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Abstract

Players may categorize the strategies available to them. In many games

there are different ways to categorize one’s strategies (different frames) and

which ones players use has implications for the outcomes realized. This

paper proposes a model of agents who learn which frames to use through

reinforcement. As a case study we fit the model to existing experimental

data from coordination games. The analysis shows that the model fits the

data well as it matches the key stylized facts. It suggests a trade-off of

using coarser versus finer representations of the strategy set when it comes

to learning.
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1 Introduction

To choose among different actions, a decision maker first needs a mental

representation of the available options. In many cases some attribute(s) of

the decision situation may prompt the decision maker to categorize the options

available to her. Categorization usually implies that the agent treats objects that

she has placed in the same category in the same way (Daskalova and Vriend, 2020;

Mengel, 2012a; Mohlin, 2014). One important class of situations in which people

may categorize is strategic situations. In this paper we consider agents who

may group their own strategies into categories. A frame here is a partitioning

of the set of strategies available to the agent into categories, with each category

containing one or more strategies. Often multiple internal representations of the

same situation or multiple frames of it are possible and which one the decision

maker chooses has consequences for their behavior and payoffs. Moreover, in

many strategic situations which views of the strategy set are best depends on

the views of the strategy set chosen by the other players.

How categorizing the strategy set may matter in strategic situations is

illustrated through some coordination games, where it may help players solve

difficult equilibrium selection issues. To fix ideas consider the following matching

objects example. There are five objects and players have to independently choose

one of them. If they both choose the same one, each player gets the same positive

payoff. If they choose different ones, they get a zero payoff each. If there is

nothing to distinguish the five objects, the best the agents can do is put them

all in one category and randomize uniform randomly among them. However,

imagine that one of the objects is blue, while the other four are green. If a player

pays attention to color, she may categorize the blue object separately and may

form another category in which she puts all the green objects together. If both

players do so and make their subsequent choice by selecting the category blue,

they would be able to coordinate better than through pure randomization.1

The main goal of this paper is to improve our understanding of factors

that may determine which frames of the strategy set players choose and which

1This is the simplest possible example of a much more general class of situations where
many attributes may be present (Bacharach, 1993; Bacharach and Bernasconi, 1997). In this
example, it is a focal point that gives rise to alternative possible representations of the strategy
set. Categorizing the strategy set as discussed in this paper, however, need not be focal point
based. It could be prompted both by attributes that are and such that are not part of the
formal game theoretic description of the situation, e.g. by payoffs or by labels of the actions
available.
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outcomes emerge as a result.2 We present a model of agents choosing among

alternative frames of a given strategy set. That is, instead of assuming that

decision makers have innate cognitive limitations in viewing the strategy set and

have an ex ante fixed frame, we assume that ex ante all possible frames of the

strategy set are available to each agent. Our model is a dynamic model based on

reinforcement learning. Agents learn which frames and categories of strategies

to use based on their past experience, and they are more likely to choose those

that have performed better in the past. We study how frames that are seen as

useful, as well as how the corresponding outcomes, emerge in the process of social

interaction. Taking such a dynamic perspective has several advantages. First,

using reinforcement learning allows us to keep the model modest in terms of

cognitive assumptions. One can thus expect that a relatively broad class of more

complex cognitive models may share some of its behavioral properties. Second,

we present its application to pure coordination games. A key challenge in these

games is the selection of one of a multiplicity of equilibria. Instead of making

an a priori assumption of an equilibrium refinement concept, a study of learning

dynamics may help to shed some light on the outcomes one may expect in such

games. Third, as we will see in our analysis, learning dynamics may present some

additional reasons to favor one internal representation over another, reasons that

may not be obvious in a static analysis.

As a case study we fit the model to empirical data, examining how it may

help us gain insights into human behavior in the coordination games from the

laboratory experiment by Bosch-Domènech and Vriend (2013). The analysis

shows that the model fits the data from the Bosch-Domènech and Vriend

(2013) experiment well, accounting also for differences between experimental

treatments. We gain the following insights from analyzing the model under the

parameters that best fit the experimental data. First, agents may coordinate

even without using the same view of the strategy set. Second, it is not clear

that using the finest frame (placing each strategy in a separate category) is

always best; there are both advantages and disadvantages to using such a fine

representation of the strategy set when we consider learning dynamics.

The factors that determine which internal representation of the strategy set

agents learn to use and which outcomes emerge include the number of frames,

the number of categories in each frame, the number of actions in each category,

as well as the payoffs in the underlying game. Our model highlights that both

2As the games we consider in this paper are one-shot, we use the terms actions and strategies
interchangeably throughout the paper.
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the frame and the category of strategies that agents use matter and it helps us

suggest a trade-off of using coarser versus finer representations of the strategy

set when it comes to learning.

On the one hand, a coarse frame, i.e. one that splits the strategy set into

fewer categories, makes it easier for an agent to find and to learn to use the

appropriate category of strategies (as there are fewer options to consider by

trial and error and the updating of the perceived strengths of categories will

be quicker). This suggests a learning rationale for some coarseness of mental

representation, complementary to other rationales discussed in the literature on

categorization. On the other hand, a category that contains fewer strategies

makes it more likely for agents to choose the right strategy within the category.

As we will see, as far as mental representations are concerned this means that

some kind of mixture of coarseness and fineness may be advantageous. More

specifically this helps to understand why a non-equilibrium focal point may be

selected instead of multiple Pareto-superior Nash Equilibria. The focal point

alleviates the equilibrium selection problem agents face by prompting them to

put it in a separate mental category and to thus distinguish it from other available

actions.

To further highlight the importance of frames and categories, we also compare

the performance of the model with frames and categories in matching the

experimental data with the performance of a basic reinforcement learning model

without frames and categories, and show that while the data is well accounted for

by the model with frames, it cannot be explained by the model without frames.

The remainder of this paper is organized as follows. Section 2 discusses some

related literature. In Section 3 we introduce the model. Section 4 presents the

experiment we use as a case study. Section 5 presents the analysis of the model

and discusses the findings from the case study. Section 6 concludes.

2 Related literature

This paper sits at the intersection of several different literatures. First,

on focal points and equilibrium selection in coordination games; second, on

learning in games, in particular on reinforcement learning models; and third, on

categorization in games. We now discuss the relation to each of these literatures

and to some other relevant papers on the topic of bounded rationality in games.

A common theme between the first strand of the literature and our paper is
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that the standard normal form representation of the game that is usually used

to depict a one-shot strategic situation does not necessarily capture the way a

player thinks of the situation and in many cases there may be many alternative

representations possible (Bacharach, 1993; Bacharach and Bernasconi, 1997;

Bacharach and Stahl, 2000; Casajus, 2000, 2001; Janssen, 2001; Sugden, 1995;

Gauthier, 1975; Schelling, 1980).3 The idea in our model that players may

have different frames of the strategy set is most closely inspired by Variable

Frame Theory (Bacharach, 1993; Bacharach and Bernasconi, 1997; Bacharach

and Stahl, 2000). In our model as in the other papers cited above the focus is

on situations where some attributes are distinguished relatively naturally. Given

these attributes, there is a collection of possible representations of the situation,

i.e. of different frames of the strategy set.

However, there are two main differences between this paper and the Variable

Frame Theory (VFT) related literature. In contrast to the literature, we assume

that ex ante all these naturally arising frames are available to each agent. This

differs from VFT and from Janssen (2001), in which a player has one possible

representation of the situation based on the families of attributes she has the

cognitive capacity of distinguishing. Thus, our model is not one of limited

cognitive capacities in terms of perceiving attributes. We complement the

previous literature, by focusing on the question how agents learn to make active

use of some frames while leaving others unused.4 The second main difference

is that our model is dynamic. To deal with the issue of selecting among a

multiplicity of equilibria, the approach in most of the above literature has been

to assume that the payoff dominant equilibrium in expected payoffs will be

chosen. This is also known as the Principle of Payoff Dominance, Principle

of Coordination in VFT, Principle of Collective Rationality (Sugden, 1995) or

Principle of Individual Team Member Rationality (Janssen, 2001).

Instead we follow a dynamic approach based on reinforcement learning with

agents being more likely to select frames that have been more successful in the

past.5 Rather than assuming that players coordinate on the Pareto superior

3There are also some other less related papers on focal points. Binmore and Samuelson
(2006) provide an evolutionary game theory explanation of how focal points may arise and
Alberti et al. (2012) present a model of the emergence of salience in recurrent games.

4There is some neurophysiological evidence supporting the assumption of agents
simultaneously experimenting with alternative representations in an individual decision
problem (Wunderlich et al., 2011).

5Note that we focus on learning frames of the strategy set that are useful for coordination
in a series of one-off interactions. Learning to coordinate in repeated interactions has been
considered by Crawford and Haller (1990) and by Goyal and Janssen (1996) among others.
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equilibrium in expected payoffs or that they reason as a team, we study whether

and in what cases the Pareto superior equilibrium emerges as a result of the

interaction. By looking at which outcomes emerge in the process of social

interaction we are also able to learn more about the advantages and disadvantages

of different frames when it comes specifically to learning.6

In this respect our paper is related to a second literature, namely on learning

models, and in particular models that are based on some kind of reinforcement

learning, examples of which include Bush and Mosteller (1951); Roth and Erev

(1995); Börgers and Sarin (1997); Erev and Roth (1998); Camerer et al. (2004).7

What we add to the reinforcement learning literature is the idea of learning

not actions, but frames and categories of the strategy set. Romero and

Rosokha (2019) also consider players who learn to categorize strategies through

reinforcement. Their model and applications are complementary to ours in

various ways. First, they consider categorization as an adaptive process, rather

than as arising from natural attributes of the situation. Second, they focus on a

different type of game, the indefinitely repeated Prisoner’s Dilemma.

A further principle underlying prediction of which action will be played in

the VFT literature is what Bacharach and Bernasconi (1997) call Symmetry

Disqualification, and Janssen (2001) refers to as the Principle of Insufficient

Reason. Symmetry Disqualification states that if a player sees insufficient reason

to distinguish among certain objects, then she will treat them in the same way.

Thus, she will randomize uniform randomly among the four green objects in

the example from the Introduction. Symmetry Disqualification is also related to

the concept of attainable strategies in Crawford and Haller (1990). While this

is perhaps not explicitly stated in these papers, we believe that the Principle

of Insufficient Reason and Symmetry Disqualification are closely related to the

idea of putting objects in mental categories and we phrase our model in terms

of categories of strategies.

Hence the third literature this paper belongs to is the literature on

categorization, and categorization in strategic situations in particular. Recent

game theoretic literature has postulated that players may categorize other players

6A further difference with this literature is that in some of these models players with limited
cognitive capacities have beliefs about the (weakly) lower cognitive capacities of their opponents
(see e.g. Janssen (2001) or Bacharach and Stahl (2000)). In our model agents have no explicit
beliefs about which frames the other agents use.

7See also Sutton and Barto (2018). This is by no means a comprehensive review of the vast
literature on learning, other, less related to our work, learning models include Young (1993)
and Arifovic and Ledyard (2011), see also review in Fudenberg and Levine (1998).
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(Azrieli, 2009, 2010), they may categorize games (Gibbons et al., 2017; Grimm

and Mengel, 2012; Heller and Winter, 2014; LiCalzi and Mühlenbernd, 2019;

Mengel, 2012a; Huck et al., 2011; Jehiel, 2005), they may bundle states (Jehiel

and Koessler, 2008), nodes other players must move at (Jehiel, 2005; Neilson

and Price, 2011), or moves in a game (Jehiel and Samet, 2007) into analogy

classes. Daskalova and Vriend (2020) consider players who categorize their own

past experiences and are interested in making predictions and coordinating their

predictions with one another. LiCalzi and Maagli (2016) consider agents who

bargain over a common convex categorization of a given set. Unlike those papers

we focus on agents categorizing their own strategies and learning which among

alternative possible frames of the strategy set to use. The key assumption here

and in most of the above cited categorization literature deriving from previous

literature in psychology is that objects within a category are treated in the

same way. Papers that show that the use of coarse categories can be optimal in

other contexts include Mohlin (2014); Al-Najjar and Pai (2014); Mengel (2012b);

Daskalova and Vriend (2020). Here our focus is on the trade-offs that emerge

in using coarse and fine frames, and categories containing few versus many

strategies, when it comes to learning which view of the strategy set to use.

In terms of papers on bounded rationality in games more generally, Arad

and Rubinstein (2012) and Arad and Rubinstein (2019) consider players who

think of features of strategies rather than strategies per se. Arad and Rubinstein

(2012) is an experimental investigation of the Colonel Blotto game linking it to

a multi-dimensional reasoning procedure. Arad and Rubinstein (2019) propose

multi-dimensional equilibrium as an alternative to Nash in such situations.

In being about a type of bounded rationality in games, this paper bears

some relation to the literature on level-k (Nagel, 1995; Stahl and Wilson, 1994,

1995; Camerer et al., 2004; Costa-Gomes and Crawford, 2006). However, it

differs in many aspects from this literature. While in level-k, different levels

correspond to differences in strategic sophistication, in our framework different

levels correspond to differences in perception of the situation, or more precisely

to differences in which attributes agents take into consideration when forming

categories. Moreover, a general feature of level-k models is that a higher level is

a best response to a lower level, whereas this is not a feature of our model. With

the exception of Alaoui and Penta (2015), much of the level-k literature treats

levels as given. To the extent that Alaoui and Penta (2015) consider endogenizing

levels of strategic reasoning and we consider endogenizing levels of framing of a
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strategic situation, there is some commonality.

3 Model

This section describes the general set-up of the model. There is a population of

n agents who are randomly (re)matched in pairs each period to play the same

underlying game Γ. The underlying game Γ is a simultaneous-move one-shot

game and thus has a “standard” normal (strategic) form representation. Each

agent has an action set A = {a1, a2, .., am} describing her options in the normal

form.8 An agent may categorize the actions available to them. A category C is

a subset of the set of actions in the underlying game Γ, i.e. C ⊆ A.

Different ways to categorize the action set give rise to different mental

representations or different frames. A frame F is a set of categories partitioning

the set of actions in the underlying game Γ, that is F = {C1, C2, ..Ck} such that⋃
iCi = A and Ci ∩Cj = ∅ for all Ci, Cj ∈ F . The set of frames that are feasible

in a given game Γ is denoted by Φ = {F0, F1, ..., Ff}. We say that a frame Fx is

coarser than a frame Fx+i, where x ∈ N0, i ∈ N if and only if Fx partitions the

action set A of the underlying game Γ into fewer categories than Fx+i.
9 In that

case we say that Fx+i is finer than Fx.

We focus on cases where categories and frames arise “naturally” from

attributes that agents distinguish.10 This means that the agents in our model

cannot form categories by arbitrarily combining actions but can only categorize

actions on the basis of perceived attributes. Examples of such attributes are the

color of the objects in the matching objects game discussed in the introduction,

a focal payoff in the underlying game, or labels attached to actions in the

underlying game. Thus, attributes that prompt one to categorize one’s strategies

might be (e.g. in the case of a focal payoff) or might not be (e.g. in the case of

8As we consider cases where both agents have the same options, we leave out indices for
players in this description.

9Note that in the above definition of frame coarseness we are sidestepping the detail of how
many actions any given category contains. Thus, under this definition a frame that contains two
categories, each with five actions, is equally coarse as a frame that contains two categories, one
with one action and the other with nine actions. This definition has the advantage of simplicy
of exposition. We will clarify the importance of the number of actions within a category where
this matters specifically for our results.

10The related idea of the existence of “natural kinds” has a long history in philosophy, see, for
example, Chapter 7 in Book I in John Stuart Mill’s A System of Logic (1858) or Quine (1969).
Aristotle’s classification of animals as well as many subsequent taxonomies in the sciences can
be seen as examples of classification on the basis of the presence or absence of some attribute.
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Figure 1: Timeline in the model

labels) part of the formal description of the underlying game in the normal form.

We assume that agents are able to recognize all possible attributes that are

distinguished by the modeler. Thus, for example, if an agent needs to choose

an object, with the available objects coming in different shapes and colors, we

assume that each agent does recognize these shapes and colors.11

The question we focus on is which views of the strategy set agents learn to

use, and how this may change as they learn in the process of social interaction.

Depending on which attributes an agent takes into account, she may look at the

strategy set through different frames and use different categories. We think of the

different possible frames and categories as competing for the agent’s attention,

with the attention paid to each frame and category depending on the past success

when using them. Some frames and categories may be more successful than

others, and this may change over time as all agents may be learning which views

of the strategy set to use.

Each period each agent makes a decision and learns from its outcome. The

timeline in the model is presented in Figure 1. To undertake an action she needs

to make several choices. First, she needs to choose a frame to use. Then she

needs to choose a category from the frame she has selected. And finally, she needs

to choose an action from the category chosen. Every frame and category have a

measure of how good they are, that is their “strength” as determined by their

past performance, and frames and categories are chosen on the basis of these

perceived strengths. Actions within a category are chosen uniform randomly.

Thus, we need to specify how the perceived strengths of frames and categories

11Modeling how the agents have come to recognize attributes as such is beyond the scope
of this paper. One possible interpretation is that agents have evolved to recognize certain
attributes (Berlin and Kay, 1991). Our model would be complementary to such an evolutionary
perspective.
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are determined, and how they are taken into account in the choices. We start

with the choice of frames. In each period an agent first chooses which frame

to use with the logit rule (McFadden, 1974; Cramer, 2003). For an agent i the

probability of choosing frame j in period t is equal to

pt(Fi,j) =
eβ

F st(Fi,j)∑
f

eβ
F st(Fi,f )

, (1)

where st(Fi,j) is the strength of frame j of agent i in period t and βF is a

parameter determining the sensitivity of frame choice to strengths. For βF = 0

choice is uniform random, all frames are chosen with equal probability. If βF > 0

frames that had a better performance in the past are more likely to be chosen.

After choosing a frame to use, an agent chooses a category from this frame.

This choice is made analogically with the logit rule, where pt(Ci,j,c) is the

probability that agent i in period t chooses category c in frame j,

pt(Ci,j,c) =
eβ

Cst(Ci,j,c)∑
k

eβ
Cst(Ci,j,k)

, (2)

st(Ci,j,c) is the strength of category c in frame j of agent i in period t, and

βC is a parameter determining the sensitivity of category choice to strengths.

After choosing a frame and a category, an agent chooses an action within the

category chosen uniform randomly.12

We now turn to the determination of the perceived strengths of the frames

and categories. The initial strengths of frames and categories are captured by

the parameters sF0 and sC0 , respectively. Thus, each agent starts out with all

possible frames and values all of them equally in period 0.13

The strength of the frame j that agent i uses in period t, sFt (Fi,j), is updated

according to the following rule:

sFt (Fi,j) = sFt−1(Fi,j)(1− αF ) + πtα
F (3)

where sFt−1(Fi,j) is the strength of this frame in the previous period, αF is the

12Treating all objects within a category equally is a basic feature of many categorization
models (Mohlin, 2014; Mengel, 2012b). It is also in line with the Principle of Insufficient
Reason.

13In principle one could start with any random valuation of the different frames, but it would
be difficult to conceptually justify why one would start with one valuation rather than another.
We adopt here the Principle of Insufficient Reason, which dictates that absent any reason to
treat objects differently one should treat them in the same way.
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weight the agent places on the latest interaction, and πt is the payoff from the

interaction in period t. The higher the αF (with 0 ≤ αF ≤ 1), the greater the

weight the agent places on more recent experiences.

The updating of the strength of the category used is analogical. That is, the

strength of category c in frame j of agent i in period t, sCt (Ci,j,c), is updated

according to:

sCt (Ci,j,c) = sCt−1(Ci,j,c)(1− αC) + πtα
C (4)

where αC is the weight placed on the most recent experience. Note that

some categories may exist in more than one frame of the agent. In that case

the strength of a category is updated with the payoff it generated whenever it is

used in each frame that it is an element of.

To sum up, there are in principle the following free parameters in this model:

the initial strengths of frames sF0 and of categories sC0 , the learning rates for

frames αF and for categories αC , and βF for choice of frames and βC for choice

of categories. In addition, in principle the parameter values could also vary

between agents and over time. For the sake of parsimony, in this paper we

present a version of the model where we use the same parameter values at both

the frame and the category level, i.e. sF0 = sC0 = s0, α
F = αC = α, and

βF = βC = β. These parameter values are the same for each agent and they do

not vary over time. Thus, the model has three free parameter values.14

Our assumption here is thus that all agents start out with all possible views

of the strategy set and they weigh them in the same way. This specification

also implies that they use the same learning mechanism, which does not differ

between treatments and does not adapt over time. Thus, ex ante agents are

identical. However, what is interesting is that even so ex post they might learn

to use different views of the strategy set.

The agents do not receive any feedback on the frames other agents use, on

the categories, or on the strategies chosen by them. Neither do they receive

feedback on the other agent’s payoff. They receive feedback only on their own

payoff and use this to update the strength of the frames and categories they

have chosen. In this sense our model is complementary to some other learning

models (such as e.g. fictitious play, or experience weighted attraction learning).

14The results for a version of the model where the parameters for frames and categories differ,
that is with six free parameters (sF0 , sC0 , αF , αC , βF , βC), are available from the authors upon
request.
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There are various reasons to restrict feedback in this model to an agent’s own

payoff only. First, it is difficult to envisage how one could justify an assumption

of observing another agent’s internal representation of the strategy set. Second,

giving only own payoff as feedback is consistent with the experiments that we

use as a case study. Third, it seems interesting to investigate whether a model

as simple as ours can capture the stylized facts observed in an experiment with

human subjects.

Related to the limited feedback, the agents do not form any explicit beliefs

about the frames and categories that other agents use. Thus, our approach

is complementary to a Bayesian approach where they would have beliefs over

others’ types, with a type consisting of a particular frame/category combination.

Here allowing for explicit beliefs would complicate the model unnecessarily as

each agent would need to form beliefs over both the frames and the categories

that other agents could use, taking also into account that a category may

exist under multiple frames. However, the fact that we use a reinforcement

learning model should not be seen as some kind of fundamentalist anti-strategic

reasoning approach. Instead of viewing reinforcement learning in complete

contrast to players’ forming beliefs about other players’ actions, one could think

of reinforcement learning itself as a form of (adaptive) implicit belief learning.

Note that as the perceived strengths of frames and categories that they use

change over time as a result of their interaction with others, agents in our model

are learning and updating their valuations of how good the different options are.

4 Case study: the underlying game and

experiment

In this section we introduce the underlying game, its static analysis, as well as the

experimental data from the experiment by Bosch-Domènech and Vriend (2013),

which we use for the case study of our model.

4.1 The underlying game

We introduce the non-equilibrium focal point game from the experiment by

Bosch-Domènech and Vriend (2013) (henceforth BDV). The main question this

experiment addresses is whether a non-equilibrium focal point can help players

coordinate better. At the beginning of each experimental session players are

12



randomly assigned to be either a row player or a column player. Each player

receives the payoff matrix of the game. Players are randomly and anonymously

(re)matched in pairs each period. A player’s task is to independently choose

one of 15 possible rows (columns) of the payoff matrix. The payoff matrix

from the control treatment is presented in Figure 2a, where the payoff in each

cell represents the monetary reward that is given to each player.15 There are

overall 30 payoff-equivalent Nash equilibria in pure strategies (NE). These NE

are scattered in the payoff matrix in such a way that there are always two NE per

row (column) in an attempt to avoid any equilibrium being more conspicuous

than the others (e.g. there are no NE in the corners or the center of the payoff

matrix).

There are three other treatments. In each of them a focal point is introduced

by reducing the payoff of one of the NE as in the example in Figure 2b. The three

treatments involve a payoff of 46, 87, and 99, respectively. Figure 2b shows the

87 treatment (the payoff matrices for the other two treatments are analogical,

but for the magnitude of the focal point). The idea is that after reducing the

NE payoff, the corresponding action profile is no longer a NE. Given that one

player plays the focal action, the other player has an incentive to deviate to

an Associated Nash Equilibrium (ANE), i.e. the NE in the same row (column)

as the focal payoff. Note, however, that since there are two ANE (one in the

same row and one in the same column as the focal point), if both players were

to deviate from the focal action in the hope of realizing an ANE, they would

miscoordinate. Thus, in the focal point treatments instead of 30 NE, there are

29 NE and one non-equilibrium focal point.

We now discuss the set of feasible frames of the strategy set in the

non-equilibrium focal point game, starting with the frames that arise in the

treatments with a focal point. They are illustrated in Figure 3. A player can

put all possible strategies in one category, the category “any” and then choose

uniform randomly among them. We call this frame F0.

However, in the focal point treatments a player may observe that there is a

payoff in one of the cells of the payoff matrix that differs from all others. Thus,

the player can split the category “any” into the category “focal” and the category

“any with two NE”. This view of the strategy set corresponds to F1 in Figure

3. In the first category, there is only one action - i.e. the focal action, which

15A number of variations of this matrix were used in BDV, consisting basically of rotating or
mirroring the payoff matrix, which implies that subjects in different sessions may face slightly
differently configured payoff matrices.
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0 0 0 0 0 0 0 0 100 0 0 100 0 0 0

0 0 0 0 0 100 0 0 0 0 0 0 0 0 100

0 0 0 100 0 0 0 100 0 0 0 0 0 0 0

0 0 0 0 100 0 100 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 100 0 0 0 0 100 0 0

0 100 0 0 0 0 0 0 0 0 0 0 0 100 0

0 0 100 0 0 0 0 0 0 0 0 0 100 0 0

100 0 0 0 0 0 0 0 0 0 0 0 0 0 100

0 100 0 0 0 0 0 0 0 0 100 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 100 0 100 0

0 0 100 0 0 0 0 0 0 100 0 0 0 0 0

0 0 0 0 100 0 0 0 100 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 0 100 0 0 0 0

0 0 0 0 0 100 0 0 0 100 0 0 0 0 0

0 0 0 100 0 0 100 0 0 0 0 0 0 0 0

focal column associated column

0 0 0 0 0 0 0 0 100 0 0 100 0 0 0

0 0 0 0 0 100 0 0 0 0 0 0 0 0 100

0 0 0 100 0 0 0 100 0 0 0 0 0 0 0

0 0 0 0 100 0 100 0 0 0 0 0 0 0 0 associated row
0 0 0 0 0 0 0 100 0 0 0 0 100 0 0

0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 Associated Nash
0 0 100 0 0 0 0 0 0 0 0 0 100 0 0 Equilibria (ANE)
100 0 0 0 0 0 0 0 0 0 0 0 0 0 100

0 100 0 0 0 0 0 0 0 0 100 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 100 0 100 0

0 0 100 0 0 0 0 0 0 100 0 0 0 0 0

0 0 0 0 87 0 0 0 100 0 0 0 0 0 0 focal row
100 0 0 0 0 0 0 0 0 0 100 0 0 0 0

0 0 0 0 0 100 0 0 0 100 0 0 0 0 0

0 0 0 100 0 0 100 0 0 0 0 0 0 0 0  Focal Point (FP)

a) Control - without focal point b) 87 treatment - with focal point

Figure 2: Game from Bosch-Domènech and Vriend (2013)

the player plays with probability 1 if she chooses this category. In the category

“any with two NE” there are 14 actions corresponding to the remaining 14 rows

(columns).

A player may further distinguish the associated row (column) (see Figure

2b). Thus, under F2 a player partitions the category “any with 2 NE” into the

two categories “associated” and “any other with 2 NE”. Note that the category

“associated” can be distinguished only after distinguishing the category “focal”.

The next level is F3. We assume that under F3 a player splits the category “any

other with 2 NE” into the 13 rows (columns) that it comprises.16

Next, we turn to the control treatment (the treatment without a focal

point). There are two possible frames of the strategy set. Just as in the focal

point treatments, a player can use frame F0, putting all possible strategies

in one category (“any”) and then choosing uniform randomly among them.

Alternatively, a player could put each strategy in a separate category and have

fifteen separate categories, each containing one strategy corresponding to the

choice of the respective row (column). We call this frame F1.
17

16In principle there can be a number of frames between F2 and the frame that we described
as F3. After distinguishing the ANE, a player may realize that there is another NE in the same
row (column) as the ANE, and thus she may have a frame that distinguishes the corresponding
actions from the remaining rows (columns) with two NE. Following such steps, eventually all
rows (columns) could be distinguished. Note, however, that while the associated action has
a clearly distinct feature in that a deviation from the focal to the associated action may
lead to a strict payoff gain, there is no such payoff gain from further deviations, as all NE
are equivalent. In other words, the distinction between these other rows (columns) does not
appear that prominent. Therefore, we assume that under F3 a player splits the category “any
other with 2 NE” directly into the 13 rows (columns) it comprises.

17Note that this frame essentially corresponds to frame F3 in the treatments with a focal
point.
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any

focal any with 2 NE

focal associated any other with 2 NE

F0

F1

F2

F3

associatedfocal 21 3 4 5 6 7 8 9 10 11 12 13

Figure 3: Frame levels in focal point treatments in the BDV game

4.2 Static analysis

What are the expected payoff consequences when the players apply the frames

just discussed? We now discuss our interpretation of the predictions that VFT

would make for the game we consider. By doing so we derive predictions from

a static model in order to then compare them with the findings of our dynamic

model.

For given frame profiles of the players, the underlying normal form of

the game can be transformed into a payoff matrix of expected payoffs from

alternative category profiles (as in VFT). Figure 4 shows the consequences in

terms of the expected payoffs when both players use the same frame. If both

players use F0, they put all 15 strategies in the same category “any”. Each

player randomizes among the 15 strategies and her expected payoff is equal to
1
15
× 1

15
× (100× 29 + 87) = 13.28.18 This is shown in the first table of Figure 4.

If both players use F1, each of them has two categories of strategies: “focal” and

“any with 2 NE”. As we can see, if both players use F1 there are two equilibria:

(“focal”, “focal”) and (“any with 2 NE”, “any with 2 NE”). The equilibrium in

which both use the focal category is Pareto superior to the one in which both

choose the category “any with 2 NE”. Variable Frame Theory, using the Principle

of Payoff Dominance to select among alternative equilibria, would predict that

(“focal”, “focal”) will be played if both players make a decision under frame F1.

Next, we consider the case of both players using F2. Each player has three

categories of strategies and there are three equilibria, two asymmetric and one

18We are considering here the expected payoffs in the 87 focal point treatment. The expected
payoffs in the other treatments can be calculated in the same way.
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symmetric: (“focal”, “associated”), (“associated”, “focal”), (“any other with 2

NE”, “any other with 2 NE”). The two equilibria in which one player plays the

focal category and the other the associated category are the Pareto dominant

equilibria in the case when both players use F2 and hence the VFT prediction.

However, VFT would not predict which of the two equilibria would be played.

Figure 4 finally shows the case when both players use F3. There are 29

equilibria just as in the original normal form: the 2 ANE plus the other 27 NE.

All of these equilibria are equally efficient and entail a payoff of 100. VFT would

suggest that any of them is a possible solution.

The asymmetric cases, when the players use different frames, are represented

in Figure 5. The equilibrium analysis is analogical to that for the symmetric

cases, and the VFT predictions are indicated in the figure.

The static analysis above is for given frame combinations. In our learning

model, however, the players actually choose which frame to use. Before turning

to the dynamic analysis (fitting our model to the experimental data), as a referee

suggested, we can extend the static analysis to identify the ‘equilibrium’ profiles

of frames. This provides a benchmark for the experimental data and for our

learning model. To do this, Figure 6 effectively summarizes the predictions of

Variable Frame Theory for different frame profiles, - i.e. selecting for all possible

frame profiles the payoffs resulting from the Variable Frame Equilibria.
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F 0 F 1 F 2 F 3

F 0 13.28 13.33 13.33 13.33

F 1 13.33 87 100 100

F 2 13.33 100 100 100

F 3 13.33 100 100 100

Figure 6: Expected payoffs under Pareto-dominant equilibrium for each frame
profile BDV game (87 treatment)

As we can see in Figure 6, where the outcomes of frame equilibrium profiles

are underlined, frame F0 is strictly dominated by the other frames, and thus, an

individual player always has an incentive to go at least one frame level higher

than F0. Also from F1xF1, an individual player has an incentive to unilaterally

go one frame level higher, as moving to F2 allows a player to get the ANE payoff

of 100 instead of the focal payoff of 87. While any profiles involving F0 as well as

the symmetric profile with F1 are ruled out by such a frame equilibrium analysis,

otherwise any combination of F1, F2 and F3 may constitute a frame equilibrium.19

We can make the following observations. First, the asymmetric frame

equilibria that we find in this static analysis suggest that even in equilibrium

individual players may have different views of the world. Second, almost all

frame equilibria imply that the players go for one of the ANE,20 which means

that both associated and focal actions are key. Third, given the multiplicity

and nature of these frame equilibria, the solution to the underlying coordination

problem is still far from trivial, and it may be that some kind of miscoordination

(with outcomes that are neither Pareto efficient nor a NE) is not unlikely.

This is where the analysis of our learning model in the next few subsections

comes in. It is complementary to the static equilibrium analysis presented

here, focusing in particular on the dynamics. Studying these dynamics may be

interesting for two reasons. First, as the trajectories observed in the experimental

data presented in the next section show, shining some light on the behavior of

the players in the intermediate run may be interesting. Second, a study of these

dynamics may provide some insights as to which of these profiles we should

consider as more plausible in the longer run. This applies to the equilibrium

19Note that in addition to these eight payoff-equivalent frame equilibrium profiles, there will
be a number of mixed frame equilibria.

20The only exceptions are the following additional frame equilibria. In the symmetric frame
equilibrium F3xF3 all the NE of the underlying game may be relevant, and in the asymmetric
frame equilibrium F2xF3 we also find the equivalent (associated action, column 7) equilibrium.

19



selection of categories for a given combination of frames, as well as the selection

among the frame equilibrium profiles mentioned above.

Focusing on these dynamics will also allow us to highlight the importance of

some aspects of the learning dynamics and the differences between the frames in

this respect. More specifically, while frame F3 may be seen as weakly-dominant

in Figure 6, looking at Figures 4 and 5 illustrates that there may be some hidden

cost. That is, under the finer frame F3 there are many more possible categories

to choose from, and hence learning which category to use may take longer. This

is a key part of the learning trade-off we suggest in the paper.

4.3 Experimental data

We now summarize some key findings of the BDV experiment. In the experiment

there were 6-8 sessions for each treatment, with 18 participants in each session.

They were randomly divided into an equal number of row and column players

at the beginning of the session. They kept their roles throughout the session.

The game was played for fifty rounds with random rematching in each period.

The only feedback that the participants received after each round was the payoff

from the interaction. They did not receive further feedback on the other player’s

action.

0

20

40

60

80

100

0 10 20 30 40

99

0

20

40

60

80

100

0 10 20 30 40

100

0

20

40

60

80

100

0 10 20 30 40

periods

46

0

20

40

60

80

100

0 10 20 30 40

87

focal point

1st ANE

2nd ANE

other NE

av
er

ag
e 

pa
yo

ffs

Figure 7: BDV experiment: average expected payoffs per player

Figure 7 shows the experimental data on average expected payoffs per player

per type of outcome for each period for each treatment.21 Conditional on

coordinating, we can distinguish four types of outcomes in the BDV game:

21The authors report expected rather than actual payoffs in order to clear the data of pure
random matching effects. The average expected payoffs are based on all pairs that could have
been formed in a session rather than just those that were actually formed.
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coordination on the focal point, coordination on the 1st Associated Nash

Equilibrium (ANE), coordination on the 2nd ANE, and coordination on any

other NE.22

We observe the following stylized facts in Figure 7. First, the average

expected payoffs increase significantly over time in all three treatments with

a focal point, indicating that participants learn to coordinate better over time,

whereas in the control treatment there is only some almost negligible increase.

Second, as a result, in the focal point treatments participants learn to achieve

higher average expected payoffs than in the control treatment. Thus, the

existence of a focal point helps participants to learn to coordinate in the

experiment. Third, the higher the focal payoff, the higher the average expected

payoffs players achieve towards the end of the fifty periods. That is, the average

expected payoffs towards the end of the fifty periods are higher in the 99 than

in the 87 treatment, and higher in the 87 than in the 46 treatment, with

the difference between the 87 and the 46 treatments being more pronounced

than the difference between the 99 and 87 treatments. Fourth, the increase

in average expected payoffs in the focal point treatments is driven either by

increased coordination on the focal point or by increased coordination on the

ANE or by both, but not by increased coordination on the other NE. Fifth, the

average expected payoffs realized through the ANE increase over time in all focal

point treatments. Sixth, the higher the focal payoff, the higher the frequency of

coordination on the focal point relative to coordination on the ANE at the end

of the fifty periods. Seventh, the higher the focal payoff, the less frequent the

coordination on the other NE.

Following BDV, we focus on the average expected payoffs as they capture

various important aspects of coordination success, including the frequency of

coordination as well as the different outcomes players coordinate on.23

22Note that while ex ante we expect that each of the two ANE has an equal probability of
being realized, in a given experimental session one ANE is usually by chance realized more often
than another. Once one of the ANE tends to prevail more in a given session, this difference
tends to get reinforced as row-deviations and column-deviations from the focal to the associated
action cannot co-exist successfully. Thus, ex post for each session we would expect a substantial
difference between the frequencies of these row-deviations and column-deviations. Which of
the ANE prevails will vary from session to session. The label “1st ANE” is given to the ANE
that is realized more often in a given session. Hence, which of the two ANE is labeled “1st
ANE” may differ from session to session.

23We can think of the average expected payoffs as a weighted frequency of coordination
success. Each successful coordination counts as one and is weighted by the payoff from the
outcome that the players have coordinated on, while miscoordination counts as zero. Thus,
coordination on a Nash equilibrium is weighted by a payoff of 100, and coordination on a focal

21



Note that in principle a difference in average expected payoffs between two

treatments could be due either to differences in individual behavior (the actions

chosen) or simply to the difference in the magnitude of the focal payoff as such.

In the Appendix we disentangle these two effects, computing precisely which

effect is responsible for which proportion of the difference in average expected

payoffs. As Table 1 in the Appendix shows, the increases in average expected

payoffs when the focal payoff increases are predominantly due to differences in

behavior. Depending on the specific focal payoff change considered, 72% to 82%

of the increase in average expected payoffs is due to differences in the behavior,

and only 18% to 28% is the direct result of the increase of the magnitude of the

focal payoff as such.

To add some further perspective to this, when it comes to measuring the

degree of coordination success, instead of using the average expected payoffs

(i.e. the weighted frequencies of coordination), we can also consider the

unweighted frequencies of coordination, simply counting each coordination on

a Nash equilibrium or on a focal point as a success. Figure 13 in the Appendix

shows the equivalent of Figure 7, focusing instead on the unweighted frequencies

of coordination by type of outcome, and confirming the following key stylized

facts. First, as we increase the focal payoff in the various treatments (“46”, “87”,

and “99”), the unweighted frequencies of coordination increase as well. Second,

the relative importance of the focal action increases with the magnitude of the

focal payoffs, as the unweighted frequency of coordination involving the focal

action (leading to either the focal point or an ANE) increases, relative to all

others.

Thus, this confirms that the increases in average expected payoffs (when

comparing the 46 to the 87 and 99 treatments) are not an artefact simply due to

the changes of the magnitude of the focal payoffs as such, and do correspond to

changes in individual behavior. Therefore, in our analysis we will focus mostly

on the average expected payoffs as a measure of coordination success.

5 Case study: model analysis

We now fit the model presented in Section 3 to the data from the BDV experiment

presented in Figure 7 and we analyse the model under the parameters that best

fit the experimental data in order to learn more about which views of the strategy

point is weighted by the magnitude of the focal payoff.
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set are consistent with behaviour observed in the experiment. At the end of this

section we also consider whether a simpler reinforcement learning model (without

frames and categories) could account for the data.

5.1 Fitting the model to the experimental data

As we explained above, for each of the parameters considered we assume the same

value across all agents, all periods and all decisions (choice of frames and choice of

categories), as well as all treatments (including the control treatment). Hence,

the model has three free parameters: the initial strength s0, the temperature

parameter in the logit rule β, and the learning rate α. To look for the model

parameter values that best fit the average behavior observed in the experimental

data as summarized in Figure 7, we conducted an 11 × 11 × 11 = 1, 331 grid

search of the parameter space.24

For each treatment, we compute the four average expected payoffs per agent

for each of the fifty periods, distinguishing the expected payoffs per agent realized

through the focal point, through each of the two ANE and through any of the

other NE, for the experimental data as well as for the data generated by the

model.25 We then compute the mean squared errors between the experimental

data and the model data, summing the mean squared errors over the four types

of expected payoffs, over all periods and over all treatments, and we look for the

parameter values that minimize this sum.

We found that the mean squared error between the experimental data and

the model data is minimized by the following set of parameter values: s0 = 0.1,

β = 5, and α = 0.7, giving a total Mean Squared Error of 13,353 or 3.71 per

agent per period.26

The goal of the model is to match aggregate behavior in the experiment.

What we have is not a model of a representative agent, and also not of an average

agent. An essential aspect of this model is that we do not reduce behavior to a

single (representative or average) agent, not even a single row and a single column

24Having all payoffs normalized to [0.0, 1.0], for s0 we considered all values in the range
[0.0, 1.0] in increments of 0.1, for β all values in the range [0, 50] in increments of 5, and for α
all values in the range [0.0, 1.0] in increments of 0.1.

25The experimental data for each treatment are averaged over all (6-8) sessions in that
treatment. The model data for each treatment are averaged over 10,000 runs of the model. In
each experimental session as well as in each model run, there are nine row and nine column
players.

26To check the robustness of this optimization result, we did the grid search 10 times, each
time for 10,000 runs, and this is the optimal parameter set for each of these 10 times.
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agent. Instead, it is based on a number of individual agents (corresponding to

the number in the experiment). One thing to note is that although ex ante

all individuals are identical in our model, some heterogeneity in the individual

behavior emerges. This is due not just directly to the stochastic elements in

the choices but also to the random matching and the different experiences. And

this heterogeneity matters, as it is the distribution of the behaviors of the agents

that matters, in the experiment as well as in the model. A model with one

representative or average row agent and one such column agent would not be able

to match the stylized facts of the experiment. We would also like to emphasize

that modelling a group of individuals rather than a single (representative or

average) agent is important in the following sense. While a given individual may

change their behavior, at the same time their environment is changing as well,

as the other agents may be changing their behavior, thus changing what this

given individual needs to learn. Our model captures this changing of individual

behavior and changing of the environment at the same time.

5.2 Analysis of the model fitted to the experimental data

We now analyze the behavior of the model under the parameters that best fit

the experimental data. Figure 8 shows the average payoffs realized through the

various types of outcomes in the four treatments. As we can see, the fitted model

matches each of the stylized facts of the experimental data listed above.
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Figure 8: Learning model: Average payoffs per agent

Table 1 in the Appendix makes precise how much of the differences in

average payoffs between treatments as captured by the learning model is due to

differences in the magnitude of the focal payoff and how much is due to differences

in the behaviour of the agents. The decomposition shows that just as for the
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BDV experiment it is also true for the model that the differences in individual

behavior are most important, accounting for 64% to 74% of the differences in

expected payoffs, with only 26% to 36% the direct result of differences of the

magnitude of the focal payoff as such. It also seems interesting to note that for

the experimental data as well as for the learning model it is the case that the

larger the change of the magnitude of the focal payoffs as such, the larger the

relative importance of the change in behavior becomes.

In the Appendix we also consider the unweighted frequency of coordination for

the learning model. Figure 13 in the Appendix confirms that also for the model

the behavior of the agents is different in the various treatments and that the

differences in payoffs are not simply a direct result of a change in the magnitude

of the focal payoff as such.

Before considering the dynamics of the choices of frames and categories

in more detail, let us provide a short interpretation of the specific parameter

values found. The optimal initial strength of 0.1 implies that there will be

some exploration of the strategy set as far as the frame and category choices

are concerned. But this exploration may be somewhat limited as the strengths

of some choices may increase above 0.1. This is also related to the other two

parameters. The relatively high α = 0.7 suggests that agents react relatively fast

with respect to their most recent experience as to which frames and categories

to use, and that they quickly forget earlier experiences. The β = 5 means that

frames and categories that have performed better in the past have a higher chance

of being selected.

In the experiment we observe the actions of the players, the extent of

coordination, and the specific outcomes that they coordinate on. What is not
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observed in the experiment are the views of the strategy set that players use to

make their choices. We can use the model to analyze the dynamics of use of

frames and categories under the parameters that best fit the experimental data

to gain some insights into the question which views of the strategy set would be

compatible with the behavior observed in the experiment.

The analysis of the reinforcement learning model with frames suggests several

insights into the behavior of the players in the experiment. By modeling frames

of the strategy set and the learning of which one to use, we make explicit how

the players may be viewing the various options presented to them with the focal

point game, which attributes they may be taking into account, as well as how

all this may be changing over time. In the model these dynamics themselves are

governed by the three parameters that we used to fit the experimental data.

In order to gain some insights into which views of the game are most consistent

with the behavior observed in the experiment, we present the dynamics of the

relative frequency of frame use. Figure 9 illustrates the relative frequency of

frame use over time for all four treatments (averaged over 10,000 runs). We

see that in all focal point treatments agents increase their use of F2 and F1 and

decrease their use of F0 and F3 over time. In the 46 and 87 focal point treatments

F2 is used slightly more often than F1 at the end of the fifty periods, whereas

in the 99 treatment F1 is used slightly more often than F2. The two frames in

the control treatment are used equally often. Under F0 in the control treatment

an agent puts all actions in one category and chooses uniform randomly among

them. Under F1 in the control treatment each action is put in a separate category

and these categories are then reinforced through the realized payoffs. As we can

see, averaged over multiple runs of the model, there is no difference in payoffs

between these two frames. That is, for the given parameters found, in the control

treatment frame F1 turns out to be just as good as the random choice under F0.

We observe that in all three focal point treatments, agents tend to learn the

frames of intermediate coarseness levels rather than the most or the least detailed

ones. Moreover, the higher the focal point, the steeper the learning curves over

the fifty periods. The analysis suggests that while players learn to coordinate

more and more successfully, they do not necessarily achieve this by learning finer

and finer frames.27

27Note that the frames are based on attributes of the game that agents perceive, and that
a finer frame means that agents pay attention to more attributes. These levels of coarseness
should not be confused with the levels of reasoning of the level-k literature, where each higher
level of reasoning is a best response to players’ using the previous level of reasoning. In our
model a finer frame is not necessarily a best response to coarser frames.
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Agents’ views of the strategy set remain quite mixed in all focal point

treatments, even after fifty periods. The use of the frames F1 and F2 is higher

than the use of the frames F0 and F3 in all focal point treatments. Under frame F2

agents distinguish the focal as well as the associated action from each other and

from all the other possible actions, but besides or instead of this view, often the

agents learn to use frame F1 in which they distinguish only the focal action from

all other actions as the most relevant one. This mixing between different frames

may happen at the individual as well as at the population level. Thus, what we

found is that when two agents meet they may actually look in a different way at

the strategy set (although the options each of them is facing in the underlying

game are the same).

The next question we consider is, conditional on a given frame being used,

which categories within this frame do agents choose? Figure 10 represents the

relative frequency of category use over time under the different frames (F1 to F3)

for each of the three focal point treatments. The control treatment is omitted as

agents in the control treatment under F1 use all 15 categories corresponding to

the different rows (columns) more or less equally often, with a relative frequency

of about 0.07 each (at the end of the fifty periods).

We now analyze the category use within each frame in the different focal point

treatments. In all treatments the frame F0 contains only the category “any”.

Thus, whenever F0 is used, the category “any” is used. Therefore no graph of

category use under F0 is presented. Figure 10 shows that in all three focal point

treatments whenever agents use F1, they use predominantly the category “focal”.

The use of the category “any 2 NE” under F1 decreases substantially in all three

treatments. Conditional on choosing F2, agents use predominantly the categories

“focal” and “associated” in all three treatments. In all three treatments, under

F3 agents also use the categories “focal” and “associated” more often than the

other categories. In terms of between treatment comparisons, the higher the

magnitude of the focal point, the higher the use of the category focal under F1

at the end of the 50 periods. Moreover, both under F2 and F3, the higher the

focal point, the higher the relative use of the category “focal” compared to the

category “associated” at the end of the 50 periods.

Note that overall the difference in relative frequency of use of those categories

whose use increases compared to those categories whose use decreases in each

treatment is more pronounced under F1 than under F2 than under F3. That is,

we observe that the finer the frame of the strategy set the agent has (e.g. compare
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F3 to F2 to F1 to F0), the longer it takes the agent to learn which category within

this frame to use.28 This suggests that when it comes to learning, there is some

tension between using a more and a less detailed representation of the strategy

set.

On the one hand, a coarser frame (with fewer categories) has the advantage

that the agents can learn relatively quickly the value of each category within

such a frame, and they can learn quickly on which category to coordinate. On

the other hand, a coarser frame (with on average more options per category)

may have the disadvantage that while coordinating on some category may

be facilitated, there will be a good chance of miscoordination within such a

category. Thus, from a learning perspective, the best views of the strategy set

are characterized by a mixture of coarseness and fineness: few categories, of which

some contain few actions (those on which to base the successful coordination),

while the other categories contain many actions. It is this trade-off that gives

frame F1 a clear learning advantage, as it has only two categories, “focal” and

“any with 2 NE”. The former contains only the focal action, making coordination

on it easy once this category is chosen, while the latter includes all other actions.

Thus, the analysis of the dynamics of our learning model suggest a rationale

for some coarse framing of the strategy set, a rationale that may not be apparent

in a static analysis.29 It also helps us understand why even if a number of frame

profiles involving F3 give an expected payoff of 100 and are the Pareto dominant

equilibrium selected according to Variable Frame Theory (see Figure 6), the use

of F3 decreases over time.

The dynamic analysis of the reinforcement learning model with frames shows

that agents may not always learn to coordinate on a (Pareto-superior) NE and

that agents may learn instead to coordinate on a non-equilibrium focal point

(in line with the experimental findings). The model provides an explanation for

this, as there is a trade-off between using a finer frame of the game that contains

the Pareto-dominant equilibria and using a coarser frame of the game that helps

agents to learn to coordinate faster. Agents may thus choose representations of

the game (frame F1) under which they cannot coordinate on the Pareto-superior

equilibrium in expected payoffs. To what extent agents coordinate on the Pareto-

superior equilibrium in expected payoffs and to what extent they coordinate on

28Note that this is true even though if a category is used by the agent it is reinforced under
all frames under which it exists.

29Note that this rationale for using coarser frames does not depend on some inability to
perceive a more detailed representation of the action set.
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the focal point depends on the difference between the Pareto-superior NE payoff

and the payoffs under the alternatives. Hence the difference in outcomes observed

in the different treatments of the experiment can be understood as resulting from

different incentives to learn to use a finer frame. The higher the focal payoff

(which can be achieved also under F1), the less of an incentive there is to learn

to use the finer frame F2.

5.3 Basic reinforcement learning without frames

The analysis above shows that the reinforcement learning model with frames, in

which the agents learn which frame of the strategy set to use, fits the experimental

data well in the sense that it is consistent with the stylized facts observed in the

experiment. To provide some further perspective, in this section we will compare

it with a closely related reinforcement learning model - without frames. That

is, in this model the agents use reinforcement learning to respond to feedback

about past performance as in our model, but they do not use frames, i.e. they

do not categorize the action set. This allows us to assess how important the

categorization of the action set is. Would a simpler reinforcement learning model

without frames account for the experimental data equally well? Note that a

significantly better performance of the model with frames would suggest that

the idea of players categorizing the strategy set and learning which frame to use

may be relevant as an explanation for the behavior observed in the experiment.

The key difference of this more basic reinforcement learning model with the

model proposed in Section 3 is that here there are no frames and categories.

That is, the agents have only one possible internal representation of the game,

corresponding to the standard normal form of the underlying game, i.e. the payoff

matrix in Figure 2. Otherwise the model corresponds to our model. Thus, each

period two agents are randomly matched to play the game, each agent chooses

simply an action, i.e. one of the fifteen possible rows (columns) using the logit

rule, payoffs are realized, and the strength of each agent’s action is updated with

the payoff from the interaction.

In order to compare the two models we carry out a grid search for the

parameters of the model without frames that best fit the experimental data.

As before, the parameters are the initial strength s0 (here of each action), the

β (for choice between the fifteen actions), and the α (to reinforce the strength

of each action). And just as before, we minimize the average mean squared

error, taking into account the four types of payoffs realized in the experiment
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(see Figure 7) and those generated by the model. Again the grid search is run

10 times, each time taking the average over 10,000 runs of the model in order to

clear out effects due to randomness.

For 6 out of the 10 times, the optimal α found is equal to 0, and for the

remaining 4 times, the optimal β found is equal to 0. Note that these findings

for the 10 runs are perfectly consistent as these parameter values imply persistent

random behavior without any learning. An α = 0 means that the strengths of the

various choices are not updated on the basis of experience and remain equal to

the initial strengths. Since these initial strengths were the same for all choices,

the agents will continue to choose their actions uniform randomly. A β = 0

means that the agents do not respond to any differences in strength between the

various choices and that they make their choices uniform randomly.

0

20

40

60

80

100

0 10 20 30 40

99

0

20

40

60

80

100

0 10 20 30 40

100

0

20

40

60

80

100

0 10 20 30 40

periods

46

0

20

40

60

80

100

0 10 20 30 40

87

focal point

1st ANE

2nd ANE

other NE

av
er

ag
e 

pa
yo

ffs

Figure 11: Learning model without frames: average payoffs per agent

This is illustrated in Figure 11, showing the average payoffs per agent per

type of outcome for each period under the optimal parameter values for the

model without frames, i.e. s0 = 0.8, α = 0.0, β = 5. As we can see, in each

treatment, including the control treatment, the overall payoffs stay constant

over the fifty periods at the level expected for random choices, and the payoffs

realized through the focal point or the ANE stay constant at the level expected

for random behavior as well, which means that almost all the payoffs are realized

through the other NE.

In fact, none of the stylized facts observed in the experiment (as illustrated in

Figure 7) is captured by this more basic reinforcement learning model in which

the agents do not categorize the strategy set, whereas our model (see Figure

8) captured each of these stylized facts. Thus, the basic reinforcement learning

model without frames cannot explain the experimental data any better than

uniform random choice of the available actions.
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This does not mean that agents in a basic reinforcement learning model

without frames as such cannot learn to coordinate successfully in a game like the

focal point game. This is illustrated in Figure 12. Instead of fitting the model

to the BDV experiment distinguishing the four types of coordination outcomes

as in Figure 7, we here take into account only the overall payoffs realized in

each period. The optimal parameter values found are s0 = 0.0, α = 0.1 and

β = 50.0. As we can see, the overall payoffs per agent increase over time in all

treatments. Note, however, that although agents in this reinforcement learning

model successfully learn to coordinate, none of the stylized facts observed in

the experiment are explained by this model without frames. For example,

the overall payoff differences between the treatments that we observed in the

experiment cannot be explained by this reinforcement learning model, as here

the payoff differences between the treatments become negligible, with even the

control (“100”) treatment showing the same increase in total payoffs as the focal

point treatments. Moreover, with this learning model without frames the focal

point and the ANE do not play any significant role, as almost all the payoffs are

realized through the other NE.
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Figure 12: Learning model without frames: average payoffs per agent (fitting
overall payoffs only)

6 Concluding remarks

Starting with the idea that often there may be many alternative ways to view a

given strategic situation, this paper presents a model of agents who categorize

their own actions. The agents learn which frames and categories of actions to use

in the process of social interaction. The model is modest in terms of cognitive
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assumptions. It postulates that agents are more likely to choose frames and

categories that have performed better in the past. As a case study we applied

the model to improve our understanding of the dynamics of behavior in the

non-equilibrium focal point game from the experiment by Bosch-Domènech and

Vriend (2013).

The model suggests why different players may learn to use different views of

the strategy set even in the long term, and why we may get outcomes that are

neither Pareto efficient nor a Nash equilibrium. Even if agents have all possible

frames available to them, they do not necessarily learn to use the finest view

of the strategy set. If agents need to learn to coordinate, there may be some

tension between fineness and coarseness of the frames they want to use. On the

one hand, learning to coordinate is easier if there are fewer categories, which

favors coarse frames. On the other hand, miscoordination within a category is

more likely the more actions there are within a category and this may favor finer

frames.

We conjecture that understanding how players learn which categorization of

the strategy set to use may be useful to understand the dynamics of more games.
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A Appendix: coordination success across

treatments

In the main text we use the average payoffs by type of outcome in the different

treatments as the leading indicator of coordination success. In this appendix

we decompose the differences in average payoffs between the 46 and the 87

treatments, as well as between the 46 and the 99 treatments and between the

87 and the 99 treatments, by disentangling two effects on these average payoffs

when considering different treatments. On the one hand, there are the differences

in the magnitude of the focal payoff as such, and on the other hand there are the

differences in behavior (actions chosen).

The decomposition works as follows. Take, e.g., the 46 and 87 treatments,

compute for each the expected overall payoffs over all 50 periods, and take the

difference.30 To find what proportion of this difference is due simply to the

change in the focal payoff from 46 to 87, we fix the behavior (i.e. frequency

of choices of all actions) in the 46 treatment and then simply re-compute the

30This analysis is robust to considering different periods instead.
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BDV experiment Learning model

comparison of due to magnitude due to difference due to magnitude due to difference
treatments of focal payoff in behavior of focal payoff in behavior

46 and 87 20% 80% 29% 71%
87 and 99 28% 72% 36% 64%
46 and 99 18% 82% 26% 74%

Table 1: Decomposition of differences in average payoffs

expected payoffs using a payoff of 87 instead of 46 for successful coordination on

the focal point. Any remaining difference between the expected payoffs in the 46

and 87 treatments is due to differences in behavior. The analysis to decompose

the difference in payoffs between the 46 and the 99 treatments, and between the

87 and the 99 treatments is analogous.

Table 1 presents this decomposition of the differences in the average payoffs

between the treatments in the experiment, and similarly for the learning model.

Starting with the experiment, as the table shows, the increases in average

payoffs when the focal payoff is increased are predominantly due to differences

in behavior. Depending on the exact focal payoff increase considered, 72% to

82% of the increase in average payoffs is due to differences in the behavior, and

only 18% to 28% is the direct result of the increase of the focal payoffs as such.

This is matched by the learning model as well. As the decomposition of average

payoff differences for the model in Table 1 shows, the differences in individual

behavior are again most important, accounting for 64% to 74% of the increase

in expected payoffs, with only 26% to 36% the direct result of the increases of

the magnitude of the focal payoff as such. Note that the pattern of the relative

importance of differences in the magnitude of the focal payoffs as such and of

differences in behavior is the same for the experimental data and for the learning

model, with the largest increase of the focal payoff (from 46 to 99) making the

smallest contribution when it comes to explaining the average expected payoffs

(18% and 26% for BDV experiment and learning model respectively).

Next, while in the main text we focus on the average expected payoffs

to measure the weighted relative frequencies of coordination, in this appendix

we show in Figure 13 the unweighted frequencies of coordination by type of

outcome and by treatment for the BDV experiment and for the learning model,

as discussed in Subsections 4.3 and 5.2 respectively.
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Figure 13: BDV experiment (left) and Learning model (right): Unweighted
frequencies of coordination by type of outcome and by treatment
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