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Abstract

Macro-prudential authorities need to assess medium-term downside risks to the real econ-

omy, caused by severe financial shocks. Before activating policy measures, they also need

to consider their short-term negative impact. This gives rise to a risk management problem,

an inter-temporal trade-off between expected growth and downside risk. Predictive distribu-

tions are estimated with structural quantile vector autoregressive models that relate economic

growth to measures of financial stress and the financial cycle. An empirical study with euro

area and U.S. data shows how to construct indicators of macro-prudential policy stance and to

assess when interventions may be beneficial.

Keywords: Growth-at-risk, stress testing, quantile vector autoregression, financial conditions,

macro-prudential policy.

JEL classification: G21, C33.
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Non-technical summary

The objective of macro-prudential policy is to make the financial system strong enough to

withstand adverse shocks, taking advantage of good times to increase capital and liquidity buffers.

According to this view, macro-prudential measures are recommended in case medium-term down-

side risks to the economy are deemed too severe. Such measures, however, can have short-term

costs in terms of upside potential, or expected growth, of the economy. This paper proposes an

econometric framework that allows macro-prudential authorities to optimally weigh the beneficial

impact of their actions on future downside risks with the adverse impact of these actions on the

upside potential of the economy.

There is a plethora of notions and techniques to measure downside risks. Yet, the question of

how to make them operational for the conduct of macro-prudential policy has received much less

attention. Recent research proposes to view a central bank’s decision as a risk management prob-

lem, requiring the central bank to optimally balance downside and upside risks to price stability.

This paper extends this idea to the macro-prudential problem, where the relevant authority sets its

policy by optimally balancing the inter-temporal trade-off between expected growth and downside

risks to the economy.

The paper uses a structural quantile vector autoregressive model (QVAR) to operationalize this

methodological approach. The QVAR model allows us to quantify future risks to economic activ-

ity caused by elevated levels of financial stress as well as by economic vulnerability to shocks. We

argue that our statistical framework inherits the best features from both the vector-autoregression

(VAR) and quantile regression (QR) strands of literature. The VAR permits all endogenous vari-

ables to interact over time, allows us to be transparent about the identification of structural shocks,

and can be used to simulate from the model and compare different counterfactual policy scenar-

ios. QR allows the dynamic properties of the system to differ across quantiles, capturing potential

asymmetries in the propagation of structural shocks.

The main body of the paper discusses the empirical findings for the euro area economy, using

euro area data from 1988Q3 to 2018Q4. A companion web appendix shows that the results are

qualitatively similar for the U.S. economy.

We focus on four empirical findings. First, a variable selection exercise suggests that central

bank “intermediate target” variables, such as the financial cycle and money market interest rates,
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interact closely with GDP growth and financial stress across all quantiles. We focus on the financial

cycle because it can be influenced, at least to some extent, by macro-prudential policy instruments.

In addition, our downside risk estimates are not particularly sensitive to the exclusion of short-term

interest rates.

Second, the dynamic properties of the system differ significantly across quantiles. A formal

Wald test rejects the parameter homogeneity restrictions implied by a linear VAR specification

for our data at any reasonable confidence level. The QVAR is instead characterized by substantial

asymmetries. In particular, a shock to financial stress shifts the left tail of future GDP towards more

negative values, while leaving its conditional median and right tail approximately unaffected. The

model-implied downside risk measures are strongly sensitive to the inclusion of financial variables.

Third, we find that the euro area economy is not equally resilient to the same sequence of

adverse financial shocks at all times. The asymmetries uncovered in the data suggest that our

QVAR model provides a natural environment to perform repeated model-based macro-prudential

stress tests for the economy as a whole. Our model-based stress testing outcomes can be used as

a quantitative yardstick to help calibrate the size of macro-prudential capital and liquidity buffers.

Having multiple, complementary approaches available for this purpose may help overcome a po-

tential “inactivity-bias,” according to which few jurisdictions have set their counter-cyclical capital

buffers to above-zero levels from the buffer’s inception in 2014 to late 2019.

Fourth, the QVAR estimates can provide a metric to assess whether the macro-prudential stance

is too tight or too loose. To counteract the feedback and the asymmetries captured in the estimated

structural QVAR, we argue that macro-prudential policy should act in a counter-cyclical fashion

by releasing buffers when downside risk is exceptionally high and increasing them when downside

risk is low. Welfare calculations from stabilizing the financial cycle can be based on a suitably

chosen objective function. The associated welfare gains can be positive or negative, and are most

positive in exuberant times when the financial cycle is above its conditional median.
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1 Introduction

The Stoic philosopher Seneca once observed that “When pleasures have corrupted both mind and

body, nothing seems tolerable – not because the suffering is hard, but because the sufferer is soft.”1

The quote nicely encapsulates a common view of macro-prudential policy: Make the financial sys-

tem strong (hard) enough to withstand adverse shocks, taking advantage of good times to build up

buffers and increase fortitude. According to this view, the activation of macro-prudential measures

is recommended in case medium-term downside risks to the economy are deemed too severe. Such

measures, however, are not necessarily without costs to the upside potential, or expected growth,

of the economy. This paper proposes an econometric framework based on which macro-prudential

authorities can optimally weigh the beneficial impact of their actions on future downside risks with

the adverse impact of these actions on the upside potential of the economy.

There is a plethora of notions and techniques to measure downside risk. Yet, the question of

how to make them operational for the conduct of macro-prudential policy has received much less

attention. Greenspan (2003, p. 3), Cecchetti (2006), and Kilian and Manganelli (2008) propose

to view a central bank’s decision as a risk management problem, requiring the central bank to

optimally balance downside and upside risks to price stability. This paper extends their idea to

the macro-prudential problem, where the relevant authority sets its policy by optimally balancing

the inter-temporal trade-off between expected growth and downside risk to the economy. Related

methodological approaches have recently been advocated by Carney (2020), Suarez (2021), and,

from a general equilibrium perspective, Mendicino et al. (2018) and Caballero and Simsek (2020).

This paper uses a quantile vector autoregressive model (QVAR) to operationalize our risk man-

agement idea. QVAR was first proposed in unpublished work by Cecchetti and Li (2008). In-

dependent work by White et al. (2015), Chavleishvili and Manganelli (2019) and Montes-Rojas

(2019) has formalized the econometric model. These contributions fit into the broader literature on

multivariate quantile regression, which is an active area of research (see, for instance, Wei (2008)

or Carlier et al. (2016) and the references therein).

1Seneca, De Ira, Liber II, XXV, 3.
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We show how QVAR provides the ideal econometric tool to address many of the policy issues

faced by macro-prudential authorities. It can be used to obtain: estimates of financial stability

risks which are easy to communicate, a variable selection procedure for a multivariate model of

downside risk, a stress testing assessment of the vulnerability of the financial system, and a measure

of macro-prudential policy stance. The main body of the paper discusses the empirical findings for

the euro area economy. A companion web appendix shows that the results are qualitatively similar

for the U.S. economy.

A rapidly growing body of research has examined downside risk in macroeconomic outcomes.

Most of this work has focused on the risk of significant declines in gross domestic product (GDP),

brought about by a deterioration of financial conditions. In particular, growth-at-risk (GaR), the,

say, 5% quantile of a predictive GDP distribution, has emerged as a popular measure of down-

side risk; see e.g. Adrian et al. (2019), Prasad et al. (2019), and Caldara et al. (2019). Both the

International Monetary Fund (IMF) as well as the European Central Bank (ECB) now routinely

publish GaR estimates for major world economies; see IMF (2017) and ECB (2019). These devel-

opments have motivated a proliferation of modeling frameworks to assess the severity of extreme

events associated with key economic variables, including single-equation quantile regression (QR)

models (Adrian et al. (2019)), panel QR models (Adrian et al. (2018), Brandao-Marques et al.

(2020)), panel-GARCH models (Brownlees and Souza (2020)), fully non-parametric kernel re-

gression models (Adrian et al. (2020)), combined linear vector autoregressive (VAR) and single-

equation QR models (Duprey and Ueberfeldt (2020)), nonlinear Bayesian VAR models (Caldara

et al. (2019), Carriero et al. (2020)), and quantile VAR models (Chavleishvili and Manganelli

(2019)). De Santis and van der Veken (2020) show that even if a recession is due to an unforseen

real shock (as the recent Covid-19 recession) financial variables can still help policy makers by

providing timely warnings about the severity of the crisis and the macroeconomic risks involved.

Plagborg-Moller et al. (2020) provide a critical review of this literature.

This paper embeds the insights from this large empirical literature on downside risk into a

macro econometric model that can be used to produce structural forecast distributions, taking into
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account the strong asymmetries that characterize macro-financial interactions. The QVAR model

allows us to quantify future risks to economic activity caused by elevated levels of financial stress

as well as by economic vulnerability to shocks. We argue that our framework inherits the best fea-

tures from both the VAR and QR strands of literature. The VAR permits all endogenous variables

to interact over time, allows us to be transparent about the identification of structural shocks, and

can be used to simulate from the model and compare different counterfactual policy scenarios. QR

allows the dynamic properties of the system to differ across quantiles, capturing potential asymme-

tries in the propagation of structural shocks. As a welcome by-product, QR parameter estimates

are less sensitive to outliers when compared to their least squares counterparts. This robustness

feature can become relevant when financial variables are included in the model and the financial

system and the economy face abrupt and large changes. Succinctly put, our QVAR model relates to

the single-equation QR approach of Adrian et al. (2019) as the VAR model of Sims (1980) relates

to the straightforward single-equation autoregressive approaches of e.g. Koyck (1954) and Almon

(1965).

To relate to the problem faced by macro-prudential authorities, we include measures of finan-

cial stress and medium-term vulnerabilities alongside GDP growth in our baseline model. Indica-

tors of financial stress serve as a macro-finance amplification mechanism that characterise financial

crises. Measures of vulnerabilities represent intermediate target variables on which policy makers

can act by activating their policy tools. The three-variable setup reflects the consideration that

financial stability is of concern to policy makers if it is triggered by an impairment of the financial

system and has real economic consequences, e.g. in terms of future employment, consumption,

or overall economic activity.2 Financial stress is proxied by the ECB’s Composite Indicator of

Systemic Stress (CISS; see Hollo et al. (2012)), while medium-term vulnerabilities are proxied by

Schüler et al. (2020) real-time broad financial cycle indicator. Financial stress, the financial cycle,

2The ECB definition of financial stability refers to “the risk that the provision of necessary financial products and
services by the financial system will be impaired to a point where economic growth and welfare may be materially
affected;” see ECB (2019). Similarly, the Financial Stability Board, International Monetary Fund, and the Bank for
International Settlements define systemic risk as a “risk of disruption to financial services that is (i) caused by an
impairment of all or parts of the financial system, and (ii) has the potential to have serious negative consequences for
the real economy;” see FSB (2009).
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and GDP growth can interact freely in our preferred model specification, and can do so to different

extents at different quantiles.

The empirical part of this paper applies our statistical model to both euro area and U.S. data.

The paper focuses on euro area data between 1988Q3 and 2018Q4,3 and analogous tables and

figures based on U.S. data between 1973Q1 and 2018Q4 are discussed in the web appendix. Our

main findings are remarkably similar across the euro area and U.S. samples.

We focus on four empirical findings. First, a variable selection exercise suggests that central

bank “intermediate target” variables, such as the financial cycle and (de-trended) money market

interest rates, interact closely with GDP growth and financial stress across all quantiles. Other

variables, such as the term spread may also play a role, particularly for U.S. data, but are not

ranked as highly by model selection criteria. We focus on the financial cycle because it can be

influenced, at least to some extent, by macro-prudential (and monetary) policy instruments (Cerutti

et al. (2017)). Our downside risk estimates are not particularly sensitive to the exclusion of short-

term interest rates; we therefore use the more parsimonious trivariate model specification for most

of our results.

Second, the dynamic properties of the system differ significantly across quantiles. A formal

Wald test rejects the pooling, or parameter homogeneity, restrictions implied by a linear VAR

specification for our data at any reasonable confidence level. The QVAR is instead characterized

by substantial asymmetries. In particular, a shock to financial stress shifts the left tail of future GDP

towards more negative values, while leaving its conditional median and right tail approximately

unaffected. As in Adrian et al. (2019), macro-financial interactions imply that the upper quantiles

of predictive GDP growth distribution are less volatile than its lower quantiles. Our model-implied

downside risk measures are strongly sensitive to the inclusion of financial variables. Not only does

downside risk associated with the global financial crisis between 2008 and 2009 decline much later,

and to a lesser extent, when financial stress is missing, but in addition the downside risk associated

with the 2010–2012 euro area sovereign debt crisis is missed almost entirely when financial stress

3Counterfactual data preceding the formation of the euro area (pre-1999) is obtained from an internal ECB
database.
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is not included in the model.

Third, we find that the euro area economy is not equally resilient to the same sequence of

adverse financial shocks at all times. The asymmetries uncovered in the data suggest that our

QVAR model provides a natural environment to perform repeated model-based macro-prudential

stress tests for the economy as a whole. We here understand stress testing as a forecast of what

would happen to all variables in the system should it be subjected to a fixed sequence of adverse

shocks. We find that downside risk conditional on future adverse real and financial shocks spikes

during crises. Our model-based stress testing outcomes can be used as a quantitative yardstick to

help calibrate the size of macro-prudential capital and liquidity buffers.

Fourth, our risk management framework and its underlying econometric model can be used to

guide financial stability policies. In QVAR-based stress tests, the impact of a shock to financial

conditions (stress) depends not only on its initial severity, but also on the endogenous, asymmetric

responses of all other variables in the system. Allowing for such feedback and asymmetries is

crucial when subjecting the system to a sequence of tail shocks. To counteract the feedback and

the asymmetries, we argue that macro-prudential policy should act in a counter-cyclical fashion by

releasing buffers when downside risk is exceptionally high, and increasing them when downside

risk is exceptionally low (Van der Ghote (2021)). Welfare calculations from stabilizing the finan-

cial cycle can be based on a suitably chosen objective function. The associated welfare gains can

be positive or negative, and are most positive in exuberant times when the financial cycle is above

its conditional median. The QVAR estimates therefore provide a metric to assess whether the

macro-prudential stance is too tight or too loose. Model-based stress testing and scenario analysis

can complement early warning indicators such as the credit-to-GDP-ratio gap that has traditionally

informed the calibration of the counter-cyclical capital buffer. Having complementary approaches

available may help overcome a potential “inactivity-bias,” according to which few jurisdictions

have set their counter-cyclical capital buffers to above-zero levels from the buffer’s inception in

2014 to late 2019.4

4At the end of 2018, 19 out of 28 European Union countries, and 15 out of 19 euro area countries, had counter-
cyclical capital buffers set at zero; see Web Appendix A for details.
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We proceed as follows. Section 2 defines our downside risk measures, introduces the risk

management framework, and presents the statistical model. Section 3 describes our data. Section

4 applies the model to euro area and U.S. data. Section 5 concludes. A web appendix provides

further technical and empirical results.

2 The risk management framework

This section starts by introducing measures of downside risk borrowed from the financial risk

management literature. Next, it shortly summarizes the QVAR model and shows how it can be

used for forecasting, for semi-parametric risk measurement and for counterfactual analysis. It

ends by pulling these elements together into an encompassing risk management framework.

2.1 Measures of downside risk and upside potential

We define three measures of downside risk, which are well-known in the risk management litera-

ture. Each measure is of interest in different settings.

2.1.1 Growth-at-risk

Our first measure of adverse impact is growth-at-risk (GaRγ
t,t+h) at confidence level γ ∈ (0, 1),

defined implicitly by the probability

P
[
yt+h ≤ GaRγ

t,t+h|F1t

]
= γ, (1)

where yt denotes the quarterly annualized real GDP growth rate between time t − 1 and t, and

h = 1, . . . , H denotes a certain prediction horizon. The information setF1t contains all data known

at time t; see Section 2.2 below. In words, GaRγ
t,t+h is implicitly defined by the time t probability

of quarterly annualized output growth at t + h falling below GaRγ
t,t+h, which by definition is set

equal to γ.
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2.1.2 Growth shortfall

Our second measure of adverse real economic impact is growth shortfall (GS), defined as

GSτt,t+h =

∫ τ

−∞
yt+hdFt,t+h(yt+h)

= E [yt+h|yt+h < τ,F1t]× P [yt+h < τ |F1t] , (2)

where Ft,t+h is a time-t conditional cumulative distribution function (cdf), E [·|F1t] denotes a time-

t conditional expectation, and the threshold τ ∈ R could be set to a low conditional quantile, say

τ = GaRγ
t,t+h. If so, then the first factor in (2) coincides with the familiar notion of expected short-

fall; see e.g. McNeil et al. (2005, Ch. 2). Alternatively, it could be set to a certain unconditional

quantile, or be set to zero.

If τ = 0, GS can be factored into two intuitive terms: the expected loss conditional on a

contraction, and the probability of experiencing a contraction.5 While both components can be

studied separately and can be of interest in their own right, such as in stress test or macroeconomic

modeling, GS summarizes them tractably into one metric and is easily obtained from a QVAR

model. When τ = 0, GS corresponds to the economic question: what is the time t-expected

contraction of the economy at time t+ h?

2.1.3 Average growth shortfall

Our final measure of adverse real economic impact is the average future growth shortfall (AGS)

between t+ 1 and t+H , defined as

AGSτt,t+1:t+H = H−1
H∑
h=1

GSτt,t+h. (3)

If τ = 0, then the AGS corresponds to the question: what is the average future expected contraction

of the economy between t + 1 and t + H . Since it is an average of future GS, AGS retains all the

5To see this, note that E [yt+h|yt+h < τ,F1t] ≡
∫∞
−∞ yt+h·1{yt+h<τ}dFt,t+h(yt+h)∫∞
−∞ 1{yt+h<τ}dFt,t+h(yt+h)

=
∫ τ
−∞ yt+hdFt,t+h(yt+h)

P[yt+h<τ |F1t]
.
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statistical properties of GS.

All above risk measures are economically intuitive and straightforward to communicate. Risk

measures (2) and (3), however, have theoretical and practical advantages over (1). First, expected

shortfall-based measures are coherent risk measures, while any single quantile in isolation is not

(Artzner et al. (1999)). For example, GS contributions are sub-additive, while GaR contributions

are not. This feature is desirable if one, for instance, wants to study sector contributions to ag-

gregate GDP at risk. Second, while all above risk measures (1) – (3) can take into account the

asymmetric impact of financial variables on the economy, only (2) and (3) take into account the

entire left tail.

When considering financial stability policies aimed at containing downside risk, then the ex-

pected growth rate of the economy, as well as the upper quantiles of future GDP growth, should

not be unduly affected. For setting up the risk management framework later in section 2.3, we

consider two measures of upside potential that are symmetric to the measures of downside risk just

defined.

2.1.4 Growth longrise

We define the growth longrise6 (GL) as the complement to GS,

GLτt,t+h =

∫ ∞
τ

yt+hdFt,t+h(yt+h)

= E [yt+h|yt+h > τ,F1t]× P [yt+h > τ |F1t] . (4)

If τ = 0, then (4) corresponds to the question: what is the time-t expected expansion of the

economy between t + h − 1 and t + h? Similarly to GS, the growth longrise (4) captures the

expected growth given an expansion, and the conditional probability of experiencing an expansion.

6The term longrise was coined by Adrian et al. (2019) as the antonym to shortfall.
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2.1.5 Average growth longrise

Analogously to (3), we also define the average growth longrise (AGL) between t+ 1 and t+H as

AGLτt,t+1:t+H = H−1
H∑
h=1

GLτt,t+h. (5)

Given the complementarity between GS and GL, their sum equals the expected growth rate of

the economy between t+ h− 1 and t+ h,

E [yt+h|F1t] =

∫ ∞
−∞

yt+hdFt,t+h(yt+h)

=

∫ τ

−∞
yt+hdFt,t+h(yt+h) +

∫ ∞
τ

yt+hdFt,t+h(yt+h)

= GSτt,t+h + GLτt,t+h.

Furthermore, let ȳt,t+1:t+H = H−1
∑H

h=1 yt,t+h be the average future economic growth rate

between t + 1 and t + H . Since (2) and (4) are linear, the expected future growth rate of the

economy between t + 1 and t + H is E [ȳt,t+1:t+H |F1t] = AGSτt,t+1:t+H + AGLτt,t+1:t+H . As

a result, expected average future growth can be read off any figure reporting AGSτt,t+1:t+H and

AGLτt,t+1:t+H by adding the two lines.

2.2 Quantile vector autoregression

This section provides a concise exposition of the structural quantile vector autoregressive (QVAR)

model of Chavleishvili and Manganelli (2019) and shows how it can be used to obtain semi-

parametric estimates of (1) – (5).7 The structural identification is obtained by imposing triangular

restrictions and can be thought of as a macro-econometric application of the approach proposed by

Wei (2008). Intuitively, the QVAR model provides the forecast of the quantiles of the distribution

of the endogenous variables at any period ahead. The quantile forecasts can be treated as the

7See also Montes-Rojas (2019) and Ruzicka (2020) for related work on QVAR parameter and quantile impulse
response function estimation.
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equivalent of an empirical distribution and can therefore be used to approximate the risk quantities

discussed in the previous section. Furthermore, since we attach a structural interpretation to the

model, the structural shocks can be recovered and used to perform counterfactual exercises, as one

would do with a standard VAR.

2.2.1 The model

We observe a series of random variables {x̃t : t = 1, . . . , T}, where x̃t ∈ Rn is an n-vector with

ith element denoted by x̃it for i = 1, . . . , n and n ∈ N. For any arbitrary but fixed quantile γ, the

QVAR model of order 1 is given by

x̃t+1 = ωγ + Aγ0 x̃t+1 + Aγ1 x̃t + εγt+1 (6)

P(εγi,t+1 < 0|Fit) = γ, for i = 1, . . . , n, (7)

where the vector of structural quantile residuals is given by εγt ≡ [εγ1t, . . . , ε
γ
nt]
′. Recursive identifi-

cation is achieved by restricting the [n × n] matrix Aγ0 to be lower triangular with zeros along the

main diagonal. The presence of contemporaneous dependent variables on the right-hand side of

(6) requires us to be precise about the available information at any time and for each variable. We

work with a recursive information set that increases one scalar observation at a time,

F1t = {x̃t, x̃t−1, . . .} (8)

Fit = {x̃i−1,t+1,Fi−1,t} for i ∈ {2, . . . , n}. (9)

In words, F1t contains only variables observed up to time t. The information sets Fit for i > 1

contain increasingly more information about variables observed at t+ 1.8

We may wish to consider multiple quantiles of multiple variables at the same time. To do this in

a compact way, we consider p distinct quantiles 0 < γ1 < · · · < γp < 1, for p ∈ N, not necessarily

equidistant. In addition, we let xt ≡ [ιp ⊗ x̃t] denote the vector stacking p times the dependent

8For a similar incremental conditioning approach in a different setting see e.g. Koopman and Durbin (2000).
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variables x̃t, where ιp is a p-vector of ones. The stacked QVAR model of order 1 is then given by

xt+1 = ω + A0xt+1 + A1xt + εt+1 (10)

P(ε
γj
i,t+1 < 0|Fit) = γj, for i = 1, . . . , n, j = 1, . . . , p (11)

where the vector of structural quantile residuals is given by εt ≡ [εγ11t , . . . , ε
γ1
nt, . . . , ε

γp
1t , . . . , ε

γp
nt ]
′.

The [np × np] matrices A0 and A1 are block diagonal to avoid trivial multicollinearity problems.

The model (10) – (11) is essentially a convenient way to stack p quantile-specific QVAR models

(6) – (7).

An explicit example may be instructive. While the baseline empirical model in Section 4

considers three variables, we here develop intuition based on a simpler bivariate model for the data

vector x̃t = (yt, st)
′, where yt is the quarterly annualized real GDP growth between t − 1 and t,

and st is a coincident indicator of systemic financial stress. Let us consider p = 2 quantiles for

simplicity, 0.10 and 0.90. The system (10) – (11) can then be written as



yt+1

st+1

yt+1

st+1


=



ω.1y

ω.1s

ω.9y

ω.9s


+



0 0

a.1021 0

0 0

0 0

0 0

0 0

0 0

a.9021 0





yt+1

st+1

yt+1

st+1



+



a.111 a.112

a.121 a.122

0 0

0 0

0 0

0 0

a.911 a.912

a.921 a.922





yt

st

yt

st


+



ε.1y,t+1

ε.1s,t+1

ε.9y,t+1

ε.9s,t+1


(12)

Here, the ordering of the observations in (12) reflects the assumption that the financial stress vari-

able st can react contemporaneously to macroeconomic shocks, while real output growth yt can

react to financial shocks only with a lag. Such triangular identification assumptions are standard in
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the empirical literature; see e.g. Christiano et al. (1999), Kilian (2009), and Gilchrist and Zakrajsek

(2012), among many others.

2.2.2 Forecasting

This section explains how forecasts can be generated from the stacked QVAR model (10) – (11)

without invoking parametric assumptions on εt+1.

It is helpful to introduce the conditional quantile operator Qγj
it (xk,t+1), where xk,t+1 is the k-th

element of xt+1, k = 1, . . . , np. Given information set Fit, the operator is implicitly defined by

P
(
xk,t+1 < Q

γj
it (xk,t+1)|Fit

)
= γj, for j = 1, . . . , p.

In words, Qγj
it (xk,t+1) returns the γj quantile of random variable xk,t+1 conditional on Fit. The

element xk,t+1 is random because it depends on its own shock at time t + 1, but also on shocks to

earlier elements x1,t+1, . . . , xk−1,t+1.

To build intuition first, let us return to the simple bivariate example (12) with n = p = 2. Let’s

assume we are interested in forecasting, say, the 0.9 quantile of the financial stress variable st+1.

The fourth equation of (12), corresponding to the 0.9 quantile of st+1, is

st+1 = ω.9s + a.9021[ω
.9
y + a.911yt + a.912st + ε.9y,t+1] + a.921yt + a.922st + ε.9s,t+1

= ω.9s + a.9021ω
.9
y + (a.9021a

.9
11 + a.921)y1 + (a.9021a

.9
12 + a.922)st + a.9021ε

.9
y,t+1 + ε.9s,t+1

= q.9st + a.9021ε
.9
y,t+1 + ε.9s,t+1 (13)

where q.9st ≡ ω.9s + a.9021ω
.9
y + (a.9021a

.9
11 + a.921)yt + (a.9021a

.9
12 + a.922)st depends only on deterministic

parameters to be estimated and variables observed at time t. We note that Q.9
st(ε

.9
s,t+1) = 0 because

of the identifying restriction (11), stating P
(
ε.9s,t+1 < 0|Fst

)
= 0.9 when Fst = {yt+1, yt, st, . . .}.

In addition, q.9st + a.9021ε
.9
y,t+1|Fst is non-random. As a result, Q.9

st(st+1) = q.9st + a.9021ε
.9
y,t+1 is still a

random variable at time t. To eliminate this randomness, we keep on taking quantiles. Using the

identifying restriction (11) again, Q.9
yt(ε

.9
y,t+1) = 0 yields Q.9

yt (Q.9
st(st+1)) = q.9st. As a result, q.9st
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is our sought-after forecast of the 0.9 quantile of st+1, and is easily computed. This approach of

iterated quantiles can be repeated for any potentially remaining variables in xt+1. Following that,

the approach can be repeated for future variables in xt+h for h > 1.9

The above reasoning can be formalized. The scalar operatorsQγj
it (xk,t+1) can be combined into

a vector version, with quantile operators nesting each other up to n times. The vector operators can

again be sequentially combined, up toH times. In the end, the [np×1]-vector of quantile forecasts

at time t associated with process (10), for h = 1, . . . , H , can be obtained quite straightforwardly

as

x̂t+h =
h−1∑
j=0

Bjν +Bhxt, (14)

where ν = (Inp − A0)
−1 ω and B = (Inp − A0)

−1A1. It is easily verified that x̂4,t+1 (i.e., the

fourth element of x̂t+1, obtained using (14)) coincides with q.9st as defined below (13).

2.2.3 Semi-parametric risk measurement

This section explains how we obtain the time-t downside risk measures introduced in Section 2.1

from our semi-parametric structural QVAR model (10) – (11) using simulation methods. To this

end we rely on a growing literature on simulation methods for quantile regression; see e.g. Hahn

(1995) and Koenker (2005, Ch. 2.6).

When we defined the structural QVAR model for an arbitrary quantile γ as (6) – (7), and

insisted that the model holds for all γ ∈ (0, 1), we effectively specified a complete stochastic

mechanism for generating the one-step ahead variable x̃t+1 conditional on time-t information and

deterministic parameters. Recall that any scalar response variable x̃i,t+1, i = 1, . . . , n, with con-

ditional cdf Fi,t,t+1, can be simulated by generating a uniform random variable ui,t+1 ∼ U[0, 1],

and then setting x̃i,t+1 = F−1i,t,t+1(ui,t+1). Thus, in model (6) – (7), x̃i,t+1 can be simulated setting

x̃i,t+1 = ω
ui,t+1

i + A
ui,t+1

0,i x̃t+1 + A
ui,t+1

1,i x̃t, where ω(·)
i , A(·)

0,i, and A(·)
1,i denote the i-th row of ωγ , Aγ0 ,

9 This example implicity assumes that a.9021 is positive. If not, then the 0.9 conditional quantile and the 0.1
conditional quantile cross. This is because, when a.9021 < 0, then P

(
a.9021ε

.9
y,t+1 < 0

)
= P

(
ε.9y,t+1 > 0

)
=

1− P
(
ε.9y,t+1 < 0

)
= 1− 0.9 = 0.1. If this happens we reorder (relabel) the quantiles accordingly.
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and Aγ1 , respectively, evaluated at γ = ui,t+1.10 This procedure allows us to generate the x̃i,t+h,

recursively, for i = 1, . . . , n and h = 1, . . . , H , conditional on the relevant information sets.

We sketch our simulation algorithm here, and refer to Web Appendix B.4 for details. Let

t = 1, . . . , T denote any time in our sample. With n variables, p quantiles and H steps ahead,

there are pnH possible paths, a number which quickly becomes computationally unmanageable.

We resort instead to simulation, by randomly generating S potential future paths for all n variables

in x̃i,t+h, h = 1, . . . , H quarters ahead.11 The simulations are based on inverse cdf-sampling by

drawing S = 10, 000 sequences of nH = 3 × 8 = 24 uniform random variables with support

[γ1, . . . , γp], and use the one-step-ahead recursion (6). At each t + h, we calculate GSτt,t+h and

GLτt,t+h by evaluating the sample analogues of (2) and (4). At the end, we average across H to

obtain downside risk measures AGSτt,t+1:t+h and AGLτt,t+1:t+h; see (3) and (5).12

2.2.4 Counterfactual scenarios

Web Appendix B.5 explains in detail how counterfactual scenarios can be obtained from the QVAR

model (10) – (11). Rather than moving through the complete tree of potential future values of x̃t+h

at random, as explained in Section 2.2.3, we then consider only one path in isolation. Such a path

can be thought of as a ‘counterfactual scenario,’ or model-based thought experiment that conditions

on an arbitrary but fixed sequence of future shocks. We use such counterfactual scenarios when

considering a market-based stress test in Section 4.3, and when studying the benefits vs. cost from

tightening macro-prudential policy stance in Sections 4.4.

10Recall that A0 is lower triangular.
11The simulation approach is no panacea, as S still needs to be chosen large enough to sufficiently explore the tree.

Our risk estimates presented in Section 4 are insensitive to the initial random seed and to variations in the number of
simulations.

12Rather than re-estimating the model parameters within each simulation and for each variable using γi = ui,t+h,
it is computationally advantageous to discretize the support of the standard uniform random variable with an appro-
priately chosen grid 0 < γ1 < . . . < γp < 1, and to estimate all parameters once and for all in the beginning based on
the full sample. We then use the parameter estimates associated with the closest selected quantile in any simulation.
We use p = 20 grid-points for this purpose, 0 < 0.025, 0.075, . . . , 0.925, 0.975 < 1, each at the midpoint of 1/20th
of the unit interval. These grid-points are symmetric around the median, and yield equi-probable simulation paths.
Crossing quantiles (see footnote 9) are not an issue since we move through the tree at random. Our downside risk
estimates reported in Section 4.2 are robust to increasing the number of grid-points, and to interpolating parameter
estimates between quantiles.
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2.3 Putting it all together in a risk management framework

A key question for a policy maker is to what extent a policy intervention reduces downside risk

to the economy and what risk it imposes in terms of reduced growth. In other words, how is

a policy maker to assess the change in forecast distributions triggered by its actions? The risk

management framework answers this question by requiring the policy maker to be explicit about

the trade-off between downside risk and upside potential. It is equivalent to requiring the decision

maker to provide a loss function, and setting the policy variables to levels that minimize such a

loss. We believe that framing the problem in terms of risk management facilitates the elicitation of

the preferences of the policy maker and the communication of the policy decision.

Suppose the macro-prudential authority has an instrument (or vector of instruments) ct that

can be used to influence the predictive growth distribution. This influence can be direct (ct →

yt+1) or indirect (e.g., ct → st → yt+1). The QVAR structure allows us to capture both types

of transmission. A convenient way to penalize downside risk is given by specifying the utility

maximization problem as

max
{ct+h}∞h=1

∞∑
h=1

βh
(
GLt,t+h

(
yt+h(ct:t+h)

)
+ λGSt,t+h

(
yt+h(ct:t+h)

))
(15)

where λ > 1 is a weight determining the aversion to negative realisations of output growth, β is an

intertemporal discount factor, ct:t+h = (ct, . . . , ct+h)
′, and GSt,t+h is always a negative number.

The objective function (15) is reminiscent of the mean with downside risk model in asset allo-

cation; see e.g. Fishburn (1977).13 Since E [yt+h|F1t] = GSτt,t+h + GLτt,t+h, see Section 2.1, (15)

can be rewritten in terms of expected future economic growth instead of upper quantiles to future

growth. The objective function (15) is then equal to the expression suggested by Carney (2020),

max
{ct+h}∞h=1

∞∑
h=1

βh
(
Et
(
yt+h(ct:t+h)

)
+ (λ− 1)GSt,t+h

(
yt+h(ct:t+h)

))
, (16)

13Kilian and Manganelli (2008) show that most of the currently existing downside risk measures are special cases
of the downside risk notion proposed by Fishburn (1977) in the context of portfolio allocation.
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trading off future trend growth against downside risks to the economy. We refer to Suarez (2021)

for a micro-foundation of a similar objective function based on a representative agent with a CARA

utility function on GDP.14 We use (16) to study the benefits from adopting an active financial

stability policy in Section 4.4 below.

3 Data

3.1 Macroeconomic data pre-1999

Structural QVAR models require a sufficiently large sample size to ensure that its parameters can

be estimated with adequate precision. At least two challenges are present, however, when working

with euro area macro data in practice. First, the euro area celebrated its 20th anniversary merely in

2019. When working with quarterly data, T = 4× 20 = 80 is at the lower end of what is required

for a meaningful empirical study of macro-financial interactions at different quantiles. Second,

euro area membership has been expanding over time, from initially 11 countries in 1999 to 19

countries in 2015. Changes in euro area aggregate data stemming from new countries joining,

rather than, say, from changes in financial conditions or growing vulnerabilities, would severely

complicate any empirical analysis.

Fortunately, both problems can be addressed. During the ECB’s early years, pre-1999 macro-

financial time series data were urgently needed for monetary policy analysis. Against this back-

ground counterfactual data were constructed “as if” the euro area had already consisted earlier; see

e.g. Fagan et al. (2001). Such pre-1999 euro area data is publicly available.15 We obtain real GDP

growth data from 1988Q3 to 2018Q4 from this source, resulting in T = 121, and refer to Web

Appendix C.1 for a time series plot.

14Our empirical results presented in Sections 4.1 to 4.3 do not depend on the objective function. In Section 4.4 any
other objective function could be used, if so desired, including complicated nonlinear specifications.

15https://eabcn.org/page/area-wide-model. In its most recent version, the database adopts a fixed euro area composi-
tion approach, constructing aggregate data series as if the euro area had always consisted of its current (end-of-sample)
19 members. Most variables are available from 1970Q1 onwards. The further back, however, the more uncertain the
data quality.
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3.2 Composite indicator of systemic stress

The ECB’s composite indicator of systemic stress (CISS) is a summary measure of the level of

financial distress. Web Appendix C.1 provides a summary of the methodology, a time series plot,

and a listing of all included data series. The CISS is computed for the euro area as a whole and

includes 15 raw, market-based financial indicators that are split equally into five categories: finan-

cial intermediaries, money markets, equity markets, bond markets, and foreign exchange markets.

Each category is summarized by a sub-index. The sub-indices are subsequently aggregated to a

single time series in a way that takes their time-varying cross-correlations into account. As a re-

sult, the CISS takes higher values when stress prevails in several market segments at the same time,

capturing the idea that financial stress is more systemic, and more dangerous for the economy as

a whole, whenever financial instability spreads widely across different segments of the financial

system. The CISS is updated regularly and publicly available.16

3.3 Real-time estimates of the financial cycle

The real-time financial cycle indicator used in the empirical analysis is based on Schüler et al.

(2020). The construction of the indicator mirrors that of the CISS; see Web Appendix C.2 for

details and a time series plot. Their indicator takes high values when i) total non-financial credit

volumes grow at an unusually fast pace (proxying a credit boom), and ii) real estate, equity, and

bond prices grow at an unusually fast pace as well at the same time (proxying asset price inflation).

In this sense, their financial cycle indictor is not a measurement of credit growth, which can be

beneficial, but of bad, or excess, credit growth that coincides with asset price inflation.

The financial cycle indicator is available for the euro area and the U.S. from the authors. Their

indicator took high values during the dot-com boom years between 1997 and 2000, and during

the credit boom years preceding the 2008–2009 global financial crisis. Their indicator took par-

ticularly low values in 2009 and 2011, times associated with crisis-induced fire sales and financial

system deleveraging.

16https://sdw.ecb.europa.eu/
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4 Implementing the macro-prudential risk management approach

This section uses an estimated QVAR model to study macro-prudential policy stance in the pres-

ence of substantial asymmetries and tail interactions. It first discusses model selection, parameter

estimates for a baseline specification, and the outcome of specification tests. Second, it quanti-

fies downside risks to, and the upside potential of, the euro area economy stemming from financial

stress and vulnerabilities. Third, it reports the outcome of a model stress testing exercise, assessing

whether the euro area economy was at all times equally vulnerable to a fixed sequence of adverse

shocks. Finally, it asks whether it pays off to adopt an active macro-prudential policy, producing a

risk management-based metric of macro-prudential policy stance. We focus our discussion on the

euro area, and report analogous tables and figures for U.S. data in Web Appendix F.

4.1 QVAR estimates

In this section, we report the estimation results of our favorite QVAR model specification. We dis-

cuss the variable selection procedure, the characteristics of the parameters estimation, specification

tests, and quantile impulse response functions.

4.1.1 Variable selection exercise

A two-variable QVAR model for quarterly real GDP growth and the CISS provides a minimal

system to study downside risks to the real economy. GDP growth is required to quantify downside

risks, and the CISS significantly impacts the left tail of the predictive GDP growth distribution;

see Section 4.1.2 below. This minimal system, however, may miss important interactions with

other economic variables. In addition, it misses a variable that can be influenced directly through

financial stability policies.

Web Appendix D discusses a systematic search over potential additional endogenous variables

to be included in a QVAR. Two variables stand out as interacting closely with euro area GDP

growth and financial stress at all nine quantiles. Both are related to central bank policy instru-
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ments. The de-trended three-months EURIBOR rate, a measure of monetary policy, is ranked first,

impacting both future GDP growth as well as current financial conditions. Schüler et al. (2020)

broad financial cycle indicator (see Section 3.3) is ranked second, followed by the euro area’s

capacity utilization rate. Capacity utilization is a business cycle indicator, and as such highly

correlated with GDP growth, and arguably of lesser interest in a financial stability context.

Web Appendix F.2 reports analogous results for U.S. data. Approximately similar variables are

selected.

4.1.2 Model specification and parameter estimates

We choose a trivariate QVAR specification as our benchmark model. Our benchmark model con-

sists of annualized quarterly real GDP growth yt, the financial cycle indicator ct, and the CISS st.

We therefore consider x̃t = (yt, ct, st)
′.

Figure 1 reports parameter and standard error estimates for our baseline specification. Param-

eter point estimates are obtained equation-by-equation via np univariate quantile regressions. The

appropriate standard error bands around the parameter point estimates, however, do not coincide

with the equation-by-equation estimates as supplied by common software packages. The standard

errors reported in Figure 1 take cross-equation restrictions at common quantiles into account, see

Web Appendix B.1 for details, and can be tighter or wider compared to the equation-by-equation

standard error estimates.

We discuss the parameter estimates from top left to bottom right. Each of the panels presents

the parameter estimates across nine deciles together with 95% confidence bands and the corre-

sponding least squares estimate. The arrangement of panels in Figure 1 corresponds to the ordering

of variables in (6). Overall, the quantile regression estimates differ substantially across quantiles,

as well as from their least squares counterparts. Each intercept estimate in ω increases monotoni-

cally in the considered quantile. This pattern is by construction, and reflects the fact that quantile

shocks are not centered around zero; see (11).
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Figure 1: Parameter estimates for baseline QVAR model
Parameter estimates from a trivariate QVAR model estimated for p = 9 quantiles from 0.1 to 0.9. Variables are
ordered GDP growth (respective first row), financial cycle (second row), and CISS (third row). Parameter estimates
are obtained equation-by-equation while standard error estimates take cross-equation restrictions into account; see
Web Appendix B.1. Standard error bands are dashed and at a 95% confidence level. Red horizontal lines indicate least
squares estimates. Estimation sample is 1988Q3 to 2018Q4.
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All contemporaneous effects are visible from matrix A0. The contemporaneous impact of

GDP growth on the financial cycle (element [2,1]) as well as on the CISS (element [3,1]) is small

and rarely statistically significant. The [3,2]-element of A0 points to a positive contemporaneous

impact of the financial cycle on the CISS at its lower quantiles. This element is a mirror image

of the [3,2]-element in A1. Taken together, they suggest that the CISS is high when the financial

cycle falls (or vice versa), a pattern that also shows up in the respective impulse response function

shown in Figure 2. This is intuitive, as financial sector deleveraging and financial stress tend to go

hand-in-hand.

All lagged effects are visible from matrix A1. The [1,3]-element signals the presence of sub-

stantial asymmetries in the impact that financial stress (CISS) has on future GDP growth. The

[3,3]-element of A1 captures the autoregressive coefficient associated with the CISS. The estimate

exceeds one at the 0.9 quantile, pointing to a local non-stationarity in the rightmost tail. Local

non-stationarity is not uncommon in QAR models, and does not imply global non-stationarity;

see Koenker (2005, Ch. 8.3). Indeed, conditional quantiles simulated from our QVAR model at

estimated parameters converge to their unconditional counterparts. The standard errors around the

locally non-stationary estimate are, however, not reliable, and not reported for this reason.

Three specifications have been run for robustness. First, the variable selection exercise in Sec-

tion 4.1.1 suggested that short-term interbank rates can be a useful additional variable to consider

in a QVAR. Web Appendix E.1 studies a five-variable monetary structural QVAR model. This

model additionally contains the three-month EURIBOR rate as well as quarterly changes in the

GDP deflator (inflation). This monetary structural QVAR model is of considerable interest in its

own right. It yields, however, broadly similar predictions in terms of downside risks and mea-

sures of macro-prudential policy stance. We therefore proceed with the above more parsimonious

trivariate model for simplicity.

Second, Web Appendix E.2 extends our baseline model with an additional, annual lag for all

variables. Information criteria prefer the more parsimonious version. The average future growth

shortfall responds more quickly, and more severely, to contemporaneous financial stress when
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Table 1: Wald test of parameter homogeneity.
Wald tests statistics. The test’s null hypothesis states that the quantile regression estimates, across p = 9 quantiles,
are equal to the median regression parameter estimates. We consider our baseline trivariate QVAR model, estimated
decile-by-decile, ranging from 0.1 to 0.9; see Figure 1. The test statistic is χ2-distributed. The appropriate degrees-
of-freedom (df) are given by the number of right-hand-side variables per equation (excluding the constant, 3, 4, and 5,
respectively), times the number of imposed restrictions (9− 1 = 8).

df test statistic p-value
real GDP growth, yt 24 209.71 0.00
financial cycle indicator, ct 32 26.12 0.76
CISS Financial stress index, st 40 79.52 0.00

based on a single-lag specification. We therefore proceed with the single-lag specification.

Finally, Web Appendix E.3 presents our baseline QVAR parameter estimates when the estima-

tion sample is restricted to exclude counterfactual pre-1999 euro area data. The point estimates

are more noisy but overall similar. The standard error bands are wider, suggesting less precise

parameter estimates.

Web Appendix F.3 reports parameter and standard error estimates based on our baseline QVAR

model for U.S. data. The parameter estimates are broadly in line with those for the euro area:

Growing financial vulnerabilities shift the right tail of the U.S. CISS towards more positive values.

A shock to the U.S. CISS shifts the left tail of the predictive GDP growth distribution towards more

negative values, while leaving the right tail less affected.

4.1.3 Wald test and quantile impulse response functions

Table 1 reports the outcome of three Wald χ2 tests of parameter homogeneity across quantiles.

We proceed equation by equation for i = 1, 2, 3. Each Wald test is implemented as explained in

Koenker (2005, Ch. 3.3.2); see also Koenker and Basset (1982) and Web Appendix B.2. The test

rejects the parameter equality restrictions implied by a linear VAR for two of our three variables,

GDP growth and CISS. Parameter homogeneity is most forcefully rejected for the GDP growth

equation. The test outcomes are intuitive given the parameter and standard error estimates reported
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Figure 2: Quantile impulse response functions
Impulse response functions implied by the parameter estimates reported in Figure 1. Variables are ordered as GDP
growth (respective first row), financial cycle (second row), and CISS (third row). Estimation sample is 1988Q3 to
2018Q4.
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in Figure 1.

Figure 2 plots quantile impulse response functions (QIRF) as implied by the parameter esti-

mates in Figure 1. We refer to Web Appendix B.3 for a precise definition and derivation of QIRF in

our modeling context. We define the QIRF as the change in the conditional quantile forecast qγt+h,

at any γ ∈ (0, 1), when a one standard deviation (of ε.5it) sized shock is applied to the structural

shocks εγit. In a standard VAR, there is only the mean forecast to be characterized. In a quantile

VAR, one could study all the possible combinations of quantiles. In the figure, we report the im-

pact of the shocks on different quantiles of each variable, conditioning on a median evolution of the

other variables. If the data generating process were linear then the conditional median responses
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reported in Figure 2 would coincide with standard IRFs from a linear VAR.

The asymmetries implied by the Wald test outcomes are clearly visible in the shapes of the

QIRF. As expected, the real GDP response to a shock to the CISS depends markedly on the quantile

of interest. The bottom 0.1 quantile of real GDP responds much more strongly than its upper 0.9

quantile. This is not surprising, and in line with Adrian et al. (2020). The response of the CISS to a

shock to the financial cycle is highly asymmetric. A shock to the financial cycle does not move the

CISS much in most parts of the CISS’s distribution. The upper 0.9 quantile of the CISS, however,

displays a marked negative response in the short term that disappears after a year or so. Vice

versa, positive shocks to the CISS depress the financial cycle approximately uniformly across the

financial cycle’s distribution. The interactions between the CISS and the financial cycle suggest a

vicious circle to emerge during crisis periods, with an increase in financial stress triggering lower

financial activity, which in turn causes stress to further increase, and so forth. Such dynamics may

reflect, for example, negative externalities from financial institutions’ deleveraging efforts spilling

over to other segments of the financial system, with potential feedback effects, during financial

turmoil.

Web Appendix F.4 discusses the analogous results for U.S. data. The Wald test outcomes and

impulse response function estimates are remarkably similar across both sets of data.

4.2 Estimates of downside risk and upside potential

This section discusses our downside risk and upside potential estimates as introduced in Sec-

tion 2.1. Web Appendix F.5 discusses the U.S. case.

Figure 3 plots the average future growth shortfall (AGS) and longrise (AGL) for the euro area.

The risk estimates are based on full-sample parameter estimates, but are otherwise conditional

on variables observed up to time t only. Growth shortfall and longrise are forward-looking, and

averaged over t + 1 and t + 8; see (3) and (5). To study the importance of including current

financial conditions and medium-term vulnerabilities we compare our baseline QVAR model to a

much simpler, univariate quantile autoregressive (QAR) model for GDP growth only. The QAR
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model does not include the financial cycle nor the CISS.

We focus on three findings. First, accounting for financial conditions is crucial. There is a

pronounced difference between the downside risk (AGS) estimate implied by the trivariate QVAR

and the univariate QAR. During the global financial crisis (GFC) between 2008 and 2009, the

QAR-based downside risk estimate declines much later, and by much less, compared to the QVAR-

based estimate. The sovereign debt crisis between 2010 and 2012 is missed almost entirely based

on the QAR model.

Second, as a result of macro-financial interactions, the QVAR’s lower quantiles for future GDP

growth are more volatile than its upper quantiles. This observation mirrors those of Adrian et al.

(2019), who focus on single quantiles in isolation. Web Appendix E.4 plots the tail conditional

expectation and expected probability of a contraction underlying AGSτt,t+1:t+H and AGLτt,t+1:t+H

separately; see the first and second term in (2) and (4), respectively. Most of the variability in

AGSτt,t+1:t+8 comes from the changes in growth conditional on being in a recession-term, with an

additional contribution from increasing the probability of a contraction in bad times.

Lastly, the downside risks implied by the QVAR model can be economically large. The GFC

implied an extreme AGS over eight quarters of approximately -3.5%. This corresponds to a

(1 − 0.035/4)8 − 1 ≈ −6.8% reduction in real living standards. This is a substantial expected

contraction, reflecting severe downside risks from a deterioration of financial conditions. During

median times, the estimated AGS is approximately -0.5% and corresponds to a more moderate risk

of a (1− 0.005/4)8 − 1 ≈ −1.0% reduction in real living standards.

From a risk management perspective the AGS can be compared to the AGL as the latter pro-

vides an indication of the upside for the economy. The GFC did not only generate an extremely low

value for the AGS, but also for the AGL. With a value of only 0.4%, the average expected expan-

sion of the economy over the following eight quarters would have been approximately 0.8%. This

compares to an average of approximately 4% over the entire sample. The GFC thus reduced living

standards especially because of the contraction, but also persistently muted the upside potential of

the economy, and did so until early 2015.

ECB Working Paper Series No 2565 / June 2021 29



Figure 3: Euro area AGS and AGL estimates
Time-t average future growth shortfall (AGSτt,t+1:t+8) and average future growth longrise (AGLτt,t+1:t+8) estimates
evaluated at τ = 0; see (3) and (5). The trivariate estimate is based on our baseline QVAR model (dashed line, scale
on left axis) that allows for macro-financial interactions. The univariate estimate is based on a one-equation restricted
model with a constant and lagged GDP growth as the only right-hand-side variables (dotted line, scale on left axis).
Each model is estimated for p = 20 quantiles ranging from 0.025 to 0.975. We compare these estimates to quarterly
annualized real GDP growth (solid line, scale on right axis). Shaded areas indicate euro area recessions as determined
by the CEPR business cycle dating committee. The estimation sample is 1988Q3 to 2018Q4.
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4.3 Model-based stress testing

Our structural QVAR model provides a natural environment to perform model-based stress testing

exercises. We here understand stress testing as a forecast of what would happen to x̃t conditional on

the system being subjected to a certain sequence of adverse shocks. We refer to such a sequence of

adverse shocks as a stress scenario. For the computation of forecasts conditional on such scenarios

we refer to Section 2.2.4. Our stress testing approach is different from supervisory stress tests in

that our main variable of interest is not banking sector health but real economic (GDP) impact.

Figure 4 reports the time-t conditional forecast of average future real GDP growth ¯̂yt,t+1:t+4

between time t and t + 4 as implied by our trivariate model. The forecast is conditional on a 0.1

(conditional) quantile realization for GDP growth yt+h, a 0.1 quantile realization of the financial
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cycle ct+h, and a 0.8 quantile realization for CISS st+h, consecutively for h = 1, . . . , 4. The

magnitude of these shocks is approximately in line with the four observed quantile realizations for

all variables between 2008Q2 and 2009Q2. The stress test is repeated at each t = 1, . . . , T , and

always based on the same (full sample) parameter estimates. As a result, the figure is informative

about the impact of GFC-sized real and financial shocks on real living standards at any time in our

sample.17

We observe that the euro area economy is not equally resilient to the same sequence of equally

unlikely adverse financial shocks at all times. This is a direct consequence of the asymmetries

(nonlinearities) inherent in the estimated QVAR model. When financial imbalances and financial

stress are high, real GDP growth is particularly vulnerable.

Figure 4 can be informative when assessing macro-prudential policy stance. An unusually high

level of vulnerability to future real and financial shocks — a value of ¯̂yt,t+1:t+4 below its own 10%

quantile, say — indicates that large shocks have materialized and macro-prudential buffers should

be released. In the euro area, such values are observed during the financial crisis of 2008 – 2009 and

the sovereign debt crisis in 2011 – 2012. Low to moderate levels of vulnerability indicate times

when macro-prudential buffers could be built up. Gradually growing macro-prudential capital

buffers help increase banking sector resilience, lean against bad credit growth, improve incentives,

and are available to be released later whenever necessary.

Web Appendix F.6 discusses the analogous figure for U.S. data. Similar observations hold true

for these data as well.

4.4 Towards a metric for macro-prudential policy stance

An active debate in policy circles revolves around the question of how to measure the macro-

prudential policy stance. In other words, should macro-prudential policy be tightened or loosened

17Alternatively, one could define stress in absolute size; see e.g. Brownlees and Engle (2017) for a discussion.
We prefer the quantile-based approach because the probability of the stress materializing remains constant over time
regardless of current levels of volatility. The severity of stress would be much higher in periods of low volatility, as it
would take a sequence of more severe shocks to reach the same level of impact. On the other hand, low volatility does
not necessarily imply that the tipping point is also low.
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Figure 4: Vulnerability to GFC-sized shocks
Dashed line: euro area annualized quarterly real GDP growth. Solid line: predicted average annualized quarterly
real GDP growth ¯̂yt,t+1:t+4 one year ahead conditional on consecutive 0.1 quantile realizations for GDP growth yt,
0.1 quantile realizations of the financial cycle ct, and 0.8 quantile realizations for CISS st. Predictions are based on
full sample parameter estimates. Estimations sample 1988Q3 – 2018Q4. Horizontal lines refer to 0.1, 0.5, and 0.9
empirical quantiles of ¯̂yt,t+1:t+4.
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conditional on currently-available information? We use the risk management framework of Section

2.3 and the associated objective function (16) to make a step towards addressing this question. We

assume that macro-prudential instruments can be used to control the financial cycle and ask the

question when it is optimal to use them.18 The thought experiment of this section is the following:

How does the objective function of the macro-prudential authority change if the financial cycle is

marginally reduced now, to be released later on should a financial crisis occur? If the change is

positive, we conclude that the macro-prudential stance is too loose (as it would benefit from a less
18A complete answer to this question would require including policy instruments into our baseline model, such

as bank capital and various interest rates. This can be done, at the cost of decreased model parsimony, parameter
estimation precision, and identification credibility. Web Appendix E.1 suggests that our baseline downside risk and
upside potential estimates are not affected, to first order, by an extension of the QVAR information set.
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buoyant financial cycle). If on the other hand the answer is negative, macro-prudential policy is

too tight.

Table 2 summarizes our policy experiment by contrasting two counterfactual scenarios. Each

scenario looks three years into the future, equally split into two periods of H/2 = 6 quarters. The

first six quarters are normal times during which the financial cycle could be marginally reduced.

The second six quarters refer to a financial crisis during which the CISS takes high values and the

financial cycle takes low values.

The bottom panel of Table 2 sets out an active, or marginally less passive, macro-prudential

policy scenario. It is identical to the passive scenario in the top panel, except that the policy

maker marginally reduces the financial cycle in the first period, for example by requiring higher

counter-cyclical capital buffer requirements. During the financial crisis these buffers can be re-

leased, leading to a marginally less vicious collapse of the financial cycle. We simulate this policy

by setting the financial cycle to its 0.5 quantile during h = 1, . . . , 6, instead of 0.6, and to its 0.2

conditional quantile during h = 7, . . . , 12, instead of 0.1. The evolution of GDP growth is al-

ways unrestricted. Doing so allows us to simulate forward the GDP growth rate, yt+h, and growth

shortfall, GSt,t+h, at any time t+ h, h = 1, . . . , 12.

Each policy scenario is evaluated as

ut (Scenario) = ˆ̄yt+1:t+12 (Scenario) + 0.50 · ÂGSt,t+1:t+12 (Scenario) , (17)

where the mean growth estimate ˆ̄yt+1:t+12 and average future growth shortfall estimate ÂGSt,t+1:t+12

are obtained from 10,000 simulations of potential future yt+h. The utility function (17) operational-

izes (16) by choosing parameters as β = 1 for h = 1, . . . , 12 and β = 0 thereafter, λ = 1.50, and

τ = 0. Our choice of the penalty term λ implies that the policy maker cares twice as much (pos-

itively) about future trend growth than she cares (negatively) about downside risk. We evaluate

(17) twice, once for the active scenario and once for the passive scenario, and study the difference

between the two at any time t.
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Table 2: Passive vs. active macroprudential policy
The top and bottom panels report selected quantiles for GDP growth (yt), financial cycle (ct), and CISS (st) under a
passive and active macroprudential policy benchmark, respectively. Multiple quantiles 0.1 – 0.9 mean that the quantile
is picked at random. The first six quarters are normal times during which the financial cycle could, in principle, be
marginally reduced. The second six quarters refer to a financial crisis during which the CISS takes high values and the
financial cycle takes low values. If the financial cycle is actively managed in the first period then it does not not have
to contract as much during the crisis.

first six quarters second six quarters
“normal times” “financial crisis”

passive yt 0.1 – 0.9 0.1 – 0.9
benchmark ct 0.6 0.1

st 0.1 – 0.9 0.9
active yt 0.1 – 0.9 0.1 – 0.9
macro-pru ct 0.5 0.2
policy st 0.1 – 0.9 0.9

Figure 5 plots the utility difference ∆ut = ut (active) − ut (passive) associated with adopting

the active macro-prudential policy. Adopting the active policy is the preferred option most of

the time. This is not surprising as we condition on a severe financial crisis in the second period.

Adopting the active policy, however, is not equally beneficial at all times. The benefits from leaning

against the financial cycle are maximal during the late 1990s before the bust of the dot-com boom

in 2000, and during the mid-2000s before the onset of the global financial crisis in 2007. This is

intuitive, as the financial system was buoyant during these times, arguably seeding the respective

busts later on. The benefits from leaning against the financial cycle are estimated to be the most

negative following the global financial crisis of 2008, and during the euro area sovereign debt crisis

between 2010 and 2012. This is again intuitive, as the financial system was already deleveraging

during these times, and requiring more would add insult to injury. The utility difference ∆ut is

mildly correlated with the euro area financial cycle, suggesting that it is a valuable variable to track

to inform macroprudential policy discussions.

Web Appendix F.7 derives a stance metric for U.S. data. Adopting an active financial stability

policy remains the preferred policy when the financial cycle is buoyant.
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Figure 5: The benefits from active macro-prudential policy
The benefit of adopting an active macro-prudential policy stance in utility terms, ∆ut = ut (active)−ut (passive); see
(17). Parameters are chosen as β = 1, λ = 1.5, τ = 0, and H = 12. The difference is based on full sample estimates.
Estimation sample is 1988Q3 to 2018Q4. Shaded areas indicate euro area recessions.
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5 Conclusion

We proposed a risk management approach to macro-prudential policy that relates downside risks

and upside potential of the economy to measures of financial stress and medium-term vulnerabili-

ties. In an empirical study of euro area and U.S. data we found evidence of substantial asymmetries

in the conditional distribution of GDP. The left quantiles of the predictive GDP growth distribution

are related to a contemporaneous indicator of systemic stress, whose right quantiles are related

to financial vulnerabilities. Counterfactual exercises allow us to perform model based stress test-

ing, to construct urgently-needed indicators of macro-prudential policy stance, and to assess when

macro-prudential interventions are relatively more likely to be beneficial.
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A The non-cyclicality of the counter-cyclical capital buffer

Figure A.1 plots the evolution of required counter-cyclical capital buffers (CCyB) for banks located

in 28 European Union countries (top panel) and 19 euro area countries (bottom panel) between

2014 and 2019. By December 2019, five years after the introduction of CCyB, less than one in

three countries have moved to positive CCyBs. The majority of countries have not activated this

financial stability tool, in line with a potential inactivity bias.

Figure A.1: The non-cyclicality of the counter-cyclical capital buffer
Required counter-cyclical capital buffers for banks located in 28 European Union countries (top panel)
and 19 euro area countries (bottom panel) between 2014 and 2019. Country abbreviations are as in
www.esrb.europa.eu/nationalpolicy/ccb/html/index.en.html. The size of the circles is proportional to the num-
ber of countries for which the CCyB takes a certain value. Source: end-of-year data from the European Systemic Risk
Board.

SE

SE

CZ
SK
UK

SE

SK

CZ
UK

LT

SE

CZ
SK

DK
IE
LT
UK

BG

FR

27 24 23 190
.5

1
1.

5
2

2.
5

C
ap

ita
l r

eq
ui

re
m

en
t (

%
) 

2016 2017 2018 2019

SK

SK

LT

SK

IE
LT

FR

19 18 17 150
.5

1
1.

5
C

ap
ita

l r
eq

ui
re

m
en

t (
%

) 

2016 2017 2018 2019

ECB Working Paper Series No 2565 / June 2021 40



B Technical details

B.1 Parameter estimation and standard errors

The recursive QVAR model (10) – (11) can be estimated using the framework developed by White

et al. (2015). Let qγt (β) ≡ ωγ + Aγ0Yt + Aγ1Yt−1 and qγjit (β) the jth quantile of the ith variable of

the vector qγt (β), where we have made explicit the dependence on β, the vector containing all the

unknown parameters in ωγ , Aγ0 , and Aγ1 . Define the quasi-maximum likelihood estimator β̂ as the

solution of the optimization problem

β̂ = arg min
β
T−1

T∑
t=1

{
n∑
i=1

p∑
j=1

ργ

(
Ỹit − q

γj
it (β)

)}
, (B.1)

where ργ (u) ≡ u(γ − I(u < 0)) is the standard check function of quantile regressions; see

also Koenker and Bassett (1978) and Engle and Manganelli (2004). The asymptotic distribution

of the regression quantile estimator is provided by White et al. (2015), which we report here for

convenience.

Under the assumptions of Theorems 1 and 2 of White et al. (2015), β̂ is consistent and asymp-

totically normally distributed. The asymptotic distribution is

√
T (β̂ − β∗) d−→ N(0, Q−1V Q−1), (B.2)
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where

Q ≡
n∑
i=1

p∑
j=1

E[f
γj
it (0)∇qγjit (β∗)∇′qγjit (β∗)]

V ≡ E[ηtη
′
t]

ηt ≡
n∑
i=1

p∑
j=1

∇qγjit (β∗)ψγj(ε
γj
it )

ψγj(ε
γj
it ) ≡ γj − I(ε

γj
it ≤ 0)

ε
γj
it ≡ Ỹit − q

γj
it (β∗)

and fγjit (0) is the conditional density function of εγjit evaluated at 0.

The asymptotic covariance matrix can be consistently estimated as suggested in Theorems

3 and 4 of White et al. (2015), or using bootstrap-based methods following Buchinsky (1995).

Modern statistical softwares typically contain packages for quantile regression estimation and in-

ference that estimate the above quantities. Our paper uses the interior point algorithm discussed

by Koenker and Park (1996) and as implemented in Stata.

B.2 Wald test for slope parameter homogeneity

The classical theory of linear regression assumes that the conditional quantile functions of the

response variable given covariates are all parallel to one another. In our model, linearity implies

that the slope parameters Aγ0,i, A
γ
1,i (i.e. parameters other than the constant ωi), i = 1, . . . , n,

associated with different γs are identical across γs. Changes in covariates then shift the location

of the response distribution but do not change its scale or shape. In many applications, however,

quantile regression parameter estimates often vary considerably across quantiles. As a result, an

immediate and fundamental problem of inference in QR models involves testing for equality of

slope parameters across quantiles. We proceed equation by equation for i = 1, 2, 3, reporting a

test statistic for each equation. The Wald test is implemented as explained in Koenker and Basset

(1982); see also Koenker (2005, Ch. 3.3.2).
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B.3 Impulse response functions

This section derives impulse response functions (IRF) for our structural QVAR model. If the

recursive model can be given a structural interpretation, it is possible to derive a structural quantile

impulse response function. We first express xt in terms of structural shocks,

xt = ν +Bxt−1 + (Inp − A0)
−1εt,

where ν = (Inp−A0)
−1ω andB = (Inp−A0)

−1A1. In a standard VAR model, a shock to variable i

at t is affecting only the conditional expectations. In the case of QVAR, the same shock is affecting

all the quantiles. We define the shock to the structural residuals of variable i, for i = 1, . . . , n, as

ε̈it = εt + siδ,

where δ ∈ R and si is an np vector of zeros with p ones in the positions corresponding to the

quantile residuals of the ith variable. A straightforward choice for δ is one standard deviation of

the estimated median shocks ε.5it . The shock δ is simultaneously applied to all the quantile structural

shocks of the ith variable. Denoting with ẍt the value of the dependent variables if the shock ε̈it is

applied, the impulse response function at time t+ h can then be defined recursively as

∆i
t ≡ ẍt − xt

= (Inp − A0)
−1siδ (B.3)

∆i
t+1 = Ct+1A1∆

i
t (B.4)

∆i
t+h = Ct+hA1S̄∆i

t+h−1 for h ≥ 2, (B.5)

whereCt+h ≡ (In−Sγ
h

t+hA0S̄)−1Sγ
h

t+h and S̄ have been defined in Section 2.2.4. While theC matrix

can be defined to identify any possible sequence of quantiles, the example reported in Figure 2 of

the paper refers to the case where the QIRFs of the variable under study are conditional on the
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forecast of the other two variables being equal to their median.

Notice that if one were to model only the median, this would coincide with the median impulse

response analogue of the standard mean impulse response function. Quantile impulse response

functions, however, will generally depend on the quantiles paths which are considered.

B.4 Simulation algorithm for downside risk measures

Let t = 1, . . . , T denote any time in our sample. We obtain time-t conditional downside risk

measures by simulating forward S = 10, 000 potential future paths for all n variables in x̃i,t+h,

h = 1, . . . , 8 quarters ahead.

We proceed as follows.

1. Fix any t = 1, . . . , T . Obtain and save full-sample parameter estimates for all variables at

all p = 20 quantiles 0 < 0.025, 0.075, . . . , 0.925, 0.975 < 1. Set s = h = 1.

2. Draw n standard uniform random variables ui,t+h, one for each variable 1, . . . , n. Select

variable-specific quantiles γi,t+h that are closest to ui,t+h, respectively. Combine the chosen

rows ωγi,t+h

i , Aγi,t+h

0,i , Aγi,t+h

1,i into QVAR parameter matrices ωγ , Aγ0 , Aγ1 .

3. Predict xt+h one-step ahead using (6); see also (B.7).

4. Compute and save downside risk estimates GSτt,t+h and GLτt,t+h by evaluating the sample

analogues of (2) and (4). For example,

GSτ,(s)t,t+h = x̃
(s)
1,t+h · 1{x̃

(s)
1,t+h < τ},

where x̃(s)1,t+h denotes a simulated value for quarterly real GDP growth at time t+ h.

5. If h < H , set h = h + 1 and return to step 2. If h = H , compute AGSτt,t+1:t+h and

AGLτt,t+1:t+h by averaging over GSτt,t+h and GLτt,t+h. Save these simulation-specific risk

estimates.
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6. If s < S, increase s = s + 1 and return to step 2. If s = S, compute final time-t downside

risk measures as averages across simulation runs.

B.5 Counterfactual scenarios

Rather than moving through the complete tree of potential future values of x̃t+h at random, as

explained in Web Appendix B.4, we may at other times wish to consider only one path in isolation.

Such a path in isolation can also be thought of as a ‘counterfactual scenario,’ or model-based

thought experiment that conditions on an arbitrary but fixed sequence of future shocks.

The quantile of each element of the vector xt+1 at time t is a random variable, as, except for the

first element, it depends on the contemporaneous shocks of the other variables. Given the recursive

identification assumption, we can forecast the quantiles conditional on any desired quantile shock

realization. To this end we define a sequence of selection matrices {Sγ
h

t+h}Hh=1, with typical [n×np]

element Sγ
h

t+h selecting specific quantile shocks from the [np× 1] vector εt+h (see (10)), one shock

for each variable i:

Sγ
h

t+hεt+h ≡ [ε
γ1t+h

1,t+h, . . . , ε
γnt+h

n,t+h]
′, (B.6)

for γit+h ∈ {γ1, . . . , γp} and i ∈ {1, . . . , n}, selecting the variable-specific shocks to be set to zero.1

By (6)–(7), the quantile forecast of x̃t+1, conditional on setting the quantile shocks identified by

the matrix Sγ
h

t+h to zero, is

x̂St+1 = Ct+1(ω + A1x̃t) (B.7)

x̂St+h = Ct+h(ω + A1S̄x̂
S
t+h−1) for h ≥ 2 (B.8)

where Ct+h ≡ (In − Sγ
h

t+hA0S̄)−1Sγ
h

t+h, and where S̄ is a [np × n] matrix such that xt+h =

S̄Sγ
h

t+hxt+h.2

Given the above sequence {Sγ
h

t+h}Hh=1, it is now possible to iterate the system (B.7)-(B.8) for-

1Recall that zero is not a neutral value except for the median; see (11).
2S̄ consists of stacked identity matrices and is always available and unique. The selection of variable-specific

quantiles via (B.6) does not lead to a loss of information.
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ward to obtain forecasts of the dependent variables x̃t+h at any future point h conditional on the

specified counterfactual scenario.
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C Data details

C.1 CISS: construction details and data sources

The Composite Indicator of Systemic Stress (CISS) belongs to the family of financial stress indices

(FSIs). FSIs are generally designed to quantify the level of stress in the whole or parts of the

financial system. They do this by aggregating a certain number of individual stress indicators into

a single statistic; see Illing and Liu (2006) and Kliesen et al. (2012) for surveys. The individual

components capture market- and instrument-specific stress symptoms, such as increased market

volatility, default risk premia, or liquidity risk premia.

The distinctive feature of the CISS is its focus on the systemic dimension of financial stress.

Systemic stress is interpreted as an ex post measure of systemic risk, i.e. a measure of the degree to

which systemic risk materialised. It builds on standard definitions of systemic risk characterising

it as the risk that financial instability becomes so widespread that it severely disrupts the provi-

sion of financial services to the broader economy with significant adverse effects on growth and

employment; see e.g. de Bandt and Hartmann (2000) and Freixas et al. (2015, p. 13). The CISS op-

erationalises the idea of systemic stress by aggregating market-specific subindexes of stress based

on time-varying correlations between them in the same way portfolio risk (variance) is computed

from the risk profiles of individual assets (variances and covariances). In this way the CISS puts

more weight on situations in which stress prevails in several market segments at the same time.

This is consistent with the idea that stress becomes systemic when it is correlated and widespread.

Table C.1 provides a description of all CISS components.

The CISS is computed as follows. First, 15 stress indicators are selected from five major seg-

ments of the financial system. The five market segments are i) the financial intermediaries sector,

ii) money markets, iii) bond markets, iv) equity markets for non-financial firms, and v) foreign

exchange markets. Taken together, these segments cover the main financial flows from lenders

to ultimate borrowers. The financial funds are allocated either directly via securities markets, or

indirectly through financial intermediaries.
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Table C.1: Components of the CISS
A listing of variables and transformations used in the computation of the CISS. Volatility is computed as a weekly
average of absolute daily log return or interest rate changes. CMAX computed based on end-of-week values. All other
series are computed as weekly averages of daily data. Data start in January 1980 or when becoming available. Data
sources are Thomson Financial Datastream, ECB, and own calculations. Weekly updates of the CISS are available
from the ECB’s Statistical Data Warehouse (SDW). The SDW key is CISS.D.U2.Z0Z.4F.EC.SS CI.IDX.3

Sector and variables weight
A. Money markets 0.15
A.1 Volatility of 3-month Euribor.
A.2 Spread between 3-month Euribor and French Treasury bill rate.
A.3 Monetary Financial Institutions’ recourse to the ECB’s marginal lending facility

divided by total reserve requirements.

B Bond markets 0.15
B.1 Volatility of German 10-year benchmark government bond prices.
B.2 7-year yield spread between A-rated non-financial corporate and government bonds.
B.3 10-year interest rate swap spread.

C. Equity markets 0.25
C.1 Volatility of non-financial stock price index.
C.2 Maximum cumulated loss (CMAX) of non-financial stock price index

over a moving 2-year window; CMAXt = 1− xt/max[xi ∈ (xt−j |j = 0, 1, . . . , 104)].
C.3 Stock-bond return correlation between total market stock price index and German

10-year government bonds. Computed as difference between moving 4-week and 4-year
windows to account for trend changes. Negative differences are set to zero.

D. Financial intermediaries 0.30
D.1 Volatility of financial stock price index.
D.2 Geometric average of the CDF-transformed CMAX and the book-price ratio

associated with a financial stock price index.
D.3 7-year yield spread between A-rated financial and non-financial corporate bonds.

E. Foreign exchange markets 0.15
E.1 Volatility of euro exchange rate vis-à-vis US dollar.
E.2 Volatility of euro exchange rate vis-à-vis Japanese Yen.
E.3 Volatility of euro exchange rate vis-à-vis British pound.
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Second, all indicators are transformed by applying a probability integral transform (PIT) based

on their empirical cumulative distribution function. For this purpose, the T observations of an in-

dicator xt = (x1, x2, ..., xT ) are first ranked in ascending order, i.e. x[1] ≤ x[2] ≤ ... ≤ x[T ], where

x[1] represents the sample minimum and x[T ] the maximum. The transformed indicators zt result

from replacing each original observation xt with its respective empirical cumulative distribution

function value F (xt). That value can be computed as the ranking number r of observations not

exceeding a particular value xt, divided by the total number of available observations T .

zt = F (xt) :=


r
T

for x[r] ≤ xt < x[r+1], r = 1, 2, ..., T − 1

1 for xt ≥ xT .
(C.1)

The transformation results in indicators which are unit-free and unconditionally uniformly dis-

tributed over the unit interval. The transformed indicators are thus homogenous in terms of scale

and distribution. The PIT also robustifies the composite indicator to outliers. This is an important

property since the CISS is computed recursively over an expanding data window. The construc-

tion of the CISS avoids look-ahead bias and event reclassification problems; see e.g. Hollo et al.

(2012) and Brownlees et al. (2020). For each market segment i = 1, 2, . . . , 5, we compute a

stress subindex sit from j = 1, 2, 3 transformed components zijt as a simple arithmetic average:

sit = 1
3

∑3
j=1 zijt.

Finally, the last aggregation step requires an estimate of time-varying cross-correlations be-

tween the sit. We estimate the variance-covariance matrix Ht of the 5-dimensional vector of

demeaned subindexes s̃t = (st − 0.5) as an exponentially-weighted moving average (EWMA),

according to which

Ht = λHt−1 + (1− λ)s̃ts̃
′
t, (C.2)

with a smoothing parameter fixed at λ = 0.93. This is a common choice for daily or weekly data;

see Engle (2002). The elements ωijt of correlation matrix Ωt are computed from the elements hijt
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Figure C.1: Euro area real GDP growth rate, CISS, and financial cycle indicator
Left panel: The GDP growth rate is annualized (left scale). The CISS varies between 0 and 1 by construction (right
scale). Right panel: The real-time broad financial cycle indicator of Schüler et al. (2020). The financial cycle indicator
takes high values when total non-financial credit volumes grow at a fast pace, and real estate, equity, and bond prices
grow at a fast pace as well. Shaded areas indicate CEPR euro area recession periods.
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of Ht as ωijt = hijt/
√
hiithjjt. The CISS is now computed as

CISSt = (w · zt)′Ωt(w · zt), (C.3)

where 0 < CISSt ≤ 1 by construction. The vector of market segment weights w is given in the

last column of Table C.1 and is chosen to be approximately in line with euro area national accounts

and preliminary data analysis; see Hollo et al. (2012) for details.

The left panel of Figure C.1 reports euro area GDP growth along with the CISS between

1988Q3 and 2018Q4. High values of the CISS are observed during the recession in 1992, the

global financial crisis between 2008 and 2009, and during the euro area sovereign debt crisis be-

tween 2010 and 2012. In each case, elevated financial stress is associated with negative GDP

growth.
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C.2 Financial cycle indicator details

This subsection sketches the construction of Schüler et al. (2020)’s broad financial cycle indicator

for convenience. The main purpose of the indicator is to capture a build-up of financial imbalances.

The indicator is constructed as follows. First, quarterly growth rates of total credit volume, real

estate prices, equity prices, and bond prices are obtained. Second, the four series are combined

using the CISS methodology as detailed in Section C.1. This approach ensures that the indicator

emphasizes times when all four sub-indicators take high values simultaneously. Third, the resulting

time series is smoothed by taking a weighted average over a rolling window covering the last six

quarters. The weights decline linearly (6/21, 5/21, . . . , 1/21), with the highest weight on the most

recent observation. The latter step serves to trade off reliability (fewer erratic movements) against

timeliness (ability to react to recent developments in a timely fashion). The indicator is shown to

have out-of-sample early warning properties viz-à-viz financially led downturns.
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D Euro area variable selection exercise

This section presents the main results of a systematic search over potential additional endogenous

variables to be included in a QVAR.

Our variable selection exercise is set up as follows. We estimate a recursive trivariate QVAR

for x̃t = (yt, zt, st)
′, consisting of annualized quarterly real GDP growth yt, a third variable zt to be

affected by macroprudential policies, and the CISS st. Sandwiching zt between yt and st implies

that zt can explain st (the CISS) both instantaneously and with a lag. We loop over many available

macro-financial variables zt. For each case we evaluate the average quantile regression objective

function at quantiles ranging from 0.1 to 0.9 (decile-by-decile). The objective function is evalu-

ated only for the GDP growth and CISS equations, as these variables remain fixed across loops.

Each trivariate system is estimated for the same number of data points and deterministic model

parameters. As a result, information criteria penalty terms are the same across specifications, and

can therefore be set to zero for model comparison purposes without loss of generality.4

Figure D.1 presents our main variable selection results for the euro area. Variables are ranked

in terms of average check function values – the smaller the better. Non-stationary time series are

de-trended using Hamilton (2018)’s filter, and are marked with a star (*) in the figure legend.

Two variables stand out as interacting closely with euro area GDP growth and financial stress

at all nine quantiles. Both are related to central bank policy instruments. The de-trended three-

months EURIBOR rate, a measure of monetary policy, is ranked first, impacting both future GDP

growth as well as current financial conditions. Schüler et al. (2020) broad financial cycle indicator

(see Section 3.3) is ranked second, followed by the euro area’s capacity utilization rate. Capac-

ity utilization is a business cycle indicator, and as such highly correlated with GDP growth, and

arguably of lesser interest in a financial stability context.

Table D.1 lists all macro-financial variables used in our variable selection exercise; see Section

4.1.1. The list for variable selection is close to that advocated by Aikman et al. (2017). Non-

stationary time series were detrended using Hamilton (2018)’s regression filter.

4For a discussion of model selection between different quantile time series models see e.g. Lee et al. (2014).
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Figure D.1: Variable selection
Variables are ranked according to their average check function value in a three-variable QVAR. Real quarterly GDP
growth and CISS are fixed variables in the QVAR. Check function variables are evaluated at quantiles from 0.1 to 0.9
(decile-by-decile) for US GDP growth and US CISS only. Estimation sample is 1976Q2 to 2018Q4. Non-stationary
time series are de-trended using Hamilton (2018)’s regression filter and are indicated in the legend with a asterisk (*).
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Table D.1: Variables list for the selection exercise
Euro area variables used in the selection exercise discussed in Section 4.1.1.

Variable Description Source
Total employment Euro area total employment, Euro area wide model

calendar and seasonally adjusted, in thousands
Unemployment rate Euro area unemployment rate, Euro area wide model

share of civilian workforce, S.A. (%)
HH savings rate Euro area gross household saving rate, Euro area wide model

calendar and seasonally adjusted.
10-year Government bond yield Euro area nominal long-term interest rate Euro area wide model

In percent, and per annum
3-Month Euribor Euro area nominal short-term interest rate, Euro area wide model

Last trade price, percent per annum
Loans to HHs Euro area loans to households, Euro area wide model

at current prices, market value, in Euro (Billions)
Loans to non-financial corporations Euro area loans to non-financial corporations, CEPREMAP

at current prices and market values, in euro (Billions)
Capacity utilization rate EA total manufacturing capacity utilization rate Datastream

seasonally adjusted, monthly average over EA19 (%)
House price index Euro area residential property price index, OECD

real value (2015=100)
House price index - DPI ratio Euro area residential property price index OECD

to per capita net nominal disposable income, ratio (%)
House price index, EA17 Euro area residential property price index, OECD

real value (2015=100). EA17
House price to rent ratio Euro area residential property price index OECD

to rent price index ratio. EA17 (%)
Systemic risk indicator (Median) Median of the systemic risk indicator, ECB

taken over EA19
Systemic risk indicator (Mean) Mean of systemic risk indicator, ECB

taken over EA19
Broad financial cycle indicator Broad financial cycle indicator Schüler, Hiebert,

and Peltonen (2020)
Narrow financial cycle indicator Narrow financial cycle Indicator Schüler, Hiebert,

and Peltonen (2020)
10-year US-EA interest rate spread 10-year US-EA interest rate, ECB

spread, end of period, percent per annum
EURO STOXX 50 index EURO STOXX 50 price index ECB

monthly average
Current account balance EA current account balance ECB

as a share of GDP. EA19 (%)
Policy uncertainty index News-based economic policy uncertainty index,

News index (mean=100)
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E Additional results for euro area data

E.1 Robustness to extending the QVAR information set to five variables

This section considers an alternative five-variable QVAR model specification. The extended model

contains quarterly changes in the GDP deflator (inflation) and the three-month EURIBOR interest

rate as additional endogenous variables to the reference specification described in Section 4.1.2.

The monetary policy rate is ordered last, as the central bank sets it in a systematic, forward-looking

way (that is, however, not modeled further). The quarterly changes in the GDP deflator are ordered

first, and thus does not react contemporaneously to the other four variables. The ordering of

variables in the estimated QVAR is thus: GDP inflation, real GDP growth, financial cycle, CISS,

monetary policy interest rate.

Figure E.1 plots downside risk (average future growth shortfall) based on the extended five-

variable model. Our baseline AGS sstimates are provided as a point of comparison; see Figure 3.

Both model specifications yield broadly similar predictions in terms of downside risk. We therefore

proceed with the more parsimonious trivariate model for simplicity.

E.2 Robustness to changes in lag length

This section considers an alternative model specification with an extended lag structure. The al-

ternative model retains the baseline three variables as endogenous variables, but allows for a lag at

the fourth quarter in addition to the first lag (q = 1, 4). Figure E.2 is analogous to Figure 3. In-

formation criteria prefer the more parsimonious version. Average future growth shortfall responds

more quickly, and more severely, to contemporaneous financial stress when based on a single-lag

specification.

E.3 Parameter estimates from a restricted sample

Figure 1 reports our baseline QVAR parameter estimates when the estimation sample is restricted

to exclude counterfactual pre-1999 euro area data. The point estimates are more noisy but overall
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similar. The standard error bands are wider, suggesting less precise parameter estimates.

E.4 Tail conditional expectation and contraction probability

Time-t average future growth shortfall AGSτt,t+1:t+8, and average future growth longrise AGLτt,t+1:t+8

consist of two factors: a tail conditional expectation term, and the probability of a contraction; see

(2) and (4). The top and bottom panel of Figure E.4 plot the first and second factor over time,

respectively. Most of the variability in AGSτt,t+1:t+8 comes from the first term, with an additional

contribution of the second term in bad times.

Figure E.1: Average future growth shortfall estimates for euro area data
Growth shortfall estimates based on a five-variable QVAR including, in addition, quarterly changes in the log GDP
deflator (i.e., inflation) and the three-month EURIBOR interest rate as additional endogenous variables. Our baseline
growth shortfall estimates are provided as a point of comparison; see Figure 3. Shaded areas indicate CEPR recessions.
The estimation sample is 1988Q3 to 2018Q4.
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Figure E.2: Average future growth shortfall estimates for euro area data
Growth shortfall estimates based on a three-variable QVAR with an extended lag structure (q = 1, 4). Our baseline
growth shortfall estimates are provided as a point of comparison; see Figure 3. Shaded areas indicate CEPR recessions.
The estimation sample is 1988Q3 to 2018Q4.
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Figure E.3: Parameter estimates for 1999Q1 – 2018Q4 restricted sample
Parameter estimates from a trivariate QVAR model estimated for p = 9 quantiles from 0.1 to 0.9. Estimation sample is
1999Q1 to 2018Q4. Variables are ordered GDP growth (respective first row), financial cycle (second row), and CISS
(third row). Parameter estimates are obtained equation-by-equation while standard error estimates take cross-equation
restrictions into account; see Web Appendix B.1. Standard error bands are dashed and at a 95% confidence level. Red
horizontal lines indicate least squares estimates.
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Figure E.4: Euro area AGS and AGL components
Top panel: average future conditional tail expectation; see first factor in (2) and (4). Bottom panel: average future
contraction probability; see second factor in (2) and (4). Each estimate is based on p = 20 quantiles ranging from
0.025 to 0.975. The threshold τ is set to zero; see Figure 3. We compare these estimates to quarterly annualized real
GDP growth (solid line, left scale). Shaded areas indicate euro area recessions as determined by the CEPR business
cycle dating committee. The estimation sample is 1988Q3 to 2018Q4.
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F Selected results for U.S. data

F.1 U.S. data

The left panel of Figure F.1 reports U.S. quarterly annualized real GDP growth along with the

CISS between 1973Q1 and 2018Q4. Shaded areas indicate recession periods according to the

NBER business cycle dating committee. Similar to the euro area regularities, high values of the

CISS for the U.S. are clearly associated with negative realizations of real GDP growth.

The right panel of Figure F.1 plots Schüler et al. (2020)’s broad financial cycle indicator for

the U.S. Their indicator took high values in the years leading up to the U.S. savings and loan crisis

during 1982 and 1984, during the dot-com boom years between 1997 and 2000, and during the

“conundrum” period between 2003 and 2006 preceding the financial crisis.

Figure F.1: U.S. real GDP growth rate, CISS, and financial cycle indicator
The GDP growth rate is annualized. Shaded areas indicate NBER recession periods. CISS and FCY vary between 0
and 1 by construction.
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F.2 Variable selection results for U.S. data

This section reports the results from a variable selection exercise for U.S. data. The setup of the

exercise is analogous to the one presented in Section 4.1.1. We study which variable is most

appropriate to be added to a baseline bivariate QVAR containing real GDP growth and U.S. CISS

based on the average QR “check” objective function; see Koenker and Bassett (1978).

Figure F.2 presents our variable selection results. Remarkably, the highly-ranked variables are

relatively similar. The broad financial cycle estimate of Schüler et al. (2020) is found to interact

closely with U.S. real GDP growth, as well as the U.S. version of the CISS. Short-term and long-

term interest rates (implicitly, the term spread) appear to matter as well. The NFCI favored by

Adrian et al. (2019) is ranked highly because it is closely related to the U.S.-version of the CISS.
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Figure F.2: Variable selection for U.S. data
Variables are ranked according to their average check function value in a three-variable Q-VAR. Real quarterly GDP
growth (ordered first) and the U.S. CISS (ordered last) remain fixed inputs in the three-variable system. The middle
variable is looped over. Check function variables are evaluated at quantiles from 0.1 to 0.9 (decile-by-decile) for the
GDP growth and CISS equation only. Estimation sample is 1976Q2 to 2018Q4. Non-stationary time series were
de-trended using Hamilton (2018)’s regression filter (q = 8, h = 2) and are marked with a star.
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F.3 Parameter estimates for U.S. data

Figure F.3 reports parameter and standard error estimates for our favorite trivariate specification

based on U.S. data. The arrangement of panels in Figure F.3 corresponds to the ordering of vari-

ables in (6).

F.4 Wald test and quantile impulse response functions

Table F.1 reports the outcome of three Wald tests of parameter homogeneity across quantiles. We

implement the Wald χ2 test as explained in Koenker (2005, Ch. 3.3.2); see also Koenker and Basset

(1982). The Wald test strongly rejects the pooling (parameter homogeneity) restrictions implied by

a linear specification for the GDP growth and CISS equation for U.S. data. The pooling restrictions

are not rejected for the financial cycle equation. The test outcomes are intuitive given the parameter

and standard error estimates reported in Figure F.3.

The asymmetries implied by the Wald test outcomes are clearly visible in the shapes of the

QIRF; see Figure F.4. As expected, the real GDP response to a shock to the CISS depends markedly

on the quantile of interest. The bottom 0.1 quantile of real GDP responds much more strongly than

its upper 0.9 quantile. This is not surprising, and in line with Adrian et al. (2020). The response

of the CISS to a shock to the financial cycle is highly asymmetric. A shock to the financial cycle

does not move the CISS much in most parts of the CISS’s distribution. In contrast, the upper 0.9

quantile of the CISS displays a marked negative response in the short term that disappears after

approximately one year.
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Table F.1: Wald test for slope homogeneity for U.S. data
Wald tests statistics. We consider our baseline trivariate QVAR model, estimated decile-by-decile ranging from 0.1
to 0.9; see Figure F.3. The null hypothesis states that the parameter estimates across the p = 9 quantiles are equal
to the median estimates. The test statistic is χ2-distributed. The test statistic’s degrees-of-freedom (df) is given by
the number of right-hand-side variables per equation (excluding the constant, i.e. 3, 4, and 5, respectively) times the
number of imposed restrictions (9− 1 = 8).

df test statistic p-value
real U.S. GDP growth yt 24 66.38 0.00
U.S. financial cycle indicator ct 32 39.25 0.18
U.S. CISS financial stress index st 40 152.87 0.00
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Figure F.3: Parameter estimates for baseline QVAR model and U.S. data
Parameter estimates from a trivariate QVAR model estimated for p = 9 quantiles from 0.1 to 0.9. Parameter estimates
are obtained equation by equation while standard error estimates take cross-equation restrictions into account; see Web
Appendix A.1. SE banks are at a 95% confidence level. Estimation sample is 1976Q2 to 2018Q4.
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Figure F.4: Quantile impulse response functions for U.S. data
Impulse response functions implied by the parameter estimates reported in Figure F.3. Impulse response functions are
plotted over the next 1, . . . , 32 quarters. Variables are ordered as GDP growth (respective first row), U.S. financial
cycle (second row), and U.S. CISS (third row). Estimation sample is 1973Q1 to 2018Q4.
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F.5 Downside risk measures for U.S. data

Figure F.5 plots our estimates for average future growth shortfall (AGS) and longrise (AGL) based

on U.S. data. Each estimate is based on full-sample estimates, but is otherwise conditional on

variables observed up to time t, covering the next two years t+ 1, . . . , t+ 8.

Time-t average future growth shortfall (AGSτt,t+1:t+8) and average future growth longrise (AGLτt,t+1:t+8),

evaluated at τ = 0 and as reported in Figure F.5, consist of two factors: a tail conditional expecta-

tion term, computed as the average of expected GDP growth conditional on negative growth, and

the probability of a contraction; see (2) and (4). The top and bottom panel of Figure F.6 plot the

first and second factor over time, respectively. Most of the variability in AGSτt,t+1:t+8 comes from

the tail conditional expectation term, with an additional contribution of the contraction probability

term in bad times.

Figure F.5: Growth shortfall estimates for U.S. data
Growth shortfall estimates based on a three-variable Q-VAR. We estimated a different set of parameters for quantiles
ranging from 0.1 to 0.9 (decile-by-decile). Shaded areas indicate NBER recessions. The estimation sample is 1973Q1
to 2018Q4.
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Figure F.6: AGS and AGL components for U.S. data
Top panel: average future conditional tail expectation; see first factor in (2) and (4). Bottom panel: average future
contraction probability; see second factor in (2) and (4). Each estimate is based on p = 20 quantiles ranging from
0.025 to 0.975. We compare these estimates to quarterly annualized real GDP growth (solid line, left scale). Shaded
areas indicate US recessions as determined by the CEPR business cycle dating committee. The estimation sample is
1973Q1 to 2018Q4.
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F.6 Model-based stress testing

Figure F.7 reports the time-t conditional forecast of average future real GDP growth ¯̂yt,t+1:t+4

between time t and t + 4 as implied by our trivariate model. The forecast is conditional on a 0.1

(conditional) quantile realization for GDP growth yt+h, a 0.1 quantile realization of the financial

cycle ct+h, and a 0.8 quantile realization for CISS st+h, consecutively for h = 1, . . . , 4. The

magnitude of these shocks is approximately in line with the eight observed quantile realizations

for all variables between 2008Q1 and 2009Q4; see Section 4.3. The stress test is repeated at

each t = 1, . . . , T , and always based on the same (full sample) parameter estimates. As a result,

the figure is informative about the impact of GFC-sized real and financial shocks on real living

standards at any time in our sample.
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Figure F.7: Vulnerability to a GFC stress scenario for U.S. data
Dashed line: U.S. annualized quarterly real GDP growth. Solid line: predicted average annualized quarterly real GDP
growth ¯̂yt,t+1:t+4 one year ahead conditional on consecutive 0.1 quantile realizations for GDP growth yt, 0.1 quantile
realizations of the financial cycle ct, and 0.8 quantile realizations for CISS st. Predictions are based on full sample
parameter estimates. Estimations sample 1973Q1 – 2018Q4. Horizontal lines refer to 0.1, 0.5, and 0.9 empirical
quantiles of ¯̂yt,t+1:t+4. The vertical line indicates the Lehman Brothers bankruptcy in 2008Q3.
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F.7 Towards a metric for macro-prudential policy stance

Table F.2 summarizes our policy experiment for U.S. data. As in the euro area case, we contrast

two counterfactual scenarios. Compared to Table 2 we chose less extreme deciles for the second

period H = 7, . . . , 12 owing to U.S. data characteristics. Each scenario looks three years into the

future, equally split into two periods of H/2 = 6 quarters. The first six quarters are normal times

during which the financial cycle could be marginally reduced. The second six quarters refer to a

financial crisis during which the CISS takes high values and the financial cycle takes low values.

Figure F.8 plots the utility difference ∆ut = ut (active)−ut (passive) associated with adopting

an active macro-prudential policy, where ut (·) is given by (17). Again, adopting the active policy is

not equally beneficial at all times. The benefits from leaning against the financial cycle are positive

during the late 1990s before the bust of the dot-com boom in 2000, and during the mid-2000s

before the onset of the global financial crisis in 2007. This is intuitive, as the financial system was

buoyant during these times, arguably seeding the respective busts later on. The utility difference

∆ut is mildly correlated with the U.S. financial cycle, suggesting that it is a valuable variable to

track to inform macroprudential policy discussions.

Table F.2: Passive vs. active macroprudential policy
The top and bottom panels report selected quantiles for GDP growth (yt), financial cycle (ct), and CISS (st) under a
passive and active macroprudential policy benchmark, respectively. Multiple quantiles 0.1 – 0.9 mean that the quantile
is picked at random. The first six quarters are normal times during which the financial cycle could, in principle, be
marginally reduced. The second six quarters refer to a financial crisis during which the CISS takes high values and the
financial cycle takes low values. If the financial cycle is actively managed in the first period then it does not not have
to contract as much during the crisis.

first six quarters second six quarters
“normal times” “financial crisis”

passive yt 0.1 – 0.9 0.1 – 0.9
benchmark ct 0.7 0.2

st 0.1 – 0.9 0.8
active yt 0.1 – 0.9 0.1 – 0.9
macro-pru ct 0.6 0.3
policy st 0.1 – 0.9 0.8
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Figure F.8: The benefits from active macro-prudential policy for U.S. data
The benefit of adopting a less passive macro-prudential policy stance in utility terms, ∆ut = ut (less passive) −
ut (passive); see (17). Parameters are chosen as β = 1, λ = 1.5, τ = 0, and H = 12. The difference is based on
full sample parameter estimates. Estimation sample is 1973Q1 to 2018Q4. Shaded areas indicate NBER-dated U.S.
recessions.
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Schüler, Y., P. Hiebert, and T. A. Peltonen (2020). Financial cycles: Characterisation and real-time mea-

surement. Journal of International Money and Finance 100, 82–102.

White, H., T. H. Kim, and S. Manganelli (2015). VAR for VaR: Measuring tail dependence using multivari-

ate regression quantiles. Journal of Econometrics 187, 169–188.

ECB Working Paper Series No 2565 / June 2021 74



Acknowledgements 
We would like to thank Jacopo Maria D’Andria, Albert Pierres Tejada, and Paul Delatte for excellent research support. The views 
expressed in this paper are those of the authors and they do not necessarily reflect the views or policies of the European Central Bank. 
 
Sulkhan Chavleishvili 
European Central Bank, Frankfurt am Main, Germany; email: sulkhan.chavleishvili@ecb.europa.eu 
 
Robert F. Engle 
New York University Stern School of Business, New York, New York, United States; email: rengle@stern.nyu.edu 
 
Stephan Fahr 
European Central Bank, Frankfurt am Main, Germany; email: stephan.fahr@ecb.europa.eu 
 
Manfred Kremer 
European Central Bank, Frankfurt am Main, Germany; email: manfred.kremer@ecb.europa.eu 
 
Simone Manganelli 
European Central Bank, Frankfurt am Main, Germany; email: simone.manganelli@ecb.europa.eu 
 
Bernd Schwaab 
European Central Bank, Frankfurt am Main, Germany; email: bernd.schwaab@ecb.europa.eu 
 
 

© European Central Bank, 2021 

Postal address 60640 Frankfurt am Main, Germany 
Telephone +49 69 1344 0 
Website www.ecb.europa.eu 

All rights reserved. Any reproduction, publication and reprint in the form of a different publication, whether printed or produced 
electronically, in whole or in part, is permitted only with the explicit written authorisation of the ECB or the authors.  

This paper can be downloaded without charge from www.ecb.europa.eu, from the Social Science Research Network electronic library or 
from RePEc: Research Papers in Economics. Information on all of the papers published in the ECB Working Paper Series can be found 
on the ECB’s website. 

PDF ISBN 978-92-899-4751-0 ISSN 1725-2806 doi:10.2866/841668 QB-AR-21-056-EN-N 

mailto:sulkhan.chavleishvili@ecb.europa.eu
mailto:rengle@stern.nyu.edu
mailto:stephan.fahr@ecb.europa.eu
mailto:manfred.kremer@ecb.europa.eu
mailto:simone.manganelli@ecb.europa.eu
mailto:bernd.schwaab@ecb.europa.eu
http://www.ecb.europa.eu/
http://www.ecb.europa.eu/
http://ssrn.com/
https://ideas.repec.org/s/ecb/ecbwps.html
http://www.ecb.europa.eu/pub/research/working-papers/html/index.en.html

	The risk management approach to macro-prudential policy
	Technical papers
	Abstract
	Non-technical summary
	1 Introduction
	2 The risk management framework
	2.1 Measures of downside risk and upside potential
	2.2 Quantile vector autoregression
	2.3 Putting it all together in a risk management framework

	3 Data
	3.1 Macroeconomic data pre-1999
	3.2 Composite indicator of systemic stress
	3.3 Real-time estimates of the financial cycle

	4 Implementing the macro-prudential risk management approach
	4.1 QVAR estimates
	4.2 Estimates of downside risk and upside potential
	4.3 Model-based stress testing
	4.4 Towards a metric for macro-prudential policy stance

	5 Conclusion
	References
	Online Appendix
	A The non-cyclicality of the counter-cyclical capital buffer
	B Technical details
	B.1 Parameter estimation and standard errors
	B.2 Wald test for slope parameter homogeneity
	B.3 Impulse response functions
	B.4 Simulation algorithm for downside risk measures
	B.5 Counterfactual scenarios

	C Data details
	C.1 CISS: construction details and data sources
	C.2 Financial cycle indicator details

	D Euro area variable selection exercise
	E Additional results for euro area data
	E.1 Robustness to extending the QVAR information set to five variables
	E.2 Robustness to changes in lag length
	E.3 Parameter estimates from a restricted sample
	E.4 Tail conditional expectation and contraction probability

	F Selected results for U.S. data
	F.1 U.S. data
	F.2 Variable selection results for U.S. data
	F.3 Parameter estimates for U.S. data
	F.4 Wald test and quantile impulse response functions
	F.5 Downside risk measures for U.S. data
	F.6 Model-based stress testing
	F.7 Towards a metric for macro-prudential policy stance

	References

	Acknowledgements & Imprint




