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Abstract

In this article, we propose a cointegration-based Permanent-Transitory decom-
position for non-stationary Dynamic Factor Models. Our methodology exploits the
cointegration relations among the observable variables and assumes they are driven
by a common and an idiosyncratic component. The common component is fur-
ther split into a long-term non-stationary part and a short-term stationary one. A
Monte Carlo experiment shows that taking into account the cointegration structure
in the DFM leads to a much better reconstruction of the space spanned by the
factors, with respect to the most standard technique of applying a factor model in
differenced systems. Finally, an application of our procedure to a set of different
commodity prices allows to analyse the comovement among different markets. We
find that commodity prices move together due to long-term common forces and that
the trend for most primary good prices is declining, whereas metals and energy ones
exhibit an upward or at least stable pattern since the 2000s.

Keywords: Cointegration, Dynamic Factor Models, P-T decomposition, Commod-
ity prices co-movement.

JEL codes: C32, C38, Q02.

1 Introduction

Dynamic Factor Models (DFMs) are an increasingly popular tool for summarising in-
formation of a large number of time series into a smaller number of factors. Essentially,
the vector of variables is split into a common component, capturing the joint movement
of all the observable series, and an idiosyncratic component, which is variable-specific.
Although DFMs are now a standard tool in applied macroeconomics and finance (exten-
sive surveys can be found in Bai and Ng (2008); Stock and Watson (2011, 2016); Doz and
Fuleky (2020)), it is only recently that the issues of non-stationarity and cointegration
have begun to receive systematic attention in the literature.

*We wish to thank Matteo Barigozzi, Tomás del Barrio Castro, Stefano Fachin, Carlo Favero, Søren
Johansen and Marco Lippi for their useful comments. Needless to say, none of them bear any responsi-
bility for any errors, which are all ours.

�Fondazione Eni Enrico Mattei, Milano (Italy), chiara.casoli@feem.it
�Univesità Politecnica delle Marche, Ancona (Italy), r.lucchetti@univpm.it
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The most obvious way of dealing with I(1) systems is to difference the whole set
of variables and to estimate the model in first differences. Eventually, as proposed
in Bai and Ng (2004), I(1) common factors can be recovered by integration of the
differenced extracted factors; for this reason, this routine is known as “differencing and
recumulating” (DR). However, if variables of the system are in fact cointegrated, taking
first differences drops the long-term information possibly contained in the data.

Therefore, other approaches avoid the differentiation step and deal directly with
the original data in levels. Bai (2004) proposes a Principal Components (PC) estima-
tion procedure for I(1) systems on levels, thus allowing for the direct estimation of
non-stationary common factors. A possible drawback of this procedure is that the id-
iosyncratic component is assumed to be stationary, which is tantamount to saying that
all the non-stationarity of the system is captured by the common component. This is
a very strong assumption, since in many examples the variable-specific components can
reasonably thought to be non-stationary. Barigozzi et al. (2020) stress that in standard
datasets used within DFM literature the idiosyncratic term is most likely I(1).

On the contrary, by using the DR approach non-stationarity is not necessarily cap-
tured by the common component, but may be specific to individual series. Corona
et al. (2020) extend the hybrid method proposed by Doz et al. (2011) to non-stationary
cases and compare the performance of the PC methodology for factors extracted using
non-stationary system in levels with those obtained with the DR approach.

Barigozzi et al. (2016, 2020, 2021) make important contributions by extending the
DFM framework including cointegration, where factors are assumed to admit a VECM
representation and idiosyncratic components are allowed either to be I(0) or I(1).
Corona et al. (2020) point out that the estimators proposed by Bai and Ng (2004);
Barigozzi et al. (2016) are asymptotically equivalent, with some finite sample differ-
ences if deterministic trends are included in the model. Finally, Barigozzi and Luciani
(2019) propose a DFM in which a Trend-Cycle decomposition is performed from the
extracted factors. Specifically, they first estimate a non-stationary DFM by Quasi-
Maximum Likelihood through the EM algorithm, and then they assume factors, which
are cointegrated, are driven by a non-stationary long-term component and a I(0) short-
term component.

In this paper, we develop a method similar in spirit to Barigozzi and Luciani (2019);
contrary to previous proposals, however, we include the cointegration structure of data
into a Dynamic Factor Model by using the fact that in many cases of practical interest
some information on the cointegration properties of the observable variables is available
prior to setting up the DFM. In these cases, it is possible to transform the observables
as a first step via a Permanent-Transitory (P-T) decomposition and then operate on the
transformed variables. As the Monte Carlo evidence presented in Section 3 suggests,
this leads to sizeable improvements in reconstructing the factor space compared to the
DR approach.

The rest of the paper has the following structure: Section 2 provides a quick and
general introduction to DFMs, mainly to establish notation, followed by a description
of the P-T decomposition we use. Some Monte Carlo evidence is provided in Section 3;
finally, in Section 4, we apply our procedure to investigate the common movement of
commodity prices and find that the series are, as a rule, mainly driven by their long-term
common components; support for the Prebisch-Singer hypothesis is found for primary
commodities. Section 5 concludes the paper.
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2 Econometric methods

2.1 Dynamic factor models

Dynamic factor models were introduced by Geweke (1977); Sargent and Sims (1977),
but widespread adoption in the empirical literature has started since the beginning of
this century. The general setup of DFMs that we consider here can be described by the
following two equations:

Yt = Λ0ft + Λ1ft−1 + ...+ Λsft−s + εt, (1)

ft = A1ft−1 +A2ft−2 + ...+Apft−p + ut., (2)

where:

� Yt is a n× 1 vector of time series observable variables;

� ft is a q × 1 vector of the common latent dynamic factors;

� εt is a n× 1 vector containing the idiosyncratic terms;

� ut is the vector of the dynamic factors shocks; εt and ut are independent;

� Λ0, ...,Λs are the n× q factor loading matrices;

� A1, ..., Ap are the q×q matrices containing the VAR parameters of the unobserved
factors.

In the jargon of state-space models, Equation (1) is the observation equation and
describes Yt as the sum of a common component and an idiosyncratic component, which
is variable-specific. In the special case s = 0, the DFM is called static. Note, however
that by defining

Ft = [f ′t , f
′
t−1, . . . , f

′
t−s] Λ = [Λ0,Λ1, . . . ,Λs]

the dynamic model also admits a static representation as

Yt = ΛFt + εt.

Equation (2) is the state equation and expresses the dynamics of the q latent common
factors.

The models we consider here belong to a class known as Dynamic Approximate
Factor Models, because no strict assumptions are made on the distribution of the id-
iosyncratic term εt, which is allowed to have some mild form of correlation: they are
assumed to be uncorrelated with the factors at all leads and lags but are allowed to
be correlated either serially and contemporaneously. Moreover, we take the scalar s to
be finite, which sets this model apart from the so-called Generalised DFMs, that are
typically handled via spectral methods (see for example Forni et al. (2000, 2005, 2015,
2017); Hallin and Lǐska (2007)).

For the estimation of Equations (1) and (2) several techniques have been proposed,
under the assumption of stationarity. In the static case (s = 0) a simple and com-
putationally convenient method is PC, which is the standard choice in most empirical
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applications. As mentioned, the DR procedure circumvents the problem of nonstation-
arity of Yt by taking first differences. In this way, factors are estimated in first differences
and then recovered by cumulation of ∆F̂t. Bai and Ng (2004) demonstrate that the first
difference of factors and the model parameters can be estimated consistently.

Other estimation techniques have also been proposed, mainly with the aim of achiev-
ing higher efficiency than PC, notably Doz et al. (2011, 2012). Generally, these methods
involve Maximum Likelihood estimation, achieved by the Kalman filtering; the advan-
tage is that the same state-space setup can be used for retrieving estimates of the factors
ft by the smoothing algorithm that are in some cases significantly more efficient than
PC (see eg Lucchetti and Venetis, 2020); however, the increase in computational com-
plexity can sometimes be considerable. In this paper, we will use both approaches: we
use PC for the simulation study in Section 3 and ML estimation via the EM algorithm
in Section 4.

2.2 A Permanent-Transitory decomposition

We assume that the vector of observable variables has the persistence feature of a
multivariate I(1) process:

Yt = Tt + Ct + ξt,

in which the common component is the sum of Tt + Ct, where the trend component
Tt is I(1) while the cycle component Ct is stationary; both are assumed to have a
factor structure, that is, to be driven by a small number of shocks q; the idiosyncratic
component is given by ξt. Note that ξt may be I(1). The possibility to include non-
stationarity in the idiosyncratic term is not trivial, as it implies that it is feasible to
allow for some non-stationarity to be variable-specific, rather than assuming that all of
the I(1) component is captured by the common movement. A similar set up is allowed
in Barigozzi et al. (2020, 2021); Barigozzi and Luciani (2019). Assuming that Yt can
be represented as a VAR process of finite order p and that the cointegration rank is
0 ≤ r < n, the VECM representation exists, and is given by:

∆Yt = αβ′Yt−1 +

p−1∑
i=1

Γi∆Yt−i + εt. (3)

For given values of the parameters, a P-T decomposition can be achieved by re-
expressing the original observable variables Yt as an invertible linear transformation.
The most popular one is the so-called Gonzalo-Granger decomposition (Gonzalo and
Granger, 1995), in which Yt is pre-multiplied by [β α⊥]′;1 in this paper, however, we
use the decomposition put forward in Kasa (1992), which is based on β⊥. We do so for
three reasons: first, it is possible (albeit unlikely) that [β α⊥]′ has not full rank, and
our algorithm would break down. Second, it is often the case that β can be considered
(at least partly) known a a priori on the grounds on theoretical arguments; similar
considerations hold much more seldom for α. Finally, even when β is estimated, its
convergence rate is O(T−1), while α (and hence α⊥) is only

√
T -consistent.

1We use the ⊥ footer to indicate the orthogonal complement of a matrix, as is customary in the
cointegration literature. If β is n× r with rank r, then β⊥ is an n× (n− r) matrix such that β′β⊥ = 0.
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The resulting decomposition is:2

G(L)Yt =

[
β′

β′⊥(1− L)

]
Yt =

[
zt

∆mt

]
= Wt. (4)

By hypothesis, Wt ∼ I(0). Note that we can define the inverse of the G(L) filter as

G(L)−1 =
[
β(β′β)−1 β⊥(β⊥

′β⊥)−1 1
(1−L)

]
where 1

(1−L) is the cumulation operator, and therefore write

Yt = G(L)−1Wt.

The representation linking observables to factors may be written as

Wt = Λ∗(L)f∗t + et,

where Λ∗(L) is a matrix polynomial of order s.
The space spanned by the factors ft can be estimated in several ways (see Section

2.1). In the simulation experiment presented in Section 3, we will use the PC methods
on the grounds of computational convenience and to conform to the method that is most
widely used among practitioners; however, we also considered quasi-ML estimation of
factors along the lines of Doz et al. (2012).

By partitioning the loading matrix Λ in an appropriate way[
zt

∆mt

]
=

[
Λz
Λ∆

]
ft + et

we have

Yt =
[
β(β′β)−1 β⊥(β′⊥β⊥)−1 1

(1−L)

]{[ Λz
Λ∆

]
ft + et

}
= Tt + Ct + ξt

where

Ct = β(β′β)−1Λzft

Tt = β⊥(β′⊥β⊥)−1Λ∆f
c
t

ξt = G(L)−1et

and f ct is the cumulation of ft, that is, ft = ∆f ct . The I(1) process f ct is a q-variate
process whose first difference is the vector of I(0) factors. Note that the DR approach
is a special case of the decomposition outlined here, in which the cointegration rank is
0 and Ct = 0. Our procedure makes it possible to decompose the common component
in long- and short-term components in a very natural way.

Finally, an important point to stress here is that the β matrix used in Equation
(4) does not necessarily have to span the full cointegration space of the system. The
important requisite for the decomposition (4) to yield a vector of I(0) variables is that

2Interestingly, a closely related idea is hinted at in (Bai and Ng, 2004, p. 1131), where the transfor-
mation is applied to the factors instead of the observables.
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the β matrix spans a subset of the true cointegration space. Therefore, underestimating
the actual cointegration rank is a lesser evil than overestimating it. If some of the
cointegration vectors are left out of β, they will be present in the space spanned by its
orthogonal complement β⊥, for which the DR approach remains unchanged.

Moreover, in practical situations it is often the case that the cointegration rank
(and sometimes the cointegration matrix) can be assumed to be known a priori on the
grounds of economic theory (eg interest rates). That said, the numerical experiment we
perform in Section 3 analyses both cases.

2.3 Cointegration analysis by blocks

The procedure described in Subsection 2.2 takes the cointegration structure of data
into account and incorporates it into the DFM, so it is feasible when the cointegration
matrix β is either known or it can be estimated consistently, which is hardly ever the
case in practice.

For very large systems of variables, however, standard cointegration analysis be-
comes unfeasible; apart from the practical difficulty of setting up a VAR system when
the number of variables n is even moderately large, it is well known that inference may
be quite unreliable in finite samples. Cavaliere et al. (2012) suggest a comprehensive
solution for the bootstrap implementation of the rank test, with Onatski and Wang
(2018) providing a theoretical analysis of the relevant inferential issues. Similarly, Cav-
aliere et al. (2015) explore the properties of bootstrap-corrected hypothesis tests on the
cointegration parameters.

However, for medium-sized problems, it is often possible to split the vector of ob-
servable variables into blocks and assume that cointegration only occurs within blocks,
and not between. This is exactly the case we are studying. This makes it possible not
only to properly include the information coming from the cointegration relations in the
model, but also to disentangle the long-term common movement from the short-term
one, captured by the Permanent and the Transitory components, respectively. Typi-
cally, the grouping of the observed series into blocks follows from a priori information;
for example, in macroeconomic applications it may be perfectly legitimate to assume
that a vector of interest rates contains only one common trend, with the obvious conse-
quences on the cointegration rank; additionally, some of the cointegration vectors may
be fixed a priori so as to imply that spreads are stationary. Similar considerations,
with the necessary adaptations, may apply to subsets of macroeconomic series such as
sectoral industrial production indices. In the empirical application contained in Section
4, we divide commodity prices into blocks on the basis of “natural” groupings (food,
energy, etc.).

In formulae, we assume that Yt can be divided into B different blocks (not necessarily
of the same size):

Y ′t =
[
Y ′1,t, Y ′2,t, . . . Y

′
B,t

]
;

cointegration analysis may be then performed within each block. This would be equiva-
lent to estimating the cointegration matrices through B different “partial systems” (see
Johansen, 1992). The estimated system-wide β matrix would therefore be obtained by
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stacking diagonally the per-block cointegration matrices:

β =


β1

β2

. . .

βB


Of course, the overall estimated rank equals

∑B
b=1 rb.

Bearing in mind that the cointegration rank should not be overestimated, but an
underestimate would not undermine the procedure we are putting forward, rank de-
termination can be done via the usual Johansen procedure, possibly with additional
caveats in order to mistakenly identify spurious cointegration relationships. For exam-
ple, in the simulation study in Section 3 and the empirical analysis in Section 4, we use
as an estimate of the cointegration rank the smallest integer that leads to rejecting the
Johansen trace test a 1% level instead of the more customary 5% level. Alternatively,
Bartlett-type (see Johansen, 2000) or bootstrap correction (Cavaliere et al., 2012) may
be used.

2.4 The workflow

In practice, a DFM model is applied to data that have been centred and standardised,
so that the workflow goes as follows:

1. Estimate the matrix β on the original data Yt (possibly, by blocks) and form its
orthogonal complement β⊥;

2. compute the Kasa-decomposed vector Wt as in Equation (4);

3. compute the vector of standard deviations σ so that Zt = 〈σ〉−1
[
Wt − W̄

]
, where

the notation 〈x〉 indicates a diagonal matrix that has x on its diagonal; note that
〈σ〉 can be written as

〈σ〉 =

[
〈σz〉 0

0 〈σ∆〉

]
in standard notation (again, see equation (4));

4. compute the factors in the DFM

Zt = Λft + et;

and partition the loading matrix Λ as

Λ =

[
Λz
Λ∆,

]
where Λz has r rows and Λ∆ has (n− r);

5. recover the permament and transitory component of the factor structure as

Tt = β⊥(β′⊥β⊥)−1〈σ∆〉Λ∆f
c
t (5)

Ct = β(β′β)−1〈σz〉Λzft. (6)
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An alternative possibility to step 5 is to recover ẑt and ∆m̂t via OLS projections
from the extracted factors. At this point, obtaining the Permanent and Transitory
components is straightforward:[

Ŷt
Ŷ c
t

]
=
[
β β⊥

]−1
[
ẑt
m̂c
t

]
.

3 Simulation results

In this Section, we present the result of a simulation study aimed at assessing the
possible gain from explicitly considering cointegration among the observables along the
lines described in Section 2. In order to do so, we generate several DGPs like (3) with
the following structure:

1. The number of observed variables n ranges from 32 to 128;

2. the sample size T is either 200 or 400;

3. the VAR order is always 1;

4. the VAR innovations are generated with a factor structure

εt = Λft + ut

where the number of system-wide factors q ranges from 1 to 8; Λ is generated as a
conformable matrix of uniforms and ut is a multivariate white noise; the standard
deviation of each element of ut is 0.1;

5. each factor is an independent AR(1) process fi,t = φfi,t+εi,t, with φ ranging from
0.1 to 0.9;

6. the observables can be split into B blocks, that are known a priori, inside each of
which there is a certain number of cointegrating relationships;

7. for each block, the cointegration matrix is generated as

βb =

[
I

β̃b

]
,

where the elements of β̃b are independent standard normal pseudo random vari-
ates;

8. no cointegration occurs between blocks.

Table 1 contains a summary of the principal features of the seven experiments we
ran. For each experiment, each block contains the same number of observables and has
the same cointegration rank, so for example in the case n = 64, B = 4, r = 4 we have
4 blocks of 16 series each, and the cointegration rank within each block is 4. In other
words, Yt is a 64-variate I(1) process with cointegration rank r = 16.

We measure the ability of the DFM to reconstruct the factor space via the trace
statistic

H = tr

[
F ′tPfFt
F ′tFt

]
8



Table 1: Simulation design

n 32 32 64 64 64 64 128
B 4 4 4 4 8 8 8
r 2 4 2 4 2 4 4

where Ft are the simulated factors and Pf is the projection matrix for the estimated
factors. This is a standard tool in the DFM literature and has been used, among others,
in Doz et al. (2012).

For each DGP, we generate 400 realisations and estimate for each block the corre-
sponding set of cointegrating vectors via Johansen’s ML procedure, with a lag length
chosen by minimising the Hannan-Quinn information criterion. Then, after performing
the variable transformation (4), a factor model is estimated; to save CPU time, estima-
tion of the factor models is performed via PC, using the estimated factors to compute
the trace statistic that we call Hr. We then repeat the DFM estimation stage on the
purely differenced system (that is, the rotated system with r = 0) and compute the
trace statistic Hd. The tables presented in this Section and in Appendix A refer to the
difference ∇ = Hr −Hd. Table 2 contains the results.

In order to assess the consequences of small-sample issues when estimating the coin-
tegration rank for each block, we repeat the whole experiment by estimating the coin-
tegration rank via the Johansen (1991) trace test at a 1% level (see discussion at Sub-
section 2.3) and report the results in Table 3. Additional descriptive statistics on the
∇ index for both scenarios are reported in Appendix A.

Table 2: Simulation results: empirical frequency of ∇ > 0 (rank assumed known)

q 1 3 5 8

φ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

n B r

32 4
2

T = 200 0.70 0.80 0.83 0.89 0.92 0.86 0.98 0.97 0.92 1.00 0.98 0.44
T = 400 0.68 0.84 0.87 0.91 0.94 0.89 0.99 0.98 0.93 1.00 1.00 0.54

4
T = 200 0.80 0.89 0.93 0.99 0.99 0.95 1.00 1.00 0.90 1.00 1.00 0.66
T = 400 0.82 0.87 0.89 0.99 1.00 0.96 1.00 1.00 0.96 1.00 1.00 0.83

64

4
2

T = 200 0.66 0.85 0.85 0.84 0.89 0.85 0.95 0.97 0.84 0.98 0.94 0.74
T = 400 0.65 0.84 0.88 0.86 0.92 0.85 0.97 0.95 0.87 1.00 0.96 0.77

4
T = 200 0.74 0.90 0.93 0.95 0.99 0.93 1.00 1.00 0.96 1.00 1.00 0.97
T = 400 0.73 0.93 0.95 0.96 0.97 0.91 1.00 1.00 0.95 1.00 1.00 0.98

8
2

T = 200 0.68 0.90 0.94 0.96 0.97 0.90 1.00 1.00 0.96 1.00 1.00 0.66
T = 400 0.69 0.87 0.92 0.96 0.98 0.92 1.00 1.00 0.97 1.00 1.00 0.68

4
T = 200 0.83 0.89 0.94 1.00 1.00 0.97 1.00 1.00 0.92 1.00 1.00 0.71
T = 400 0.81 0.93 0.94 1.00 1.00 0.98 1.00 1.00 0.97 1.00 1.00 0.90

128 8 4
T = 200 0.76 0.93 0.97 0.99 1.00 0.95 1.00 1.00 0.98 1.00 1.00 1.00
T = 400 0.75 0.92 0.96 1.00 1.00 0.95 1.00 1.00 0.98 1.00 1.00 1.00

As can be seen, injecting information on the cointegration structure of the data
improves the ability of the model to reconstruct the factor space almost uniformly: in
several cases, there were no replications at all when ∇ < 0; in other words, the DFM on
the transformed model (4) yielded a better reconstruction of the factor space than the
DFM on the purely differenced data. The one exceptional case was the small-sample
(T = 200) case with 32 observable series and 8 very persistent factors; we conjecture
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that in this particular case the poor performance of our proposed procedure is caused
by the imprecision in estimating the cointegrating vectors.

Table 3: Simulation results: empirical frequency of ∇ > 0 (rank estimated)

q 1 3 5 8

φ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

n B r

32 4
2

T = 200 0.74 0.80 0.83 0.88 0.92 0.87 0.96 0.94 0.55 0.90 0.85 0.06
T = 400 0.68 0.84 0.87 0.90 0.94 0.89 0.98 0.96 0.75 0.95 0.94 0.26

4
T = 200 0.78 0.87 0.93 0.97 0.99 0.89 1.00 0.99 0.81 1.00 0.99 0.73
T = 400 0.82 0.86 0.89 0.99 0.99 0.93 0.99 0.98 0.90 1.00 1.00 0.77

64

4
2

T = 200 0.70 0.84 0.90 0.83 0.89 0.85 0.94 0.96 0.82 0.95 0.92 0.05
T = 400 0.65 0.86 0.86 0.85 0.92 0.85 0.97 0.98 0.87 0.96 0.92 0.32

4
T = 200 0.77 0.86 0.92 0.94 0.98 0.90 1.00 1.00 0.90 1.00 0.99 0.05
T = 400 0.74 0.92 0.95 0.98 0.97 0.90 1.00 1.00 0.97 1.00 1.00 0.43

8
2

T = 200 0.68 0.90 0.94 0.95 0.98 0.88 0.99 0.98 0.54 0.98 0.92 0.05
T = 400 0.73 0.86 0.92 0.95 0.98 0.92 1.00 0.97 0.74 0.99 0.97 0.26

4
T = 200 0.82 0.88 0.92 0.99 0.99 0.90 1.00 1.00 0.86 1.00 1.00 0.73
T = 400 0.81 0.90 0.94 1.00 1.00 0.96 1.00 0.99 0.89 1.00 1.00 0.83

128 8 4
T = 200 0.76 0.89 0.96 0.98 1.00 0.87 1.00 1.00 0.90 1.00 1.00 0.05
T = 400 0.78 0.92 0.96 1.00 1.00 0.94 1.00 1.00 0.95 1.00 1.00 0.45

When the cointegration rank is estimated rather than known, differences are quali-
tatively minor, and mostly appear in situations, such as n = 32, q ≥ 5, when the number
of factors is not much smaller than the number of observables and the cross-sectional
information available to reconstruct the factor structure is less abundant.

4 Empirical analysis of commodity prices

We now employ the methodology proposed here to analyse the comovement of different
commodity prices. Commodity prices provide a perfect example of how our procedure
works with real data, since there is a large amount of empirical research demonstrating
that there is common movement among different kinds of commodity markets (see for
example Pindyck and Rotemberg (1990); Byrne et al. (2013); Delle Chiaie et al. (2017);
Alquist et al. (2020)). Many empirical investigations agree on the increased relative
importance of the common movement starting from the mid-2000s (Vansteenkiste, 2009;
Poncela et al., 2014; Delle Chiaie et al., 2017).

By using our proposed procedure, the question of whether the co-movement is origi-
nating from short-run or long-run forces can be given, at least in principle, an empirical
answer. Even though results on the identification and assessment of relative impor-
tance of co-movement drivers are mixed, the common component is often summarised
by a single global factor. According to Byrne et al. (2013), the most relevant driver
of co-movement is the interest rate; Vansteenkiste (2009) cite oil price, US dollar ex-
change rate, interest rate but also, recently increasing in importance, global demand;
Delle Chiaie et al. (2017); Alquist et al. (2020) conclude that the single found fac-
tor is closely related to fluctuations in global economic activity. As pointed out in
Baumeister et al. (2020), the idea behind this link is that demand-induced fluctuations
in economic activity cause common movements of prices in the same direction, whereas
idiosyncratic shocks reflect supply-side behaviour specific to single commodity markets.
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The demand-induced common movements reflecting the global economic activity are
of course thought to be more relevant on the medium/long-run. Poncela et al. (2014),
instead, focus on short-term fluctuations, suggesting that co-movement can originate
because of speculative or financial causes; thay find that uncertainty has an important
role in determining short-run common movement.

Further, the debate on the existence of a commodity prices declining trend, originally
stated by Prebisch (1962); Singer (1975) and thus known as the Prebisch and Singer
hypothesis (PHS), is still unresoved. According to this thesis, the prices of primary
goods are expected to decline with respect to manufactured goods over the long-term,
but empirical evidence on the existence of such a downward trend is controversial (see
Harvey et al. (2010)). The rapid and huge rise in commodity prices that occurred
during the mid-2000s led to the general worry among observers that this rise was the
consequence of a paradigm change: specifically, an increase in the global demand for
commodities mainly driven by China. By allowing for a P-T decomposition we are able
to analyze not only the comovement of different prices, but, as already mentioned, also
the long-term dynamics of the series.

Last but not least, commodity markets offer a very natural example of variables
which can easily be split into cointegration blocks: by assuming that cointegration is
present among similar commodities (eg, belonging to the same market), but not among
different kinds, we are simply grouping prices following the economic theory. Inter-
estingly, also Delle Chiaie et al. (2017), even if within a different framework, consider
different commodity market blocks for the analysis of co-movement.

The rest of this Section will describe the data and the main results obtained by
using our procedure.

4.1 Data

For our analysis, we consider the prices of different kinds of commodities, including en-
ergy, metals, food (which include different kinds of goods, too: livestock products, crop
commodities, beverages, etc.) and other agricultural commodities. Specifically, we use
a set of 37 monthly commodity spot prices provided by the IMF primary commodities
database, covering a range from January 1980 to July 2020.3

Prices are expressed as indices (January 2000=100) in order to get rid of different
units of measure and deflated using the Consumer Price Index provided by the FED to
obtain real prices. Note that by considering deflated commodity prices, we are implicitly
analysing the relative prices of commodities; therefore, the Prebisch-Singer hypothesis,
which refers to the ratio between primary and manufactured goods, is equivalent to
that of a long-term declining trend in real commodity prices. Therefore, the basic series
we are using are log real price indices. Unit root tests confirm the non-stationarity
hypothesis for most series.4

3The complete list of the used prices could be found in Appendix C.
4Alongside the classic ADF test (Dickey and Fuller, 1979), we also used the PP (Phillips and Per-

ron, 1988) and the KPSS (Kwiatkowski et al., 1992) tests; tests for first differences prices reject non-
stationarity in all cases.
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4.2 Results

In the first step of our analysis, we determine the number of cointegration relationships
and, thus, of common trends. To do so, we split the log commodity prices in six blocks,
each representing a different category: these are “base metals”, “precious metals”, “en-
ergy”, “livestock”, “raw materials” and “food”. Table 30, reported in Appendix C,
shows the six blocks with the included commodity prices. Results of cointegration anal-
ysis are summarised in Table 4; they are obtained with the Johansen (1991) trace test
for each block, with a rejection level set to γ = 0.01 instead of the usual 5% level for
the reason explained in Section 2; we always used an unrestricted constant as the de-
terministic component. The lag length is chosen via the Hannan-Quinn criterion on the
unrestricted VAR.

Table 4: Cointegration analysis by blocks

VAR length Cointegration rank Common trends

Base metals 2 1 5
Precious metals 2 1 2
Energy 2 3 1
Livestock 2 2 4
Raw materials 2 1 7
Food 2 9 1

Total 17 20

We end up with a total of 17 cointegration relationships and 20 common trends.
Note that at least one cointegration relationship is found in each block.

Subsequently, we compute the Kasa-decomposed series via equation (4), and esti-
mation of the DFM is carried out on the centred/standardised series. We set q = 2,
s = 0, p = 2, with q determined following the information criteria proposed in Bai
and Ng (2007). Figure 1 reports the two estimated I(0) factors. As previously pointed
out, for the empirical analysis we estimate the DFM by ML via the EM algorithm; this
procedure is computationally more demanding, but evidence presented in Doz et al.
(2012) and Lucchetti and Venetis (2020) suggests that this method offers a better re-
construction of the original factor space than other techniques. The two factors capture
the general common movement of all the 37 transformed series and, interestingly, look
rather time-persistent.

At this point, each commodity price is decomposed into a common component and
an idiosyncratic one. To do so, we recover Ŷt and Ŷ c

t as explained at the end of Section
2.4. Figure 2 shows as an example the performed decomposition for the log-price of
wheat in its three components. The common ones are denoted by l wheat perm and
l wheat trans and correpsond to the Tt and Ct components, respectively; the idiosyn-
cratic component is shown on the bottom-right panel. The applied decomposition shows
that the Permanent and Idiosyncratic components are the most important in explain-
ing the dynamics of the wheat log-price, whereas the Transitory component is rather
marginal. This means that both the common and the wheat-specific movements are
determinant, but, crucially, the common movement is a long-term one. This result is
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Figure 1: Extracted factors, Doz et al. (2012) EM algorithm

Figure 2: Decomposition of the wheat log-price in its three components

13



found for all the other log-prices, suggesting that, overall, the short-term comovement
can be considered negligible, and that the prices of different commodities move together
specifically over the long run.

Figures 3, 5, 7, 9, 11 and 13, contained in Appendix B, display all the log commodity
prices with their corresponding Permanent components, divided by blocks.

From our results, it appears that the co-movement of commodity prices is mostly
driven by long-run forces, while evidence of an important short-term impact is scant.
Focusing on the Permanent component, which is obtained as a combination of the
within-block cointegration structure and the global common factors, evidence suggests
that the behaviour is different if we consider primary commodity prices or energy and
metal ones. The trend for the energy block shows a declining pattern and then an
upward one since the beginning of the century, whereas for metals this happens only
for some prices; the others exhibit a trend stabilisation since the 2000s. For the other
blocks, instead, overall the trend is declining over the entire time span, or at least, it
remains stable, suggesting there is no room for the break of the PSH.

5 Conclusions

The possibility of including cointegration in DFMs is a long-standing issue in the liter-
ature. Especially for very large systems of variables, performing standard cointegration
analysis is a daunting task.

However, in some cases the vector of observable variables can be split into blocks on
the basis of prior information; this makes it possible to estimate cointegration vectors
for blocks of moderate dimension. On this basis, we propose to estimate a DFM from a
vector of transformed variables, instead than the original observed ones; to be specific,
we apply the decomposition suggested by Kasa (1992) and separate the stationary part
from the non-stationary one. Subsequently, we take first differences of the I(1) part of
the system and perform the factor extraction. We analyse the advantages that stem
from using the cointegration matrix for re-expressing the original variables in a way that
is more suitable for factor analysis, that is, avoiding differentiation whenever possible
to make the series I(0).

A simulation experiment indicates that the ability of a DFM to reconstruct the
factors space is improved by taking cointegration into account, with respect to the
routine followed by many practitioners of estimating the DFM on first differences.

We also apply our proposed method to analyse comovement of different commodity
prices, divided by blocks. We find that the common movement is mainly driven by
long-run forces, whereas the transitory common fluctuations are of rather marginal
importance for all commodity prices. Being able to decompose the common component
into a long- and a short-run component makes it also possible to provide interesting
empirical evidence on the Prebish and Singer hypothesis, according to which primary
commodity prices are expected to decline with respect to prices for manufactured goods.
For the food, livestock and agricultural raw materials prices, we find support for an
overall declining trend. On the contrary, metals and energy commodities, which where
characterised by a declining trend until the beginning of this century, are now exhibiting
an upward, or at least stable, pattern.
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A Simulation results

Table 5: Simulation results, rank assumed known, q = 1, φ = 0.1

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.070 0.695 0.171 0.008 8.215 0.000
T = 400 0.065 0.678 0.157 0.006 8.198 0.000

4
T = 200 0.196 0.800 0.289 0.040 13.549 0.000
T = 400 0.217 0.815 0.316 0.038 13.692 0.000

64

4
2

T = 200 0.020 0.658 0.077 0.002 5.293 0.000
T = 400 0.034 0.648 0.115 0.002 5.873 0.000

4
T = 200 0.052 0.743 0.131 0.007 7.955 0.000
T = 400 0.042 0.725 0.123 0.006 6.758 0.000

8
2

T = 200 0.042 0.680 0.132 0.004 6.353 0.000
T = 400 0.040 0.693 0.135 0.003 5.887 0.000

4
T = 200 0.162 0.825 0.277 0.028 11.697 0.000
T = 400 0.203 0.808 0.320 0.021 12.664 0.000

128 8 4
T = 200 0.022 0.760 0.069 0.005 6.399 0.000
T = 400 0.023 0.750 0.084 0.004 5.527 0.000

Table 6: Simulation results, rank assumed known, q = 1, φ = 0.5

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.114 0.800 0.159 0.072 14.327 0.000
T = 400 0.131 0.838 0.173 0.075 15.162 0.000

4
T = 200 0.266 0.890 0.253 0.207 21.049 0.000
T = 400 0.264 0.870 0.258 0.190 20.460 0.000

64

4
2

T = 200 0.060 0.845 0.074 0.043 16.046 0.000
T = 400 0.063 0.843 0.080 0.040 15.694 0.000

4
T = 200 0.114 0.898 0.115 0.082 19.795 0.000
T = 400 0.122 0.928 0.111 0.103 21.975 0.000

8
2

T = 200 0.112 0.900 0.117 0.086 19.148 0.000
T = 400 0.109 0.868 0.131 0.071 16.610 0.000

4
T = 200 0.231 0.885 0.222 0.181 20.799 0.000
T = 400 0.257 0.928 0.227 0.214 22.675 0.000

128 8 4
T = 200 0.091 0.925 0.096 0.066 18.907 0.000
T = 400 0.105 0.920 0.096 0.082 21.712 0.000
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Table 7: Simulation results, rank assumed known, q = 1, φ = 0.9

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.057 0.833 0.080 0.046 14.312 0.000
T = 400 0.053 0.868 0.069 0.045 15.528 0.000

4
T = 200 0.136 0.933 0.123 0.113 21.960 0.000
T = 400 0.129 0.888 0.142 0.110 18.095 0.000

64

4
2

T = 200 0.030 0.850 0.032 0.027 18.385 0.000
T = 400 0.029 0.880 0.032 0.027 18.430 0.000

4
T = 200 0.062 0.925 0.058 0.054 21.305 0.000
T = 400 0.070 0.953 0.067 0.060 20.767 0.000

8
2

T = 200 0.057 0.943 0.046 0.051 24.401 0.000
T = 400 0.062 0.918 0.079 0.052 15.800 0.000

4
T = 200 0.120 0.943 0.098 0.107 24.357 0.000
T = 400 0.128 0.943 0.107 0.114 23.889 0.000

128 8 4
T = 200 0.064 0.965 0.050 0.058 25.654 0.000
T = 400 0.066 0.958 0.053 0.064 25.210 0.000

Table 8: Simulation results, rank assumed known, q = 3, φ = 0.1

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.070 0.888 0.089 0.032 15.611 0.000
T = 400 0.075 0.908 0.096 0.032 15.647 0.000

4
T = 200 0.159 0.985 0.110 0.144 28.949 0.000
T = 400 0.147 0.993 0.109 0.124 26.842 0.000

64

4
2

T = 200 0.042 0.840 0.073 0.011 11.421 0.000
T = 400 0.045 0.858 0.074 0.013 12.124 0.000

4
T = 200 0.104 0.948 0.113 0.045 18.438 0.000
T = 400 0.093 0.963 0.110 0.034 16.882 0.000

8
2

T = 200 0.128 0.963 0.118 0.080 21.692 0.000
T = 400 0.117 0.963 0.115 0.067 20.375 0.000

4
T = 200 0.202 1.000 0.120 0.245 33.701 0.000
T = 400 0.223 0.998 0.117 0.273 38.264 0.000

128 8 4
T = 200 0.182 0.990 0.130 0.205 28.038 0.000
T = 400 0.184 0.998 0.132 0.219 27.829 0.000

Table 9: Simulation results, rank assumed known, q = 3, φ = 0.5

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.075 0.923 0.074 0.054 20.316 0.000
T = 400 0.083 0.943 0.075 0.061 22.148 0.000

4
T = 200 0.164 0.993 0.092 0.169 35.568 0.000
T = 400 0.159 0.995 0.094 0.158 33.850 0.000

64

4
2

T = 200 0.046 0.885 0.055 0.026 16.511 0.000
T = 400 0.049 0.918 0.059 0.027 16.466 0.000

4
T = 200 0.109 0.985 0.086 0.087 25.302 0.000
T = 400 0.101 0.970 0.083 0.078 24.566 0.000

8
2

T = 200 0.112 0.973 0.089 0.089 25.225 0.000
T = 400 0.104 0.978 0.081 0.088 25.487 0.000

4
T = 200 0.203 0.995 0.093 0.219 43.742 0.000
T = 400 0.201 1.000 0.089 0.220 45.150 0.000

128 8 4
T = 200 0.148 0.995 0.085 0.157 34.652 0.000
T = 400 0.155 0.995 0.085 0.175 36.533 0.000
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Table 10: Simulation results, rank assumed known, q = 3, φ = 0.9

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.065 0.855 0.081 0.057 16.094 0.000
T = 400 0.079 0.888 0.077 0.067 20.269 0.000

4
T = 200 0.132 0.953 0.093 0.125 28.227 0.000
T = 400 0.140 0.963 0.095 0.137 29.429 0.000

64

4
2

T = 200 0.048 0.848 0.067 0.038 14.356 0.000
T = 400 0.048 0.845 0.065 0.039 14.595 0.000

4
T = 200 0.083 0.933 0.070 0.073 23.813 0.000
T = 400 0.092 0.910 0.084 0.078 21.815 0.000

8
2

T = 200 0.073 0.903 0.070 0.061 21.023 0.000
T = 400 0.080 0.915 0.074 0.068 21.541 0.000

4
T = 200 0.137 0.973 0.087 0.127 31.566 0.000
T = 400 0.141 0.975 0.086 0.126 32.847 0.000

128 8 4
T = 200 0.086 0.950 0.065 0.075 26.453 0.000
T = 400 0.086 0.948 0.060 0.079 28.684 0.000

Table 11: Simulation results, rank assumed known, q = 5, φ = 0.1

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.137 0.980 0.070 0.146 39.055 0.000
T = 400 0.133 0.990 0.070 0.138 37.986 0.000

4
T = 200 0.213 1.000 0.070 0.206 60.953 0.000
T = 400 0.208 1.000 0.074 0.202 55.932 0.000

64

4
2

T = 200 0.106 0.948 0.076 0.098 27.660 0.000
T = 400 0.107 0.968 0.072 0.106 29.610 0.000

4
T = 200 0.198 1.000 0.073 0.192 54.487 0.000
T = 400 0.193 0.998 0.075 0.190 51.344 0.000

8
2

T = 200 0.164 0.998 0.075 0.175 44.010 0.000
T = 400 0.159 0.998 0.074 0.172 42.770 0.000

4
T = 200 0.214 1.000 0.080 0.210 53.302 0.000
T = 400 0.222 1.000 0.079 0.215 56.037 0.000

128 8 4
T = 200 0.190 1.000 0.082 0.196 46.463 0.000
T = 400 0.181 1.000 0.083 0.195 43.727 0.000

Table 12: Simulation results, rank assumed known, q = 5, φ = 0.5

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.123 0.970 0.070 0.124 35.448 0.000
T = 400 0.126 0.983 0.065 0.125 38.535 0.000

4
T = 200 0.205 1.000 0.072 0.200 57.074 0.000
T = 400 0.209 0.998 0.072 0.202 57.979 0.000

64

4
2

T = 200 0.094 0.965 0.061 0.089 30.784 0.000
T = 400 0.091 0.953 0.057 0.087 31.820 0.000

4
T = 200 0.173 1.000 0.064 0.171 53.922 0.000
T = 400 0.173 1.000 0.063 0.166 54.783 0.000

8
2

T = 200 0.146 1.000 0.057 0.147 50.975 0.000
T = 400 0.146 1.000 0.063 0.146 46.723 0.000

4
T = 200 0.216 1.000 0.070 0.210 61.897 0.000
T = 400 0.215 1.000 0.067 0.214 64.237 0.000

128 8 4
T = 200 0.177 1.000 0.064 0.170 55.483 0.000
T = 400 0.178 1.000 0.062 0.172 57.581 0.000
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Table 13: Simulation results, rank assumed known, q = 5, φ = 0.9

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.060 0.923 0.050 0.053 24.120 0.000
T = 400 0.066 0.925 0.052 0.061 25.332 0.000

4
T = 200 0.086 0.900 0.067 0.082 25.620 0.000
T = 400 0.122 0.955 0.073 0.123 33.749 0.000

64

4
2

T = 200 0.031 0.838 0.037 0.025 16.824 0.000
T = 400 0.036 0.868 0.043 0.031 16.941 0.000

4
T = 200 0.084 0.960 0.053 0.076 31.740 0.000
T = 400 0.091 0.953 0.059 0.085 31.211 0.000

8
2

T = 200 0.081 0.955 0.054 0.073 29.960 0.000
T = 400 0.089 0.968 0.056 0.082 31.966 0.000

4
T = 200 0.097 0.923 0.069 0.097 28.040 0.000
T = 400 0.127 0.965 0.066 0.132 38.652 0.000

128 8 4
T = 200 0.088 0.980 0.046 0.084 38.700 0.000
T = 400 0.097 0.978 0.053 0.093 36.450 0.000

Table 14: Simulation results, rank assumed known, q = 8, φ = 0.1

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.110 1.000 0.051 0.107 43.459 0.000
T = 400 0.116 0.995 0.048 0.113 48.933 0.000

4
T = 200 0.229 1.000 0.054 0.228 84.162 0.000
T = 400 0.244 1.000 0.051 0.240 94.992 0.000

64

4
2

T = 200 0.086 0.975 0.053 0.082 32.774 0.000
T = 400 0.090 0.995 0.049 0.088 36.564 0.000

4
T = 200 0.214 1.000 0.060 0.211 70.884 0.000
T = 400 0.229 1.000 0.064 0.225 70.983 0.000

8
2

T = 200 0.208 1.000 0.056 0.212 74.688 0.000
T = 400 0.213 1.000 0.061 0.214 70.262 0.000

4
T = 200 0.317 1.000 0.051 0.314 123.960 0.000
T = 400 0.322 1.000 0.054 0.319 118.960 0.000

128 8 4
T = 200 0.308 1.000 0.060 0.310 103.280 0.000
T = 400 0.317 1.000 0.061 0.323 103.730 0.000

Table 15: Simulation results, rank assumed known, q = 8, φ = 0.5

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.098 0.983 0.044 0.096 44.470 0.000
T = 400 0.107 0.995 0.046 0.104 46.918 0.000

4
T = 200 0.223 1.000 0.052 0.223 85.349 0.000
T = 400 0.238 1.000 0.049 0.240 97.209 0.000

64

4
2

T = 200 0.061 0.940 0.040 0.060 30.090 0.000
T = 400 0.064 0.958 0.041 0.062 31.584 0.000

4
T = 200 0.179 1.000 0.056 0.177 63.782 0.000
T = 400 0.189 1.000 0.053 0.186 70.646 0.000

8
2

T = 200 0.164 1.000 0.050 0.161 65.090 0.000
T = 400 0.178 1.000 0.050 0.176 70.820 0.000

4
T = 200 0.283 1.000 0.050 0.280 113.030 0.000
T = 400 0.301 1.000 0.050 0.301 120.700 0.000

128 8 4
T = 200 0.248 1.000 0.048 0.248 103.700 0.000
T = 400 0.263 1.000 0.048 0.260 109.110 0.000
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Table 16: Simulation results, rank assumed known, q = 8, φ = 0.9

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 -0.007 0.440 0.043 -0.006 -3.336 1.000
T = 400 0.004 0.538 0.046 0.005 1.782 0.037

4
T = 200 0.020 0.663 0.054 0.024 7.454 0.000
T = 400 0.049 0.830 0.054 0.048 18.153 0.000

64

4
2

T = 200 0.014 0.738 0.027 0.014 10.129 0.000
T = 400 0.016 0.765 0.029 0.017 11.128 0.000

4
T = 200 0.058 0.968 0.033 0.057 35.541 0.000
T = 400 0.067 0.980 0.034 0.064 39.453 0.000

8
2

T = 200 0.013 0.655 0.037 0.015 7.231 0.000
T = 400 0.020 0.683 0.044 0.022 8.967 0.000

4
T = 200 0.026 0.705 0.051 0.023 10.161 0.000
T = 400 0.068 0.898 0.054 0.069 25.239 0.000

128 8 4
T = 200 0.082 0.998 0.031 0.076 53.545 0.000
T = 400 0.098 1.000 0.035 0.093 56.254 0.000

Table 17: Simulation results, rank estimated, q = 1, φ = 0.1

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.076 0.738 0.176 0.009 8.654 0.000
T = 400 0.067 0.678 0.159 0.007 8.439 0.000

4
T = 200 0.192 0.783 0.284 0.041 13.508 0.000
T = 400 0.217 0.823 0.310 0.042 13.994 0.000

64

4
2

T = 200 0.047 0.695 0.124 0.005 7.618 0.000
T = 400 0.033 0.653 0.107 0.003 6.151 0.000

4
T = 200 0.078 0.770 0.173 0.011 9.066 0.000
T = 400 0.044 0.738 0.131 0.006 6.686 0.000

8
2

T = 200 0.046 0.678 0.143 0.004 6.452 0.000
T = 400 0.042 0.725 0.143 0.003 5.922 0.000

4
T = 200 0.158 0.818 0.275 0.023 11.536 0.000
T = 400 0.203 0.810 0.317 0.024 12.794 0.000

128 8 4
T = 200 0.035 0.758 0.101 0.006 7.014 0.000
T = 400 0.027 0.775 0.092 0.004 5.908 0.000

Table 18: Simulation results, rank estimated, q = 1, φ = 0.5

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.118 0.800 0.162 0.072 14.552 0.000
T = 400 0.133 0.835 0.176 0.073 15.116 0.000

4
T = 200 0.264 0.865 0.253 0.215 20.840 0.000
T = 400 0.257 0.863 0.253 0.185 20.334 0.000

64

4
2

T = 200 0.090 0.835 0.110 0.062 16.262 0.000
T = 400 0.071 0.855 0.091 0.046 15.577 0.000

4
T = 200 0.141 0.863 0.141 0.106 20.075 0.000
T = 400 0.127 0.923 0.114 0.111 22.168 0.000

8
2

T = 200 0.118 0.898 0.120 0.089 19.628 0.000
T = 400 0.112 0.858 0.135 0.071 16.635 0.000

4
T = 200 0.227 0.883 0.220 0.158 20.546 0.000
T = 400 0.249 0.903 0.225 0.195 22.109 0.000

128 8 4
T = 200 0.100 0.890 0.114 0.067 17.443 0.000
T = 400 0.109 0.915 0.099 0.088 21.900 0.000
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Table 19: Simulation results, rank estimated, q = 1, φ = 0.9

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.059 0.833 0.086 0.047 13.774 0.000
T = 400 0.056 0.870 0.068 0.044 16.375 0.000

4
T = 200 0.134 0.925 0.124 0.111 21.601 0.000
T = 400 0.127 0.890 0.141 0.110 17.948 0.000

64

4
2

T = 200 0.047 0.895 0.043 0.044 21.918 0.000
T = 400 0.031 0.863 0.033 0.028 18.640 0.000

4
T = 200 0.074 0.915 0.079 0.067 18.780 0.000
T = 400 0.071 0.953 0.068 0.062 20.627 0.000

8
2

T = 200 0.060 0.943 0.050 0.053 23.802 0.000
T = 400 0.057 0.918 0.069 0.050 16.545 0.000

4
T = 200 0.114 0.920 0.100 0.106 22.661 0.000
T = 400 0.123 0.938 0.108 0.113 22.801 0.000

128 8 4
T = 200 0.076 0.958 0.068 0.068 22.459 0.000
T = 400 0.065 0.960 0.053 0.061 24.593 0.000

Table 20: Simulation results, rank estimated, q = 3, φ = 0.1

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.070 0.878 0.092 0.033 15.086 0.000
T = 400 0.074 0.895 0.098 0.028 15.076 0.000

4
T = 200 0.155 0.973 0.111 0.144 28.016 0.000
T = 400 0.147 0.990 0.110 0.126 26.865 0.000

64

4
2

T = 200 0.049 0.830 0.079 0.014 12.297 0.000
T = 400 0.046 0.848 0.075 0.013 12.162 0.000

4
T = 200 0.110 0.938 0.117 0.048 18.679 0.000
T = 400 0.105 0.975 0.118 0.041 17.831 0.000

8
2

T = 200 0.125 0.948 0.118 0.076 21.201 0.000
T = 400 0.120 0.950 0.118 0.066 20.328 0.000

4
T = 200 0.197 0.993 0.121 0.228 32.422 0.000
T = 400 0.221 1.000 0.117 0.272 37.734 0.000

128 8 4
T = 200 0.176 0.983 0.129 0.207 27.363 0.000
T = 400 0.180 0.995 0.133 0.225 27.131 0.000

Table 21: Simulation results, rank estimated, q = 3, φ = 0.5

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.080 0.920 0.080 0.056 20.000 0.000
T = 400 0.084 0.940 0.077 0.060 21.854 0.000

4
T = 200 0.162 0.990 0.095 0.166 34.007 0.000
T = 400 0.155 0.990 0.095 0.150 32.826 0.000

64

4
2

T = 200 0.056 0.893 0.068 0.031 16.691 0.000
T = 400 0.048 0.915 0.056 0.029 17.051 0.000

4
T = 200 0.109 0.978 0.086 0.087 25.393 0.000
T = 400 0.103 0.968 0.084 0.082 24.669 0.000

8
2

T = 200 0.113 0.975 0.088 0.095 25.638 0.000
T = 400 0.104 0.980 0.081 0.085 25.605 0.000

4
T = 200 0.198 0.993 0.092 0.213 43.037 0.000
T = 400 0.197 1.000 0.090 0.216 43.892 0.000

128 8 4
T = 200 0.159 0.998 0.089 0.175 35.588 0.000
T = 400 0.155 0.995 0.089 0.163 34.793 0.000
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Table 22: Simulation results, rank estimated, q = 3, φ = 0.9

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.075 0.868 0.088 0.062 17.036 0.000
T = 400 0.077 0.888 0.082 0.068 18.661 0.000

4
T = 200 0.110 0.893 0.103 0.106 21.304 0.000
T = 400 0.132 0.933 0.102 0.128 25.827 0.000

64

4
2

T = 200 0.062 0.845 0.075 0.051 16.504 0.000
T = 400 0.053 0.853 0.064 0.044 16.574 0.000

4
T = 200 0.083 0.900 0.080 0.075 20.973 0.000
T = 400 0.085 0.903 0.074 0.076 23.065 0.000

8
2

T = 200 0.071 0.875 0.077 0.061 18.393 0.000
T = 400 0.085 0.915 0.073 0.075 23.183 0.000

4
T = 200 0.111 0.895 0.101 0.106 22.013 0.000
T = 400 0.130 0.960 0.093 0.122 27.980 0.000

128 8 4
T = 200 0.079 0.870 0.071 0.081 22.517 0.000
T = 400 0.092 0.940 0.069 0.086 26.731 0.000

Table 23: Simulation results, rank estimated, q = 5, φ = 0.1

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.130 0.963 0.074 0.139 35.330 0.000
T = 400 0.128 0.975 0.072 0.134 35.266 0.000

4
T = 200 0.199 0.998 0.074 0.199 53.870 0.000
T = 400 0.197 0.993 0.079 0.195 49.639 0.000

64

4
2

T = 200 0.112 0.938 0.078 0.111 28.591 0.000
T = 400 0.115 0.970 0.066 0.117 34.894 0.000

4
T = 200 0.200 0.998 0.073 0.193 54.907 0.000
T = 400 0.192 0.998 0.074 0.189 51.891 0.000

8
2

T = 200 0.155 0.993 0.076 0.163 40.716 0.000
T = 400 0.149 0.995 0.076 0.166 39.112 0.000

4
T = 200 0.198 1.000 0.086 0.203 46.153 0.000
T = 400 0.209 1.000 0.086 0.210 48.547 0.000

128 8 4
T = 200 0.202 1.000 0.079 0.201 51.414 0.000
T = 400 0.195 1.000 0.076 0.196 51.467 0.000

Table 24: Simulation results, rank estimated, q = 5, φ = 0.5

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.113 0.940 0.074 0.115 30.465 0.000
T = 400 0.118 0.960 0.072 0.119 32.886 0.000

4
T = 200 0.181 0.985 0.084 0.184 42.987 0.000
T = 400 0.196 0.983 0.081 0.192 48.489 0.000

64

4
2

T = 200 0.103 0.955 0.066 0.096 31.284 0.000
T = 400 0.100 0.980 0.056 0.097 35.657 0.000

4
T = 200 0.175 0.998 0.062 0.174 56.363 0.000
T = 400 0.176 1.000 0.062 0.172 57.139 0.000

8
2

T = 200 0.131 0.975 0.066 0.135 39.768 0.000
T = 400 0.139 0.968 0.073 0.141 38.294 0.000

4
T = 200 0.187 0.995 0.080 0.191 46.504 0.000
T = 400 0.200 0.993 0.078 0.207 50.976 0.000

128 8 4
T = 200 0.187 1.000 0.062 0.181 60.465 0.000
T = 400 0.179 1.000 0.061 0.171 58.370 0.000
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Table 25: Simulation results, rank estimated, q = 5, φ = 0.9

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.002 0.553 0.081 0.010 0.521 0.301
T = 400 0.040 0.745 0.076 0.047 10.429 0.000

4
T = 200 0.066 0.810 0.076 0.070 17.406 0.000
T = 400 0.096 0.895 0.082 0.099 23.245 0.000

64

4
2

T = 200 0.036 0.818 0.058 0.036 12.594 0.000
T = 400 0.045 0.865 0.048 0.042 18.945 0.000

4
T = 200 0.073 0.898 0.066 0.076 22.074 0.000
T = 400 0.095 0.970 0.054 0.089 34.702 0.000

8
2

T = 200 0.002 0.535 0.087 0.009 0.466 0.321
T = 400 0.047 0.738 0.080 0.053 11.892 0.000

4
T = 200 0.074 0.863 0.071 0.072 20.698 0.000
T = 400 0.093 0.890 0.075 0.096 24.692 0.000

128 8 4
T = 200 0.079 0.895 0.062 0.082 25.403 0.000
T = 400 0.093 0.948 0.058 0.090 32.073 0.000

Table 26: Simulation results, rank estimated, q = 8, φ = 0.1

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.084 0.895 0.068 0.087 24.854 0.000
T = 400 0.101 0.948 0.059 0.104 34.282 0.000

4
T = 200 0.215 0.998 0.061 0.215 70.206 0.000
T = 400 0.231 0.998 0.064 0.231 71.868 0.000

64

4
2

T = 200 0.083 0.945 0.054 0.081 30.485 0.000
T = 400 0.083 0.960 0.051 0.079 32.684 0.000

4
T = 200 0.203 1.000 0.060 0.204 67.895 0.000
T = 400 0.220 1.000 0.064 0.219 68.161 0.000

8
2

T = 200 0.171 0.983 0.074 0.170 46.004 0.000
T = 400 0.189 0.988 0.074 0.195 51.169 0.000

4
T = 200 0.290 1.000 0.070 0.298 82.809 0.000
T = 400 0.304 1.000 0.068 0.307 90.053 0.000

128 8 4
T = 200 0.296 1.000 0.060 0.301 98.240 0.000
T = 400 0.312 1.000 0.061 0.317 101.520 0.000

Table 27: Simulation results, rank estimated, q = 8, φ = 0.5

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 0.065 0.853 0.071 0.073 18.387 0.000
T = 400 0.089 0.935 0.060 0.093 29.784 0.000

4
T = 200 0.193 0.993 0.063 0.196 61.783 0.000
T = 400 0.222 0.998 0.065 0.230 68.637 0.000

64

4
2

T = 200 0.062 0.923 0.048 0.061 25.489 0.000
T = 400 0.059 0.918 0.045 0.054 26.352 0.000

4
T = 200 0.161 0.993 0.059 0.160 54.049 0.000
T = 400 0.176 1.000 0.057 0.174 61.597 0.000

8
2

T = 200 0.111 0.923 0.071 0.116 31.241 0.000
T = 400 0.145 0.973 0.071 0.153 41.077 0.000

4
T = 200 0.241 1.000 0.067 0.248 72.291 0.000
T = 400 0.272 1.000 0.071 0.284 76.232 0.000

128 8 4
T = 200 0.233 1.000 0.061 0.235 76.928 0.000
T = 400 0.247 1.000 0.053 0.246 93.008 0.000
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Table 28: Simulation results, rank estimated, q = 8, φ = 0.9

Mean Freq. ∇ > 0 St. Dev. Median Test ∇ = 0 p-value
n B r

32 4
2

T = 200 -0.084 0.060 0.055 -0.085 -30.617 1.000
T = 400 -0.052 0.258 0.071 -0.050 -14.683 1.000

4
T = 200 0.023 0.728 0.045 0.023 10.360 0.000
T = 400 0.033 0.768 0.049 0.035 13.564 0.000

64

4
2

T = 200 -0.128 0.045 0.072 -0.126 -35.682 1.000
T = 400 -0.032 0.318 0.059 -0.025 -10.824 1.000

4
T = 200 -0.105 0.050 0.061 -0.103 -34.455 1.000
T = 400 -0.022 0.433 0.079 -0.008 -5.537 1.000

8
2

T = 200 -0.075 0.048 0.050 -0.074 -30.157 1.000
T = 400 -0.054 0.258 0.071 -0.046 -15.205 1.000

4
T = 200 0.026 0.728 0.049 0.030 10.565 0.000
T = 400 0.049 0.830 0.055 0.053 17.590 0.000

128 8 4
T = 200 -0.101 0.045 0.056 -0.102 -36.257 1.000
T = 400 -0.016 0.453 0.081 -0.006 -3.962 1.000
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B Commodity price data and long-term trends

Figure 3: Base metals log prices and Permanent components

(a) Aluminium (b) Copper (c) Lead

(d) Nickel (e) Tin (f) Zinc

Figure 5: Precious metals log prices and Permanent components

(a) Gold (b) Silver (c) Platinum

Figure 7: Energy log prices and Permanent components

(a) Crude oil (brent) (b) Coal (c) Crude oil (Dubai Fateh)

(d) Crude oil (WTI)
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Figure 9: Livestock log prices and Permanent components

(a) Beef (b) Fish (c) Lamb

(d) Poultry (e) Swine (f) Shrimp

Figure 11: Raw materials log prices and Permanent components

(a) Cotton (b) Hides (c) Hard logs

(d) Hard sawnwood (e) Rubber (f) Soft logs

(g) Soft sawnwood (h) Wool
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Figure 13: Food log prices and Permanent components

(a) Cotton (b) Hides (c) Hard logs

(d) Hard sawnwood (e) Rubber (f) Soft logs

(g) Soft sawnwood (h) Wool (i) Soft sawnwood

(j) Wool
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C Commodity price data

Table 29: Data description, IMF database of primary commodity prices

Commodity price description

Aluminium 99.5% minimum purity, LME spot price, CIF UK ports, US$ per metric ton
Barley Canadian no.1 Western Barley, spot price, US$ per metric ton

Beef Australian and New Zealand 85% lean fores, CIF U.S. import price, US cents per
pound

Coal Australian thermal coal, 12,000- btu/pound, less than 1% sulfur, 14% ash, FOB
Newcastle/Port Kembla, US$ per metric ton

Cocoa Cocoa beans, International Cocoa Organization cash price, CIF US and European
ports, US$ per metric ton

Coffee Robusta, International Coffee Organization New York cash price, ex-dock New
York, US cents per pound

Rapeseed oil Crude, fob Rotterdam, US$ per metric ton
Copper Grade A cathode, LME spot price, CIF European ports, US$ per metric ton
Cotton Cotton Outlook ’A Index’, Middling 1-3/32 inch staple, CIF Liverpool, US cents

per pound
Hides Heavy native steers, over 53 pounds, wholesale dealer’s price, US, Chicago, fob

Shipping Point, US cents per pound
Lamb Frozen carcass Smithfield London, US cents per pound
Lead 99.97% pure, LME spot price, CIF European Ports, US$ per metric ton

Soft Logs Average Export price from the U.S. for Douglas Fir, US$ per cubic meter
Hard Logs Best quality Malaysian meranti, import price Japan, US$ per cubic meter

Maize U.S. No.2 Yellow, FOB Gulf of Mexico, U.S. price, US$ per metric ton
Nickel Melting grade, LME spot price, CIF European ports, US$ per metric ton

Crude oil 1) Crude Oil (petroleum), Dated Brent, light blend 38 API, fob U.K., US$ per
barrel
2) Crude Oil (petroleum), Dubai Fateh Fateh 32 API, US$ per barrel
3) Crude Oil (petroleum), West Texas Intermediate 40 API, Midland Texas, US$
per barrel

Olive oil Extra virgin less than 1% free fatty acid, ex-tanker price U.K., US$ per metric ton
Swine 51-52% lean Hogs, U.S. price, US cents per pound

Poultry Whole bird spot price, Ready-to-cook, whole, iced, Georgia docks, US cents per
pound

Rice 5 percent broken milled white rice
Rubber Singapore Commodity Exchange, No. 3 Rubber Smoked Sheets, 1st contract, US

cents per pound
Fish Farm Bred Norwegian Salmon, export price, US$ per kilogram

Hard Sawnwood Dark Red Meranti, select and better quality, C&F U.K port, US$ per cubic meter
Soft Sawnwood Average export price of Douglas Fir, U.S. Price, US$ per cubic meter

Shrimps Thailand Whiteleg Shrimp 70 Shrimps/Kg Spot Price
Sunflower oil US export price from Gulf of Mexico, US$ per metric ton

Tea Mombasa, Kenya, Auction Price, US cents per kilogram, From July 1998,Kenya
auctions, Best Pekoe Fannings. Prior, London auctions, c.i.f. U.K. warehouses

Tin Standard grade, LME spot price, US$ per metric ton
Wheat No.1 Hard Red Winter, ordinary protein, Kansas City, US$ per metric ton

Wool Coarse, 23 micron, Australian Wool Exchange spot quote, US cents per kilogram
Zinc High grade 98% pure, US$ per metric ton
Gold Fixing Committee of the London Bullion Market Association, London 3 PM fixed

price, US$ per troy ounce
Silver London Bullion Market Association, USD/troy ounce

Platinum LME spot price, USD/troy ounce
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Table 30: Blocks of commodity prices

Base Metals

Aluminium
Copper
Lead
Nickel
Tin
Zinc

Precious Metals
Gold
Silver
Platinum

Energy

Crude oil (brent)
Crude oil (Dubai Fateh)
Crude oil (WTI)
Coal

Livestock

Beef
Fish
Swine
Poultry
Lamb
Shrimp

Raw Materials

Soft logs
Cotton
Hides
Hard logs
Rubber
Hard sawnwood
Soft sawnwood
Wool

Food

Barley
Cocoa
Coffee
Rapeseed oil
Maize
Olive oil
Rice
Sunflower oil
Tea
Wheat
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