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Abstract

In this paper, we propose to use the so-called Sen-Shorrocks poverty index (Shorrocks,

1995) to measure multidimensional deprivation when only dichotomous variables are avail-

able to assess deprivation in the various deprivation domains, the most common case in

the literature, and introduce a rank-dependent multidimensional poverty index for multiple

binary indicators using a counting approach. The resulting multidimensional deprivation

index, or MDI for short, also has a nice graphical representation that is derived from the

TIP curve of Jenkins and Lambert (1997). The great advantage of measuring multidimen-

sional deprivation using the MDI is that this index is sensitive to inequality and can be fully

broken down by deprivation domain, as well as by population subgroups, two features that

have far-reaching policy implications and have proven to be important for poverty analysis.

An empirical illustration based on deprivation data from four Central American countries

(Guatemala, El Salvador, Honduras, and Nicaragua) shows the usefulness of the MDI, as

it allows us to conclude, for example, that in each country, education contributes the most

(about 30%) to multidimensional poverty.
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1 Introduction

Poverty is one of the main sources of unfreedom (Sen, 2000a); it can entail not only the absence

of material needs for well-being, but also the denial of opportunities and rights to live a tolerable

life (Anand & Sen, 1997). It is, in many ways, “the worst form of human deprivation” (p. 4). The

alleviation of poverty, as well as of inequalities in its multiple dimensions, therefore remains the

key objective of development policy all over the world; this has been emphasized, for example, by

the post-2015 development agenda (“Transforming our world: the 2030 Agenda for Sustainable

Development”) agreed by the global community on September 25, 2015, which recognizes that the

elimination of poverty is the greatest global challenge and an essential prerequisite for sustainable

development (UN, 2015, p. 1).

To understand the threat posed by the problem of poverty, it is necessary to know the

interdependencies of the dimensions of poverty, its determinants, and the process through which

it appears to deepen. In this context, an important question is: how to measure poverty in

a society and its changes (Chakravarty, 2006), as policy change is often based on it. Poverty

measurement, our central concern in this paper, can be of great importance for the orientation

and monitoring of poverty alleviation policies; it is necessary, if not sufficient, for any reasoned

evaluation of these policies and can be of “enormous practical relevance” (Alkire & Foster, 2011a,

p. 290): what we measure affects what we do, and if our measurements are flawed, we run the

risk that decisions based on these measurements be biased or distorted (Stiglitz, Sen, & Fitoussi,

2009a, 2009b).

As noted by Thorbecke (2007, p. 4), before poverty can be measured, it has at least to be

understood conceptually. In this regard, our conceptual understanding of poverty has improved

and deepened notably in the last four decades or so, due in large part to the seminal work of

Amartya Sen and his theoretical framework of “capabilities and functionings”, also called the

“capability approach” (Sen, 1985, 1992, 1993, 2000a).1 This framework represents “the most

1According to Sen (2000a, p. 75), “the concept of ‘functionings’, which has distinctly Aristotelian roots, reflects
the various things a person may value doing or being. The valued functionings may vary from elementary ones,
such as being adequately nourished and being free from avoidable disease, to very complex activities or personal
states, such as being able to take part in the life of the community and having self-respect. A person’s ‘capability’
refers to the alternative combinations of functionings that are feasible for her to achieve. Capability is thus a kind
of freedom: the substantive freedom to achieve alternative functioning combinations (or, less formally put, the
freedom to achieve various lifestyles). For example, an affluent person who fasts may have the same functioning
achievement in terms of eating or nourishment as a destitute person who is forced to starve, but the first person
does have a different ‘capability set’ than the second (the first can choose to eat well and be well nourished in a
way the second cannot)”.
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comprehensive and logical starting point when attempting to capture the concept of poverty”

Thorbecke (2007, p. 4). Under the capability approach, poverty is defined as capability depriva-

tion, which implies, as remarked by Sen (2000a, p. 87), concentrating on deprivations that are

intrinsically significant, unlike low income that is only instrumentally important; thus, poverty

is seen as a multidimensional phenomenon: Human lives, as stressed by Sen (2000b, p. 18), “are

battered and diminished in all kinds of different ways”.

The literature that tries to cope with the fact that there are several dimensions of well-

being originally focused on the measurement of multidimensional welfare and inequality. The

pioneers here were Kolm (1977) and Atkinson and Bourguignon (1982).2 These authors borrowed

ideas from portfolio theory (e.g., Kolm, 1966), in particular from the literature on multivariate

stochastic dominance (e.g., Levy et al., 1975).

Studies on multidimensional poverty appeared later. First, an attempt was made to apply

what Pattanaik et al. (2012, p. 43) called the “column-first two-stage procedure”, in which,

in a first stage, the overall deprivation of society in a given domain is derived by aggregating

the deprivations of the different individuals in this domain. Then, in a second stage, the overall

deprivation of society is obtained by aggregating the deprivation levels of society in the different

domains. This is the approach of the Human Poverty Index (UNDP, 1997). But Pattanaik

et al. (2012) highlighted several shortcomings of this approach. Deriving first an aggregate

distribution of achievement in various domains and, on the basis of that distribution, defining a

poverty threshold and computing poverty indices is also the approach adopted by several authors

using various latent variable models (see, for example, Silber, 2007, for a review of that approach,

and different chapters in Kakwani and Silber, 2008, for a presentation of the application of such

multivariate techniques to the analysis of multidimensional poverty).

Chakravarty et al. (1998), Tsui (2002), and Bourguignon and Chakravarty (2003) took a

different route to grasp the multidimensionality of poverty. Their idea was to define a poverty

line for each dimension and then to combine these different poverty thresholds and the domain-

specific poverty gaps into a multidimensional poverty measure. Thus, one can assume that an

individual will be poor only if he or she is poor in all attributes, or consider that, as soon as

an individual is poor in one domain, he or she will be considered poor. In the first case, it is

obvious that we will end up with relatively few poor people, while the second way of looking at

poverty could lead to too many poor people.

2See also Maasoumi (1986), Tsui (1995), Maasoumi (1999) and Bourguignon (1999).
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Atkinson (2003) also made an important contribution, firstly because his paper focused on

the contrast between a social welfare approach and a counting approach to multidimensional

poverty measurement, secondly because this paper provided a very thorough discussion on how

to take into account the interaction between the various dimensions of poverty. Alkire and

Foster (2011a; 2011b) extended this discussion and proposed a kind of intermediate approach

between the two extreme cases known as “union” and “intersection”. Their idea is to proceed in

two stages. First, poverty thresholds must be defined for each dimension. Next, it is necessary

to determine in how many dimensions an individual must be poor in order to be considered

“multidimensionally poor”. For this reason, the authors call this approach the “dual cutoff”

method. Alkire and Foster (2011b) derived several multidimensional poverty measures: the

traditional headcount (H), the average deprivation share across the poor (A), and the adjusted

headcount ratio: M0 = HA. Alkire and Foster’s dual cutoff approach has, however, some

shortcomings that have been criticized by diverse authors mentioned in Aaberge and Brandolini

(2015) and discussed in depth in Pattanaik and Xu (2018).3 In a recent paper, Alkire and Foster

(2016) addressed some of these criticisms and introduced what they called the M−gamma class

of multidimensional poverty measures that generalizes the approach of Alkire and Foster (2011b)

and allows them to define a measure that takes into account inequality among the poor; however,

this new class does not satisfy the dimensional breakdown property, which has proven to be

important for poverty analysis. Datt (2018) also addressed some of the issues raised by those

who criticized the approach of Alkire and Foster (2011b) and introduced distribution-sensitive

multidimensional poverty measures that guaranteed, first, that regressive transfers in any single

dimension would reduce social welfare; second, that multiple deprivations would have compound

negative effects on individual and social welfare. However, Datt’s (2018) approach is limited to

continuous achievement variables.

A different view of multidimensional deprivation measurement was adopted by Chakravarty

and D’Ambrosio (2006), who took a counting approach and proposed a measure of social ex-

clusion, and Bossert et al. (2013), who characterized a multidimensional deprivation index in

the case of discrete data. Silber and Yalonetzky (2013) proposed a general formulation4 that in-

cludes as special cases the approaches of Alkire and Foster (2011b), Chakravarty and D’Ambrosio

(2006), Rippin (2010) and Bossert et al. (2013).

3Pattanaik and Xu actually do not discuss the articles of Alkire and Foster (2011b) but rather review the book
of Alkire et al. (2015).

4See also Yalonetzky (2014).
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While in the papers that were just mentioned the social poverty indices are “means” or

“generalized means” of the individual poverty functions, Aaberge and Peluso (2012), borrowing

ideas introduced by Yaari (1987; 1988), assumed that the social poverty function was directly

a function of the proportions of individuals with 1, 2, ...D deprivations, D being the maximal

number of deprivations. Silber and Yalonetzky (2013) extended the approach of Aaberge and

Peluso (2012), while Aaberge et al. (2019) extended the study of Aaberge and Peluso (2012) by

providing also an empirical illustration.5

In the present paper, we also focus on discrete variables, in fact on dichotomous (binary)

variables. The key contribution of this paper is that it introduces a rank-dependent multidimen-

sional poverty index for multiple binary indicators using a counting approach that allows us to

compute the contribution of different population subgroups to the overall level of multidimen-

sional poverty, as well as that of the different deprivation domains. This index is, in fact, an

application of Shorrocks’ (1995) extension of Sen’s (1976) famous uni-dimensional poverty index

to the analysis of multidimensional deprivation. We call this extension MDI, that is, the “Multi-

dimensional Deprivation Index”. The Sen-Shorrocks index has many useful properties that turn

out to have important policy implications when applied to the multidimensional case. Moreover,

since the Sen-Shorrocks index can be interpreted graphically, we can compare the deprivation

profiles of various countries. Thus, we also extend the TIP curve introduced by Jenkins and

Lambert (1997; 1998a; 1998b) to the multidimensional case and call these deprivation profiles

the PUB (“Prevalence”, “Unevenness” and “Breadth” of deprivation) curve. We also highlight

that the MDI turns out to be identical to a specific case of the Aaberge et al. (2019) deprivation

measure. Finally, an empirical illustration focused on Central American countries (Guatemala,

El Salvador, Honduras and Nicaragua) shows the usefulness of the MDI and PUB curves.

The paper is organized as follows. Section 2 summarizes Shorrocks’ (1995) extension of the

Sen (1976) index. Section 3 indicates how it is possible to define a multidimensional deprivation

index (MDI ) that is an extension of Shorrocks’ (1995) approach to the case of multidimensional

deprivation with dichotomous variables. Section 4 presents the properties of the MDI. Section

5 shows how this extension allows us to compare deprivation profiles. Section 6 provides an

empirical illustration based on data from Central American countries, while Section 7 offers

concluding remarks. An Appendix provides simple illustrations of the various properties of the

MDI and of the similarity between the MDI and a specific case of the Aaberge et al. (2019)

5For more details, see also, Aaberge and Brandolini (2015).
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measure.

2 On the extension of Sen’s poverty index and poverty gap pro-

files

2.1 On Shorrocks’ (1995) extension of the Sen (1976) index

Let n denote the population size, xi the income of individual i, z the poverty line, and q the

number of people with income xi ≤ z. Sen (1976) derived axiomatically a poverty index that is

expressed as

PSen =

(
1

n

)2 q∑
i=1

(2q − 2i+ 1)

(
z − xi
z

)
= HI +

(
q

q + 1

)
(1− I)GP (1)

where H refers to the incidence of income poverty (headcount ratio), I to the intensity of poverty

(the income gap ratio) and GP to the inequality of poverty (here the Gini index of the incomes

of the poor).

As stressed by Sen (1976, p. 223), the asymptotic value of PSen is P̃Sen where

P̃Sen = HI +H (1− I)GP = H

[
1−

xpoorEQ

z

]
(2)

where xpoorEQ is the “equally distributed equivalent level of income” of the incomes of the poor.6

Takayama (1977) defined a poverty index PTakayama using the censored income distribution

{x∗i }, where x∗i = Min{xi, z}. This index is then expressed as

PTakayama = 1−
(

1

n2

) ∑n
i=1 [2 (n− i) + 1]x∗i

x̄∗
= 1−

x∗EQ,Gini
x̄∗

(3)

where x∗EQ,Gini =
∑n

i=1

[
2(n−i)+1

n2

]
x∗i is the “equally distributed equivalent level of income” with

a Gini related social welfare function, while x̄∗ is the mean of the censored income distribution.

Thon (1979) finally defined his poverty index as

6See, Atkinson (1970), for a definition of the notion of “equally distributed equivalent level of income”, and
Blackorby and Donaldson (1980) for its application to the measurement of poverty.
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PThon =

[
2

(n+ 1)nz

] n∑
i=1

(z − x∗i ) (n+ 1− i) (4)

Combining the concept of “equally distributed equivalent level of income among the poor”

(Blackorby & Donaldson, 1980) and (3), Chakravarty (1983) defined his poverty index as

PChakravarty = 1−
x∗EQ
z

(5)

x∗EQ corresponding to any social welfare function, and not only to that of the Gini index, where

X∗EQ,Gini =

n∑
i=1

(
2n− 2i+ 1

n2

)
x∗i (6)

Combining (5) and (6), Chakravarty (1997) derived Shorrocks’ (1995) extension of Sen’s

index:

PSen−Shorrocks =

(
1

n

)2 n∑
i=1

(2n− 2i+ 1)

(
z − x∗i
z

)
=

(
1

n

)2 q∑
i=1

(2n− 2i+ 1)

(
z − xi
z

)
(7)

Shorrocks (1995) stressed that PSen in (1) is not replication invariant, is not a continuous

function of individual income and does not satisfy the transfer axiom, while the PSen−Shorrocks

index (like P̃Sen) is symmetric, replication invariant, monotonic, homogeneous of degree zero in

z (poverty line) and x (income), normalized, continuous and consistent with the transfer axiom.

2.2 On poverty gap profiles or the so-called TIP curve

There has also been a graphical representation of unidimensional poverty: plot on the horizontal

axis the cumulative relative frequencies of the population and on the vertical axis the cumulative

values of the expression
(

1
n

)
Max{( z−xiz ), 0}, ranking the individual by increasing income. A

“poverty gap profile” (Shorrocks, 1995), also called TIP curve (Jenkins & Lambert, 1997; 1998a;

1998b), is then obtained. Figure 1 depicts such a curve in which

- OH refers to the proportion (q/n) of individuals who are poor.

- The slope BOD is equal to BD/OD with:
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(BD/OD) = (AH/OD) =

[
(1/n)

∑q
i=1

(
z−xi

z

)
1

]
=

(q/n)
[∑q

i=1

(
z−xi

z

)(
1
q

)]
1 =

H
∑q

i=1

(
z−xi

z

)
q = Hḡ

where H is the headcount ratio, while ḡ represents the average poverty gap among the poor.

Figure 1: TIP curve

Shorrocks (1995) proved that the Sen-Shorrocks index is equal to twice the area below the

poverty gap profile, that is, to twice the area OABDHO.

Clark et al. (1981, p. 519) defined the concept of “equally distributed equivalent income

gap”, the income gap that, if shared by every poor, would lead to the same level of welfare as

the actual unequal distribution of income gaps. Defining gi as gi = (z − xi) and selecting a

deprivation function d(gi) = ( 1
α)gαi , where α is an inequality aversion parameter (α ≥ 1), Clark

et al. (1981) derived then the “equally distributed equivalent income gap” gE where

gE =

[(
1

q

) q∑
i=1

gαi

](1/α)

(8)
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In turn, Chakravarty (1983) generalized7 the approach of Clark et al. (1983).8

3 Measuring multidimensional deprivation in the case of di-

chotomous variables

While in Section 2 we mentioned some poverty indices that were introduced in the literature on

the measurement of unidimensional poverty, let us now extend the analysis to the multidimen-

sional case.

3.1 A short review of measures of multidimensional deprivation in the case

of dichotomous variables

As stressed by Dhongde et al. (2016), in the literature on multidimensional poverty there are

quite a few studies using discrete data (e.g., Alkire & Foster, 2011b; Bossert et al., 2013; Lasso de

la Vega, 2010), but relatively few that use binary data. Fusco and Dickes (2006) used binary data

but did not propose or derive an index, but used a Rasch model. Chakravarty and D’Ambrosio

(2006) axiomatically derived a social exclusion index (SECD) defined as

SECD =

(
1

n

) n∑
i=1

h(ci) (9)

where n is the number of individuals, ci the number of goods or services that individual i does

not have, while h is a function where h(0) = 0, h
′
> 0 and h

′′ ≥ 0.

Assuming a parameter γ > 0, Rippin (2010) derived the following multidimensional poverty

index:

MPRippin =

(
1

n

) n∑
i=1

(ci)
γ+1 (10)

Lasso de la Vega (2010) suggested a simple graphical device that allows to check the robustness

of poverty rankings to changes in the identification cut-off defined in Alkire and Foster (2011b).

7Calling F society’s deprivation function with F = F (g1, ..., gi, ..., gq), we get F (gE · 1) = F (g1, ..., gi, ..., gq),
where 1 is a vector of ones, so that gE = E(g1, ..., gi, ..., gq), where E is a particular numerical representation
of F . As a general poverty index, Chakravarty (1983, p. 71) introduced the measure P (g1, ..., gi, ..., gq) with
P (g1, ..., gi, ..., gq) =

(
q
n

) (
gE
z

)
8Note that in (8) gE ≥ ḡ, where ḡ =

(
1
q

)∑q
i=1 gi.
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This partial poverty ordering is examined with respect to the multidimensional headcount ratio

H and the adjusted headcount ratio M introduced by Alkire and Foster (2011b).

Assuming a parameter r ≥ 1, Bossert et al. (2013) derived axiomatically an index of multi-

dimensional deprivation MDBCD defined as (see, Silber & Yalonetzky, 2013)9

MDBCD =

[(
1

n

) n∑
i=1

(ci)
r

](1/r)

(11)

While Bossert et al. (2013) assumed variable population sizes, Dhongde et al. (2016) con-

sidered a fixed population, introduced a different concept of additive separability and made a

distinction between basic attributes and non-basic attributes, where each basic attribute has

priority over the class of non-basic attributes (see, Dhongde et al., 2016, for more details).

Finally, Aaberge et al. (2019) took a dual approach to multidimensional deprivation and

poverty measurement and defined deprivation in society via an indicator D, where

D = r −
r−1∑
k=0

Γ(Fk) (12)

while r is the number of possible deprivations suffered by individuals and Fk =
∑k

h=0 fh, with

fh the relative frequency of those who have h deprivations. In (12) Γ is a non-negative and

non-decreasing continuous function that represents the preferences of the social planner with

Γ(0) = 0 and Γ(1) = 1. Since the mean number of deprivation c̄ may be expressed as

c̄ = r −
r−1∑
k=0

Fk (13)

We derive, combining (12) and (13), that

D = c̄+

r−1∑
k=0

Fk −
r−1∑
k=0

Γ(Fk) (14)

However, the mean difference ∆ of a distribution (t) may be expressed as (see, Yitzhaki &

Schechtman, 2013, p. 16)

9Note the similarity between MDBCD and the multidimensional poverty index introduced by Bourguignon
and Chakravarty (2003) for the case of continuous variables.
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∆ = 2

∫
F (t)[1− F (t)]dt (15)

Adapting (15) to the case of discrete data and to the distribution of deprivations, we derive

that

∆ci = 2
r∑

k=0

Fk − 2
r∑

k=0

(Fk)
2 = 2

[
r−1∑
k=0

Fk −
r−1∑
k=0

(Fk)
2

]
(16)

where ∆ci refers to the mean difference of the deprivations, and we recall that Fr = (Fr)
2 = 1.

If we assume in (14) that Γ(Fk) = (Fk)
2, we conclude, using (16), that in such a case

D = c̄+

(
1

2

)
∆ci (17)

The case where Γ(Fk) = (Fk)
2 was indeed discussed by Aaberge et al. (2019).

3.2 Deriving a multidimensional deprivation index

Assume n individuals, J dimensions of well-being and a dichotomous variable aij equal to 1 if

individual i has an achievement in domain j (e.g., if j refers to “having a good health”, aij = 1

if individual i is in good health, to 0 otherwise). Let ai be defined as

ai =

J∑
j=1

wjaij (18)

where wj is the weight of dimension j and
∑J

j=1wj = 1.

If we define dij as dij = (1− aij) so that dij = 1 if individual i is deprived in domain j, to 0

otherwise, the weighted deprivation score (ci) for individual i will be expressed as

ci =

J∑
j=1

wjdij (19)

The achievement score (ai) is a “good”, so traditional tools of distributional analysis (e.g.,

the Lorenz or Generalized Lorenz curves) can be used. But the deprivation score (ci) is a “bad”

(see, Shorrocks, 1998), so a decrease in an individual’s deprivation or inequality of deprivation
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scores leads to a decrease in the “aggregate deprivation”.

The concept of poverty gap profile or TIP curve mentioned above can also be applied in

the context of multidimensional deprivation. We define an achievement threshold t, compute

the normalized achievement gaps
(
c∗i
t

)
= Max{( t−ait ), 0} = Max{ cit , 0} and then plot on the

horizontal axis the cumulative population shares and on the vertical axis the cumulative sum

of the expressions pi = ( 1
n)(

c∗i
t ) = ( 1

n)
∑q

i=1( cit ), the c∗i ’s being ranked by decreasing values, an

ascending curve is obtained whose slope is non-increasing and equal to 0 when we reach the

(n − q) individuals with no deprivation (there are q individuals with at least one deprivation).

The curve is similar to the one in Figure 1, but now

- OH refers to the prevalence P of deprivation [proportion P = (q/n) of individuals having

some deprivation].

- The slope BOD equals (BD/OD) =
[

(1/n)
∑n

i=1 c
∗
i

1

]
=

(1/n)[
∑q

i=1 ci]
1 =

( q
n

) (∑q
i=1 ci
q

)
=
( q
n

)
c̄q

where c̄q represents the average percentage of deprivations among those who have at least one

deprivation; c̄q could be labeled the breadth (B) of deprivation.

In Figure 1, the curvature of the OA curve indicates the extent of inequality among those

deprived in at least one dimension or the unevenness (U) of deprivation.

Given that the “deprivation curve” (OAB) takes into account the prevalence (P), the uneven-

ness (U) and the breadth (B) of deprivation, we suggest to call it the PUB curve, an adaptation

of the TIP curve to multidimensional deprivation with dichotomous variables.10

Shorrocks (1995) showed that twice the OABDHO area is equal to the Sen-Shorrocks index,

so we will consider twice this area as a “Multidimensional Deprivation Index” (or MDI for

short).

If we adapt expression (7) to the case of multidimensional deprivation, we may write that

MDI =

(
1

n

)2 n∑
i=1

(2n− 2i+ 1)

(
c∗i
t

)
=

(
1

n

)2 q∑
i=1

(2n− 2i+ 1)
(ci
t

)
(20)

With a union approach (an individual is deprived even if in only one domain), t = 1 and then

10Lasso de la Vega (2010) had also introduced deprivation curves derived from deprivation counts, what she
called the FD and the SD curves. These curves are however different from the PUB curve introduced in this
paper.
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MDIunion =

(
1

n

)2 n∑
i=1

(2n− 2i+ 1) c∗i =

(
1

n

)2 q∑
i=1

(2n− 2i+ 1) ci (21)

Using (20), the contribution (Conti) of individual i to the overall deprivation is expressed as

Conti = 2

(
1

n

)(
1

n

)(ci
t

)[(2n+ 1

2

)
− i
]

(22)

Adapting Shorrocks’ (1995) equation (12) to multidimensional deprivation, we may write that

MDI = c̄ (1 +Gci) = c̄

[
1 +

(
cEQ − c̄

c̄

)]
= cEQ = c̄+ (

1

2
)∆ci (23)

where c̄ and Gci are respectively the average level of deprivation and the Gini index of the

deprivation scores in the whole population (including those who have no deprivation) and ∆ci =

2c̄Gci is the mean difference of the deprivations.

We may observe that expressions (17) and (23) are identical so that the MDI is a specific

case of the deprivation measure of Aaberge et al. (2019), that where Γ(Fk) = (Fk)
2.

Calling cEQ the “equally distributed equivalent deprivation score”,11 we rewrite (23) as

MDI = c̄ (1 +Gci) = c̄

[
1 +

(
cEQ − c̄

c̄

)]
= cEQ (24)

Instead of using the traditional Gini index Gci in (23) and (24) one can also use the gener-

alized Gini index that was introduced by Donaldson and Weymark (1980) and apply it to the

deprivation scores. The “equally distributed equivalent deprivation score” cEQ,GEN in such a

case will use the concept of “ill-fare ranking” (Donaldson & Weymark, 1980) so that

cEQ,GEN =
n∑
i=1

(
iβ − (i− 1)β

nβ

)
ci (25)

with 0 ≤ β ≤ 1 and evidently c1 ≥ ... ≥ cq ≥ ...0.

11It is well known that the Gini index of incomes IG, like several other income inequality indices that can be
related to a welfare function, may be expressed as IG = ( ȳ−yE

ȳ
), where ȳ refers to the average income and yE to

Atkinson’s (1970) “equally distributed equivalent level of income”. While income is a “good”, deprivation is a

“bad” so that the Gini index of the deprivation scores is defined as Gci =
(cEQ−c̄)

c̄
.
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3.3 Estimating the contribution of different population subgroups to the

MDI

Assume K population subgroups, each subgroup k with nk individuals. Using (20), we write

MDI =

(
1

n

)2

2
K∑
k=1

∑
i∈k

(ci
t

)[(2n+ 1

2

)
− i
]

(26)

i being the ranking of the individual in the whole population and not in his/her subgroup.

The contribution Ck of population subgroup k to multidimensional deprivation is hence

Ck =

(
1

n

)(
1

n

)
2
∑
i∈k

(ci
t

)[(2n+ 1

2

)
− i
]

(27)

3.4 Making assumptions concerning the weight of the different deprivation

domains

Let j refer to a given deprivation domain with j = 1 to J . Combining (19) and (20), we derive

MDI =

(
1

n

)2 n∑
i=1

J∑
j=1

wjdij
t

(2n− 2i+ 1) (28)

so that the contribution CONTRj of deprivation domain j to the overall deprivation becomes

CONTRj =

(
1

n

)2 n∑
i=1

wj

(
dij
t

)
(2n− 2i+ 1) (29)

There are quite a few possibilities regarding the choice of the weights (wj) of the different

dimensions. However, in a recent paper, Dutta et al. (2021) have shown that endogenous (data

driven) weights violate the key properties of poverty indices, namely monotonicity and subgroup

consisteny. Therefore, they have recommended using exogenous weights, the simplest case being

the one in which all deprivation domains have the same weight. We will make this assumption

so that we rewrite (29) as

CONTRj =

(
1

n

)2 n∑
i=1

(
1

J

)(
dij
t

)
(2n− 2i+ 1) (30)

14



It is then clear that the MDI is factor decomposable. Using Alkire and Foster’s terminology

(Alkire & Foster, 2011b), we can state that the MDI fully satisfies the “dimensional breakdown”

property. It is also possible to standardize the MDI as shown in Appendix A.

4 Properties of the MDI

As emphasized above, the MDI is simply the Sen-Shorrocks poverty index applied to the

weighted deprivation scores ci. Therefore, all the properties of the Sen-Shorrocks index stated

by Shorrocks (1995) and mentioned previously also hold for the MDI.

Alkire and Foster (2016) have stated that the properties of multidimensional poverty method-

ologies can be classified into three categories: invariance, subgroup and dominance properties.

Invariance properties include those of symmetry, replication invariance, deprivation focus and

poverty focus.

4.1 Invariance properties

Symmetry

The reference here is to permutations of achievement vectors across individuals. As stressed

by Shorrocks (1995), the Sen-Shorrocks poverty index has this property.

Population replication

Assume a “cloning” of the whole population so that the total population and the number of

deprived individuals are now respectively equal to (λn) and (λq), with λ an integer greater than

1. We assume no change in the number of dimensions. In addition, any deprived individual (i)

with a deprivation score ci will be replaced by λ individuals with this deprivation score ci. Here

again, Shorrocks (1995) stated that such a property holds for the Sen-Shorrocks poverty index.

Poverty focus

This assumption says that an increment in the achievement of a non-deprived person, that

is, of an individual who is not deprived in any dimension, will not affect the value of the multi-

dimensional deprivation index (MDI). This should be clear from equation (20), since the MDI

is only a function of the deprivation of the deprived individuals.
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Deprivation focus

This property assumes that the multidimensional deprivation index (MDI) will be invariant

to an increment in a non-deprived achievement. It is easy to prove this property as well, since if

an individual i improves his/her achievement in a dimension j in which he/she was not deprived,

the value of the dichotomous variable dij will not vary and remain equal to 0.

4.2 Subgroup properties

Alkire and Foster (2016) have mentioned the properties of subgroup consistency and subgroup

decomposability.

Subgroup decomposability

The expression for the contribution of subgroup k to the overall deprivation (MDI) appears

in expression (27) in Section 3.2. Combining (26) and (27), we conclude that

MDI =
K∑
k=1

Ck (31)

We can therefore compute the contribution of each subgroup to the overall level of deprivation.

However, note that Ck in (27) is not identical to what would be the definition of an MDI

limited to group k. This is so because the coefficient
[(

2n+1
2

)
− i
]

associated to the deprivation

component
(
ci
t

)
of individual i depends on the rank of individual i in the whole population,

and not in subgroup k. A subgroup decomposable deprivation index would be expressed as the

sum of a between and a within groups deprivations. But this is not what (27) is expressing.

Therefore, we cannot conclude that the multidimensional deprivation index (MDI) is subgroup

decomposable in the traditional interpretation of such a breakdown. This is also the case of the

Gini index, since it is well known that, as soon as there is some overlap between the population

subgroups, the decomposition of the Gini index will include three components: a between and

a within groups inequality but also a residual, which has been shown to be a measure of the

overlap between the different distributions (see, for example, Silber, 1989).

It is however possible to take an alternative view of the breakdown of the MDI by population

subgroups. To derive such an alternative decomposition, we borrow ideas from the literature

on alternative decompositions of the Gini index. Deutsch and Silber (1999) have indicated that

there is no unique way of decomposing inequality by population subgroups. In particular, they
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have mentioned a decomposition of the Gini index, originally proposed by Lerman and Yizthaki

(1991) and Sastry and Kelkar (1994), where the Gini index turns out to be the sum of a between

and within groups components, but these two components are not defined in the traditional way.

The idea is to keep the original ranking of the individuals, when computing these between and

within group components. This idea may be also applied to the breakdown of the MDI into a

between and a within groups components.

The alternative between groups MDI is then defined as

MDIAlternativeBETWEEN =

(
1

n

)2 n∑
i=1

(2n− 2i+ 1)
( c̄i
t

)
(32)

where i refers to the original rank of an individual and c̄i refers to the average deprivation level

in the population subgroup to which individual i belongs.

The alternative within groups component is then expressed as

MDIAlternativeWITHIN =

(
1

n

)2 n∑
i=1

(2n− 2i+ 1)

[
(ci − c̄i)

t

]
(33)

In Appendix B, we give a simple empirical illustration of what we called the traditional and

the alternative decompositions of the MDI. Figures 3 and 4 give also a graphical representation

of the two decompositions.

In short, when using the alternative approach, it is possible to affirm that the MDI is

decomposable by population subgroups.

Subgroup consistency

Shorrocks (1995, p. 1226) has stressed that, like the Sen poverty index PSen, the Sen-

Shorrocks poverty index (PSen−Shorrocks) is not subgroup consistent, but “it is an ideal measure

of poverty in all other respects”. Since the MDI is equivalent to the PSen−Shorrocks index, but

applied to multidimensional deprivation, we conclude that the MDI is not subgroup consistent.

4.3 Dominance

Alkire and Foster (2016) have included two properties here. First, there is the concept of Weak

Monotonicity according to which an increase in the achievement of an individual cannot increase

deprivation. Then, there is the notion of Weak Rearrangement, which requires that a progressive
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transfer among the deprived individuals, which is the consequence of an “association-decreasing

rearrangement”, cannot increase deprivation.

Monotonicity

Shorrocks (1995) stated that the index PSen−Shorrocks is monotonic. We can therefore con-

clude that the multidimensional deprivation index (MDI) has the property of monotonicity.

Transfers

Let us first state that in the context of uni-dimensional poverty measurement Shorrocks (1995)

stressed that the PSen−Shorrocks index is consistent with the transfer axiom. When applying this

property to multidimensional deprivation analysis, we can therefore conclude that if, within a

given deprivation domain j, a transfer takes place from a more to a less deprived individual,

assuming no change in the ranking of the individuals, the MDI will decrease. More precisely,

assume that originally individual i as a whole was more deprived than individual m and was

deprived in domain j while individual m was not. After the “transfer” individual i remains more

deprived than individual m, but he/she has one deprivation less, while individual m has one

more deprivation than originally. In such a case the MDI will decrease.

The same kind of reasoning applies when a transfer takes place between individuals and across

domains. Assume, for example, that individual h has nh deprivations and that individual i has

ni deprivations with nh > ni, that individual h is deprived in domain j but not in domain k

and individual i in domain k but not in domain j. If, for some reason, a change occurs such

that individual h is not deprived any more in domain j while individual i who was deprived in

domain k becomes also deprived in domain j. Suppose, however, that, after such a “transfer” of

deprivations, individual h has still more deprivations than individual i. Assuming that all the

domains have the same weight, it is easy to observe, using (20), that the MDI will decrease.

Given that in the formulation of the MDI in (20), which refers to the case of equal weights,

only the number of deprivations of each individual is taken into account, regardless of in which

domains these deprivations take place, the notion of “Weak Dimensional Rearrangement among

the deprived individuals”, which was discussed by Alkire and Foster (2016), is not relevant.

Instead of analyzing the impact of a transfer of deprivations between two individuals h and

i, let us assume that these two individuals switch their deprivations. In other words, using the

example given above, we would observe that in the new situation individual h is deprived in

domain k but not in domain j and individual i is deprived in domain j but not in domain k.
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Clearly, this switch will not affect the number of deprivations of each individual and, hence,

there will be no change in the value of the MDI.

In defining the MDI in (20), which refers to the case of equal weights for the different

deprivation domains, we make the assumption that the various deprivation domains are perfect

substitutes. The situation is different when examining the case of unequal weights. It should be

clear that, even in the case where the various dimensions have different weights, a transfer of

deprivations between two individuals of the kind described above, whether it takes place within

a given domain or across domains, will lead to a decrease in the MDI, as long as the ranking

of the individuals is not affected by the number of deprivations they suffer from. However,

when the deprivation domains have not the same weight, the switch of deprivations between two

individuals and two domains with unequal weights, will lead either to an increase or a decrease

in the value of the MDI, depending on the assumption made about the weights of domains j

and k.

5 Comparing deprivation profiles and comparing MDI indices

The ordinal approach to uni-dimensional poverty analysis seems to have been originally intro-

duced by Spencer and Fisher (1992). Jenkins and Lambert (1997, p. 317) then introduced the

concept of TIP (“Three I’s of Poverty”) curves, these three I’s referring respectively to the in-

cidence, intensity and inequality of poverty. Subsequently, Jenkins and Lambert (1998b, p. 47)

stated in their Theorem 3 that “given any two income distributions x and y and poverty lines

zx and zy, TIP dominance of the normalized poverty gap distribution Γy over the normalized

poverty gap distribution Γx is necessary and sufficient to ensure Q(x | k, zx) ≤ Q(y | k, zy) for

all k ∈ (0, 1] and for all povety measures Q ∈ Q”, the latter being replication invariant and

increasing Schur-convex functions of the normalized gaps. These deprivation profiles or TIP

curves may naturally be used when adopting the PSen−Shorrocks rather than the PSen index, as

shown in Shorrocks (1995).

The MDI introduced in the present paper is an adaptation of the PSen−Shorrocks index to the

case of multidimensional deprivation. Moreover, we have shown previously that our PUB curve

is a simple adaptation of the notion of TIP curve to the multidimensional case, assuming that

deprivation in a given domain is only measured via dichotomous variables. We can therefore

apply the theorem of Jenkins and Lambert (1998b) stated previously, provided the deprivation
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profiles of the distributions we compare, do not intersect.12

6 An simple empirical illustration

In this section, we present an empirical illustration of the PUB curve, the MDI and its de-

composition by deprivation indicator, using data from four Central American countries, namely,

Guatemala, El Salvador, Honduras, and Nicaragua, and taking as a reference the work by

Espinoza-Delgado and Silber (2018, 2021). To estimate multidimensional poverty in these Cen-

tral American countries, we used data from the Guatemala National Survey of Living Con-

ditions (2014) (GUA-ENCOVI2014), the El Salvador Multipurpose Household Survey (2016)

(ELS-EHPM2016), the Honduras Multipurpose Household Survey (2013) (HON-EPHPM2013),

and the Nicaragua National Household Survey on Living Standards Measurement (2014) (NIC-

EMNV2014), which are nationally representative. In our exercise, we focus on individuals who

are between 18 and 59 years old, are identified as household members and completed a full in-

terview; in other words, we use the individual, rather than the household, as the unit of analysis

and focus on the adult members of the households, approximately 50% of the population in the

countries studied (from a low of 47.7% in Honduras up to a maximum of 59.3% in El Salvador).

Regarding the empirical design of the MDI, we considered five deprivation dimensions (edu-

cation, employment, water and sanitation, energy and electricity, and the quality of the dwelling)

with ten indicators, which are certainly among the most significant aspects of individual well-

being (Stiglitz et al., 2009a, 2009b). The specific indicators chosen for each of the five dimensions

and the corresponding deprivation definitions are presented in Table 1; this table also shows the

weighting structure that we used: equal-nested weights.

The PUB curve: prevalence (P), unevenness (U) and deprivation breadth (B) curve

We assumed that the threshold t was equal to 1. Figure 2 displays the PUB curve for

Guatemala, El Salvador, Honduras, Nicaragua, and Central America as a whole; in this figure,

the cumulative population frequencies are plotted on the X-axis, while the cumulative values of(
1
n

)∑n
i=1

(
ci
1

)
are plotted on the Y -axis.

12In a recent paper, Azpitarte et al. (2020) have introduced fundamental conditions whose fulfilment is both
necessary and sufficient to ensure that poverty comparisons are robust to changes in individual poverty functions,
dimensional weights and poverty cut-off. As stated by the authors, these conditions may be cumbersome when
the number of variables is large. This is why they have also derived conditions whose fulfilment is necessary, but
insufficient for robust first- and second-order poverty comparisons. The extension of the Sen-Shorrocks index to
multidimensional poverty proposed in the present paper might be a simpler way of analyzing dominance.
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Table 1: Dimensions [in parenthesis the related Sustainable Development Goal (SDG)], indicators, weights, and deprivation cut-offs

Dimensions Indicators Weights (%) Deprivation indicators: He / She is deprived if He / She. . .

1. Education (Goal 4 of the SDGs) 1.1. Schooling achievement 20 has not completed lower secondary school (nine years of schooling approx-
imately).

2. Employment (Goal 8 of the SDGs) 2.1. Employment status 20 is unemployed, employed without pay, or a discouraged worker or a domes-
tic worker or an unpaid care worker who reported that he/she ”did not
have a job” but was available to work.

3. Water and sanitation (Goal 6 of the SDGs)
3.1. Improved water source 10 does not have access to an improved water source or has access to it, but

out of the house and yard/plot.
3.2. Improved sanitation 10 only has access to an unimproved sanitation facility (a toilet or latrine

without treatment or a toilet flushed without treatment to a river or a
ravine) or to a shared toilet facility.

4. Energy and electricity (Goal 7 of the SDGs)
4.1. Type of cooking fuel 10 is living in a household which uses wood and/or coal and/or dung as main

cooking fuel.
4.2. Access to electricity 10 does not have access to electricity.

5. Quality of dwelling (Goal 11 of the SDGs)

5.1. Housing materials 5 is living in a house with dirt floor and/or precarious roof (waste, straw, palm
and similar, other precarious material) and/or precarious wall materials
(waste, cardboard, tin, cane, palm, straw, other precarious material).

5.2. People-per-bedroom 5 has to share a bedroom with two or more people.
5.3. Housing tenure 5 is living in an illegally occupied house or in a borrowed house.
5.4. Assets 5 does not have access to more than one durable good of a list that includes:

Radio, TV, Refrigerator, Motorbike, Car.
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Figure 2: Resulting “PUB curve” for Central American as a whole (CA), Guatemala (GUA), El Salvador (SAL), Honduras (HON), and
Nicaragua (NIC). Source: Authors’ estimates based on GUA-ENCOVI2014, ELS-EHPM2016, HON-EPHPM2013, and NICEMNV2014.
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Table 2: Absolute and relative contributions of each indicator to the overall MDI. Sources: Authors’ estimates based on GUA-ENCOVI2014,
ELS-EHPM2016, HON-EPHPM2013, and NIC-EMNV2014.

Guatemala

Contrib. Education Employment Water Sanitation Energy Electricity Housing Overcrowding Housing tenure Assets MDI
Absolute 0.2645 0.0664 0.0471 0.1107 0.1444 0.0360 0.0309 0.0495 0.0103 0.0357 0.7956
Relative 33.2% 8.3% 5.9% 13.9% 18.2% 4.5% 3.9% 6.2% 1.3% 4.5% 100.0%

El Salvador

Contrib. Education Employment Water Sanitation Energy Electricity Housing Overcrowding Housing tenure Assets MDI
Absolute 0.1736 0.0726 0.0417 0.0849 0.0204 0.0256 0.0184 0.0450 0.0180 0.0167 0.5168
Relative 33.6% 14.0% 8.1% 16.4% 3.9% 4.9% 3.6% 8.7% 3.5% 3.2% 100.0%

Honduras

Contrib. Education Employment Water Sanitation Energy Electricity Housing Overcrowding Housing tenure Assets MDI
Absolute 0.2365 0.0644 0.0247 0.0466 0.1100 0.0242 0.0177 0.0439 0.0056 0.0233 0.5969
Relative 39.6% 10.8% 4.1% 7.8% 18.4% 4.1% 3.0% 7.3% 0.9% 3.9% 100.0%

Nicaragua

Contrib. Education Employment Water Sanitation Energy Electricity Housing Overcrowding Housing tenure Assets MDI
Absolute 0.2247 0.0786 0.0676 0.0860 0.1051 0.0265 0.0394 0.0535 0.0157 0.0332 0.7303
Relative 30.8% 10.8% 9.3% 11.8% 14.4% 3.6% 5.4% 7.3% 2.2% 4.5% 100.0%

Central America as a whole

Contrib. Education Employment Water Sanitation Energy Electricity Housing Overcrowding Housing tenure Assets MDI
Absolute 0.2342 0.0693 0.0448 0.0876 0.1066 0.0298 0.0272 0.0481 0.0117 0.0290 0.6883
Relative 34.0% 10.1% 6.5% 12.7% 15.5% 4.3% 3.9% 7.0% 1.7% 4.2% 100.0%

Note: surveys weights used.
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Overall, the left side of Figure 2 suggests that in the Central American region, the highest and

lowest levels of multidimensional poverty are found in Guatemala and El Salvador, respectively.

The PUB curve of Honduras dominates that of El Salvador, so that multidimensional poverty

in the former country is always higher than in the latter, regardless of the population decile we

choose. The cases of the Guatemalan and Nicaraguan curves are interesting. Figure 2 shows

that the Nicaraguan curve crosses the Guatemalan curve once from above around the 25% point

on the horizontal axis (see the right side of the figure), suggesting that overall multidimensional

poverty is higher in Guatemala than in Nicaragua only from this point on, i.e., the poorest of

the poor are in Nicaragua.

As discussed when presenting the MDI, one of the key properties for policy design that

our index satisfies is the fully factorial decomposability property. Table 2 illustrates this de-

composition for the case of Guatemala, El Salvador, Honduras, and Nicaragua, as well as for

Central American as a whole. This table presents the absolute and relative contributions to

the overall estimate of multidimensional poverty of each of the ten indicators used to measure

multidimensional poverty in Central America; the overall estimates are shown in the last column

of the table. The table indicates that in Central America, education is the largest contributor to

multidimensional poverty; deprivations in this dimension account for one-third of the estimated

MDI in each of the countries.

7 Concluding comments

This paper has introduced a multidimensional deprivation index (MDI) that is an adaptation to

the multidimensional case of the Sen-Shorrocks index of unidimensional poverty. It turns out that

this index is a particular case of a measure of multidimensional deprivation recently introduced

by Aaberge et al. (2019). In addition, by linking the MDI to the Sen-Shorrocks index, we

were able to derive a simple graphical representation that we called PUB curve (prevalence,

unevenness and breadth of deprivation curve), which is an adaptation to the multidimensional

case of the TIP curve of Jenkins and Lambert (1997). As a consequence, it is possible to

compare the deprivation profiles of two or more countries or of a country during various periods

and to derive dominance relationships.

The main advantage of the MDI is that it can be simply broken down by deprivation domain

as well as by population subgroup, although it is not a subgroup consistent index, but “it is an
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ideal measure of poverty in all other respects” (Shorrocks, 1995, p. 1226). These two decom-

position properties have important implications because they allow policy makers to detect the

deprivation domains that require special attention and to focus their attention on the population

subgroups which should be helped in priority. The empirical illustration of the paper, which

looked at four Central American countries (Guatemala, El Salvador, Honduras, and Nicaragua),

allowed us to conclude that education is the largest contributor to multidimensional deprivation

since it accounts for one-third of the MDI in each of the countries.

References

Aaberge, R. and E. Peluso (2012) “A counting approach for measuring multidimensional deprivation”,

Discussion paper No. 700, Research Department, Statistics Norway.

Aaberge, R. and A. Brandolini (2015) “Multidimensional Poverty and Inequality,” in A. B. Atkinson

and F. Bourguignon eds, Handbook of Income Distribution, Volume 2A, North Holland: Amsterdam.

Aaberge, R., E. Peluso and H. Sigstad (2019) “The dual approach for measuring multidimensional

deprivation: Theory and empirical evidence,” Journal of Public Economics 177: Article 104036.

Alkire, S. and J. Foster (2011a) “Understandings and Misunderstandings of Multidimensional Poverty

Measurement,” Journal of Economic Inequality 9: 289-314.

Alkire, S. and J. Foster (2011b) “Counting and multidimensional poverty measurement,” Journal of

Public Economics 95(7-8): 476–487.

Alkire, S. and J. Foster (2016) “Dimensional and Distributional Contributions to Multidimensional

Poverty,” OPHI (Oxford Poverty and Human Development Initiative) Working Paper No. 100, Queen

Elizabeth House (QEH), Oxford, UK.

Alkire, S., J. Foster, S. Seth, M. E. Santos, J. M. Roche and P. Ballon (2015) Multidimensional Poverty

Measurement and Analysis, Oxford and New York: Oxford University Press.

Anand, S., & Sen, A. (1997) Concepts of human development and poverty: A multidimensional per-

spective. Human Development Papers 1997. United Nation Development Program (UNDP), New York.

Retrieved from http://clasarchive.berkeley.edu/Academics/courses/center/fall2007/sehnbruch/UNDP%20

Anand%20and%20Sen%20Concepts%20of%20HD%201997.pdf.

Atkinson, A. B. (1970) “On the Measurement of Inequality,” Journal of Economic Theory 2: 244-263.

Atkinson, A. B. (2003) “Multidimensional Deprivation: Contrasting Social Welfare and Counting

Approaches,” Journal of Economic Inequality 1: 51–65.

Atkinson, A. B. and F. Bourguignon (1982) “The comparison of multi-dimensioned distributions of

economic status,” Review of Economic Studies 49: 183-201.

Azpitarte, F., J. Gallegos and G. Yalonetzky (2020) “On the robustness of multidimensional counting

poverty orderings,” Journal of Economic Inequality 18: 339-364.

Berrebi, Z. M. and J. Silber (1987) ”Dispersion, Asymmetry and the Gini Index of Inequality,” Inter-

25



national Economic Review 28(2): 331-338.

Bhattacharya, N. and B. Mahalanobis (1967) “Regional Disparities in Household Consumption in

India,” Journal of the American Statistical Association 62: 143-161.

Blackorby, C. and D. Donaldson (1980) “Ethical indices for the measurement of poverty,” Econometrica

48(4): 1053-1060.

Bossert, W., S. R. Chakravarty and V. Peragine (2007) “Deprivation and social exclusion,” Economica

74: 777-803.

Bossert, W., S. Chakravarty and C. D’Ambrosio (2013) “Multidimensional poverty and material de-

privation with discrete data,” Review of Income and Wealth 59: 29–43.

Bourguignon, F. (1999) “Comment” on “Multidimensional Approaches to Welfare Analysis,” in J.

Silber Ed., Handbook on Income Inequality Measurement, Kluwer Academic Publishers, Dordrecht, The

Netherlands, pp. 477-484.

Bourguignon, F. and S. R. Chakravarty (2003) “The Measurement of Multidimensional Poverty,”

Journal of Economic Inequality 1(1): 25-49.

Brandolini, A. and G. D’Alessio (2009) “Measuring well-being in the functioning space,” in E. Chiap-

pero Martinetti (Ed,) Debating Global Society: Reach and Limits of the Capability Approach, Fondazione

Giangiacomo Feltrinelli, Milano, pp. 91-156.

Chakravarty, S. R. (1983) “Measures of poverty based on representative income gaps,” Sankhya: The

Indian Journal of Statistics, Series B 45(1): 69-74.

Chakravarty, S. R. (1997) “On Shorrocks’ Reinvestigation of the Sen Poverty Index,” Econometrica

65(5): 1241-1242.

Chakravarty, S. R. (2006). “An axiomatic approach to multidimensional poverty measurement via

fuzzy sets,” in A. Lemmi and G. Betti (Eds.) Fuzzy set approach to multidimensional poverty measure-

ment, New York, N.Y.: Springer, pp. 49-72.

Chakravarty, S. R. (2009) Inequality, Polarization and Poverty. Advances in Distributional Analy-

sis. Springer: New York. Chakravarty, S. R. and C. D’Ambrosio (2006) “The Measurement of Social

Exclusion,” Review of Income and Wealth 52: 377-398.

Chakravarty, S. R., D. Mukherjee and R. R. Renade (1998) “On the Family of Subgroup and Factor

Decomposable Measures of Multidimensional Poverty,” Research on Economic Inequality, volume 8, pp.

175–194.

Clark, S., R. Hemming and D. Ulph (1981) “On indices of the measurement of poverty,” Economic

Journal 91(362): 515-526.

Datt, G. (2018) “Distribution-sensitive multidimensional poverty measures,” World Bank Economic

Review 33(3); 551-572.

Decancq, K. and M. A. Lugo (2013) “Weights in Multidimensional Indices of Well-Being: An Overview,”

Econometrics Review 32(1): 7-34.

Deutsch, J. and J. Silber (1999) “Inequality Decomposition by Population Subgroups and the Analysis

of Interdistributional Inequality,” in J. Silber, editor, Handbook on Income Inequality Measurement,

26



Kluwer Academic Publishers, Dordrecht, pp. 363-397.

Deaton, A. (2016) “Measuring and understanding behavior, welfare, and poverty,” American Economic

Review 106(6): 1221-1243. http://dx.doi.org/10.1257/aer.106.6.1221.

Dhongde, S., Y. Li., P. K. Pattanaik, P.K. and Y. Xu (2016) “Binary data, hierarchy of attributes,

and multidimensional deprivation,” Journal of Economic Inequality 14: 363–378.

Donaldson, D. and J. Weymark (1980) “A Single Parameter Generalization of the Gini Indices of

Inequality,” Journal of Economic Theory 22: 67-87.

Dutta, I., R. Nogales and G. Yalonetzky (2021) “Endogenous weights and multidimensional poverty:

a cautionary tale,” Journal of Development Economics 151: 1026-1049.

Espinoza-Delgado, J. and J. Silber (2018) “Multidimensional poverty among adults in Central America

and gender differences in the three I’s of poverty: Applying inequality sensitive poverty measures with

ordinal variables,” Discussion Paper No. 237, Ibero-America Institute for Economic Research, University

of Goettingen.

Espinoza-Delgado, J. and J. Silber (2021) “Using Rippin’s approach to estimate multi-dimensional

poverty in Central America,” in G. Betti and A. Lemmi (Eds.) Analysis of socio-economic conditions:

Insights from a fuzzy multidimensional approach, Routledge Advances in Social Economics, Routledge,

United Kingdom, chapter 3, pp. 32-52.

Fei, J. C. H., G. Ranis and W. Y. Kuo (1979) Growth with Equity. The Taiwan Case. London:

Oxford University Press.

Fusco, A. and P. Dickes (2006) “The Rasch model and multidimensional poverty measurement.,” in

N. Kakwani and J. Silber (eds.) Quantitative Approaches to Multidimensional Poverty Measurement.

Palgrave-Macmillan, London.

Hamada, K. and N. Takayama (1977) “Censored income distributions and the measurement of poverty,”

Bulletin of the International Statistical Institute XLVII(1): 617-632.

Jenkins, S. P. and P. J. Lambert (1993) “Poverty Orderings, Poverty Gaps, and Poverty Lines,”

Discussion Paper No. 93-07, Economics Department, University College of Swansea.

Jenkins, S. P. and P. J. Lambert (1997) “Three ‘I’s of Poverty curves, with an analysis of UK poverty

trends,” Oxford Economic Papers 49(3): 317-327.

Jenkins, S. P. and P. J. Lambert (1998a) “Ranking Poverty Gap Distributions: Further TIPS for

Poverty Analysis,” Research on Economic Inequality, Volume 8, JAI Press, pp. 31-38.

Jenkins, S. P. and P. J. Lambert (1998b) “Thee ‘I’s of Poverty Curves and Poverty Dominance: TIPS

for Poverty Analysis,” Research on Economic Inequality, Volume 8, JAI Press, pp. 39-56.

Kakwani, N. and J. Silber (2008) Quantitative Approaches to Multidimensional Poverty Measurement,

Palgrave-Macmillan.

Kendall, M. G. and A. Stuart (1969) The Advanced Theory of Statistics, London: Charles Griffin and

Company Limited.

Kolm, S.-C. (1966) Les choix financiers et monétaires, Dunod, Paris.
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Appendix A: Standardizing the MDI

Computing the minimal and maximal values of the multidimensional deprivation

index (MDI)

Minimal value of the MDI

The determination of the minimal value of the MDI depends on the conditions under which

we want to define this minimum. If we do not impose any restrictions, then evidently the

minimum will be equal to zero and will be reached when no one is deprived.

We can also assume that only the number (q) of deprived people is fixed, in which case the

minimum will be reached when each deprived person has only one deprivation.

It is, however, more interesting to ask what this minimal value will be, assuming a given

average c̄ =
∑n

i=1 ci
n of the individual deprivation scores in the whole population and a given

percentage (q/n) of deprived individuals. In other words, in Figure 1, we assume a given value

of the angle BOD since the tangent of this angle is equal to the average deprivation score

among the poor times the headcount ratio. We recall that A is the point at which the PUB

curve becomes horizontal while on the horizontal axis we note that OH = (q/n), which is the

percentage of deprived individuals. It should then be clear that, given the assumptions made,

the MDI, which is equal to twice the area under the deprivation curve, will be minimal when

the OAB curve is a straight line, that is, when all the individuals have the same deprivation

score c̄ =
∑n

i=1 ci
n .

In such a case (see Figure 1), OD = 1, BD =
∑n

i=1 ci
n = c̄ so that BD/OD = c̄ and the area

OBD is equal to
(

1
2

)
c̄.

In the case where the number of deprivations of each individual is an integer number and

all the dimensions have an equal weight, we may not have a straight line (OB) to characterize

minimum deprivation. Take, for example, the case where we have 5 dimensions, three individ-

uals, and the total number
∑q

i=1 ci is equal to 13. Then, clearly, the minimum deprivation will

take place when the first individual has five deprivations, the second four and the third four

deprivations. More details and other illustrations are given in Appendix A.3.

Maximal value of the MDIG

The determination of the maximal value of the MDIG also depends here on the conditions under

which we want to define this maximum. If we do not impose any restrictions, then evidently

the maximum will be reached when each individual is deprived and the number of his/her

deprivations is equal to the number of dimensions.

But here again it will be more interesting to ask what this maximal value will be, assuming

a given average c̄ (or a given sum
∑n

i=1 ci) of the individual deprivation scores.
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Let us, as previously, limit ourselves to the case when the number of deprivations of an indi-

vidual is an integer number. Take again the case where we have 5 dimensions, three individuals

and the total number
∑q

i=1 ci is equal to 13. Then, clearly, maximum deprivation will take

place when the first individual has five deprivations (the maximum number he/she can have),

the second five and the third three deprivations. More details and other illustrations are here

also given in Appendix A.3.

Standardizing the multidimensional deprivation index

Let MaxMDI and MinMDI refer respectively to the maximal and minimal values of the

multidimensional deprivation index (MDI), for a given number J of deprivation dimensions

and a given sum
∑q

i=1 ci of the total number of deprivations in the population of deprived

people.

The standardized multidimensional deprivation index (MDIstandard) may then be expressed

as

MDIstandard =

(
MDI −Min{MDI}

Max{MDI} −Min{MDI}

)
(34)

We then observe that 0 ≤MDIstandard ≤ 1.
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Appendix B: The decomposition of the MDI by population subgroups

Assume a population of four individuals. Three of them have a certain number of deprivations

and one is without any deprivation so that n = 4 and q = 3. Suppose that there are 5 domains

of deprivation (j = 1 to 5). Individual 1 is deprived in domains 1, 2, 4, 5 so that (c1 = (4/5)),

individual 2 in domains 3 and 4 (c2 = (2/5)) and individual 3 in domain 5 (c3 = (1/5)).

Individual 4 has no deprivation. Suppose that individuals 1 and 3 belong to group A and

individuals 2 and 4 to group B. Let us also assume that the threshold t is equal to 1. Finally

define pi as that pi = (1/n)ci = (1/4)ci. Figure 3 illustrates this case.

Figure 3: Illustration of the decompostion of the MDI by population subgroups

Using (20) the MDI is expressed as

MDI =
(

1
16

)
{[(7)(0.8)] + [(5)(0.4)] + [(3)(0.2)]} = (5.6+2+0.6)

16 = 8.2
16

Using (27) we then derive that the contributions CA and CB of groups A and B are expressed

as

CA = (1/16){[(7)(0.8)] + [(3)(0.2)]} = 6.2
16

CB = (1/16){[(5)(0.4)]} = 2
16

It is easy to observe that, as expected, the sum of these two contributions is equal to
6.2+2

16 = 8.2
16 , which is the value of the MDI for the whole population.
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The graphical representation of a traditional decomposition

In Figure 3 the curve OABCD represents what we previously called the PUB curve. The line

OE is the deprivation curve that would be obtained if everyone had the same and maximal level

of deprivation, namely (5/5) so that the height ED′ is, as expected, equal to 4(1/4)(5/5) = 1.

It is easy to check that the heights AA′, BB′, CC ′ and DD are respectively equal to 0.2, 0.3,

0.35 and 0.35 and that the areas OAA′, AA′B′B, BB′C ′C and CC ′D′D are respectively equal

to 0.025, 0.0625, 0.08125 and 0.0875. The sum of these 4 areas which corresponds to the area

OABCDD′C ′B′A′O is then equal to 0.25625. Twice this sum gives us 0.5125 = (8.2/16), which

is, as expected and shown previously, the value of the MDI when all the domains have the same

weight.

Given that individuals 1 and 3 belong to group A and individual 2 and 4 to group B, it

is easy to check that the average number of deprivations in group A is (4 + 2)/2 = 3 and in

group B it is ((2 + 0)/2) = 1. We can therefore draw in Figure 3 a broken curve OFD. On

the section OF , the height of point F corresponds to the total deprivation in group A, which

includes individuals 1 and 3 and hence it is equal to [(1/4)(4/5)] + [(1/4)(1/5)] = (5/20) = 0.25.

Similarly, the difference between the height of point D and that of point F corresponds to the

deprivation in group B and is hence expressed as [(1/4)(2/5)]+[(1/4)(0/5)] = (2/20) = 0.1. The

height of point D is therefore 0.25+0.1 = 0.35. The area below the curve OFDD′O is therefore,

computed as [(1/2)(0.5)(0.25)] + {(1/2)(0.5)[0.25 + 0.35]} = 0.0625 + 0.150 = 0.2125. Twice

this area, that is, 0.425, is hence the between groups A and B components of multidimensional

deprivation.

We can also compute the within groups A and B components of multidimensional deprivation.

The within group A deprivation is evidently the area OAF while that within group B is the area

FCD. Now OAF = [(OAA′) + (AA′B′F )] − (OFB′) with OAA′ = [(1/2)(0.25)(0.2)] = 0.025;

AA′B′F = [(1/2)(0.25)(0.2+0.25)] = 0.05625; OFB′ = [(0.5)(0.5)(0.25)] = 0.0625. We therefore

derive that the area OAF is equal to (0.025 + 0.05625)− 0.0625 = 0.01875. Twice this number

gives us the within group A multidimensional deprivation and it is equal to 0.0375.

The within group B deprivation is given by the triangle FCD whose area is equal to

[(FB′C ′C +CC ′D′D)−FB′D′D]. But FB′C ′C = (1/2)(0.25)(0.25 + 035) = 0.075; CC ′D′D =

(0.250.35) = 0.0875; and FB′D′D = (1/2)(0.5)(0.25 + 0.35) = 0.15. The area FCD is hence

equal to (0.075 + 0.0875)− 0.15 = 0.0125. Twice this area is therefore equal to the within group

B multidimensional deprivation, that is, to 0.025.

Let us now compute the area ABCF that corresponds to the overlap between group A and

group B. We may write that ABCF = (AA′B′B + BB′C ′C) - (AA′B′F + FB′C ′C). AA′B′B

= (0.5)(0.25)(0.2+0.3) = 0.0625; BB′C ′C = (0.5)(0.25)(0.3 + 0.35) = 0.08125; AA′B′F =

(0.5)(0.25)(0.2 + 0.25) = 0.05625; FB′C ′C = (0.5)(0.25)(0.25 + 0.35) = 0.075. Therefore,

ABCF = (0.0625 + 0.08125) - (0.05625 + 0.075) = 0.0125. Twice this area will be the overlap
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component of the MDI, and it is equal to 0.025.

The sum of the three components (between groups, within groups and overlap deprivation)

is then equal to (0.425 + 0.0375 + 0.025 + 0.025) = 0.5125 = (8.2/16) = MDI.

The graphical representation of an alternative decomposition of the MDI

Figure 4 gives a graphical representation of this alternative decomposition.

As in Figure 3, the curve ABCD represents the actual PUB curve, and it is drawn by

ranking the individuals by decreasing level of deprivation This ranking will be kept when drawing

the deprivation curve that would be observed if each individual’s deprivation was the average

deprivation of the group to which he/she belongs. We saw previously that the average deprivation

in group A, which includes individuals 1 and 3, is (4 + 1)/2 = 2.5 while the average deprivation

in group B is (2 + 0)/2 = 1. Keeping the original ranking of the individual we conclude that the

height of point A′′ which corresponds to this deprivation of individual 1 will be (1/4)(2.5/5) =

(2.5/20) = 0.125. To reach the second point (B′′) on this “alternative average deprivation curve”,

we add to the height of point A′ the average deprivation in group B (equal to 1) since individual 2

belongs to group B so that the height of point B′′ is 0.125+[(1/4)(1/5)] = 0.125+0.050 = 0.175.

The same idea is applied to compute the height of point C ′′. Starting from B′′ we have to add

a height which corresponds to the average deprivation in group A since individual 3 belongs to

group A and so the height of point C ′′ is 0.175+[(1/4)(2.5/5)] = 0.175+0.125 = 0.3. Finally, by

adding to the height of point C ′′ a height corresponding to the average deprivation in group B

(individual 4 belongs to group B) we end up with 0.3+[(1/4)(1/5)] = 0.3+0.05 = 0.35, which is

indeed the height of point D. Clearly, the area OA′′B′′C ′′DD′O corresponds to half the value of

the alternative between groups deprivations while the area OABCDC ′′B′′A′′O represents half

the value of the within groups deprivation.

It is easy to find out that the area OA′′B′′C ′′DD′O is equal to (0.5 ∗ 0.25 ∗ 0.125) + [0.5 ∗
0.25∗ (0.125+0.175)]+ [0.5∗0.25∗ (0.175+0.3)]+ [0.5∗0.25∗ (0.3+0.35)] = 0.015625+0.0375+

0.059375 + 0.08125 = 0.19375. Twice this value (0.3875) is hence the value of the alternative

between groups deprivation.

This result can also be obtained by applying (22) to the average incomes of the group to

which each individual belongs, giving each individual his/her original rank. We then obtain:

(1/16){[(7)(2.5/5)]+[(5)(1/5)]+[(3)(2.5/5)]+[(1)(1/5)]} = (1/80)(17.5+5+7.5+1) = (31/80) =

0.3875.

The within groups deprivation (the area OABCDC ′′B′′A′′O) is computed as [0.5 ∗ 0.25 ∗
(0.2− 0.125)] + {0.5 ∗ 0.25 ∗ [(0.2− 0.125) + (0.3− 0.175)]}+ {0.5 ∗ 0.25 ∗ [(0.3− 0.175) + (0.35−
0.3)]} + {0.5 ∗ 0.25 ∗ [(0.35 − 0.3)]} = 0.009375 + 0.025 + 0.021875 + 0.00625 = 0.0625. Twice

this area is hence equal to 0.125.

This result may be obtained by applying (20) to the difference for each individual between

his/her actual deprivation and the average deprivation of the group to which /she belongs, each
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individual being assigned again his/her original rank.

Figure 4: Graphical representation of an alternative decomposition of the MDI

We then get (1/16){[(7)((4−2.5)/5)]+[(5)((2−1)/5)]+[(3)((1−2.5)/5)]+[(1)((0−1)/5)]} =

(1/80)((10.5+5)− (4.5+1)) = 10/80 = 0.125. The sum of these alternative between and within

group’s deprivation is hence equal to 0.3875 + 0.125 = 0.5125 = 8.2/16 = MDI.
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Appendix C: The MDI as a specific case of the deprivation index of Aaberge

et al. (2019). A simple illustration

Let us assume that there are 5 individuals and 10 deprivation domains. Each deprivation has

the same weight. Table 3 below indicates how many deprivations each individual has.

The Gini index Gci of the distribution of the deprivations may then be computed [see expres-

sion (4) in Berrebi and Silber, 1983] as Gci = [(4/5)(10−0
25 ) + (2/5)(7−2

25 )] = (40+10
125 ) = 0.4, where

25 in the denominator refers to the total number of deprivations in the population and 5 is the

number of individuals. Using (24), we conclude that MDI = c̄(1 +Gci) = 5(1 + 0.4) = 7.

Note that it is also possible to compute the Gci index using the following formulation

of the Gini index (see, Yitzhaki & Schechtman, 2013, p. 15): Gci = 2{
∫

[1− F (k)]dk} −
2{
∫

[1− F (k)]2dk}.

Using the data of Table 3, we conclude that
∫ 9

0 [1− F (k)]dk = 5 and that
∫ 9

0 [1− F (k)]2dk =

3. We also conclude that Gci = 2(5− 3)( 1
10) = 0.4.

Since the mean difference ∆ci of the deprivations is expressed (see Kendall and Stuart, 1969)

as ∆ci = 2c̄Gci , where c̄ is the mean number of deprivations, which is here equal to (2 + 6 + 7 +

10)/5 = 5, we conclude that ∆ci = 2 ∗ 5 ∗ 0.4 = 4.

Aaberge et al. (2019) have suggested using as measure of deprivation in a society an index

DΓ(F ) defined [see their expression (2.4)] as DΓ(F ) = r −
∑r−1

k=0 Γ(Fk), where r refers to the

maximum number of deprivation (in our simple illustration r = 10). If we take a “union ap-

proach”, the function Γ has to be convex. A simple convex function would be Γ(Fk) = (Fk)
2, so

that we end up with: DΓ(F ) = r −
∑r−1

k=0(Fk)
2

Using the data of Table 3, we easily find that
∑r−1

k=0(Fk)
2 =

∑9
k=0(Fk)

2 = 3. Since r = 10,

we conclude that DΓ(F ) = 10− 3 = 7 = MDI.
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Table 3: A simple numerical illustration

Number k of depri-
vations

Number of individu-
als deprived

Relative frequency
fk of deprivations

Cumulative relative
frequency Fk of de-
privations

(Fk)
2 (1− Fk) (1− Fk)2

∫
(1− Fk)

∫
(1− Fk)2

0 1 0.20 0.20 0.04 0.80 0.64 0.80 0.64
1 0 0.00 0.20 0.04 0.80 0.64 1.60 1.28
2 1 0.20 0.40 0.16 0.60 0.36 2.20 1.64
3 0 0.00 0.40 0.16 0.60 0.36 2.80 2.00
4 0 0.00 0.40 0.16 0.60 0.36 3.40 2.36
5 0 0.00 0.40 0.16 0.60 0.36 4.00 2.72
6 1 0.20 0.60 0.36 0.40 0.16 4.40 2.88
7 1 0.20 0.80 0.64 0.20 0.04 4.60 2.92
8 0 0.00 0.80 0.64 0.20 0.04 4.80 2.96
9 0 0.00 0.80 0.64 0.20 0.04 5.00 3.00
10 1 0.20 1.00 1.00 0.00 0.00
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