
Nayak, Sarat Chandra; Mishra, Bijan Bihari

Article

Extreme learning with chemical reaction optimization for
stock volatility prediction

Financial Innovation

Provided in Cooperation with:
Springer Nature

Suggested Citation: Nayak, Sarat Chandra; Mishra, Bijan Bihari (2020) : Extreme learning with
chemical reaction optimization for stock volatility prediction, Financial Innovation, ISSN 2199-4730,
Springer, Heidelberg, Vol. 6, Iss. 1, pp. 1-23,
https://doi.org/10.1186/s40854-020-00177-2

This Version is available at:
https://hdl.handle.net/10419/237202

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1186/s40854-020-00177-2%0A
https://hdl.handle.net/10419/237202
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


RESEARCH Open Access

Extreme learning with chemical reaction
optimization for stock volatility prediction
Sarat Chandra Nayak1* and Bijan Bihari Misra2

* Correspondence: saratnayak234@
gmail.com; saratchandranayak@
kpritech.ac.in
1Department of Computer Science
and Engineering, CMR College of
Engineering & Technology,
Hyderabad 501401, India
Full list of author information is
available at the end of the article

Abstract

Extreme learning machine (ELM) allows for fast learning and better generalization
performance than conventional gradient-based learning. However, the possible
inclusion of non-optimal weight and bias due to random selection and the need for
more hidden neurons adversely influence network usability. Further, choosing the
optimal number of hidden nodes for a network usually requires intensive human
intervention, which may lead to an ill-conditioned situation. In this context, chemical
reaction optimization (CRO) is a meta-heuristic paradigm with increased success in a
large number of application areas. It is characterized by faster convergence capability
and requires fewer tunable parameters. This study develops a learning framework
combining the advantages of ELM and CRO, called extreme learning with chemical
reaction optimization (ELCRO). ELCRO simultaneously optimizes the weight and bias
vector and number of hidden neurons of a single layer feed-forward neural network
without compromising prediction accuracy. We evaluate its performance by
predicting the daily volatility and closing prices of BSE indices. Additionally, its
performance is compared with three other similarly developed models—ELM based
on particle swarm optimization, genetic algorithm, and gradient descent—and find
the performance of the proposed algorithm superior. Wilcoxon signed-rank and
Diebold–Mariano tests are then conducted to verify the statistical significance of the
proposed model. Hence, this model can be used as a promising tool for financial
forecasting.

Keywords: Extreme learning machine, Single layer feed-forward network, Artificial
chemical reaction optimization, Stock volatility prediction, Financial time series
forecasting, Artificial neural network, Genetic algorithm, Particle swarm optimization

Introduction
Stock market behavior is typically uncertain and time-varying in nature, being highly

associated with market volatility and non-linearity. When the market reacts to current

political and other macroeconomic factors, it behaves arbitrarily. As such, due to its

complex and dynamic nature, stock market prediction has been considered a challen-

ging task for stakeholders. Achieving better prediction accuracy with less input data

and a less complex model architecture is the key objective of market analysts. How-

ever, in reality, this is a critical, demanding, and challenging job. In this context,

volatility is a widely accepted practical measure of risk for defining uncertainty in the

financial market. While most market variables are largely unpredictable, certain char-

acteristics of volatility can increase the accuracy of forecasted values. Volatility of an
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asset describes the spread of outcomes for a variable, thus playing an imperative role in

various financial applications. The key usage of volatility is approximately calculating

the value of market risk. Volatility is known to be stochastic and time-varying in nature.

Therefore, a wide range of methods is in use to forecast and manage volatility risk.

To this end, various statistical and computational models have been established by

observing the concealed laws of real stock data. As stock data do not follow a fixed pat-

tern, statistical models can not reflect their nonlinearity. As such, numerous soft com-

puting methodologies have been proposed during past few decades, including artificial

neural networks (ANNs), fuzzy systems, and evolutionary optimization algorithms.

These advancements help model dynamic and multivariate nonlinear systems in terms

of stock volatility prediction. For instance, the use of ANNs in modeling economic sys-

tems is rapidly expanding, as they recognize the nonlinear correlation present in histor-

ical stock data. The most widely used ANNs for financial time series prediction include

multilayer perceptron (Wang et al., 2012; Xi et al., 2014), radial basis functional net-

work (Shen et al., 2011), and higher order neural networks such as functional link arti-

ficial neural network (Majhi et al., 2009; Nayak et al., 2012) and Pi-Sigma neural

networks (Nayak et al., 2016). Stock market return forecasting is demonstrated by

Zhong and Enke (Zhong & Enke, 2017; Zhong & Enke, 2019). To analyze the relation-

ship between minimum cost and maximum return, a generalized soft cost consensus

model under a certain degree of consensus is proposed by Zhang et al. (Zhang et al.,

2019). The effect of retail investor attention on stock price crash risk is demonstrated

by Wen et al. (Wen et al., 2019). A survey of existing researches and methodologies on

assessment and measurement of financial systemic risk combined with machine learn-

ing technologies is carried out by Kou et al. (Kou et al., 2019) and, Nayak and Misra

(Nayak & Misra, 2018). Group decision making and a multi-criteria decision making

approach for economic interpretations are found in research works by Kou et al. (Kou

et al., 2012) and Chao et al. (Chao et al., 2019). A multi-criteria decision making-based

approach for clustering algorithm evaluation in the domain of financial risk analysis is

proposed by Kou et al. (Kou et al., 2014).

The performance of ANN-based forecasting models mainly depends on network struc-

ture and the learning algorithm. Gradient descent-based back propagation learning is a

widespread technique used in ANNs. However, it has a slow convergence rate, becomes

trapped in the local minima, and has imprecise learning rate, which make the model time

consuming and add computational overhead (Fernández-Navarro et al., 2012). To over-

come these limitations, a novel algorithm called extreme learning machine (ELM) was

proposed by Huang et al. (Huang et al., 2006; Huang et al., 2012). ELM chooses the weight

of connections between the input variables and the neurons in the hidden layer at ran-

dom. The output weights are determined analytically as a substitute to iterative fine-

tuning. Several recent studies use ELM for various real applications, such as time series

prediction (Grigorievskiy et al., 2014), sales forecasting (Sun et al., 2008), financial time

series forecasting (Dash et al., 2014), electricity load forecasting (Zhang et al., 2013; Yap &

Yap, 2012), and power system economic dispatch (Yang et al., 2013). However, a literature

review indicates two important issues associated with ELM:

� The possibility of inclusion of non-optimal weights and bias of the hidden nodes

may affect output weights.
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� The random initialization of hidden node parameters such as the number of hidden

nodes may have an important impact on network performance.

To address the first issue, several researchers adopted evolutionary learning tech-

niques, such as genetic algorithm (GA), particle swarm optimization (PSO), differential

evolution (DE), harmony search (HS), as well as their variants to pre-train the ELM to

reach the optimal solution. Several combinations of these models, such as GA-based

ELM (Aha, 1992), PSO-based ELM (Han et al., 2013; Han et al., 2011), DE-based ELM

(Zhu et al., 2005), Cuckoo Search-based ELM (Mohapatra et al., 2015), and HS-based

ELM (Huang et al., 2012) have already been proposed and their efficiency demon-

strated. These models not only have improved accuracy but also ensure system stability.

However, to the best of our knowledge, no study addresses the second issue.

Chemical reaction optimization (CRO) is a recent advancement in meta-heuristic

paradigm, having a wider success in a large number of application areas, as proposed

by Lam and Li (Lam & Li, 2010). CRO loosely combines the properties of natural

chemical reactions with mathematical optimization and is characterized by fast conver-

gence capability, requiring fewer tunable parameters. Please refer articles in (Nayak

et al., 2017; Nayak et al., 2015; Alatas, 2012) for more details on CRO and its applica-

tions. Unlike other optimization techniques, CRO does not need many parameters to

be specified at the beginning, but only the number of initial reactants is necessary for

implementation. As the initial reactants are scattered over a feasible global search ex-

panse, optimal solutions can be obtained with limited iteration, thus leading to signifi-

cant reduction in computational time. We construct a learning framework by

combining the advantages of ELM and CRO, which simultaneously optimizes the

weight and bias vector, as well as the number of hidden neurons of a single layer feed-

forward neural network (SLFN) without compromising prediction accuracy.

This study proposes extreme learning with CRO, that is, an ELCRO-based forecasting

model for financial time series. The model includes both the extreme learning ability of

ELM and the fast convergence capability of CRO, hence representing the nonlinearity

present in stock data. However, ELCRO does not attempt to change the basic proper-

ties of ELM, but rather optimizes the number of hidden neurons, weight, and bias vec-

tor of a SLFN-based model without compromising forecasting accuracy. The best

combination of these three parameters is decided by ELCRO on the fly without human

intervention. The performance of the proposed method is then compared with that of

three other models: PSO-ELM, GA-ELM, and GD-ELM.

The rest of the article is organized as follows. The ELM is described in more detail in

Extreme learning machine and CRO in Learning techniques. The proposed ELCRO is

presented in ELCRO. The analysis and experimental results are summarized in Experi-

mental results. Finally, Conclusions concludes.

Extreme learning machine
As discussed in the previous section, ELM considers random weights and biases

for hidden neurons and analytically determines output weights. An alternative to it-

eratively tuning these weights is the generalized inverse operation of the hidden

layer output. The relationship between output vector Oj and input vector xj is

given as:
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Oj ¼
XNh

i¼1

βi� f wix j þ bi
� �

; j ¼ 1; 2;⋯;N ; ð1Þ

where wi = [wi1,wi2,⋯,win]
T, i = 1, 2, ⋯, Nh is the weight vector between input neu-

rons(n = number of input neuron) and the ith hidden neuron; βi = [βi1, βi2,⋯, βim]
T is

the output weight vector connecting the ith hidden neuron with the output neurons; bi
is the bias of the ith hidden neuron; Nh is the total number of hidden neurons; m is the

number of output neuron; and N is the number of training samples.

Output weight vector βi is obtained by solving Hβ = Y, where:

H wi; bi; xið Þ ¼
f w1x1 þ b1ð Þ ⋯ f wNhx1 þ bNhð Þ

⋮ ⋱ ⋮
f w1xN þ b1ð Þ ⋯ f wNhxN þ bNhð Þ

2
4

3
5
N�Nh

ð2Þ

β ¼
βT1
⋮

βTNh

2
4

3
5
Nh�m

;Y ¼
yT1
⋮
yTN

2
4

3
5
N�m

:

In general, Nh≪N (i.e., the number of hidden nodes is considerably lower than the

number of training samples). Therefore, H is non-square and may be a non-singular

matrix in most cases. Hence, there may not exist wi, bi, βi satisfying Eq.(2), meaning the

SLFN can be trained by finding the least square minimum norm solution β̂ of (2) as

follows:

H β̂−Y
��� ��� ¼ minβ Hβ−Yk k ð3Þ

The minimum norm least square solution of Eq.(2) is calculated as follows:

β̂ ¼ HþY ð4Þ

Where H+ is the pseudo inverse or Moore–Penrose inverse of H. Prospective readers

may refer to (Zhong & Enke, 2019; Zhang et al., 2019) for more details on ELM.

Learning techniques
This section briefly describes the three basic evolutionary learning techniques used in

this study, namely CRO, PSO, and GA.

Chemical reaction optimization

CRO is a meta-heuristic proposed by Lam and Li (Lam & Li, 2010), inspired from nat-

ural chemical reactions. The concept mimics the properties of natural chemical reac-

tions and slackly combines it with mathematical optimization techniques. A chemical

reaction is a natural phenomenon of transforming unstable chemical substances to

stable ones through intermediate reactions. A reaction starts with unstable molecules

with excessive energy. Then, the molecules interact with each other through a sequence

of elementary reactions and yield products with lower energy. During a chemical reac-

tion, the energy associated with a molecule changes with the change in intra-molecular

structure and becomes stable at one point, that is, the equilibrium point. The
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termination condition is verified by performing a chemical equilibrium (inertness) test.

If the newly generated reactant has a better function value, it is included and the worse

reactant excluded, and otherwise, a reversible reaction is applied. The literature in-

cludes several applications of CRO for classification and financial time series prediction

(Nayak et al., 2017; Nayak et al., 2015; Alatas, 2012).

The two major components of CRO are i) molecule, as the basic manipulated agent,

and ii) elementary chemical reactions, as the search operators.

Molecule

The basic manipulated agent in CRO is the molecule, similar to the individual in

optimization techniques. An alteration in molecular structure triggers another potential

solution in the search space. The energy associated with a molecule is termed as kinetic

energy (KE) and potential energy (PE). A transformation of a molecule m to m' is only

possible if PEml ≤ PEm + KEm. KE helps a molecule shift to a higher potential state and

provides the ability to avoid local optima. Hence, more favorable structures may be

found in future alterations. In CRO, the inter conversion between the KE and PE

among molecules can be achieved through a few elementary chemical reactions similar

to the number of steps in optimization techniques. As the algorithm evolves, the mole-

cules have an increasingly energy state and ensure convergence.

Elementary chemical reaction

Some elementary chemical reactions are used as search operators in CRO. Different

chemical reactions are applied as operators for the exploration as well as the exploit-

ation of the search space. These reactions may be divided into two categories: mono-

molecular (one molecule takes part in the reaction) or bimolecular (two molecules take

part in chemical reaction). Monomolecular reactions (Redox1 and Decomposition) as-

sist in intensification, while bimolecular reactions (Synthesis, Redox2 and Displace-

ment) can lead to diversification. Here, the chemical reactions are explained

considering the binary encoding of molecules.

Decomposition reaction A decomposition reaction occurs when a molecule splits into

two fragments on collision with the wall of the container. The products are quite differ-

ent from the original reactants. Generally, we represent the decomposition of a mol-

ecule m into m
0
1 and m

0
2 as follows:

0; 1; 1; 0; 1½ �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m

→ 1; 1; 1; 0; 1½ �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m1

0

þ 0; 1; 0; 0; 1½ �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m2

0

:

We examine every value of m. If m(i) is equal to one, its value is copied to m
0
1ðiÞ, and

the m
0
2ðiÞ value is set at random. If m(i) is equal to zero, its value is copied to m

0
2ðiÞ ,

and the m
0
1ðiÞ value is set at random. Since m

0
1 and m

0
2 are different, they can be

treated as two different solutions in the search space and may increase the explor-

ation capability of the CRO. Reaction m→m
0
1 þm

0
2 is acceptable only if PEðm0

1Þ
þPEðm0

2Þ > KEðmÞ þ PEðmÞ.
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Redox1 reaction In this reaction, a molecule is allowed to collide with the wall of the

container. This is also called an on-wall-ineffective collision. As a result, a small change

occurs in the molecular structure. A new product m′ is formed by flipping a random

bit of m as follows:

1; 0; 1; 1; 0½ �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m

→ 1; 0; 1; 0; 0½ �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m0

:

Chemical system m→m′ is acceptable if KE(m) + PE(m) < PE(m′), and is otherwise

rejected.

Synthesis reaction In a synthesis reaction, two molecules m1 and m2 synthesize to

form a single product m′ with much that is significantly different from the original

molecule. The reaction can be expressed as follows:

1; 0; 1; 1; 0; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m1

þ 1; 1; 0; 1; 0; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m2

→ 1; 1; 0; 1; 0; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m0

:

Here, the corresponding bit values of the reactants are compared. If there is a match,

the bit value of any molecule is copied to the product. If they do not match, either the

bit value of m1 or m2 will be randomly copied. The new chemical system m1 +m2→m

′ is acceptable if KE(m1) + KE(m2) + PE(m1) + PE(m2) < PE(m′).

Redox2 reaction In this type of reaction, two molecules m1 and m2 are reacting with

each other to produce two new products m
0
1 and m

0
2. This can be represented as follows:

1; 0; 1; 1; 0; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m1

þ 0; 0; 1; 0; 1; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m2

→ 1; 0; 1; 0; 0; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m1

0

þ 0; 0; 1; 1; 1; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m2

0

:

We select two random points within 1 and the length of the reactant. Then, the bit

values between these points are swapped to obtain two new products. If KE(m1) +

KE(m2) + PE(m1) + PE(m2) < PE(m1′) + PE(m2′), chemical system m1 +m2→m1′ +

m2′ will be accepted or otherwise rejected.

Displacement reaction In case of a displacement reaction, two new molecules are

formed as products of the collision of two reactants. The reaction can be represented

as follows:

1; 0; 1; 1; 0; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m1

þ 0; 0; 1; 0; 1; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}m2
→ 0; 0; 1; 1; 1; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

m1
0

þ 1; 0; 1; 0; 0; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m2

0

:

We compare the corresponding bit values of the two reactants. We swap these bit

values to produce new products. If KE(m1) + KE(m2) + PE(m1) + PE(m2) < PE(m1′) +

PE(m2′), chemical system m1 +m2→m1′ +m2′ will be accepted and otherwise

rejected.

Under the reactant update step, a chemical equilibrium test is performed. If the newly

generated reactants yield a better function value, the new reactant set is included and

the worse reactant is excluded, similar to reversible chemical reactions. The reactants

are updated according to their enthalpy (fitness value). The CRO is then terminated
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when the termination criterion (e.g., maximum number of iterations or threshold error

value) has been met.

CRO is more robust and uses fewer tunable parameters as compared to other

optimizations (Lam & Li, 2010; Alatas, 2012). It only requires the number of initial

reactants. In this work, we use binary encoding for reactants and the uniform

population method for initial population generation. The initial reactants are evenly

initialized in the feasible searching space. As such, all vectors in a space can be ob-

tained as a linear combination of elements of the base set. Absence of one element

in the base set creates a reduction in that dimension corresponding to this elem-

ent. Therefore, it is important that the initial reactants must contain reactants that

hold each element of the base set. Additionally, the initial reactants must be regu-

lar and hold the base set. The uniform population method used to generate the

initial reactant pool is defined by Algorithm 1. The overall process of CRO

algorithm is shown in Fig. 1

.

Variants of many nature-inspired evolutionary algorithms have been proposed

and applied to solving nonlinear problems. However, their performance varies by

dataset. According to the “no free lunch theorem,” there is no single state of the

art constraint handling technique that can outperform all others in every problem.

Hence, choosing a suitable optimization technique for solving a particular problem

involves numerous trials and errors. The efficiency of these optimization techniques

is characterized by tuning parameters. For better convergence of an algorithm,
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suitable fine-tuned parameters are required. To search for the global optimum so-

lution, the algorithm requires an appropriate selection of parameters, which makes

the use of algorithm difficult. Hence, an optimization technique requiring fewer pa-

rameters, a small number of computations, as well as a good approximation cap-

ability is best. CRO is one such technique. These facts motivated us to adopt

CRO. The pseudo code for CRO is presented by Algorithm 2.

Particle swarm optimization

PSO is a swarm intelligent-based popular metaheuristic (Kennedy & Eberhart,

1995; Eberhart et al., 1996) that simulates the social behavior of bird flocking, in-

sects, and fish schooling. The search operation of PSO starts with a set of ran-

domly initialized swarms or particles. Each particle can be seen as a candidate

solution in the search space. A particle is related to an adaptable velocity (position

change) according to which it moves in the search space and has a memory, re-

membering the best position it has ever visited. It moves towards the best solution
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with the adjustment of the trajectory of each particle towards its best location and

also towards the best particle of the population for each generation. It is simple to

implement and has the ability of quickly converging to an optimal solution, and

hence is popular for solving multidimensional problems. In PSO, the individuals of

a swarm communicate their information and adjust positions and velocities using

their group information (Babaei, 2013). In this way, the initial solution propagates

through the search space and progressively moves towards the global optimum

over a number of generations. The standard PSO algorithm mainly consists ofthree

computational steps:

1. Initialize the positions and velocities of particles;

2. Update the position of each particle;

3. Update the velocity of each particle.

Considering a multidimensional problem, let the ith particle at the kth instant

move in a D dimensional search space associated with a position Pi and velocity Vi

as follows:

Pi ¼ pi1; pi2;⋯; piDð Þ;

Fig. 1 Chemical reaction optimization process
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Vi ¼ vi1; vi2;⋯; viDð Þ:

The position and velocity of the particle at the (k + 1) th instant can be manipulated

as follows:

vi kþ 1ð Þ ¼ wivi kð Þ þ c1� rand�ðpbesti−Pi kð Þ þ c2� rand� gbesti−Pi kð Þð Þ
Pi kþ 1ð Þ ¼ Pi kð Þ þ Vi kþ 1ð Þ;

where c1 and c2 are two constants called acceleration coefficients. Specifically,

c1 is the cognitive parameter and c2 is the social parameter. The rand

generates a random number in range [0, 1] and wi is the inertia weight for the

ith particle; pbesti and gbesti are the local and global bests of the ith particle,

respectively.

Genetic algorithm

Genetic algorithms are another popular metaheuristic for a population of probable

solutions in the form of chromosomes (Goldberg, 1989; Holland, 1975). They

attempt to trace the optimal solution through the process of artificial evolution.

The principle is based on biological evolutionary theory and is used to solve

optimization problems through encoding a parameter as a replacement for another

parameter. It follows the repeated artificial genetic operations: evaluation, selection,

crossover, and mutation. Generally, the GA process consist the following basic

steps:

1. Initialization of the search node randomly;

2. Evaluation of individual fitness;

3. Application of selection operator;

4. Application of crossover operator;

5. Application of mutation operator;

6. Repetition of the above steps until convergence.

ELCRO
This section describes the proposed ELCRO approach. A SLFN is used as the base

model. The model output of SLFN with Nh hidden nodes, N distinct samples

(xi, targeti), and activation function f(x) is calculated as per Eq. (1). Term wi ∙ xj
represents the inner product of wi and xj.The error computed by the model from these N

training samples is =
PN
j¼1

ky j−target jk. SLFN based forecasting model is shown in Fig. 2.

Now, the training process of SLFN can be viewed as finding the optimal wi, βi,

and bi so that the error function will be minimal, that is, minimize the error

function:

Error ¼
XN
j¼1

XNh

i¼1

βi f wi∙x j þ bi
� �

−target j

 !2

: ð5Þ

The value of βi is calculated as per Eq. (4). The model adopts both the extreme

learning ability of ELM and fast convergence capability of CRO, hence
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representing the nonlinearity of stock data. As previously stated, ELCRO does

not attempt to change the basic properties of ELM, but rather optimizes the

number of hidden neurons and the weight and bias vector for the hidden layer

without compromising prediction accuracy. Parameters wi and bi and the num-

ber of hidden nodes (Nh) are optimized by CRO. Each molecule (individual) in

the CRO represents a potential combination of (wi, bi, Nh) for the SLFN. We

used binary encoded molecules for CRO. Each weight or bias is encoded into a

binary string of 17 bits. Each hidden neuron is encoded with a single binary

value (1 or 0). A value of 1 indicates the presence of a hidden neuron, and 0,

its absence. The output weight matrix is computed using Eq. (4). The model

output is compared with the actual output or target. The absolute difference

between the model estimation and target is considered the error value or

enthalpy, that is, the fitness value of the respective molecule. The lower the

enthalpy (error) of a molecule, the better its fitness is. The process is applied to

all molecules of the reactant pool. CRO applies different chemical reactions as

search operator to achieve both intensification and exploitation in the search

space. In successive iterations, the molecules with lower fitness (enthalpy)

values are replaced by better fit molecules and the reactant pool gradually

achieves inertness. Here, using the enthalpy value only as the selection criteria

is inappropriate. The efficiency of ELM is greatly influenced by the number of

hidden neurons. We also observed the network tends to have lower training

time with smaller input sizes (n) without compromising prediction accuracy.

For two molecules having the same enthalpy value, the selection strategy con-

sidered the one resulting in smaller (n/enthalpy) or (Nh/enthalpy) values based

on some probability. The high-level ELCRO training algorithm is presented by

Algorithm 3.

Fig. 2 SLFN based forecasting
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Experimental results
This section discusses the analysis process and experimental results. The experiments

were carried out using BSE stock data for prediction of one-day-ahead volatility. The

daily closing prices for each transaction day were collected from https://www.bseindia.

com/indices/. The indices were collected from April 2, 2012 to November 24, 2017.

There were 1400 data points in the time series out of which 950(April 2, 2012 to

January 29, 2016) were used for training the model and the remaining 450 for testing.

The daily closing indices and daily returns of the BSE are shown in Fig. 3. All

experiments are carried out in MATLAB-2015, with Intel® core TM i3 CPU, 2.27 GHz

processor, and 2.42 GB memory size.

Usually, neural network-based models are stochastic in nature. To circumvent the

biasness of the model, we conducted the experiments 20 times with the same model

architecture and parameters and the same input data. The average of the 20 experi-

ments is considered the performance of the model.

The stock return series are generated from stock index prices as rt = (lnPt − ln Pt − 1) × 100,

where rt represents the continuously compounded rate of stock returns from time t-1

to t. Pt represents the daily stock closing price of the day t and Pt-1the daily stock closing

price of the day t-1. The volatility for day t is calculated as follows:

σ2t ¼
1
Nd

Xt−Nd

k¼t−1

rk−
Xt−Nd

k¼t−1

rk�
Nd

 !2

; ð6Þ

Where, Nd is the number of days before the nearest expiry option.

The mean absolute percentage error (MAPE) and average relative variance (ARV) are

performance metrics and calculated as per Eqs. (7) and (8), respectively. The closer the

value of MAPE is to zero, the better is the prediction ability of the model. If the ARV
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value of the forecasting model is equal to 1, it is same as considering the mean of the

financial time series. The model is considered to be performing the worst compared to

the mean if the ARV value is greater than 1. However, the model can be considered as

performing better than simply calculating the mean if its ARV value is less than 1.

Hence, the closer the value to 0, the more accurate the model tends to be.

MAPE ¼ 1
no:of sample

Xno:ofsample

i¼1

j actuali−estimatedi j
actuali

� 100%; ð7Þ

ARV ¼
Pno:of sample

i¼1 estimatedi−actualið Þ2Pno:of sample
i¼1 estimatedi−mean of data setð Þ2

: ð8Þ

The objective is to find a model that yields the lowest forecasting error. As neural

network-based models perform better with preprocessed data, before feeding the input

signals to the model, we normalized the original closing prices data using the sigmoid

normalization technique as suggested in (Nayak et al., 2014). For our experiment, the

simulated parameters of the learning algorithms are summarized in Table 1.

Generally, ANN-based models require a sufficient number of examples for training,

as training the model with an inadequate number of examples may reduce its approxi-

mation and generalization abilities. Improper training does not lead to optimal solu-

tions. However, excess training examples makes the model over fitting and need

enormous training time. Therefore, the generalization capacity of a neural-based model

is greatly influenced by the training data volume. One approach to generate training

patterns from the time series is sliding a window of fixed size over the series. Deciding

the window size is a matter of experimentation.

Fig. 3 Daily closing prices and daily return of BSE index
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First, we conducted experiments on conventional ELM-based SLFN for volatility fore-

casting. The performance of the model is tested with different input sizes (n) and differ-

ent number of hidden neurons (Nh). The MAPE values from training and testing and

training times for 10 different combinations of input size and hidden neurons are sum-

marized in Table 2. It can be observed that the MAPE and training time are highly

influenced by the number of hidden neurons and volume of input data. For example,

the MAPE value from testing is 0.1850722 for Nh = 22 and 0.6400580 for Nh = 8.

Considering the lowest input size of 6 and the number of hidden neurons as 16, the

MAPEs generated during training and testing are 0.032006 and 0.036507, respectively.

In the next phase, we employed evolutionary optimization techniques (i.e., CRO,

PSO, and GA) to simultaneously optimize the synaptic weight vector (w), bias value (b),

and number of hidden neurons (Nh) of the SLFN model. The optimal parameters are

decided by the evolutionary techniques instead of selecting them through experimenta-

tion. The search process starts with random w, b, and Nh values; gradually moves

toward better locations in the search space; and finally lands at optimal values on

convergence.

The performance of the proposed approach is compared with those of three other

forecasting models. The comparative models are PSO-based ELM (PSO-ELM), GA-

based ELM (GA-ELM), and a conventional gradient descent-based ELM (GD-ELM).

The training and testing datasets for are the same all models. The models are

Table 1 Simulated parameter for PSO, GA, GD, and CRO

Parameter PSO GA GD CRO

Learning Rate (α)/acceleration coefficient (c1, c2) 2.15, 2.15 NA 0.1 NA

Momentum Factor (μ) NA NA 0.3 NA

Number of iteration for 1st training set 200 100 500 200

Number of iteration for subsequent training set 10 10 20 10

Population size 60 70 NA 60

Crossover probability (Cp) NA 0.6 NA NA

Mutation probability (Cm) NA 0.004 NA NA

Selection
o elitism
o binary tournament

Global best 20%
80%

NA Lower enthalpy/fitness

Table 2 Performance variation of conventional ELM based SLFN with different input size and
hidden neurons on volatility forecasting

Experiment No. Input Size (n) Hidden Neuron (Nh) MAPE (Training) MAPE (Testing) Training Time (Sec)

1 8 15 0.073825 0.084058 46.6312

2 12 18 0.050002 0.055072 57.0700

3 7 14 0.049288 0.060956 46.5883

4 8 22 0.100055 0.185072 68.2664

5 10 19 0.058226 0.063768 47.2374

6 6 16 0.032006 0.036507 58.1268

7 15 12 0.050651 0.050723 46.6685

8 20 15 0.700843 0.079420 56.6251

9 10 8 0.615582 0.640058 36.5455

10 6 25 0.079388 0.080289 49.7146
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Table 3 Performance of forecasting models on daily volatility forecasting

Forecasting
Model

Error Statistic MAPE ARV

Training Testing Training Testing

ELCRO Minimum 0.000682 0.000293 0.000213 0.000215

Maximum 0.054502 0.032422 0.037510 0.053958

Average 0.016055 0.021531 0.031292 0.033505

Std. Deviation 0.002815 0.024435 0.003827 0.015142

PSO-ELM Minimum 0.000457 0.000459 0.000150 0.000420

Maximum 0.076255 0.069250 0.063950 0.115150

Average 0.020261 0.027300 0.037146 0.038937

Std. Deviation 0.015101 0.020562 0.011184 0.045143

GA-ELM Minimum 0.000845 0.000458 0.000455 0.000388

Maximum 0.027358 0.035755 0.095250 0.243922

Average 0.02705 0.032785 0.038414 0.049606

Std. Deviation 0.003221 0.004069 0.024636 0.050927

GD-ELM Minimum 0.000835 0.004152 0.000503 0.001055

Maximum 0.079250 0.078250 0.117950 0.098250

Average 0.032006 0.036507 0.063989 0.071317

Std. Deviation 0.025581 0.015374 0.031247 0.010009

Fig. 4 Estimated v/s actual volatility by ELCRO during training
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Fig. 5 Estimated v/s actual volatility by ELCRO during testing

Fig. 6 Estimated v/s actual volatility by PSO-ELM during training
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Fig. 7 Estimated v/s actual volatility by PSO-ELM during testing

Fig. 8 Estimated v/s actual volatility by GA-ELM during training
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Fig. 9 Estimated v/s actual volatility by GA-ELM during testing

Fig. 10 Estimated v/s actual volatility by GD-ELM during training
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Fig. 11 Estimated v/s actual volatility by GD-ELM during testing

Table 4 Performance of forecasting models on daily closing price forecasting

Forecasting
Model

Error Statistic MAPE ARV

Training Testing Training Testing

ELCRO Minimum 0.000045 0.000411 0.000015 0.000053

Maximum 0.033555 0.060400 0.011515 0.023319

Average 0.004796 0.007752 0.010937 0.039628

Std. Deviation 0.003782 0.007621 0.045143 0.022178

PSO-ELM Minimum 0.000800 0.000502 0.000015 0.000045

Maximum 0.034300 0.062150 0.057245 0.066450

Average 0.005859 0.009134 0.021015 0.042197

Std. Deviation 0.003969 0.007700 0.007929 0.026065

GA-ELM Minimum 0.000045 0.005500 0.000003 0.000145

Maximum 0.056955 0.115700 0.243922 0.178250

Average 0.018070 0.018879 0.049606 0.052889

Std. Deviation 0.016199 0.012363 0.050927 0.023889

GD-ELM Minimum 0.005555 0.007377 0.001055 0.037350

Maximum 0.104650 0.120977 0.098250 0.122322

Average 0.051829 0.058334 0.071317 0.086307

Std. Deviation 0.003960 0.009752 0.010009 0.026347
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developed in a way similar to ELCRO. The MAPE and ARV values obtained from the

models are summarized in Table 3. The error values are presented separately for the

training and test data. The best error values are shown in bold. It can be observed from

Table 3 that the ELCRO achieves the best MAPE and ARV values. These best error sta-

tistics are obtained by ELCRO with input size 5 and 14 hidden neurons. The estimated

volatilities by the models against the actual values are separately plotted in Figs. 4, 5, 6,

7, 8, 9, 10 and 11 for training and test datasets.

Similarly, the four models are employed to forecast the daily closing prices of the

BSE index. The MAPE and ARV values obtained during training and testing are sum-

marized in Table 4. The best error statistic values are shown in bold. The ELCRO ap-

proach outperforms to others. The performances of the models are compared in terms

of training time. The time consumed during training and testing is summarized in

Table 5.The computation time of ELCRO is smaller than those of the other models.

This confirms the faster convergence of ELCRO.

Statistical significance test

Two statistical tests, namely the Wilcoxon signed rank and Diebold–Mariano tests

(Diebold & Mariano, 2002; Nayak et al., 2018), are conducted to verify the statistical

significance of the proposed model. The Wilcoxon signed rank test returns the prob-

ability value of a paired, two-sided test for the null hypothesis that the difference of the

proposed and comparative models comes from a distribution with zero median. The lo-

gical value of h = 1 indicates a rejection of the null hypothesis. The Diebold–Mariano

test is a pair wise comparison of two time series models for different levels of accuracy.

At the 5% significance level, if the statistic falls beyond ±1.965, the null hypothesis of

no difference will be rejected. The statistics for the Wilcoxon signed rank test are sum-

marized in Table 6 and those for the Diebold–Mariano test are summarized in Table 7.

These results support that the proposed ELCRO method is significantly different from

the other methods under consideration.

Table 5 Computation time (in second) of forecasting models

Model Time series

Volatility price series Closing price series

Training time Test time Training time Test time

ELCRO 42.15 22.34 43.32 23.00

PSO-ELM 48.28 23.05 50.46 25.54

GA-ELM 50.33 26.00 51.45 25.49

GD-ELM 47.27 24.44 45.40 24.08

Table 6 Wilcoxon signed test statistics

Compared
methods

[p, h] - value

Volatility forecasting Closing price forecasting

ELCRO vs PSO-ELM (p = 6.9204e-3, h = 1) (p = 3.7542e-4, h = 1)

ELCRO vs GA-ELM (p = 5.3326e-5, h = 1) (p = 3.00475e-3, h = 1)

ELCRO vs GD-ELM (p = 2.4755e-4, h = 1) (p = 4.25384e-4, h = 1)
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Conclusions
This study proposes an extreme learning with CRO, that is, the ELCRO approach for

training of a SLFN. The model is applied to predict the daily volatility of BSE stock.

The model adopts both the extreme learning ability of ELM and the fast convergence

capability of CRO. Hence, it captures well the nonlinearity of stock data. ELCRO opti-

mizes the number of hidden neurons and the volume of input signals without com-

promising the prediction accuracy of the SLFN-based forecasting model. First, 10

different combinations of numbers of hidden neurons and input size are experimentally

selected for ELCRO, and the corresponding error signals and execution times are ob-

served. The prediction accuracy is highly influenced by input size and the number of

hidden neurons. Second, we employ ELCRO to determine the optimal weight vector

along with input size and number of hidden neurons. The best combination is decided

by ELCRO on the fly without human intervention. ELCRO is suitable to train a SLFN

for stock volatility forecasting. The performance of ELCRO is compared with those of

PSO-ELM, GA-ELM, and GD-ELM and found superior. Additionally, the statistical

testing results confirm that the proposed model performs significantly better than the

other models. The work in this article can be extended by exploring other evolutionary

learning methods, as well as applications to other domains.
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