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Abstract

This paper shows how the combined endogenous reaction of banks and invest-
ment funds to an exogenous shock can amplify or dampen losses to the financial
system compared to results from single-sector stress testing models. We build a new
model of contagion propagation using a very large and granular data set for the euro
area. Based on the economic shock caused by the Covid-19 outbreak, we model
three sources of exogenous shocks: a default shock, a market shock and a redemp-
tion shock. Our contagion mechanism operates through a dual channel of liquidity
and solvency risk. The joint modelling of banks and funds provides new insights
for the assessment of financial stability risks. Our analysis reveals that adding the
fund sector to our model for banks leads to additional losses through fire sales and a
further depletion of banks’ capital ratios by around one percentage point.

Keywords: Fire sales, liquidity, overlapping portfolios, price impact, stress testing
JEL: D85, G01, G21, G23, L14
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Non-technical summary

Since the global financial crisis, the role of non-bank financial institutions has been in-
creasing. This growth particularly stands out for investment funds, whose total assets
under management have reached almost half of the total size of the banking sector in
the euro area, highlighting the ever-growing importance of investment funds in financing
today’s economy. These changes in the financial system call for the extension of the scope
of financial stability analysis and given the highly interconnected nature of financial in-
stitutions, it has as well become crucial to improve modelling capabilities for the joint
analysis of different financial sectors within a single framework. Hence, such exercises
need not only the possibly simplified replication of sectoral stress tests but also the ability
to allow for institution-level contagion even across different sectors. Moreover, such joint
models of banks and non-banks can also inform policymakers in developing the non-bank
macroprudential toolkit of the future.

In this paper, we introduce a new model for the joint stress testing of banks and in-
vestment funds in the euro area, developed at the ECB jointly with national central banks.
The model relies to a large extent on granular datasets covering banks’ and funds’ bal-
ance sheet information with, in particular, their securities holdings, fund holdings and
loan portfolios at counterparty- or aggregate level. This granular dataset makes it possi-
ble to shed light on previously not well known interconnections among the two different
financial sectors, i.e. banks and funds holding shares of investment funds or funds hold-
ing securities issued by banks, securities jointly held by both banks and funds or loans to
investment funds. Equipped with this dataset, we are not only able to initially shock the
sectors following existing practices in sector-level stress testing exercises conditional on
a set of macro-financial variables but we also propose additional liquidity-driven endoge-
nous reactions for both sectors.

Our initial shock consists of redemptions from investment funds, increased PDs for
non-financial corporations (NFC) combined with stochastic NFC defaults as well as an
instantaneous stock market shock. After initial losses from these changes in our system,
endogenous reactions activate, i.e. reactions from within our modelled system, under
which we assume certain short-term funding withdrawal within the banking system, ac-
cess of solvent but illiquid banks to short-term funding in the interbank market, possible
redemptions from investment funds driven by liquidity needs of banks and funds and fire
sales of marketable securities at discounted prices. All these reactions lead to additional
sizeable losses within the financial system, which are not captured by stress tests that
adhere to the common assumption of a static balance sheet.

Applying a Covid-19 shock scenario, developed for the ECB Vulnerability Analysis ex-
ercise in 2020, combined with end-2019 balance sheet information as a starting point,
we find over a two quarter horizon that the presence of funds together with banks in
our modelled financial system increases average bank capital depletion by one percent-
age point. This effect is largely due to asset fire sales of overlapping portfolios. Fire sale
losses are clearly driven by funds’ need to meet exogenous redemptions and these en-
dogenous losses are especially high for investment funds, who have no access to central
bank funding as is the case for banks.
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Our findings show that the joint modelling of several financial sectors delivers clear
added value to the analytical capabilities of central banks and confirms the need for in-
creasing the coverage of financial sectors as part of our system-wide stress testing endeav-
ors.
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1 Introduction

The landscape of the financial system in the euro area has changed significantly since the
global financial crisis and the subsequent more onerous bank regulatory requirements.
Banks’ dominant position as liquidity provider waned in relative terms, while other types
of financial institutions gained momentum. Especially, investment funds have recently
attracted significant attention from supervisory authorities due to the remarkable growth
of the sector. Over the last ten years their assets under management more than doubled in
the euro area, reaching EUR 14 trillion in 2019. This compares to total assets of around
EUR 31 trillion for euro area credit institutions, which however has remained broadly
stable since 2008. This has also resulted in a stronger role of capital market-based fi-
nancing of the real economy, e.g. via fund purchases of debt securities from non-financial
corporations, as opposed to traditional bank financing.

This changing structure of the financial system raises new questions and new chal-
lenges for the analysis of financial stability, calling for more holistic risk assessments
covering the entire financial system and for a better understanding of the complex in-
teractions between different financial intermediaries, including not only banks but also
non-bank financial institutions. The enlarged role of non-bank financial institutions in
financial intermediation in the euro area therefore necessitates an improved stress test
modelling capacity to enable broad-based assessments of financial stability risks and the
financial sector’s resilience to their materialisation. Such System-Wide Stress Test models
should ideally capture a broad set of financial institutions (banks and non-banks) and
cater for the most important sources and channels of contagion between different types
of financial institutions.

The present paper is a first step in this direction with a stress testing model that cov-
ers banks interacting with investment funds in a coherent framework using very granular
data. Such a tool can be used for system-wide stress testing analysis to provide holis-
tic assessments of financial sector resilience. To our knowledge, this is the first attempt
in a stress testing context to model jointly banks and investment funds and their inter-
connections with firm level data. We demonstrate that accounting for the firm-by-firm
interactions between banks and funds allows to capture important amplification effects
that one might overlook when carrying stress test for banks or funds in isolation. Going
forward, the intention is to extend this modelling framework also to other financial in-
termediaries, such as insurance corporations, hedge funds, money market funds, pension
funds and CCPs, with the ultimate goal to develop a tool for policy analysis and system-
wide stress testing using different macro-financial shock scenarios.

The literature on the joint modelling of several financial sectors under stress with real-
istic institutional features is rather scarce. We can divide it into three strands: theoretical
work, models that use aggregated data and approaches built on granular data. A the-
oretical contagion model for banks and funds with asset fire sales as the main channel
establish Calimani, Hałaj, and Żochowski (2019). The modelled agents optimize their
balance sheet structure while trying to comply with solvency and liquidity requirements.
Both demand and supply endogenously determine asset prices. However, the model op-
erates on a small scale of few banks and asset managers and the agents’ properties are
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randomly drawn. Aikman et al. (2019) propose a representative agent equilibrium model
for banks, investment funds, hedge funds, pension funds and insurers. Using aggregate
balance sheet information, they model the secondary market for tradable securities, the
repo market as well as the interest rate swap market. Mirza, Moccero, Palligkinis, and
Pancaro (2020) employ aggregate information on the banking sector as well as several
types of funds to model a shock propagation due to overlapping portfolios and asset fire
sales.

Hałaj (2018) proposes an agent-based model with a focus on funding risk, where
banks and funds interact through a number of different channels. The model uses gran-
ular data that is matched to real banking data, but the underlying interbank network is
simulated. Chrétien et al. (2020) use the most granular data for banks, funds and in-
surance companies located in France to model a shock propagating through the system
via bilateral holdings. The information on all sectors’ asset holdings is available at ISIN
level. This allows a detailed modelling of overlapping portfolios, which the authors aug-
ment with bilateral large credit exposures used for the simulation of traditional default
cascades. This approach does not include asset fire sales but it accounts for changes due
to price depreciation on the balance sheet of financial institutions. Caccioli, Ferrara, and
Amanah (2020) focus on fire sale modelling for banks, investment funds and insurers in
the UK financial system using granular, ISIN-level information on holdings of modelled
sectors. Fricke and Fricke (2021) look more specifically at the vulnerability of the mutual
fund sector in the US, finding it to be relatively stable but making the case for an inte-
gration with banks. Farmer, Kleinnijenhuis, Nahai-Williamson, and Wetzer (2020) model
a financial system with banks, hedge funds and asset managers through which a shock
from an EBA stress test scenario propagates. They model overlapping portfolios through
tradable assets, bilateral repurchase agreements and unsecured interbank loans. Banks
also face several regulatory constraints. This paper is the closest to our approach in terms
of the methodology; however, it uses less granular, publicly available data for banks and
only stylised information for funds. Roncoroni, Battiston, Escobar Farfàn, and Martinez
Jaramillo (2021) extend a network valuation of assets approach with common asset con-
tagion and endogenous recovery rate for banks and investment funds, this is then applied
to a climate risk scenario.

In addition to the joint modelling of several financial sectors, another stream of litera-
ture, focussing on multiple interacting constraints, is relevant for our contribution. In this
context, Hałaj and Laliotis (2017) emphasize that liquidity crises may pave the way for
solvency crises or amplify the effect that solvency stress may have on liquidity. Their objec-
tive is to evaluate the augmentation effects of funding shocks through fire sales, interbank
linkages, overlapping asset portfolios and cross-holding of debt channels, and measure de-
teriorating funding conditions of banks due to their solvency issues or the availability of
unencumbered collateral. The authors propose to couple liquidity and solvency crisis, as
one normally precedes the other. Hesse et al. (2012) present another framework to link
liquidity and solvency risks. Their model allows for a simulation of a growth in funding
costs due to changes in solvency, a simulation of a funding market closure depending
on the level of capitalization, and an examination of the impact of concentration risk on
funding. Cont, Kotlicki, and Valderrama (2019) also advise the joint stress testing of sol-
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vency and liquidity for banks. Their approach is based on a three-period model using the
relations between solvency and liquidity shocks, to create a comprehensive framework
for liquidity and solvency risk.

Our modelled financial system consists of two sectors: banks and open-ended invest-
ment funds domiciled in the euro area. To study the interaction between these agents,
we take three major steps. First, we merge several databases to identify exposures on the
asset and liability side of individual institutions. Second, we propose an accurately mod-
elled shock to the real economy that causes initial losses for banks and funds. The basis for
this in our paper is the economic shock caused by the coronavirus (COVID-19) outbreak,
which is based on an adverse scenario path as documented in the ECB macroeconomic
projections. This shock scenario was also used in the Vulnerability Analysis of banks di-
rectly supervised within the ECB Single Supervisory Mechanism. Finally, we model the
agents’ behaviour in response to the shock, which can either amplify or dampen damages
to the financial system. Here, the shock propagates through a number of different chan-
nels: banks lend to funds, while funds deposit their cash with banks (liquidity providing);
banks and funds hold securities issued by the other sector (securities cross-holdings); and
finally, agents in both sectors invest in similar assets (overlapping portfolios).

The model dynamics develop as follows. A macro-financial shock is translated into
increased probabilities of defaults (PDs) of firms and households, which affect banks’
impairment calculations. Moreover, the increased firm-level PDs enter a stochastic simu-
lation algorithm that estimates correlated corporate defaults (firm default shock). A stock
market shock from the macro-financial scenario also hits the balance sheets of banks and
funds which write down losses on their loans and securities. Worsened fund performance
materialises as a result of scenario-induced asset price changes (market price shock) and
firm defaults. This activates the liquidity channel of contagion. Funds, in shortage of cash
to repay redeeming investors, sell some of their assets (redemption shock). Banks with
solvency issues withdraw short-term funding from other banks while financially sound
banks withdraw short-term funding from distressed and defaulted banks as a precaution-
ary measure. To obtain liquidity, banks are assumed to have access to a central bank
facility up to the level of their available high-quality liquid assets (HQLA)1. Banks that
are not in solvency distress can also borrow in the unsecured inter-bank market, and, if
this does not provide sufficient liquidity, banks can redeem their investment fund shares
and sell non-eligible assets pro rata at a price discount. This price discount is determined
endogenously as a function of the volumes sold. Finally, banks that cannot get above
their minimum liquidity thresholds, default due to illiquidity issues. Investment funds
are assumed to default only when their net asset value (NAV) reaches zero. In this case,
not only investors suffer losses; banks also write down losses on their loans to defaulting
funds.

In our framework, two particular mechanisms are worth highlighting. First, we model
correlated defaults of firms using their shocked probability of default and simulated stock
prices in a stochastic manner. Second, we calibrate market price impact functions using
granular data on market volumes and prices at security level. We then aggregate the
obtained parameters to sufficiently granular buckets such as to cover the universe of se-

1Central banks are not modelled explicitly and HQLA is equivalent to cash in our model.
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curities employed in our model. To our knowledge, this paper is the first multi-country
study of a financial network consisting of banks and funds across euro area countries that
uses granular data. Moreover, it relies on a realistic macro-financial shock scenario. Ad-
ditionally, the paper proposes a mechanism for generating correlated firm defaults in line
with the literature on market-based finance, which is applied to tens of thousands of non-
financial corporations (NFCs) in the system. Lastly, the paper employs calibrated price
impact functions for marketable assets using real market information at the ISIN level.
Our results confirm that focusing only on the banking sector in stress testing exercises
might underestimate the systemic effects of exogenous real economy shocks in the finan-
cial system. The contribution of investment funds to system-level losses is significant. In
addtion, overlapping portfolios and asset fire sales seem to be the main channel for shock
propagation from one sector to another.

This paper proceeds as follows. Section 2 sets the stage, introducing a financial system
of banks and funds, their regulation and the parts of their balance sheets relevant from
our model’s point of view. Section 3 describes the datasets used for the analysis as well
as the main empirical facts for the banking and fund sector, and their interconnections.
Section 4 presents the realistic shocks to the system coming from satellite models. Section
5 lays down the details of the model and its dynamics. Section 6 discusses results of the
model and some interesting counterfactual simulations. Section 7 draws conclusions.

Appendix A, on mathematical and balance sheet notations, describes important stan-
dards, to which we adhere throughout the paper. Appendices B to G provide more in-
formation on the data used in our model, further methodological details and the results
from an experiment where funds are deactivated in our model.

2 Sectors

Our system consists of two types of agents: banks and investments funds. The banking
system is the standard financial intermediary for the real economy, and banks’ behaviour
in a network setup has been extensively studied and used in stress testing exercises. For
instance, Cont and Schaanning (2019) examine the transmission of a shock through a
banking system due to common portfolio holdings. They analyse spillovers across portfo-
lios due to deleveraging of banks in stress scenarios and measure the loss that distressed
liquidations would impose on other institutions. Covi, Gorpe, and Kok (2021) and Mon-
tagna, Torri, and Covi (2020) also study the interconnectedness of the banking system
based on bilateral linkages. They measure the systemic importance of banks and their
degree of fragility, at the same time providing insights to the channels of contagion. On
the contrary, including funds in a network model is a recent innovation in the literature,
and modelling decisions are less clear-cut.

2.1 Banking sector

Our banking system comprises banking groups that operate as autonomous entities; we
discuss their consolidation level in Section 3. Each banking group is characterised by its
individual balance sheet, and its behavior is driven by a need to satisfy its contractual
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obligations (liquidity needs) and regulatory constraints (solvency ratio).2

Below we summarise risks stemming from the banking sector that are relevant for
our model. Most of them have already been extensively studied from a financial stability
perspective and employed in stress testing exercises.
• Direct contagion via credit risk and bank defaults: risks that propagate from the

liability side of defaulting entities (Eisenberg and Noe, 2001) and through expected
losses to other financial corporations and the real economy.

• Solvency-liquidity feedback loop: amplification of a bank’s first-round losses if a run
on its short-term debt takes place. Lenders reevaluate individual bank’s asset value
after the initial shock and decide whether or not, and on which conditions, to roll
over the short-term funding (Pederson and Brunnermeier, 2009; Georgescu, 2015).

• Direct contagion via market risk: defaulting entities’ issued bond and equity prices
drop, causing immediate losses to the holders of those securities. An initial stock
market shock is also introduced.

• Indirect contagion via market risk: price impact from asset fire sales when banks
are suffering from losses and liquidity shortage in the short-term and, thus, start
selling (risk-bearing) assets. This leads, in turn, to mark-to-market losses for other
financial corporations with overlapping asset portfolios.

Figure 1 shows an aggregate balance sheet representation of euro area banks. In
addition to the already introduced items, a bank i also has a portfolio of loans on the
asset side that add up to

∑

j li, j. Index j denotes borrowers in the system that can be
other financial institutions, NFCs or households. These loans also appear on the liability
side of both other banks and investment funds with

∑

j l j,i representing the sum of the
debt of entity i. Similarly, issued tradable securities are represented both on the asset and
liability side of banks. Note that our granular databases (large exposure and securities
holdings statistics) do not perfectly match aggregate banking sector statistics given that
adhere to different reporting standards.

Securities
∑

j hi, j 4.4

Loans
∑

j li, j 19.3

Other assets 7.5
Total 31.2

(a) Assets

Capital and
reserves ki 2.6

Securities
∑

j h j,i 3.6

Deposits
∑

j l j,i 18.9

Other liabilities 6.1
Total 31.2

(b) Liabilities

Figure 1: Banks’ modelled balance sheet (numbers given in trillions of euros).
Source: ECB COREP and FINREP data.

Now, we turn to the regulatory constraints for the banking sector implemented in
our model. The first constraint regards solvency capital requirements. We distinguish

2In our model, a bank is not optimizing its risk exposure amounts (REA), e.g. by deleveraging.
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two different solvency thresholds for each bank i: a distress threshold τdis
i and a lower

default threshold τdef
i . First, we define a uniform minimum CET1 capital requirement

as χMC = 4.5%. On top of this, we add the bank-specific Pillar 2 requirement χP2R,
determined by the Supervisory Review and Evaluation Process (SREP) and the shortfall of
additional Tier-1 and Tier-2 capital χ sf AT1/T2, which are also part of the CET1 requirements
from 2020 onwards3, hence the default threshold in percentages is:

χdef = χMC +χP2R+χ sf AT1/T2

For the distress threshold, we also take into account the combined buffer requirement
(CBR), which is the sum of the uniform capital conservation buffer (CCoB), the counter-
cyclical capital buffer (CCyB) and the maximum of the structural risk related macropru-
dential capital requirements: systemic risk buffer (SyRB), buffer for global systemically
important institutions (G-SII) and buffer for other systemically important institutions (O-
SII):

χCBR = χCCOB +χCCyB +max{χSyRB,χO−SII,χG−SII}.

Hence, the distress threshold is given by

χdis = χdef +χCBR.

Finally, we obtain the default and distress thresholds in monetary units for each bank i
by multiplying the relevant capital requirements by the total risk exposure amount (REA):

τdef
i = χ

def ·REAi, τdis
i = χ

dis ·REAi . (1)

Additionally, we also consider the prudential liquidity regulation, the goal of which
is to ensure that banks are liquid enough at all times. We take into account the LCR
constraint, which promotes the short-term resilience to liquidity shocks. It does so by
requiring banks to hold an adequate stock of unencumbered High Quality Liquid Assets
(HQLA) to meet their liquidity needs for a 30-calendar-day liquidity stress scenario. We
denote this as

LCRi =
cHQLA

i

cout 30
i

≥ 1, (2)

where cHQLA
i denotes the stock of HQLA and cout 30

i is the net cash outflows over the next
30 calendar days under a stress scenario, and thus becomes the value of liquidity require-
ments.4

While minimum capital requirements must always be satisfied, it is accepted for the
LCR to fall below 100% during crisis times (Basel Committee on Banking Supervision,
2020), although it may entail additional supervisory activities. To be on the safe side and
keep consistency with the regulation, we use the parameter λLCR = 1, which determines

3For more information see the 2020 SSM SREP Methodology Booklet.
4The net cash outflows is computed as the difference between expected stressed outflows and stressed

inflows, both being obtained from the application of stress rates. The value of outflows is not updated
though in the model. Also, we use reported HQLA but without an application of central bank haircuts as
applied in monetary operations.
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the portion of LCR that banks actually try to maintain during stress periods, i.e. they make
sure that cHQLA

i ≥ λLCR · cout 30
i . We will assume that banks make adjustments to restore the

full LCR constraint only at a lower frequency. Based on this, we can immediately write
the liquidity distress threshold as

τc,dis
i = λLCR · cout 30

i . (3)

The liquidity default threshold is τc,def
i = 0. Throughout the paper, we will denote the

pool of HQLA as cash-equivalent liquidity for bank i as ci. This assumes that banks have
access to central bank repo financing and that they are able to exchange their liquid assets
into cash within a short time horizon.

Importantly, we do not model any policy response, such as capital relief measures
given our exogenous shock scenario, as we want to measure the potential scenario impact
without supervisory actions.

Overall, we can represent the state of each bank in a liquidity-solvency space as illus-
trated in Figure 2.

0 5 10 15 20 25 30 35 40
CET1 ratio (% of RWA)

0

100

200

300

400

500

600

LC
R

 (%
)

Figure 2: Liquidity-solvency relationship for all banks in the system (LCR in percent and
CET1 as a percentage of RWA).
Source: COREP data and authors’ calculations.

2.2 Investment funds sector

In contrast to the banking sector, there is no clear consensus on the contribution of the
investment fund sector to financial instability. However, the funds’ recent expansion, in
conjunction with evidence revealing feedback loops in market-based finance, renders the
joint analysis of banks and investment funds within one consistent framework important.
Moreover, although investment funds are mainly domiciled in international financial cen-
ters and a few large jurisdictions, their widely diversified portfolios in geographical terms
imply that their actions could significantly impact countries where domestic non-banks
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represent only a small share of the market.

Part of the literature analyses the investment fund sector individually. For instance,
Baranova, Douglas, and Silvestri (2019) focus on modelling amplification dynamics aris-
ing from fire-sales in the corporate bond market. In particular, they assess the degree
to which redemptions by open-end investment funds, following an initial drop in asset
prices, may have a destabilising impact on market functioning. They find that the mag-
nitude of amplification depends on the origin of the initial price shock, as well as the
degree to which a given type of shock affects other asset classes and different investor
types. Moreover, the redemptions from open-end corporate bond funds accompanied by
regulatory constraints could lead to material drops in the asset prices. Bouveret (2017)
documents liquidity stress tests for investment funds performed in various IMF FSAP stud-
ies. It discusses the links between the banking and investment fund sectors, as well as
a proposal to link both liquidity stress tests. More recently, ESMA (2019b) went further
in defining stress testing possibilities for investment funds in response to a redemption
shock. They review the various methods available and test a large sample of UCITS-
regulated bond funds. Goldstein, Jiang, and Ng (2017) also explore flow patterns in
corporate bond funds. They show that outflows are more sensitive to poor performance
than inflows to good performance, especially under conditions of high market illiquidity.
These results imply the fragility in the corporate bond market. Fricke and Wilke (2020)
quantifies vulnerabilities within the fund sector and spillover effects for the wider finan-
cial system. The authors show that German funds’ fire sales in response to a pronounced
decline in stock and bond market prices might trigger sizeable second round losses, which
propagate through the German fund sector via funds’ direct (funds holding each others’
fund shares) and indirect (funds holding the same assets) interconnections.

We focus our analysis on open-ended investment funds, which may pose a large threat
to the stability of the financial system due to significant liquidity and maturity transforma-
tion that they undertake (Gourdel, Maqui, and Sydow, 2019). Indeed, investment funds
are funded by shares that are purchased by investors and that can be redeemed (sold back
to funds) by investors upon request, making fund shares very liquid. On the other hand,
funds invest in assets of longer maturities and lower liquidity such as corporate bonds.
Investment funds are exposed to different risk factors, depending on their type: matu-
rity and liquidity mismatch, concentration, leverage. In spite of individual differences in
investment strategies and, thus, exposure to different risk factors, investment funds are
in general interconnected with one another and with the rest of the financial system, on
both sides of their balance sheet. Therefore, faced with market stress, they can trans-
mit shocks to the financial system and generate feedback loops. We model the following
transmission channels:

• The asset liquidation channel: funds are forced to liquidate securities when they face
a significant redemption shock.

• The direct exposure channel of fund shares: counterparties holding fund shares would
be affected by a decrease in Net Asset Value (NAV).

• The direct exposure channel of loans: banks that finance funds would suffer losses in
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case of a fund default.5

Figure 3 shows the aggregated balance sheet of euro area investment funds that are
covered by our model. The proportions of the different items on the balance sheet re-
flect the fact that investment funds are for the vast majority equity financed vehicles.
Therefore, losses on funds’ portfolios are directly transmitted to investors through mark-
to-market accounting and do not lead to defaults on fixed commitments (i.e. debt liabili-
ties). In fact, investment funds that do not employ leverage cannot really default. When
they do in our model, the criterion used is that a fund’s NAV reaches zero (Chrétien et al.,
2020). We synthetically define the total net assets (TNA) of a fund i as a capital-like
measure resembling the difference of financial assets and liabilities to banks:

ki =
∑

j

htrd
i, j +

∑

j

hred
i, j + ci −

∑

j

l j,i, (4)

where the first two terms are the fund’s tradable and redeemable assets, the third term
is cash; from these, we deduct the total of all liabilities to banks. In this sense, we are
able to identify, in theory, funds that are in solvency default, i.e. using a default threshold
τdef

i = 0:

ki < 0= τdef
i . (5)

The liquidity default threshold is similarly given by τc,def
i = 0, leading to the liquidity

default condition:

ci < 0= τc,def
i , (6)

where ci denotes cash of investment funds. Note that this difference compared to banks
does not cause ambiguity because funds with cash shortage will sell their tradable assets
or redeem other fund shares to obtain liquidity. Also, note that we did not define distress
thresholds for the investment fund sector due to a lack of corresponding regulation. Fur-
thermore, since funds should be able to convert their assets into cash, a liquidity-induced
default would not happen to them in our model – only if they have sold all of their assets
but this is clearly preceded by the solvency default of funds as can be seen from equation
(4) and the solvency default condition ki < 0. Finally, as can be seen in Figure 3, fund
defaults appear very unlikely as the value of their assets is far higher than the loans they
received.

Under UCITS III, leverage can be used for investment purposes, with no need to match
specific assets, but it is limited.6 The Alternative Investment Fund Managers (AIFM) di-
rective on the other hand does not include leverage limits, but corresponding funds are
usually only moderately leveraged, with the exception of hedge funds.7 Therefore, in-

5Funds are mainly equity-financed and do not borrow large amounts from banks. Hence, fund defaults
are a very rare phenomenon.

6They can borrow up to 10% of their net asset value (NAV) on a temporary basis (financial leverage).
While it is not allowed to short stocks, the same can be achieved using derivatives, up to 100% NAV (syn-
thetic leverage). However, this form of leverage is also constrained directly or indirectly under the UCITS
Directive.

7For more details, see ESMA (2019a).
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Deposits and claims 0.9

Securities
∑

j hi, j 12

Non-financial assets 0.4
Remaining assets 0.8

Total 14.1
(a) Assets

Investment funds
shares ki 12.9

Loans
∑

j l j,i 0.5
Remaining liabilities 0.7

Total 14.1
(b) Liabilities

Figure 3: Investment fund’s modelled balance sheet (in trillions of euros).
Securities are a combination of equities, debt securities and fund shares. Cash is in-
cluded in the ’Deposits and claims’ category.
Source: ECB Investment Fund Statistics, Lipper IM and authors’ calculations.

vestment funds modelled in our framework exhibit a low leverage.
Open-end funds are governed by dynamics that require a number of assumptions,

in particular regarding the timing and volume of redemptions. As detailed afterwards,
redemptions can either be endogenous, i.e. from other explicitly modelled financial in-
stitutions, or exogenous. In both cases, we need to re-concile these redemptions with
the data on modelled sectors and entities to ensure accounting consistency. More pre-
cisely, to close the system or consider redemptions only from modelled agents, then net
redemptions/sales from funds must match a change in holdings by investors. To meet
redemptions, managers will use cash buffers.

3 Data

The specificity and uniqueness of our study is that we construct a database using several
granular data sets for individual banks and funds. The banking sector includes significant
and less significant banks domiciled in the euro area while the investment fund sector
consists of open-ended investment funds domiciled in the euro area.

3.1 Banking sector

To model the banking sector, we exploit several data sources, which provide very granular
information on exposures of banks towards individual entities in the system covering all
the sectors of the economy. A bank’s portfolio is firstly built by relying on the COREP
(Common Reporting) dataset based on the European Banking Authority’s supervisory re-
porting framework, which includes data on bilateral exposures from the Large Exposures
framework8. The residual fraction of banks’ loan portfolios, that do not satisfy the report-
ing thresholds defined in the Large Exposures framework, is included in the form of resid-

8The Large Exposures reporting framework provides counterparty level information on bilateral expo-
sure euro area credit institution towards the real economy. Introduce in 2014, the framework requires
institutions to report all exposures exceeding either 300M€ or 10% of eligible capital towards either a
single counterparty or group of connected entities. For each exposure, both the original amount, as well as
a net amount after credit risk mitigation and exemptions are reported. The latter is used as a proxy for the
loss given default (LGD) of the exposure (see Appendix B.1 for more details)
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ual exposures nodes constructed at a country-sector level. More specifically, we compute
the exposures towards such nodes as the difference between aggregate exposures from
FINREP (Financial Reporting) and the sum of reported granular exposures. Additionally,
we employ Securities Holdings Statistics by banking group (SHS-G9) to enrich the portfo-
lio information of banks, bringing in information on securities held by credit institutions
at ISIN-level.

From COREP, we also retrieve information on the banks’ capitalisation, which we com-
plement by data on regulatory constraints as well as capital and liquidity buffers provided
by national authorities across the ESCB in order to define bank-level default- and distress-
thresholds, as outlined in equation 1.

The combination of the aforementioned data sources, as described in Appendix B,
allows to reconstruct the network of bank to bank exposures as well as bank to non-banks
exposures: this defines the basic system of entities, through which a macro-financial shock
propagates on the basis of credit, liquidity, and market risk channels from one entity to
another. At this stage, our model does not consider hedging positions in derivatives of
banks and funds, which might be a relevant factor for future analysis.

Figures 4 and 20 provide a broad overview of the dataset,showing distributions of our
granular loan database were both the lender and the borrower are known at entity level.
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Figure 4: Histograms of banks’ granular exposures towards other banks, investment
funds and NFCs as of Q4 2019 (in EUR).
Short-term bank exposures have a residual maturity of less than 30 days; long-term
bank exposures cover the remainder.
Source: Authors’ calculations.

9Security Holding Statistics by Banking Group covers all significant banking groups under direct ECB
(about 120 groups) supervision, including holdings of all subsidiaries and branches within and outside euro
area. Each institution reports granularly its portfolio holdings at individual ISIN level, including market
value and nominal value held, and whether the amounts are held to maturity or in the trading book.
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3.2 Investment fund sector

The investment funds sector can be generally broken down into six main categories: eq-
uity, bond, mixed, money-market, real estate and hedge funds. Due to data constraints,
our model includes three fund categories: equity, bond and mixed funds. These funds
represent more than 80% of the assets under management of the euro area. Equity funds
are the biggest category in our sample, covering slightly more than half of the assets un-
der management (AUM); bond funds represent one third of the sample’s AUM and mixed
funds are the smallest subgroup with only about 13% of total AUM. While benefiting from
the extensive supervisory data for the banking sector, we have to use available market data
for the investment fund sector on securities portfolios, cash holdings, net asset value and
flows. At the fund level, we obtain detailed balance sheet information and portfolio com-
position using private vendor data from Lipper IM by Refinitiv. Moreover, we evaluate the
coverage of Lipper IM data using aggregated fund sector statistics from the ECB databases
Quarterly Sectoral Accounts (QSA) and Investment Funds Balance Sheet Statistics (IVF).
Compared to the country-level aggregates, the coverage by Lipper IM varies significantly
across countries, as Table 2 and Appendix C report.10

As the names suggest, the equity and bonds funds in our dataset invest almost solely
in equity and bonds respectively, whereas the mixed funds hold a mixture of the two asset
types (see Figure 5). Since market liquidity of fund shares is high, investors can easily
buy or redeem fund shares. Therefore, funds flows are very volatile. Figure 6 shows the
evolution of flows across funds broken down by fund category. We notice a fat tail in the
flows: the median is always very close to 0% and the range between the 25th and 75th
percentiles is narrow but the 10th/90th percentiles exceed minus/plus 5% of NAV and
the 5th/95th percentiles often exceed minus/plus 10% of NAV.
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Figure 5: Equity and bond holdings by fund type (in euros with scale multiplier on the
top left of the charts).
The holdings are summed over all funds in our sample, without restriction of domicile.
Source: Lipper IM and authors’ calculations.

10When necessary for modelling purposes, we aggregate all assets held by the fund sector in each country,
for which information at the fund level is not available, and attribute this outcome to one aggregate fund
per country-fund class.
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Figure 6: Distribution of monthly fund-level flows as a percentage of assets.
Source: Lipper IM and authors’ calculations.

3.3 Identification of entities and group consolidation

In order to generate with the available data a network of linked nodes, the first step of
our data management process requires the preparation of auxiliary databases. Such data
sources are used to gather all the entity identification codes, which allow to uniquely
recognise each counterparty reported by funds and banks.
We rely on three databases for this step: GLEIF (Global Legal Entity Identifier Founda-
tion), RIAD (Register of Institutions and Affiliates Data) and CSDB (Centralised Securi-
ties Database). These databases provide the LEI (Legal Entity Identifier), RIAD and ISIN
codes, which allow us to identify each entity and the securities it issued.
We adopt a process of recursive data matching based on different keys (LEI, RIAD and
ISIN codes, entity name, etc.) that returns cleaned data for all the reported entities ob-
served. Afterwards, we are able to define a unique identifier for the network that collects
all the same entities under the same node.
Finally, through the GLEIF and RIAD data, we are able to assign each entity to its own
group using information about the ultimate parent. This process is core as we aim at
consolidating exposures by groups of entities. The only caveat in this last step is that
it depends on the sectors of the firms composing one group. If we observe companies
belonging to more than one sector within the same group, we will slice it into as many
subgroups as the number of detected sectors. The reasons for this separation are the
behavioural assumptions and dynamics embedded in our model for each sector. This pro-
cedure allows us to consolidate exposures only towards entities of the same group and
sector.

3.4 Evidence on the interconnection between sectors

The banking and investment fund sectors are closely connected in many ways: banks lend
to funds while funds deposit their cash at banks - thus, also providing banks with liquidity;
banks and funds hold each other’s securities; banks and funds hold similar portfolios.
These links may serve as contagion channels. Empirical findings presented in this section
aim at pointing out which channels will play a bigger role in our analysis.
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Figure 7 suggests that banks’ exposure through lending to funds is small. This is not
surprising since the majority of funds in our sample are UCITS that have a 10% limit
on borrowing. Lipper IM provides information only on the total amount of cash held by
fund. Therefore, we assume that funds keep cash at their custodian banks, as known
from Lipper IM. This assumption might significantly overstate the degree of interlinkages
between custodian banks and investment funds via cash holdings, including potential
spillovers from funds to custodian banks.11 However, in the absence of more granular
data sources, this assumption is required in order to make the model internally consistent.
Moreover, as funds have a limited amount of cash, they will tend to sell large amounts of
their securities. This figure also shows that banks are mostly subject to credit risk losses,
especially via exposures that are not available at granular level. Loans to individual firms
represent only 21% of banks’ total assets. Hence, for loans to households, NFCs, FCs
and residual sectors (e.g. governments) we use information aggregated at country-sector
level, as described in Section 3.1. Similarly, information on granular securities holdings
in banks’ balance sheets is also limited, covering 7% of total assets. The banks’ missing
assets in Figure 7 are in line with the share of ’Other assets’ (around 23%) shown in
Figure 1. This means that our constructed dataset, combining granular and aggregate
country-sector data, can replicate the overall EA statistics.

Figure 8 shows that, within the group of banks and funds, funds hold much more
individual securities in their portfolios than banks. This will help us explain the fire sale
losses in the different simulation exercises.

Figure 9 shows pairwise cosine similarities of the 100 largest banks and funds ordered
by their size of tradable and redeemable portfolios. This analysis suggests that there is
no systematic sector-specific difference in the portfolios of entities in these two sectors.
In fact, there are banks and funds with very similar portfolios. This suggests that fire sale
losses will matter a lot in a joint model of banks and investment funds.

In Appendix D, we show network charts representing our dataset aggregated at sector-
and at entity-level. A visual inspection of the two different aggregation levels can give
an indication about the details that are not captured in a model that omits granular data,
such as representative agent models.

3.5 The macro-financial scenario

In this paper, we analyse the impact of the economic shock caused by the COVID-19
outbreak. This involves two comprehensive scenarios of different severity as set out in the
June 2020 ECB staff macroeconomic projections, which were also used in the vulnerability
analysis of banks directly supervised within the Single Supervisory Mechanism.12

The first scenario foresees a real gross domestic product (GDP) decline of 8.7% in
2020. The second scenario is more severe and projects a real GDP decline of 12.6% in
2020. We report results only for the more severe scenario.

Each scenario comprises almost 20 different macro-financial variables that are linked

11For example, equity, bond and mixed funds domiciled in Luxembourg hold only around half of their
cash at their custodian bank.

12For more information, see: https://www.bankingsupervision.europa.eu/press/pr/
date/2020/html/ssm.pr200728~7df9502348.en.html
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Source: Authors’ calculations.

via ECB satellite models into bank- or fund-specific risk drivers.13 Each scenario materi-
alises in Q1 2020, and we assume that the financial system reacts in the following quarter
in line with our intra-quarter model dynamics described in the following sections.

4 Initial exogenous shocks

A key contribution of our work compared to previous literature is that we translate the
macro-financial scenario into a series of scenario-consistent initial shocks that unfold via
different risk channels, instead of focusing on a single channel that is unlikely to exist in
isolation in reality. In particular, we implement firm default as well as market price and
redemption risk channels, as described in Sections 4.1, 4.2, 4.3, respectively.

4.1 Defaults of corporations
The first exogenous shock to banks and funds comes from defaults of non-financial and
financial corporations14 (for easier understanding we refer to them as NFCs throughout

13For more information, see: https://www.ecb.europa.eu/pub/projections/html/ecb.
projections202006_eurosystemstaff~7628a8cf43.en.html

14These financial corporations are neither banks nor investment funds.
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the paper). We restrict this shock to NFC defaults because we assume that the initial shock
comes from outside the financial system of banks and investment funds. We randomly
sample a vector of default events using individual firm default probabilities and firm-by-
firm pairwise asset correlations as described in Appendix E.4. This methodology relies
on the simulation of one-quarter ahead geometric Brownian motion paths for the market
values of all entities’ assets, which include the correlations in their noise component.
Depending on each PD we can define a threshold for each path such that the lower bound
satisfies the number of defaults predicted by the one year ahead PDs. We use the macro-
financial scenario in order to infer deviations from the baseline values of the geometric
Brownian motion parameters. For more details, see Section 5.1 as well. This is the only
stochastic initial shock applied in the framework.

4.2 Stock market shock

The second exogenous shock is a market shock designed as a change in stock prices. This
shock comes directly from the macro-financial scenario and is a key driver of the overall
modelled economic downturn. For any company a, the new stock price Pa,t+1 is computed
such that a change in the aggregate over all companies equals the change in the stock price
index prescribed by the scenario. In more detail, suppose that the stock price index in a
given country changes by a ratio γ between t and t+1. For simplicity we assume that the
stock price index is a price-weighted average of stock prices of all listed companies in the
country. We denote by I the set of all corporations, whose shares issued are covered by
our data. Thus, the value of the index is proportional to the total market capitalisation of
these corporations, given by

∑

a∈I Va,t , where Va,t is the market value of a company a at
t. Therefore, we have

γ=

∑

a∈I Va,t+1
∑

a∈I Va,t
. (7)

The market capitalisation of a company is given as the number of shares multiplied by
the stock price. This means that any change of the stock price of a company a impacts
proportionally the value of Va. To take into account a given change in the index, a simple
solution is then to set pa,t+1 = γ · pa,t for all a ∈ I .

4.3 Redemption shock

The third and last initial shock in our model represent exogenous redemptions on invest-
ment funds’ portfolios, similar to Baranova et al. (2017) and ESMA (2019b). A key ad-
vantage of our framework is that we use fund-specific characteristics to determine fund
flows. Crucially, we avoid the caveat of aggregating, as done in Aikman et al. (2019),
where a global redemption shock of 4.2% is applied. Our granular approach is more suit-
able to capture within-sector heterogeneity and reproduce distributions of flows with a
large inter-fund variance at each quarter, as observed empirically (see Figure 6).

We use the Bayesian model averaging (BMA) approach of Gourdel, Maqui, and Sydow
(2019) and compute the impact of the macro-financial scenario on the funds’ valuation
in our framework. Then, we obtain scenario-conditional redemptions by focusing on
valuation-adjusted flows, initially computed at the country level, which we combine with
the holdings of every fund to get fund-level flows. These exogenous redemptions are

ECB Working Paper Series No 2581 / August 2021 20



simply deducted from the cash amounts of funds when applying the shock: ci,t+1 = ci,t −
ri,t , where ri,t is the fund-level exogenous redemption. In particular, we assume that
exogenous redemptions are coming from the rest of the world, i.e. from those agents,
which do not redeem endogenously in the model. Therefore, given a fund i, we deduct
bank and fund investors’ holdings (which are available at granular level in our system)
∑

j hred
j,i from the capital of the fund and the amount of ouflow ri,t is proportional to the

amount held by external investors:

ri,t = ρi ·

�

∑

j

htrd
i, j +

∑

j

hred
i, j + ci −

∑

j

l j,i −
∑

j

hred
j,i

�

, (8)

where ρi is a result of the BMA regressions.

5 Model dynamics

At the core of our model, we operate an iterative evolution of the financial system that
takes into account the quarterly path of the macro-financial scenario. The state of the fi-
nancial system at the beginning of our simulation is altered by the initial scenario-induced
exogenous shocks. This leads to firm defaults and market price and redemption shocks
bring the portfolios of banks and funds into an unsustainable situation. Therefore, finan-
cial agents react to meet their regulatory and internal targets. Moreover, in our model
this triggers higher frequency, intra-quarter dynamics that lie in the interaction of sol-
vency, liquidity and market risk. The agents’ behaviour affects their peers, which allows
for either absorption or amplification of the initial imbalance of the system. In particular,
amplifications may arise from defaults, liquidations or fire sales among financial institu-
tions. Importantly, we also take into account that, given the initial shocks, banks’ net
operating income declines in the first quarter in line with the projections laid out in the
2020 vulnerability analysis of the Single Supervisory Mechanism under the Covid-19 se-
vere scenario.15 Figure 29 in Appendix F shows the importance of the income channel. To
compute net operating income we consider interest income, interest expenses, expenses
on share capital repayable on demand, dividend income, fee and commission income, fee
and commission expenses, other operating income, other operating expenses and admin-
istrative expenses while excluding credit risk provisions. To calibrate the income channel,
we use the average income projection from the VA exercise and distribute it across banks
using average historical income values over the last three years.16

Figure 10 illustrates the ordering of events in the model. The first block contains the
immediate reaction to the application of exogenous shocks from Section 4. The second
block contains a simulation of intra-quarter endogenous reactions of the agents.

Our simulation framework combines six highly interrelated model dynamics. All these
six channels of risk propagation are tailored to reflect realistic assumptions about the
spread of financial contagion and are, therefore, increasing the likelihood of tail events.

15For more information, see: https://www.bankingsupervision.europa.eu/press/pr/
date/2020/html/ssm.pr200728~7df9502348.en.html

16The average over the last three years reduces the idiosyncratic risk that a single bank gets punished
with a low income reporting figure at our data cut-off.
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First, the exogenous stochastic defaults of NFCs lead to loan losses in bank portfolios and,
by the depreciation of issued securities, to market losses for both banks and funds, as de-
tailed in Subsection 5.1. Second, any change in market prices translates into a change
in the valuation of investment funds, as described in Subsection 5.2. In consequence,
banks start withdrawing short-term funding from each other depending on the distance-
to-default of counterparties and their own liquidity needs, as shown in Subsection 5.3. On
the other hand, banks with a liquidity surplus continue providing loans to other solvent
banks in need of liquidity, as set out in Subsection 5.4. If this is not enough, the last resort
for banks to obtain liquidity is selling non-eligible illiquid assets at discounted prices and
redeem investment fund shares (funds can sell all kinds of assets), as described in Subsec-
tions 5.5 and 5.6. The latter mechanics lead to further price depreciation in marketable
securities and, consequently, in redeemable securities as well.

5.1 E�ects of defaults

The main driver of initial losses in the system are default events. We sample them at
granular level for all available NFCs in the banks’ loan portfolios following the initial
exogenous shocks, as described in subsection 4.1. These sampled defaults are augmented
with exposures, which are only available at aggregate (country-sector) level. Moreover,
we model further endogenous bank and fund defaults that come from contagion within
the financial system. We can quantify two types of losses following endogenous defaults:
credit losses on the exposures of banks and market losses for both banks and funds on
their holdings of securities issued by defaulted entities.

Suppose that previous defaults have already been accounted for. Then, at each further
step, we consider a boolean vector ~θ of new endogenous defaults such that, for every
granular institution a in our sample,

θa =

�

1 if a defaults between t and t + 1
0 otherwise

. (9)

We suppose that when an institution defaults it does so on both loans and issued
securities (equities and bonds), subject to a certain LGD ratio. Moreover, the prices of
equities and bonds issued by the defaulting institutions go to zero, meaning that from the
point of view of a holder i (either a bank or a fund), if a defaults between t and t + 1
then htrd

i,a,t+1 = 0, this loss is measured in market losses mi,t (see equation (17) below).

We then obtain simulated loan losses ˆ̀ for every holding entity i,

ˆ̀
i,t =

∑

a

�

θa · LGDi,a · li,a,t

�

+
∑

a

�

PDi,a · LGDi,a · li,a,t

�

, (10)

where again li,a,t is a loan exposure from bank i to a counterparty a at time t. The first
sum accounts for granular exposures, the second sum accounts for aggregate exposures.
For granular exposures, LGDi,a is the exposure-level loss-given default defined as the net
exposure of bank i towards financial entity a after credit risk mitigation over the original
gross exposure, for details see Appendix B.1. If we consider an aggregate country-sector
exposure, we cannot sample individual default events. We rather calculate loan losses
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on the aggregate exposure for each bank using average PD estimates and LGDs that only
depend on the country-sector composition as Appendix E.5 describes in detail. The above
loan losses are not immediately absorbed by capital since banks need to maintain a stock
of provisions17 for expected losses: ProvStocki,t for the existing non-defaulted portfolio of
bank i (EBA, 2016). For the sake of simplicity, we only account these provisions at bank
level. The stock of provisions is amortized by provisions held for newly defaulted loans:

ProvStocki,t+1 = (1−αi) · ProvStocki,t, (11)

where αi is the ratio of the total defaulted exposure (both granular and aggregate) to the
original gross exposure amount of bank i:

αi =

∑

a

�

θa · li,a,t

�

+
∑

a

�

PDi,a · li,a,t

�

∑

a li,a,t
. (12)

Hence, since the ratio αi of provisions is released after each step of registering new de-
faults, impairment losses on the loan portfolio becomes

`i,t = ˆ̀
i,t −αiProvStocki,t. (13)

On top of credit losses, a re-adjustment of fund prices happens to reflect the mar-
ket losses m, as we describe in subsection 5.2. This implies a decrease in the price of
redeemable assets, generating further losses denoted by the vector mt (equation (17)),
such that the total impact of this step on financial entities is given by mt − `t .

5.2 Equilibrium of prices with open-end funds

One issue that presents a technical complication in our framework is how the changing
prices of tradable asset holdings affect funds’ NAV and, thus, the amount that investors
can redeem from the funds. The general idea is that given a change in prices of tradable
securities, the impact on funds implies an indirect effect on their investors. This comes
as a necessary addition to several of the other mechanisms presented below.

Investment funds frequently hold shares of one another, making the problem more
complex. For example, if two funds i and j hold each other’s shares, then the final value
of their respective total net assets (TNA) has to take into account this mutual influence.
One way to think about it is that, if the value of i decreases because of a shock on tradable
assets, then it affects the portfolio of j. So, the TNA of j decreases, which in turn will
impact the portfolio of i, etc. These granular, fund-level mechanics provide a clear value-
added when compared to models that use only aggregate data, as, for instance, Aikman
et al. (2019).

The framework of Chrétien et al. (2020) models how entities posting new information
about their value propagates a shock to portfolios. This sequential approach mimics the
process of mutual funds posting their NAV after closure of the market. However, we
follow the more conservative approach of Gourdel and Sydow (2021), similar to Fricke
and Wilke (2020), by calculating directly the equilibrium position of NAVs, i.e. the limit

17We use the stock of provisions for Stage 1 and Stage 2 assets in the model. See Figure 30 in Appendix
F for a distribution chart.
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to which this dynamic converges. The change in market prices will at once establish new
TNAs, denoted as a vector kt ∈ RF , with F the number of funds. We assume that the TNA
is the sum of cash, tradable and redeemable asset holdings, from which bank loans are
deducted. Therefore, equation (4) can be written in vector format as

kt = Htrd,f
t · 1trd +Hred,f

t · 1red + ct − lt , (14)

with
• Htrd,f

t ∈ RF×S the matrix of funds’ tradable security holdings, S the number of secu-
rities,

• Hred,f
t ∈ RF×F the matrix of funds’ redeemable security holdings,

• 1trd = (1, . . . , 1)T ∈ RS and 1red = (1, . . . , 1)T ∈ RF are column vectors of ones,
• ct ∈ RF is the column vector of cash for all funds,
• kt ∈ RF is the column vector of capital (TNA) for all funds,
• lt ∈ RF is the column vector of bank loans for all funds.

We show in Appendix E.2 the derivation of the solution:

kt =

�

IF −Hred,f
t−1 ·

1

kT
t−1

�−1
�

Htrd,f
t−1 · 1trd + ct − lt

�

. (15)

The existence of the inverse matrix is an immediate consequence of its Neumann series
representation. We then use that p∗t/p

∗
t−1 = kt/kt−1, where p∗t ∈ R

F is the column vector
of funds’ NAVs, to update the value of redeemable securities, such that:

Hred
t = Hred

t−1 ·
�

p∗t
p∗t−1

�T

. (16)

Note that these price changes have an impact on the market losses of the entities:

mi,t =
∑

φ

�

hi,φ,t − hi,φ,t−1

�

, (17)

which are absorbed by the capital in case of banks (for funds, our capital-like measure is
synthetic and endogenous):

ki,t = ki,t−1 +mi,t . (18)

Finally, the credit and market losses diminish capital figures as follows:

kt = kt−1 − `t +mt . (19)

5.3 Interbank run-o�s

Following initial losses due to credit and market risk, banks may experience run-offs on
their short-term liabilities.18 We model liquidity withdrawals for that part of the banks’
liabilities, for which data from the Large Exposure Statistics is available and, thus, the

18Funds do not experience run-offs on their short-term liabilities in the current implementation of the
model.
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counterparty is known. The banks enter this modelling block with liquidity position ct de-
fined in Section 2.1, which is adjusted when their short-term interbank exposures change
(and therefore other institutions’ liabilities).

Let us denote the withdrawal matrix of banks by W. Its elements wi, j denote the
withdrawal of short-term assets of bank i from bank j. The amount of liquidity the banks
withdraw is then given by win =

¦

∑

j wi, j

©

i
, while the amount of withdrawn liquidity

from banks is wout =
¦

∑

j w j,i

©

i
.

In the first step, defaulted or distressed banks withdraw liquidity from all their coun-
terparties. At the same time, all banks withdraw their short-term deposits from distressed
or defaulted banks as a precautionary measure.

Therefore, the initial (t = 0) withdrawal of i from j is given by

wi, j,0 =

¨

lS
i, j, if either i or j is defaulted or distressed

0, otherwise.
(20)

In the second step, we aim at finding the equilibrium of withdrawals by assuming
that banks try to close their gap of remaining liquidity needs. The initial liquidity need
is given by the difference of the liquidity distress threshold and actual liquidity holdings
τc,dis

i,t − ci,t , which after the initial witdrawals becomes

gi,t =

�

τc,dis
i,t − ci,t +

∑

j

wi, j,t −
∑

j

w j,i,t

�+

, (21)

where we take into account withdrawn short-term exposures and outflows to other enti-
ties. At this stage, banks have residual short-term assets given by resi,t =

∑

j lS
i, j−

∑

j wi, j,t

and further additional withdrawals will be proportional to the liquidity needs:

wadd
i, j =min

�

gi,t

resi,t
, 1

�

�

lS
i, j −wi, j,t

�

. (22)

After one round the withdrawal matrix is updated:

wi, j,t = wi, j,t−1 +wadd
i, j (23)

where t only denotes the rounds of iterations. Note that in this way both gi,t and resi,t

are recalculated in each step and the iteration is assured to converge (wadd
i, j = 0) by the

fact that resi,t is strictly decreasing and bounded from below by zero.

Once the iteration has converged, we update the liquidity position and short-term
exposures:

ci,t = ci,t−1 +
∑

j

wi, j −
∑

j

w j,i (24)

lS
i, j,t = lS

i, j,t−1 −wi, j (25)

where {wi, j} is the final withdrawal matrix. However, it is possible that banks will have
remaining liquidity needs that they attempt to satisfy as described below.
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5.4 Unsecured borrowing

As additional mitigating mechanism in case of liquidity needs, we include the possibility
for certain banks to access new unsecured borrowing. As an example, Cont, Kotlicki,
and Valderrama (2019) suggest that banks can borrow unless they are subject to a recent
credit downgrade. However, the amount a bank can borrow is constrained by the bank’s
distance to a downgrade. In a similar fashion, we consider that all banks that are not in
solvency distress at that point of the simulation have access to short-term loans, with a
similar constraint based on a distance to distress. Importantly, this funding source would
still be accessible to banks that are in liquidity distress but well capitalised. Thus, the
amount that a bank i borrows on the interbank market is capped by

ui =min
�

(τc,dis
i − ci)

+,β
�

ki −τdis
i

�+�

(26)

with β ∈ R+. The term after the comma in equation (26) expresses that banks, which are
closer to their solvency distress threshold, can get less liquidity in the interbank market.
Moreover, we suppose that any bank i with a liquidity surplus above its cash target is
willing to lend, with lending capacity of j

v j = (c j −τ
c,dis
j )+. (27)

There is no profit maximization at this step.19 We match entities with a heuristic recursive
algorithm described in E.1. Compared to other models that use only aggregate data this
is a clear modelling advantage as such mechanics would otherwise be ignored.

5.5 Endogenous redemptions

As the last opportunity to close a remaining liquidity gap, financial institutions can one af-
ter another redeem their investment funds holdings and sell assets at a discount. Suppose
a bank has a liquidity gap amounting to

gi = (τ
c,dis
i − ci)

+. (28)

As for funds, there is no positive value for a distress threshold related to cash. Regarding
the cash target, we assume for each fund i a target of cash holdings cTG

i determined after
exogenous redemptions: cTG

i =
ci,0

ki,0
· ki,t , i.e. the cash ratio of a fund is assumed to be kept

constant.20 Therefore, the liquidity gap for funds is defined by

g j = (c
TG
j − c j)

+. (29)

To close its liquidity gap, an entity starts redeeming funds shares and selling tradable
asset with the amounts proportional to the shares of available redeemable and tradable

19However imperfect, this mechanism, combined with the assumption that big lenders are most likely to
step in, is consistent with the line of reasoning given by Giannetti and Saidi (2019). Their logic is that big
banks are supposed to internalize negative spillovers and therefore provide liquidity to distressed entities.

20Such fund behaviour was also observed in some euro area countries during the March 2020 market
turmoil. In order to meet redemptions, funds started selling assets and the ratio of cash to NAV got even
slightly higher than before stress - evidence for the build-up of precautionary liquidity buffers.
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assets on its balance sheet. These amounts are determined on a pro-rata basis at fund
level. Let φ be a fund. The redemption ri,φ by investor i, and the total of redemptions
claimed are computed as follows (similarly to tradable assets in subsection 5.6):

ri,φ =
hred

i,φ
∑

ϕ(h
trd
i,ϕ + hred

i,ϕ)
gi and Rφ =

∑

i

ri,φ. (30)

Redemptions do not depend on the fund performances but rather on decisions made by
other agents regarding their own portfolio. We assume that the redeemed amount ri,φ is
directly added to the cash of i:

ci,t = ci,t−1 +
∑

φ

ri,φ (31)

because it is a short-term expected inflow, but is not debited immediately from φ, which
has to address the redemption in the following period when the amount of total claims
Rφ is deducted from its cash.

5.6 Fire sales

Along with redemptions, banks and funds start proportionally selling tradable assets as
the last possibility to close liquidity gaps, as defined in equations (28) and (29). In this
modelling block, banks are willing to sell only their non-eligible securities since they have
access to central bank funding using their high quality liquid assets (HQLA). We assume
that there is no endogenous price impact for HQLA.21 By contrast, funds sell all kinds of
securities holdings as they do not have access to central bank funding. Thus, they do not
discriminate between eligible and non-eligible types of assets and sell all of their securities
holdings.

Let Htrd
t =

¦

htrd
i,φ,t

©

i,φ
denote the portfolio matrix of tradable securities at time t, by

market values, where i is the holder and φ is the security. Similarly, Hred
t is the portfolio

matrix of redeemable holdings. Moreover, pt = (pφ,t)φ denotes the vector of prices of
tradable securities.

We assume that fire sales are applied to cover liquidity shortfalls proportional to the
share of tradable securities in the securities holdings portfolio. Empirical evidence shows
that following a proportional approach to selling (also called ’slicing approach’) is a sen-
sible assumption to capture average behavior, see e.g. Coval and Stafford (2007) and
Jotikasthira, Lundblad, and Ramadorai (2012). Furthermore, a very recent assessment by
ESMA on the behaviour of funds with large corporate debt exposures during the COVID-
19 market turmoil provides another evidence that supports the choice of the slicing ap-
proach.22

Then, starting from time t, the fire sale algorithm proceeds as follows:

21An alternative approach could be the reconstruction of HQLA from granular securities within our sim-
ulation, which would allow for a price impact on the amount of available HQLA. However, this not only
means higher computational costs but also difficulties to assess at which point a bank would turn to the
central bank to exchange specific assets for cash.

22See ESMA (2020).
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(i) Determine the supply value Sφ,t that will be sold of each security (at the final prices).
Based on the slicing hypothesis, the sale is done pro rata for the value of each
security in the initial portfolio, meaning that entity-level and aggregated supply of
φ are

si,φ =
htrd

i,φ
∑

ϕ(h
trd
i,ϕ + hred

i,ϕ)
gi and Sφ =

∑

i

si,φ (32)

respectively, si,φ is the value that i wants to recover from φ. Note that the choice
of the liquidation approach, here the slicing approach, may be a crucial driver for
the magnitude of the shock transmission between sectors. For example, under the
waterfall approach (selling the most liquid assets first), the magnitude of the shock
transmission may be considerably reduced due to a reduced price impact.23

(ii) Determine the new vector of prices pt+1 = (pφ,t+1)φ using the total amounts sold
and the price impact method from Fukker, Kaijser, Mingarelli, and Sydow (2021)
(see also E.3 for details on calibration):

pφ,t+1 = pφ,t(1− Bφ(1− exp(−Sφλφ/Bφ))) (33)

and update the value of tradable portfolios

Htrd
t+1 = Htrd

t

�

pt+1

pt

�T

. (34)

(iii) Find the new NAV vector p∗t+1 = (p
∗
i,t)i∈InvF of funds, as explained in 5.2, and update

the value of redeemable portfolios:

Hred
t+1 = Hred

t ·
�

p∗t+1

p∗t

�T

. (35)

(iv) Update internal accounting variables of entities to reflect changes of portfolio val-
ues. Let i be a financial institution and φ a security. When we account for the
change in REA, it is the change from hi,φ,t to hi,φ,t+1 that matters. However, when
we want to account for losses only and see the impact on the total capital we need to
disentangle what is converted as cash from actual losses that stem from the decrease
in prices.

Cash holdings are updated with the amounts received after the iteration has con-
verged:

ci,t+1 = ci,t +
∑

φ

si,φ. (36)

Note that Sφ increases due to the price declines and the iteration terminates thanks
to the finite amount of assets that can be sold and the introduction of a lower boundary
for security prices (see Appendix E.3 for more details on the boundaries). Assuming that
the whole residual liquidity need is recovered by i we have a change in capital due to the

23For more details, see, for example, ESMA (2019b) and IMF (2015). As background, adding an assump-
tion of coordination among market participants could further reduce the observed price impact.
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price impact given by mi,t+1 =
∑

φ

�

hi,φ,t+1 − hi,φ,t

�

. More generally, using the change in
prices we get

mi,t+1 =
∑

φ

hi,φ,t

pφ,t

�

pφ,t+1 − pφ,t

�

. (37)

For banks, capital is also updated by

ki,t+1 = ki,t −mi,t . (38)

6 Results

In this section, we report results of our model following deterministic (market shock and
exogenous redemptions) and stochastic (NFC defaults) shocks to the system conditional
on the Covid-19 scenario explained in section 3.5. We take a system-wide point of view
and look at the amount of losses generated by the above exogenous shocks and endoge-
nous reactions separately. Our results confirm that funds play a role not only as standalone
entities with very large balance sheets, but also because they interact with banks and can
amplify financial stress negatively affecting the entire system.

6.1 Contagion and its channels

Figure 11 shows a single realisation of the joint losses for banks and funds based on
the exogenous shocks, as described in section 4, and only one Monte Carlo simulation.
’Q1E’ labels losses from these initial exogenous shocks materializing at the end of the
first quarter, which are coming from granular NFC defaults as well as expected losses
on aggregate exposures (labelled "Defaults" in Figure 11) and exogenous market losses.
The latter are either coming from the market scenario, affecting equity prices, or from
the price drop of exogenously defaulting NFCs issuing securities (labelled "Market" in
Figure 11), as outlined as well in Section 4. As a second round effect, the NAV of funds
holding those securities drops as well (see also Figure 26 in Appendix F). ’Q2R’x’ denotes
additional endogenous losses generated in the interaction round ‘x’ of our algorithm that
converges after 10 iterations in this particular example. Market losses, in this example, are
lower than the default-induced losses in the exogenous block. The figure highlights that
losses decrease with each iteration, ensuring the algorithm’s convergence. Indeed, since
liquidity needs are decreasing as a result of the events illustrated in Figure 10, associated
losses from fire sales tend to go to zero over time. Since market losses are decreasing,
possible new defaults turn up also for a limited number of iterations. Cliff effects could
also take place though, e.g. when a small amount of additional losses hits some large
entities resulting in further large losses to the system. However, we have not seen such
situations throughout the whole range of Monte Carlo simulations.

Moving forward, Figure 12 shows the distribution of losses for both banks and funds
for 10000 Monte Carlo simulations. The figure demonstrates that funds and banks expe-
rience losses of similar size. Moreover, our algorithm converges in at most thirteen but
in general ten iterations. Again, exogenous market losses in ’Q1E’ cover both the market
scenario, affecting equity prices and a subsequent price drop of exogenously defaulting
NFCs issuing securities and, as a second round effect, the NAV of funds holding those

ECB Working Paper Series No 2581 / August 2021 30



Q
1E

Q
2R

1
Q

2R
2

Q
2R

3
Q

2R
4

Q
2R

5
Q

2R
6

Q
2R

7
Q

2R
8

Q
2R

9
Q

2R
10

Iterations

0.00

0.34

0.68

1.01

1.35

1.69

Lo
ss

es
 (%

 o
f t

ot
al

 a
ss

et
s) Defaults

Market

Figure 11: Aggregate losses for the whole system for one simulation (in percentage of
total assets in the system).
’Q1E’ shows the reaction following the initial exogenous shocks in the first quarter.
’Q2R1’ to ’Q2R10’ represent the iterations in the second quarter until convergence of
the algorithm. In ’Q1E, ’Defaults’ refer to NFC defaults and ’Market’ to exogenous market
losses both from the market scenario and from the price drop of exogenously defaulting
NFCs. From ’Q2R1’ onward bank and fund defaults as well as market losses are model-
driven.
Source: Authors’ calculations.

securities drops as well. Therefore, our model includes already some endogeneity at the
point when the exogenous shocks materialise, as illustrated as well in the upper block of
Figure 10. This is also the driver for the observed variance in the exogenous market losses
in Figure 12 (in "Q1E"), despite the fact that the market shock from the scenario is fully
deterministic. Figure 12 also shows that in our model funds engage in asset fire sales on a
much larger scale than the banks that can withdraw liquidity from the inter-bank market
in the first place. This is in line with the fact that funds do not have access to central bank
funding and their cash holdings are too low (see Figure 7) to meet exogenous redemp-
tions. Moreover, banks’ liquid assets are extremely high (see LCR values in Figure 2);
the calculation of which assumes though that short-term liabilities are not rolled over.24

Looking at the variance of losses across simulations, we observe that it is extremely low
demonstrating that liquidity shortfalls are nearly deterministic. This means that the set
of defaulting institutions is not changing much across the simulations and largely driven
by solvency defaults. Thus, bank liquidity withdrawals do not have a high variance and
fund redemptions are either deterministic, as given by the scenario, or stochastic due to
redemptions of banks. As we pointed out before, since bank liquidity withdrawals are
quasi-deterministic, their redemptions from funds will also have a very low variance (see
also Figure 16 below).

In Figures 13 and 14, we distinguish between exogenous and endogenous losses for
banks and funds, respectively. As mentioned before, additionally to stochastic NFC de-
faults, we see a rather small variance in the case of exogenous market losses due to funds
being exposed to defaulting NFCs and indirect price changes of defaulting entities’ issued

24In our model, short-term liabilities for banks are covered by large exposures and large liabilities (see
Appendices B.1 and B.2 for more details).
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Figure 12: Distribution of losses for banks and funds based on 10000 Monte Carlo sim-
ulations (in percentage of total assets in the system).
’Q1E’ shows the reaction following the initial exogenous shocks in the first quarter.
’Q2R1’ to ’Q2R12’ represent the iterations in the second quarter until convergence of
the algorithm. In ’Q1E, ’Defaults’ refer to NFC defaults and ’Market’ to exogenous mar-
ket losses both from the market scenario and from the price drop of exogenously de-
faulting NFCs. From ’Q2R1’ onward bank and fund defaults as well as market losses are
model-driven. Candlesticks represent the 25th and 75th percentiles of the distribution
of Monte Carlo simulations.
Source: Authors’ calculations.

ECB Working Paper Series No 2581 / August 2021 32



securities. Also, losses from exogenous defaults, in percentage of total assets of the re-
spective sector, are approximately six times larger for modelled investment funds than
for banks. Hence, funds are more exposed to NFC defaults than banks. Regarding exoge-
nous market losses for the two sectors, for banks these losses are rather limited compared
to the ones from defaults. However, for investment funds they are in a similar ballpark
than the losses stemming from exogenous defaults. Moreover, these results show that the
funds’ role in financial intermediation has increased substantially even though they are
not directly giving out loans.
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Figure 13: Histogram of losses from exogenous shocks and from endogenous reactions
(contagion) for banks based on 10000 Monte Carlo simulations (in percentage of total
banking sector assets).
’Defaults, Exogenous’ refer to NFC defaults. ’Market, Exogenous’ refers to exogenous
market losses both from the market scenario and from the price drop of exogenously
defaulting NFCs issuing securities. ’Endogenous’ losses are model-driven.
Source: Authors’ calculations.

Endogenous market losses result from the banks’ and funds’ reaction to shocks. The
bottom rows of Figures 13 and 14 show an interesting multi-modal property for the dis-
tribution of these losses. Since there are only a few banks or funds that are vulnerable to
our shocks, they act as gates letting losses spread within the system. Due to the stochas-
tic property of liquidity shortfalls (see also Figure 16 below) we see that banks’ liquidity
withdrawal and fund redemptions are also random but centered around the most likely
amounts: these can be thought of as local expected amounts of shortfalls across the sim-
ulations. Since there are institutions, which are more likely to default across the simula-
tions, with a fixed set of exposures, their losses will also be fixed conditional on the set
of entities defaulting. This is especially striking for endogenous default losses of funds
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in Figure 14 where the amount of losses is quasi-deterministic having only five possible
values across the simulations. This is due to the fact that only a small number of funds de-
fault on their exposures. These funds are defaulting because they have loans from banks
and their synthetic capital-like measure can fall below zero (equation (4)).
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Figure 14: Histogram of losses from exogenous shocks and from endogenous reactions
(contagion) for funds based on 10000 Monte Carlo simulations (in percentage of total
investment fund sector assets).
’Defaults, Exogenous’ refer to NFC defaults. ’Market, Exogenous’ refers to exogenous
market losses both from the market scenario and from the price drop of exogenously
defaulting NFCs issuing securities. ’Endogenous’ losses are model-driven.
Source: Authors’ calculations.

Appendix F collects further simulation results and the underlying model mechanics.
Focusing on the market and investment funds, we capture the different price impact across
securities (see Figure 27). Importantly, despite the severity of the scenario, security prices
remain above their calibrated floors (except for defaulted issuers; see Figure 28). With
regard to the banking sector, we share details about the variables affecting our impairment
calculations (see Figures 29 and 30).

In Figure 15 (left chart only), we also compare our model outputs with the results of
the Vulnerability Analysis (VA) exercise conducted by the ECB Single Supervisory Mecha-
nism focusing on banks’ capital depletion. Careful comparison is needed as data, method-
ology and objectives are quite different between the two exercises. The VA exercise is
partially based on an ad-hoc data collection for stress-testing purposes, it uses annual
projections of variables for a three-year horizon and it is aimed at assessing the resilience
of the banking system and its ability to continue funding the economy. Our model uses
common reporting data (not specifically collected for stress testing exercises), follows a
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quarterly frequency with an exogenous shock in the first quarter and endogenous reac-
tions starting in the beginning of the second quarter. It aims to understand better the
contagion and amplification mechanism within and between the banking sector and the
investment fund sector. Therefore, our model is more simplistic when stressing the banks
compared to the VA.

Nevertheless, as the scenario used is consistent between the two exercises, it is inter-
esting to confront our results for the credit risk losses with the VA; despite the difference
in terms of data and methodology, this is where the results are the most comparable.25

Moreover, for this comparison some simplifying assumptions are needed, i.e. we assume
that the annual projection of the VA follows a linear path. Thus, dividing the annual result
of the VA projection for the first year by a factor of two allows us to derive a two-quarter
impact (corresponding to our exogenous shock in our first quarter and endogenous reac-
tion in second quarter).26

Our credit risk losses (see chart on the left in Figure 15) are close to the VA results. One
reason for the difference is data: we model correlated defaults using PDs from Moody’s on
granular exposures, which are based on individual market information and are, therefore,
more point-in-time compared to PDs at the portfolio level used in the VA exercise. Then,
in our methodology we highlight the amplification and contagion mechanisms thanks
to the correlation of defaults related to the exogenous shock and through endogenous
reaction. Those mechanisms are not included in the VA exercises as the stress is performed
at the portfolio level without endogenous reactions. The impact of market losses (see
middle chart in Figure 15) is very relevant in our framework, with a similar magnitude
as for credit risk. In terms of percentage of REA, banks’ median losses raise from 1.9
percentage points to 3.7 percentage points. Finally, adding the fund sector to the picture
has a significant impact (see chart on the right in Figure 15) equal to about an additional
one percentage point of REA on average. In total, adding to credit risk losses market
losses and the investment fund sector leads in our model to a further decline in banks’
capital ratios of almost three percentage points on average.

6.2 Financial flows and their relation to losses

Financial flows are the most important driver of behaviour for investment funds in our
model. Thus, the initial exogenous redemption shock basically determines their endoge-
nous behaviour. Given that the Covid-19 outbreak led to a severe market turmoil in 2020
Q1, which had also a strong effect on investment funds, we compare in Table 1 below our
applied model-based initial redemptions (see Section 4.3) with the amount of redemp-
tions observed in the market.27 Our model-based redemption estimates are for equity
funds somewhat larger than the ones observed in the market; while they are smaller for
bond and mixed funds. These differences are driven by a combination of model, coeffi-
cient and residual uncertainty.

25In particular, market losses are calculated with a very different methodology in our model, employing
granular holdings and endogenous reactions, whereas the VA applies exogenous shocks on the portfolio
level.

26Future developments of our model will include the possibility of providing an annual impact, aligned
with the EBA stress testing exercise.

27Model-based redemptions enter into the model as described in equation (8).
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Figure 15: Distribution of average bank capital depletion along the 10000 Monte Carlo
simulations. The red vertical line represents the average result from the VA exercise
after two quarters. Further details on the VA comparison are provided in the text.
Source: Authors’ calculations.

Net outflows 2020 Q1 model 2020 Q1 observed

Equity funds -3.5% -2.2%
Bond funds -1.6% -6%
Mixed funds -1.1% -3.7%

Table 1: Comparison of model based and observed fund ouflows.
Source: Authors’ calculations and EPFR.

Within our partial-equilibrium model, our rules of behaviour make it possible to track
the endogenous flows among the modelled sectors. These flows represent on the one hand
short-term liquidity withdrawals within the banking sector and, on the other hand, the
redemption of fund shares of both banks and funds to increase their liquidity buffer. Fire
sales also serve to acquire liquidity but since a demand side is not directly modelled, we
are not able to refer to it as financial flows. In fact, sold assets could be purchased either
by entities with extremely high liquidity buffers for long-term investment purposes or by
market makers in the financial market (such features will be covered by future extension
of this model, together with the inclusion of additional financial sectors).

Figure 16 shows the histogram of aggregate outflows from banks and funds that result
from their endogenous behaviour. Note that we assume short-term outflows only for
the interbank market. While outflows from funds can be endogenously driven by banks
and funds reacting to liquidity shortfalls, the outflows are limited as the funds get less
liquidity-constrained. The reason for this is clear: funds start selling when they have
liquidity shortfalls. At the same time, there is no close relation between the funds’ liquidity
and their losses. Their liquidity situation deteriorates only if the redemptions are large
enough. However, this turns out not to be the case in our simulation, as confirmed by the
amount of endogenous redemptions depicted in Figure 16. All this shows that funds do
not face severe liquidity problems in the model. Thus, less fund-to-fund redemptions are
needed. Moreover, we have seen in section 3 that banks have a limited amount of fund
shares.
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For banks, the opposite situation is the case as they are subject to a large amount
of short-term liquidity withdrawals. This result is driven by the information contagion
assumption we make, whereby short-term funding is withdrawn from and by distressed
or defaulted banks. The amounts withdrawn from banks feature a multi-modal property.
This shows that there are some sets of large banks, which are defaulting or getting into
distress with a high likelihood, but separately. Since the exposures and, therefore, with-
drawal amounts are deterministic, the smaller values around the peaks in the histogram
are capturing smaller banks, which are defaulting or getting into distress with a lower
probability, thus creating some uncertainty. In general, the stochasticity in bank defaults
is also reflected in these liquidity withdrawals, which are a function of the set of defaulted
or distressed entities.
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Figure 16: Histogram of financial flows following endogenous reactions based on 10000
Monte Carlo simulations (in percentage of total assets of the respective sector).
Source: Authors’ calculations.

Figure 17 shows the total redeemed and withdrawn amount of liquidity (’Flows’) in
the endogenous loops, and the final losses from endogenous defaults and fire sales at
the system level (’Losses’). Clusters for liquidity flows are visible, similar to Figure 16,
reflecting the larger importance of stochastic bank defaults. It is interesting to note that
higher amounts of outflows do not necessarily mean higher losses. An explanation for this
is that losses from defaults are also driven by solvency and not only liquidity problems.
Indeed, only entities that experience a liquidity shortage are able to sell securities, while
insolvency issues cannot be alleviated in our model.
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Figure 17: System-level flows and losses based on 10000 Monte Carlo simulations (in
percentage of total assets).
’Flows’ represent the total redeemed and withdrawn amount of liquidity in the endoge-
nous loops. ’Losses’ cover final losses from endogenous defaults and fire sales at the
system level. Each dot represents the outcome of an individual Monte Carlo simulation.
Source: Authors’ calculations.

6.3 The amplification role of funds

In this section we study how much the presence of funds adds to system-wide losses. This
leads to the question how large is the feedback effect of funds on banks, with the former
being traditionally not the subject of stress testing exercises. In the previous sections, we
have already seen that fund losses are in general similar to bank losses but they have also
an effect on bank losses via interconnectedness: overlapping tradable portfolios, banks’
holdings of fund shares and bank loans to investment funds (the performance of the latter
can also be at risk).

To understand better the amplification role of funds, we perform an experiment where
we exclude the fund sector from our simulations. As a consequence, the banks’ holdings of
redeemable assets and loans to funds do not play any role anymore. Moreover, funds are
also not active in the market, which narrows the amounts sold and, thus, limits the possi-
ble price depreciation. We run the simulations for exactly the same set of shocks as before
and calculate the difference in losses for banks compared to the original simulations.

Figure 18 shows how much additional losses banks suffer in the simulation that in-
cludes funds compared to the experiment without funds. We observe additional losses
across all dimensions but on different scales, except for endogenous defaults. The impact
of funds on the banks’ exogenous losses is, as expected, the smallest. The difference is
due to the fact that NFC defaults also have a price impact, which reduces funds’ net asset
values immediately as described in section 5.2. The same consideration applies to exoge-
nous market losses. These differences are only marginal compared to the original losses
in Figure 13.
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On the other hand, additional endogenous market losses are very large, which con-
firms that funds have a very large impact in this segment. Combined with the evidence
shown in Figure 32 in Appendix G, this suggests that endogenous market losses without
funds are almost zero, highlighting the important role of investment funds and the over-
all high amount of liquidity in the banking system.28 However, the most surprising result
comes from the amount of additional losses from endogenous defaults. One can observe a
slight decrease in the presence of funds for a number of simulations. Though the amount
of additional market losses is much higher, it is still possible that the presence of some
funds has a mitigating role for some banks when they are also able to redeem their in-
vestment fund shares besides selling tradable assets. Nevertheless, as we have shown in
Figure 15, the presence of funds increases bank capital depletion by 1 percentage point on
average. Appendix G reports more details on the outcome from the no-fund experiment.
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Figure 18: Additional losses for banks compared to the no funds case based on 10000
Monte Carlo simulations (in percentage of total banking sector assets).
’Defaults, Exogenous’ refer to NFC defaults. ’Market, Exogenous’ refers to exogenous
market losses both from the market scenario and from the price drop of exogenously
defaulting NFCs issuing securities. ’Endogenous’ losses are model-driven.
Source: Authors’ calculations.

28The same is likely true in case other financial sectors were added to the model. For example, if hedge
fund behaviour was modelled, market losses for banks would probably be much higher as well.
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7 Conclusion

In this paper, we present a stress testing approach to modelling short-term effects of fi-
nancial stress in a system of banks and investment funds. Introducing dynamic responses
of individual institutions to a macro-financial shock caused by the Covid-19 outbreak, we
show that inter-sectoral contagion significantly increases initial losses in the system.

As to the channels of risk amplification, the joint asset fire sales of banks and funds
have the largest systemic effect in our model, but the redemption of fund shares also
turns out to be important. Thus, our findings highlight the significance of expanding the
modelling capacity of macroprudential stress tests such as to include not only banks but
also other financial institutions.

Despite the detailed complex mechanisms and the highly granular data used, one has
to keep in mind the limitations of our framework. For instance, we are not yet mod-
elling derivatives and margin calls.29 However, when adding new model features for a
given sector or additional inter-sectoral mechanisms, we need to strike a balance between
complexity and understandability, not mentioning computational constraints.

Another dimension that is not covered by our model is policy response, i.e. central
bank or other policy interventions. Such policy response – as seen in the Covid-19 crisis –
can be in the form of a relaxation of banks’ capital requirements or different types of loan
moratoria, as initiated by various euro area governments. Moreover, in case of extreme
liquidity stress, banks that are considered as viable could also turn to their lender of last
resort by requesting Emergency Liquidity Assistance (ELA).30

In addition, a framework as the one described in this paper is not only extremely data-
intensive but also carries a high level of uncertainty. Thus, with the different behavioural
assumptions embedded in our model, we think that the results should rather be used for
counterfactual analysis, conditional on different stress scenarios, and not be interpreted
as point forecasts.

Furthermore, besides the advantages of granular information, the data quality usually
decreases with the level of granularity - mainly due to data mining and matching biases.
For example, private data is reported by funds only voluntarily.

Along these lines, our future work will focus on the model extension with regard to
other financial sectors such as insurance corporations, hedge funds, money market funds,
pension funds and CCPs. This will call for an extension of the model’s time horizon. More-
over, we intend to refine the institutions behaviour, e.g. by assuming a simple portfolio
optimization at a quarterly frequency, in order to discover the longer-term effects for the
system.

Given the complex mechanics of our two-sector stress testing model, it will be im-
portant to conduct further robustness checks to understand better how, e.g., other stress
scenarios or the individual exclusion of certain model dynamics change the results.

29Extending our current dataset further with granular data to cover, e.g., credit register information
from Anacredit, individual derivative exposures from EMIR, secured and unsecured money market data
from MMSR and data covering securities financing transactions from SFTDS will improve the results and
increase the possibilities to model some of our risk channels in more detail.

30Regulatory and central bank responses could also be carried out following a theoretical, model-based
optimization as done by Fukker and Kok (2021), who operate a default contagion model with different fire
sale mechanisms and endogenous recovery rates.
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A Mathematical and balance sheet notations

Mathematical notations. Throughout the paper we have to deal with a large number
of variables in different dimensions. To ease the understanding, we apply the following
common standards: a small letter a is a real number, a = {ai}i∈I is a vector of real
numbers, A =

�

ai, j

	

i∈I, j∈J is a matrix of real numbers where I and J are index sets
of integers. The fraction of two vectors is to be interpreted as element-wise division:
a
b =

¦

ai
bi

©

i∈I
; similarly, 1

b =
¦

1
bi

©

i∈I
. Superscript ·T means transpose of a matrix or vector.

The product of a matrix A and a column vector b results in a vector c and is denoted
following the mathematical standards: c= A ·b=

¦

∑

j∈J ai, j b j

©

i∈I
= {ci}i∈I . The inverse

of a matrix A is denoted as A−1, and given A and b, it solves Ax = b for x as x = A−1b.
We also use matrix-vector multiplication where the vector is a row vector bT. In this case,
AbT =

�

ai, j b j

	

or, in other words, column j of the matrix is multiplied by b j. The column
vector of ones will be denoted by 1 and, using the matrix multiplication A · 1 =

∑

j ai, j,
we obtain the sum of the rows of the matrix. Hence, AT ·1 gives the sums of the columns.

The time dimension has no clear measurable interpretation in our model and only
indicates that t + 1 is taking place after t. Thus, bt indicates the state of b in time t.
When it is not necessary, we do not use the index t.

We will denote random variables by capital letters with time indices like Wt , a vector
of random variables is denoted by Wt .
Common balance sheet notations. Both banks and funds hold securities on their asset
side. The matrix of all securities holdings is denoted then as H = {hi, j} where hi, j repre-
sents the securities issued by j held on i’s balance sheet, hence

∑

j hi, j is the amount of
securities held by i. Similarly,

∑

j h j,i is the amount of securities issued by i. Securities
are aggregated to the issuer and asset type (equity or bond) level. They can be either
redeemable assets (open-end investment funds) or tradable assets (like bonds and equi-
ties), Hred and Htrd respectively. To ease the understanding, we generally only index the
holdings by issuers in the paper, but keep track of their evolution at asset type level: eq-
uity or bond. Only if necessary, we will denote a security holding of entity i of a specific
security φ as hi,φ but we still refer to the matrix of holdings as Hred and Htrd. For banks,
we assume that tradable assets only consist of assets that are not eligible for central bank
operations. On the other hand, funds can start selling all kinds of assets as they don’t
have access to a central bank facility.

Another considered balance sheet item is the amount of cash or liquid buffer, denoted
either by ci for entity i or denoted as c when stacked into a vector for all entities. For banks,
we assume that for banks, the amount of high-quality liquid assets is cash-equivalent.
Similarly, we denote capital-like items by ki or k in vector notation. As loans are only
provided by banks, we introduce them in subsection 2.1.

All institutions can get into solvency default or distress as well as liquidity default or
distress. τdef

i and τdis
i are the default and distress thresholds with respect to capital, τc,dis

i

and τc,def
i the distress and default thresholds with respect to liquidity buffers or cash for

institution i, also denoted as vectors τdef,τdis,τc,def,τc,dis. Using these, an institution i is
in solvency default, if ki < τ

def
i ; in solvency distress, if ki < τ

dis
i ; in liquidity distress, if

ci < τ
c,dis
i ; and in liquidity default, if ci < τ

c,def
i .
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B Banking data

We reconstruct the banks’ balance sheet from two different data sources available at the
ECB: namely the COREP large exposures and the SHS-G dataset. They map connections
from banks to funds and the real economy. Moreover, this dataset is combined with prob-
ability of defaults (PDs) data from Moody’s. Each bank is reported at the highest level of
consolidation within the euro area combined with a unique identifier. Figure 19 provides
a high-level description of key banking indicators across euro area countries.
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Figure 19: Descriptive statistics of the network of banks used as input to the model,
with data for Q4 2019.
Source: Authors’ calculations.

B.1 Large Exposures dataset (LE)
The large exposure (LE) reporting framework, introduced in 2014, requires all EU in-
stitutions to report exposures exceeding either EUR 300 million or 10% of their eligible
capital, towards either a single counterparty or group of connected entities. From these
data we obtain exposures of each individual financial institution towards the rest of the
system. The long-term and short-term exposure matrices LL and LS are then constructed
from this data. In particular, loan exposures from banks to investment funds captured in
the LE dataset amount to EUR 250 billion, of which EUR 65 billion have a maturity lower
than one month.

The LE reporting framework includes maturity splits, which allows us to differentiate
long-term from short-term exposures. For each exposure in the LE dataset we know the
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original exposure amount and the net exposure amount after credit risk mitigation. The
latter can approximate the unsecured part of the exposure, which we use also as a proxy
for the Loss Given Default (LGD) of the exposures (see Figure 20).
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Figure 20: Histogram of loan-level LGDs for banks and NFCs as of Q4 2019.
For loans to funds, no LGDs are available and we assume that they are equal to 1.
Source: Authors’ calculations.

Thus, for each edge31 from i to a we have a breakdown along two dimensions such
that

Edgei,a,t =
¦

li,a,t ,
�

lS
i,a,t , l L

i,a,t

�

,
�

lSU
i,a,t , lSS

i,a,t , l LU
i,a,t , l LS

i,a,t

�©

,

where in the superscripts S and L mean short-term and long-term, SU and SS denote
short-term unsecured and secured exposures, LU and LS denote long-term unsecured and
secured exposures. The items in brackets add up to the total amount of gross exposures
li,a,t .

Nevertheless, households and most of the NFCs are not captured within the LE frame-
work. Thus, we complement the dataset with aggregate exposures coming from FINREP,
reported at the country-level. In a next step, we check for each bank, reported period as
well as counterparty-country and -sector the average LGD and compare it with the one
provided by the EBA stress test methodology using ECB satellite models. If the average
that we obtain at an aggregate level is larger than the average LGD, we rescale observed
LGD for all granular exposures by a multiplier in order to get the average LGD for each
bank vis-à-vis each counterparty-country and -sector equal to the one provided by the
ECB. In case the average LGD computed in our dataset is smaller than the short-term one,
it is kept unchanged.

The ECB satellite model stress test LGD used to rescale the granular LGD are those
retrieved for the baseline scenario. In case of country-sector specific stress testing, we
use the stress test LGDs from the adverse scenario derived by ECB satellite models. As an

31The entities in our joint model of banks and funds are referred to as nodes, while the connections are
edges.
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example, let’s suppose bank A has 3 exposures of 100 in gross terms each vis-à-vis three
Turkish NFCs. The unsecured long-term parts (our initial LGD) of those exposures are
respectively 80%, 60%, 40%, that is an average of 60% of the gross exposure. In the EBA
scenario, the LGD vis-à-vis Turkish NFC is 30%. This means that we are overestimating
the exposure-specific LGD by a factor of 2 on average. Hence, we rescale each LGD by 2,
obtaining finally for the three exposures an LGD of 40, 30, 20, whose average resembles
the one of the ECB satellite models developed for the EBA stress test. Alternatively, if
a bank already shows an LGD below the one derived from ECB satellite models, those
exposures remain untouched, that is they are not scaled up.

B.2 List of COREP data used in our framework

• Large Exposure (LE) (COREP C.27 to C.30)
– All EA banks (significant institutions and less significant institutions)
– Quarterly bilateral exposures with a value larger than 10% of a bank’s eligible

capital or 300ml Euro
– Information on counterparties (Name, LEI, Country, Sector, NACE)
– Exposure-Specific information (asset class, secured/unsecured, maturity)

• Large Liabilities data (COREP C.67)
– All EA banks (significant institutions and less significant insitutions)
– Top 10 quarterly granular bilateral liabilities with a value > 1% total assets
– Information on counterparties (Name, LEI)
– Exposure-Specific information (asset class, secured/unsecured, maturity)

B.3 List of FINREP data used in our framework

• Primary statements (balance sheet and income statement as well as comprehensive
income and equity)

• Disclosure of financial assets and liabilities
• Financial assets disclosures and off-balance sheet activities
• Non-financial instrument disclosure

C Investment funds data

We reconstruct the funds’ balance sheets using data from Lipper IM, provided by Refinitiv.
A first part is referred to as the static data and contains fund specific characteristics, inde-
pendent of time. The second part contains time-varying information on funds’ holdings
Hi,φ,t , with a security-level granularity, although aggregates are also computed by Lipper.

We provide in Table 2 the breakdown by country of our coverage in Lipper, compared
to the data reported to the ECB and available through the IVF database. The most impor-
tant feature is that, when aggregated at the EA level, the median coverage of funds’ assets
that we get from Lipper are 59% for equity funds, 47% for bond funds and 25% for mixed
funds compared with the data from the IVF database. Some of the coverage ratios in the
tables are above 100%. Most of the countries concerned have a small investment fund
sector. So, these discrepancies in the reporting may be driven by a very small number of
funds. To get a better understanding, we provide as well a comparison of Lipper IM data
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with data from European Fund and Asset Management Association (EFAMA), with corre-
sponding coverage ratios shown in Table 3. At the EA level, the median coverage of funds’
assets that we get from Lipper are 64% for equity funds, 67% for bond funds and 39% for
mixed funds compared with data provided by EFAMA. Coverage ratios larger than 100%
are in this case as well reported (albeit somewhat smaller). So, the explanation provided
above would still hold.
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Coverage ratio (%) Totals 2019Q4
min median max Lipper IVF

domicile

AT 41.8 50.0 54.7 13.8 33.0
BE 87.2 99.4 211.3 50.3 57.5
CY 0.0 0.0 8.0 0.2 2.4
DE 31.5 37.1 48.8 165.3 338.4
EE 25.9 55.5 72.7 0.1 0.4
ES 81.5 87.8 93.6 39.3 44.0
FI 74.1 81.4 85.6 37.3 48.7
FR 46.4 54.3 60.7 201.7 359.2
GR 58.2 77.2 85.3 1.2 1.4
IE 42.4 52.2 58.7 415.7 932.2
IT 70.9 78.6 85.2 20.8 25.9
LT 24.6 111.9 207.5 0.0 0.1
LU 75.1 78.9 81.4 1221.5 1569.4
LV 33.3 64.8 217.4 0.0 0.0
MT 4.4 20.7 345.1 0.6 4.0
NL 12.8 16.0 50.7 59.5 394.1
PT 82.9 89.1 96.8 2.0 2.4
SI 35.7 43.2 47.2 0.8 1.9
SK 24.3 63.3 70.3 0.3 0.7
Total EA 55.8 58.8 66.1 2230.3 3815.7

(a) Equity funds assets

Coverage ratio (%) Totals 2019Q4
min median max Lipper IVF

domicile

AT 37.5 46.3 49.5 25.7 68.3
BE 27.0 59.1 131.7 8.9 22.0
CY 0.0 1.6 59.0 0.1 0.2
DE 7.9 9.1 13.1 57.6 502.4
EE 0.0 81.3 120.8 0.0 0.0
ES 32.3 95.4 101.3 89.0 93.3
FI 47.0 51.1 86.5 33.8 58.6
FR 36.4 40.2 49.0 148.1 354.5
GR 58.8 100.3 138.6 1.9 1.9
IE 30.1 38.1 54.2 453.2 937.7
IT 46.8 58.5 102.3 59.5 116.3
LT 32.6 72.1 104.7 0.0 0.1
LU 57.9 67.8 80.5 1246.9 1549.4
LV 57.7 81.9 118.1 0.2 0.2
MT 67.5 133.8 182.2 1.4 2.1
NL 7.9 9.8 24.5 36.9 204.5
PT 25.4 44.4 56.1 3.5 8.0
SI 25.1 31.7 48.7 0.1 0.2
SK 25.9 39.0 80.2 0.6 1.6
Total EA 42.1 46.9 55.3 2167.4 3921.2

(b) Bond funds assets

Coverage ratio (%) Totals 2019Q4
min median max Lipper IVF

domicile

AT 11.4 13.3 16.2 12.1 83.7
BE 29.6 35.4 153.3 50.4 98.8
CY 0.0 0.0 27.9 0.1 0.5
DE 5.1 6.1 9.2 103.8 1130.7
EE 63.0 76.7 101.2 0.0 0.0
ES 47.4 71.6 137.5 43.5 69.4
FI 23.0 31.4 54.7 2.9 12.5
FR 12.7 19.5 20.7 79.0 420.9
GR 50.9 74.9 81.7 0.7 0.9
IE 6.6 17.3 22.3 75.3 348.9
IT 82.0 98.8 127.6 145.4 140.3
LT 47.0 201.1 inf 0.0 0.0
LU 30.0 36.9 52.8 592.0 1122.3
LV 6.6 58.4 94.2 0.0 0.0
MT 23.6 59.0 451.3 0.4 1.6
NL 29.6 39.2 45.8 7.5 25.5
PT 150.8 188.2 233.3 4.7 2.2
SI 23.8 31.3 55.5 0.2 0.9
SK 22.3 34.7 50.6 0.8 3.6
Total EA 20.0 24.5 32.5 1118.8 3462.6

(c) Mixed funds assets

Total Lipper Total EFAMA Ratio (%)

AT 695 2019 34.4
BE 708 932 76.0
CY 32 296 10.8
DE 1165 6536 17.8
EE 5 0 inf
ES 956 2669 35.8
FI 323 494 65.4
FR 2277 10856 21.0
GR 89 213 41.8
IE 2184 7285 30.0
IT 1085 1814 59.8
LT 8 0 inf
LU 8831 14898 59.3
LV 5 0 inf
MT 36 687 5.2
NL 258 1712 15.1
PT 106 371 28.6
SI 34 115 29.6
SK 0 86 0.0
Total EA 18797 50983 36.9

(d) Number of firms

Table 2: Lipper coverage of funds: comparison to IVF by assets for each fund family.
The ratios of coverage by assets are computed for each quarter where IVF data is available (that of Lipper going back
further in time), and the minimum, median and maximum presented are taken over time. Monetary values in the totals
give are in EUR billions.
Source: Lipper IM, IVF, and authors’ calculations.
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Bond Equity Mixed Total
Lipper EFAMA % ratio Lipper EFAMA % ratio Lipper EFAMA % ratio Lipper EFAMA % ratio

AT 250 483 51.8 187 328 57.0 219 1060 20.7 656 1871 35.1
BE 60 68 88.2 304 216 140.7 340 259 131.3 704 543 129.7
BG 1 8 12.5 4 45 8.9 2 63 3.2 7 116 6.0
HR 0 40 0.0 0 23 0.0 0 9 0.0 0 72 0.0
CY 10 11 90.9 3 29 10.3 20 77 26.0 33 117 28.2
CZ 27 43 62.8 23 34 67.6 27 73 37.0 77 150 51.3
DK 217 382 56.8 288 497 57.9 82 172 47.7 587 1051 55.9
FI 87 117 74.4 212 223 95.1 42 114 36.8 341 454 75.1
FR 695 1059 65.6 1144 1715 66.7 482 3028 15.9 2321 5802 40.0
DE 270 1051 25.7 425 1089 39.0 593 3475 17.1 1288 5615 22.9
GR 42 77 54.5 39 83 47.0 29 50 58.0 110 210 52.4
HU 75 76 98.7 73 105 69.5 118 110 107.3 266 291 91.4
IE 722 1472 49.0 1192 2660 44.8 332 1209 27.5 2246 5341 42.1
IT 262 204 128.4 91 105 86.7 747 553 135.1 1100 862 127.6
LI 0 320 0.0 0 405 0.0 0 230 0.0 0 955 0.0
LU 2759 3227 85.5 3550 4049 87.7 2236 3778 59.2 8545 11054 77.3
MT 27 55 49.1 28 99 28.3 24 52 46.2 79 206 38.3
NL 75 219 34.2 161 363 44.4 60 109 55.0 296 691 42.8
NO 86 187 46.0 167 477 35.0 29 84 34.5 282 748 37.7
PL 101 196 51.5 138 227 60.8 100 293 34.1 339 716 47.3
PT 25 28 89.3 44 41 107.3 50 71 70.4 119 140 85.0
RO 0 18 0.0 0 29 0.0 0 30 0.0 0 77 0.0
SK 6 24 25.0 5 14 35.7 5 47 10.6 16 85 18.8
SI 6 10 60.0 47 71 66.2 10 18 55.6 63 99 63.6
ES 578 701 82.5 313 1056 29.6 438 567 77.2 1329 2324 57.2
SE 93 118 78.8 325 345 94.2 96 157 61.1 514 620 82.9
CH 310 259 119.7 489 428 114.3 175 216 81.0 974 903 107.9
TR 63 71 88.7 59 57 103.5 78 69 113.0 200 197 101.5
GB 363 383 94.8 1230 1326 92.8 572 841 68.0 2165 2550 84.9
Total EA 5874 8806 66.7 7745 12141 63.8 5627 14467 38.9 19246 35414 54.3
Total EU 6388 9687 65.9 8596 13446 63.9 6052 15374 39.4 21036 38507 54.6

Table 3: Lipper coverage of funds: comparison to EFAMA by number of funds.
The ratios of coverage by assets are computed for each quarter where, and the minimum, median and maximum pre-
sented are taken over time. Monetary values in the totals give are in EUR billions.
The coverage has been computed for 2019Q4 and restricted to funds which are regulated under the UCITS or AIFMD
frameworks. The data used is taken from Trends in the European Investment Fund Industry in the Fourth Quarter of
2019 & Results for the Full Year of 2019 (2020).
Source: Lipper IM, EFAMA and authors’ calculations.
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D Visualization of exposure networks

Banks / credit institutions
Financial corporations
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Non-financial corporations
Funds

Figure 21: Aggregated loans from banks to all sectors in Q4 2019. Individual exposures
are aggregated to sector level.
Source: Authors’ calculations.

Banks / credit institutions
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Central banks
Governments
Households
Non-financial corporations
Funds

Figure 22: Exposures from banks to all sectors at entity level in Q4 2019.
Source: Authors’ calculations.
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Figure 23: Portfolio holding connections at sector level in Q4 2019. An edge represents
that a bank/fund holds assets issued by another sector.
Source: Authors’ calculations.

Figure 24: Portfolio holding connections at entity level in Q4 2019. An edge represents
that a bank/fund holds assets issued by another entity of a sector.
Source: Authors’ calculations.

ECB Working Paper Series No 2581 / August 2021 52



E Methodological details

E.1 Establishing new unsecured loans
The heuristic algorithm that is used to create new unsecured lending relationships, as
described in 5.4, is shown in Figure 25 below. For more sophisticated studies on en-
dogenous network formation see also Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi
(2012), Cohen-Cole, Patacchini, and Zenou (2015) and Hałaj and Kok (2015).

Figure 25: Algorithm for the establishment of new inter-bank lending relationships
Data: State of the financial system
Establish a list Lb of borrowers
Compute from equation (26) the maxima (uk)k∈Lb

to be borrowed
Establish a list Ll of possible lenders
Compute the lending capacities (vk)k∈Ll

from (27)
while Lb 6= ; and Ll 6= ; do

i← argmaxk∈Lb
{uk} // Select the borrower with the largest need

j← arg maxk∈Ll
{vk} // Select the lender with the largest surplus

// A new lending is established and we update our lists
if ui < v j then

j lends an amount ui to i
We remove i from Lb
v j ← v j − ui

else // ui < v j
j lends an amount v j to i
We remove j from Ll
ui ← ui − v j

The proof of termination of the algorithm is simple: we have a finite number of entities
in each of the two lists, and at every iteration either the borrower i or the lender j is taken
out of its respective list. Therefore, the maximum number of iterations is bounded by the
total number of entities in the two initial lists.

This algorithm is also meant to create only a small number of new lending relation-
ships in the inter-bank network; thus, minimizing the impact on the network structure.

E.2 Proof of the price/capital resolution for funds
We prove in this part the result given by equation (15). First, we can rewrite the sum of
redeemable assets for all funds in equation (14) as follows:

Hred,f
t · 1red = Hred,f

t−1 ·
kt

kt−1
=

�

Hred,f
t−1

1

kT
t−1

�

· kt (39)

where 1
kT

t−1
is a row vector

�

1
ki,t−1

�

i∈InvF
and, therefore, the matrix-row vector multiplication

yields a matrix.
To prove equation (39), let us denote (ai)i∈InvF = Hred,f

t ·1red, such that∀i, ai =
∑

j∈InvF hi, j,t .
We know that, ∀i, j ∈ InvF, hi, j,t = hS

i, j,t ·p j,t , i.e. the value that i holds of j’s shares is equal
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to the number of shares held multiplied by the price. Then, given that hS
i, j,t = hS

i, j,t−1 (be-
cause in the model no redemption happens at the exact same time as changes in market
prices) we have

hi, j,t = hS
i, j,t p j,t = hi, j,t−1

p j,t

p j,t−1
. (40)

Moreover, the price of j is proportional to its TNA (the factor between them being the
number of shares issued). So we have

p j,t

p j,t−1
=

k j,t

k j,t−1
. Plugging this into equation 40 we get

hi, j,t = hi, j,t−1
k j,t

k j,t−1
. Therefore,

ai =
∑

j∈InvF

hi, j,t−1

k j,t

k j,t−1

and it is immediate to verify that this is the expression of the i-th term of Hred,f
t−1 ·

kt
kt−1

.
Thus, from equations (14) and (39), and denoting by IF the identity matrix of size F ,

we get32
�

IF −Hred,f
t−1

1

kT
t−1

�

· kt = Htrd,f
t · 1trd + ct − lt . (41)

Since
�

IF −Hred,f
t−1

1
kT

t−1

�

is invertible as a straightforward consequence of the Neumann se-

ries expansion of its inverse, we obtain the solution:

kt =

�

IF −Hred,f
t−1

1

kT
t−1

�−1
�

Htrd,f
t · 1trd + ct − lt

�

,

which is what we wanted to verify.

E.3 Price impact calibration

The price impact method that we use to determine new prices relies on a sublinear rela-
tionship between the amount sold and the subsequent change in the price. The underlying
foundation of the model is derived from the linear price impact specification described in
Kyle’s framework (Kyle, 1985):

Ψ = Sλ (42)

where S is the total amount sold of a single security and λ is the parameter known
as Kyle’s lambda, which represents the price impact parameter. For relatively small sized
sales, this relation is known to provide a reliable description of the impact. However,
when the size of a given sale increases, this model tends to overestimate the impact. To
mitigate this problem the literature (see e.g. (Bouchaud, 2010)) suggests a square-root
specification, which also satisfies a concave shape. Nevertheless, this shape implies an
arbitrarily large impact as the size of the traded volume increases. Therefore, another
stream of literature, e.g. (Schnabel and Shin, 2002), puts forward an exponential speci-
fication:

32This equation is actually the one used in our implementation.
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Ψ = 1− e−Sλ (43)

The implementation of an exponential shape prevents the issue of extremely large
impacts for increasing volumes. However, it does not prevent prices from dropping to
zero. Moreover, it might be more realistic to assume that arbitrageurs step-in to buy
securities whose price decline by a large fraction. Still, a buy-side of the financial market is
notoriously difficult to model. Against this background, we approximate the price impact
function using historical data:

Ψφ(Sφ) = Bφ(1− e−Sφλφ/Bφ) (44)

where λφ is the impact parameter, comparable to Kyle’s lambda from before, for se-
curity φ, Bφ the corresponding impact boundary and Sφ is the total amount sold of se-
curity φ. A simple boundary might be the most negative return observed in the history
of a security. Suppose we define the entire set of returns for security φ as Rφ. Then, a
straightforward specification of the boundary reads as:

B1: min(Rφ,t |t = 0, .., T )

A drawback of this specification is that it might not work for extreme cases. Therefore,
we ensure that the largest impact is included for all volumes that result in this return,
establishing an additional boundary B2 that solves the following equation:

B2(1− e−(Sφ |R=min(Rφ))λφ/B2)− B1 = 0. (45)

E.4 Generation of correlated defaults

Traditionally, there are two approaches to modelling firm defaults: structural and reduced-
form models. A structural model analyses the stochastic processes determining the unob-
served market value of the asset (AVL) time-series of each firm. These variables represent
the market-perceived values of the assets of each firm, given the known values of equity
and its instantaneous volatility. If AVL of a firm falls below the value of its liabilities, the
firm defaults. The correlation between AVLs of different firms also determines correla-
tion between default event. By contrast, the reduced-form approach says nothing about
the underlying processes; it rather directly models firms’ defaults and correlations among
them. An example of how to translate macro-economic shocks into correlated firm de-
faults in the stress testing context present (Tente, Westernhagen, and Slopek, 2019). They
propose a copula model for tail-dependent country-specific and sector-specific factors in
spirit of the reduced-from approach. In this paper, however, we follow the structural ap-
proach. As in (Merton, 1973), we model the data generating process of the unobserved
AVLs as geometric Brownian motion with SDE:

dA j

A j
= µ jd t +σ jdWj, (46)

ECB Working Paper Series No 2581 / August 2021 55



where dWj ∼ N(0, d t). The components of the MLE estimator for the vector parameter
θ = (µ,σ) can be easily found to be

σ̂ =

√

√

√

∑

t(x t −
∑

τ xτ)2

(N − 1)d t
, (47)

µ̂=

∑

t x t

Ndt
+
σ̂

2
. (48)

As a key component, we additionally introduce the following correlation between the
driving noises:

corr(dWi, dWj) = corr(d log Ai, d log A j). (49)

This is, thus, equivalent to considering

d logA= µd t + dZ, (50)

with dZ= Σ · dW, and

Σ ·ΣT =





σ2
1 ρ12σ1σ2 . . .

...
. . .

...
ρN1σNσ1 . . . σ2

N



 , (51)

where dWidWj = ρi jd t.

We estimate the parameters of the assumed data generating processes using a one-
quarter rolling window for our quarterly time series and can, then, proceed with the
generation of default events.

Each firm’s probability of default is given by

P(A j(t)≤ K j) =

∫

[0,K j]

p(x , t)d x , (52)

where the threshold K j is computed as current liabilities plus half of all future long-term
liabilities. We can sample the points x̄1(t), ..., x̄N (t) from p(x , t) and, thus, estimate equa-
tion (52), using a Monte Carlo approach, as

IN =
1
N

∑

i

1[0,K j]( x̄ i(t)), (53)

so that:

lim
N→∞

IN =

∫

[0,K j]

p(x , t)d x . (54)

The variance of the estimator (53) equals σ2/N and the speed of convergence is given
by σ/

p
N . Each iteration of the Monte Carlo simulation delivers a vector ~θ of correlated

default events

θi = 1[0,K j]( x̄ i(t)) =

�

1, if firm i defaults
0, otherwise

. (55)
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Notice that the cross-correlations of the underlying processes ρi j are not identical with
the correlations of default events. The latter are given as:

corr (θ1,θ2) =
E[θ1θ2]− E[θ1]E[θ2]

p

(E[θ1]− E[θ1]2)(E[θ2]− E[θ2]2)
, (56)

E[θ1θ2] =

∫

[0,T1]

∫

[0,T2]

p(x1, x2,ρ, t)d x1d x2. (57)

E.4.1 Macro-financial impacts on firms processes

Given the estimated time series of parameters obtained in the above passage, the next,
optional, phase is to detect any dependency of the estimated parameters with respect
to some exogenous macro-financial variables as done in standard scenario-conditional
stress testing exercises. Following the ECB approach for the satellite model estimation of
default probabilities, we consider a set of macro-financial variables commonly employed
as regressors for ECB credit risk satellite models.

The plain vanilla example for it is an equation of the following form:

θ̂i,t = α+ β(L)θ̂i,t−1 +λ(L)X + εi,t , (58)

where i refers to one of the estimated parameters of the data generating process, for
which we can allow a lag structure, and λ represents the coefficients of the exogenous
regressors. Estimation of equation (58) allows to capture the effects of an exogenous
stress to the baseline path of our main macro-financial indicators on each firm’s data
generating process, by impacting directly the corresponding parameters. In the current
exercise, we use a BMA regression to apply the macro-financial shock to the parameters
of the data generating process for each entity.

E.4.2 Simulations

The estimated parameters (discretionarily stressed according to the procedure above) for
the data generating process of each entity allow for Monte Carlo simulations of time-series
paths with a one-year horizon. The random element of the simulations of each entity is
determined through a multivariate Normal distribution, whose covariance matrix is based
on the correlation matrix of the single firm noises and their volatility. At the end of a Monte
Carlo iteration, we compare the last, end-of-path realisation of the data generation process
for each entity with the entity-specific default threshold that we define using the one-year
ahead Expected Default Frequency (EDF1) obtained from Moody’s. If the end-of-path
realisation is below this threshold, the firm defaults in the given iteration. This result, for
each firm, forms the basis for the boolean vector that is fed into our contagion simulation.

E.5 Credit risk losses for aggregate exposures

We use residual exposures for banks to cover all exposures from FINREP as described in
Section 3.1. Similarly to standard credit risk modelling, losses for these exposures are
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calculated as expectations by multiplying PDs, LGDs and exposures at default. For these
exposures, shocked PDs and LGDs are derived from internal ECB models (Dees, Henry,
and Reiner, 2017).33

Where possible, we take country-sector starting PDs (PDt0,bank
C ,S ) from COREP reports

at bank-level. For NFCs, we use country-sector average starting PDs as these are not avail-
able for this specific category in COREP. Then, given country-sector level PD multipliers
(PDmul t

C ,S ) for NFCs, FCs and households, the shocked PD is calculated by a starting point

adjustment of top-down PDs (PDt0,T D
C ,S ) as described in Dees, Henry, and Reiner (2017)):

PDt,bank
C ,S = Φ

�

Φ−1(PDt0,bank
C ,S ) +Φ−1(PDt0,T D

C ,S · PDmul t
C ,S )−Φ

−1(PDt0,T D
C ,S )

�

.

For sovereigns, we use projections in levels.
Given the low variability of LGDs from stress testing experience, we use average

shocked values for a country-sector breakdown conditional on the scenario:

LGDt,bank
C ,S = LGDt0,T D

C ,S · LGDmul t
C ,S

for all sectors, except for sovereigns, where we use constant values.
Finally, an expected loss for a residual exposure is given by

ˆ̀
i,a = li,a · LGDi,a · PDi,a.

Since only a fraction of the loans are defaulted in this case, we update the non-defaulted
loan portfolio following

li,a,t+1 = li,a,t · (1− PDi,a,t).

F Simulation details

This Appendix collects additional Figures that cover some of the main drivers of our sim-
ulation exercise. All of these Figures correspond to one simulation.

33Note that we do not use IFRS9 staging in the current model.
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Figure 26: Distribution of declines in net asset values (NAV) for investment funds after
convergence of the algorithm (percent).
Source: Authors’ calculations.
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Figure 27: Sold volumes over market capitalization (decimal) and equilibrium prices
(decimal; a value of 1 means no price change) after convergence of the algorithm.
Market capitalization is the total amount of holdings in the system for a given security,
before the shock.
Source: Authors’ calculations.
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Figure 28: Distribution of tradable asset prices in equilibrium and distribution of esti-
mated price floors after convergence of the algorithm (decimal; a value of 1 means no
price change, a value of 0 the default of the issuer).
Source: Authors’ calculations.
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Figure 29: Distribution of the stock of provisions and first quarter net operating income
as a fraction of total REA excluding provisions for banks before the start of the simula-
tion (decimal).
Source: Authors’ calculations.
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Figure 30: Distribution of probabilities of default (PDs) for di�erent aggregate sectors
(decimal).
’Residuals’ cover all sectors that are not covered by the groups ’Households’ and ’NFCs’.
Source: Authors’ calculations.
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G Results for the no-funds experiment

In this Appendix, we report additional figures for the experiment where investment funds
are not included in the system, as discussed in subsection 6.3.
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Figure 31: Market and default losses for 10000 Monte Carlo simulations, without funds
(in percentage of total assets in the system of banks).
’Q1E’ shows the reaction following the initial exogenous shocks in the first quarter.
’Q2R1’ to ’Q2R5’ represent the iterations in the second quarter until convergence of the
algorithm. In ’Q1E, ’Defaults’ refer to NFC defaults and ’Market’ to exogenous market
losses both from the market scenario and from the price drop of exogenously default-
ing NFCs. From ’Q2R1’ onward bank and fund defaults as well as market losses are
model-driven. Candlesticks represent the 25th and 75th percentiles of the distribution
of Monte Carlo simulations.
Source: Authors’ calculations.
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Figure 32: Losses for banks, without funds, based on 10000 Monte Carlo simulations
(in percentage of total banking sector assets).
’Defaults, Exogenous’ refer to NFC defaults. ’Market, Exogenous’ refers to exogenous
market losses both from the market scenario and from the price drop of exogenously
defaulting NFCs issuing securities. ’Endogenous’ losses are model-driven.
Source: Authors’ calculations.
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Figure 33: Funding flows for banks (without funds), following endogenous reactions, in
form of liquidity withdrawal based on 10000 Monte Carlo simulations (in percentage of
total assets of the respective sector).
Source: Authors’ calculations.
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