of clients obtaining a loan from a financial institution in Spain in 1990
are studied. Given that the bimodal data distribution has a fat tail, this implies that a standard
Poisson distribution (or mixtures) may not be sufficient to approximate that data feature. Our
more accurate descriptive analysis provided by a mixture of shifted Poisson distributions and
the estimated modes may be used for the institutions policy of granting loans. For instance,
according to our descriptive analysis the proposed method can already be used to categorise
clients according to their defaulted instalment behaviour based on the estimated modes of the
distribution. In further research with extensive micro data on explanatory variables, differences
between individuals can even be better categorised.

As a final application, we consider the modes of cross-country GDP per capita distribution
using data collected from 170 countries from Penn World Tables for the period 1960-2009. We

apply a mixture of normal densities to approximate the distribution of the data and to analyse



the number of modes over time. These modes can be used to analyse the highly debated topic of
convergence or divergence in economic growth between countries. Furthermore, it is of interest
to see the evolution of these modes over time. Using the Penn World Tables for the period 1960-
2009, we show that the changing number of modes does not necessarily indicate convergence, but
instead, a middle income category seems to be emerging over time. We also analyse convergence
between US and European countries. At the beginning of the sample, the results indicate 2 or 3
modes for GDP growth, while the number of modes is 1 for the period 1990-2009. Apparently,
group behaviour with respect to convergence is more prevalent than overall convergence in the
world. The results of our descriptive analysis may be used later as input for a causal analysis
and policy measures.

The remainder of this paper is as follows: Section 2 presents the normal and Poisson mixture
model and the RIMCMC algorithms for both models. Section 3 presents simulated data illustra-
tions. Section 4 presents the results from applying these models to the three different datasets.
Section 5 concludes. We emphasize that a computer package — The R-package MultiMode: Effi-
cient and Robust Simulated Multimodal Densities — accompanies the present paper. Additional
results on the use of the algorithm and set-up and results of the simulation experiments are

shown in an appendix containing supplementary material.

2 Bayesian estimation of Normal and Shifted Poisson Mixture

Distributions using RIMCMC

2.1 Mixture of normal densities for continuous data

A mixture of normal densities can be used to approximate an empirical multimodal distribution
of continuous data. For a mixture of J normal densities, each mixture component j € {1,...,J}
has three parameters: mean p;, variance JJZ and probability of mixture component 7; with the
restriction m; > 0,Vj and ijl m; = 1. The total number of parameters for the mixture of
normal densities is thus 3 x J, where the number of free parameters is 3 x J — 1 due to the
restriction Z}'le mj = 1. The approximation properties of a mixture of normal densities are well-

studied for the continuous data case in the literature, see Frithwirth-Schnatter (2006) for general

background and more specific references cited there. It is well-known that with a sufficiently



large number of normal mixture components any empirical distribution of continuous data and its
features like skewness, fat tails and/or multimodality can be accurately approximated. However,
a nontrivial problem is to determine the proper number of components in empirical situations.
Regular MCMC methods cannot be used for this purpose since the number of model parameters
changes with the number of mixture components. For this reason, we opt for the RJIMCMC
algorithm of Green (1995) which allows ‘jumping’ between parameter subspaces of different
dimension.

A major idea of RIMCMUC is to equate the number of parameters between different models, in
this case for different J, and then to use standard MCMC tools. The ‘jump’ between mixtures
with a different numbers of components occurs in two ways. The first possible move, ‘split’,
indicates that the algorithm starts with a mixture model with J components and jumps to J+1
components. The second possible move, ‘combine’, indicates that the algorithm starts with a
mixture model with J components and jumps to J — 1 components. These ‘proposed’ jumps are
accepted with a probability derived from the posterior probabilities of the models. For the split
move, an algorithm for obtaining means, variances and probabilities of the new components has
to be specified. For the combine move, an algorithm for obtaining mean, variance and probability
of reduced mixture component has to be specified. We employ the split and combine moves
proposed in Richardson and Green (1997) and, for convenience, summarise this methodology
in the supplementary material. Given posterior draws of model parameters, inference on the

number and location of the modes are obtained using the algorithm in Appendix B.

2.2 Mixture of shifted Poisson distributions for count data

We specify a mixture of shifted Poisson distributions that is intended to describe accurately
multimodal count data. Let y; for i = 1,...,n be independent realizations from a mixture of J

shifted Poisson distributions:

y; — kj ~ Poisson(\;) if z;;j =1 for i=1,...,n;5 =1,...,J, (1)

where z;; = 1 if y; belongs to cluster j, and 0 otherwise and the latent variable distribution is

defined as Prlz;; = 1] = 7, for i =1,...,n;j =1,...,J, with m; > 0 for j = 1,...,J and



E‘f:l 7j = 1, and where the shift parameter x; is a non-negative integer.

In (1), unlike for the case of a regular Poisson, an equidispersion restriction is not present
even when the number of mixture components is 1. Intuitively, the shift parameter «; identifies
the amount of dispersion between the mean and variance for each component in the mixture.
The parameters of a shifted Poisson specification have a more direct interpretation in term
of moments than a negative binomial distribution since the mean and variance in the latter
are governed by two parameters jointly, whereas the shifted Poisson has variance equal to the
parameter \;. Furthermore, in (1), the shift parameter x; allows for underdispersion, whereas
the mixing of multiple components allows for overdispersion. A mixture of Negative Binomial
distributions would, however, not allow for underdispersion, only overdispersion. For background

we refer to Frithwirth-Schnatter (2006).

The augmented likelihood of model (1) is:

PV A
i H“»]: exp(—\j) - —| 77, yi=kj, K+ 1,..., Vi,j with z;; =1
el ={ Plas)l] T BT T

0, otherwise

(2)

where y = {y1,...,yn}, zi = {2zi1,-. -, 2zig}, 2={z1,...,znf and 0 = {\, k, 7}, A ={)\1,..., As},
k=AK1,...,kg}, 7 ={m1,..., w5}

For a known number of components, J, uninformative but proper priors can be assigned to
parameters. We make use of uniform priors defined on bounded regions for A\; and x; and a

symmetric Dirichlet prior for the weight parameters 7;:

Aj ~ unif(Amin, Amax) (3)
K ~ unif(Kmin, Kmax) (4)
(71,...,my) ~ Dirichlet(c, ..., @) (5)
[Amin, Amax] = [Fmin, fmax] = [0, max(yily; = 1,...,n)] (6)

Details of the posterior sampler, i.e. Gibbs sampling and RJIMCMC steps, for the model

in (1) under the priors in (3)—(6) are given in Appendix A. For simulated data illustrations



and empirical applications, we define the prior probability of 0.5 for split and combine moves,
implicating an equal prior probability for models with a different number of mixture components,

J.

Remark. An alternative to RIMCMC is to use continuous time samplers. In this method, the
jump process is replaced by an additional parameter on the number of components which has a
Poisson prior distribution. Parameters of new components are drawn from the prior distribution.
A basic reference for this method is Stephens (2000). We note that in Cappé et al. (2002), it is
shown that RIMCMC and the continuous time sampler are theoretically equivalent in terms of
convergence. In the present paper we have good experience with RJIMCMC and leave comparison

with an alternative method as a topic for further research.

3 Mixture estimation issues illustrated

Using simulated data, we show the results of several experiments dealing with three issues that
one encounters during the estimation of mixture distributions. The issues refer to label switching,

mixture complexity and prior information and mode membership versus component membership.

Label switching. Label switching between mixture components refers to the feature that the
posterior distribution may be invariant to switching between components. One can make use of
restrictions on means, variances or probabilities of each component that are defined in a flexible
way through the prior, see e.g. Malsiner Walli, Frithwirth-Schnatter and Griin (2014). We note
that in the case of the shifted Poisson, one of the following label switching constraints can be
imposed: k; < kj, for [ < j, (based on the shift parameter), k; + A, < Kj + A, for I < j, (based
on the mean), or m; < 7;, for I < j, (based on the component probabilities). We emphasise that
these constraints are not needed to analyse such features as accuracy of the estimated/predicted
distribution of the data and the number of modes of multimodal distributions. But it is a
relevant issue in connection with the classification of mixture components. We summarize this

issue when we discuss the experiments relating to mode versus component membership.



Mixture complexity. An important methodological and practical issue is the relation be-
tween prior parameters and mixture complexity, i.e. a posterior density with a large number of
components. The mixture approximation used in this paper aims to obtain an accurate estimate
of the shape and several features of the posterior density. We emphasise that in applications
with very weak or flat proper priors and a relatively small number of observations in particular
components, over fitting or lack of sparsity may lead to finding a spurious number of modes,
and the method may also be sensitive to outliers. This issue is also referred to as determining
‘genuine multimodality’ in situations where the danger is that minor modes are captured by a
mixture model, see e.g., Griin and Leisch (2009); Frithwirth-Schnatter (2011).

For RIMCMC methods, the issue of over fitting is analysed in several papers. The behaviour
of parameters in models with spurious modes can be linked to the specification of uniform priors
for Dirichlet parameters, see Nobile (2004). For symmetric Dirichlet priors, as in equation (5),
overfitting is likely to occur with (near) empty mixture components or with mixture components
which are ‘identical’ in parameter values. The former is shown to be the case when the Dirichlet
parameter « is small with o < d/2 where d denotes the number of parameters in each mixture
component. For symmetric Dirichlet priors with a relatively high parameter, o > d/2, identical
clusters are likely, see Rousseau and Mengersen (2011). We follow Frithwirth-Schnatter (2011)
and take o = 4 in the reminder of this paper.

We focus on the fit of Poisson mixtures for discrete data and on such features as the deter-
mination of the correct number of modes for the case of bi- and tri-modal distributions.! The
simulation study we consider is similar to Woo and Sriram (2007) and Umashanger and Sriram
(2009), with the extension of using a shifted Poisson distribution in part of the simulations.

For the simulation setup, the following choices have been made, see Table 1. Standard and
shifted Poisson distributions are selected with 2 and 3 components and with model weights close
to equal and very unequal. Sample sizes are taken as small (100) and large (1000). The true
parameter values of the simulated data set are denoted by ) = (pj, Aj, kj) = (pj, A}, 0) for j €

{1,...,J} for a J-component mixture of standard Poisson distributions, and by ng ) = (pj, A\j, Kj)

!These properties are well-studied in the literature for normal mixtures, see Frithwirth-Schnatter (2006). In
the supplementary material we report simulation studies showing that a mixture of normal densities has good
approximation properties for a large number of components in simulated large data sets but that the estimated
shape and features of the posterior density are sensitive for the choice of this density in case of small samples.



Table 1: Parameters of simulated data from mixtures of standard and shifted Poisson distribu-
tions

Parameters definitions for simulated datasets
1 2 3
I Oy 9% 9%
Mixture of standard Poisson distributions
dataset 1 2 (0.50,1,0) (0.50,9,0) —
dataset 2 2 (0.80,1,0) (0.20,9,0) —
dataset 3 3 (0.45,1,0) (0.45,5,0) (0.10,10,0)
Mizture of shifted Poisson distributions
dataset 4 2 (0.50,1,1) (0.50,9,2) —
dataset 5 2 (0.80,1,1) (0.20,9,2) —
dataset 6 3 (0.45,1,1) (0.45,5,2) (0.10,10,3)

Note: The table presents true parameters for each simulated dataset from mixture of standard and shifted Poisson
distributions. J € {1,...,2} denotes the number of mixture components for each dataset. Parameters of each
component are defined as 6 = (p;, A;,0) for j € {1,...,J} for mixtures of standard Poisson distributions and
08" = (p;, \j, k;) for j € {1,...,J} for mixtures of shifted Poisson distributions.
for a J-component mixture of shifted Poisson distributions. For the parameter specifications, we
make use of the equivalence property between standard and shifted Poisson distributions with
the value of shift parameter chosen as k = 0. More background on the different experiments is
provided in the supplementary material appendix.

In Figure 1 kernel density estimates for simulated data and true modes of the distribution (in
vertical lines) are shown for each simulation setup. For all simulation setups, the smaller dataset
with n = 100 has more uncertainty in density estimates compared to those with n = 1000.

However, the obtained density properties, such as the mean, mode or quantiles, are shown with

reasonable accuracy even for small samples.

Known number of mixture components We first consider a known number of mixture
components for each simulated data set and report estimated density features that are particu-
larly relevant for discrete data simulations. To the best of our knowledge, theoretical approxi-
mation properties do not exist in the literature for this case.

We estimate the model parameters together with the number of modes for each simulated data
set using the model and the posterior sampler in Appendix A. The Dirichlet prior parameter
a = 4 and posterior results are based on 10000 total number of draws, and 5000 draws are

disregarded as burn-in draws.
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Figure 1: True and estimated probability density functions for simulation experiments. In each
plot, the simulation study is replicated 150 times. Solid lines are kernel density estimates for
each simulation replication. Vertical lines are the theoretical modes of the true pdf.

dataset 1 dataset 2 dataset 3
Mixture of standard Poisson densities, 100 observations

dataset 1 dataset 2 dataset 3
Mixture of standard Poisson densities, 1000 observations

=

dataset 4 dataset 5 dataset 6
Mixture of shifted Poisson densities, 100 observations

1
i
i
i
i

dataset 4 dataset 5 dataset 6
Mixture of shifted Poisson densities, 1000 observations
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Posterior results for the number of modes, together with the true number of modes for each
simulated data are reported in Table 2. In this table, a high probability value implies that
the correct number of modes is found to be very likely according to the estimates. For most
simulated data, the corresponding probability is very high (above 0.9). We conclude that the
methodology is robust to alternative parameter specifications for the case where the number
of mixture components is known. So, a preliminary conclusion is that prior knowledge on the
number of components appears very helpful in order to obtain accurate results on density fit

and features.

Table 2: Posterior modes for simulated discrete data with known J mixture components
number of components number of modes probability

Mizture of standard Poisson distributions

data 1 2 2 1.00
data 2 2 2 1.00
data 3 3 1 0.95
Mizture of shifted Poisson distributions

data 4 2 2 1.00
data 5 2 2 1.00
data 6 3 2 0.94

Note: The table reports the number of mixture components (column 1), true number of modes
(column 2) and the posterior probability of true number of modes (column 3) for each
simulated dataset. Posterior results are based on 10000 posterior draws (5000 burnaman
bakalim, -in draws).

Unknown number of mixture components We next perform a more extensive simulation
study with an unknown number of components J for discrete and continuous data. Discrete data
sets are simulated from mixtures of standard Poisson distributions and from mixtures of shifted
ones. For each distribution type, different parameter settings are considered with J € {1,2,3,4}
mixture components. Each sample consists of n = 100 observations and the simulation study is
repeated 150 times.

Table 3 contains estimation results for data simulated from standard and shifted mixtures
of Poisson distributions. The true number of modes, the estimated mode with the highest
posterior probability and the corresponding probability are reported for each data set. The

number of modes with the highest posterior probability correspond to the true number of modes
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Figure 2: RJMCMC estimates and true modes for simulated data. In each plot, simulation
study is replicated 150 times. Vertical lines are the theoretical modes of the true pdf.

dataset 1 dataset 2 dataset 3
Mixture of standard Poisson distributions, 100 observations

dataset 4 dataset 5 dataset 6
Mixture of shifted Poisson distributions, 100 observations

dataset 4 dataset 5 dataset 6
Mixture of shifted Poisson distributions, 1000 observations
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Table 3: True and estimated number of modes from simulated discrete data

true value value (max. pr.) post. prob. std.dev. J 2 PDIP PHY
Mizture of standard Poisson distributions
data 1 2 2.00 0.98 0.12 0.01 (0.02) 0.00 (0.00)
data 2 2 2.00 0.99 0.07 0.07 (0.04) 0.00 (0.00)
data 3 2 2.00 0.74 0.46 0.15 (0.11)  0.00 (0.00)
Mizture of shifted Poisson distributions
data 4 2 2 0.97 0.05 0.15 (0.08) 0.07 (0.14) 0.02 (0.03)
data 5 2 2 0.99 0.02 0.34 (0.19) 0.69 (0.26) 0.10 (0.13)
data 6 2 2 0.75 0.18 0.60 (0.21) 0.58 (0.32) 0.34 (0.24)

Estimation results are based on 10000 draws (5000 burn-in draws) and averages from 10
simulation replications reported. Number of mixture components J is estimated together with
the rest of the model parameters. pg and ppp denote average p-values from Silverman and
DIP tests for 150 simulation replications, with standard deviations of p-values in parentheses.

in each data set we consider. Furthermore, the posterior probability associated with the true
number of modes is higher than 0.5 in all simulated data sets. In a few cases, reported in the
additional material, this posterior probability is not close to 1, although the number of modes
with maximum posterior probability does correspond to the true number of modes. We refer to

the additional material appendix for more details.

Mode membership versus component membership. Component membership, i.e. the
classification of belonging to a particular mixture component, can be done in a simple practical
manner using the K-means algorithm as in (Frithwirth-Schnatter, 2006, pp. 97) and Frithwirth-
Schnatter (2011). We explain how we execute this procedure in the supplementary material.
We apply the k-means algorithm to posterior draws from the RIMCMC algorithm applied to
simulated data from a mixture of Poisson distributions. We consider two simulated data sets.
In the first data set, parameters of the Poisson distribution are chosen to be clearly different
between the mixture components and as a result the generated distribution of the data is clearly
bimodal with two distinct modes. In the second simulated data set, parameters of the Poisson
distribution do not lead to such clear set of modes.

Re-labeled draws for simulated data with distinct modes: We show that in the first simulated
data set with n = 100 observations with clearly distinct modes, the k-means algorithm is useful
in a posteriori relabeling of parameter draws. A histogram of the data, posterior draws from

RJMCMC and posterior draws relabeled using the k-means algorithm are shown in Figure 3.
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We summarize the results as follows.

The top panel in Figure 3 shows the histogram of the simulated data, the true density and
the density of each mixture component for J = 2 components. With a relatively small number
of draws, the data histogram is very similar to the true density, and two clear modes can be
easily observed in the data.

The bottom left panel in Figure 3 shows the subset of draws where the number of mixture
components is J* = 2 and the number of mixture components with maximum posterior prob-
ability according to the RIMCMC method. Around 70% of posterior draws lead to 2 mixture
components, hence only 30% of draws are ‘lost’ at this step of the k-means algorithm.

The bottom right panel in Figure 3 shows the re-labeled draws after application of the k-
means algorithm. These draws correspond to a subset of draws where J* = 2, and k-means
clustering of each parameter in the draws are permutations of {1,2}. Around 64% of the initial
number of posterior draws satisfy this condition.

The bottom right panel in Figure 3 also shows that k-means algorithm is successful in this
case: Clustering of draws are clear, for example compared to the ‘unlabelled’ posterior draws on
the bottom left panel of Figure 3.

Thus, the k-means algorithm is successful in this case: The effective number of draws from

the algorithm is close to the actual number of draws, ie. M ~ M ~ M.

Re-labeled draws for simulated data without distinct modes: We show that in the
second simulated data set with n = 100 observations, the k-means algorithm has the problem
that only a small subset of draws are left after application of the algorithm. Furthermore, the
label switching problem does not seem to be completely removed. The histogram of the data,
posterior draws from RJMCMC and posterior draws labeled using the k-means algorithm are
shown in Figure 4. The results are as follows.

The top panel in Figure 4 shows the histogram of the simulated data, the true density and
the density of each mixture component for J = 4 components. With a relatively small number
of draws, the data histogram is very different from the the true density. The actual modes of
the distribution are hardly visual in the figure.

The bottom left panel in Figure 4 shows the subset of draws where the number of mixture
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Figure 3: Histogram of simulated data with distinct modes, posterior draws from RJIMCMC and
re-labelled posterior draws from RIJIMCMC
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Figure 4: Histogram of simulated data with ‘non-distinct’ modes, posterior draws from RIMCMC
and re-labelled posterior draws from RJMCMC
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components is J* = 2 which is the number of mixture components with maximum posterior
probability in RIMCMC. Less than 50% of posterior draws lead to 4 mixture components. More
than half of the posterior draws are ‘disregarded’ in this case, and label switching seems to be
an important problem.

The bottom right panel in Figure 4 shows the re-labeled draws after the k-means algorithm.
These draws correspond to a subset of draws where J* = 4, and k-means clustering of each
parameter in the draws are permutations of {1,2}. Only 307 draws satisfy these conditions.
Furthermore, label switching problem is not eliminated completely particularly in the solid pink
line in the figure. The k-means algorithm is not successful in this case: The effective number of
draws from the algorithm are very small (for different random seeds, none of the draws satisfy
k-means conditions). The bottom right panel in Figure 4 also shows that k-means algorithm is
not successful in this case: Clustering of draws still show label switching around draw 50. Next,
we investigate how well the simulation results hold in a variety of empirical bi- and multi-modal

data distributions.

4 Three empirical applications

4.1 DNA tandem repeats data

In this subsection, we make use of a model that consists of a mixture of shifted Poisson dis-
tributions to estimate posterior features using counts of DNA tandem repeat data for the case
of three specific DNA sequences denoted by CT47, MSR5 and D4Z4. These data are obtained
from 270 unrelated human DNA samples from Asian, African and Caucasian origin, see Schaap
et al. (2013). It is of substantial interest to analyse the number and location of modes in the
data, since differences in these values may next be linked to e.g. genetic diseases.

The estimated numbers of modes are compared to results using the standard Silverman and
DIP tests. The null hypotheses in both frequentist tests is a single mode, and the alternative
hypothesis is at least two modes. In Figure 5 the estimated data distributions for three sequences
are presented together with the posterior modes classified according to the ‘severeness of modes’,
that is, calculated by the posterior probabilities of each mode. Sequence CT47 clearly has a single

mode according to the estimate, while MSR5 and D4Z4 appear to have multiple modes according
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Figure 5: DNA sequences CT47, MSR5 and D47Z4: estimated distributions of the data and
posterior mode probabilities
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Table 4: DNA sequences CT47, MSR5 and D4Z4: Estimated number of modes using the
Bayesian procedure and p-values of Silverman and DIP tests

data set post. prob. for # of modes post. std. dev. | Silverman test DIP test
p-value p-value

# of modes 1 2 3 4 5

CT47 1.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00

# of modes ) 6 7 8 9

MSR5 0.01 0.11 0.34 0.44 0.09 0.97 0.00 0.21

# of modes 5 6 7 8 9

D474 0.04 0.23 0.40 0.26 0.06 0.98 0.05 0.18

Estimation results are based on 10000 draws (5000 burn-in draws).

to the figures. In Table 4 the estimated numbers of modes are shown in detail, together with
the p-values from the standard Silverman and DIP tests. Considering the first sequence, CT47,
the results of our proposed method and those of the standard tests are very different since
both frequentist tests do reject strongly the null hypothesis of a single mode while our Bayesian
procedure indicates a single mode with substantial credibility. For the sequence MSRJ5, the
Silverman test is in line with the proposed method, indicating a rejection of the null hypothesis
of a single mode but the DIP test, on the other hand, does not reject the null even at a 10% level.
For the sequence D474 both Silverman and DIP test do not reject the null of a single mode at
the 10% level, while our Bayesian procedure indicates the presence of several modes albeit with
a certain degree of uncertainty. There is no clear pattern in Silverman and DIP tests in terms of
how conservative these are in testing for the number of modes, but the two tests are clearly not
appropriate for assessing the number of modes in this count data example. We note that the
results of the Silverman and DIP tests may also suffer due to the fact that these tests assume a

continuous underlying data distribution and the DNA data is a typical count data example.?

4.2 Defaulted payment instalments

For the second empirical application, we apply the mixture of shifted Poisson distributions to
the case of count data on payment details of clients obtaining a loan from a financial institution

in Spain in 1990. These data, the number of defaulted payment instalments, consists of 4329

2The minor differences between the estimates we report and those in Schaap et al. (2013) may be due to the
fact that we estimate the number of mixtures together with the rest of the model parameters and do not remove
outliers from the estimated density.
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Table 5: Default data: Posterior distributions of modes and quantiles

post. prob. for # of modes post. std. dev.
1 2 3 4 5

0.00 0.20 0.78 0.02 0.00

0.43

Posterior distribution of quantiles
005 01 05 09 095
mean 0.00 0.00 0.00 5.70 8.21
std. dev. 0.00 0.00 0.00 0.46 0.41
Estimation results are based on 10000 draws (5000 burn-in draws).

observations from 0 to 34 defaulted instalments and have been analysed in Dionne et al. (1996),

Woo and Sriram (2007) and Karlis and Xekalaki (2001).

The estimated density using a mixture of shifted Poisson distributions and the posterior

probabilities of the modes are shown in Figure 6. In Table 5 the posterior probabilities of the

number of modes and estimated quantiles are presented.

Figure 6: Default data: Estimated distribution of the data and posterior probability of modes.
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We start to observe that these data is a typical example of ‘zero inflated count data’. A

standard Poisson distribution or even mixtures of Poissons may fail to approximate this data

density given the long tail. The proposed mixture of shifted Poisson distribution, on the other

hand, leads to accurate density estimates of these data as shown in Figure 6. As stated, given
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that the data distribution has a fat tail, this implies that a standard Poisson distribution (or
mixtures) may not be sufficient to approximate that data feature.

This accurate ‘descriptive’ analysis provided by a mixture of shifted Poisson distributions and
the estimated modes may be used for the institution’s policy of granting loans. According to our
descriptive analysis the proposed method can already be used to categorise clients according to
their defaulted instalment behaviour based on the estimated modes of the distribution. In further
research with extensive micro data on explanatory variables, differences between individuals can

even be better categorised.

4.3 Economic growth in many countries

As a final application, we consider the modes of cross-country GDP per capita distribution.
These modes can be used to indicate a highly debated topic, convergence or divergence in
economic growth between countries, see Paap and Van Dijk (1998), Bastiirk et al. (2010) among
several others. Furthermore, it is of interest to see the full distribution of GDP per capita to
analyse the evolution of these modes.

The data for this application are the average GDP per capita over 10 year intervals, col-
lected from 170 countries, from Penn World Tables. We apply a mixture of normal densities to
approximate the data density and to analyse the number of modes over time.

Posterior probabilities of the number of modes for these data are given in Table 6 for dif-
ferent time periods. These results indicate 1-4 modes for cross country GDP per capita data.
Furthermore, the number of modes seem to decrease over time and this decreasing number of
modes may indicate GDP convergence. The estimated number of modes is naturally linked to
the countries included in the analysis.

For the GDP convergence analysis, we next consider the estimated distributions of the data
over different periods. Mean estimates and 95% intervals are shown in Figure 7. Estimates
at the beginning of the sample period have more high peaks and almost no probability mass
in the mid-point of the data range. At the end of the sample, despite the decreasing number
of modes, the probability mass at the mid-point increases while the peaks at the tails of the
distributions are less pronounced. We therefore conclude that the changing number of modes

do not necessarily indicate ‘convergence’, but instead, a ‘middle income’ category seems to be
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Table 6: GDP data: posterior probabilities of number of modes

post. pr. post. std. dev.
1 modes 2 modes 3 modes 4 modes 5 modes
1960-1969 0.34 0.49 0.15 0.02 0.00 0.75
1970-1979 0.72 0.27 0.01 0.00 0.00 0.48
1980-1989 0.72 0.27 0.00 0.00 0.00 0.46
1990-1999 0.44 0.46 0.10 0.00 0.00 0.65
2000-2009 0.96 0.03 0.00 0.00 0.00 0.21

Estimation results are based on 10000 draws (5000 burn-in draws).

emerging over time according to these results.

Convergence analysis for US and European countries The convergence analysis we
had so far has a large number of countries. It may be argued that it is unreasonable to find
convergence between all developing and developed countries which are quite heterogenous.

We apply the continuous data model with a mixture of normal densities to a subset of
countries which are expected to be more homogeneous. Table 7 presents results for countries
in US and Europe. At the beginning of the sample, the results indicate 2 or 3 modes for GDP
growth, while the number of modes is 1 at for the period 1990-2009. Apparently, club behaviour

with respect to convergence is more prevalent than overall convergence in the world.

Table 7: Posterior results for number of mixture components for the US and countries in Europe

post. pr. post. std. dev. 90% HPDI

1 mode 2 modes 3 modes 4 modes 5 modes
1960-1969 0.08 0.45 0.40 0.07 0.00 0.76 [1.00, 4.00]
1970-1979 0.77 0.22 0.01 0.00 0.00 0.44 [1.00, 2.00]
1980-1989 0.88 0.12 0.00 0.00 0.00 0.34 [1.00, 2.00]
1990-1999 1.00 0.00 0.00 0.00 0.00 0.03 [1.00, 1.00]
2000-2009 1.00 0.00 0.00 0.00 0.00 0.00 [1.00, 1.00]

5 Conclusions and future work

We presented a Bayesian approach for detecting the number of distinct modes in continuous
data using mixtures of normal distributions and for discrete data we introduced a novel model

with mixtures of shifted Poisson distributions. The methodology is illustrated with different
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simulated data and compared to using standard tests for the number of modes in the data.
Three different data sets with different properties ranging from DNA data via financial loan data
unto international growth data of real Gross Domestic Product are analysed using the proposed
methodology. Results show that our methodology leads to robust probabilistic conclusions about
determining modes and their estimated uncertainty. The approach works better than several
frequentist tests.

In future research, we plan to compare the proposed method with other tests to detect
multimodality and to estimate quantiles of non-standard distributions. The method can also be
extended to multivariate (e.g. panel) data. Furthermore, robustness of results with respect to the
specification of the RIMCMC algorithm will be analysed. We finally note that an accompanying

R package MultiMode will be available shortly.
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Supplementary Material for Bayesian Estimation of Multimodal Density Fea-
tures applied to DNA and Economic Data
by

Nalan Basturk, Lennart Hoogerheide, and Herman K. van Dijk

APPENDIX A RJMCMC algorithm for a mixture of shifted

Poisson distributions

In this section we introduce the RIMCMC algorithm for posterior sampling of the parameters in
the model defined as a mixture of shifted Poisson distributions in (1) under the priors in (3)—(5).
Given posterior draws of model parameters, inference on the number and location of the modes
are obtained using the algorithm in Appendix B.

Given the priors in (3)—(5), Gibbs sampling steps are straightforward. For j = 1,...,J,

under the condition that y; > x; Vi,j with z;; =1

Dlifzij_y YNGR
p(Kily, 2,0_x.) X =2 (A.1)
(sl 2. 0-n,) o< 0 =)

1
D ()\j|y, z,H_AJ.) oc Gammapy o\ — 1+ Z (yi — Kj) (A.2)
J z|zij_1
p(mly, z,0_z) < Dirichlet (ny — 1,...,ny — 1), (A.3)

where nj = Y " | z; is the number of observations in component j and k; is an integer in
(max{yin, ming ., =1 (¥i)}, Fmax]-
For unknown J, we propose the following RJIMCMC procedure: The combine rule to move

from clusters j; and js to j is defined as:
_ _ AT e T
T = W Ty, Aj= Ty
kj = min(“jlv’sz) (A.4)

Zij = Zijy + Zijy, Vi with z;5, = 1 or 25, = 1.

That is, the two clusters to be combined are chosen based on the proximity of the means,
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)\j + Kj.
The split move introduces three random variables u; ~ Beta(2,2), us ~ Beta(2,2), ug ~

Pois(2) such that the move from cluster j to clusters j; and js is:

7le = 7rju1; 7Tj2:7Tj(1—U1);

. _ P R e
Ajpn = Ajuzs Ajy = A T—uy
Kj; = Rj; Kj, = Kj +us

1 with probability m;, /(7 + 7;
Zijp = 7 ( 7 JZ) Vi with Zij = 1
0 with probability mj,/(7j, + 7j,)

ZijQ = 1- Zijl,Vi with Zij =1

where the determinant of the Jacobian of this parameter transformation is: |J| = mj\; /(1 —uy).

APPENDIX B Posterior inference for the number and location

of modes

We treat the number of modes as an unknown parameter and for each draw of the number of
clusters J, we calculate the number and the location of modes. This is applied for both the
mixture of normal and shifted Poisson distributions.

We start as follows. Each draw, m = 1,..., M leads to a value of the posterior density:

J
p(i10") = > p (o™ 7™ (B.6)

j=1
where #(™) is the set of model parameters for the normal or Poisson distribution.

For count data, we calculate the posterior probability of being a mode for integers y =
{g1,..., 9.} on the range [min(y), max(y)] where the modes §ym), ..., ¥ jom) satisfy p(g;em) >
PG — 1) and p(§;0m) < p(fie) where t* = min,;m (P(Fjom) 7 P(@)), 5= 1,...,J.

Similarly, for continuous data, the modes are calculated using a grid of 1000 points within
the data range since usually the number of modes of a mixture of normal distributions with

J > 2 components can not be analytically computed.
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APPENDIX C Estimation of quantiles using simulated data

We report results on the estimation of quantiles of the posterior distributions of simulated data in
Table 3. Figure C1 summaries these quantile estimates and true quantiles. All 90% intervals for
quantile estimates include the true quantile value, hence data quantiles from mixture of Poisson
distributions are accurately estimated from the density estimates. This is important when one

uses such results for a risk analysis.

Figure C1: Quantile estimates for simulated discrete data
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