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Abstract

This paper studies how the investment in adaptation can influence the participation in an

international environmental agreement (IEA) when countries decide in adaptation before they

choose their levels of emissions. Two types of agreements are studied, a complete agreement

for which countries coordinate their decisions on adaptation and emissions, and an adaptation

agreement for which there is only coordination when countries decide their levels of adaptation.

In both cases, we assume that the degree of effectiveness of adaptation is bounded from above, in

order words, adaptation can alleviate the environmental problem, but it cannot solve it by itself

leading the vulnerability of the country to almost zero. Our results show that the grand coalition

could be stable for both types of agreement, but for extremely high degrees of effectiveness of

adaptation. If this condition is not satisfied, the model predicts low levels of membership. The

standard result of three countries for the complete agreement. For the adaptation agreement

participation can be higher than three, but not higher than six countries. In any case, we can

conclude that under reasonable values for the degree of effectiveness of adaptation, in our model

adaptation does not promote participation in an IEA.

Keywords: international environmental agreements, adaptation-mitigation game, vulner-

ability, effectiveness of adaptation, complete agreement, adaptation agreement

JEL Classification System: D62, F53, H41, Q54
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1 Introduction

Countries can choose between mitigation and adaptation to face transboundary pollution prob-

lems as global warming. The former reduces the amount of emissions and the latter reduces

environmental damages without affecting the level of pollution. An important difference be-

tween these two types of policies is that mitigation has public/international good characteristics

while adaptation has private/national good characteristics. The previous distinction between

adaptation and mitigation states at least two important issues to address. One is the optimal

policy-mix the countries should implement. The other is whether adaptation plays against or

in favor of international cooperation. The recent literature indicates that adaptation can pro-

mote cooperation. Bayramoglu et al. (2018) solve a mitigation-adaptation game and find that

the participation in an emission agreement can be high when emissions are strategic comple-

ments. On the other hand, Breton and Sbragia (2019) solve an adaptation-mitigation game and

find that the participation in an environmental agreement can be high provided that countries

cooperate when they decide on their levels of adaptation. The authors analyze two types of

agreements with cooperation in adaptation. A complete agreement where signatory countries

agree to coordinate both their adaptation and mitigation policies, and an adaptation agree-

ment where signatory countries coordinate only their adaptation policies, while each country

decides on emissions individually. In both cases, they consider situations where investments

in adaptation requires a prior commitment. Using numerical simulations, they find that the

agreement that best performs in terms of participation is the adaptation agreement.1 This is

a very interesting result because the literature on technology agreements is not so optimistic

about participation. For instance, Rubio (2017) concludes that for linear damages and quadratic

investment costs, the grand coalition could be stable if marginal damages are large enough to

justify the development of a “breakthrough” technology and technology spillovers are not very

important. When this does not occur, a technology agreement does not perform much better

than an emission agreement.

For this reason, we think that this is an issue that deserves more attention. In this paper,

we analyze the impact that adaptation has on participation when countries decide first on their

1Masoudi and Zaccour (2017) also find that an adaptation agreement, where countries decide on investment

in adaptation before they select their emissions, can lead to a high level of participation, but they focus on a

type of investment in adaptation that presents imperfect international/public good characteristics.
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levels of adaptation as in Breton and Sbragia’s (2019) paper.This approach has been followed

by others authors as Zehaie (2009), Masoudi and Zaccour (2017), Breton and Sbragia (2017)

for analyzing different issues. In these papers, it is assumed that countries take a decision on

adaptation in anticipation of mitigation policies that imply a commitment on adaptation before

deciding on mitigation.2 Examples of such measures include building infrastructures for water

management (dykes, dams, canal systems), change in land use and housing planning, I&D of

resistant crops and investing to improve forecasting and monitoring. Thus, adaptation can

be interpreted as an investment countries do to avoid or reduce damages coming from future

emissions, and in this case the adaptation stage must occur before the emissions stage. In fact,

we could consider the adaptation stage as an investment stage as done explicitly in Masoudi and

Zaccour (2017) and the adaptation agreement as a technology agreement where the investment

stage comes first than the emission stage.

We use a model with linear damages where the marginal damages represent the vulnerability

of the country to pollution, but what is new in our analysis is that we assume that the investment

in adaptation can reduce the marginal damages, but not bellow a positive lower bound. This

means that we are assuming that adaptation can alleviate the environmental problem, but

cannot solve it taking the marginal damages very close to zero.3 In other words, we suppose

that the degree of the effectiveness of adaptation is bounded from above to eliminate from the

model what we could call an “almost” corner solution. To evaluate the impact of this assumption

in the formation of an international environmental agreement (IEA), we solve an adaptation-

mitigation game in three stages considering two types of agreements: a complete agreement and

adaptation agreement 4. For a complete agreement, in the first stage, countries decide on their

participation in the agreemeent. In the second stage, signatory countries decide on their levels

of adaptation as to maximize the agreement net benefits whereas non-signatory countries select

2Harstad et al. (2019) also assume that countries decide on investment before they select the level of emissions,

but the focus of the paper is on compliance of an IEA in a repeated game framework. The authors distinguish

between adaptation, brown and green technologies and find that the best equilibrium requires countries to

overinvest in technologies that are green, but to underinvest in adaptation and brown technologies.
3This is a standard assumption in the literature of technology innovation. See for instance Montero (2002).
4The authors have also analyzed the case when there is no agreement in adaptation investment obtaining the

same result as in the complete agreement. i.e grand coalition is possible but only for extremely high values of

technological effectiveness, otherwise an agreement with only three countries can be stable. Due to the extension

of the analytical analysis this agreement type has not been included to avoid making the paper excessively long.

Nevertheless, analysis is available upon request to the authors.
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their levels of adaptation individually. Finally, in the last stage, acting in the same way countries

decide on emissions. The game is solved by backward induction. However, in the adaptation

agreement there is no cooperation in the third stage, which means that each country decides

noncooperatively its emission levels. One could think that it is not interesting to analyze an

agreement on national goods, but there are two reasons to do it. Firstly, Breton and Sbragia

(2019) include it in their analysis of the impact of adaptation in IEA and we were interested in

knowing which would be the results in our framework. Secondly, as it is assumed that countries

decide on adaptation before deciding on emissions, it is easy to check that the investment in

adaptation indirectly, i.e. through their influence on emissions, creates negative international

externalities. Thus, although adaptation is a national good, because of the timing of the game

the decision on adaptation in the second stage generates indirectly international externalities

through its influence on emissions in the third stage. In this case countries can find profitable

to coordinate their decisions on a national good through an international agreement since the

level of emissions will depend on their decision on adaptation. For this reason, cooperation in

selecting the level of a national good makes sense in this kind of models because adaptation is

decided before countries take their decision on mitigation.

A first thing we would like to highlight from our analysis is that for both types of agreement,

the properties of the adaptation subgame played in the second stage coincide with the properties

of the model without adaptation. Emissions decrease with the number of signatories, the non-

signatories’ net benefits are larger than the signatories’ net benefits for all level of participation,

there are positive spillovers coming from cooperation, i.e. the non-signatories’ net benefits

increase with membership and the difference in net benefits also increases with membership.

Moreover, the two models present the property of full cohesiveness. The unique difference is

that in the model without adaptation, emissions are strategic substitutes, but with adaptation

we find that the levels of adaptation are strategic complements.

The issue of whether the models present strategic substitutes or strategic complements

and how this affects the relationship between emissions and adaptation has been analyzed by

different authors as Zehaie (2009), Marrouch and Ray Chaudhuri (2011), Ebert and Welsch

(2011,2012), Eisenack and Kahler (2016) and Breton and Sbragia (2017). In our model, com-

plementarity is explained by the linearity of the damage function with respect total emissions

that yields an equilibrium in dominant strategies in the third stage of the game. This has two

consequences, first we find a positive relationship between emissions and adaptation in the third
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stage of the game, and second we also find a relationship of complementarity between the adap-

tation of the different countries in the second stage of the game in the two types of agreements

we study in this paper provided that the second order conditions for the maximization of net

benefits are satisfied.

However, it seems that the complementarity does not have a significative influence on the

scope on cooperation. In both cases, the grand coalition can be stable but only for a very high

degree of effectiveness of adaptation. This is our main contribution to this literature. We define

the way to link the effectiveness of adaptation with the level of participation in an IEA and we

find that only for extremely high values of the degree of effectiveness of adaptation the grand

coalition is stable and that if this is not the case the levels of participation are low. For instance,

for the complete agreement the grand coalition is stable for one hundred countries if signatories

are able through investing in adaptation to reduce the marginal damages in a 99.96%. In the case

of an adaptation agreement, the figure is very similar. Thus, if we consider that these figures

are not reasonable, the results are the standard ones. For the complete agreement, only an

agreement consisting of three countries can be stable as occurs in the standard model without

adaptation. For the adaptation agreement, participation can be higher but no agreements

consisting of more than six countries can be stable. Moreover, in this case it is easy to check

that when the degree of effectiveness of adaptation decreases, the participation also decreases.

Thus, for our model we can conclude that adaptation does not promote participation in an IEA.

Another result to highlight, is that damages can increase or decrease when the number of

signatories augments. The reason is that participation reduces total emissions, but, on the

other hand, increases marginal damages because adaptation also decreases with the number

of signatories. We find that if the vulnerability of the country is equal of larger than 0.5,

damages are decreasing with the participation. Bellow this critical value the effect depends on

the parameter values. But, what is clear from our analysis is that an increase in the number

of signatories not necessarily reduces environmental damages. However, this does not modify

the standard result that net benefits both for signatories and non-signatories augment with

cooperation.

Finally, we could point out that the result requiring an extremely high value of the degree

of effectiveness of adaptation or in other words a very low level of vulnerability for the stability

of the grand coalition is consistent with the standard result derived by Barrett (1994) on large

but shallow coalitions, i.e. an IEA will be signed by a lot of countries but only when the IEA
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increases global net benefits by very little compared with the fully noncooperative outcome. We

find that when the gains of full cooperation are large, the grand coalition is unstable in both

types of agreements studied in this paper. The majority of countries do not cooperate when

they could obtain large gains from this cooperation, instead only a few number of countries will

sign the agreement in this case. Thus, we find a link between the effectiveness of adaptation

and the degree of cooperation that is consistent with the paradox of cooperation established by

Barrett (1994). We could also offer an alternative interpretation of our results consistent with

the puzzle of small coalitions established by Carraro and Siniscalco (1993). If we assume that

there exists an upper bound for the effectiveness of adaptation that is lower than the threshold

value above which the grand coalition is stable, the only equilibrium for the complete agreement

is an agreement consisting of three countries and for the adaptation agreement the participation

cannot be higher than six countries or lower than three depending of the degree of effectiveness

of adaptation.

It is difficult to compare our analysis with the one developed by Breton and Sbragia (2019)

because the only thing we share with this paper is the timing of the game and that adaptation

is a binding commitment. The two papers use different specifications for the objective function.

Breton and Sbragia’s (2019) objective function is given by the addition of the environmental

damages plus mitigation costs plus adaptation costs all of them being quadratic functions, and

in this paper countries maximize the net benefit of emissions with different specifications of the

benefit and damage functions. The benefit function is linear-quadratic and the damage function

is linear in total emission so that vulnerability in our model is given by the marginal damages

whereas in Breton and Sbragia (2019) is given by the difference between total emissions and

adaptation that is the argument of the damage function. Moreover, they do not impose any

positive lower bound for marginal damages whereas we do. Finally, they solve their model

numerically whereas we solve it analytically. But the main novelty of our analysis is that we

study the relationship between the degree of effectiveness in adaptation and the participation in

an IEA that is not in Breton and Sbragia’ (2019) paper. In both models the grand coalition can

be theoretically stable, but we show that this requires an extremely high degree of effectiveness

in adaptation. In practice, this means that the grand coalition is not an outcome of the game

we should expect if more realistic degrees of effectiveness in adaptation are assumed. Moreover,

if the grand coalition is not an option, the levels of participation are low in the two types of

agreements we study. Thus, we can conclude that for our model adaptation really does not
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help to get higher levels of participation in IEAs. However, in Breton and Sbragia (2019) the

participation can be high even if the grand coalition is not stable depending of the parameter

values. They offer a more optimistic results about the role that adaptation plays for promoting

participation than the ones we obtain in this paper. Nevertheless, our conclusion is clear, we may

claim that cooperation in adaptation is not a sufficient condition to obtain more participation

in an environmental agreement. We need something else in the model. Asymmetric knowledge

spillovers as in Masoudi and Zaccour (2017) or maybe high effectiveness of adaptation levels as

in Breton and Sbragia (2019) where the lower bound of marginal damages is zero.

1.1 Literature Review

The stability analysis we present in the next sections enrols in a large strand of literature on the

game-theoretic analysis of international environmental agreements (IEAs) which can be traced

back to the seminal papers by Carraro and Siniscalco (1993) and Barrett (1994).5Surprisingly,

in spite of the huge number of paper published on this topic, only a few papers have analyzed

formally the effects of adaptation on the participation in an IEA. This list of papers includes

Barrett (2008), Marrouch and Ray Chaudhuri (2011), Lazkano et al. (2016), Benchekroun et

al. (2017), Bayramoglu et al. (2017, 2018) and Breton and Sbragia (2019). Barrett (2008)

examines a model in which adaptation and mitigation are both binary actions, and where a

subset of poor countries are unable to adapt. His results show that adaptation improves the

prospects for a cooperative agreement but the numerical exercise he develops suggests that this

positive effect is limited when the potential gains from cooperation are large. Marrouch and

Ray Chaudhuri (2011) present a model with linear damages where the non-signatories’ emissions

are strategic complements of signatories’ emissions and the countries decide simultaneously on

their levels of emissions and adaptation. In their model the signatories act as the leader of

the coalition formation game. Using a numerical example, they show that the more effective

the adaptive measure in terms of reducing the marginal damages from emissions, the larger

the stable size of the IEA. Our model is different in several aspects including the damage

function, and analytically concludes that there are only two possible equilibria for the game:

the grand coalition if the degree of effectiveness of adaptation is extremely large or a small

coalition consisting only of three countries for the rest of values of the degree of effectiveness

5A nice collection of the most influential papers in the field has been published by Finus and Caparrós (2015).

A very complete review of the literature on IEAs can be found in Marrouch and Ray Chaudhuri (2016).
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of adaptation. Moreover, we find that if the gains from full cooperation are large, the grand

coalition is unstable. Lazkano et al. (2016) as Barrett (2008) also look at the effects that

differences in adaptation costs have on participation incentives. They present conditions under

which adaptation can strengthen or weaken free-riding incentives. Benchekroun et al. (2017)

show for a model with a quadratic damage function and identical countries where countries’

emissions are strategic substitutes and both types of countries, signatories and non-signatories

decide simultaneously on the levels of adaptation and emissions that a more efficient adaptation

technology diminishes the incentives of individual countries to free-ride on a global agreement

over emissions. However, they do not clarify whether the grand coalition could be stable.6

Bayramoglu et al.(2017, 2018) claim that if adaptation does that emissions are complements in

the second stage of the game when countries select their level of emissions, adaptation will always

lead to larger stable agreements with lower aggregate emissions and higher global welfare. In

all these models, investment in adaptation is considered a private/national good and countries

select the level of adaptation at the same time they select their levels of emissions or after this

decision has been taken.7 In our model, we focus on investment in adaptation involving long-

term planning. For this kind of investments, countries must act in anticipation of mitigation

policies. Moreover, our results are somewhat more pessimistic.

As far as we know, the unique paper that addresses the stability of an adaptation agree-

ment when the level of adaptation is selected before emissions, and adaptation is considered

a private/national good is Breton and Sbragia (2019). Breton and Sbragia’s (2019) numeri-

cal simulations shows that the cooperation in adaptation can boost participation. Even the

grand coalition can be stable for some parameter values as occurs in our investigation. We also

addresses this issue, but for a different specification of the net benefit function, obtaining a dif-

ferent result on participation as we have just explained above because our assumption about the

upper limit that the degree of effectiveness of adaptation can take. We show analytically that

the participation cannot be higher than three countries for the complete agreement although

could reach six countries for the case of the adaptation agreement.

6Li and Rus (2019) extend this model for heterogeneous countries showing that technological progress in

adaptation can foster an IEA. They use a numerical example with parameters estimated from climate change

data.
7Masoudi and Zaccour (2018) analyze the stability of a complete agreement on investment in adaptation and

emissions where countries decide simultaneously on the levels of these two variables. However, they assume as in

Masoudi and Zaccour (2017) that investment in adaptation is an imperfect global public good.
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To end this review of the literature, we would like to add that besides the investment in

adaptation other papers have studied the impact of investment in green technologies that reduces

the abatement costs on the stability of IEAs. Among other papers, we could mention those

published by Barrett (2006), Hoel and de Zeeuw (2010), Harstad (2012, 2016), Hong and Karp

(2012), El-Sayed and Rubio (2014), Helm and Schmidt (2015), Battaglini and Harstad (2016),

Goeschl and Perino (2017), Rubio (2017) and Harstad et al. (2019). One of the issues examined

by this literature is to know whether a technology agreement could be a good alternative to

an emission agreement. From this list, we would like to highlight the paper by El-Sayed and

Rubio (2014). In their analysis, it is assumed that signatories not only coordinate their levels of

investment but also pool them so as to fully internalize the spillover effects of their investments,

i.e. investment is considered as a club good. However, the results show, that even assuming a

strong asymmetry between signatories and non-signatories as regards the effective investment,

the participation in the technology agreement is low. Interestingly, the maximum level of

participation consists of six countries.8

The paper is organized in four sections. In the next section, Section 2, we present the model

and in Section 3 we analyze the scope of cooperation in a complete agreement. Section 4 analyzes

the case of an adaptation agreement, and Section 5 closes the paper with the conclusions and

the presentation of different issues for future research.

2 The model

We consider a model with N countries where each country emits a global pollutant as a result

of its consumption and production activities. We let ei stand for the emission level of country

i where i = 1, ..., N, and E =
∑N

i=1 ei are total emissions. While total emissions damage

all countries, each country can reduce the negative effects of pollution by mitigation and/or

investing in adaptation. Let ai represent the adaptation level of country i. A key difference

in our paper between emissions and adaptation lies in the international public good nature of

8We would like to quote also the paper by Caparrós (2018). This author shows that short-term agreements

following an incomplete long-term agreement, as the Paris Agreement, cannot achieve the first best solution but

it can improve upon the situation without a long-term agreement. In his model, countries invest to reduce the

abatement costs after the long-term agreement is signed but before the state of nature that determines the benefit

of total abatement is realized.

10



pollution and the national private good nature of adaptation.9 While each country’s emissions

are a national decision, pollution is a global public bad that creates free-riding incentives on

emission abatement. Instead, adaptation is a national decision with country-specific benefits

and costs.

Each country’s net benefits consists of benefits from pollution activities minus emission

damages and adaptation costs. Global pollution damages all countries, however each country

has the option to offset damages through adaptation. Country i′s benefits from emissions are

B(ei) = αei −
γ

2
e2i , α, γ > 0,

and the damage function is10

D(ai, E) = (d− ai)E, d > ai > 0.

As usual we assume that environmental damages cannot be completely eliminated through

adaptation. The cost of reducing the marginal damages is increasing and is given by C(ai) =

ca2i /2, c > 0.11 Thus, the net benefit for country i are

Wi(ai, ei, E−i) = αei −
γ

2
e2i − (d− ai)(ei + E−i)−

c

2
a2i , (1)

where E−i =
∑

j 6=i ej .

3 A complete agreement formation game

The formation of an IEA is modeled as a three-stage game. Each stage will be now described

briefly in reverse order as the subgame-perfect equilibrium of the game is computed by backward

9One might argue that adaptation could also have an international dimension. We abstract from this possibility

because our aim in this paper is to study how country incentives to participate in an IEA change when national

adaptation is available. See Masoudi and Zaccour (2017,2018), for the analysis of international cooperation when

adaptation presents an imperfect international public good characteristic.
10This specification of the damage function is based on the one proposed by d’Aspremont and Jacquemin (1988)

to study the effects of R&D on the cooperation in a duopolistic market. Since then it has been intensively used

in the IO literature. The authors represent the R&D variable as a reduction in the marginal cost of production.

Lazkano el al. (2016) have used it to analyze the consequences that differences in adaptation costs have on the

incentives to participate in an IEA. We assume that the slope of the benefit function is the unity. However, this

assumption has no qualitative effects on the results obtained in this paper.
11Notice that the marginal cost is increasing indicating that the resources invested to reduce damages present

decreasing returns.
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induction.

Given the participation in the agreement and the investment in adaptation of all countries,

in the third stage, the emission subgame, signatory countries choose their emissions so as to

maximize the agreement net benefits taking as given non-signatories’ emissions. Non-signatories

choose the level of emissions acting non-cooperatively and taking the emissions of all other coun-

tries as given in order to maximize their national net benefits. Signatories and non-signatories

choose emissions levels simultaneously. Thus, emissions are provided by the partial agreement

Nash equilibrium (PANE) with respect to a coalition defined by Chander and Tulkens (1995).

In the second stage, the adaptation subgame, countries act as in the third stage, but now they

decide on investment in adaptation. Finally, it is assumed that in the first stage countries play

a simultaneous open membership game with a single binding agreement. In a single agreement

formation game, the strategies for each country are to sign or not to sign and the agreement

is formed by all players who have chosen to sign. Under open membership, any country is

free to join the agreement. Lastly, we assume that the signing of the agreement is binding on

signatories. The game finishes when the emission subgame is over.12

3.1 The third stage: an equilibrium in dominant strategies

As we have supposed that non-signatories countries do not cooperate in the third stage, optimal

emissions can be calculated by maximizing (1) given that participation is decided in the first

stage and adaptation in the second stage.

The first-order condition (FOC) for an interior solution are

α− γefi = d− afi , i = 1, ..., N − n, (2)

where f stands for a non-signatory countries and n represents the number of signatories so that

N − n is the number of non-signatories. This condition establishes that the marginal benefits

of emissions must be equal to the national marginal damages. Thus, non-signatories only take

12As countries that cooperate in the second stage are the same countries that cooperate in the third stage,

we could obtain the same solution than the one we derive in this section modeling the IEA formation game as

a two-stage game with countries deciding on emissions and adaptation at the same time in the second stage.

However, we have decided to keep this structure for the game because it facilities the analysis of the adaptation

agreement we present in the second part of the paper where countries do not cooperate when they decide on

emissions.
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into account the effect that emissions have on its national damages.

Then, emission are given by

efi =
α− d
γ

+
afi
γ
. (3)

Notice that an increase in adaptation leads to higher emissions.

On the other hand, signatories choose the level of emissions to maximize the agreement net

benefits taking as given the non-signatories’ adaptation

max
{es1,...,esn}

WA =
n∑
j=1

{
αesj −

γ

2
(esj)

2 − (d− asj)(esj + E−j)−
c

2
(asj)

2
}
,

where s stands for a signatory country. The FOCs for this problem are

α− γesj =
n∑
k=1

(d− ask) = nd−As, j = 1, ..., n, (4)

where As =
∑n

k=1 a
s
k.

As in condition (2), the LHS is the marginal benefit of emissions. However, the signatories

take into account the increase in damages for the rest of signatories caused by the increase in

its own emissions.

Thus emissions for signatories are given by

esj =
α− nd
γ

+
As

γ
. (5)

Emissions increase with adaptation, but in this case signatories’ emissions depend on the total

adaptation of signatory countries. Moreover, it is clear that all signatories will choose the same

level of emissions.

As environmental damages are linear, the countries’ reaction functions for emissions are

orthogonal for both signatories and non-signatories, and the optimal emissions are given by an

equilibrium in dominant strategies.

Using (3) and (5) we obtain the following expression for total emissions

E =

N−n∑
i=1

efi +

n∑
j=1

esj =
1

γ
(Nα− (N − n+ n2)d+Af + nAs), (6)

where Af =
∑N−n

i=1 afi .

Next, using (1), net benefits can be written as follows for non-signatories
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W f
i =

α

γ
(α− d+ afi )− 1

2γ
(α− d+ afi )2 − (d− afi )E − c

2
(afi )2, i = 1, ..., N − n, (7)

and as follows for signatories

W s
j =

α

γ
(α− nd+As)− 1

2γ
(α− nd+As)2 − (d− asj)E −

c

2
(asj)

2, j = 1, ..., n, (8)

where total emissions are given by (6).

Observe that although the investment in adaptation is a national good, if countries decide

on adaptation before they select the level of emissions, the investment in adaptation generates

indirectly international externalities as the following derivatives show

∂W f
i

∂asj
= −(d−afi )

n

γ
< 0,

∂W s
j

∂ask
=

1

γ
(−As+asjn) =

n

γ
(asj−ās), j, k = 1, ..., n, j 6= k, i = 1, ..., N−n,

(9)
∂W s

j

∂afi
= −(d−asj)

1

γ
< 0,

∂W f
i

∂afl
= −(d−afi )

1

γ
< 0, i, l = 1, ..., N−n, i 6= l, j = 1, ..., n, (10)

where ās is the average of the distribution of signatories’ adaptation.

3.2 The second stage: the PANE of the adaptation game

In this subsection, we solve stage two assuming that in the first stage n countries, with n ≥ 1,

have signed the agreement.13 Each non-signatory country chooses its level of adaptation as to

maximize (7) taking as given the other countries’ adaptation levels.

The FOCs for non-signatories are

E = cafi , i = 1, ..., N − n, (11)

where the LHS stands for the marginal benefit of adaptation given by the reduction in damages

because the decrease in the marginal damages caused by adaptation that in our model is given

by total emissions, and the RHS stands for the marginal costs of adaptation. Taking into

account (6), the condition (11) implicitly defines the non-signatory reaction function. Applying

the implicit function theorem we obtain that

∂afi

∂afl
= − 1

1− γc
, i, l = 1, ..., N − n, i 6= l,

∂afi
∂asj

= − n

1− γc
, j = 1, ..., n.

13If n = 1, no agreement is signed and the outcome of the game is the fully non-cooperative equilibrium. If

n = N, the agreement is the grand coalition and the efficient solution is implemented by the agreement.
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The second order condition (SOC) for the maximization of net benefits requires that γc > 1

and consequently the adaptation of a non-signatory is a strategic complement of the rest of

countries’ adaptation.

On the other hand, signatories choose the level of adaptation to maximize the agreement net

benefits taking as given the non-signatories’ adaptation. If we focus on the symmetric solution,

according to (9), we have that ∂W s
j /∂a

s
k = 0. In this case, the FOC for the maximization of the

agreement net benefits is

n
α

γ
− 1

γ
(α− nd+ nas)n+ E − (d− as) ∂E

∂as
− cas = 0,

that taking into account that for the symmetric solution ∂E/∂as is equal to n2/γ yields

n
α

γ
− 1

γ
(α− nd+ nas)n− (d− as)n

2

γ
+ E − cas = 0,

where the the first three terms cancel according to the FOC (4) of the third stage yielding

finally the following condition

E = cas. (12)

This condition implicitly defines the reaction function of the representative signatory. Ap-

plying the implicit function theorem again, we obtain that

∂as

∂afi
= − 1

n2 − γc
, i = 1, ..., N − n.

For the maximization of the agreement net benefits, the SOC is γc > n2 what establishes that

the signatory’s adaptation is a strategic complement of the non-signatories’ adaptation. As

n ∈ [1, N ], we assume that γc > N2 that guarantees that SOC are satisfied for both signatories

and non-signatories regardless of the level of participation in the agreement for N > 2.This

condition acts a concavity requirement for each signatory: in the sense that it establishes a

lower bound on the values of the concavity coefficients within the emission and adaptation net

benefit functions such that these are strictly concave for any possible value of participation

n ∈ [1, N ].

Conditions (11) and (12) establish that both signatories and non-signatories choose the same

level of adaptation that is given by

a =
Nα− (n2 − n+N)d

γc− (n2 − n+N)
, (13)
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and multiplying by c would obtain total emissions. Substituting this expression in (3) and (5)

allows us to calculate emissions

ef =
γc(α− d)− n(n− 1)α

γ(γc− (n2 − n+N))
, es =

γc(α− nd) + α(N − n)(n− 1)

γ(γc− (n2 − n+N))
. (14)

Observe that if γc > N2 the denominator of these expression is positive for all n ∈ [1, N ].

On the other hand, as n2−n+N increases with n, α/N > d will give a positive numerator for

a for all n ∈ [2, N ]. If adaptation is positive this condition also guarantees that emissions are

positive for both signatories and non-signatories according conditions (3) and (5). Moreover,

using these conditions we obtain that

ef − es =
1

γ
(n− 1)(d− a),

and we can conclude that if marginal damages are positive the non-signatories’ emissions are

larger than the signatories’ emissions for all levels of cooperation. Using (13) marginal damages

can be written as follows

d− a =
γcd−Nα

γc− (n2 − n+N)
. (15)

Given this expression, c > αN/dγ guarantees that there is no over-adaptation. However, when

c is close to this lower bound we will have what we could call an “almost” corner solution with

marginal damages close to zero. The investment in adaptation is boosted by low adaptation

costs leading the marginal damages close to zero. We think that this is a very optimistic

assumption about what we can expect from adaptation. To avoid this kind of solutions we are

going to introduce a lower bound on marginal damages larger than zero. We will assume that

marginal damages with adaptation cannot be lower than a fraction β ∈ (0, 1) of the marginal

damages without adaptation. In this case, we require that

(1− β)d− a =
(1− β)dγc−Nα+ βd(n2 − n+N)

γc− (n2 − n+N)
≥ 0,

that imposes a lower bound on d

d ≥ Nα

(1− β)γc+ β(n2 − n+N)
.

This lower bound on d is simply a minimum distance requirement between d and a, which means

that as mentioned above, we impose a minimum vulnerability given that we assume marginal

damages with adaptation cannot be lower than a fraction β ∈ (0, 1) of the marginal damages
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without adaptation.

The RHS of this inequality is decreasing with respect to n. Thus, it takes its highest value for

n = 1

d ≥ Nα

(1− β)γc+ βN
.

But this lower bound must be compatible with the upper bound for d, α/N, defined above that

requires that

γc >
N2 − βN

1− β
> N2 for β ∈ (0, 1).

We can summarize all these conditions in the following assumption14

Assumption 1 We assume that N2 < (N2 − βN)/(1− β) < γc and d ∈ [αN/(γc(1− β) +

βN), α/N) for β ∈ (0, 1).

Thus, this assumption guarantees that the non-negativity constraints are satisfied, that

marginal damages are higher than a positive lower bound and that the SOC are also satisfied.

These parameter restrictions simply enforce the technological requirements assumed in our

model. For example, no over adaptation parameter constraint ensures that countries will not

consider selecting a level of adaptation above d, which would convert environmental damages

into environmental benefits of pollution. This is just a consistency requirement which translates

real world characteristics to an a priori unrestricted initial model. Therefore the feasible set on

parameter values derived here simply ensures that through their net benefit functions, countries

will be aware of and will act consistently with the real world assumptions we impose into the

model.

Notice that 1 − β defines de degree of effectiveness of adaptation since multiplying by one

hundred we would obtain the percentage reduction in marginal damages because of the in-

vestment in adaptation. In the next subsection, we will study how the level of participation

in an IEA depends on this parameter. As in this model, the marginal damages represent the

vulnerability of the country to total emissions, we could interpret β as a measure of the coun-

try’s vulnerability, so that the higher the degree of effectiveness of adaptation, the lower the

vulnerability.

Next, we compare net benefits. The non-signatories pollute more than signatories and invest

the same in adaptation than signatories, consequently their net benefits are higher than the net

14Notice thtat (N2 − βN)/(1− β) is an increasing strictly convex function of β.
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benefits signatories get. On the other hand, it is easy to check that adaptation for both non-

signatories and signatories decreases as the number of signatories increases. Thus, cooperation

decreases both adaptation and emissions because emissions depend positively on adaptation.

The same occurs with total emissions. Now, if we look at net benefits, we know that benefits

and adaptation costs are going to decrease with an increase on participation. However, it is not

so clear what occurs with damages. On one hand, marginal damages increase because of the

reduction in adaptation. On the other hand, total emissions decrease with cooperation. Next,

we evaluate how damages change with the participation. Damages are given by the following

expression

D(n) = (d− a)E =
c(γcd−Nα)(Nα− (n2 +N − n)d)

(γc− (n2 +N − n))2
,

where γcd−Nα is positive according to Assumption 1. The first derivative with respect to n is

∂D(n)

∂n
= c(dγc−Nα)(2n− 1)

2Nα− (γc+ n2 +N − n)d

(γc− (n2 +N − n))3
. (16)

Thus, the sign of this first derivative depends on the sign of the numerator. As the numerator

decreases with n, we can define two threshold values for d

d1 = d(n = N) =
2Nα

γc+N2
< d2 = d(n = 1) =

2Nα

γc+N
,

such that if d < d1 damages are increasing for all n ∈ [1, N ] provided that d1 > αN/(γc(1 −

β) + βN), and if d > d2 damages are decreasing for all n ∈ [1, N ] provided that d2 < α/N. For

d in the interval (d1, d2) there will exist a critical value n∗ defined by ∂D/∂n = 0, so that for

n < n∗ damages are increasing and for n > n∗ damages decrease. Next, we investigate when

damages are increasing comparing d1 with the bounds for d defined in Assumption 1.

α

N
− d1 =

α(γc−N2)

N(γc+N2)
> 0 for γc >

N2 − βN
1− β

,

d1 −
αN

γc(1− β) + βN
=
Nα ((1− 2β)γc− (N − 2β)N)

(γc+N2)(γc(1− β) + βN)
.

The numerator of this expression is negative for all γc > 0 if β ≥ 1/2. However, if β < 1/2 then

there exists a threshold value (γc)′ equal to (N − 2β)N/(1 − 2β) > (N2 − βN)/(1 − β) such

that

if γc


>

=

<

 (γc)′ then d1


>

=

<


αN

γc(1− β) + βN
,

and we can conclude that
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Proposition 1 If β < 1/2 and γc > (γc)′ = (N − 2β)N/(1 − 2β) then d1 ∈ (αN/(γc(1 −

β) + βN), α/N) and damages are increasing with the participation for all n ∈ [1, N ] when

d ∈ [αN/(γc(1− β) + βN), d1).

Thus, damages can increase with participation if the country’s vulnerability is low. In

this case, the increase in marginal damages because the reduction of adaptation when the

participation steps up is strong enough as to compensate the reduction in damages because the

reduction in total emissions yielding that an increase in participation leads to an increase in

damages.

Next, we compare d2 with the bounds for d defined in Assumption 1

d2 −
αN

γc(1− β) + βN
=

Nα(γc−N)(1− 2β)

(γc+N)(γc(1− β) + βN)
.

This difference is negative for all γc > N if β > 1/2 which implies that d2 is also lower than

α/N. For β < 1/2 we need to compare d2 with α/N.

α

N
− d2 =

α
(
−2N2 +N + γc

)
N(γc+N)

.

This difference is zero for the threshold value (γc)′′ = 2N2 −N > (N2 − βN)/(1− β) so that

if γc


>

=

<

 (γc)′′ then
α

N


>

=

<

 d2,

and we can conclude that

Proposition 2 If β ≥ 1/2 then damages are decreasing with the participation for all n ∈ [1, N ]

and all d ∈ [αN/(γc(1 − β) + βN), α/N). If β < 1/2 and γc > (γc)′′ = N(2N − 1) then

d2 ∈ (αN/(γc(1 − β) + βN), α/N) and damages are decreasing with the participation for all

n ∈ [1, N ] when d ∈ (d2, α/N).

Thus, damages decrease if the country’s vulnerability is high for all values of d, although they

could also decrease if the vulnerability is low, but then damages and the product γc must be

high. In this case, although the marginal damages increase with the participation, the reduction

in total emissions is strong enough as to cause a reduction in total damages. In the rest of cases

that are not included in the previous propositions, there will exist a critical value n∗ ∈ [2, N ],

so that for n < n∗ damages are increasing and for n > n∗ damages decrease.
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However, regardless of whether damages increase or decrease with cooperation, cooperation

has a positive effect on net benefit for both non-signatories and signatories. Signatories in-

ternalize the negative externality caused by pollution and as a result of this, the net benefits

increase monotonically with membership.

Taking the first derivative of net benefits with respect to n for signatories yields

∂W s

∂n
= α

∂es

∂n
− γes

∂es

∂n
+
∂as

∂n
E − (d− as)∂E

∂n
− cas∂a

s

∂n
, (17)

that considering that
∂E

∂n
= es + n

∂es

∂n
− ef + (N − n)

∂ef

∂n
, (18)

can be rewritten as follows

∂W s

∂n
= (α− γes − n(d− as)) ∂e

s

∂n
+ (E − cas) ∂a

s

∂n
− (d− as)

(
es − ef + (N − n)

∂ef

∂n

)
,

where the first term of the RHS is zero according to FOC (4) and E = cas according to (12)

resulting in
∂W s

∂n
= (d− as)

(
ef − es − (N − n)

∂ef

∂n

)
> 0, (19)

since ef > es and non-signatories’ emissions decrease with the cooperation.

For non-signatories, we obtain the following expression

∂W f

∂n
= (α− γef − (d− af ))

∂ef

∂n
+ (E − caf )

∂af

∂n
− (d− af )(es + n

∂es

∂n
− ef + (N − n− 1)

∂ef

∂n
),

where again the first term is zero by the FOCs of the third stage and E= caf according to (11).

Thus, we obtain the following expression

∂W f

∂n
= (d− af )(ef − es − n∂e

s

∂n
− (N − n− 1)

∂ef

∂n
) > 0. (20)

Thus, we find that there are positive spillovers for non-signatories stemming from coopera-

tion, i.e. cooperation increases the non-signatories’ net benefits. Moreover, it is easy to show

that the difference in net benefits also increases with the participation. Lastly, we show that the

game presents the property of full cohesiveness.15 This property states that total net benefits in-

crease when the coalition is enlarged gradually and obtains its maximum for the grand coalition.

This property justifies the search for large stable agreements. For this reason, it deserves some

discussion. If we look at the expression of total net benefits W = nW s(n) + (N − n)W f (n) we

15These two properties are showed in the Appendix.
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have that the increase in participation is driving by three variations as the following derivative

shows
∂W

∂n
= W s(n)−W f (n) + n

∂W s(n)

∂n
+ (N − n)

∂W f (n)

∂n
,

where the first term is negative and the other two terms positive as we have just showed, thus

the effect of an increase in the number of signatories could be negative or positive depending

of the magnitude of each term in the expression. Our analysis shows that the addition of the

two last terms is greater than the difference in net benefits that represents the first term for all

levels of cooperation. This term is negative because we have showed that signatories obtain a

lower net benefit of non-signatories whatever is the number of signatories. It is important to

highlight the role that the positive spillovers of cooperation has on this result since it reinforces

the positive effect that an increase in participation has on signatories’ net benefits resulting

finally in an increase of the aggregate net benefits for all levels of cooperation. Thus, we can

conclude that this result is not an artifact of the adaptation-emissions game we analyze in the

paper, but a feature that characterizes the PANE of the second stage of the game. To end

this subsection we would like to point out that all these features of the PANE of the second

stage already appear in the model without adaptation. In other words, the introduction of

adaptation does not modify the features of the PANE of the second stage of the model without

adaptation except in one point, whereas emissions are strategic substitutes in the model without

adaptation, investment in adaptation are strategic complements in our model with adaptation.

3.3 The first stage: the Nash equilibrium of the membership game

In this subsection, we investigate which is the level of participation that can be achieved with

a complete agreement that includes cooperation on the levels of adaptation. First, we present

the definition of coalition stability from d’Aspremont et al. (1983), which has been extensively

used in the literature on international environmental agreements.

Definition 1 An agreement consisting of n signatories is stable if W s
k (n) ≥ W f

k (n − 1) for

k = 1, ..., n and W f
j (n) ≥W s

j (n+ 1) for j = 1, ..., N − n.

The first inequality, which is also known as the internal stability condition, simply means

that any signatory country is at least as well-off staying in the agreement as withdrawing from it,

assuming that all other countries do not change their membership status. The second inequality,
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which is also known as the external stability condition, similarly requires any non-signatory to

be at least as well-off remaining as a non-signatory that joining the agreement, assuming once

again, that all other countries do not change their membership status. In order to develop the

stability analysis we define the stability function S(n) = W s(n) −W f (n − 1). Notice that if

S(n) is positive and S(n + 1) is negative an agreement consisting of n countries is stable and

the stability analysis can be reduced to find out whether S(n) = 0 has a solution that satisfies

the stability conditions.16

For our model, the stability function S(n) reads as follows

S(n) =
(n− 1)(γcd− αN)2F (n)

2γ(γc− ((n− 1)2 +N − n+ 1))2(γc− (n2 +N − n))2
, (21)

where the denominator is positive and F (n) is a polynomial of fifth degree

F (n) = −n5 + 5n4 + f3n
3 − f2n2 − f1n+ f0, (22)

with

f3 = 2γc− 2N − 7 > 0,

f2 = 8γc− 4N − 3 > 0,

f1 = (γc)2 − 2(N + 3)γc+ (N − 2)N > 0,

f0 = 3(γc)2 − 2(N + 2)γc−N2 > 0,

for N ≥ 3 provided that γc > N2. Analyzing this polynomial, we can conclude that

Proposition 3 For interior solutions and N ≥ 7, if the degree of effectiveness of adaptation

1−β is larger or equal to (N2− 3N)/(N2− 3N + 4) the grand coalition is stable. However, if it

is lower than this threshold value the only stable agreement consists of three countries regardless

of the severity of environmental damages provided that γc ≥ max[(N2 + 3N)/(N − 1), (N2 −

βN)/(1− β)].

Proof. See Appendix A.3

This result establishes that incorporating the investment in adaptation to an agreement on

emissions, the grand coalition could be stable. However, the limit of the lower bound for the

16Notice that this implies that S′(n∗) must be negative where n∗ is the solution for S(n) = 0. If n∗ is not a

natural number, the stable agreement is given by the first natural number on the left of n∗ provided that for the

first natural number on the right of n∗, S(n) is negative.
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effectiveness of adaptation that defines the interval for this variable for which the grand coalition

is stable converges to one very quickly with the number of countries involved in the international

environmental problem. For instance, for N = 10, the lower bound for the effectiveness of

adaptation is 1 − β = 0.9459 that means that the grand coalition through the investment in

adaptation is able to reduce the marginal damages in a 94.59%, leading the vulnerability of the

country to 0.0541. For N = 100, we have that the lower bound is 1 − β = 0.9996 that reduces

the vulnerability to 0.0004. We believe that this is a very optimistic assumption about we can

expect from the investment in adaptation. In fact, it implies that the environmental problem

could be solved by investing in adaptation. Thus, the answer to the question in the title of this

paper is that we cannot expect that adaptation promotes the participation in an IEA under

reasonable assumptions about the degree of effectiveness of adaptation.

If the effectiveness of adaptation is not extremely high, the gains from cooperation will be

low because only three countries will sign the agreement. Nevertheless, it would be interesting to

investigate whether our result requiring low vulnerability for the stability of the grand coalition

is consistent with the ‘paradox of cooperation’ that establishes that cooperation appears when

we do not need it because the gains of cooperation are low. To address this issue we calculate

using expressions (7) and (8) the gains of full cooperation

W s(N)−W f (1) =
c(γcd−Nα)2(N − 1)2

2(γc−N2)(γc−N)2
> 0, (23)

that are positive since according to Assumption 1 cγ > N2. From the proof of Prop. 3 we know

that for a given value of γ, the grand coalition will be stable if c is lower than N2

γ + 4(N−1)
γ(N−3) . In

other words, we can define an upper bound on c such that if c is larger than this upper bound,

the grand coalition is unstable. Thus, if we show that the gains coming from full cooperation

increase with respect to c we could conclude that for c larger than the upper bound defined

above, the grand coalition yields larger gains but is then unstable.

To find the effect that an increase in c has on the difference (23), we calculate the first

derivative with respect to this parameter that gives the following expression

∂(W s(N)−W f (1))

∂c
=

N(γc−N)G(γc)

((γc)3 −N(N + 2)(γc)2 +N2(2N + 1)γc−N4)2
, (24)

where

G(γc) = G1(γc)
3 +G2(γc)

2 +G3γc+N4α2,
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with

G1 = d(2α− (N + 2)d) > 0,

G2 = N(3Nd2 + 2dα− 2α2) < 0,

G3 = N3α(α− 4d) > 0,

N > 4 provided that d < α/N according to Assumption 1. As the coefficients of the polynomial

G(γc) in the numerator change their signs twice, we can conclude according to Descartes’ rule

of signs that the polynomial equation could have a maximum of two positive roots. Moreover,

as the independent term is positive if the polynomial equation has two roots, the polynomial

must be positive for values of γc lower than the smallest root and higher than the largest root

and negative between the two roots. In fact, it is easy to check that this is the case since for

γc = N2,the polynomial yields a negative value:G(N2) = −N4(α − Nd)2(N − 1), so that we

can conclude that the smallest root is lower than N2and the largest root is higher than N2. It

is also easy to check by substitution that the largest root is γc = αN/d. Then as γcmust be

higher than αN/dfor having a positive marginal damage, we have that G(γc) is positive for all

γc > αN/dwhat implies that the derivative (24) is positive and we can conclude that the gains

of full cooperation increase with c and that for c > N2

γ + 4(N−1)
γ(N−3) , countries would obtain more

gains from full cooperation but then the agreement would be unstable.

4 An adaptation agreement formation game

In this section we focus on an agreement on investment in adaptation. As we have assumed that

the investment in adaptation is a national good, we could think that this kind of agreements have

no influence in the national decisions because there are not international spillovers. However, if

the countries decide on adaptation before they choose their levels of emissions, the investment

in adaptation will affect the net benefits of the rest of countries through the influence that

adaptation has on emissions. The formation of an adaptation agreement is also modeled as a

three-stage game as in the case of a complete agreement with the difference that there is no

cooperation in the third stage.

4.1 The third stage: an equilibrium in dominant strategies

Without cooperation in the third stage, the FOCs for an interior solution are given by (2)
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α− γei = d− ai, i = 1, ..., N. (25)

As there is no cooperation in this stage, all countries only take into account the effect that

emissions have on its national damages.

Thus, emission are given by

ei =
1

γ
(α− d+ ai). (26)

As environmental damages are linear, the countries’ reaction functions are orthogonal and the

optimal emissions are given by an equilibrium in dominant strategies. Notice that as in the

complete agreement an increase in adaptation leads to higher emissions.

Adding for all countries allows us to calculate total emissions

E =
N(α− d) +A

γ
, (27)

where A =
∑N

i=1 ai is total investment in adaptation.

Next, using (1), net benefits can be written as follows

Wi =
α

γ
(α− d+ ai)−

1

2γ
(α− d+ ai)

2 − (d− ai)E −
c

2
(ai)

2, (28)

where total emissions are given by (27).

Observe that although the investment in adaptation is a national good, if countries decide

on adaptation before they select the level of emissions, the investment in adaptation generates

negative international externalities as the following derivative shows

∂Wi

∂aj
= −1

γ
(d− ai) < 0, i, j = 1, ..., N, i 6= j. (29)

4.2 The second stage: the PANE of the adaptation game

In this subsection, we solve stage two assuming that in the first stage n countries have signed

the agreement. Thus, in this stage we have to distinguish between non-signatory countries and

signatory countries. Notice that as total emissions are positively related to total adaptation,

this variable can be seen as a global public bad like total emissions.

The FOCs for non-signatories are

α

γ
− 1

γ
(α− d+ afi ) +

N(α− d) +A

γ
=
d− afi
γ

+ cafi , (30)
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where

A =

N−n∑
i=1

afi +

n∑
j=1

asj ,

However, as expected if we take into account the FOCs of the third stage, (30) simplifies yielding

E =
N(α− d) +A

γ
= cafi , (31)

where the LHS stands for the marginal benefit of adaptation given by the reduction in damages

because the decrease in the marginal damages caused by adaptation and the RHS stands for

the marginal costs of adaptation. Thus, there are no differences with the FOCs obtained for

non-signatories in the case of a complete agreement.

On the other hand, signatories choose the level of adaptation to maximize the agreement

net benefits taking as given the non-signatories’ adaptation.

max
{as1,...,asn}

WA =
n∑
j=1

{
α

γ
(α− d+ asj)−

1

2γ
(α− d+ asj)

2 − (d− asj)(
N(α− d) +A

γ
)− c

2
a2j

}
.

Looking for the symmetric solution, the FOC gives

α

γ
− 1

γ
(α− d+ as) +

N(α− d) +A

γ
=
n

γ
(d− as) + cas,

that taking into account the FOC of the first stage yields

E =
N(α− d) +A

γ
=

(n− 1)

γ
(d− as) + cas, (32)

where the LHS is, as in condition (31), the marginal benefit of adaptation. However, the

signatories take into account the increase in damages for the rest of signatories caused by the

increase in adaptation. Remember that adaptation increases national emissions. This condition

implicitly defines the reaction function of the representative signatory. Applying the implicit

function theorem again, we obtain that

∂as

∂afi
=

1

γc+ 1− 2n
, i = 1, ..., N − n.

For signatories, the SOC requires that γc > 2n−1 what establishes that the signatory’s adapta-

tion is a strategic complement of the non-signatories’ adaptation. As n ∈ [1, N ], we assume that
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γc > 2N − 1 that guarantees that SOC for both signatories and non-signatories are satisfied

regardless of the level of participation in the agreement for N > 2.

Thus, using (31) and (32), we may obtain the level of adaptation of the Partial Agreement

Nash Equilibrium (PANE) of the second stage

as =
γcαN + ((N − n)(n− 1)− γc(N + n− 1))d

(γc)2 − (N + n− 1)γc+ (n− 1)(N − n)
, (33)

af =
α(γc− n+ 1)N + ((N − n)(n− 1)− γcN)d

(γc)2 − (N + n− 1)γc+ (n− 1)(N − n)
. (34)

It is easy to show that denominator of both expressions is positive for all n ∈ [1, N ] if

γc > 2N − 1, and that the numerator of (33) is also positive provided that αN/(2N − 1) > d.17

Thus, these two constraints on parameter values guarantee that as is positive for all n ∈ [1, N ]

and also that es is positive since αN/(2N − 1) > d implies that α > d.

Next, we verify if the marginal damages are positive

d− as =
γc(γcd− αN)

(γc)2 − (N + n− 1)γc+ (n− 1)(N − n)
. (35)

Given this expression, d > αN/(γc) guarantees that there is no over-adaptation. This condition

also guarantees that af is larger than as, that ef is positive and obviously larger than es, and

that marginal damages for non-signatories are also positive.

d− af =
(γc− n+ 1)(γcd− αN)

(γc)2 − (N + n− 1)γc+ (n− 1)(N − n)
. (36)

Now, using (33) and (34) we can calculate the emissions for each type of country

es =
1

γ

(γc−N)α+ (α− d)(γc)2 − (γc− 1−N)αn− αn2

(γc)2 − (N + n− 1)γc+ (n− 1)(N − n)
, (37)

ef =
1

γ

γc(α− d)(1 + γc) + (α− γc(α− d))n− αn2

(γc)2 − (N + n− 1)γc+ (n− 1)(N − n)
, (38)

and adding for all countries we obtain total emissions

E = nes + (N − n)ef =
c(N(1 + γc)(α− d) + (d−N(α− d))n− dn2)

(γc)2 − (N + n− 1)γc+ (n− 1)(N − n)
. (39)

As in the previous section, we will assume that marginal damages with adaptation cannot

be lower than a fraction β ∈ (0, 1) of the marginal damages without adaptation. If we impose

this constraint on the non-signatories, it will also be satisfied for signatories since af > as.

(1− β)d− af =
(γc− n+ 1)(γcd− αN)− βd((γc)2 − (N + n− 1)γc+ (n− 1)(N − n))

(γc)2 − (N + n− 1)γc+ (n− 1)(N − n)
≥ 0,

17Notice that the numerator is decreasing in n.
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that imposes a lower bound on d

d ≥ (γc− n+ 1)αN

(1− β)(γc)2 + (βN − (1− β)(n− 1))γc− β(n− 1)(N − n)
.

The RHS of the inequality is decreasing with n. Thus, it takes the highest value for n = 1

d ≥ αN

γc(1− β) + βN
,

which is the same constraint we obtain for the complete agreement.18 But this lower bound

must be lower than the upper bound for d, αN/(2N − 1) we have defined above and ensures no

over adaptation, that requires that

γc >
(2− β)N − 1

(1− β)
> 2N − 1 for β ∈ (0, 1).

We can summarize all these constraints on parameters values in the following assumption

Assumption 2 We assume that 2N − 1 < ((2− β)N − 1)/(1− β) < γc and d ∈ [αN/((1−

β)γc+ βN), αN/(2N − 1)) for β ∈ (0, 1).

Thus, this assumption guarantees that the non-negativity constraints are satisfied, that

marginal damages are higher than a positive lower bound and that the SOC are also satisfied.

Next, we compare net benefits. The non-signatories invest more in adaptation and pollute

more than signatories. Thus, the non-signatories will have larger benefits and lower damages

than signatories, but higher adaptation costs. In order to compare net benefits, we need to

calculate net benefits for both non-signatories and signatories. Using the previous expressions for

emissions, marginal damages, total emissions and the adaptation level, we obtain the following

expression for the non-signatories net benefits

W f =
wf4n

4 + wf3n
3 + wf2n

2 + wf1n+ wf0
2((γc)2 − (N + n− 1)γc+ (n− 1)(N − n))2

, (40)

where

wf4 = α2 − γcd2,

wf3 = 2
(
γcd2 − α2

)
(N − γc+ 1) ,

wf2 = 2(γc)3d2+(γc)2
(
3d2 − 2Ndα− α2

)
−γc

(
(4N +N2 + 1)d2 − 2Ndα− (N2 − 4)α2

)
+α2 (4N + 1) ,

wf1 = −2 (γc+ 1) ((γc)2
(
α2 − 2Nd(α− d)

)
−γc

(
N(N + 1)d2 − 2Ndα− (N2 − 1− 2N)α2

)
+Nα2),

18Notice that as expected this is a stronger constraint than d > αN/γc.
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wf0 = γc (γc+ 1)2 (α− d)
(
(α− (2N − 1)d)γc+N(N − 2)α+N2d

)
.

and the following expression for signatories countries

W s =
ws4n

4 + ws3n
3 + ws2n

2 + ws1n+ ws0
2((γc)2 − (N + n− 1)γc+ (n− 1)(N − n))2

, (41)

where

ws4 = α2 − γcd2,

ws3 = 2
(
γcd2 − α2

)
(N − γc+ 1) ,

ws2 =
(
γcd2 − α2

) (
(γc)2 + 4γc−N2 − 4N − 1

)
,

ws1 = −2
(
(γc)3

(
2Nd2 − 2Ndα+ α2

)
− (γc)2

(
(N2 − 1−N)d2 −N(N + 2)α2

)
−γc

(
N(N + 1)d2 − (N2 − 1−N)α2

)
+Nα2 (N + 1)

)
ws0 = (γc+ 1)

(
−(γc)3 (α− d) ((2N − 1)d− α) + (γc)2

(
+2Nd2 −N2d2 + (N2 − 2N + 1)α2

)
−Nγc

(
+Nd2 − (N − 2)α2

)
+N2α2

)
.

Next, we calculate the difference in net benefits using (40) and (41)

W f −W s =
(n− 1)(1 + γc+ n(γc− 1))(γcd− αN)2

2((γc)2 − (N + n− 1)γc+ (n− 1)(N − n))2
, (42)

that is positive since we have assumed that γc > 2N − 1. As occurs for the case of a complete

agreement, non-signatories have larger net benefits than signatories for all levels of cooperation.

On the other hand, it is easy to check that emissions for both non-signatories and signatories

decreases as the number of signatories increases. Thus, cooperation decreases both emission and

adaptation. The same occurs with total emissions as the following expressions show

∂es

∂n
= −1

γ

γc(γcd− αN)(γc+ 2n−N − 1)

((γc)2 − (N + n− 1)γc+ (n− 1)(N − n))2
< 0,

∂es

∂n
= −1

γ

(γcd− αN)((2n− 1)γc− (n− 1)2)

((γc)2 − (N + n− 1)γc+ (n− 1)(N − n))2
< 0,

∂E

∂n
= − c(γcd− αN)((2n− 1)γc− (n− 1)2)

((γc)2 − (N + n− 1)γc+ (n− 1)(N − n))2
< 0.

All these derivatives are negative if conditions of Assumption 2 are satisfied. Now, if we look

at net benefits, it is clear that benefits and adaptation costs decrease with participation, but it

is not clear what occurs with damages. As in the complete agreement, damages can increase

or decrease with participation both for signatories and non-signatories, but again regardless
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of damages increase or decrease, cooperation has a positive effect on net benefit for both non-

signatories and signatories.19 Signatories internalize the negative externality caused by pollution

and as a result of this the net benefits increase monotonically with membership.

Taking the first derivative of the net benefits with respect to n for signatories yields

∂W s

∂n
= α

∂es

∂n
− γes

∂es

∂n
+
∂as

∂n
E − (d− as)∂E

∂n
− cas∂a

s

∂n
,

that taking into account that the effect of participation in total emissions is given by (18) can

be reorganized as follows

∂W s

∂n
= (α− γes− (d− as))∂e

s

∂n
+ (E − cas) ∂a

s

∂n
− (d− as)(es + (n− 1)

∂es

∂n
− ef + (N −n)

∂ef

∂n
),

where the first term of the RHS is zero according to FOC (25) and

E − cas =
c (γcd−Nα) (n− 1)

(γc)2 − (N + n− 1)γc+ (n− 1)(N − n)
= (d− as)(n− 1),

that gives
∂W s

∂n
= (d− as)

(
(n− 1)(

∂as

∂n
− ∂es

∂n
) + ef − es − (N − n)

∂ef

∂n

)
,

where ∂as/∂n = ∂es/∂n according to (26). Thus, we obtain the following expression for the

derivative of signatories’ net benefits with respect to n

∂W s

∂n
= (d− as)

(
ef − es − (N − n)

∂ef

∂n

)
> 0, (43)

since ef > es and non-signatories emissions decrease with the number of signatories.

Proceeding in the same way, the derivative of non-signatories net benefits can be written as

follows
∂W f

∂n
= (E − caf )

∂af

∂n
− (d− af )(es + n

∂es

∂n
− ef + (N − n− 1)

∂ef

∂n
),

where from second stage FOCs E = caf resulting in

∂W f

∂n
= (d− af )(ef − es + n

∂es

∂n
+ (N − n− 1)

∂ef

∂n
) > 0, (44)

since ef > es and emissions for both signatories and non-signatories decrease with participa-

tion. Thus, we find that the there are positive spillovers for non-signatories stemming from

cooperation, i.e. cooperation increases the non-signatories’ net benefits as occurs in the case

of the complete agreement. Moreover, it is easy to show that the difference in net benefits

19We omit the details of this claim in order to shorten the extension of the paper.
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given by (42) also increases with the participation. Lastly, we claim that the game presents

the property of full cohesiveness.20 To end this subsection we would like to point out that all

these features of the PANE of the second stage are the same we have found for the case of the

complete agreement.

4.3 The first stage: the Nash equilibrium of the membership game

In this subsection, we investigate which is the level of participation an adaptation agreement

can achieve. For this type of agreement, the stability function S(n) reads as follows

S(n) = − (n− 1)(γcd− αN)2F (n)

((γc)2 − (n+N − 2)γc+ (N + 1− n)(n− 2))2((γc)2 + (N + n− 1)γc− (n− 1)(N − n))2
,

(45)

where the denominator is positive and F (n) is a polynomial of fifth degree

F (n) = f5n
5 + f4n

4 + f3n
3 + f2n

2 + f1n+ f0, (46)

with

f5 = γc− 1 > 0,

f4 = 2(γc)2 − (5 + 2N)γc+ 5 + 2N > 0,

f3 = −(γc)3 − 11(γc)2 + (12 +N2 + 6N)γc− 10N −N2 − 8 < 0,

f2 = −2(γc)4 + (4N −1)(γc)3− (2N2−6N −19)(γc)2− (N2 + 6N + 16)γc+ 16N + 5N2 + 4 < 0

f1 = (γc)5−(2N−11)(γc)4+(N2−12N+4)(γc)3+(N2−6N−16)(γc)2−(6N2−8N+8)γc−8N−8N2 > 0,

f0 = −3(γc)5+(2N−7)(γc)4+(N2+2N+4)(γc)3+(5N2−8N+8)(γc)2+(8N2−8N)γc+4N2 < 0,

for N ≥ 3 provided that γc > 2N − 1.21 Analyzing this polynomial, we can conclude that

Proposition 4 For interior solutions and N ≥ 11, if the degree of effectiveness of adaptation

1−β is larger than or equal to (N2−4N +3)/(2+(N −2)
√

(N2 − 4N + 7)) the grand coalition

is stable. However, if it is lower than this threshold value there exists only one stable adaptation

agreement with a minimum of participation of three countries and a maximum of six countries.

20We omit the proof of these two properties because it follows the same steps we have used to show them for

the case of a complete agreement.
21We study the sign of these coefficients in the Appendix.
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Proof. See Appendix 5.

As occurs for the complete agreement, the grand coalition could be stable too for an adap-

tation agreement, but we also have in this case that the limit of effectiveness of adaptation that

defines the interval for which the grand coalition is stable converges to one very quickly with

the total number of countries. For instance, for N = 20, 1− β = 0.9863 what implies that the

grand coalition is able to reduce the marginal damages in a 98.63% through the investment in

adaptation yielding a vulnerability for the country equal to 0.0137. For N = 100, we obtain

that 1 − β = 0.9995 that gives a vulnerability of 0.0005. The levels of effectiveness of adapta-

tion that stabilize the grand coalition for an adaptation agreement are very similar to those we

obtain for a complete agreement. Thus, there are not big differences between the two types of

agreements except that if the grand coalition is not stable, an adaptation agreement could be

formed with the double of countries that a complete agreement allows, six instead of three.22

But, in practical terms this is not a big difference because in any case the participation in an

IEA is very low.

Finally, we would like to highlight that the model suggests that the participation decreases

as the effectiveness of adaptation decreases. For instance, if we evaluate F (n) for n = 6, we

obtain the following polynomial in c

F (γc;n = 6) = 3(γc)5 − (γc)4 (10N + 13) + (γc)3
(
7N2 + 74N − 224

)
− (γc)2

(
−172N + 61N2 − 812

)
+8γc

(
−184N + 19N2 + 408

)
− 80 (N − 6)2 ,

so that the polynomial equation could have until five positive real roots. But we know that

F (γc = 2N − 1;n = 6) = −8N5 + 136N4 − 986N3 + 2096N2 + 4590N − 5124,

is negative for N ≥ 6. With five roots, the function will have three inflection points given by

the solution to

F ′′(γc;n = 6) = 60(γc)3−12(γc)2 (10N + 13)+6γc
(
7N2 + 74N − 224

)
−2
(
61N2 − 172N − 812

)
,

22Interestingly, El-Sayed and Rubio (2014) also obtain for a technological agreement that the maximum partic-

ipation consists of six countries and that the participation decreases as spillovers efffects increase until a minimum

of three countries. In their model, the investment reduces the abatement costs and the marginal damages are

linear.
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where the second derivative is taken respect to γc. If we evaluate this derivative for γc = 2N−1,

we obtain that F ′′(γc = 2N − 1;n = 6) is positive for N ≥ 5. This means that γc = 2N − 1

could be between the first inflection point and the second inflection point or on the right of the

third inflection point. To advance in the analysis, we need to calculate the third derivative

F ′′′(γc;n = 6) = 180(γc)2 − 24γc (10N + 13) + 6
(
7N2 + 74N − 224

)
,

that says us that the second derivative has two extremes, first a maximum and then a minimum.

As F ′′′(γc = 2N − 1;n = 6) is positive for N ≥ 4, γc = 2N − 1 could be on the left of the

maximum or on the right of the minimum, but it is easy to show that the slope of F ′′′(γc =

2N − 1;n = 6) is positive that implies that γc = 2N − 1 is greater than the minimum of

F ′′(γc;n = 6), but moreover F ′′(γc = 2N − 1;n = 6) is positive which means that is greater

than the third inflection point and we also know that F (γc = 2N − 1;n = 6) < 0. With all this

information, we can conclude that γc = 2N − 1 is between the fourth root and the fifth root

of F (γc;n = 6) = 0, so that in the interval between γc = 2N − 1 and the fifth root, F (6) < 0

and consequently S(6) > 0 and n = 6 is a stable agreement.23 However, if γc is higher than the

fifth root, F (6) > 0 and n = 6 becomes an unstable agreement. But, as ((2− β)N − 1)/(1− β)

is an increasing strictly convex function of β, we can conclude that the the threshold value of β

associated to the γc = 2N − 1 is lower than the one corresponding to the fifth root of F (6) = 0.

Thus, as β is inversely related with the degree of effectiveness of adaptation, we can conclude

that if the effectiveness of adaptation is bellow the level defined by the fifth root of F (n) = 0,

an agreement consisting of 6 countries cannot be stable. In other words, there exists a threshold

value for the degree of effectiveness of adaptation for n = 6 bellow which this agreement cannot

be stable.24

This argument is illustrated in Fig. 1. In this graph, we plot the implicit function defined

by F (n, γc,N) = 0 for N = {10, 50, 100}.

⇒ Figure 1 ⇐

The figure shows that the participation is decreasing with adaptation costs for the different

values of N. Using the argument we have just presented we can also say that the membership

is directly related with the degree of effectiveness of adaptation or in other words inversely

23Notice that in the proof of Proposition 4, we show that S(7) < 0.
24We would like to highlight that the same kind of argument argument leading to the same conclusion can be

developed if F (6) = 0 has three roots or only one, and also for n = {4, 5}.
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related to the vulnerability of the country to the environmental problem. In the graph, F (n) is

positive above the curves and negative bellow the curves. For instance, for N = 50 and n = 6,

the distance between the point defined by γc = 2N − 1 = 99 and the value γc determined by

the curve for n = 6 defines the interval of values for γc that makes stable the agreement. This

distance increases as n decreases, but in the three cases we find the curves are decreasing with

respect to γc. The conclusion is obvious, if the effectiveness of adaptation is very low, the only

stable agreement consists of three countries.

Finally, we study the relationship between the gains coming from full cooperation and the

level of participation in the agreement. For an adaptation agreement the gains from full coop-

eration are given by the following expression

W s(N)−W f (1) =
(N − 1)2(γcd− αN)2

2γ(γc− 2N + 1)(γc−N)2
> 0, (47)

that is positive since, according to Assumption 2, γc > 2N − 1. As occurs with the complete

agreement, we know from the proof of Proposition 4 that for any given value of γ, the grand

coalition will be stable if

c ≤
(N − 2)((N − 1) +

√
(N2 − 4N + 7))

γ(N − 3)
. (48)

Then, if we obtain that the gains from full cooperation increase with respect to c we could

conclude that when the gains from full cooperation are large, the cooperation is unstable.

To find the effect that an increase in c has on (47), we calculate the first derivative with

respect to this parameter that yields the following expression

∂(W s(N)−W f (1))

∂c
= −(N − 1)2(γcd− αN)G(γc)

2(γc− 2N + 1)2(γc−N)3
, (49)

where

G(γc) = d(γc)2 −N(3α− d)γc+N(α(5N − 2)− d(4N − 2)). (50)

The denominator is positive if γc > 2N − 1 and if the marginal damages are positive γcd must

be greater than αN . If the polynomial equation has two roots, it is easy to check that the

first root is not relevant for the analysis because is lower than 2N − 1. Substituting in (50) we

obtain that

G(2N − 1) = d(2N − 1)2 −N(3α− d)(2N − 1) +N(α(5N − 2)− d(4N − 2))

= − (N − 1) (Nα− (2N − 1)d) < 0,
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according to Assumption 2. If the polynomial equation has two roots, as the independent term

is positive, the polynomial is positive between zero and the first root, negative between the first

and the second root, and again positive on the right on the second root. Thus, if G(2N−1) < 0,

we can conclude that the first root is lower than 2N−1. Then the only relevant root is the second

one, that defines a maximum for (47). On the other hand, the threshold value γc = αN/d is

also a stationary point of (47). This stationary point is a minimum given that

∂2(W s(N)−W f (1))

∂(γc)2

∣∣∣∣
αN
d

=
αd5(N − 1)2

(α− d)2N2(αN − (2N − 1)d)

which is always positive because d < αN/(2N − 1) according to Assumption 2. Moreover,

this minimum must be on the left of the second root of (50) since the gains of cooperation

must decrease for enough high values of c. Notice that for the gains of cooperation (47), the

denominator is cubic in c and cuartic in γ whereas for the numerator the expression is quadratic

in c and γ. Moreover, for this reason the polynomial equation G(γc) = 0 must have two roots

because with G(γc) > 0 for all γc, (49) would be negative on the right of the minimum that is a

contradiction. Thus, as the stability of the grand coalition requires that γc is below the upper

bound defined by (48) we will have that γc is also very close of the minimum of the difference in

gains with a net marginal damage close to zero because the effectiveness of adaptation is very

large. Therefore this means that as we increase γc we move towards the maximum of gains

from full cooperation but then the grand coalition is not stable. So up to now we have the usual

large but shallow coalition, however we should mention that after the maximum, the function

is decreasing and theoretically we could have smaller coalition with similar or even lower gains

from cooperation than the grand coalition. Nevertheless, this is only a small difference with the

previous case that we want to mention for completeness because this will occur for enough high

values of γc even in this case the differences in gains would be insignificant compared to the

differences in gains when small agreements correspond to values of γc close to the maximum.

Therefore we can claim that we still observe the cited paradox for the adaptation agreement.

5 Conclusions

This paper analyzes the stability of an IEA when countries invest in adaptation before they

take their decisions on emissions. We consider two types of agreements with linear damages: a

complete agreement for which signatories coordinate their levels of adaptation and emissions,
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and an adaptation agreement where signatories only cooperate when they decide on investment

in adaptation. Moreover, we assume that this investment can reduce the vulnerability of the

country, but not bellow a positive lower bound. This means that we are bounding from above

the effectiveness of adaptation technology to include, in our opinion, a more realistic modeling of

its possible effects. To address the issue of stability we propose a three-stage coalition formation

game where in the first stage countries decide whether or not to sign the IEA. Then, in the second

stage, signatories (playing together) and non-signatories (playing individually) select their levels

of adaptation. In the third stage, each country decides on its emissions noncooperatively for

the adaptation agreement and signatories cooperate in the complete agreement. We solve this

game by backward induction.

The analysis shows that for both types of agreements, the properties of the adaptation

subgame played in the second stage coincide with the properties of the model without adap-

tation: Emissions decrease with participation; non-signatories’ net benefits are larger than the

signatories’ net benefits for all levels of participation: there are positive spillovers coming from

cooperation, i.e. the non-signatories’ net benefits increase with membership and the difference

in net benefits also increases with membership. Moreover, both models present the property of

full cohesiveness. However, we know that in the model without adaptation, emissions are strate-

gic substitutes, but with adaptation the strategic relationship changes and the investments in

adaptation are strategic complements.

For the model with adaptation we obtain, that environmental damages can increase or

decrease with the number of signatories, the reason is that although total emissions decrease

when the agreement expands, the adaptation also decreases increasing the marginal damages.

Therefore there exists a non-trivial trade-off.

Our findings predict that the grand coalition can be stable for both types of agreements, but

for unrealistic levels of the degree of effectiveness of adaptation. For instance, a grand coalition

formed by one hundred countries requires a degree of effectiveness of adaptation of 99.96% for the

complete agreement, and 99.95% for an adaptation agreement. This means that the investment

in adaptation must be able to reduce the marginal damages in a percentage larger than 99%.

For these quantities the stability is sustained because the increase in adaptation costs that the

country exiting the coalition has to support turns the exit unprofitable. However, with more

realistic values for the effectiveness of adaptation, the model yields low levels of participation.

Three countries for a complete agreement and no more than six for an adaptation agreement.
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Thus, we could also conclude that it is clear that the complementarity between the investment

in adaptation does not have any relevant consequence in the incentive countries have to sign an

IEA.

Therefore one of the main conclusions of this paper is that, we agree with the newly claimed

results that the incursion of adaptation in IEAs may mathematically allow an enhance of par-

ticipation, however, here we show analytically that this requires an extremely high reduction

of vulnerability through adaptation. For this reason, we believe that under any realistic as-

sumption regarding the scope of adaptation technology, the inclusion of adaptation does not

enhance participation and therefore it should not be considered as a policy solution towards

larger agreements.

There are two obvious extensions for the game analyzed in this paper that could be ad-

dressed in future research. The first one is developing the stability analysis for a quadratic

damage function. The difficulty with the development of this analysis is that the model has

not an explicit solution and the analysis will have to be based on numerical methods. Another

interesting extension is to drop the assumption of symmetry. In the line of Lazkano et al. (2016)

paper, we could consider that countries have different adaptation costs. In this framework, it

would be interesting to investigate the role of cooperation in adaptation taking into account the

possibility of transfers between countries with different adaptation costs.
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A.1 Increasing W f −W s difference with participation

Given that we have previously shown that W f > W s, lets analyze how does this difference

vary with the level of participation. First, using (7) and (8) we obtain that the difference in net

benefits is

W f −W s =
α

γ
(n− 1)(d− a(n))− 1

2γ
(α− d+ a(n))2 +

1

2γ
(α− nd+ na(n))2

=
1

2γ
(a(n)− d)2

(
n2 − 1

)
.

Taking the first derivative with respect to n gives the following expression

∂(W f −W s)

∂n
= −1

γ
(d− a(n))

∂a

∂n
(n2 − 1) + (a(n)− d)2 n,

40



that is positive because adaptation decreases with respect to n and the net marginal damage,

d− a, is assumed positive.

A.2 Full cohesiveness

First, using that E = ca for both signatories and non-signatories, net benefits read

W f =
1

2γ
((α2 − d2)− (γc− 1)(2da(n)− a(n)2))

for non-signatories and

W s =
1

2γ
((α2 − d2n2)− (γc− n2)(2da(n)− a(n)2)),

for signatories. Then the aggregate net benefits can be written as follows

W = nW s + (N − n)W f

= n
1

2γ
((α2−d2n2)−(γc−n2)(2da(n)−a(n)2))+(N−n)

1

2γ
((α2−d2)−(γc−1)(2da(n)−a(n)2))

=
1

2γ
((Nα2 − (n3 +N − n)d2) + (n3 − n− (γc− 1)N)(2da(n)− a(n)2)).

Substituting a(n) by (13) and taking the first derivative we obtain the following expression

∂W

∂n
=

(Nα− γcd)2 P (n)

2γ (n2 − n+N − γc)3
,

where the denominator is negative provided that γc > N2 and

P (n) = n4 + n3 + 3(γc− 1−N)n2 − (4N(γc− 1)− 1)n+ (2N − 1)γc−N.

For this polynomial 3(γc− 1−N), 4N(γc− 1)− 1 and (2N − 1)γc−N are positive if γc > N2.

Then, according to Descartes’ rule of signs, P (n) = 0 could have a maximum of two positive real

roots. As the independent term is positive if this is the case, the polynomial must be positive for

values of n lower than the smallest root and higher than the largest root and negative between

the two roots. In fact, it is easy to check that polynomial equation has two positive real roots

since for n = 1, the polynomial gives a negative value: P (1) = −2γc(N − 1). Moreover, we also

obtain a negative value for n = N, P (N) = −(γc−N2)(N − 1)2, so that we can conclude that

for all n ∈ [1, N ], P (n) must be negative and consequently ∂W/∂n > 0 since the denominator

is also negative for γc > N2.
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A.3 Proof of Proposition 3

We begin this proof showing that the polynomial equation, F (n) = 0, defined by the polyno-

mial (22) has at least one positive real root that is in the interval (3, 4). Calculating the values

of the polynomial for the extremes of this interval we obtain that for n = 3

F (3) = 4((N − 1)γc−N2 − 3N) ≥ 0,

for γc ≥ (N2 + 3N)/(N − 1). If we compare this lower bound for γc with the one defined in

Assumption 1, we can establish the following relationships

N2 + 3N

N − 1


>

=

<


N2 − βN

1− β
for β


<

=

>

β3 =
3

2 +N
.

Therefore an agreement consisting of three countries is internally stable if γc ≥ max[(N2 +

3N)/(N − 1), (N2−βN)/(1−β)]. Notice that if we impose an arbitrary upper bound on γc, as

limβ→1(N
2−βN)/(1−β) = +∞ the agreement consisting of three countries could be unstable.

But, this will occur for very low values of the degree of effectiveness of adaptation that we

do not take into account in this analysis. Next, we check whether the agreement is externally

stable. For n = 4 we have that

F (4) = −(γc)2 + (20 + 6N)γc− 5N2 − 56N − 144 < 0,

for γc = N2 and N ≥ 7. Moreover, considering the product γc as the argument of the polyno-

mial, the first derivative with respect to γc evaluated at γc = N2 is also negative so that we can

establish that N2 is larger than the highest root of F (4) = 0 and consequently that F (4) < 0

for γc > N2, and also for γc > (N2 − βN)/(1 − β) since (N2 − βN)/(1 − β) > N2. Then,

S(4) = W s(4) −W f (3) is also negative and W s(4) < W f (3) so that an agreement consisting

of three countries is also externally stable. Thus, we can conclude that there exists at least one

stable agreement consisting of three countries.

However, according to Descartes’ rules of signs F (n) = 0 could have three positive real roots.

Taking into account that the coefficients of the first derivative change the sign twice, we can

conclude that the function has two extremes. Moreover, as the coefficients of the the second

derivative also change the sign twice, we can conclude that the function has two inflection points.

As the independent term and the leading coefficient of this polynomial are negative we know
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that until the first inflection point the function is concave, between the first and the second

inflection point is convex and on the right of the second inflection point is again concave. Then,

the first extreme will be a minimum and the second extreme a maximum and the function will

be positive between zero and the first root, negative between the first root and the second root,

positive again between the second root and the third root, and finally negative on the right of

the third root.

Next, we investigate whether the grand coalition could be stable. If this is the case, F (N)

must be positive or zero.25 A first straightforward conclusion is that then N must be higher

than the second root and lower than or equal to the third root, since one of the three roots is

between 3 and 4 and its slope is negative. This means that the lowest root of F (n) = 0 is in

this interval. Next, we evaluate F (n) at N. The result is

F (N) = −(N − 3)(γc)2 + (N3 − 3N2 + 2N − 2)γc−N2(N − 2)(N2 −N + 2).

Doing F (N) = 0, we obtain a second degree equation for c that has two positive roots

(γc)1 = N2 < (γc)2 = N2 +
4(N − 1)

N − 3
,

so that for γc ∈ (N2, N2 + 4(N−1)
N−3 ], F (N) ≥ 0 and the grand coalition is stable. However,

according to Assumption 1, γc must be larger than (N2 − βN)/(1 − β) > N2. As this lower

bound for γc is increasing with β and is equal to N2 for β = 0, we can calculate the critical

value for β that defines the set of values for this parameter for which the grand coalition is

stable solving the following equation

N2 +
4(N − 1)

N − 3
− N2 − βN

1− β
= 0,

that yields

βN =
4

N2 − 3N + 4
,

and a degree of effectiveness equal to

1− βN =
N2 − 3N

N2 − 3N + 4
.

Thus, if γc ∈ (N2, N2 + 4(N−1)
N−3 ] the grand coalition is stable for β ∈ (0, βN ]. In this case, we

have a first root between 3 and 4, a second root between 4 and N, and a third root on the

25Notice that for the grand coalition, the agreement is stable if it is internally stable.
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right of N.26 However, if γc > N2 + (4(N − 1))/(N − 3), F (N) < 0 and the grand coalition

is not stable. Then, it is easy to check that N is on the left of the second root of F (n) = 0

and that consequently there is only one stable agreement consisting of three countries. Notice

that if γc = N2 + (4(N − 1))/(N − 3), F (N) = 0, and N is a root of F (n) = 0. However,

it could be the second or the third root. To solve this question we need to check the slope of

the root because the second one has a positive slope and the slope of the third one is negative.

Evaluating the first derivative of F (n) at n = N we obtain the following expression

F ′(N) = −(γc)2 + (6N2 − 14N + 6)γc− 5N4 + 14N3 − 14N2 + 8N,

that is positive for c = N2 + (4(N − 1))/(N − 3)

F ′
(
N ; γc = N2 +

4(N − 1)

N − 3

)
= 8

(N − 1)2

(N − 3)2
(N2 − 6N + 7) > 0.

Thus, we can conclude that for γc = N2+(4(N−1))/(N−3), N is the second root of F (n) = 0,

so that for γc > N2 + (4(N − 1))/(N − 3), F (N) must be negative, because on the right of

the second root the function takes positive values. Thus, N will be between the first and the

second root and the only stable agreement consists of three countries.

A.4 Signs of the coefficients of F (n) for the adaptation agreement

It is trivial under assumption γc > 2N − 1 that f5 > 0. f4 is a quadratic function of γc with

positive (γc)2 coefficient. Its roots are:

1

4
(5 + 2N ±

√
4N2 + 4N − 15)

It is easy to check that positive root which is the largest root is smaller than 2N − 1 for any

positive value of N . Let’s suppose the contrary

1

4
(5 + 2N +

√
4N2 + 4N − 15) ≥ 2N − 1,

what implies that

4N2 + 4N − 15− (6N − 9)2 = −32N2 + 112N − 96 ≥ 0,

but this is a contradiction for N ≥ 3. Therefore we can conclude that f4 > 0 for γc > 2N − 1.

For f3 according to Descrates’ rule of signs, f3(c) = 0 could have two positive real roots. With

26Notice that between 3 and 4 with F (3) > 0 and F (4) < 0 we cannot have more than one root. Theoretically,

we could have three root, but then F (N) could not be positive.
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negative values on the left of the first root and on the right of the second root. Evaluating f3

at γc = 2N − 1, we obtain a negative value

f3(2N − 1) = −6N3 − 22N2 + 46N − 30 < 0 for N ≥ 2,

and also a negative value for the first derivative

f ′3(2N − 1) = −11N2 − 26N + 31 < 0 for N ≥ 2.

Then, taking into account that the function is concave for all γc > 0, 2N − 1 must be larger

than the second root and we can conclude that f3 < 0 for all γc > 2N −1. f2(γc) = 0 according

to Descartes’ rule of signs could have three positive real roots with negative values on the right

of the third root. If we show that 2N−1 is on the right of the third root we could conclude that

f2 is negative for all γc > 2N − 1. We cannot obtain the roots of the polynomial equation, but

if we obtain that f2(2N − 1) is negative and that 2N − 1 is higher than the highest inflection

point of the function, we could conclude that f2 is negative for all γc > 2N − 1. Evaluating the

function at 2N − 1 we obtain the following expression

f2(2N − 1) = −8N4 + 38N3 + 32N2 − 74N + 38 < 0 for N ≥ 6.

Now, as the second derivative of f2 is a quadratic function we can calculate the inflection points.

The largest is

(γc)i =
6(4N − 1) + (12

(
72N + 16N2 + 307

)
)1/2

48
.

Let’s suppose that

(γc)i =
6(4N − 1) + (12

(
72N + 16N2 + 307

)
)1/2

48
≥ 2N − 1,

which implies that

12
(
72N + 16N2 + 307

)
− (72N − 42)2

= −4992N2 + 6912N + 1920 ≥ 0,

that is a contradiction for N ≥ 2. Then, γc = 2N −1 is greater than the second inflection point

and must be on the right of the third root of f2(γc) = 0, so that for γc > 2N − 1, f2 < 0. For

f1 we follow the same argument we have used for f2 except that now the function takes positive
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values on the right of the third root. Evaluating the function at 2N − 1 we obtain the following

result

f1(2N − 1) = 8N5 + 56N4 − 178N3 + 94N2 − 18N − 2 > 0 for N ≥ 2.

Next, we calculate the second derivative

f ′′1 = 20(γc)3 − 12(2N − 11)(γc)2 + 6(N2 − 12N + 4)γc+ 2(N2 − 6N − 16),

so that f ′′1 (γc) = 0 will give the two positive inflection points the function has. On the left of the

first inflection point, f ′′1 is positive and the function is convex, between the the two inflection

points f ′′1 is negative and the function is concave and, finally, on the right of the second inflection

point f ′′1 is again positive and the function is again convex. If we evaluate the second derivative

at 2N − 1 we obtain a positive value

f ′′1 (2N − 1) = 76N3 + 236N2 − 324N + 56 > 0 for N ≥ 2.

But, 2N − 1 could be on the left of the first inflection point or on the right of the second

inflection point. To find out which is the case, we need to calculate the third derivative

f ′′′1 = 60(γc)2 − 24(2N − 11)γc+ 6(N2 − 12N + 4).

This derivative is zero for the following values

γc =
24(2N − 11)±

√
288 (−28N + 3N2 + 222)

120
,

that define two extremes for the second derivative. The lowest value is a maximum and the

highest value is a minimum. It is easy to check that 2N − 1 is higher than the minimum.

Let’s suppose that

24(2N − 11) +
√

288 (−28N + 3N2 + 222)

120
≥ 2N − 1,

which implies that

288
(
−28N + 3N2 + 222

)
− (192N + 144)2

= −36 000N2 − 63 360N + 43 200 ≥ 0,

that is a contradiction for N ≥ 2. Then as f ′′1 (2N − 1) is positive, 2N − 1 must be higher than

the highest inflection point and as f(2N − 1) is also positive, 2N − 1 must be higher than the
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third root of f1(γc) = 0 and we can conclude that f1 > 0 for all γc > 2N−1. Finally, f0(γc) = 0

has a unique positive real root with a leading coefficient negative. So, if f0(2N − 1) is negative,

f0 will be negative for γc > 2N − 1 as is the case

f0(2N − 1) = 2N
(
−28N4 + 44N3 + 5N2 − 26N + 9

)
< 0 for N ≥ 2.

A.5 Proof of Proposition 4

Notice firstly that S(n) = 0 only if F (n) = 0. Thus, we can focus on the analysis of

polynomial equation F (n) = 0. As the leading coefficient of F (n) is positive and its independent

term is negative, the polynomial equation has at least one positive root. Next, we show that

if there exists only one positive root, it is larger than 2 and lower than 7. To claim this, we

need to show that F (3) is negative and F (7) is positive. For n = 3, F (n) yields the following

polynomial in γc

F (γc;n = 3) = −2(2γc− 1)G(γc), (51)

where

G(γc) = (N − 2)(γc)3 − (N2 − 4)(γc)2 + (2N2 − 7N + 3)(γc)− (N − 3)2.

Therefore to show that F (γc) is negative we need to show that G(γc) is positive for γc >

2N −1. G(γc) presents three changes of sign for the coefficients and according to the Descartes’

rule of signs, the polynomial equation could have a maximum of three positive real roots. With

positive values on the right of the third root since the leading coefficient is positive. If we show

that 2N − 1 is on the right of the third root, we could conclude that G(γc) is positive for all

γc > 2N − 1. However, we cannot calculate the roots of the polynomial equation, but if we

obtain that G(2N − 1) is positive and that 2N − 1 is higher than the highest inflection point

of the function, we could conclude that G(γc) is positive for all γc > 2N − 1 and consequently

F (γc;n = 3) negative. Evaluating the function at 2N − 1 we obtain the following expression

G(2N − 1) = 4N4 − 20N3 + 28N2 − 10N − 6 > 0 for N ≥ 4.

Next, as the second derivative de G(γc) is a quadratic function we can calculate the inflection

points. The largest is

(γc)i =
N2 − 4 +

√
(N − 2) (17N − 4N2 +N3 − 17)

3(N − 2)

Let’s suppose that

(γc)i =
N2 − 4 +

√
(N − 2) (17N − 4N2 +N3 − 17)

3(N − 2)
≥ 2N − 1,
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which implies that

(N − 2)
(
17N − 4N2 +N3 − 17

)
− (5N2 − 15N + 10)2

= −24N4 + 144N3 − 300N2 + 249N − 66 ≥ 0,

that is a contradiction for N ≥ 3. So that, γc = 2N − 1 is greater than the second inflection

point and must be on the right of the third root of G(γc) = 0 since G(2N−1) is positive. Then,

we can conclude that for γc > 2N − 1, G(γc) > 0 and S(3) > 0. Obviously, if G(γc) = 0 has

only one positive root, since the independent term is negative we obtain the same conclusion.

Next, we show that F (n) is positive for n = 7. For n = 7, F (n) yields the following

polynomial in γc

F (γc;n = 7) = 2(2(γc)5−2(7+3N)(γc)4 +(4N2 +57N−180)(γc)3−(43N2−122N−928)(γc)2

+65(2N2 − 23N + 63)γc− 75(N − 7)2), (52)

where all polynomials in N are positive for N > 8. F (γc;n = 7) presents five changes in

the sign of coefficients and according to the Descartes’ rule of signs, the polynomial equation

F (γc;n = 7) = 0 could have five, three or one positive real root. However, regardless of the

equation has five or three roots if we have that if F (2N − 1;n = 7) is positive and 2N − 1 is

larger than the highest inflection point as the leading coefficient of (52) is positive, we could

conclude as in the previous case that F (γc;n = 7) > 0 for γc > 2N − 1. For γc = 2N − 1, we

have the following expression

F (2N − 1;n = 7) = 88N4 − 1432N3 + 4232N2 + 12 268N − 13 356 > 0 for N ≥ 11.

Now, we calculate the second derivative

F ′′(γc;n = 7) = 2(40c3 − 24(7 + 3N)c2 + 6(4N2 + 57N − 180)c− 2(43N2 − 122N − 928)).

Thus, the function could have three or only one inflection point. If the function has three

inflection point, the function is convex between the first inflection point and the second inflection

point and on the right of the third inflection point. If we evaluate the second derivative at 2N−1

we obtain a positive value

F ′′(2N − 1;n = 7) = 160N3 − 580N2 − 2836N + 5456 > 0 for N ≥ 6.

48



But then, 2N − 1 could be between the the first inflection point and the second inflection point

or on the right of the third inflection point. To progress in the argumentation, we need to

calculate the third derivative

F ′′′(γc;n = 7) = 2(120(γc)2 − 48(7 + 3N)γc+ 6(4N2 + 57N − 180)).

This derivative is zero for the following values

(γc)i =
2(7 + 3N)±

√
−117N + 16N2 + 1096

10
,

that define two extremes for the second derivative. The lowest value is a maximum and the

largest value is a minimum. It is easy to check that 2N − 1 is higher than the minimum.

Let’s suppose that the highest value of γc is larger than 2N − 1

(γc)i =
2(7 + 3N) +

√
−117N + 16N2 + 1096

10
≥ 2N − 1,

which implies that

−117N + 16N2 + 1096− (14N − 24)2

= −180N2 + 555N + 520 ≥ 0,

that is a contradiction for N ≥ 4. Then as 2N − 1 is higher than the minimum of the second

derivative and moreover F ′′(2N − 1;n = 7) is positive, 2N − 1 must be larger than the highest

inflection point. In this case, as F (2N − 1;n = 7) is also positive, 2N − 1 must be higher than

the the highest root of F (γc;n = 7) = 0 and we can conclude that F (γc;n = 7) > 0 for all

γc > 2N − 1. Finally, if F (γc;n = 7) = 0 has only one positive root as the leading coefficient

is positive and the independent term negative if F (2N − 1;n = 7) is positive, it is also positive

for all γc > 2N − 1. Thus, if S(3) > 0 and S(7) < 0, then there exists at least a value for n, n∗

such that S(n∗) = 0 and S′(n∗) < 0. If the root is a natural number, it defines the participation

in the stable agreement, if this is not the case, the stable agreement is given by the first natural

number on the left of n∗.

However, according to Descartes’ rule of signs F (n) = 0 could have three positive real roots.

Taking into account that the coefficient of the first derivative change the sign twice, we can

conclude that the function has two extremes.27 Moreover, as the coefficients of the second

27The function could be increasing for all n > 0, but in this case as the leading coefficient of F (n) is positive

and the independent tern negatve, F (n) = 0 would have only one positve root in the interval (3, 7) as we have

just showed.
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derivative only change the sign once, we can conclude that the function has one inflection point.

Moreover, as the independent term of the second derivative is negative and the leading coefficient

is positive, the function is first concave and on the right of the inflection point convex. Then,

the first extreme will be a maximum and the second extreme a minimum and the function will

be negative between zero and the first root, positive between the first root and the second root,

negative again between the second root and the third root, and finally negative on the right of

the third root.

Next, we investigate whether the grand coalition could be stable. If this is the case, F (N)

must be negative or zero. A first straightforward conclusion is that then N must be higher

than the second root and lower than or equal to the third root, since one of the three roots is

between 3 and 7 and its slope for F (n) is negative. Then if N > 7, the lowest root of F (n) = 0

must be in this interval. Next, we evaluate F (n) at N yielding the following expression

F (N) = (γc)2 (γc+ 1− 2N) ((γc)2 (N − 3)− 2γc (N − 1) (N − 2) + 2 (N − 2)2). (53)

The sign of this expression depends of a second degree equation for γc that has two positive

roots

γc =
(N − 2)((N − 1)±

√
(N2 − 4N + 7))

N − 3
,

so that for γc in the close interval defined by these two roots, F (N) ≤ 0 and the grand coalition

could be stable. Does 2N − 1 belong to this interval?

Let’s suppose that

(N − 2)((N − 1)−
√

(N2 − 4N + 7))

N − 3
≥ 2N − 1,

which implies that

−N2 + 4N − 1 ≥ (N − 2)
√

(N2 − 4N + 7) > 0,

that is a contradiction for N ≥ 4.

Next, let’s suppose that

2N − 1 ≥
(N − 2)((N − 1) +

√
(N2 − 4N + 7))

N − 3
,

which implies that

(N2 − 4N + 1)2 − (N − 2)2
(
N2 − 4N + 7

)
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= −9N2 + 36N − 27 ≥ 0,

that is a contradiction for N ≥ 4.Thus, we can conclude that

2N − 1 ∈

(
(N − 2)((N − 1)−

√
(N2 − 4N + 7))

N − 3
,
(N − 2)((N − 1) +

√
(N2 − 4N + 7))

N − 3

)
,

(54)

However, according to Assumption 2, γc must be larger than (((2−β)N −1)/(1−β) > 2N −1.

As this lower bound for γc is increasing with β and is equal to 2N − 1 for β = 0. We can

calculate the critical value for β that defines the set of values for this parameter for which the

grand coalition is stable solving the following equation

(N − 2)((N − 1) +
√

(N2 − 4N + 7))

N − 3
− (2− β)N − 1

1− β
= 0,

where the first term is the upper limit of the interval (54). The result os this equation is

βN = −
N2 − 4N + 1− (N − 2)

√
(N2 − 4N + 7)

2 + (N − 2)
√

(N2 − 4N + 7)
,

and a degree of effectiveness of adaptation equal to

1− βN =
N2 − 4N + 3

2 + (N − 2)
√

(N2 − 4N + 7)
.

Thus, if

γc ∈

(
2N − 1,

(N − 2)((N − 1) +
√

(N2 − 4N + 7))

N − 3

]
the grand coalition is stable for β ∈ (0, βN ]. In this case, we have a first root between 3 and

7, a second root between 7 and N , and a third root on the right of N.28 However, if γc >

(N − 2)((N − 1) +
√

(N2 − 4N + 7))/(N − 3), F (N) > 0 and the grand coalition is not stable.

But, in this case it is easy to check that N will be on the left of the second root of F (n) = 0 and

that consequently there will be only one stable agreement with a number of signatories between

3 and 6. Notice that if γc = (N − 2)((N − 1) +
√

(N2 − 4N + 7))/(N − 3), F (N) = 0, and N

is a root of equation F (n) = 0. However, it could be the second or the third root. To find out

which is the case, the only thing we have to do is to check the slope of the root because the

second one has a negative slope whereas the slope of the third root is positive. Evaluating the

28Notice that between 3 and 7 with F (3) < 0 and F (7) > 0 we cannot have more than one root. Theoretically

we could have three root, but then F (N) could not be negative.
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first derivative of F (n) at n = N we obtain the following polynomial in γc, F ′(N) = γcH(γc)

where

H(γc) = (γc)4 − (6N − 11)(γc)3 + (6N2 − 14N + 4)(γc)2 + (4N3 − 20N2 + 32N − 16)γc

−4N3 + 18N2 − 24N + 8,

that is negative for γc = (N − 2)((N − 1) +
√

(N2 − 4N + 7))/(N − 3),

F ′

(
N ; c =

(N − 2)((N − 1) +
√

(N2 − 4N + 7))

N − 3

)

= −(N − 2)2

(N − 3)4
(
2
(
4N4 − 51N3 + 191N2 − 313N + 209

)
+
(√
−4N +N2 + 7

)3
(N − 2)

(
−17N + 2N2 + 25

)
−
√
−4N +N2 + 7 (N − 2)

(
−21N + 2N2 + 53

)
(N − 1)2

)
< 0 for N ≥ 2.

Then, we can conclude that when γc = (N − 2)((N − 1) +
√

(N2 − 4N + 7))/(N − 3), N is the

second root of F (n) = 0. This implies that for c > (N−2)((N−1)+
√

(N2 − 4N + 7))/(N−3),

N must be on the left of the second root because on the right, the function takes negative values.

Thus, N will be between the first and the second root and in this case there is only one stable

agreement with a maximum of participation of six countries.
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