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A Markov regenerative process 
with recurrence time and its application
Puneet Pasricha and Dharmaraja Selvamuthu*  

Introduction
One of the most significant risks faced by any financial institution is the credit risk, that 
is, the lender’s risk that the borrower may not meet its debt obligations. Consequently, 
an essential pillar of credit risk modeling is the accurate estimation of default probability 
over different time horizons. The default probability can be obtained using the market 
data of credit derivatives, for instance, credit default swap prices, or using the histori-
cally observed credit rating data.

Credit ratings are among the various parameters that quantify the credit risk associ-
ated with the borrower since they quantify a firm’s ability to pay back the loan and its 
likelihood of default. These ratings are either issued by international organizations such 
as Standard & Poor’s or obtained by financial institutes using the internal rating-based 
methods within Basel regulatory framework guidelines. In either case, one expects a 
higher interest rate from a firm whose rating is lower. Any firm’s rating level is dynamic 
and changes over time because of the random credit risk, either due to idiosyncratic or 
systematic changes. Therefore, the dynamics of ratings need to be modeled by an appro-
priate stochastic process. Jarrow et  al. (1997) applied the Markov process to capture 
the time evolution of credit ratings. A drawback of their model is that it gives a zero-
default probability in a small time interval to the bonds with high credit ratings leading 
to numerical issues. Kijima and Komoribayashi (1998) proposed new risk adjustments to 
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overcome this drawback and demonstrated that their model is robust with respect to the 
recovery rate, especially for higher rated bonds. For more details, interested readers can 
refer to an excellent study by Duffie and Singleton (2003). Note that other than the vari-
ous stochastic modeling approaches, many researchers are adopting machine learning 
techniques to model the credit risk (Kou et al. 2014, 2021; Wang et al. 2020; Shen et al. 
2020), but we do not focus on this direction herein.

Several studies (Nickell et al. 2000; Kavvathas 2001; Lando and Skødeberg 2002; Alt-
man and Kao 1992a, b) highlighted the non-Markovian behavior of transition probabili-
ties of credit ratings. The main patterns include time dependence (Nickell et al. 2000), 
downward rating momentum (Carty and Fons 1994) and (Nickell et al. 2000), the dura-
tion effect (Carty and Fons 1994) and ageing effect (Fons and Kimball 1991; Jonsson and 
Fridson 1996). Empirical studies by Altman and Kao (1992a, 1992b) stressed the impact 
of length of time, that is, the duration effect, since issue on default risk. They found that 
default risk increases the first three-four years of rating issuance. Altman and Kishore 
(1996) observed similar results in that low-rated bonds are less likely to default in the 
first year. They argued that the plausible reasons for this lag in default are (a) loans are 
not granted to the companies who are in immediate danger of bankruptcy, and (b) the 
companies who raised money recently are likely to have monetary capital to repay the 
creditors. Over the longer time horizons, these effects become more pronounced in 
the sense that they have a larger impact on rating migration probabilities. It is there-
fore of significant importance to develop models that can capture these non-Markovian 
patterns.

Several authors have developed models in this direction to incorporate non-Markov 
behavior. For a detailed review on such models, interested readers can refer to D’Amico 
et al. (2019). Christensen et al. (2004) attempted to address non-Markovian behavior by 
extending the state space. More specifically, the authors distinguish the downgrades and 
the upgrades using an extended state space, that is, if a firm receives a lower rating, say 
“X,” it is given “X−.” In contrast, if a firm upgrades to a rating, say “Y,” it is given “Y+.” 
The states with a −ve sign have a higher probability of downgrade than those with a 
+ve sign. D’Amico (2011); D’Amico et al. (2012, 2010, 2011) proposed a semi-Markov 
credit rating model to address the non-suitability of Markov process. D’Amico (2011); 
D’Amico et al. (2010) applied semi-Markov processes with recurrence times to address 
the issue of the ageing effect. Recently, D’Amico et al. (2016) applied semi-Markov pro-
cesses (SMP) with an extended state space to account for downward rating momentum. 
Pasricha et al. (2017) applied the semi-Markov model for portfolio optimization of credit 
risky bonds.

Pasricha et al. (2017) proposed a more general model based on Markov regenerative 
process (MRGP) to examine the downward rating momentum and duration effect. They 
argued that since rating momentum exists only in a downward direction, the Markov 
property is satisfied only when there is a migration from a given rating to a better rating 
(i.e., an upward movement). In addition, the time spent in a state is a general distribu-
tion (non-exponential distribution) in MRGP. Hence, MRGP models both the random-
ness of time in the transition between two states and their non-Markovian behavior. 
Through experiments on the data from S&P, the authors demonstrated that an MRGP 
based model is a better model for the credit rating dynamics than a semi-Markov and a 
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Markov model. However, the two issues, that is, non-homogeneity and ageing effect, are 
not addressed in their model. It is of great interest to quantify these effects since they 
improve understanding of the rating process and the forecasts one may wish to associate 
with ratings.

Motivated by the importance of duration effect in rating migration, the superior per-
formance of MRGP over SMP, and the limitation of Pasricha et al. (2017), we propose a 
generalization of the MRGP model (Pasricha et al. 2017) following D’Amico et al. (2010) 
to incorporate the duration effect in MRGP model. We develop a non-homogeneous 
MRGP model with recurrence time processes (i.e., the backward and the forward recur-
rence processes). We further derive a generalized Markov renewal equation govern-
ing the transition probabilities of the proposed process. As discussed in D’Amico et al. 
(2010), the underlying idea is that employing the recurrence time processes can explic-
itly model the impact of the duration inside a state on the transition probabilities. These 
processes provide complete information of the duration inside a state and more accurate 
estimates of transition probabilities and other performance measures.

The contribution of this article is twofold. First, we generalize the results for non-
homogeneous SMP in D’Amico et al. (2010) to non-homogeneous MRGPs. Second, we 
apply the proposed generalized process to the dynamics of credit ratings to capture the 
duration effect. The numerical experiments reveal that the transition probabilities of an 
MRGP (Pasricha et al. 2017) change significantly on the inclusion of the recurrence time 
processes, and the resulting non-homogeneous MRGP model gives a better fit to the 
actual data. Thus, the proposed model provides a more accurate model to capture non-
Markov patterns in credit ratings.

The remainder of this paper is organized as follows. “Non-homogeneous continu-
ous-time Markov regenerative process” section introduces the time non-homogeneous 
MRGP followed by the introduction of recurrence time processes and derives the main 
results. This section also derives the global and local kernel for our application on credit 
rating dynamics. The estimation methodology and computational results on real data 
from the S&P rating agency are discussed in “Numerical illustration” section. Finally, 
concluding remarks are presented in “Conclusion” section.

Non‑homogeneous continuous‑time Markov regenerative process
This section presents the non-homogeneous MRGP model with recurrence times fol-
lowed by an application to model the credit rating migration.

Consider a non-homogeneous MRGP1 {Z(t), t ≥ 0} with state space � and the 
corresponding non-homogeneous continuous-time Markov renewal sequence 
{(Xn,Tn), n = 0, 1, . . .} . The transition probabilities for { Z(t), t ≥ 0 } defined by

can be obtained by solving the following generalized Markov renewal equation defined 
by the kernels

Vij(s, t) = P{Z(t) = j | Z(s) = i}, i ∈ �
′
, j ∈ �, s ≤ t,

1 See “Appendix” A for definition and other details.
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or

The first part2, Ei,j(s, t) of the above equation represents the transition from state i at 
time s to state j at time t without regeneration. The second part represents the probabil-
ity of transition from state i to some state γ at time y by regeneration and then from state 
γ to state j in time (t − y) following some trajectory. While Eq. (1) can be solved numeri-
cally by discretization, obtaining an explicit expression for kernels is a challenging task. 
Furthermore, the form of the kernels is application-dependent.

From Equation (1), we observe that the time s is a regeneration time, and the system 
enters the state i at time s itself. However, this may not be the case in practice. It is pos-
sible that the system entered state i at a time that is before time s but stayed in the state 
i until time s. Similar behavior can happen at the final time t. It is well known that this 
information plays an important role in determining the transition probabilities. There-
fore, to incorporate this information, we consider the forward and backward recur-
rence processes (Kulkarni 1996) and obtain the expressions for perturbed transition 
probabilities. We know that for a renewal process {N (t), t ≥ 0} with renewal epochs as 
{T1,T2, . . .} , the backward and forward recurrence processes are respectively defined as

Here, B(t) represents the time elapsed since the most recent renewal at or before time t 
and F(t) represents time from t until first renewal after t. It is referred to as the residual 
process or forward recurrence process. We can incorporate these two recurrence pro-
cesses at the initial and final time for non-homogeneous MRGP. Figure 1 represents the 
sample path of a time non-homogeneous MRGP with recurrence times at the initial and 
final time. One can observe that at initial time s, system is in state i but it entered state 
i at time T1 , that is, the backward process is s − T1 and the forward process is T2 − s . 
One can define similarly at the final time t. Our investigation aims to understand how 
the transition probabilities of the MRGP are perturbed by imposing constraints on the 
recurrence processes both at initial and final times. The results presented here are natu-
ral generalizations of the results obtained in D’Amico (2011) for SMP.

Definition 2.1 For i ∈ �′, j ∈ � and for s < ã < t < b̃ , the transition probabilities 
with age and residual life only at the final time, are defined as

V (s, t) = E(s, t)+ K (s, t) ∗ V (s, t),

(1)Vij(s, t) = Eij(s, t)+
∑

γ∈�′

∫ t

s
Vγ j(y, t)dKiγ (s, y), i ∈ �

′
, j ∈ �, s ≤ t.

(2)B(t) =t − TN (t),

(3)F(t) =TN (t)+1 − t.

(4)VBF
ij (s; ã, t, b̃) = P(Z(t) = j,B(t) ≤ t − ã, F(t) ≤ b̃− t | Z(s) = i,TN (s) = s).

2 See “Appendix” for definition of E(s, t)
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We can obtain the transition probabilities VBF
ij (s; ã, t, b̃) as follows:

Theorem 2.1 For i ∈ �′, j ∈ � and for s < ã < t < b̃ , we have

where IA is the indicator function, that is, IA = 1 if A occurs and 0 otherwise.

Proof
See “Appendix” for proof. �

Next, we define the transition probabilities of an MRGP with recurrence times at both 
the initial and final time points.

Definition 2.2 For i ∈ �′, j ∈ � and for a < s < b < ã < t < b̃ , the transition prob-
abilities with backward and forward time at the initial and final time, are defined as

provided 1−Hi(a, b) > 0 where Hi(a, b) = P(TN (s)+1 > b | Z(s) = i,TN (s) = a) and is 
given by

We obtain the transition probabilities bf V BF
ij (a, s, b; ã, t, b̃) in the following theorem:

(5)

VBF
ij (s; ã, t, b̃) =I{ã=s}(Eij(s, t)− Eij(s, b̃))

+
∑

m∈�′

∫ t

s
V BF
mj (θ; ã, t, b̃)dKim(s, θ),

bf V BF
ij (a, s, b; ã, t, b̃) =

P(Z(t) = j,B(t) ≤ t − ã, F(t) ≤ b̃− t | Z(s) = i,B(s) = s − a, F(s) > b− s),

Hi(a, b) =
∑

j∈�

Eij(a, b).

Fig. 1 Sample path of non-homogeneous MRGP with recurrence times. At initial time s, the system is in 
state i but it entered state i at time T1 , that is, the backward process is s− T1 and the forward process is T2 − s . 
Similarly, at the final time t, the backward process is t − Tn and the forward process is Tn+1 − t . On the 
contrary, in case of homogeneous MRGP, backward and forward process values are assumed to be equal to 0
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Theorem  2.2 For i ∈ �′, j ∈ � and for a < s < b < ã < t < b̃ such that 
1−Hi(a, b) > 0 , we have

where VBF
mj (θ; ã, t, b̃) are given by Eq. (5).

Proof
See the “Appendix” for the proof.  �

Special Cases: The following are the particular cases of Eqs. (5) and (6), which can 
be of interest. 

1 The probability with backward at initial time, denoted by bVij(a, s; t) , is 

 After setting s = b and adjusting ã and b̃ terms in Eq. (6), we obtain 

2 If there is no backward, that is, a = s in Eq. (7), we derive Eq. (1), 

3 If {Z(t), t ≥ 0} is an SMP, we have every transition time epoch as a regeneration 
epoch and �′ = � . In this case, the local kernel of MRGP becomes, 

 After substituting the value of Eij(s, t) and replacing �′ by � in Eq.  (6), we have 
the following result: Result: For i, j ∈ � and for a < s < b < ã < t < b̃ such that 
1−Hi(a, b) > 0 , we obtain 

 where VBF
mj (u; ã, t, b̃) is given by 

(6)

bf V BF
ij (a, s, b; ã, t, b̃) =I{ã=a}

(Eij(a, t)− Eij(a, b̃))

1−Hi(a, b)

+
∑

m∈�′

∫ t

s
V BF
mj (θ; ã, t, b̃)

dKim(a, θ)

1−Hi(a, b)
,

bVij(a, s; t) = P(Z(t)j | Z(s) = i,B(s) = a− s).

(7)bVij(a, s; t) =
Eij(a, t)

1−Hi(a, s)
+

∑

m∈�′

∫ t

s
Vmj(θ; t)

dKim(a, θ)

1−Hi(a, s)
.

(8)Vij(s, t) = Eij(s, t)+
∑

γ∈�′

∫ t

s
Vγ j(y, t)dKiγ (s, y), i ∈ �

′
, j ∈ �, s ≤ t.

Eij(s, t) = P(Z(t) = j,TN (t)+1 > t | Z(s) = i) = δij(1−Hi(s, t)).

(9)

bf V BF
ij (a, s, b; ã, t, b̃) =δijI{ã=a}

(Hi(a, b̃)−Hi(a, t))

1−Hi(a, b)

+
∑

m∈�

∫ t

s
V BF
mj (θ; ã, t, b̃)

dKim(a, θ)

1−Hi(a, b)
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 which is same as the result in D’Amico (2011).

Remark 2.1 Note that the results derived in Theorems 2.1 and 2.2 are general because 
they do not pertain to a particular application. More specifically, these results generalize 
the theory of time-homogeneous MRGP. Before applying these formulae to any applica-
tion, one needs to determine the global and local kernels corresponding to that particu-
lar application. We investigate its application to model the dynamics of credit ratings.

Application to credit rating model and analysis

Following Pasricha et  al. (2017), Fig.  2 illustrates the state transition diagram of the 
credit rating model. The determination of kernels for credit rating application in a non-
homogeneous framework is a direct extension of the results from Pasricha et al. (2017).

Determining the global kernel

Let pij(s) be the one-step transition probabilities for the embedded time non-homoge-
neous Markov chain at time s. Then, for i, j ∈ �

′,

Let Fij(s, t); i ∈ {1, 2, . . . , 7}, j ∈ � represents the distribution function of the waiting 
time in each state i, given that next state j is known. The global kernel 
K (s, t) = [Kij(s, t)]i,j∈�′ , s ≤ t is given by

Note that Kij(s, t) == 0 when pij(s) = 0.

Determining the local kernel

Now, we determine Eij(s, t), i ∈ �
′ , j ∈ � and s ≤ t , the probability of migrating from 

state i at time s to state j at time t without any regeneration (upward movement). Since 
a transition to any good state from a bad state is a regeneration epoch, if a firm’s present 
rating is i and j < i , we obtain

VBF
ij (u; ã, t, b̃) =δijI{ã=u}(Hi(u, b̃)−Hi(u, t))

+
∑

m∈�

∫ t

u
V BF
mj (θ; ã, t, b̃)dKim(u, θ)

pij(s) = lim
t→∞

Kij(s, t).

Kij(s, t) = Fij(s, t)pij(s).

Fig. 2 State transition diagram for a MRGP model with catastrophe for credit rating dynamics. Here, the state 
space is {AAA, AA, A, BBB, BB, B, C ,D} , where D denotes the default, an absorbing state
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For i ≤ j , let us define �(i) as the set of all states reachable from state i by downward 
movement that is �(i) = {i, i + 1, ..., 8} for each i ∈ �

′ . Let {M(i)(t); t ≥ s}, i ∈ �
′ be the 

subordinated non-homogeneous semi-Markov process (since sojourn time in each state 
has general distribution in which there are only downward movements from state i at 
time s but no upward movement). Here, we can address the problem of rating momen-
tum by selecting the parameters so that the probability of downward movement is high. 
The transition probabilities of this time non-homogeneous semi-Markov process for 
each i ∈ �′ will give us Eij(s, t) ∀ j , the local kernel of non-homogeneous MRGP.

The transition probabilities of subordinated non-homogeneous SMP’s can be 
obtained by solving it for a non-homogeneous SMP, say {M(i)(t), t ≥ s} with state 
space �(i) but with only downward movement possible that is from state i at time s 
to state j (j > i) , i, j ∈ �(i) . Let (Y (i)

n , S
(i)
n ) be the non-homogeneous Markov renewal 

sequence where Y (i)
n  represents the state at nth transition and S(i)n , n ≥ 1 with the state 

space equal to R+ represents the time of nth transition.
The kernel Q(i)(s, t) = [Q

(i)
jk (s, t)], j, k ∈ �(i), s ≤ t of non-homogeneous SMP is 

defined by

and it follows that

is the transition probabilities of the embedded time non-homogeneous DTMC in the 
process. Therefore, for j, k ∈ �(i), t ≥ s,

Clearly, G(i)
jk (s, t) is same as F (i)

jk (s, t) introduced in “Data and methodology” section. Fur-
thermore, probability that the process will be in state j at time t is given by

It can be observed that

Now, the transition probabilities of the time non-homogeneous SMP {M(i)(t), t ≥ s} are 
defined by

Eij(s, t) = 0 if i > j, s ≤ t, i ∈ �′
, j ∈ �.

Q
(i)
jk (s, t) = P(Y

(i)
n+1 = k; S

(i)
n+1 − S(i)n ≤ t | Y (i)

n = j, S(i)n = s), j, k ∈ �(i)
, t ≥ s,

q
(i)
jk (s) = lim

t→∞
Q
(i)
jk (s, t), j, k ∈ �(i)

,

G
(i)
jk (s, t) =P(S

(i)
n+1 − S(i)n ≤ t | Y (i)

n = j,Y
(i)
n+1 = k , S(i)n = s)

=











Q
(i)
jk (s,t)

q
(i)
jk (s)

if q
(i)
jk (s) �= 0

1 if q
(i)
jk (s) = 0

.

H
(i)
j (s, t) = P(S

(i)
n+1 − S(i)n ≤ t | Y (i)

n = j, S(i)n = s), j ∈ �(i)
, s ≤ t.

H
(i)
j (s, t) =

8
∑

k=j

Q
(i)
jk (s, t).
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and are obtained by solving the following renewal equation

In addition, observe that

Finally, the transition probabilities in a matrix form are given by

where H(i)(s, t) is the diagonal matrix with jth diagonal entry 1−H
(i)
j (s, t). This �(i)(s, t) 

will be upper triangular matrix.
Therefore, for given initial state i ∈ �′ , the local kernel Eij(s, t) ∀ j ≥ i, t ≥ s is 

obtained as follows:

For each i ∈ �
′ , this Eij(s, t), j ∈ �, s ≤ t of the MRGP describes the behavior of ratings 

evolution between two regeneration epochs, which is how the rating moves to a lower 
rating before moving to an upper rating and is given by

Hence, by taking Fij(t) with different intensities, increasing or decreasing, we take care 
of downward momentum using local kernel.

Time‑dependent solution of non‑homogeneous MRGP

The time-dependent solution for t ≥ s of the time non-homogeneous MRGP with recur-
rence times is given by

where VBF
mj (θ; ã, t, b̃) is obtained from Eq. (5) and E(s, t) and K(s, t) are as in “Determin-

ing the global kernel” and “Determining the local kernel” sections.

φ
(i)
jk (s, t) = P(M(i)(t) = k | M(i)(s) = j), j, k ∈ �(i)

, s ≤ t

φ
(i)
jk (s, t) = δjk(1−H

(i)
j (s, t))+

k
∑

β=j

∫ t

s
φ
(i)
βk(y, t)dQ

(i)
jβ (s, y).

φ
(i)
jk (s, t) = 0 if j > k .

�
(i)(s, t) = H(i)(s, t)+Q(i)(s, t) ∗�(i)(s, t),

Eij(s, t) =P{Z(t) = j,Tn+1 > t|Z(Tn) = i,Tn = s}

=P{Z(t) = j|Tn+1 > t,Z(Tn) = i,Tn = s}P{Tn+1 > t|Z(Tn) = i,Tn = s}

=φ
(i)
ij (s, t)(1− P(Tn+1 ≤ t|Z(Tn) = i,Tn = s))

=φ
(i)
ij (s, t)

(

1−
∑

k∈�′

Kik(s, t)

)

.

Eij(s, t) =

{

0 if i > j

φ
(i)
ij (s, t)

(

1−
∑

k∈�′ Kik(s, t)
)

if i ≤ j
.

bf V BF
ij (a, s, b; ã, t, b̃) =I{ã=a}

(Eij(a, t)− Eij(a, b̃))

1−Hi(a, b)

+
∑

m∈�′

∫ t

s
V BF
mj (θ; ã, t, b̃)

dKim(a, θ)

1−Hi(a, b)
,
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This Markov renewal equation, which is a special case of indexed Markov renewal 
equations, is a Volterra integral equation of Type II and can be solved through discre-
tization (D’Amico 2011).

Numerical illustration
This section presents the empirical analysis performed on S&P rating agency’s credit rat-
ing data. The objective of these experiments is to (a) observe how the inclusion of recur-
rence times (forward and backward) impacts the transition probabilities of the MRGP 
and (b) examine the performance of non-homogeneous MRGP on real-life data in 
comparison to the homogeneous MRGP and SMP models. All the experiments are per-
formed using R software. We start with a description of the data followed by the meth-
odology adopted to estimate the unknown parameters of the model.

Data and methodology

We use the same data as in Pasricha et al. (2017), that is, the quarterly data of long-term 
issuer ratings for companies that S&P has rated in the US from 1985 to 2015. In con-
trast to Pasricha et al. (2017), the model is time non-homogeneous; we therefore need to 
obtain the parameters at different initial times s to address the time non-homogeneity. 
For this purpose, we discretize the time interval and consider the time corresponding to 
the year 1985 as s = 0 and that corresponding to the year 2015 as s = 30 . On the other 
hand, Pasricha et al. (2017) considered just one time and used the complete data set to 
estimate the parameters only once.

Estimation of the parameters
The parameters required for the model implementation are as follows: 

(a) the matrix P(s) of the embedded Markov chain at each s = 0, 1, 2, . . . , 30 : Following 
Pasricha et al. (2017), for a fixed s, using the historical data until time s, a frequency 
matrix is obtained with (i, j)th element representing the number of transitions from 
i to j in one unit time. The transition probabilities pij(s), i, j ∈ � are then deduced 
by normalizing the obtained frequency matrix. The procedure is repeated for each 
s ∈ {0, 1, . . . , 30} . In contrast to Pasricha et  al. (2017), who only estimate the P 
matrix at s = 30 , we estimate the P(s) every year to incorporate the time homoge-
neity.

(b) the waiting time distribution Fij(s, t), i, j ∈ � in initial state i at time s and final state 
j at time t. For fixed s and t, the following steps are followed: 

(1) First, we identify the transitions with initial rating i at time s and the final rating 
j before time t, that is, in a time duration of t − s.

(2) For all the identified transitions, we obtain the best fit distribution and estimate 
its parameters using maximum likelihood estimation.

(3) Further, the Kolmogorov–Smirnov (KS) test is applied to statistically test the 
accuracy of the best fit distribution. Based on the hypothesis testing, we found 
that Weibull3 distribution is the best fit. This is in accordance with the results 

3 See Appendix
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in Carty and Fons (1994), who observed that the Weibull distribution closely 
models the life span characteristics of bond ratings.

Results

This subsection presents the numerical results obtained through the experiments on 
the real-life data. In “Impact of time non-homogeneity and ageing effect” section, we 
provide the results of the experiments performed to investigate whether the proposed 
model can address the time non-homogeneity and ageing effect present in the rating 
dynamics. Here, we do not examine whether the proposed model is more efficient than 
those defined in the literature. We present the comparison with those models in “Com-
parison” section, where we demonstrate that the proposed model significantly outper-
forms the other models and provides a more accurate fit to the real-life data.

First, we follow the abovementioned procedure to estimate the transition probability 
matrices P(s) of the embedded Markov chain and the waiting distributions Fi,j(s, t) . We 
then substitute these estimates in the global and local kernels obtained in “Determining 
the global kernel” and “Determining the local kernel” sections, which yields transition 
probabilities of the time non-homogeneous MRGP upon substitution in Equation (5).

Impact of time non‑homogeneity and ageing effect

For illustration purposes, we present the one-step transition probability matrix P(s) 
of the embedded Markov chain at time s = 0, 4, 7 in Matrix 1, Matrix 2, and Matrix 3, 
respectively4. Further, we wish to highlight that if we estimate the matrix P(s) using a 
time-homogeneous MRGP model in Pasricha et al. (2017), the estimated matrix is inde-
pendent of the initial time s. More specifically, if the user wants to estimate the one-step 
transition probability matrix at two different times, say t1 and t2 , the resulting matrix will 
be the same if estimated through the model of Pasricha et al. (2017) (e.g., Matrix 1 in 
Pasricha et al. 2017), but will be significantly different if calculated using the proposed 
model.

Matrices 1 to 3 illustrate the variation in the P(s) at different s for the embedded 
Markov chain. However, the process that governs the credit rating dynamics is the pro-
cess {Z(t), t ≥ 0} , a time non-homogeneous MRGP and not the embedded Markov 
chain. Therefore, it is essential to determine whether this time dependence carries over 
to the process {Z(t), t ≥ 0} . For this purpose, we utilize Equation (5) to estimate the 
transition probabilities of the credit rating process over a 5-year time horizon starting at 
time s = 0 and s = 3 . The results are presented in Matrix 4 and Matrix 5, from which we 
can deduce that the time dependence indeed carries over to the process {Z(t), t ≥ 0} . 
More specifically, the variation among the three matrices implies that the proposed 
model can capture the time non-homogeneity present in the credit rating dynamics, an 
empirical phenomenon documented in the literature (Nickell et al. 2000). At this stage, 
we can only say that the proposed model can capture time non-homogeneity, but we 
cannot claim that it will outperform the other models. Again, if V (s, s + 5) is estimated 

4 Note that these are not the probabilities in Equation (5) but are the probabilities of the embedded Markov chain.



Page 12 of 22Pasricha and Selvamuthu  Financ Innov            (2021) 7:37 

using the time-homogeneous model, the same matrix would be obtained for any choice 
of s.

Matrix 1 This matrix represents the one-year transition probability matrix P(s) of the 
embedded Markov chain, estimated at time s = 0 . This matrix is an important ingredi-
ent in evaluating the transition probabilities of the non-homogeneous MRGP process 
{Z(t), t ≥ 0} . 

Matrix 2 This matrix represents the one-year transition probability matrix P(s) of the 
embedded Markov chain, estimated at time s = 4 . 

Matrix 3 This matrix represents the one-year transition probability matrix P(s) of the 
embedded Markov chain, estimated at time s = 7 . 
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Matrix 4 This matrix is the 5-year transition probability matrix V (s, s + 5) of the time 
non-homogeneous MRGP process estimated at time s = 0 . This is estimated using Equa-
tion (5) after the global and local kernels are estimated as described in “Determining the 
global kernel” and “Determining the local kernel” sections. 

Matrix 5 This matrix is the 5-year transition probability matrix V (s, s + 5) of the time 
non-homogeneous MRGP process estimated at time s = 3 . This is estimated using Equa-
tion (5) after the global and local kernels are estimated as described in “Determining the 
global kernel” and “Determining the local kernel” sections. 
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Further to confirm whether the variation visible in Matrices 1, 2, and 3 and Matrices 4 
and 5 are statistically significant, we first plot the cumulative probability of default over 
ten years for ratings A, BBB, BB, B at different initial times s = 0, 1, 2, 3 on a log scale 
in Fig. 3. On the x-axis, time is given as t = s + h . These probabilities are estimated by 
the proposed model considering no age at the initial time that is, the firm entered the 
initial state at time s. The variation in the matrices is now translated into the cumulative 
default probabilities. For example, in the cumulative probability of default for rating BB 
in Fig. (3c), note the difference in probability of default curves for times s = 0 , s = 1 and 
times s = 1,s = 2 . On the other hand, a time-homogeneous model (Pasricha et al. 2017) 
would not capture this behavior of rating dynamics, that is, the model will generate the 
same values for any choice of s. To check the statistical significance of the differences in 
the curves for two different values of s for any particular rating, we perform a one-sided 
Student’s t-test as follows. For a fixed rating, say BB, we apply two-sided Student’s t−test 
on the difference between the cumulative default probabilities for two different values of 
s, say s1 and s2 . We then repeat this test for all the possible pairs (s1, s2) and all the rating 
categories. More concretely, we test the following
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Fig. 3 This figure presents the cumulative probability of default over a period of 10 years for ratings 
A, BBB, BB, B estimated at different choice of initial times s = 0, 1, 2, 3 . Note that the figure is on the log scale. 
Further, the x-axis depicts the time as t = s+ h . These probabilities are estimated under the assumption 
that there is no age at initial time, which means the firm entered the initial state at time s itself. This figure 
confirms that the inclusion of time non-homogeneity in the model significantly impacts the default 
probabilities
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where e1 and e2 are the cumulative default probabilities for time s1 and s2 , respectively. 
For 21 out of the 24 tests performed, the p-values obtained are less than 0.05, thus reject-
ing the null hypothesis. Therefore, the variations observed for different values of initial 
times are statistically significant.

The previous experiments examined how the time non-homogeneity impacts the 
transition probabilities of the MRGP. However, to determine the impact of age-
ing, Fig.  4 presents the cumulative probability of default over ten years for ratings 
A, BBB, BB, B estimated at time s = 5 on a log scale. These probabilities are estimated 
considering the age at initial time a = 1, 2, 3, 4 , that is, the firm entered the initial 
state at time s − a and continued in the same rating until time s. We can deduce that 
the default probabilities vary with time of rating evaluation and duration inside the 
rating, which is further confirmed by the hypothesis test performed similarly to as 
outlined in the previous paragraph. In conclusion, the inclusion of time non-homo-
geneity and ageing processes in a time-homogeneous MRGP model significantly 
impacts the transition probabilities.

H0 : e1 − e2 = 0, H1 : e1 − e2 �= 0,

Fig. 4 This figure presents the cumulative default probability over a horizon of 10 years for the credit ratings 
A, BBB, BB, B when estimated at time s = 5 on a log scale. Further, these probabilities are estimated under 
the assumption that there is some age a at the initial time a = 1, 2, 3, 4 . More specifically, the firm entered 
the initial state at time s− a and continued in the same rating until time s. On the x-axis we measure the 
time h from which we get t = s+ h . This figure confirms that the inclusion of the age process in the model 
significantly impacts the default probabilities
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Comparison

The results presented in “Impact of time non-homogeneity and ageing effect” section 
advocate for the time non-homogeneous MRGP model to address non-Markov patterns 
in the rating dynamics; nevertheless, we still need to test whether the proposed model 
provides better estimates in comparison to those obtained from the other models in the 
literature. For this purpose, we compare the proposed model with the existing models, 
non-homogeneous semi-Markov, MRGP, and semi-Markov models with the default 
probabilities given by S&P for 1981-2014. We consider the average S&P default rates 
provided in Richhariya et al. (2015).

For comparison, we average out the default distributions obtained by the proposed 
model over the period for different initial times s and different possible backward recur-
rence time a to obtain the average default probabilities over the period. A similar pro-
cedure is followed for other models in the literature by fixing the Fij(s, t) and pij(s) for 
non-homogeneous versions. Figure 5 presents the default distribution on a log scale. We 
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Fig. 5 This figure presents the average default probabilities over a horizon of 10 years for different rating 
categories. For each rating category, we have the real probabilities obtained through S&P and the estimated 
probabilities from four models namely a time-homogeneous SMP, b time non-homogeneous semi-Markov 
process (NHSMP), c time-homogeneous MRGP, and d time non-homogeneous Markov regenerative process 
(NHMRGP). It reveals that the average probabilities obtained from NHMRGP are close to the real probabilities, 
which is further confirmed by a hypothesis test in “Comparison” section
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observe that the default probabilities obtained for a horizon of 10 years by non-homo-
geneous MRGP model are closer to the actual default probabilities obtained by S&P in 
contrast to the MRGP (Pasricha et al. 2017), SMP, and its non-homogeneous counter-
part. To justify that these observations are statistically significant and are not just by 
chance, we perform a hypothesis test similar to that in Pasricha et al. (2017). We perform 
a one-sided Student’s t-test on the difference between the errors obtained from different 
models, that is,

By fixing E1 to be the error between the default rates obtained from the proposed model 
and S&P, we perform this test three times, one for each of the other three models. Here, 
E2 is selected to be the errors between the other models and S&P. For each of the four 
tests, the p-values obtained are less than 0.05, thus rejecting the null hypothesis. There-
fore, we conclude that the proposed model provides a better fit to the rating dynam-
ics compared to the existing models. As a result, it can provide better forecasts for risk 
management purposes.

Conclusion
We introduced a time non-homogeneous MRGP with recurrence times to address the 
time dependence and ageing effect on the transition probabilities. The applicability of 
the proposed model in developing a credit rating model is illustrated using real data 
of credit rating dynamics obtained from Bloomberg. The proposed model can address 
the issues of the suitability of Markov processes in the credit risk environment, such as 
dependence on the time of rating evaluation, dependence on the business cycle, duration 
effects, and momentum effects. Comparison between the average default rates obtained 
by existing models, S&P report, and the proposed model reveals that the proposed 
model captures the rating dynamics better than other models in the literature. The pro-
posed model can provide a more general and better approach to model credit ratings. 
Hence, it is of significant interest to banks and financial institutions concerned about the 
default risk.

Appendix
Definition: Non‑Homogeneous MRGP:  A sequence of bi-variate random variables 
{(Xn,Tn), n = 0, 1, . . .} is known as a time non-homogeneous Markov renewal sequence 
(Cinlar 1975; Kulkarni 1996) if 

1. T0 = 0, Tn+1 ≥ Tn; Xn ∈ � = {0, 1, 2, . . .}

2. ∀ n ≥ 0, P{Xn+1 = j,Tn+1 − Tn ≤ t | Xn = i,Tn = s,Xn−1,Tn−1, . . . ,X0,T0} 
= P{Xn+1 = j,Tn+1 − Tn ≤ t | Xn = i,Tn = s} (Markov property)

A stochastic process {Z(t), t ≥ 0} with state space � is referred to as a time non-homo-
geneous MRGP if a non-homogeneous continuous-time Markov renewal sequence 
{ (Xn,Tn), n = 0, 1, . . . } exists such that all conditional finite dimensional distributions 

H0 : E1 ≥ E2, H1 : E1 < E2.
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of { Z(Tn + t), t ≥ 0 } given { Z(u), 0 ≤ u ≤ Tn,Xn = i,Tn = s} are same as those of 
{ Z(Tn + t), t ≥ 0 } given {Z(Tn),Tn = s,Xn = i} , i ∈ �

′
⊂ � . This implies that, in this 

case { Z(T+
n ) = Xn, n = 0, 1, . . . } or { Z(T−

n ) = Xn, n = 0, 1, . . . } is an embedded dis-
crete time non-homogeneous Markov chain and also that Tn ’s are regeneration points 
of { Z(t), t ≥ 0 }. Here, T+

n  and T−
n  represent the time immediately after and immediately 

before the regeneration, respectively. Here, the non-homogeneity is considered with 
respect to the time. In MRGP, the time spent inside a state can be any distribution unlike 
the Markov environment, where it has to be an exponential distribution. The sample 
path of time non-homogeneous MRGP is presented in Fig.  6 where {T1,T2, . . .} is a 
sequence of regeneration time points. One can observe that the state of the process can 
change between two regeneration points Tn and Tn+1 unlike the semi-Markov environ-
ment where each change of state is a regeneration point. In other words, each change of 
state does not renew the system and hence local behaviors exist between two consecu-
tive Markov regenerative points.

To investigate the dynamics of the process, we need to define the behavior at regenera-
tion time points (global kernel) and in between the regeneration time points (local ker-
nel). First, we define the global kernel K (s, t) = [Kij(s, t)]i,j∈�′ associated with the pro-
cess as

It is the probability that starting from regeneration state i at time s, the next regeneration 
is at state j within time t. It follows that P(s) = [pij(s)]i,j∈�′ , the one-step transition prob-
ability matrix at time s of the embedded time non-homogeneous DTMC with state space 
�

′ is given by

Next, we define the local kernel E(s, t) = [Eij(s, t)]i∈�′
, j∈� as

Kij(s, t) = P{Z(Tn+1) = j,Tn+1 − Tn ≤ t|Z(Tn) = i,Tn = s}, i, j ∈ �′
, s ≤ t.

pij(s) = P{Z(Tn+1) = j | Z(Tn) = i,Tn = s} = lim
t→∞

Kij(s, t), i, j ∈ �
′
.

Fig. 6 Sample path of a time non-homogeneous MRG
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It is the probability that, starting from regeneration state i at time s, no regeneration 
is reached within time t and the state at time t is j. It describes the local behavior, that 
is, the behavior of the process between two regeneration epochs of the embedded time 
non-homogeneous DTMC.

Proof of Theorem 2.1

Proof
Using the standard first renewal argument, we have

In the first term, the conditions {TN (s)+1 > t} , {TN (t)+1 ∈ [t, b̃]} and {TN (t) ∈ [ã, t]} imply 
that the Markov renewal process at t and s is equal, that is, N (t) = N (s) and there is no 
regeneration until time t. Hence, we have

where the second equality follows from the observation that last regeneration occurred 
at s, which is the same as ã and the last equality follows from the definition of the local 
kernel that there is no regeneration until time t and state at time t is j.

We can write the second term in Eq.  (10) using the regenerative property at time s as 
follows

From Eqs. (10) to (12), we get the desired result (5). �

Eij(s, t) = P{Z(t) = j,Tn+1 > t|Z(Tn) = i,Tn = s}, i ∈ �
′
, j ∈ �, s ≤ t.

(10)

P(Z(t) = j,B(t) ≤ t − ã, F(t) ≤ b̃− t | Z(s) = i,TN (s) = s)

=P(Z(t) = j,TN (t) ∈ [ã, t],TN (t)+1 ∈ (t, b̃] | Z(s) = i,TN (s) = s)

=P(Z(t) = j,TN (t) ∈ [ã, t],TN (t)+1 ∈ (t, b̃],TN (s)+1 > t | Z(s) = i,TN (s) = s)+

P(Z(t) = j,TN (t) ∈ [ã, t],TN (t)+1 ∈ (t, b̃],TN (s)+1 ≤ t | Z(s) = i,TN (s) = s).

(11)

P(Z(t) = j,TN (t) ∈ [ã, t],TN (t)+1 ∈ (t, b̃],TN (s)+1 > t | Z(s) = i,TN (s) = s)

=P(Z(t) = j,TN (s) = ã,TN (s)+1 ∈ (t, b̃] | Z(s) = i,TN (s) = s)

=I{ã=s}P(Z(t) = j,TN (s)+1 ∈ (t, b̃] | Z(s) = i,TN (s) = s)

=I{ã=s}(Eij(s, t)− Eij(s, b̃)),

(12)

P(Z(t) = j,TN (t) ∈ [ã, t],TN (t)+1 ∈ (t, b̃],TN (s)+1 ≤ t | Z(s) = i,TN (s) = s)

=
∑

m∈�′

∫ t

s
P(Z(t) = j,TN (t) ∈ [ã, t],TN (t)+1 ∈ (t, b̃] | TN (s)+1 = θ ,Z(θ) = m)

× P(Z(θ) = m,TN (s)+1 = θ | Z(s) = i,TN (s) = s)

=
∑

m∈�′

∫ t

s
V BF
mj (θ; ã, t, b̃)× P(Z(θ) = m,TN (s)+1 = θ | Z(s) = i,TN (s) = s)

=
∑

m∈�′

∫ t

s
V BF
mj (θ; ã, t, b̃)dKim(s, θ).
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Proof of Theorem 2.2

Proof
Similar to Theorem 2.1, following the standard first renewal argument, we can write

In the first term in Eq. (13), given t > u the conditions {TN (s)+1 > u} and {TN (s)+1 > t} 
implies N (t) = N (s) and there is no regeneration until time t. Consequently, we have

We can write the second term in Eq.  (13) using the regenerative property at time b as 
follows

From Eqs. (13) to (15), we obtain the desired result (6). �

Weibull distribution and MLE

The cumulative distribution function for the Weibull distribution is given by

where �, k > 0 are scale and shape parameters, respectively, and IA is an indicator func-
tion. The implicit equations to obtain the maximum likelihood estimator for the � and k 
are given by

(13)

P(Z(t) = j,B(t) ≤ t − ã, F(t) ≤ b̃− t | Z(s) = i,B(s) = s − a, F(s) > b− s)

=P(Z(t) = j,TN (t) ∈ [ã, t],TN (t)+1 ∈ (t, b̃] | Z(s) = i,TN (s) = a,TN (s)+1 > b)

=P(Z(t) = j,TN (t) ∈ [ã, t],TN (t)+1 ∈ (t, b̃],TN (s)+1 > t | Z(s) = i,TN (s) = a,TN (s)+1 > b)+

P(Z(t) = j,TN (t) ∈ [ã, t],TN (t)+1 ∈ (t, b̃],TN (s)+1 ≤ t | Z(s) = i,TN (s) = a,TN (s)+1 > b).

(14)

P(Z(t) = j,TN (t) ∈ [ã, t],TN (t)+1 ∈ (t, b̃],TN (s)+1 > t | Z(s) = i,TN (s) = a,TN (s)+1 > b)

=P(Z(t) = j,TN (s) = ã,TN (s)+1 ∈ (t, b̃] | Z(s) = i,TN (s) = a,TN (s)+1 > b)

=I{ã=a}P(Z(t) = j,TN (s)+1 ∈ (t, b̃] | Z(s) = i,TN (s) = a,TN (s)+1 > b)

=I{ã=a}
P(Z(t) = j,TN (s)+1 ∈ (t, b̃] | Z(s) = i,TN (s) = a)

P(TN (s)+1 > b | Z(s) = i,TN (s) = a)

=I{ã=a}

Eij(a, t)− Eij(a, b̃)

1−Hi(a, b)
.

(15)

P(Z(t) = j,TN (t) ∈ [ã, t],TN (t)+1 ∈ (t, b̃],TN (s)+1 ≤ t | Z(s) = i,TN (s) = a,TN (s)+1 > b)

=
∑

m∈�′

∫ t

s
P(Z(t) = j,TN (t) ∈ [ã, t],TN (t)+1 ∈ (t, b̃] | TN (s)+1 = θ ,Z(θ) = m)

× P(Z(θ) = m,TN (s)+1 = θ | Z(s) = i,TN (s) = a,TN (s)+1 > b)

=
∑

m∈�′

∫ t

s
V BF
mj (θ; ã, t, b̃)×

P(Z(θ) = m,TN (s)+1 = θ | Z(s) = i,TN (s) = a)

P(TN (s)+1 > b | Z(s) = i,TN (s) = a)

=
∑

m∈�′

∫ t

s
V BF
mj (θ; ã, t, b̃)

dKim(a, θ)

1−Hi(a, b)
.

F(x) = 1− e(−
x
�
)k I{x>0},
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The maximum likelihood estimator for k is
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