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Abstract

This study develops a model of water extraction with endogenous social norms.

Many users are connected by a unique shared resource that can become scarce in

case of over-exploitation. Preferences of individuals are guided by their extraction

values and their taste for conformity to social norms which provide incentives to

follow others. As the main result of this study, the uniqueness of the Nash equi-

librium is established under a sufficient condition. Afterward, some comparative

statics analysis shows the effects of change in individual heterogeneous parameters,

conformism, and density of the network on the global quantity extracted. Welfare

and social optimum properties are established to avoid the tragedy of the com-

mons and sub-optimal consumptions of water. Lastly, this theoretical framework

is completed by extensions to highlight levers of water preservation, including the

calibration of social norm incentives.
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1 Introduction

In our daily lives, behaviours are oriented by social norms1 in diverse situations through

consumption norms, regulation of the use of money, reciprocity or cooperation, and even

work norms (Elster, 1989). To cite only a few examples, conformism2 and normative

effects appear in working hours, dress code, courtesy rules, waste sorting but also meal-

times. According to Kreps (1997), the fundamentals of these norms are multiple; they

include peer-pressure effects, coordination between agents and lack of costs. Azar (2004)

suggests norms avoiding over-exploitation of the commons.

Avoiding over-exploitation of the commons is of interest, especially for scarce resources

such as water because norms can sustain vicious or virtuous cycles on environmental issues

(Nyborg, 2020). Heterogeneous spatio-temporal repartition of water and conflicts of use,

escalating with climate change (Ambec and Dinar, 2010), concern the actual use of water

and generate new challenges. Therefore, to avoid transboundary conflicts or more local

distortions, optimisation of water sharing is needed. Game theory researchers have been

exploring the issue by focusing on various types of consumers (farmers, industries, and

households) and territories (Madani, 2010). On cross-border flowing rivers (Ambec and

Sprumont, 2002; Ambec and Ehlers, 2008; Ambec et al., 2013) and on sources (İlkılıç,

2011), the main objective of this theoretical framework is to limit sub-optimal extraction

by reducing the deviations between consumptions and real needs.

Many instruments such as taxes, quotas, or even laws have been implemented to

preserve water, but they are often not efficient enough to prevent overconsumption and

the tragedy of the commons. Barnes et al. (2013) show that sometimes people subject

to regulatory instruments suffer not only from an aversion of responsibility and lack

of knowledge on regulative goals but also high resistance to enforced regulation. To

correct these market failures, some authors (Barnes et al., 2013; Schubert, 2017) focus

on the flourishing concept of nudge that can appeal to other-regarding preferences and
1Many definitions of social norms exist in the literature (see, for example, Elster (1989) and Kreps

(1997)). In our study, we consider the social norm as the average action of neighbours as in the approach
of Ushchev and Zenou (2020). The last part of this study with extensions of the model raises additional
intuitions on the characterisation of this term.

2Conformism in this study follows the definition of Azar (2004), who states that ‘conformist trans-
mission is a tendency to copy the most frequent behaviour in the population, using the popularity of a
choice as an indirect measure of its worth’ (page 50).
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people’s inclination to follow the crowd. Both empirical and theoretical studies have

already emphasised the effects of informational social norm imposed by a regulator on

water consumption (see, for example, Datta et al. (2015)’s study on the influence of

neighbours consumption’s information on domestic water, Chabe-Ferret et al. (2019)’s

study on farmers with social comparison through smart grid consumption, Earnhart et

al. (2020)’s study on social comparison in wastewater treatment facilities and Ouvrard

and Stenger (2020)’s study on a formalisation of informational social norm incentives).

In addition, Bénabou and Tirole (2006) point out that behaviours can be guided by not

only intrinsic and extrinsic but also reputational motivations, which can backfire. For

example, rewards can be low or even negative reinforcers when they exert hidden social

costs (Bénabou and Tirole, 2006). Moreover, economic incentives can reduce effects of

normative messages (Pellerano et al., 2017). As an example, Chabe-Ferret et al. (2019)

observe a "boomerang" effect with an increase of consumption in low-water consumers.

That is undesirable to preserve the resource.

To avoid the limitations of the regulative approach raised in the previous paragraph,

this study aims to offer a theoretical framework on endogenous social norms in water

extraction games. Let us start with a realistic example to get the intuition. Internalised

norms can play a strong role in refining the preferences of water users. Imagine a group

of farmers whose farms are near to each other, who endure the same periods of drought

or abundance of the resource, who know each other, and who discuss their crops and

irrigation practices. A farmer who waters without measurements during a drought will

be singled out by others. Such a farmer will be exposed to shame, low self-esteem,

embarrassment, and guilt, characteristics of the disapproval of others defined by Elster

(1989). Thus, preferences of water extractors consider the way people look at each other,

coordination between agents, wish to make an effort if others do likewise and so on.

This echoed the quote by Gintis (2003) when the author said, ‘internalized norms are

accepted not as instruments towards and constraints upon achieving other ends, but rather

as arguments in the preference function that the individual maximises’ (page 156).

To our knowledge, endogenous social norms’ effect on water extraction is inadequately

discussed theoretically in the literature. To address this research gap, we bridge three
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academic frameworks: social norms, water extraction games, and network theory. While

we already introduced the first two, we now add a few comments on the last one. Network

theory has been widely used in the contribution and the provision of public goods (Allouch,

2015; Bramoullé et al., 2007). As shown by Ballester et al. (2006), some agents can play

a crucial role in behaviours of others and can, in our case, significantly influence the

water extraction in the network of water users. Second, this literature can consider linear

complementarity problems with games, including cross-influences (Ballester and Calvó-

Armengol, 2010). That is, both substitutabilities and complementarities that appear in

water extraction with social norms can be considered.

More formally, we consider a group of heterogeneous agents in a connected network

with no self-loop links, sharing one common water resource. As in İlkılıç (2011), agents

receive a concave benefit from their extraction such that the first units of water are

essential, but as in Ambec and Ehlers (2008), they are also satiable. Additionally, we

rely on İlkılıç (2011) who assumes that agents endorse a convex cost from extraction.

This cost varies with the consumption of others. It introduces substitutabilities between

agents because when one user extracts more, water becomes scarcer and less affordable

for the others, who consequently consume less. The converse is true. Substitutabilities

are sometimes balanced by complementarities coming from normative effects. When an

agent increases (decreases) his or her consumption of water, neighbours will follow this

trend by conformist transmission and also increase (decrease) their extractions. Note that

we consider a descriptive type of norm3 because, as in the work of Ushchev and Zenou

(2020), norms are induced by the network of relations in itself and generate externalities

on agents who deviate from it.

The rest of the paper is as follows. The next section introduces the model of water

extraction with endogenous social norms. The main result of this study, presented in

section 3, is to establish the uniqueness of the Nash equilibrium in a model of water ex-

traction that considers endogenous social norms under a sufficient condition. This section

also characterises the equilibrium. Afterward, comparative statics is provided on the rela-

tionship between individual parameters and global quantity extracted, and the network’s
3In 1990, Cialdini et al. introduced the distinction between injunctive (what ought to be done) and

descriptive norms (what is done); our study considers the second ones.
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density. When water users are under moral constraint conditions, we obtain apparent

results such as direct positive effects of the amplitude of the benefit and direct negative

effects of cost and density of the network on total consumption. Section 5 discusses social

optimum properties such that water users consider the diffusion of their actions in the

whole network. Thus, we consider the social welfare4 and provide a condition for the Nash

equilibrium to be socially optimal. To avoid sub-optimal water extractions, we discuss

the tragedy of the commons when individual extractions at equilibrium exceed the social

optimum ones. Section 6 extends this model by discussing anti-conformism, formalising

the social norm related to the notion of centrality5, public implications and regulatory

intervention. We conclude with the main contributions and limitations of the study. The

proofs are provided in the appendix.

2 A model of water extraction

Consider a territory composed of n agents located around a unique common water pool.

The set of agents, denoted by N = {1, . . . , n}, shares Q units of water that is the total

amount of water extracted from this source (lake, river, . . . ). Each agent i extracts qi

such that the total quantity of retrieved water is the aggregate of individual consumptions,

that is,

Q =
∑
i∈N

qi.

We denote Q−i as the total consumption of all agents except i. Following the work of

Ambec and Ehlers (2008), all agents need at least a minimum subsistence amount of

water; therefore, individual extractions follow a non-negativity constraint. Hence, we

have an interior equilibrium and for all i in N : qi > 0.

As agents are sharing a common pool, they can interact and influence each other on

water allocation. These interactions comprise the set of links between agents (with no

self-loops links) denoted by L. Agent i and agent j are connected if ij ∈ L exists. More

formally, the undirected and unweighted graph g = {N, L} represents social interactions
4This definition is commonly accepted in the literature (Lange, 1942) and has been widely used in

water extraction processes (Ambec and Sprumont, 2002)
5According to Bloch et al. (2019), a centrality measure is a function c : G(n) → Rn

+ where ci(g) is
the centrality of node i in the social network g
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between agents during the water extraction process. The graph includes both a disjoint

set of nodes formed by N agents and a set of links L between them.

Realistically, an agent does not necessarily interact with all others. However, because

they share a common resource, the network is connected and there is no isolated indi-

vidual. Given the interaction structure, let Ni be the set of neighbours of agent i, that

is,

Ni = {j ∈ N such that ij ∈ L}.

We denote ni as the cardinal of Ni; that is the number of agents that i interacts with,

such that ni ≥ 1 for all i ∈ N . Moreover, we write Q̄i, the social norm associated to the

quantity extracted by i’s neighbours, such that

Q̄i =
∑

j∈Ni

qj

ni

= QNi

ni

.

Each agent i has a utility function Ui : Rn
+ → R given by

Ui = αiqi − βi

2
q2

i − γiqiQ − δi

2
(qi − Q̄i)2,

where αi, βi, γi and δi are strictly positive parameters. Note that agent’s preferences are

heterogeneous because water users do not necessarily have the same needs for the resource.

This function is composed of three parts where the first two follow the water extraction

game of İlkılıç (2011) but on a single source. This characterisation follows standard convex

cost and concave benefit functions, widely used in natural resources (Smith, 1968). The

third is a social norm, inspired by the work of Ushchev and Zenou (2020).

First, αiqi − βi

2 q2
i : R+ → R represents i ’s concave benefit associated with the value

of water extraction. The marginal value of extraction is defined by the amplitude of

benefit αi and its depreciating slope βi. Per the incompressible consumption of first units

of water, the marginal value for water extraction, which is linear and strictly decreasing

with respect to individual consumption, is high enough to avoid no water consumption

and corner solutions. This specification is also consistent with the work of Ambec and

Ehlers (2008), which considers satiable agents, such that after an amount of consumed

water, users suffer disutility from additional consumption.
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Second, γiqiQ : R+ → R+ is a strictly convex cost function of extraction that relies

on the total amount of consumed water. The marginal cost γi is defined such that the

price of extraction for an additional unit of water is always more costly than the previous

one. This parameter is sufficiently low to maintain the cost of water affordable for agents.

Realistically, first water units extracted benefit from direct accessibility, better quality, the

abundance of resources, and proximity. Conversely, the more consumption increases, the

more scarce and expensive the resource is due to the lack of accessibility and proximity,

transportation costs, leaks of conveyance, and bad quality. Thus, the convex cost function

is dissuasive and limits the global extraction of water.

Third, the term δi

2 (qi − Q̄i)2 represents the endogenised social norm and consequently

the influence of neighbourhood’s water consumption on the extraction of agent i. Because

water users assume a disutility induced by moral cost to deviate from the norm, they are

influenced by other-regarding preferences. Parameter δi represents the taste for conformity

of agent i such that δi > 0 and Q̄i is the endogenous social norm that varies according to

the structure of the network. The higher δi is, the more agent i is a conformist and has

a moral constraint to follow the others.

3 Equilibrium properties

In the following section, we introduce the equilibrium properties of the water extraction

game presented in the previous model.

3.1 Existence and uniqueness of Nash equilibrium

Each water user chooses to maximise Ui by taking the network structure of relations and

extractions of other agents on the common water source. All of them face the following

optimisation problem:

max
qi

αiqi − βi

2
q2

i − γiqiQ − δi

2
(qi − Q̄i)2

under constraint

qi ≥ 0, ∀i ∈ N.
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Under Nash assumptions, agent i makes his or her own decisions. In contrast, Q−i (quan-

tity of water consumed by all agents except i) and Q̄i are exogenously treated as they

rely on the decisions of other agents. Note that the available extracted amount of water

Q is implicitly limited by the convex cost function, which avoids an infinite quantity.

In this study, matrices are written in upper case and boldface, while vectors in lower

case and boldface. A matrix to the power T denotes its transpose, and I is the notation for

the identity matrix. The maximisation programme of water extractor is associated with

the linear complementarity problem LCP (−α, M), given in the appendix. As shown in

the appendix, if βi

γi
> n − 3, the interaction matrix M is strictly diagonally dominant and

consequently ensures the uniqueness of the equilibrium with q as the vector of individual

water extractions.

Theorem 1. Assume that the following condition holds:

βi

γi

> n − 3 for all i ∈ N. (1)

Then, the water extraction game admits a unique Nash equilibrium.

Several comments on Theorem 1 are in order. First, we do not generalise the results of

İlkılıç (2011), but we consider both positive and negative externalities (complementarities

and substitutabilities, respectively) between agents following the work of Ballester and

Calvó-Armengol (2010).

Second, note that βi

γi
is an inverse ratio of second derivatives of the costs and ben-

efits associated with water extraction. The second derivative of benefits represents the

marginal will to consume more. The marginal benefit is expected to grow slowly when

the extracted quantity increases. Conversely, the marginal cost is expected to increase

rapidly when the extracted water quantity increases. If the evolution of marginal benefits

is higher than the evolution of marginal costs, consumers extract increasingly more water.

On the contrary, if marginal cost variation is really high, this ratio tends to be low, and

agents extract increasingly less water. The variations of this ratio reflect the evolution of

the marginal propensity to consume when the quantity of water extracted varies.

Third, to obtain the unicity of the Nash equilibrium, the agent’s willingness to consume
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has to be high compared to the number of agents. Thus, parameter β for all agents should

balance the number of water extractors included in the network to ensure a sufficient

condition. However, this condition is less restrictive than it seems to be because parameter

γi is low. It has to be little enough to avoid the unaffordable cost of water. Thus, if this

parameter of cost is low enough, the limits of the ratio tend towards a high value

lim
γi→0

βi

γi

= ∞.

The condition of uniqueness is thus easily satisfied because the ratio of propensity to

consume is high and easily exceeds n − 3. It can even happen in really huge networks of

many agents.

Fourth, this condition is sufficient but not necessary so that the uniqueness of Nash

equilibrium is not guaranteed only under it. It can also be established in other cases

without this sufficient condition. Further, it can open the diversity of possibilities for

other examples of networks. This equilibrium is characterised in the following words.

3.2 Characterisation of Nash equilibrium

We investigate the characterisation of interior pure strategy Nash equilibrium, when all

agents consume at least a minimum vital level of water6, as in Ambec and Ehlers (2008).

In case of interior solution, the quantity vector of water extractions is given by

q = M−1α.

However, it is interesting to decompose M to understand all interactions between agents.

The first-order condition of utility maximisation for agent i with respect to qi is given

by
∂Ui

∂qi

= αi − βiqi − γi(qi + Q) − δi(qi − Q̄i) + µi = 0

with µi ≥ 0 and µiqi = 0

where µi is the Karush-Kuhn-Tucker multiplier associated with the positivity constraint
6A relative condition on parameters such that αi > γiQ−i − δiQ̄i
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on water extraction quantities. Note that the implications induced by social norms in the

model are reflected in the first-order conditions such that

−δi(qi − Q̄i) S 0 ⇐⇒ Q̄i S qi.

Thus, in maximising utility, an agent can be in three diverse situations. If (qi −Q̄i) = 0, it

is similar to a standard maximisation programme without social norm and marginal cost

equalling marginal benefit. If (qi − Q̄i) > 0 then the benefit has to compensate both the

cost and the disutility of the social norm induced by overconsumption of water. When

(qi − Q̄i) < 0, then the benefit and social norm externality have to compensate the cost

following a trend of not consuming a lot.

By computing the first-order condition of agent i with respect to qi, we express the

best-reply function for each water user as follows:

qi = αi − γiQ−i + δiQ̄i

βi + 2γi + δi

or equivalently written in matrix form:

q = a − Bq + Cq

where the matrix B represents substitutabilities and C represents neighbourhood’s com-

plementarities. A substitutability effect is induced by the cost of water extraction, which

increases for agent j when i consumes more and vice versa. Conversely, when individuals

influence each other through peer effects, the social norm acts as a complementarity effect.

By conformity, if individual i increases (or decreases) his or her consumption, his or her

neighbour j will be encouraged to do likewise. Thus, the vector of individual extracted

quantities q is given by the following fact.

Fact 1. Assume condition (1) holds and let q∗
i > 0 for all i = 1, . . . , n. Then, the unique

Nash Equilibrium is given by

q∗ = [I − (C − B)]−1a.
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In the following proposition, C > B implies that there exists at least one entry of

matrix C superior to its equivalent entry in B and that all other entries are at least

equal. Let ρ be the spectral radius7 of a matrix.

Proposition 1. Assume condition (1) holds and let q∗
i > 0 for all i = 1, . . . , n. Then,

1. If C > B and ρ(C − B) < 1, the unique Nash equilibrium is given by

q∗ =
∞∑

k=0
(C − B)ka.

2. If C < B and ρ(B − C) < 1, the unique Nash equilibrium is given by

q∗ =
[ ∞∑

k=0
(B − C)2k −

∞∑
k=0

(B − C)2k+1
]

a.

A few comments on Proposition 1 are in order. The first case is a specific one as

long as it concerns only complete graphs such that all of the out-of-diagonal terms in the

matrix are composed of social norms and costs. It happens when the society is composed

of strongly conformist agents and when social norms take the lead on cost effects. For

both even and odd paths between agents, the effects on water extraction are positive, and

complementarities introduced by norms exceed the costs. This situation is more plausible

in small networks when everybody knows and talks to each other. In this case, water users

are more likely to influence their neighbours’ consumption and create spill-over effects.

The second case corresponds to a weak conformist society where the costs assumed

by agents are predominant compared to social norms. Because C < B, the positive

sign associated with the first sum implies that the equilibrium extraction from a link is

negatively related to the even links that start from it. These strategic substitutabilities

are coming from costs. Conversely, the negative sign behind the second sum for odd links

induces complementarity effects between nodes that come from the normative conformism

effects. Thus, complementarities are overtaken by substitutabilities induced by costs. This

characterisation of norms highlights an alternance, depending on the degree and number of

walks between the agents. Neighbours connected by an even number of links are influenced
7Let us consider an arbitrary matrix M; the spectral radius of this matrix denoted by ρ(M) is given

by the largest modulus of its eigenvalues.
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by strategic substitutabilities, while odd links between agents are more influenced by the

social norm, which implies strong complementarities. This result highlights the role of

intermediary agents who can balance the effects between non-neighbours.

Remark 1. If we cannot conclude on the predominant effect between substitutabilities

and complementarities for all agents, then we cannot give a global characterisation of q.

Some elements of the matrix alone are non-negative.

Thus, in that case, it depends on the individual but not general conclusions. If an

individual is characterised by a very strong social norm influence, it will outweigh the

cost. q depends on individual heterogeneous parameters and the positioning within the

network behind the construction of the interaction matrix.

Conditions required in the previous proposition state that spectral radius of matrices

(C − B) and (B − C) (respectively for cases 1 and 2) have to be lower than 1 to follow

the Perron-Frobenius theorem since matrices are non-negative. The highest eigenvalue

increases if the network expands. However, following the Gershgorin theorem, all eigen-

values of the matrix are contained in a circle of radius. This implies that, in the first case,

when C > B, the differential values between complementarities and substitutabilities

are sufficiently low and complementarities over-compensate the cost. In the second case,

when C < B, the values of substitutabilities are not sufficiently low to be compensated

by complementarities, but the difference between the two stays small. Following the work

of Ballester and Calvó-Armengol (2010), the spectral radius is an increasing function of

networks links’ intensity. In the first case, all out-of-diagonal terms are composed of both

complementarities and substitutabilities. Each agent is connected to others to make the

network dense and regular. On the contrary, in the second case, the complete network is

a particular case, such that the network is most likely to be less dense and regular and to

have a lower spectral radius.

In conclusion, the effects of norms on water extraction have complex implications.

To avoid sub-optimal consumptions and over-exploitation of the resource, it is necessary

to avoid destructive effects of norms, which lead to an increase in water consumption

and tragedy of the commons. The following section determines the effects of individual

parameters and network’s influence on the global quantity extracted.
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4 Comparative statics analysis

Relying on comparative statics analysis of the Nash equilibrium, this section aims to

understand the properties of the model through the effects of heterogeneous individual

parameters, conformism, and density of the network on global water extraction.

In the following results, we consider ei = δi

βi + γi + δi

, which is the moral motivation

of agent i to extract water. This parameter pertains to ]0, 1[ and relies on taste for con-

formity. A value close to one indicates a highly conformist behaviour under strong moral

constraint. On the contrary, a value close to zero indicates a weak moral constraint in-

duced by other-regarding preferences such that conformism is not prioritised in individual

decisions. In this case, we observe individualist behaviours. Note that as γi is necessarily

low, the value of this moral motivation depends on the relative values of δi and βi. If the

slope of marginal benefit is high, it implies a low moral motivation regarding the others

because individual interests increase and conversely so.

4.1 How individual parameters influence water extraction

Let us start with the amplitude of benefit αi from water extraction.

Proposition 2. Assume condition (1) holds and let q∗
i > 0 for all i = 1, . . . , n. Suppose

the following condition also holds:

∑
i∈N1

ei

ni

= . . . =
∑

i∈Nn

ei

ni

. (2)

Then, the change in total water consumption resulting from a change in amplitude of

benefit for any agent i is given by

dQ = σidαi

where σi > 0.

Before studying the effects of the amplitude of benefit directly, let us discuss the second

condition required for all static comparative results. Condition (2) refers to ponderated

moral motivation that relies on the number of neighbours. For instance, equality between

sums can appear when an individual has more neighbours with a huge moral motivation,
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and another only a few neighbours with a small moral motivation. This equality can

also occur if the moral motivation of agents match and they have the same number

of neighbours (cardinal number of neighbours). Thus, this ratio highlights the moral

motivation with respect to the structure of the neighbourhood in the network of relations.

If this condition does not hold, we cannot conclude. The effect of variations of a parameter

on the total water extraction can be positive, negative, or null.

Remark 2. Suppose that for all agents i in N , the parameter of taste for conformity δi is

null. Then condition (2) always holds because the moral motivation ei for all agents i in

N turns out to be equal to zero.

This remark applies to all propositions of comparative statics. When agents do not

care about the social norm, only condition (1) is required for the following propositions.

Considering the individual amplitude of benefit, we observe a direct positive effect of

a change in this parameter (αi) on the change in total water consumption. This result is

apparent and intuitive. An increase in the benefit amplitude for an agent will induce an

increase in water consumption and consequently raise the total water extraction.

We now focus on the effect of the slope of marginal benefit βi on extraction outcomes.

Proposition 3. Assume condition (1) and (2) hold, and let q∗
i > 0 for all i = 1, . . . , n.

Then, the change in total water consumption resulting from a change of the slope of the

marginal benefit for any agent i is given by

dQ = −σiq
∗
i dβi

where σi > 0.

The direct effect of a change in the slope of marginal benefit (βi) negatively impacts

the change in total water consumption. In the individual utility function, the higher this

slope, the more the value of an additional unit of water is depreciated. Thus, it is intuitive

to notice that a change in this slope induces a direct negative effect on the change in total

water extraction. In addition, note that this negative effect increases with the value of

extracted water at equilibrium for an agent i. The more agent i extracts at equilibrium,

the more a change in the slope of marginal benefit will impact the total water extraction.
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An agent i with a high level of consumption can significantly impact the total water

extracted.

Now we look at the impact of the cost effect on individual and global water extraction.

Proposition 4. Assume condition (1) and (2) hold, and let q∗
i > 0 for all i = 1, . . . , n.

Then, the change in total water consumption resulting from a change of the slope of

marginal cost for any agent i is given by

dQ = −σi (Q∗ + q∗
i ) dγi

where σi > 0.

Under linear mapping simplification of moral constraints, the direct price effect of

a small change in the slope of marginal cost (γi) negatively impacts the total water

consumption. This result seems logical insofar as a variation in the slope of the marginal

cost will have an impact on the direct benefit derived by agent i from water consumption.

The higher the cost of an additional unit of water, the less incentive an individual will

have to extract water. Furthermore, this change in total water extraction is positively

impacted by the quantity extracted at equilibrium by agent i and the entire structure of

the network of water users. The cost of first water units is lower because it benefits from

direct accessibility, proximity, and availability of the resource. Thus, if the individual

quantity of any agent i and the general quantity extracted at equilibrium increase, it

amplifies the negative direct effect of a variation of the slope of marginal benefit on the

total water extraction, leading to a direct negative impact of a change in the slope of the

marginal cost on the change in the total water extraction.

This expected negative direct price effect on global quantity should, however, be dis-

cussed more extensively. If moral constraints do not follow condition (2), a more complex

mechanism of interactions can arise and can be decomposed in the following steps:

• A direct negative impact of an increase in the price for one agent decreases his or

her consumption and, consequently, the global quantity.

• Neighbours of this agent have an incentive to follow this line and also decrease their

water consumption because of conformity to the norm.
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• However, if many agents decrease their consumption, water will be more accessible

and cost less.

• This reduction of cost and water accessibility encourages agents, even the first agent

previously impacted by the cost effect, to increase their consumption.

Thus, depending on the predominant effect, a price increase can also lead to more con-

sumption. This effect of cost should be treated cautiously.

4.2 Does a conformist society extract more water?

This subsection focuses on the eagerness of taste for conformity δi on individual and global

outcomes of water extraction.

Proposition 5. Assume condition (1) and (2) hold, and let q∗
i > 0 for all i = 1, . . . , n.

Then, the change in the total water consumption resulting from a change of the taste for

conformity for any agent i is given by

dQ = σi

(
Q̄∗

i − q∗
i

)
dδi

where σi > 0.

The change in taste for conformity for any agent i impacts the change in the total water

consumption in two ways that induce an ambiguous effect. This direct effect is positively

related to the value of the social norm of agent i. A change in taste for conformity

– for instance, an individual i is more conformist – induces a positive change in the

total water extraction that is amplified through the value of his or her social norm.

A high social norm, by conformity, will incentivise individual i to increase his or her

consumption. With peer effects, it is the total quantity of consumed water that will

increase. Conversely, the change in taste for conformity induces a negative direct effect

of the total water consumption directly related to individual extraction of agent i at

equilibrium. The higher the individual extraction of agent i, the higher the negative

impact of a change of his or her taste for conformity on total water extraction. Thus, this

ambiguous effect of taste for conformity offers two configurations. The first one occurs if
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the social norm of agent i exceeds the agent’s consumption at equilibrium (Q̄i
∗ − q∗

i > 0).

A change of taste for conformity induces a positive change in the total water extraction.

Agents want to conform more to the norm due to the variation in the taste for conformity

and imitate others, thus raising the total consumption. The second configuration occurs

if the individual consumption of agent i exceeds his or her social norm at equilibrium

(Q̄i
∗ − q∗

i < 0) and induces a negative change on the total water extraction. Here, the

change in taste for conformity negatively affects the total water extraction because user i

is a huge water extractor. If the agent increases his or her taste for conformity, he or she

will follow others, thus reducing his or her extraction and consequently the global one.

4.3 Do users extract more water in denser networks?

In this section, we investigate how the creation or the deletion of a link between two

network agents influences water extraction.

Proposition 6. Assume condition (1) and (2) hold, and let q∗
i > 0 for all i = 1, . . . , n.

Then, the change in total water consumption resulting from the addition or the deletion

of a link between any two agents i and j is given by

dQ = −σ

(
ei

ni

Q̄∗
i dni + ej

nj

Q̄∗
jdnj

)

where σ > 0.

This proposition shows that in any network, we can observe a negative effect of a

change in the network’s density on the total water consumption. This negative effect

increases with the respective moral motivations of agents i and j denoted by ei and ej,

but also by their respective social norm values at equilibrium. The more their neighbours

extract the resource, and they have a moral motivation to follow them, the more the

direct negative effect of a change in density on total water extraction is important. On the

contrary, if the cardinal number of neighbours for i and j is high and agents are much more

connected, this direct negative effect would be less important. This is understandable

because if they are already a lot of links in the network, the creation or the deletion of

one link will only have a slight effect on the total water extraction.
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We studied the effects of individual parameter variation, conformism strength, and

density of the network on the total water consumption. The following section provides

more details on how agents can reach a social optimum configuration.

5 Welfare and social optimum properties

We now analyse social optimum properties in the case of interior solutions. In this study,

we consider social welfare denoted by W as the sum of individual utilities given by:

W =
∑

i=1,2,...,n

Ui.

Here, social welfare represents the aggregated satisfaction of agents coming from their

extraction of water. Thus, the maximisation problem of society’s welfare from water

extraction is given by

max
qi

n∑
i=1

[
αiqi − βi

2
q2

i − γiqiQ − δi

2
(qi − Q̄i)2

]

s.t. qi > 0, for all i in N .

The next proposition introduces a characterisation of the first best extraction of water.

It also provides a condition for the Nash equilibrium to be the first best.

Proposition 7 (First best). Let qo
i > 0 for all i = 1, . . . , n. Then,

1. For each agent i, the first best extraction of water qo
i is a solution to

qi =
αi − γiQ−i + δiQ̄i −∑

j ̸=i γjqj +∑
k∈Ni

δk

nk
(qk − Q̄k)

βi + 2γi + δi

or, in a matrix form,

q = a − Bq + Cq − Nq.

2. If condition (1) holds and q∗
i > 0 for all i = . . . , n, the unique Nash equilibrium is

socially optimal, i.e., q∗ = qo, if and only if the following condition holds:

N [I − (C − B)]−1 a = 0.
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Part 1 of this proposition highlights the difference between Nash equilibrium and

optimum best answer. Compared to the Nash equilibrium, this first best answer has

two additional terms, also represented by the addition of the N matrix. With social

optimum, agents care about the diffusion of their influence in the network on the choices

of others. The first additional term, denoted by ∑
j ̸=i

γjqj represents the negative impact

of cost induced by others’ extraction from the common pool. The higher this sum of

individual costs assumed by others is, the lesser the amount of water individual i extracts

at social optimum. The second additional term, denoted by ∑
k∈Ni

δk

nk
(qk − Q̄k), corresponds

to the social norms deviations of all neighbours of agent i. For each agent k that is a

neighbour of agent i, it sums the deviation between k’s extraction and his or her respective

social norm, ponderated by his or her taste for conformity. Thus, two configurations

appear. First, if (qk − Q̄k) is positive, for instance, agent k extracts more than the mean

consumption of his or her neighbours, the quantity extracted by agent i is positively

impacted. As k is part of i’s neighbourhood, if his or her consumption is high, agent

i will have an incentive to do likewise. Secondly, if (qk − Q̄k) is negative, for instance,

agent k extracts less than the mean consumption of his or her neighbours, it will impact

negatively the quantity extracted by i at social optimum. Agent i will get closer to his

or her neighbours and thus decrease consumption to follow this line. This last term is a

sum of δk

nk
(qk − Q̄k) across all neighbours of agent i. Thus, some neighbours can be in the

first configuration and others in the second one. One effect of this social norm prevails

on the other and influences positively or negatively the first best extraction at optimum.

We also observe a snowball effect from the indirect social norm because this effect relies

on the social norms of neighbours and thus two degrees connections from i, going by the

intermediary of k.

In conclusion, at the Nash equilibrium, when agents decide their best level of water

extraction, they do not consider the positive or negative externalities induced by their

extraction on others’ satisfaction. On the contrary, at social optimum’s first best, agents

consider costs assumed by others and their influence through direct and indirect social

norms. The focus on society’s welfare implies that each individual’s choice of water

consumption depends on his or her impact on the rest of water extractors through con-
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sumption costs, and direct and indirect norms of the others. For instance, in a group

of domestic consumers or farmers, it implies that people will care about others, show

altruism to ensure that everybody can afford some water, and care about other-regarding

preferences and self-image.

The second part of proposition 8 provides a condition on the matrix such that the

extraction quantities at the Nash equilibrium are identical to those extracted at social

optimum. This condition relies on the matrix N, which introduces the consideration of

others’ utility in the maximisation problem. It needs precise parameters adequation and

could thus be uncommon to hold. Still, water extractors can reach the vector of individual

extracted quantities at the social optimum q, given by the following Fact 2. It not only

relies both complementarities C and substitutabilities B but also on N, which represents

interactions induced by the consideration of society’s welfare.

Fact 2. Let qo
i > 0 for all i = 1, . . . , n. Then, the social optimum is given by

qo = [I − (C − B) + N]−1a.

To respect individual social welfare and implement a fair division of the resource,

over-exploitation by some water users must be avoided. Otherwise, as they all extract

on a single shared resource, it can lead to a tragedy of the commons that deteriorates

the water resource. The definition of the tragedy of the commons introduced by Hardin

(1968) is taken in its strong sense, meaning that all agents over-extract from the common

water pool. Thus, for all agents i in N , the individual extraction at equilibrium exceeds

the one at social optimum. For instance,

q∗ >> qo.

The following proposition states a condition for the tragedy of the commons to hold.

Proposition 8 (Tragedy of the commons). Assume condition (1) holds. Let q∗
i > 0 and

qo
i > 0 for all i = 1, . . . , n. If C > B, ρ(C − B) < 1 and the following condition holds:

∑
j∈N\{i}

γjq
o
j −

∑
k∈Ni

δk

nk

(
qo

k − Q̄o
k

)
> 0 for all i ∈ N, (3)
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then, in equilibrium, each agent overconsumes water compared to the first best.

Remark 3. Consider that condition (3), in the previous proposition, is reversed such

that the difference between the two sums is negative. Then, in equilibrium, each agent

underconsumes water compared to the first best.

This proposal considers all agents that form the extraction network, with positive

extractions at (unique) equilibrium and social optimum. We observe a tragedy of the

commons when condition 3 applies to all of them. This condition requires that for each

agent i, the difference between the sum of costs assumed by all agents except i ponderated

by their optimal individual quantity of extraction and the weighted sum of the differences

for each of his or her neighbours between their equilibrium quantity and their social norm

is positive. In this case, agent i overconsumes. Doing the same for all agents i, we

obtain that all of them overconsume at an individual scale, and thus a tragedy of the

commons in a strong sense occurs. Tragedy of the commons is an usual outcome of water

extraction games and natural resources (Hardin, 1968; İlkılıç, 2011). However, proposition

8 requires that complementarities underpass substitutabilities, which can happen only in

complete graphs. In case of B > C we cannot generalize the results. Thus, some agents

overconsume and some others underconsume water. This under-consumption may be due,

for example, to a lack of suitable agricultural infrastructure for farmers, or to hanchored

consumption habits for households. It therefore takes time to adapt these consumptions to

real needs. Now that we have discussed welfare and consumption optimality, the following

section extends our model.

6 Extensions

6.1 Anti-conformism

This extension follows the model settings of Ushchev and Zenou (2020) where the social

norm is ponderated by the taste of conformity of agents. We now consider anti-conformists

behaviours of water extractors such that δi < 0 represents the taste for non-conformity.

The amplitude of this parameter indicates the will of an agent to distinguish himself

or herself from others. For instance, this can happen when individuals have strong,
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anchored habits in water consumption or even when keeping a good self-image when they

do not consume a lot. Instead of complementarities, the social norm here acts now as

substitutabilities. Thus, when a neighbour of agent i increases his or her consumption of

water, agent i has an incentive to decrease his or her consumption and deviate from the

norm.

Proposition 9. Assume condition (1) holds and let δi < 0 for all i = 1, . . . , n. Suppose

that the following condition also holds:

βi + 2γi > −δi for all i ∈ N.

Then, the water extraction game admits a unique Nash equilibrium.

As long as agents are not too anti-conformists, our model with a unique Nash equilib-

rium can be extended to the case of non-conformity. Thus, we observe higher differences

between individual extraction, as homophily is not the rule anymore. The relative value

of taste for non-conformity (δi) has to be sufficiently low compared to βi. Otherwise, we

cannot prove the uniqueness of the equilibrium. In the case of slightly non-conformist

agents, most of the equilibrium analysis still holds, but it implies new interpretations of

the results. For instance, equilibrium’s best-reply function (given in part 3.2) states that

agent i’s consumption relies positively on the amplitude of individual benefit, which is

now balanced both by cost and social norm. When others extract more, i will extract less

to deviate from others and avoid unaffordable costs.

One major concern of this extension compared to the approach of Ushchev and Zenou

(2020) is that the complementarities induced by cost effects included in individual deci-

sions are even accentuated with these anti-conformists behaviours. Non-conformity acts

as a reinforcer of cost-effectiveness. When an agent i increases his or her consumption,

his or her neighbour j will be doubly influenced to decrease his or her consumption: both

because the cost of water increases due to scarcity and deviates from the behaviour of i.

More generally, degrees of conformism can have a really strong influence on water

consumption. To discuss it further, we can distinguish four main situations and make a

parallel with the approach of norms of Schultz et al. (2007) who distinguish constructive,
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destructive, and reconstructive effects of norms. The first one occurs when an individual

i, a less-water-consumer, increases his or her extraction to get closer to others, weakening

the water resource. This is defined by Schultz et al. (2007) as the destructive effect of

norms. Another situation happens when individual i is a conformist and a high consumer

among low ones. In this situation, we observe a constructive effect such that the agent will

decrease his or her extraction to get close to the others, preserving more of the resource.

A third situation considers an anti-conformist agent i in a high consumer group that

will have an incentive to consume less water quantity to deviate from the others. This

effect is a reconstructive one. The last situation occurs when a non-conformist agent is

among less-water-consumers and is incentivised to increase his or her consumption, as

a free rider behaviour. In this situation, i enjoys affordability and disponibility of the

resource given that others do not extract a lot on the common resource. This elicitation

on various situations and effects of conformism show that it could play a strong role in

the preservation of water resources.

6.2 Reference consumption

This extension presents two different situations in which the reference consumption is

not the social norm anymore but a ponderated one. In the first situation, agents have

an incentive to behave virtuously and tend towards a lower consumption than the norm.

The second situation is the opposite of the first. Agents have an incentive to free-ride and

benefit from extracting more than the social norm. In our case, adding a ponderation on

the social norm will not significantly change the results and demonstration of the Nash

equilibrium’s uniqueness except that it introduces a parameter behind social norm in the

disutility of agents to diverge from the norm.

To address this issue, let us extend the utility function of agents such that Ui : Rn
+ → R

is given by

Ui = αiqi − βi

2
q2

i − γiqiQ − δi

2
(qi − λiQ̄i)2,

where 0 < λi < 1 is the reference ponderation factor of the norm for agent i in the

first situation. The reference consumption is thus lower than his or her social norm

consumption. In the second situation, λi > 1 such that the reference consumption is
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higher than the social norm consumption. Note that in the case of λi = 1, we note no

difference from our standard model.

Characterisation of the equilibrium includes a ponderation from the reference con-

sumption. It slightly modifies the results. However, as this ponderation is positive and

only ponderates complementarities, the equilibrium consumptions follow the same lines

as above. Thus, best-reply-function for each individual i at equilibrium is now given by

qi = αi − γiQ−i + λiδiQ̄i

βi + 2γi + δi

Equivalently written in matrix form :

q = a − Bq + ΛCq

where Λ is a dimension n × n matrix such that

λi,j =


0 for i = j or for (i ̸= j and j /∈ Ni)

λi for i ̸= j and j ∈ Ni.

The matrix M stays a P-Matrix with a positive ponderation on the norm that can

influence up or down the reference consumption. It follows the same line of proof of

Theorem 1, but this time with a λi parameter before the taste for conformity that still

ensures the uniqueness of the equilibrium.

Depending on whether λi is lower or higher than one, interpretations of the results

are slightly modified as defined for each case in the following words.

6.2.1 When agents follow injunctive norms

Our model focuses on what is done by others (descriptive norm) but not on what must be

done (injunctive one). However, the literature shows that it can be interesting to combine

both of them (Le Coent et al., 2021). People know that water is an important and scarce

resource that has to be preserved. Thus, it seems realistic to assume that agents may be

incentivised to diminish their consumption for environmental motivation. To discuss this

point, we introduce a reference consumption that people could follow and that is lower
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than what their neighbours are doing. In this first case, agents are thus incentivised to

follow a lower reference than the social norms of neighbours.

This influences the interpretation of the model. In the best-reply function with pon-

deration of social norm, compared to the standard model, the positive impact of the social

norm on individual consumption (given by λiδiQ̄i) is depreciated. It encourages less i to

consume water. More generally, the matrix Λ weights down each of the existing comple-

mentarities introduced by social norm. It guides towards a low consumption of water,

which is seen as beneficial for the preservation of the resource.

Thus, based on a reference consumption point, this extension details the case when

individuals, for ecological reasons, have an incentive to diminish their water consumption

and preserve the resource, following an implicit injunctive norm.

6.2.2 When agents free-ride

This part follows the same line as the previous, but it takes the opposite direction and

focuses on free-riding behaviours (see Grossman et al. (1993) for an empirical example of

such behaviours). It follows the approach of Ushchev and Zenou (2020), who studied the

ambition of agents. In our case, as we focus on the water, it corresponds to a situation in

which agents may benefit from extracting more water than the average consumption of

their neighbours. If all agents extract little, water would still be affordable for an agent

i who would have an incentive to consume a lot and even to overexploit the resource

without paying exorbitant costs in exchange.

The reference consumption of agents is now amplified and exceeds the mean value of

neighbours’ consumption. In the best-reply function, with over ponderation of the social

norm, the positive impact of the social norm on individual consumption (λiδiQ̄i) is high

and encourages i to consume more water.

More generally, the matrix Λ weighs up individual consumption of water as it in-

centivises to exceed social norm’s consumption of water. It induces over-exploitation

and free-riding behaviours, which are problematic for the preservation of the resource.

Thus, this second situation details free-riding effects when agents do not fairly exploit the

resource and do not bear a cost commensurate with the degradation of the resource.
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To conclude on this extension, we show that the uniqueness of the Nash equilibrium

persists when we change upwards or downwards the normative reference point. In the first

case, people tend to decrease their consumption compared to the norm for environmental

reasons. In the second case, agents benefit from the access to water at a low cost. They

have an incentive to deviate from the norm to increase their consumption at an affordable

price, overexploiting the resource.

6.3 Characterisation of social norms

Until now, we have focused on social norms as the mean value of neighbours. Mean

value norms have been widely used in the academic literature (Ushchev and Zenou, 2020)

and also in experimental fields (Bernedo et al., 2014; Datta et al., 2015). However, this

measurement presents limitations. First, only direct neighbours with one-degree connec-

tion reference the social norm. The diffusion process and positioning in the complete

architecture of the extraction network is neglected. Secondly, we notice a smoothing of

consumptions of neighbours briefly discussed by Ushchev and Zenou (2020) following a

study on graduates. The mean value of the norm does not reflect variations between

consumers and provides smoothed incentives for agents. For instance, in France, people

use approximately 150 litres of tap water each day. However, this mean value could be

composed of consumers who extract 130 and 170 litres or 100 and 200 litres. The last

two situations will provide the same social norm while the reality of consumption is very

different. Thirdly, mean value norm points the finger only on huge consumers while it

can be interesting to consider relative performance to target all of them (Brent et al.,

2020). To palliate these limitations, this extension offers various suggestions to adapt

norm’s measurement. For more salience, we discuss the effects of each specification with

examples on four agents. Our discussion allows covering a huge diversity of social network

structures. Circular (G1), complete (G2), linear (G3), irregular (G4), and star networks

(G5) are represented in the following figures.
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6.3.1 Social norm based on variance

We first suggest a representation of social norm based on variance with other water ex-

tractors such that

Q̄i =

∑
i ̸=j

(qj − qi)2

ni

.

To consider all variations between agent i’s consumption and his or her neighbours’ con-

sumption, variance catches more variability and does not suffer from the smoothing of
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consumptions reproached to mean values.

Here, if an agent deviates upwards or downwards from his or her neighbours’ quantity,

he or she is subject to externalities from non-conformity. Thus the disutility induced by

variations (both upwards or downwards) leads to homophily between agents who want to

conform to the others.

The application of such a norm on an example with four agents is provided in the

appendix. This norm palliates to the smoothing of variability between consumptions of

water but still does not consider the global structure of the network. A third measure

aims to correct the limit by introducing some weak ties in normative effects.

6.3.2 Strength of weak ties on water consumption

Developed by Granovetter (1973), the concept of strength of weak ties relies on the im-

portance of intermediary agents and central positions of individuals. Torres and Carlsson

(2018) show that direct effects of social information on water savings are coupled with

spill-over effects on untargeted agents and that there is a strong diffusion of social incen-

tives among people. In their paper, Minato et al. (2010) study the management of lands

and natural resources in a changing rural community and highlight that ‘key players in the

community have many connections and a strong influence to initiate (or resist) change’

(page 399). They discuss the central position of some agents (due to seniority, knowledge,

roles,...) in diffusion processes and their strong influence on natural resource management.

This approach considers both influential and peripheral stakeholders. There is a trend to

get close to popular and central ones. To preserve water, these key agents should adopt

virtuous behaviours for the resource, expecting that others will follow them and reduce

waste.

Herewith, we develop another measurement of the social norm, which takes roots in

the eigenvector centrality defined by Bonacich (1972). The centrality of the node i is

proportional to the sum of centralities of neighbours of this node, considering weak ties

for each water extractor. Consequently, this measurement of norms depends on indirect

neighbours with a degree connection equal to or higher than one. For instance, we can
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state that

Q̄i =

∑
i ̸=j

njqj∑
i ̸=j

nj

, ∀j ∈ Ni

where we divide the quantity ponderated by j’s degree centrality for each j by the cardinal

of j’s neighbours for all agents. This characterisation of the norm allows considering a

centrality of two degrees.

The application of such a norm on an example with four agents is given in the appendix.

It shows that in regular networks, these norms are equal to the mean value because all

agents have an identical degree of centrality n − 1. In addition, on an irregular network,

there is a stronger influence of closely connected neighbours because their centrality and

popularity are higher. To complete this measurement, we can suppress the constraint

that j is in Ni.

6.3.3 Closeness of social norms in the complete network

Another measurement of a social norm that we would like to discuss relies on the paper

of Datta et al. (2015), which shows that city comparison involves fewer effects than the

neighbourhood one. These low effects come from the lack of proximity between agents

in the first case. A more recent field study based on the reduction of shower time in the

context of water scarcity was conducted by Lede (2019). This study shows empirically

that ingroup norm appeals are more effective than general ones because social identity to

the closest group is stronger. Theoretically, this idea is defined by a social norm where

the water extraction process of agent i is guided by the choices of all the agents who

compose the connected network but also length of paths between them. It takes roots in

the closeness and Katz Bonacich’s centrality measurements (Katz, 1953; Bonacich, 1987).

The closeness’ centrality is based on distances in the network between one node and

another such that a high score induces a low centrality. Herewith, we consider that the

more the distance between node i and another node is high, the lower is its influence on i’s

water consumption. This following characterisation of centrality also presents similitudes

with the Katz Bonacich (1953, extended in 1987) centrality, which states that centrality

relies on the number of walks from node i and their length. We could imagine a calculation
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of the norm such that

Q̄i =

∑
i ̸=j

δjqj∑
i ̸=j

δj

for all j in N so that the higher the length between i and j, the less δj is important. We

consider all j of N , that is, the complete structure of the network.

The application of this kind of norm on an example with four agents is given in the

appendix. Let us reconsider our examples of four agents. In all cases, as the social norm

considers the entirety of the network, for all j in N: Q̄j = δkqk+δlql+δmqm

δk+δl+δm
but what differs

is the value of all δ parameters, which would be higher for closer neighbours. Note that

when we consider a complete graph, the length between all agents is the same, and thus

social norm measurement is equivalent to a simple mean norm over all the graphs.

6.3.4 General comments

If we consider a complete graph, some similarities between kinds of norms appear. Various

reasons can explain them. First, the number of connections of each agent is identical and

equals to n − 1, that is, the total number of agents except the one referred to. Thus, it

follows that for all i in N , ni = nj = |Ni| = n − 1. Moreover, in a complete graph, all

agents are directly connected to each other such that for all i in N , QNi
= ∑

i ̸=j
qj. In this

special case of a complete graph,

QNi

ni

=

∑
i ̸=j

njqj∑
i ̸=j

nj

=

∑
i ̸=j

δjqj∑
i ̸=j

δj

=

∑
i ̸=j

qj∆j

ni

⇐⇒ QNi

n − 1
=

∑
i ̸=j

(n − 1)qj

(n − 1)2

However, a complete graph is scarce in reality except in small networks and towns

where all agents know each other. In this case, only peer comparison can apply to every-

body in the city on water consumption. To compare the previous norm calculations, the

following table offers a summary:
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Implications on water extraction Main characteristics Associated
centrality
measure

Part of the net-
work included

Limits

Mean
value

In a group of high consumers,
there is a destructive effect (high
consumption) and contrarily a
constructive effect in a group of
low consummers.

Q̄i = QNi

ni

Degree cen-
trality

Direct relations
(one degree
links)

Incomplete network that do
not consider global con-
sumption and smoothing of
influences from neighbours

Variance Homophily between agents to
decrease the desutility of non-
conformism

Q̄i =

∑
i ̸=j

(qj − qi)2

ni

Degree cen-
trality

Direct relations
(one degree
links)

Incomplete network that
does not consider global
structure of extraction

Strength of
weak ties

Importance of intermediary and
central agents. If key agents are
virtuous, it decreases water con-
sumption, otherwise it results in
overconsumption

Q̄i =

∑
i ̸=j

njqj∑
i ̸=j

nj

Eigenvector
centrality

Indirect links
and intermedi-
ary (two degrees
links)

Structure of network lim-
ited to some indirect links.
On regular networks it is as
mean value so it smoothes
influences.

Closeness
social
norms

Proximity between agents higher
their influences on each other. In-
dividuals follow close neighbours
and if they are low consumers, it
decreases consumption.

Q̄i =

∑
i ̸=j

δjqj∑
i ̸=j

δj

Closeness
and Katz
Bonacich
centrality
measures

Complete net-
work

If close neighbours are high
consumers it influences oth-
ers to follow overconsump-
tion

Table 1: Synthesis of norms
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7 Concluding comments

This study analyses impacts of social norms in a model of water extraction where hetero-

geneous agents share a single common resource. As proposed by İlkılıç (2011), individual

utility functions are composed of a concave benefit of extraction and a convex cost, which

relies on others’ consumption. To refine these preferences, we add social norms and other-

regarding considerations using the term of taste for conformity inspired by Ushchev and

Zenou (2020). The main result of this study is to establish the uniqueness of the Nash

equilibrium under a sufficient condition. As in Ushchev and Zenou (2020), this result

holds when agents are slightly anti-conformist. The result allows considering various situ-

ations. Conformism occurs when agents care about peer-pressure effects, fairness of water

sharing, homophily, and trends effect. It also allows considering small deviations from

the norm because of anchored habits of consumption, self-image, or even free-riding be-

haviours. Thus, this model offers an operational framework to study equilibrium water

consumption.

Afterward, the study provides comparative statics analysis to understand the effects

of individual parameters and global consumption of water. Some intuitive conclusions

include the positive direct effect of an increase in amplitude extraction value on the global

extraction or a direct negative effect from an increase in the price. However, some effects

concerning the taste for conformity are more ambiguous. This echoes the literature on

social norms, which highlights constructive, reconstructive, or destructive effects (Schultz

et al., 2007). More specifically, in the case of water, ambiguity can also come from

geographical delimitation where proximity often encourages the collective reduction of

water consumption (Datta et al., 2015).

As water is a scarce but necessary good, this study also offers insights into social welfare

and optimal water consumption. Water users consider the impacts of their consumptions

on others’ satisfaction and spill-over effects of norms. Additionally, we provide a condition

for the Nash equilibrium to be socially optimal and avoid the tragedy of the commons.

Investigation is crucial to preserve the resource.

As the effects of the norm and peer pressure can strongly impact people’s behaviour,

the last part offers extensions of this model to discuss any situations, such as, when some
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individuals turn to be anti-conformists or free riders. In addition, norm incentives have

been widely seen as mean values of neighbours’ consumption in the academic literature

(Ushchev and Zenou, 2020) and also in experimental fields (Bernedo et al., 2014; Datta et

al., 2015). However, these norms based on mean value have limitations. Hence, this study

also discusses formalising these standards and shows how they can influence water con-

sumption, and discusses other types of norm measurements. Here, we deliberately focus

on endogenous social norms as they are inadequately studied elsewhere in water theo-

retical frameworks. However, this discussion on formalising norms also offers interesting

patterns for exogenous norms (for instance, the information provided by a regulator).

Some types of social norms are more appropriate to target other types of consumers.

This study also raises other research questions. First, the endogenous structure of

the graph stems from the consideration of water resources and the domestic extraction

process. In real life, people do not choose their living place or farming area depending on

the water extraction of their neighbours but mainly on other criteria. Thus, the network

in itself is already imposed on people and consequently, at least partly, on the social

norm. However, an external regulation from public authorities or water firms can play

a crucial role and generate links to raise collective awareness among water users. An

additional regulatory intervention could influence the network structure with incentives,

taxes, and connections to avoid sub-optimal consumptions. The second perspective of

research is open on the formalisation of norms. This study focuses on descriptive norms,

but injunctive ones could also be appropriate. There is a common awareness regarding

the need to preserve the resource and consume sustainably. This goes hand-in-hand with

further research on complementarity between normative incentives and other regulative

tools. A third limitation to the study is that it focuses on theoretical aspects of the

model. It could be interesting to also try applying the model with empirical simulations

and agent based models to provide new insights into endogenous norms in networks.
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8 Appendix

The first order conditions define the following linear complementarity problem (Cottle et

al., 2009). For all i = 1, . . . , n, the problem is to find an extraction qi ≥ 0 which satisfies

the system 
qi ≥ 0

αi − βiqi − γi(qi + Q) − δi(qi − Q̄i) ≤ 0[
αi − βiqi − γi(qi + Q) − δi(qi − Q̄i)

]
qi = 0

or equivalently, find a vector q ∈ Rn
+ which satisfies the system


q ≥ 0

−α + Mq ≥ 0

qT(−α + Mq) = 0

where α = [αi]n×1 ∈ Rn
+ and M = [mi,j]n×n is such that

mi,j = − ∂Ui

∂qi∂qj

=



βi + 2γi + δi for i = j

γi − δi

ni

for i ̸= j and j ∈ Ni

γi for j ̸= i and j /∈ Ni.

Let LCP(−α, M) denote the above linear complementarity problem.

Proof of Theorem 1. Following Cottle et al. (2009, Theorem 3.3.7), the LCP(−α, M)

admits a unique solution if M is a P -matrix. A sufficient condition is that M be a strictly

diagonally dominant matrix with positive diagonal entries (Berman and Plemmons, 1994,

Theorem 2.3, p.134). The matrix M is said to be strictly diagonally dominant if

mi,i >
n∑

j∈N\{i}
|mi,j| for all i ∈ N.

Since βi/γi > n − 3, it holds that

βi + 2γi + δi > (n − 1) |γi| + ni

∣∣∣∣∣− δi

ni

∣∣∣∣∣ for all i ∈ N.
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By the triangle inequality property of the absolute value, it holds that

|γi| +
∣∣∣∣∣− δi

ni

∣∣∣∣∣ ≥
∣∣∣∣∣γi − δi

ni

∣∣∣∣∣
⇐⇒ ni |γi| + ni

∣∣∣∣∣− δi

ni

∣∣∣∣∣ ≥ ni

∣∣∣∣∣γi − δi

ni

∣∣∣∣∣
⇐⇒ ni

∣∣∣∣∣− δi

ni

∣∣∣∣∣ ≥ ni

∣∣∣∣∣γi − δi

ni

∣∣∣∣∣− ni |γi| for all i ∈ N.

It follows that

βi + 2γi + δi > (n − 1) |γi| + ni

∣∣∣∣∣γi − δi

ni

∣∣∣∣∣− ni |γi|

= (n − ni − 1) |γi| + ni

∣∣∣∣∣γi − δi

ni

∣∣∣∣∣ for all i ∈ N.

Thus, M is a strictly diagonally dominant matrix with positive diagonal entries, and

uniqueness is established.

Proof of Fact 1. Since q∗
i > 0 for all i = 1, . . . , n, the LCP (−α, M) reduces to

−α + Mq = 0 ⇐⇒ q = M−1α

where M−1 exists since M is a P -matrix. Hence, the first order conditions yield

qi = αi − γiQ−i + δiQ̄i

βi + 2γi + δi

for all i ∈ N,

or equivalently,

q = a − Bq + Cq ⇐⇒ q∗ = [I − (C − B)]−1a

where a = [αi/(βi + 2γi + δi)]n×1, B = [bi,j]n×n is such that

bi,j =


0 for i = j

γi

βi + 2γi + δi

for i ̸= j
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and C = [ci,j]n×n is such that

ci,j =


0 for i = j or for (i ̸= j and j /∈ Ni)

δi

βi + 2γi + δi

for i ̸= j and j ∈ Ni.

Proof of Proposition 1. Part 1. Since C − B is nonnegative and ρ(C − B) < 1, it holds

that C − B is convergent (Berman and Plemmons, 1994, Lemma 2.1, p.133). Hence,

[I − (C − B)]−1 exists and

q∗ = [I − (C − B)]−1 a =
∞∑

k=0
(C − B)ka.

Part 2. Since B − C is nonnegative and ρ(B − C) < 1, it holds that B − C is convergent,

so (B − C)2 is also convergent.8 Hence, [I − (B − C)2]−1 exists and

[
I − (B − C)2

]−1
=

∞∑
k=0

(B − C)2k.

Furthermore, it holds that

[I + (B − C)] [I − (B − C)] = [I − (B − C)2]

⇐⇒ I + (B − C) = [I − (B − C)2] [I − (B − C)]−1

⇐⇒ [I + (B − C)]−1 = [I − (B − C)2]−1 [I − (B − C)] .

Hence,

q∗ = [I + (B − C)]−1 a =
∞∑

k=0
(B − C)2k [I − (B − C)] a,

that is,

q∗ =
[ ∞∑

k=0
(B − C)2k −

∞∑
k=0

(B − C)2k+1
]

a.

Proof of Proposition 2. Totally differentiating i’s best-response function (while keeping
8By Gelfand’s Formula, it holds that ρ((B − C)2) ≤ ρ(B − C)ρ(B − C) < 1.
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dβi = dγi = dδi = dni = 0) yields

dqi = 1
βi + 2γi + δi

dαi − γi

βi + 2γi + δi

dQ−i + δi/ni

βi + 2γi + δi

dQNi

= 1
βi + γi + δi

dαi − γi

βi + γi + δi

dQ + δi/ni

βi + γi + δi

dQNi

= 1
βi + γi + δi

dαi − γi

βi + γi + δi

dQ + ei

ni

dQNi
.

Then, summing across all i,

dQ =
∑
i∈N

{
1

βi + γi + δi

dαi − γi

βi + γi + δi

dQ + ei

ni

dQNi

}

= k
∑
i∈N

{
1

βi + γi + δi

dαi + ei

ni

dQNi

}

where

k =
(

1 +
∑
i∈N

γi

βi + γi + δi

)−1

∈ (0, 1).

Let dαi ̸= 0 for one agent i and dαj = 0 for all other agent j ̸= i. It follows that

dQ = k

βi + γi + δi

dαi + k
∑
i∈N

ei

ni

dQNi
.

Under condition (2), it holds that

∑
i∈N

ei

ni

dQNi
= e1

n1
dQN1 + . . . + en

nn

dQNn =
∑

i∈N1

ei

ni

dq1 + . . . +
∑

i∈Nn

ei

ni

dqn = vdQ

where 0 < v < 1. Thus,

dQ = σidαi

where

σi = k

(1 − kv)(βi + γi + δi)
> 0.

Proof of Proposition 3. Totally differentiating i’s best-response function (while keeping
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dαi = dγi = dδi = dni = 0) yields

dqi = −(αi − γiQ−i + δiQ̄i)
(βi + 2γi + δi)2 dβi − γi

βi + 2γi + δi

dQ−i + δi/ni

βi + 2γi + δi

dQNi

= −q∗
i

βi + 2γi + δi

dβi − γi

βi + 2γi + δi

dQ−i + δi/ni

βi + 2γi + δi

dQNi

= −q∗
i

βi + γi + δi

dβi − γi

βi + γi + δi

dQ + δi/ni

βi + γi + δi

dQNi

= −q∗
i

βi + γi + δi

dβi − γi

βi + γi + δi

dQ + ei

ni

dQNi
.

Then, summing across all i yields

dQ =
∑
i∈N

{
−q∗

i

βi + γi + δi

dβi − γi

βi + γi + δi

dQ + ei

ni

dQNi

}

= k
∑
i∈N

{
−q∗

i

βi + γi + δi

dβi + ei

ni

dQNi

}

where

k =
(

1 +
∑
i∈N

γi

βi + γi + δi

)−1

∈ (0, 1).

Let dβi ̸= 0 for one agent i and dβj = 0 for all other agent j ̸= i. The rest of the proof

follows the same lines as that of Proposition 2. Hence,

dQ = −σiq
∗
i dβi

where

σi = k

(1 − kv)(βi + γi + δi)
> 0.

Proof of Proposition 4. Totally differentiating i’s best-response function (while keeping

dαi = dβi = dδi = dni = 0) yields

dqi =
−Q∗

−i(βi + 2γi + δi) − 2(αi − γiQ
∗
−i + δiQ̄

∗
i )

(βi + 2γi + δi)2 dγi − γi

βi + 2γi + δi

dQ−i + δi/ni

βi + 2γi + δi

dQNi

=
−Q∗

−i − 2q∗
i

βi + 2γi + δi

dγi − γi

βi + 2γi + δi

dQ−i + δi/ni

βi + 2γi + δi

dQNi

= −Q∗ − q∗
i

βi + γi + δi

dγi − γi

βi + γi + δi

dQ + δi/ni

βi + γi + δi

dQNi

= −Q∗ − q∗
i

βi + γi + δi

dγi − γi

βi + γi + δi

dQ + ei

ni

dQNi
.
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Then, summing across all i yields

dQ =
∑
i∈N

{
−Q∗ − q∗

i

βi + γi + δi

dγi − γi

βi + γi + δi

dQ + ei

ni

dQNi

}

= k
∑
i∈N

{
−Q∗ − q∗

i

βi + γi + δi

dγi + ei

ni

dQNi

}

where

k =
(

1 +
∑
i∈N

γi

βi + γi + δi

)−1

∈ (0, 1).

Let dγi ̸= 0 for one agent i and dγj = 0 for all other agent j ̸= i. The rest of the proof

follows the same lines as that of Proposition 2. Hence,

dQ = −σi (Q∗ + q∗
i ) dγi

where

σi = k

(1 − kv)(βi + γi + δi)
> 0.

Proof of Proposition 5. Totally differentiating i’s best-response function (while keeping

dαi = dβi = dγi = dni = 0) yields

dqi =
Q̄∗

i (βi + 2γi + δi) − (αi − γiQ
∗
−i + δiQ̄

∗
i )

(βi + 2γi + δi)2 dδi − γi

βi + 2γi + δi

dQ−i + δi/ni

βi + 2γi + δi

dQNi

= Q̄∗
i − q∗

i

βi + 2γi + δi

dδi − γi

βi + 2γi + δi

dQ−i + δi/ni

βi + 2γi + δi

dQNi

= Q̄∗
i − q∗

i

βi + γi + δi

dδi − γi

βi + γi + δi

dQ + δi/ni

βi + γi + δi

dQNi

= Q̄∗
i − q∗

i

βi + γi + δi

dδi − γi

βi + γi + δi

dQ + ei

ni

dQNi
.

Then, summing across all i yields

dQ =
∑
i∈N

{
Q̄∗

i − q∗
i

βi + γi + δi

dδi − γi

βi + γi + δi

dQ + ei

ni

dQNi

}

= k
∑
i∈N

{
Q̄∗

i − q∗
i

βi + γi + δi

dδi + ei

ni

dQNi

}
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where

k =
(

1 +
∑
i∈N

γi

βi + γi + δi

)−1

∈ (0, 1).

Let dδi ̸= 0 for one agent i and dδj = 0 for all other agent j ̸= i. The rest of the proof

follows the same lines as that of Proposition 2. Hence,

dQ = σi

(
Q̄∗ − q∗

i

)
dδi

where

σi = k

(1 − kv)(βi + γi + δi)
> 0.

Proof of Proposition 6. Totally differentiating i’s best-response function (while keeping

dαi = dβi = dγi = dδi = 0) yields

dqi =
−δiQ

∗
Ni

/(ni)2

βi + 2γi + δi

dni − γi

βi + 2γi + δi

dQ−i + δi/ni

βi + 2γi + δi

dQNi

=
−δiQ̄

∗
Ni

/ni

βi + 2γi + δi

dni − γi

βi + 2γi + δi

dQ−i + δi/ni

βi + 2γi + δi

dQNi

=
−δiQ̄

∗
Ni

/ni

βi + γi + δi

dni − γi

βi + γi + δi

dQ + δi/ni

βi + γi + δi

dQNi

=
−δiQ̄

∗
Ni

/ni

βi + γi + δi

dni − γi

βi + γi + δi

dQ + ei

ni

dQNi
.

Then, summing across all i yields

dQ =
∑
i∈N

{
−δiQ̄

∗
Ni

/ni

βi + γi + δi

dni − γi

βi + γi + δi

dQ + ei

ni

dQNi

}

= k
∑
i∈N

{
−δiQ̄

∗
Ni

/ni

βi + γi + δi

dni + ei

ni

dQNi

}

where

k =
(

1 +
∑
i∈N

γi

βi + γi + δi

)−1

∈ (0, 1).

Let dni = dnj = ±1 for two agents i and j, and dδk = 0 for all other agent k ̸= i, j. The

rest of the proof follows the same lines as that of Proposition 2. Hence,

dQ = −σ

(
ei

ni

Q̄∗
i dni + ej

nj

Q̄∗
jdnj

)
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where

σ = k

1 − kv
> 0.

Proof of Proposition 7. Part 1. Since qo
i > 0 for all i = 1, . . . , n, the first order condition

of total welfare maximization with respect to qi is given by

∂W

∂qi

= αi − βiqi − γi (qi + Q) − δi

(
qi − Q̄i

)
−

∑
j∈N\{i}

γjqj +
∑

k∈Ni

δk

nk

(
qk − Q̄k

)
= 0.

Hence, it holds that

qi =
αi − γiQ−i + δiQ̄i −∑

j ̸=i γjqj +∑
k∈Ni

δk

nk

(
qk − Q̄k

)
βi + 2γi + δi

for all i ∈ N.

Let N2
i = {k ∈ N such that k ∈ Nj for all j ∈ Ni, k ̸= i} denote the set of neighbours

(except i) of i’s neighbours. Then, in matrix notation, it holds that

q = a − Bq + Cq − Nq

where N = [ηi,j]n×n is such that

ηi,j =



∑
k∈Ni

δk

(nk)2

βi + 2γi + δi

for i = j

γj − δj

nj
+∑

k∈Ni∩Nj

δk

(nk)2

βi + 2γi + δi

for i ̸= j s.t. j ∈ Ni and j ∈ N2
i

γj − δj

nj

βi + 2γi + δi

for i ̸= j s.t. j ∈ Ni and j /∈ N2
i

γj +∑
k∈Ni∩Nj

δk

(nk)2

βi + 2γi + δi

for i ̸= j s.t. j /∈ Ni and j ∈ N2
i

γj

βi + 2γi + δi

for i ̸= j s.t. j /∈ Ni and j /∈ N2
i .

Part 2. Comparing the equilibrium profile (Fact 1) to the socially optimal profile (Part 1

above), we find that q∗ = qo if and only if the following condition holds:

Nq∗ = 0.
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Using Fact 1, this is equivalent to

N [I − (C − B)]−1 a = 0.

Proof of Fact 2. Since qo
i > 0 for all i = 1, . . . , n, the first order conditions of total welfare

maximization yield

q = a − Bq + Cq − Nq ⇐⇒ qo = [I − (C − B) + N]−1a.

Proof of Proposition 8. In equilibrium, the first order conditions are

αi − βiq
∗
i − γi(q∗

i + Q∗) − δi(q∗
i − Q̄∗

i ) = 0 for all i ∈ N,

since q∗
i > 0 for all i = 1, . . . , n. Hence, in matrix notation, we obtain

q∗ = a − Bq∗ + Cq∗ ⇐⇒ [I − (C − B)] q∗ = a.

Moreover, since qo
i > 0 for all i = 1, . . . , n, the first order conditions for the efficient profile

are

αi−βiq
o
i −γi (qo

i + Qo)−δi

(
qo

i − Q̄o
i

)
−

 ∑
j∈N\{i}

γjq
o
j −

∑
k∈Ni

δk

nk

(
qo

k − Q̄o
k

) = 0 for all i ∈ N.

Under condition (3) it follows that

αi − βiq
o
i − γi (qo

i + Qo) − δi

(
qo

i − Q̄o
i

)
> 0, for all i ∈ N.

Hence, in matrix notation, we obtain

qo < a − Bqo + Cqo ⇐⇒ [I − (C − B)] qo < a
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Then,

[I − (C − B)] q∗ = a > [I − (C − B)] qo

[I − (C − B)]−1 [I − (C − B)] q∗ > [I − (C − B)]−1 [I − (C − B)] qo

q∗ > qo

Since C > B and ρ(C − B) < 1 , so [I − (C − B)]−1 ≥ I.

Proof of Proposition 9. Let δi < 0 for all i = 1, . . . , n such that the society of agent is

guided by anti-conformism. Suppose that βi + 2γi > −δi for all i ∈ N . Thus it is

equivalent to βi + 2γi + δi > 0 and consequently, all diagonal entries of M are positive.

The rest of the proof follows the same line at that of Theorem 1.

Calculations of examples for social norms’ measurements

Graph G1 G2 G3
Q̄j

(qk−qj)2+(qm−qj)2

2
(qk−qj)2+(ql−qj)2+(qm−qj)2

3 (qk − ql)2

Q̄k
(qj−qk)2+(ql−qk)2

2
(qj−qk)2+(ql−qk)2+(qm−qk)2

3
(qj−qk)2+(ql−qk)2

2
Q̄l

(qk−ql)2+(qm−ql)2

2
(qk−ql)2+(qj−ql)2+(qm−ql)2

3
(qk−ql)2+(qm−ql)2

2
Q̄m

(qj−qm)2+(ql−qm)2

2
(qj−qm)2+(ql−qm)2+(ql−qm)2

3 (ql − qm)2

Graph G4 G5
Q̄j

(qk−qj)2+(qm−qj)2

2
(qk−qj)2+(ql−qj)2+(qm−qj)2

3
Q̄k

(qj−qk)2+(qm−qk)2

2 (qj − qk)2

Q̄l (qm − ql)2 (qj − ql)2

Q̄m
(qj−qm)2+(ql−qm)2+(ql−qm)2

3 (qj − qm)2

Table 2: Variance norms with 4 agents

Graph G1 G2 G3 G4 G5
Q̄j

2qk+2qm

4
3qk+3ql+3qm

9
2qk

2
2qk+3qm

5
qk+ql+qm

3
Q̄k

2qj+2ql

4
3qj+3ql+3qm

9
qj+2ql

3
2qj+3qm

5
3qj

3
Q̄l

2qk+2qm

4
3qj+3qk+3qm

9
2qk+qm

3
3qm

3
3qj

3
Q̄m

2qj+2ql

4
3qj+3qk+3ql

9
2ql

2
2qj+2qk+ql

5
3qj

3

Table 3: Strength of weak ties with 4 agents
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Graph All graphs
Q̄j

qkδk+qlδl+qmδm

δk+δl+δm

Q̄k
qjδj+qlδl+qmδm

δj+δl+δm

Q̄l
qjδj+qkδk+qmδm

δj+δk+δm

Q̄m
qjδj+qkδk+qlδl

δj+δk+δl

Table 4: Closeness norm with 4 agents
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