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Abstract

This study investigates whether the implied crude oil volatility and the historical
OPEC price volatility can impact the return to and volatility of the energy-sector
equity indices in Iran. The analysis specifically considers the refining, drilling, and
petrochemical equity sectors of the Tehran Stock Exchange. The parameter
estimation uses the quasi-Monte Carlo and Bayesian optimization methods in the
framework of a generalized autoregressive conditional heteroskedasticity model, and
a complementary Bayesian network analysis is also conducted. The analysis takes into
account geopolitical risk and economic policy uncertainty data as other proxies for
uncertainty. This study also aims to detect different price regimes for each equity
index in a novel way using homogeneous/non-homogeneous Markov switching
autoregressive models. Although these methods provide improvements by
restricting the analysis to a specific price-regime period, they produce conflicting
results, rendering it impossible to draw general conclusions regarding the contagion
effect on returns or the volatility transmission between markets. Nevertheless, the
results indicate that the OPEC (historical) price volatility has a stronger effect on the
energy sectors than the implied volatility has. These types of oil price shocks are
found to have no effect on the drilling sector price pattern, whereas the refining and
petrochemical equity sectors do seem to undergo changes in their price patterns
nearly concurrently with future demand shocks and oil supply shocks, respectively,
gaining dominance in the oil market.

Keywords: Quasi-Monte Carlo, Bayesian optimization, Bayesian network, Oil volatility
index

Introduction
As global financial markets become more integrated, knowledge of their mutual interplay

becomes more important for market participants to choose appropriate investment strat-

egies. Furthermore, the financialization of the commodity markets has provided valuable

tools for managing portfolio risks (Erb and Harvey 2006; Silvennoinen and Thorp 2013).

As a commodity, crude oil has a well-recognized impact on equity markets worldwide.

Early studies of the impact of oil prices on aggregate stock returns are limited to specific

countries, with mixed findings. Some studies find a positive relationship (Narayan and

Narayan 2010; Zhu et al. 2011; Zhu et al. 2014; Silvapulle et al. 2017), others find a nega-

tive relationship (Gjerde and Saettem 1999; Sadorsky 1999; Papapetrou 2001; Basher and

Financial Innovation

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Fazelabdolabadi Financial Innovation            (2019) 5:12 
https://doi.org/10.1186/s40854-019-0128-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s40854-019-0128-2&domain=pdf
mailto:fazelb@ripi.ir
http://creativecommons.org/licenses/by/4.0/


Sadorsky 2006; Driesprong et al. 2008; Park and Ratti 2008; Chen 2009; Filis 2010; Basher

et al. 2012), and still others find no relationship (Huang et al. 1996; Cong et al. 2008;

Apergis and Miller 2009; Miller and Ratti 2009; Reboredo and Rivero-Castro 2014;

Hatemi et al. 2017). These conflicting results may arise owing to several underlying pitfalls

in the studies, such as not considering the level of oil dependence among stock markets,

not explicitly considering heterogeneity in the context in which the aggregate index is ex-

posed to gains or losses from changes in the oil price, the nature of the oil price shock

considered, and the time-varying element used (Smyth and Narayan 2018).

Whereas earlier studies assume linear and symmetrical adjustment processes for the

underlying variables (Zhu et al. 2011), the current view favors assuming an asymmet-

rical effect of oil prices on stock returns (Basher and Sadorsky 2006; Kilian 2008; Kilian

and Park 2009; Arouri 2011; Aggarwal et al. 2012; Asteriou and Bashmakova 2013;

Narayan and Gupta 2015; Phan et al. 2015; Kang et al. 2016; Li et al. 2017). This view

is further supported by the nonlinear characteristics of the oil price-stock return rela-

tionship. However, some empirical studies do not support this view, as they either find

no asymmetric effects (Bachmeier 2008; Cong et al. 2008; Nandha and Faff 2008;

Mollick and Assefa 2013; Reboredo and Rivero-Castro 2014; Asalman and Herrera

2015; Reboredo and Ugolini 2016) or only find evidence for such effects in

oil-importing countries in the period after the global financial crisis (Ramos and Veiga

2013). Failure to account for the mixed heterogeneous effects of positive and negative

oil price shocks on individual stock returns and merely considering aggregate stock

returns may result in these conflicting findings (Tsai 2015).

Furthermore, Kilian (2008) seminal work demonstrates that the nature of the oil price

structural shock, be it an oil supply shock, aggregate demand shock, or oil-specific de-

mand shock, could be an important factor in the oil–stock interplay, and failure to con-

sider it may result in erroneous findings (Kilian and Park 2009). The period during

which each type of stock gains dominance can be obtained by decomposing oil price

data (Fueki et al. 2016). Performing this analysis shows that oil supply shocks were

mainly influential from the second half of 2013 through the first half of 2015. Cur-

rently, oil supply shocks are no longer as important to macroeconomic developments,

and aggregate demand shocks are seen as more influential (Kang et al. 2016). Further,

empirical evidence shows that the effect of the oil price on equity returns varies consid-

erably across sectors depending on the nature of the structural shock (Broadstock and

Filis 2014). The effect of an oil supply shock is found to be positive (Basher et al. 2012;

Abhyankar et al. 2013) or negative (Gupta and Modise 2013; Cunado and de Gracia

2014). For oil-specific demand shocks, however, the empirical evidence almost unani-

mously suggests a negative effect on equity returns in oil-importing countries (Filis et

al. 2011; Basher et al. 2012; Abhyankar et al. 2013; Gupta and Modise 2013; Güntner

2014; Koh 2017) and a positive effect for Norway, an oil-exporting nation.

Another puzzling feature of the oil–stock relationship is that it exhibits different be-

haviors in periods of low and high economic volatility; in other words, it varies over

time. Quite a few studies focus on this feature, primarily using Markov-switching vec-

tor autoregression (VAR) models, regime switching models, wavelet decomposition, or

frequency domain methods (Aloui and Jimmazi 2009; Chen 2009; Mohanty et al. 2010;

Reboredo 2010; Jammazi and Aloui 2010; Daskalaki and Skiadopolous 2011; Filis et al.

2011; Chang and Yu 2013; Ciner 2013; Broadstock and Filis 2014; Reboredo and
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Rivero-Castro, 2014; Zhang and Li 2014; Kang et al. 2015; Martin-Barragan et al. 2015;

Xu 2015; Zhang 2017; Zhu et al. 2017). Concurrently, studies have examined the role of

oil price volatility on stock returns using both generalized autoregressive conditional het-

eroskedasticity (GARCH)-type models and structural VAR models (Äijö 2008; Arouri and

Nguyen 2010; Choi and Hammoudeh 2010; Elyasiani et al. 2011; Chen 2014; Lin et al.

2014; Narayan and Sharma 2014; Kang et al. 2015; Salisu and Oloko 2015; Awartani et al.

2016; Maghyereh et al. 2016; Bouri et al. 2017a, 2017b). The findings show that the vola-

tility spillovers across markets can be strong and are significantly influenced by structural

breaks, indicating a heterogeneous volatility transmission phenomenon with potential

economic significance for hedging purposes. Thus, the recommended approach involves

using the implied rather than the historical volatility in analyzing the cross-market associ-

ation, as the former is a more accurate predictor of investor sentiment.

Many studies have focused on the effect of the oil price–stock returns relationship at

the sector level (Cong et al. 2008; Arouri 2011; Elyasiani et al. 2011; Narayan and Sharma

2011; Lee et al. 2012; Li et al. 2012; Moya-Martinez et al. 2014; Caporale et al. 2015; Xu

2015; Zhu et al. 2016; Li et al. 2017; Peng et al. 2017), and many specifically focus on the

oil and gas sector (Sadorsky 2001; Boyer and Filion 2007; Cong et al. 2008; Nandha and

Faff 2008; Gupta 2016; Li et al. 2017). A key conclusion of these studies is that oil price in-

creases positively affect the stock returns of firms in the oil and gas sector (Smyth and

Narayan 2018), with a prolonged nonlinear relationship that strengthens over time

(Managi and Okimoto 2013). However, the bulk of these studies focus on developed econ-

omies and rarely extend their analyses to emerging or transition markets.

At the country level, studies have been conducted for oil-importing (Masih et al.

2011; Cunado and de Gracia 2014; Bouri 2015; Silvapulle et al. 2017) and oil-exporting

countries (Bjornland 2009; Arouri and Rault 2012; Mohanty et al. 2011; Ramos and

Veiga 2013; Gil-Alana and Yaya 2014; Demirer et al. 2015), as is intuitive. Although

their findings vary, these studies generally find that oil prices positively affect equity

returns in oil-exporting countries (Smyth and Narayan 2018). Only a limited number of

previous studies examine the oil price–stock relationship in Iran, and few focus on the

effect on the price index of the Tehran Stock Exchange (TSE) (Najafabadi et al. 2012)

or its volatility (Davoudi et al. 2018).

Based on the above literature review, this study makes a two-fold contribution to the

existing literature. It provides the first analysis of the oil price impact on equity returns in

Iran’s oil sector, and it uses a firsthand application of the quasi-Monte Carlo (QMC)

method and Bayesian network (BN) theory in this setting. The remainder of the paper

proceeds as follows. The next section provides a description and preliminary analysis of

the data. Section 3 outlines the research methodology used in the empirical investigation.

A discussion of the results is presented in Section 4, followed by the concluding remarks.

Data
Implied oil volatility index

The implied oil volatility index is reported by the Chicago Board of Options Exchange

and is constructed on an option basis, disregarding the pricing models. In this process,

the market prices of out-of-the-money calls and puts are incorporated into the compu-

tation, and the implied crude oil volatility (OVX) is obtained using Eq. 1:
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Here, T is the time to maturity of the set of options, F is the forward price level de-

rived from the smallest call-put option premium difference, R is the risk-free interest

rate, ΔKi ¼ kiþ1−Ki−1
2 measures the average interval of the two strike prices adjacent to

the strike price of option i, K0 denotes the first strike price below the forward price

level F, and (K i) represents the option premium computed as the midpoint of the

bid-ask Q spread of each option with strike price K i (Maghyereh et al. 2016). This

measure provides an accurate reflection of future market volatility. Other useful texts

(Maghyereh et al. 2016) on this topic, however, provide more detailed information on

the OVX computation.

Preliminary statistics

Daily data on stock prices were obtained from the TSE archive (Tehran Stock Exchange

archive 2018). The archive contains data on several equity sectors, among which the oil

drilling (ODR), oil refining (ORE), and chemical/petrochemical (PET) categories are

presumably the most-relevant to the energy sector. Thus, this study uses data from

these sectors. In addition, data on geopolitical risk (GPR), global economic policy un-

certainty (EPU) (Economic Policy Uncertainty 2018) and the TSE price index (TPI) are

incorporated to account for other proxies for uncertainty in the analysis. The implied

oil volatility is inferred from OVX, whereas the historical oil volatility is taken from

OPEC oil price data (OPEC), both of which were obtained using the Quandl package

(McTaggart et al. 2016).

The sample spans September 27, 2009 to November 12, 2018, which is an inter-

esting period that witnessed several major market events, including the emergence

of shale oil as a key market player, the collapse of cooperation among OPEC mem-

bers, the start of the global economic recovery, and so on (Maghyereh et al. 2016).

The first date of the sample is the first available date in the TSE archive. To pro-

vide better insight into the sector data used, Fig. 1 plots these data, and Table 1

provides descriptive statistics of their log returns. Plots of OVX and OPEC are

given in Fig. 2. For all the model parameters reported herein, the precision esti-

mates are available from the author.

An augmented Dickey–Fuller Test confirms that log return series is stationary. All

the equity returns show leptokurtic characteristics (i.e., kurtosis > 3), suggesting that a

GARCH model is an appropriate choice in this setting. The Jarque-Bera test rejects the

null hypothesis of a normal distribution for all series at the 1% significance level. The

results of ARCH tests also confirm the presence of heteroscedasticity in the data.

Methodology
GARCH

We initially considered a simple GARCH model class for studying the return (r i,t) and

variance (σ2i,t) dynamics of asset i at time t. In doing so, the OVX and OPEC data were

used as external regressors, as in Eqs. 2 and 3.
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ri;t ¼ μþ ηi;1ri;t−1 þ ηi;2ri;t−2 þ ηi;3εi;t−1 þ ηi;4εi;t−2 þ ηi;5εi;t−3 þ ηi;6rovxt−1 þ ηi;7rOPECt−1

i∈ ORI; PET ;ODRf g
εi;t ¼ σ i;tzi;t

ð2Þ

σ2i;t ¼ ωþ ηi;8σ
2
i;t−1 þ ηi;9σ

2
i;t−2 þ ηi;10ε

2
i;t−1 þ ηi;11σovxt−1

2 þ ηi;12σopect−1
2 ð3Þ

We also applied dynamic conditional correlation GARCH (DCC-GARCH) and asym-

metric DCC-GARCH (ADCC-GARCH) models; Appendix 1 provides an explanation of

these methods.

Quasi-Monte Carlo method

Let Ω be a separable topological space in an N dim -dimensional space. Clearly, any

point in Ω can be described by a set of dim N values, with ϖ = (×1, ×2, … , x Ndim) for

x i ∈ℜ1 ≤ i ≤Ndim. Let f be a real-valued function on Ω for which a global maximum

is sought. Because f is assumed to hold a global maximum in the region of interest, it is

bounded from above, and we define its global maximum as:

m fð Þ ¼ maxϖ∈Ω f ϖð Þ ð4Þ

Let λ prob be a probability measure on Ω . Furthermore, let S be a sequence of N in-

dependent λ prob -distributed random samples, ϖ1 ,ϖ2 ,...,ϖ N ∈Ω. We define

mN f ; Sð Þ ¼ max1≤ i≤N f ϖ ið Þ ð5Þ

The QMC method of quasi-random search uses a deterministic sequence of points ϖ1

,ϖ2 ,...,ϖ N in Ω to find the global optimum. It is proven that m N (f;S) converges to the

global maximum of f with unit probability if f is continuous and if a positive probability

measure (λ prob > 0) is taken for every nonempty subset of Ω (Niederreiter 1994).

Fig. 1 The equity sector data for ORI (a), PET (b), and ODR (c)

Table 1 Descriptive statistics of the equity log returns

Equity Mean Standard Deviation Skewness Kurtosis Jarque-Bera a Chi-squared

ORI 0.00145 0.0227 −14.618 420.84 10,088,983 0.0347

PET 0.00178 0.0102 1.252 12.547 5606.8 87.919

ODR 0.00154 0.0220 0.745 11.676 4186.5 39.178
aJarque-Bera test rejects the null of normality at 1% level of significance
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limN→∞mN f ; Sð Þ ¼ m fð Þ ð6Þ

Consider a point set P = (ϖ1, ϖ2,..., ϖN). The dispersion of point P in Ω is defined by:

dispN P;Ωð Þ ¼ max min1≤ i≤Ndisp ϖ ;ϖ ið Þ ð7Þ
disp ϑ; oð Þ ¼ max1≤ i≤Ndim ϑi−oij j for
ϑi ¼ y1; y2;…; ysð Þ; oi ¼ z1; z2;…; zsð Þ ð8Þ

In summary, point sets with small dispersion are proven to be suitable for

quasi-random search purposes (Niederreiter 1994). In addition, the point set used for

QMC should possess nice properties on its discrepancy, which is interpreted as the dif-

ference between the empirical and uniform distributions of the QMC point set (Drew

and Homem-de-Mello 2006). QMC deals with infinite low discrepancy sequences

(LDS), which have the additional property that, for arbitrary N, the initial segments

have relatively small discrepancies (Lei 2002). The merits of LDS are twofold; first, they

provide uniform sample points avoiding large gaps or clusters, and, second, they know

about their predecessors and fill the gaps left from previous iterations (Kucherenko

2006), eliminating empty areas in which no information on the behavior of the under-

lying problem can be deducted. The choice of LDS is therefore central to the QMC

methodology.

Different principles have been used to generate LDS sets (Sobol 1976; Bratley et al.

1992; Niederreiter 1994). Whereas other theories, such as Niederreiter’s (1994), result in

better asymptotic properties (Kucherenko 2006), Sobol’s LDS sets provide enhanced reli-

ability in terms of rapid convergence in high dimensionality situations (Jäckel 2002). As a

result, Sobol’s (1976) method was adopted for LDS generation in this study. A description

of this method can be found in Appendix 2 to keep this text within a reasonable length.

Once an LDS set is available, the multistart QMC algorithm implements an inexpen-

sive local search (such as the steepest descent) on the quasi-random points to concen-

trate the sample, which is subsequently reduced by replacing the worst points (with

lower function values) with the new quasi-random points. A completely new local

search is then applied to any point retained for a certain number of iterations. Two

types of stopping criteria may be used for this algorithm. The first is to stop if no new value

for the local maximum is found after several iterations (Glover and Kochenberger 2003).

Fig. 2 The historical price data for OVX (a), and OPEC (b)
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The second is to stop if the number of worse stationary points exceeds the number of

stationary points, usually by a fraction of three (Hickernell and Yuan 1997). Appendix 3

provides a more detailed description of the QMC algorithm.

Bayesian optimization

Consider the original problem of maximizing the function f on a bounded set Ω . If ϖ is a

point in this region, a dataset of the point parameters and their corresponding function

evaluations can be iteratively collected, ℘ = {ϖi, f(ϖi)}1 ≤ i ≤ iter, up to the iterth iteration.

The dataset can be subsequently used to build a response surface. At this point, the

optimization of the original function can be replaced by an alternative optimization of the

response surface; the difference is that the latter optimization merely requires the evalu-

ation of the learned model rather than that of the original function f.

Thus, the first requirement of Bayesian optimization (BO) is adopting a probabilistic

model to create the response surface. Such a probabilistic framework allows the use of

priors that encode the collected information in a principled way. Moreover, probabilis-

tic models tend to be more robust to the effect of model errors, as they take into ac-

count uncertainty about the model (Calandra et al. 2016). In other words, the first step

involves selecting a prior distribution over functions that expresses assumptions about

the function being evaluated (Snoek et al. 2012). The prior over functions is then up-

dated in light of new observations (Brochu et al. 2010). This analysis uses a Gaussian

process (GP) (Rasmussen and Williams 2006) for the prior, meaning that any finite set

of function values induces a multivariate Gaussian distribution. Other plausible choices

for the prior include the random forest (Criminsi et al. 2011) and the Student-t pro-

cesses (Shah et al. 2014).

In the second step, the previously collected data,℘, are combined with the prior to

obtain a posterior distribution using Bayes’ rule. The posterior captures our updated be-

liefs about the unknown objective function (Brochu et al. 2010). We attempt to

maximize the posterior at each step to decrease the distance between the true global

maximum and the expected maximum given by the model (Brochu et al. 2010). The

next point to evaluate, ϖ iter + 1 , is determined based on an acquisition function, f ac-

quisition, which is a posterior over the functions induced by prior knowledge and data

(Snoek et al. 2012). In practice, the next sample is drawn at the maximal acquisition

function, ϖ iter + 1 = argmaxϖ f (ϖ) . This study uses the acquisition function of Srinivas

et al. (2010), which exploits the upper confidence bound, for maximization.

f acquisition ϖ ;℘; θGPð Þ ¼ μ ϖ ;℘; θGPð Þ−Kbalanceσ ϖ ;℘; θGPð Þ ð9Þ

Here, θ GP stands for the GP hyper-parameters; μ (ϖ; ℘, θGP) and σ2 (ϖ; ℘, θGP)

are the mean and variance functions of the multivariate Gaussian distribution, respect-

ively; and κbalance is a tradeoff parameter (k balance > 0) tuned to balance the search

in terms of exploitation (where f is uncertain) against exploration (where f is expected

to be high). Exploration prevails if the value of κ balance is increased. In this analysis,

this parameter was set such that κbalance = 2.576. The BO algorithm conducts these

steps sequentially (Appendix 4) in search for the global optimum. The mathematical

foundations behind the method are thoroughly described in several useful texts

(Brochu et al. 2010; Snoek et al. 2012), which also provide illustrations of its

implementation.
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Bayesian network

A BN is an implementation of a graphical model in which nodes represent random var-

iables and arrows represent probabilistic dependencies between the nodes (Korb and

Nicholson 2004). The BN’s graphical structure is a directed acyclic graph (DAG) that

enables estimation of the joint probability distribution. For each variable, the DAG de-

fines a factorization of the joint probability distribution into a set of local probability

distributions, and the factorization form is given by the BN’s Markov property, which

assumes that a variable is solely dependent on its parents (Scutari 2010). In this way,

the methodology seeks to find a structure along with its parameters.

The two classifications of the BN-structure-learning process either handle this issue

by analyzing the probabilistic relationships supervised by the Markov property of BNs

with conditional independence tests and subsequently constructing a graph that satis-

fies the corresponding d-separation statements (constraint-based algorithms) or by

assigning a score to each BN candidate and maximizing it with a heuristic algorithm

(score-based algorithms) (Scutari 2010). This study tested both algorithm types. For the

constrained-based type, we used a Monte Carlo permutation test for the conditional in-

dependence test, whereas, in the score-based case, we applied a score-equivalent

Gaussian posterior density criterion. The implementation of the graphical

structure-learning of the BNs was attempted using the bnlearn package (Scutari 2017).

Results
The choice of lag in the GARCH models was rendered, following a series of computa-

tions, over a grid of lag values to identify the model with the least Bayesian information

criterion (BIC) value. As our primary deduction on the cross-market association is

based on the GARCH model parameters, we meticulously performed their estimation

using a variety of techniques, as shown in Tables 2, 3 and 4. As evident from the re-

sults, the choice of solution technique clearly affects the estimated parameter values

and is therefore extremely critical.

In the ORI sector, for example, the limited Broyden–Fletcher–Goldfarb–Shanno

(LBFGS)/Bayesian methods estimate a positive effect of OVX/OPEC, whereas the

QMC method finds that the effect is insignificant. Furthermore, the LBFGS/Bayesian

results estimate that the volatility transmission from OVX/OPEC to ORI is positive,

but this result is not supported by the QMC. Similar contradictions arise in other sec-

tors. For example, OVX returns are found to affect PET returns positively and nega-

tively by the LBFGS and Bayesian methods, respectively. The LBFGS/Bayesian method

finds that the effect of OPEC returns on PET returns is significant, whereas the QMC

method finds minimal effects. The Bayesian method finds that the volatility transmis-

sion from OVX/OPEC to PET is significant, whereas the other methods find an insig-

nificant effect.

Table 2 The GARCH parameters for the ORI sector
Method μ η1 η2 η3 η4 η5 η6 η7 ω η8 η9 η10 η11 η12

LBFGS 4.0e-4 1.9 −9.7e-1 −1.9 8.6e-1 4.7e-2 6.4e-3 2.0e-2 2.6e-16 1.1e-1 8.6e-3 8.9e-1 9.9e-9 9.9e-9

QMC 3.1e-3 4.5e-7 4.5e-7 −4.0e-6 −4.1e-6 −3.9e-6 1.4e-6 1.5e-7 −3.1e−4 1.5e-7 3.3e-4 6.4e-7 7.5e-8 7.6e-8

Bayesian -4.9e-3 −6.2e-3 −2.0e-4 4.1e-3 9.6e-4 6.9e-3 6.1e-3 6.4e-3 −9.3e-3 −6.1e−3 4.9e−3 -3.7e-3 2.6e-3 6.7e-3
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In the ODR sector, the LBFGS and Bayesian methods find a negative effect of OVX

returns on ODR returns, but the methods largely disagree on the direction of the effect

of OPEC returns on ODR returns. The QMC method, however, considers ODR returns

to be insensitive to external factors. We find similar results for volatility transmission

in the ODR sector; the LBFGS/Bayesian methods estimate opposite directions of the

volatility transmission between OPEC and ODR returns, but both find a positive vola-

tility transmission scheme between OVX and ODR returns. Likewise, the QMC method

finds that the ODR volatility is independent of any external factors. The results for the

mean dynamic correlation from the DCC/ADCC-GARCH models, shown in Table 5,

also find a strong positive correlation between TPI and the sectors studied.

To help understand the underlying connectedness, the data were also analyzed in the

framework of BN theory, which is essentially a GARCH-free scheme. Interestingly, the

results, shown in Figs. 3 and 4, indicate a mostly different set of significant relation-

ships relative to those found in the GARCH results. Specifically, the BN results indicate

that OPEC returns do affect returns in the ORI and PET sectors and that the volatility

transmission between OPEC returns and the ORI and ODR sectors is positive.

To further investigate whether the dependency structure changes over time, we con-

ducted a copula analysis by estimating the copula dependence parameters for Gaussian,

Student-t, Gumbel, Clayton, and Frank copula models, as shown in Table 6. The results

on a monthly basis indicate a positive correlation between GPR and EPU and all the

energy sectors studied, as shown in Table 7. The correlation is stronger for GPR than

for EPU.

To avoid the potential pitfall of bias in the parameters due to periods of high or low

volatility, price regimes were also detected for each sector, as shown in Table 8. We ini-

tially determined the number of plausible price regimes for each sector by identifying

the case with the lowest BIC value out of the results obtained by applying the homoge-

neous/nonhomogeneous Markov switching autoregressive models (Monbet 2018), as

shown in Additional file 1: Tables S1-S2 of the supplementary information. The exact

timing of the period was later determined by fitting a regression tree model (Therneau

et al. 2015).

Interestingly, some of the time spans identified coincide with times when the oil price

was undergoing breaks owing to changes in the type of shocks (i.e., oil supply or future

Table 3 The GARCH parameters for the PET sector
Method μ η1 η2 η3 η4 η5 η6 η7 ω η8 η9 η10 η11 η12

LBFGS 9.3e-4 -3.4e-2 8.2e-1 2.9e-1 −7.4e−1 -1.3e-1 1.2e-3 −9.8e-3 7.5e-7 4.1e-2 2.6e-7 9.5e-1 7.3e−5 3.1e-9

QMC 5.6e−4 1.1e-6 9.8e-7 3.1e-6 2.7e-6 2.6e-6 2.7e-9 3.9e-9 5.6e−8 -5.9e-4 5.3e-8 5.6e-4 1.1e-6 1.5e-7

Bayesian -4.7e-3 5.8e-3 -8.1e-3 9.7e-3 7.5e-3 −2.7e-2 −1.2e-2 −6.8e-3 4.3e-3 −7.2e-3 4.9e-3 1.3e−2 9.7e−3 -2.4e-3

Table 4 The GARCH parameters for the ODR sector

Method μ η1 η2 η3 η4 η5 η6 η7 ω η8 η9 η10 η11 η12
LBFGS 1.3

e-3
4.7
e-1

4.7
e-1

-3.7
e-1

−5.8
e-1

5.6
e−2

-2.2
e-2

−6.5
e-2

3.8
e-5

1.4
e−1

3.1
e-2

7.1
e-1

1.6
e−3

8.9
e-2

QMC 3.3
e-4

4.9
e-7

5.1
e-7

5.6
e−8

2.9
e-7

2.2
e-7

1.5
e-6

-1.5
e−8

1.6
e-7

-3.3
e-4

1.6
e-7

3.2
e-4

6.6
e-7

7.2
e-8

Bayesian -8.6
e-3

8.9
e-3

-8.3
e-3

8.8
e-3

−9.5
e-3

−1.3
e-3

9.2
e-3

−4.2
e-3

−4.2
e-3

5.1
e-3

6.7
e-3

5.9
e-3

1.0
e-3

−8.4
e-3
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demand shocks). For example, the ORI sector clearly enters a new price regime in early

2015, when future demand shocks became more dominant than supply shocks in influ-

encing the oil market (Fueki et al. 2016). Likewise, the PET sector begins a new price

regime in late 2013, which fits chronologically with the timeline of the positive contri-

bution of future supply shocks to the oil price hike (Fueki et al. 2016). The only excep-

tion to this rule is the ODR sector, which has been rather insensitive to shocks. For the

sake of brevity, however, the results for the selected price periods are given in the sup-

plementary information to the article.

When the analysis is restricted to a specific price-regime timeline, the results for the

GARCH and BN methods tend to agree more. For instance, both methods now confirm

the volatility transmission between OPEC returns and the ORI and ODR sectors. Simi-

larly, both methods confirm that the OPEC returns have a contagion effect on the ORI

and PET returns.

Conclusions
The choice of solution technique has a clear effect on the parameter values estimated

by GARCH, making it an unreliable platform for analyzing cross-market associations.

The Bayesian scheme provides an alternative robust route for understanding the under-

lying connectivity in the market. We find a positive correlation between GPR, EPU, and

all the energy sectors studied. Neither the contagion effect on returns nor the volatility

transmission between the markets, however, can be deducted upfront, as the methods

yield different results. Nevertheless, the results point to the OPEC (historical) price

volatility as having a stronger effect on the energy sectors relative to the implied volatil-

ity. The ODR sector is found to be insensitive to the type of oil price shock, whereas

the price patterns in the ORI and PET sectors seemingly changed when future demand

shocks and oil supply shocks, respectively, gained dominance in the oil market. This

latter information may have potential significance for TSE market participants in

re-shaping their investment portfolios.

Appendix 1
Dynamic Conditional Correlation (DCC-GARCH)

The model specifies the conditional mean and the conditional variance dynamics of an

asset at time t, as follows (Engle and Sheppard, 2001):

Table 5 The mean dynamic correlations, obtained from DCC/ADCC GARCH

Set Mean dynamic correlation (DCC) Mean dynamic correlation (ADCC)

ORI-OPEC 0.096 0.252

ORI-OVX −0.333 − 0.313

ORI-TPI 4.247 4.276

PET-OPEC 0.0056 0.018

PET-OVX 0.008 0.022

PET-TPI 0.509 0.534

ODR-OPEC −0.042 −0.018

ODR-OVX −0.021 − 0.025

ODR-TPI 0.393 0.414
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ri;t ¼ μi þ ηi;13ri;t−1 þ ηi;14ri;t−2 þ εi;t ð10Þ

σ2i;t ¼ ωi þ ηi;15σ
2
i;t−1 þ ηi;16ε

2
i;t−1 ð11Þ

i∈ OVX;OPEC;ORI;PET ;ODRf g
εt ¼ H1=2

t zt
ð12Þ

Ht ¼ DtRtDt ð13Þ

Rt ¼ Q�−1
t QtQ

�−1
t ð14Þ

Qt ¼ 1−η17−η18
� �

Qþ η17ztz
0
t þ η18Qt−1 ð15Þ

Here, zt is a vector of independent and identically distributed(IID) errors, Ht is the

conditional covariance matrix, Rtis the conditional correlation matrix, Dtis a diagonal

matrix with conditional volatilities on its main diagonal, Qt = [qij, t]; i, j ∈ {OVX,OPEC,
ORI, PET,ODR}, is a time-varying covariance matrix, Q�

t is a diagonal matrix with the

square root of the diagonal elements of Qt at the diagonal, Qis an unconditional covari-

ance matrix of standardized residuals. For the Asymmetric-DCC (ADCC-GARCH), the

conditional variance is modeled by:

Fig. 3 The extracted Bayesian network for returns in each sector, obtained by the score-based algorithm.
The solid/dashed lines refer to statistically significant/insignificant arcs, respectively. The letters represent
A rt, B rt − 1, C rt − 2, D rOVX, t − 1, E rOVX, t − 2, F rOPEC, t − 1, G rOPEC, t − 2

Fig. 4 The extracted Bayesian network for volatility in each sector, obtained by the score-based algorithm.
The solid/dashed lines refer to statistically significant/insignificant arcs, respectively. The letters represent A
σ2t , B σ2t−1, C σ2t−2, D σ2OVX;t−1, E σ2OVX;t−2, F σ2OPEC;t−1, G σ2OPEC;t−2
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σ2i;t ¼ ωi þ ηi;15σ
2
i;t−1 þ ηi;16ε

2
i;t−1 þ ηi;19ε

2
i;t−1I ε2i;t−1

� �
ð16Þ

The (dynamic) correlation estimator at timet, ρ̂ij;t , is given by:

ρ̂ij;t ¼
qij;tffiffiffiffiffiffiffiffiffiffiffiffiffiffiqii;tqjj;t

p ð17Þ

Appendix 2
The construction of Sobol’s low-discrepancy sequences

The initial stage in generating a Sobol LDS set deals with operation on a set of integers

in the interval [1, 2b − 1], where b represents the number of bits in an unsigned integer

on the operating computer (typically b = 32). Let xnkbe the n
th draw of one of Sobol` in-

tegers in dimensionk.

Generation of numbers in the Sobol’s method, is based on a set of direction integers.

A distinct direction integer is considered for each of the b bits in the binary integer

representation. Let vkldenote the lth direction integer for dimension k. In order to con-

struct Sobol` numbers, one needs to evaluate the direction integers, first. This process

involves the binary coefficients of a selected primitive modulo two for each dimension

(Jäckel 2002). Take pkas the primitive polynomial modulo two for dimension k with the

degreegk (defined by Eq. 18). We assume ak0… akgrepresenting the coefficients ofpk,

with ak0being the coefficient of the highest monomial term.

pk zð Þ ¼
Xgk
j¼0

akjz
gk− j ð18Þ

In each dimension, the first gk direction integers vklfor l = 1… gkare allowed to be

freely chosen for the associatedpkof the dimension, provided that two conditions are

Table 6 The estimated copula dependence parameters for Gaussian, Student-t, Gumbel, Clayton,
and Frank copula models
Daily Gaussian Student-t Gumbel Clayton Frank

ORI-OVX −0.006 −0.006 − 0.011 −0.015 − 0.147

ORI-OPEC 0.003 0.003 0.012 1.001 0.087

ORI-TPI 0.583 0.575 1.609 0.968 4.007

PET-OVX −0.002 −0.002 −1.000 0.0006 −0.013

PET-OPEC 0.007 0.007 1.002 −0.026 0.038

PET-TPI 0.639 0.631 1.783 1.228 4.756

ODR-OVX −0.023 −0.023 −1.015 −0.031 − 0.196

ODR-OPEC −0.048 − 0.045 −1.036 −0.076 − 0.252

ODR-TPI 0.401 0.408 1.358 0.583 2.643

Monthly Gaussian Student-t Gumbel Clayton Frank

ORI-GPR 0.547 0.576 0.978 1.609 4.454

ORI-EPU 0.203 0.203 0.226 1.138 0.963

PET-GPR 0.607 0.613 1.676 1.024 5.007

PET-EPU 0.342 0.339 1.238 0.437 1.931

ODR-GPR 0.459 0.464 1.434 0.745 3.463

ODR-EPU 0.218 0.176 1.171 0.306 1.186
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met. First, the lth leftmost bit of the direction integer vkl must be set. Second, only the l

leftmost bits can be non-zero, where the leftmost bit refers to the most significant one

in a bit field representation. All subsequent direction integers are calculated from a re-

currence relation (Eq. 19) (Jäckel 2002):

vkl ¼
vk l−gk
� �
2gk

⊕2

Xgk
j¼1

⊕2akjvk l− jð Þ for l > gk ð19Þ

Hereby, ⊕2represents the binary addition of integers modulo two (often referred to in

the computer science literature as the XOR gate), and
P…

… ⊕2stands for a set of XOR

operations. The procedure is to right-shift the direction integer vk(l − gk)by gk bits, and

then performing the XOR operation with a selection of the un-shifted direction inte-

gers vk(l − j)forj = 1… gk. The summation is performed analogous to the conventional

∑summation operator.

The only remaining requirement for the algorithm is the generating integer of the nth

draw. For this sake, the natural choice appears to be the draw number itself, n. Never-

theless, any other sequence with a unique integer for each new draw is equally useful

(Jäckel 2002). Once all the preliminaries are set, the Sobol` integers, for the s dimen-

sions of interest, are generated by (Jäckel 2002);

xnk ¼
Xs

j¼1
⊕2vkj1 ð20Þ

In which the jth bit of the generating integer is set (counting from the right).

Jäckel (2002) has provided tabulated initialization numbers for generating Sobol` in-

tegers, up to a dimension of 32 (Table 9). The generated sequence, using these

initialization numbers, posesses the property; such that for any binary segment of the

s-dimensional sequence of length 2s there is exactly one draw in each of the 2s hyper-

cubes which result from subdividing the unit hypercube along each of its unit length

extensions into half (Jäckel 2002).

Table 7 The correlation between GPR/EPU and the equity sectors, on a monthly basis

Set Correlation

ORI-GPR 0.43

ORI-EPU 0.21

PET-GPR 0.55

PET-EPU 0.34

ODR-GPR 0.36

ODR-EPU 0.19

Table 8 The time span of the detected price regimes, for the equity sectors

Equity Time span of the detected price regimes

ORI [‘2008-12-13’-‘2015-03-17’]
[‘2015-03-17’-‘2018-06-12’]
[‘2018-06-12’-‘2018-11-12’]

PET [‘2008-12-13’-‘2013-11-18’]
[‘2013-11-18’-‘2018-06-12’]
[‘2018-06-12’-‘2018-11-12’]

ODR [‘2009-07-25’-‘2018-07-23’]
[‘2018-07-23’-‘2018-11-12’]

Fazelabdolabadi Financial Innovation            (2019) 5:12 Page 13 of 20



Once generated, conversion of Sobol` integers to other scales is fairly straightforward.

For example, they can be converted to the [0, 1] scale by dividing the integers by2b.

Appendix 3
The algorithm to perform Quasi-Monte Carlo maximization

Assume ϖ iter
i to represent the best solution for ith point at the iterth iteration, also con-

sider FBESTas the best (maximum) value off, recorded up to the iterth iteration. A de-

tailed description of the QMC procedure is then ensued as follows (Hickernell and

Yuan 1997):

Table 9 An instance of the initialisation numbers for generating Sobol’s LDS, up to a dimension of
32 (Jäckel 2002)

k gk vklfor l = 1...10

1 0 1 1.231 1.230 1.229 1.228 1.227 1.226 1.225 1.224 1.223 1.222

2 1 11 1.231 3.230 5.229 15.228 17.227 51.226 85.225 255.224 257.223 771.222

3 2 111 1.231 1.230 7.229 11.228 13.227 61.226 67.225 79.224 465.223 721.222

4 3 1011 1.231 3.230 7.229 5.228 7.227 43.226 49.225 147.224 439.223 1013.222

5 3 1101 1.231 1.230 5.229 3.228 15.227 51.226 125.225 141.224 177.223 759.222

6 4 10,011 1.231 3.230 1.229 1.228 9.227 59.226 25.225 89.224 321.223 835.222

7 4 11,001 1.231 1.230 3.229 7.228 31.227 47.226 109.225 173.224 181.223 949.222

8 5 100,101 1.231 3.230 3.229 9.228 9.227 57.226 43.225 43.224 225.223 113.222

9 5 101,001 1.231 3.230 7.229 7.228 21.227 61.226 55.225 19.224 59.223 761.222

10 5 101,111 1.231 1.230 5.229 11.228 27.227 53.226 69.225 25.224 103.223 615.222

11 5 110,111 1.231 1.230 7.229 3.228 29.227 51.226 47.225 97.224 233.223 39.222

12 5 111,011 1.231 3.230 7.229 13.228 3.227 35.226 89.225 9.224 235.223 929.222

13 5 111,101 1.231 3.230 5.229 1.228 15.227 19.226 113.225 115.224 411.223 157.222

14 6 1,000,011 1.231 1.230 1.229 9.228 23.227 37.226 97.225 97.224 353.223 169.222

15 6 1,011,011 1.231 1.230 3.229 13.228 11.227 7.226 37.225 101.224 463.223 657.222

16 6 1,100,001 1.231 3.230 3.229 5.228 19.227 33.226 3.225 197.224 329.223 983.222

17 6 1,100,111 1.231 1.230 7.229 13.228 25.227 5.226 27.225 71.224 377.223 719.222

18 6 1,101,101 1.231 1.230 1.229 3.228 13.227 39.226 7.225 23.224 391.223 389.222

19 6 1,110,011 1.231 3.230 5.229 11.228 7.227 11.226 43.225 25.224 187.223 825.222

20 7 10,000,011 1.231 3.230 1.229 7.228 3.227 23.226 79.225 65.224 451.223 321.222

21 7 10,001,001 1.231 3.230 1.229 15.228 17.227 63.226 13.225 113.224 147.223 881.222

22 7 10,001,111 1.231 3.230 3.229 3.228 25.227 17.226 115.225 17.224 179.223 883.222

23 7 10,010,001 1.231 3.230 7.229 9.228 31.227 29.226 17.225 121.224 363.223 783.222

24 7 10,011,101 1.231 1.230 3.229 15.228 29.227 15.226 41.225 249.224 201.223 923.222

25 7 10,100,111 1.231 3.230 1.229 9.228 5.227 21.226 119.225 53.224 319.223 693.222

26 7 10,101,011 1.231 1.230 5.229 5.228 1.227 27.226 33.225 253.224 341.223 385.222

27 7 10,111,001 1.231 1.230 3.229 1.228 23.227 13.226 75.225 29.224 181.223 895.222

28 7 10,111,111 1.231 1.230 7.229 7.228 19.227 25.226 105.225 173.224 509.223 75.222

29 7 11,000,001 1.231 3.230 5.229 5.228 21.227 9.226 7.225 143.224 157.223 959.222

30 7 11,001,011 1.231 1.230 1.229 15.228 5.227 49.226 59.225 71.224 31.223 111.222

31 7 11,010,011 1.231 3.230 5.229 15.228 17.227 19.226 21.225 227.224 413.223 727.222

32 7 11,010,101 1.231 1.230 6.229 11.228 13.227 29.226 3.225 15.224 279.223 17.222
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Step-0 Initialize.
Input the number of initial points, N, the number of points with best (highestt) object-

ive function values to retain in each iteration, Nbest, and the desired number of itera-

tions to be done for local search on each of the points, Niterlocal. search.

Set the number of iterations, iter = 0.

Set NSP = 0; NSWP = 0; NTIX(j) = 0for (1 ≤ j ≤N).

Step-1 Concentrate
Obtain a new point set, by applying Niterlocal. search iteration(s) of an inexpensive local

search to each of ϖ iter
i points (1 ≤ i ≤N).

Step-2 Reduce

Find Ξ(iter) ⊂ {1, … ,N}such that Ξ(iter)has Nbest elements and that f ðϖ iter
i Þ≥ f ðϖ iter

j Þ∀i
∈ΞðiterÞ and ∀j ∉ Ξ(iter).
If j ∈ Ξ(iter), set NTIX(j) =NTIX(j) + 1.

If j ∉ Ξ(iter), set NTIX(j) = 0.

Step-3 Find local maximum
For j = 1,… , Nsuch that NTIX(j) ≥ 2.
Set NTIX(j) = 0.

If NSP = 0or f ðϖ iter
j Þ≥FBEST þ 10−4 then.

Starting fromϖ iter
j , perform a local optimization search, to obtain the local maximum

of the point, ϖ iter
j;local: max.

If f ðϖ iter
j;local: maxÞ > FBEST then.

Set NSP ¼ NSP þ 1;NSWP ¼ 0; FBEST ¼ f ðϖ iter
j;local: maxÞ.

Else.

Set NSWP =NSWP + 1.

End

Else.

If NSWP NSP≥3then stop (success).

Step-4 Sample additional points
For j = 1, 2,… , N.

If NTIX(j) = 0then.

Generate ϖ iterþ1
j by the Sobol’s LDS technique.

Else.

Set ϖ iterþ1
j ¼ ϖ iter

j .

End

Set iter = iter + 1.

If the total number of function calls reached then stop (failure).

Go to Step-1.
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Appendix 4
The algorithm to perform Bayesian Optimization

Assume that the upper confidence bound scheme is chosen, as for the acquisition func-

tion. The algorithm to perform Bayesian optimization follows the below procedures

(Brochu et al. 2010):

Step-0 Initialize
Input the desired number of iterations to be done for BO search, Niter. Input the

tunable parameter κbalance (Eq. 14).

Set the number of iterations, iter = 0.

Sample the (objective) function at point ϖiter.

Form the data set, ℘ = {ϖiter, f(ϖiter)}.

Step-1 Repeat
Find the next point to sample,ϖiter + 1, by optimizing the acquisition function over GP.

ϖ iterþ1 ¼ arg maxϖ f acquisition ϖ j℘1:iter

� �

Sample the (objective) function at point ϖiter + 1.

Augment the data set ℘.

Update the GP prior.

Set iter = iter + 1.

If the total number of desired iterations reached then stop.

Go to Step-1.
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(b), and ODR (c). Figure S2. The extracted Bayesian network for returns in each sector in selected price regime
periods - [‘2015-03-17’-‘2018-06-12’] (ORI); [‘2013-11-18’-‘2018-06-12’] (PET); [‘2009-07-27’-‘2018-07-23’] (ODR) - obtained
by the score-based algorithm. The solid/dashed lines refer to statistically significant/insignificant arcs, respectively. The
letters represent (A)rt, (B)rt − 1, (C)rt − 2, (D)rOVX, t − 1, (E)rOVX, t − 2, (F) rOPEC, t − 1, (G) rOPEC, t − 2. Figure S3. The extracted
Bayesian network for volatility in each sector in selected price regime periods - [‘2015-03-17’-‘2018-06-12’] (ORI); [‘2013-
11-18’-‘2018-06-12’] (PET); [‘2009-07-27’-‘2018-07-23’] (ODR) - obtained by the score-based algorithm. The solid/dashed
lines refer to statistically significant/insignificant arcs, respectively. The letters represent (A)σ2t , (B)σ
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