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Abstract

In this paper, we empirically show how wavelet decomposition can provide an easy
vehicle to study the systematic risk properties of return series to serve as protocol for
different traders who view the market with different time resolutions. By using the
separate catalogue of Large Cap, Mid Cap and Small Cap stocks comprising S&P BSE-
500 index of Indian capital market, we report that the conventional beta
coefficients estimated from CAPM are essentially an average of wavelet betas
but the later provides a resolution more appropriate and hence need to be
considered in a realistic risk assessment of securities. Additionally, the wavelet
beta coefficients for Large Cap stocks are found more stable than Mid and
Small capitalized stocks. This paper is the first attempt of its kind to link the
underlying methodology across different capitalized stocks to identify the
precise beta in a complex market behavior.

Keywords: CAPM, Beta, Wavelet

JEL classification: C22, C49, G21

Introduction
Multi-scale representations are more effective in characterising the time-frequency

properties of financial return series. It is rather more practical and reliable in view of

the large number of investors who participate in the stock market and take decisions

over different time periods. Basically, stock market participants are a diverse group

comprising intraday traders, hedging strategists, portfolio managers, financial and

non-financial institutions and so on. It is notable that these market participants oper-

ate on different time scales depending upon their requirements and thus the true dy-

namic structure of the relationship between variables might vary over different time

scales. The purpose of this paper is to address one of such issues related to Capital

Asset Pricing Model which makes its inferences on efficient markets and believes that

economic agents are entities that act according to the rational expectation strategy.

The model builds on Markowitz (1952, 1959) mean variance portfolio theory and con-

veys the notion that securities are priced such that the expected returns will compen-

sate investors for the expected risks. The CAPM presumes investors to be utility

maximising agents and allows predicting the return of an asset for its given level of

systematic risk measured through beta coefficient. However, very often evidence

showed the inability of the CAPM to identify the true beta that would allow investors

to price risky securities in order to determine the desirability of an investment. One of
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the reasons of the incapability of the CAPM is because the model is based on the as-

sumptions which appear to be unrealistic in real market world. For instance, one of

such assumptions is about investor homogeneity. The main characteristic of this para-

digm is the representative agent, i.e., the investors are homogeneous about their prefer-

ences, their expectations and their investment strategies. However, the differences in

planning horizons, frequency of trading or institutional constraints are neglected.

While Fama (1965) and Levhari and Levy (1977) profoundly criticized the homogenous

assumption of the model, the work of M. Levy and Levy (1996) showed that homoge-

neous expectation assumption could lead to a highly inefficient market with periodic

and predictable booms and crashes. Long-back, the veteran economist Keynes (1930)

also argued that agents do not have sufficient knowledge of the structure of the econ-

omy to form correct mathematical expectations that would be held by all agents. Of

late Muller et al. (1997) emphasized that the formation of markets is based on multiple

layers of investment horizons or time scales ranging from seconds to years and hence

market participants cannot be a single homogeneous group of investors. Thus, under

the homogenous expectations assumption, the CAPM model fails to recognize diverse

kinds of traders seeking investment betas for different time horizons. For instance,

there are traders who take a very long view for the investment and consequently con-

centrate on what is termed as ‘market fundamentals’. These traders ignore ephemeral

phenomena. In contrast, other traders trade on a much shorter time-scale and as such

are interested in temporary deviations of the market. And yet other traders may operate

in the market for which even a day is long time. Each of these classes of traders ana-

lyses their own trading with their own perception of yardstick, consistent with their

trading horizons. Miller (1977) proposes a direct relationship between a stocks risk and

its divergence of opinion. He argues that “in practice, uncertainty, divergence of opin-

ion about a security’s return, and risk go together”. Consequently, he proposes that “the

riskiest stocks are also those about which there is the greatest divergence of opinion”.

An early empirical study by Bart and Masse (1981) supports Miller’s proposition.

Therefore, if CAPM homogeneity assumption must be true, then all investors are

supposed to experience the same degree of systematic risk measured by its ‘beta’ for

their investments. But this is not the case as CAPM was criticized mainly based on

time varying beta. However, such conclusions were direct reflections of time domain

analysis where the evolution of individual variables were examined and assessed

over time. This was apparent because traditionally it was impossible to look simul-

taneously at the same dynamic system through time and frequency domains. In

other words, the time and frequency domains were not interchangeable, i.e., infor-

mation was bound to be lost in changing return series from one domain to another.

To deal with such issues, the adaptations of econometric techniques in financial

analysis were not able to visualize financial markets as complicated dynamic systems

to address the heterogeneous behavior of investors who operate at different time

and frequency resolutions. For example, researchers while addressing the interval

effect of beta use conventional time decomposition scales like daily, weekly,

monthly or annually. However, under such circumstances, when the return interval

is changed from daily to weekly and so on, the number of sample points would de-

crease which obviously amounts in the loss of information. This was one of the fun-

damental reasons as why physicists have been lured into financial markets to bring

Shah et al. Financial Innovation  (2018) 4:18 Page 2 of 17



new theories to study the chaos of the markets and to model the price of complex

derivatives without losing information in terms of data. The example of losing sam-

ple points in the conventional data decomposition is illustrated diagrammatically

later in this paper. Wavelets possess many desirable properties, some of which are

useful in economics and finance. It can enable the finance or economics researcher

to separate out a return series into its constituent multi-resolution components to

discover the complex market behavior. Additionally, wavelets can deal with both

stationary and non-stationary data. Thus, the main purpose of the paper is to repeat

the conventional beta time varying analysis in simultaneous time frequency oscilla-

tions by using the insights from wavelets to improve the specification and estima-

tion of asset pricing models that incorporate this risk dynamics. The remainder of

the paper proceeds as follows. Review Literature section provides an insight of the

related empirical literature. Multiscale Model Specification section discusses about

the methodological aspect in terms of wavelets. Data Description and Empirical

Results section demonstrates the data and findings of the study. We conclude in the

final section.

Review literature
Investments in the capital market exposes investors to market risk and hence

analyzing such risks are critical part of investing. Recognizing the importance of

market risk, Sharpe (1964) developed the CAPM as an extension of Markowitz’s

modern portfolio theory Markowitz 1959. According to CAPM, beta is the only

relevant measure of a stocks risk that explains how investors should act and price

risky securities. Though CAPM is considered as one of the investment pillar on

which the entire development of financial theory is based but it is also true that

CAPM has been the most debatable asset pricing model because of its rigid as-

sumptions and poor empirical record. The model has a long history of theoretical

and empirical investigations of market beta estimations. Amongst many others,

some studies of beta estimations concentrated on the borrowing constraints Black

(1972); non-synchronous data issues Scholes and Williams (1977); the time hori-

zon of investors Levhari and Levy (1977); stability of beta over time Harvey

(1989); the impact of return interval Handa et al. (1989); the effect of world mar-

kets and volatility Bekaert & Harvey (1997) and so on. Specifically, the studies on

the impact of return interval on beta estimates point out the importance of the

timescale issue. Although there is a consensus about time variation in market

betas, but it is not clear how this variation can possibly be captured. One of the

reasons of the incapability of the CAPM is because the model is based on the as-

sumptions which appear to be unrealistic in real market world. One of such as-

sumptions is investor homogeneity. The main characteristic of this paradigm is

the representative agent, i.e., the investors are homogeneous about their prefer-

ences, their expectations and their investment strategies. However long back Key-

nes (1930) argued that agents do not have sufficient knowledge of the structure

of the economy to form correct mathematical expectations that would be held by

all agents. Also, the heterogeneous market hypothesis of Muller et al. (1997)

emphasizes that the formation of markets is based on multiple layers of invest-

ment horizons or time scales ranging from seconds to years and hence market
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participants cannot be a single homogeneous group of investors. Hence if CAPM

homogeneity assumption must be true, then all investors are supposed to experi-

ence the same degree of systematic risk measured by its ‘beta’ for their invest-

ments. An early study during 1970’s by Blume (1971) shows that individual betas

are unstable, and the instability declines as the length of observation decreases.

His results were however confirmed by Baesel (1974). Several years later, Levhari

and Levy (1977) also argued that a deviation from true horizon can cause a sys-

tematic bias in the regression coefficient. Also, Gordon and Norman (1980) stated

that one of the fundamental reasons for beta instability is measurement error,

that is, theoretical beta relates ex-ante expectations while estimated beta relates

ex-post observations. Whereas Scott and Brown (1980) argued that this type of

measurement error combined with auto correlation in the residuals would result

in unstable estimates. Similarly, Fama and French (2004) believed many strange

assumptions like beta coefficient is constant through time and all investors have

the same single investment horizon are responsible to the empirical invalidity of

the CAPM model. Several papers have proposed extensions of the CAPM to

allow incorporation of time-variation. One of the most widely used method to es-

timate beta as a time series process is the Kalman (1960). It has been applied for

the estimation of betas and tests for beta constancy in several markets including

the Indian market by Moonis and Shah (2003). The Kalman Filter allows beta to

be estimated as a time-varying stochastic process. During the past two decades,

the time varying nature of beta has been reported time and again both in devel-

oped as well as developing markets and the Indian market is not an exception.

However, the results drawn by earlier studies could not be treated as conclusive

as they failed to capture the beta variations in simultaneous time frequency oscil-

lations. The fact is that while market consists of heterogeneous market partici-

pants (such as investors, speculators, financial institutions and so on) the

economic theories make its inferences on efficient markets based on a model in

which economic agents are entities who act according to the rational expectation

strategies. With these presumptions, econometric tools were not adequate to

characterize and break down the complex heterogonous market behavior. This

was first dealt by Gençay et al. (2005) who applied wavelet decomposition by

using data sets from US, UK and Germany. They came up with an interesting

conclusion that market provides a stronger relationship between portfolio return

and risk as the wavelet scale increases from higher to lower frequencies of data.

Hiroshi (2005) also examined multi-scale beta estimation approach based on

wavelet analysis for Japanese stock between 1983 and 03 using Discrete Wavelet

Transform (DWT) analysis and concluded that the conventional beta estimates

although are useful in most cases but wavelet-based beta estimates are useful for

understanding the sensitivity of the returns of securities to the returns on the

market index in a much deeper sense. In another attempt, Viviana Fernandez

(2006) supported CAPM at a medium-term horizon for the data of Santiago stock

exchange between 1997 and 02. He also concluded that risk is concentrated at

higher frequencies of the data with VaR model across wavelet scales. Of late, Rua

and Nunes (2012) attempted to measure market risk for 23 developed and 23

emerging markets between 1998 and 08 using continuous wavelet transform
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analysis. Their results showed that beta coefficient was relatively stable at lower

frequencies presenting a value of around 1. In contrast, at higher frequencies, the

beta coefficient varied considerably attaining values as high as 3 in some eco-

nomic episodes. Deo and Shah (2012) were the first to incorporate wavelets in

beta estimation for Indian capital market. They calculated two betas based on the

short periodicity and long periodicity of market returns based on (MODWT).

Their findings revealed that conventional beta estimate is an “average” of the

wavelet-based beta estimates for most of the cases.

Multiscale model specification
Before describing wavelets as an alternative refinement tool to improve the statistical

inference of the data in a potentially revealing manner, a diagrammatic representation

of the effect of different time intervals on beta estimation based on conventional time

series decomposition is given in Fig. 1.

As it is evident from the figure that the estimated beta of the stock decreased from

0.62 (daily) to 0.39 (quarterly) with increased time intervals. This example shows that it

makes a difference if one employs daily, weekly or monthly data to estimate systematic

Fig. 1 Conventional decomposition of return series. Hindustan Unilever Limited (HUL) stock return (vertical
axis) versus Sensex return, measured at different time periods. It can be noticed that the relation between a
stock return (HUL) and the market (SENSEX) differs if the estimation is made with daily, weekly, monthly or
quarterly. When the return interval is increased (changed) in a given sample period, the number of sample
points decreases, which results in loss of information
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risk. However, it can be noticed that when the return interval is increased in a given

sample period, the number of sample points decreases, from 2750 (daily data), to 550

(weekly data) to 132 (monthly data) to 44 (quarterly data) which results in loss of time

information. Therefore, it is crucial to look beyond the conventional decomposition of

financial data to preserve the time information irrespective of the number of decompo-

sitions or frequency intervals. Wavelet analysis is relatively new in economics and fi-

nance, although the literature on wavelets is growing rapidly. This method has started

to find place in economic and financial applications in recent years Oral and Gazanfar

(2017a, 2017b). The term wavelets literally mean small waves, as they have finite length

(compactly supported) and oscillatory behaviour. They are types of basic functions that

are used to decompose a function f (t), i.e. a signal, a surface, a series, etc., in more

elementary functions which include information about f (t). Wavelet analysis is a refine-

ment of Fourier analysis. The problem with the Fourier transform is that it loses the

time information as it looks deep into the frequency values of the series and therefore

it cannot be used successfully to study the nonstationary financial time series data Oral

and Gazanfar (2017a, 2017b). Though the Short-Windowed Fourier Transform

(SWFT) emerged to overcome the time frequency concern but still (SWFT) could

not solve the resolution problem. However, of late, discrete wavelet transform

emerged as an easy vehicle to study the multi-scale properties of a process both in

terms of time and frequency. There are two kinds of wavelets: mother wavelets

ψ(t) and farther wavelets ϕ(t).

Z
ψ tð Þdt ¼ 0;

Z
φ tð Þdt ¼ 1: ð1Þ

The former effectively represent the detail and high-frequency parts of time series,

while the latter are good in representing the smooth and low-frequency components.

Unfortunately, except some special case, there is no analytical formula for computing a

wavelet function. Wavelets are usually derived using special two-scale dilation equation.

For a father wavelet ϕ(t) a dilation equation has the following view

φ tð Þ ¼
ffiffiffi
2

p X
k

lkφ 2t−kð Þ: ð2Þ

A mother wavelet ψ(t) is related to a father by

ψ tð Þ ¼
ffiffiffi
2

p X
k

hkψ 2t−kð Þ: ð3Þ

The coefficients lk and hk are defined as

lk ¼ 1ffiffiffi
2

p
Z

φ tð Þφ 2t−kð Þdt; hk ¼ 1ffiffiffi
2

p
Z

ψ tð Þφ 2t−kð Þdt: ð4Þ

They are essentially the low-pass and high-pass filter coefficients. As it often happens

in practical problems, it is the time series (sequence of values) that is dealt with rather

than continuous function defined over real axis. In this case short sequences of values

called wavelet filters are employed and denoted by fhkgLk¼0 , L is the number of values

in the sequence. The filter coefficients hk however has the following restrictions:

Shah et al. Financial Innovation  (2018) 4:18 Page 6 of 17



XL−1
k¼0

hk ¼ 0;
XL−1
k¼0

h2k ¼ 1;
XL−1
k¼0

hkhkþ2 j ¼ 0 j is any non‐zero integerð Þ: ð5Þ

Coefficients lk and hk from (1.4) are related through the following expression lk
= (−1)k + 1hL − 1 − k, k = 0, 1, …, L − 1.

The problem associated with the application of the DWT for time series analysis is that it

suffers from a lack of translation invariance. This means that circularly shifting a time series

will not necessarily shift its DWTcoefficients in an equivalent manner. This problem can be

tackled by means of a highly redundant non-orthogonal transform called the maximal over-

lap discrete wavelet transform (MODWT)1 that is shift-invariant in the sense that circular

shifts in the time series results in the same circular shift in the MODWT coefficients. This

is not true of the DWT. In the DWT, a circular shift in the time series can cause changes in

the distribution of signal energy across scales. This is often undesirable. The fact that the

MODWT has the same number of coefficients at each scale as the original data means that

the MODWT has the same time resolution as the data at each scale. In many applications,

it is critical to be able to associate changes in the wavelet transform coefficients with times

in the original data. This is much easier to do with the MODWT than with the DWT where

the time resolution is decreasing as the scale increases. Moreover, the critically sampled

discrete wavelet transform (DWT) is defined only for signals which are a power of two in

length. The MODWT retains many of the nice properties of the DWT such as energy pres-

ervation and variance decomposition while removing the restriction to have a length which

is a power of two. Therefore, the analysis of the present work has been carried out with

MODWT and Daubechies least asymmetric (LA) wavelet filter of length L = 8 based on

eight non-zero coefficients with periodic boundary conditions. The MODWT is applied up

to level J = 7 that produces one vector of smooth coefficients i.e. s7 representing the smooth

behavior of the data at the coarse scale and seven vectors of details coefficients d1, d2, d3,

d4, d5, d6 and d7 representing progressively finer scale deviations from the smooth behav-

ior. Through the synthesis or reconstruction operation, the original signal can be

re-assembled from the wavelet and scaling coefficients using the inverse stationary wavelet

transform. Specifically, with J = 7, It is possible to deconstruct seven wavelet details vectors

and one wavelet smooth vector each associated with a time scale 2j-1. Since daily data to es-

timate beta coefficients is used, the first level d1 captures market behavior for two days

period, d2 for 4 days period, D3 for eight days period, D4 for 16 days period, D5 for 32 days

period, D6 for 64 days period, D7 for 128 days period and S7 captures longer period re-

spectively. The smooth and detail components obtained from the deconstruction process

take the form of non-periodic oscillating waves representing the long-term trend and the

deviations from it at an increasing level of detail.

Consider a return series X with arbitrary sample size N, the jth level MODWT wave-

let ( ~W J ) and scaling ( ~V J ) coefficients are defined as,

~W J ;T ≡
XL j−1

l¼0

~hj;lXt−1 modN ~V J ;T ≡
XL j−1

l¼0

~g j;lXt−1 modN ð6Þ

Where ~hj;l ≡ hj;l=2 j=2 are the MODWT wavelet filters, and ~g j;l ≡ g j;l=2
j=2 are the

MODWT scaling filters. For a stock return series X with N samples, the MODWT

yields an additive decomposition or MRA given by
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X ¼
XJ0
J¼1

~DJ þ ~S J0 ð7Þ

Where ~Dj;t ¼
PN−1

l¼0
~hj;l ~W j;tþl modN & ~S j;t ¼

PN−1
l¼0 ~g j;l

~V j;tþl modN .

According to Eq. (7), a set of coefficients {DJ} are obtained with the same num-

ber of samples (N) as in the original return series (X). These are called wavelet

“details” and they capture local fluctuations over the whole period of a return

series at each scale. The set of values SJ0 provide a “smooth” or overall “trend” of

the original return series. Adding DJ to SJ0, for j = 1, 2, ..., J0, gives an increasingly

more accurate approximation of the original signal. This additive form of recon-

struction allows predicting each wavelet sub-series separately and adding the indi-

vidual predictions to generate an aggregate forecast. The wavelet coefficients are

usually arranged in collection from coarse scales to finest.

W ¼

S
!

J

d
!

J

d
!

J−1
:…
d
!

1

0
BBBBB@

1
CCCCCA

ð8Þ

Where, S
!

J ¼ ðS J ;1; S J ;2;…; S J ; n
2 J
Þ, d
!

J ¼ ðd J ;1; d J ;2;…; d J ; n
2 J
Þ, d
!

J−1 ¼ ðd J−1;1; d J−1;2;…;

d J−1; n
2 J−1

Þ, d!1 ¼ ðd1;1; d1;2;…d1;n2Þ. Each of vectors s!J ; d
!

J ; d
!

J−1;…; d
!

1 is called a crys-

tal. More detail descriptions of crystals can be found in Ramsey2 (2002). The Eq.

(8) present decomposition of time series into time-frequency oscillations. Figure 2

shows the deconstruction of the return series into frequency components through

pyramid algorithm.

If x(t) represents an original stock return series say (daily) then w1(t) denotes first

level wavelet decomposition scale that captures (1~ 2) days stock return fluctuation in

the market and v1(t) denotes smooth scale. Further to capture (2–4) days stock return

fluctuation, smooth series, that is, (v1(t)) require decomposition which in turn will pro-

duce w2(t) & v2(t). Here v2(t) denotes smooth series for further decomposition and

w2(t) is associated up to eight days stock return fluctuations. Figure 3 shows details and

smooth crystals of BSE-S&P 500 index returns. As the wavelet scale is increasing, the

wavelet coefficients become thicker and hence analyzing such patterns assume an inte-

gral part of an investment analysis.

Shrinkage methods are used on the MODWT object, the output of imodwt may differ

from the original series. After de-construction of excess returns Rit-Rft & Rmt − Rft, fol-

lowing equation is estimated at each scale (details as well as smooth).

Fig. 2 Flowchart of the pyramid algorithm
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E ritð Þ ¼ αi þ β E rmð Þ þ εi½ � ð9Þ

To have a basic understanding of the wavelet phenomenon, it is imperative to return

to the early example of HUL with wavelet MODWT decomposition ranging from high

frequency (D1) to low frequency (S3). Figure 4 shows beta slope at different wavelet

scales. It can be noticed that when the return interval is increased in a given sample

period, the number of sample points remains the same and hence no loss of informa-

tion. The practical implementation of the MODWT requires handling boundary condi-

tions. The most natural method for dealing with the boundary is to assume that the

length N series is periodic, and to grab observations from the other end to finish the

computations. Another way to handle the boundary is to impose the brick wall condi-

tion which prohibits convolutions that extend beyond the ends of the series. This

boundary condition is appropriate in an analysis when there is no compelling reason to

assume that the data are periodic and symmetric in structure. Finally, it is imperative

to choose the wavelet filter. A reasonable choice of the filter must consider the specific

analysis goal that has to be achieved such as isolation of transient events in a time

series, analysis of variance and multi-resolution analysis. The final analysis is based on

MODWT using LA(8) filter as it could yields coefficients that can be approximately

uncorrelated between scales while having a filter width short enough such that the im-

pact of boundary conditions is tolerable.

Data description and empirical results
The data set consists of all stocks comprising S&P BSE-500 index between January 01,

2005 and June 30, 2013.3 Attempt has been made to segregate the index and to con-

struct a separate catalogue of Large Cap, Mid Cap and Small Cap stocks based on their

market capitalisation structure. Additionally, sample stocks have been classified into re-

spective industries. The S&P BSE 500 index has been taken as the corresponding

benchmark for Large Cap, Mid Cap and Small Cap stocks respectively. The sample size

Fig. 3 Multi-scale decomposition of BSE-S&P 500 index returns
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is 2112 market days or roughly eight and half years. The daily return of each stock Rit

is calculated as the log price difference i.e., logpit − logpit − 1 where pit is the price of

asset i at day t. The market return rmt is taken as the log difference of the S&P BSE 500

index i.e., logSt − log St − 1 where St is the index value at day t. The risk-free rate of re-

turn rt is assumed to be the daily Mumbai Interbank offered rate (MIBOR)4 for the

sample period. With the above data set, the beta estimation of stocks for each capita-

lised category is carried out with wavelet methodology using MODWT estimator.

Using Eq. (9), conventional CAPM betas have been estimated first followed by wave-

let betas at each scale. This is done by allowing wavelet detail and smooth decompos-

ition to Rit & Rmt. The return series of each industrial stock has been decomposed into

seven wavelet scales and one smooth scale. Overall 288, decomposed series that is,

36*8 have been generated from 36 return series (10 from Large cap, 13 from Mid Cap

and 13 from Small Cap) respectively. Given the utility of the data, wavelets scales

are such that Scale 1 i.e., D1 is associated with 2 days market period, Scale

2,3,4,5,6,7 are associated with 4,8,16,32,64 and 128 days market period respectively.

The final scale (S7) captures the long-term stock as well as market behaviour. The

coefficient Beta (β) is the key parameter around which the analysis of this paper

revolves. If beta found is essentially similar across wavelet scales, J then there is lit-

tle reason to believe that wavelet betas are useful. However, if the estimated wave-

let betas across scales differ significantly, then the return interval chosen arbitrarily

would be inappropriate.

Fig. 4 Wavelet decomposition of return series. Hindustan Unilever Limited stock return (vertical axis) versus
Sensex return, measured at different time scales based on wavelet decomposition. The wavelet scales are
such that scale one (D1) corresponds to the time period of 1-2 days, scale two (D2) - 2 to 4 days, Scale
three (D3)- 4 to 8 and S3 represents the undefined but longer time period. It can be noticed that when the
return interval is increased in a given sample period, the number of sample points remains the same and
hence no loss of information
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Table 1 summarizes CAPM betas on original and decomposed return series derived

from MODWT analysis for large capitalized stocks. The estimation results reveal that

the beta coefficient for Capital Goods industry for instance according to CAPM is 0.94

on original or un-decomposed return series. But subsequently after deconstruction of

the return series without losing any data points, different beta parameters emerged at

different scales. The table reveal that D1 that is associated with 2 days period produced

beta coefficient with 0.90, D2 with 0.93, D3 with 0.99, D4 with 0.95, D5 with 1.02, D6

with 0.90, D7 with 1.24 and finally S7 with 1.109. The wavelet beta coefficients imply

that the risk intensity of the Capital Goods industry stock depends on the time scales.

The results indicate that the stock is less volatile during 2, 4, 8, 16 and 64 days invest-

ment period but more volatile during 32 and 128 days period. The smooth scale (S7)

depicts the higher volatility of stock during long but an undefined period. Overall the

results demonstrate that beta becomes stronger as the time scales increases. The results

are noteworthy. The evidence of monotonic increase in beta coefficient from (D1 to

D2) is evident for 8 industrial stocks with the exceptions of IT and Pharmaceutical

stocks. However, the beta for some industrial stocks like Capital Goods, Bank, Oil and

Transport increase monotonically from (D1 to D3). The stocks of IT illustrate a differ-

ent pattern. The beta component for this industry decreases with the increase in time

scale. Furthermore, it appears from the table that beta for IT, Oil & Gas, Pharmaceut-

ical, Transport and FMCG stock remain less volatile across the specified wavelet scales.

Whereas, stocks of Metal and Power industry continued to be volatile across under-

lying scales. Overall the results are more revealing. The beta coefficients for Large Cap

stocks on an average tend to move by a smaller percentage against any given movement

in the market. The evidence is supported by all wavelet scales. The last two columns

tabulate the F-values against the null hypothesis that estimated beta coefficients at

wavelet scale D1 (that represents two days market behaviour) is different from the

wavelet scale (D5) representing one-month market behaviour. It can be noticed that

out of ten Large Cap industries, the beta component differs significantly for two indus-

tries such as IT and Metal. This implies that the beta coefficients for the rest of the in-

dustrial stocks remain stable by and large between these two-time intervals. We also

compared beta coefficients at (D5) and beta coefficients at (D7) representing four

Table 1 Wavelet betas for Large Cap stocks

Industry CAPM Beta D1 D2 D3 D4 D5 D6 D7 S7 Mean (D1 to S7) D1 = D5 D1 = D7

CG 0.94 0.91 0.94 1.00 0.96 1.02 0.90 1.25 1.11 1.11 1.51 2.82a

IT 0.83 0.91 0.83 0.74 0.69 0.67 0.71 0.56 0.97 0.77 1.90b 0.75

Banking 1.13 1.04 1.16 1.29 1.28 0.99 1.33 1.29 0.99 1.16 0.67 2.89a

Metal 1.22 1.16 1.29 1.17 1.33 1.44 1.23 1.32 1.58 1.32 2.88a 1.53

O&G 0.71 0.69 0.73 0.75 0.62 0.91 0.80 0.60 0.59 0.71 1.18 1.18

Pharmacy 0.60 0.60 0.56 0.65 0.60 0.69 0.71 0.82 0.61 0.65 1.10 1.03

Housing 0.92 0.89 0.93 0.83 1.12 1.10 1.06 1.01 1.15 1.02 1.69 0.57

Power 1.10 1.08 1.15 1.01 1.24 1.01 1.22 1.00 1.01 1.09 0.81 0.51

Transport 0.68 0.62 0.66 0.78 0.86 0.75 0.76 0.83 0.93 0.78 0.76 0.63

FMCG 0.55 0.51 0.59 0.54 0.62 0.66 0.55 0.56 0.59 0.58 0.91 0.56

Overall 0.85 0.81 0.86 0.89 0.93 0.90 0.93 0.94 0.91 0.90 0.63 0.49

Superscripted letters a, b, denote values with statistical significance at 1%, and 5% respectively
CG, O&G and CD denotes Capital Goods; Oil & Gas and Consumer Durables Industry respectively
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months’ time period. However, we again observed little evidence about the statistical

difference between these two-time intervals. The possible reason may be explained by

the immovable trading attitude of the Large Cap investors who invest a larger propor-

tion of their corpus based on certain beliefs that Large Cap companies have ability to

generate wealth through their strong corporate governance policies.

Table 2 summarizes the corresponding explanatory power R2 values for estimated

beta coefficients. It is evident that R2 increase monotonically from (D1 to D3) with the

exceptions of IT and Pharmaceutical stocks. However, when investment horizon is ex-

tended for 16 days period i.e., up to (D4) scale, R-square falls slightly for most of stocks

except for Housing, Power and Transport. The R-square start increasing again when

the investment horizon in extended beyond 16 days but not more than 64 days. This

implies that market is less able to explain the stock variations during 16 and beyond

64 days investment horizon.

Table 3 highlights the beta coefficients of 13 Mid Cap industrial stocks. The mono-

tonic increase in beta coefficients is evident from D1 to D2 for 11 industrial stocks with

the exceptions of IT and Housing stocks. However, beta increases monotonically from

D1to D5 for some stocks like Capital Goods, Diversified, and FMCG stocks. Addition-

ally, the beta for Oil & Gas, Agriculture and Pharmaceutical stocks indicate that these

stocks remained less volatile than the market for all the traders ranging from days to

years. However, it is observed that Housing stock among all industrial stocks are sub-

ject to big swings in prices than the market at all frequency intervals. Whereas one im-

portant point to be observed here is that among all wavelet scales, sixty-four days

investment period i.e., D6 moves less in response to movements of overall market. The

evidence is apparent for 9 out of 13 industrial stocks. On the other hand, the highest

volatility is found to be associated with 32 days investment period i.e., scale D5. The

evidence is obvious for 8 out of 13 industrials. However, like Large Cap stocks, the beta

coefficient for overall stocks operating in Mid Cap industries also remained less volatile

than the market across specified scales. Unlike large cap stocks, the estimated betas

values at D1 are different from the wavelet scale at (D2) for five industrial stocks. The

difference is more visible with seven industrial stocks when beta values at (D5) are

compared with beta values at (D7). This probable reason of significant or instable beta

Table 2 Corresponding wavelet R-squares

Industry CAPM D1 D2 D3 D4 D5 D6 D7 S7

Capital Goods 0.64 0.60 0.63 0.71 0.67 0.70 0.79 0.91 0.81

IT 0.50 0.53 0.47 0.53 0.42 0.39 0.63 0.50 0.59

Banking 0.76 0.64 0.78 0.86 0.82 0.79 0.87 0.78 0.86

Metal 0.69 0.63 0.70 0.71 0.72 0.85 0.84 0.73 0.87

Oil & Gas 0.56 0.50 0.59 0.65 0.55 0.67 0.79 0.54 0.77

Pharmaceutical 0.53 0.51 0.50 0.57 0.48 0.65 0.82 0.67 0.60

Housing 0.57 0.53 0.58 0.62 0.63 0.70 0.75 0.59 0.77

Power 0.64 0.60 0.64 0.69 0.71 0.76 0.86 0.80 0.66

Transport 0.60 0.51 0.60 0.75 0.75 0.74 0.84 0.77 0.80

FMCG 0.46 0.40 0.49 0.54 0.45 0.58 0.62 0.52 0.62

Overall 0.88 0.82 0.90 0.95 0.95 0.97 0.98 0.97 0.97
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coefficients may be explained by the friction in the trading process which could delay

the response of securities’ prices to new information for instance.

Table 4 presents the corresponding explanatory power R2 values of the wavelet betas

for Mid Cap stocks. It can be noticed that when investment horizon is extended for

16 days period that is up to D4 scale, R2 falls slightly for most of stocks except for

O&G, Pharmaceutical, Housing, FMCG, Consumer Durables and Diversified stocks.

The R2 start increasing yet again when the investment horizon in extended beyond

16 days but not more than 64 days. This again implies that market is less able to ex-

plain the stock variations during 16 and beyond 64 days investment horizon period.

Table 5 report wavelet betas for Small Cap stocks. Unlike Large and Mid-Cap stocks,

the evidence of monotonic increase in beta from D1 to D2 is evident with only 6

Table 4 Corresponding wavelet R-squares

Industry CAPM D1 D2 D3 D4 D5 D6 D7 S7

CG 0.80 0.73 0.80 0.85 0.82 0.86 0.89 0.92 0.91

IT 0.68 0.65 0.62 0.73 0.72 0.75 0.83 0.83 0.79

Bank 0.81 0.75 0.82 0.85 0.85 0.84 0.89 0.77 0.89

Metal 0.45 0.37 0.48 0.47 0.39 0.47 0.53 0.66 0.76

O&G 0.66 0.58 0.62 0.73 0.78 0.74 0.81 0.78 0.77

Pharma 0.69 0.65 0.69 0.71 0.72 0.73 0.85 0.73 0.62

Housing 0.78 0.76 0.76 0.79 0.79 0.84 0.92 0.80 0.82

Power 0.47 0.18 0.44 0.49 0.45 0.54 0.55 0.60 0.63

Transport 0.73 0.66 0.71 0.79 0.78 0.78 0.89 0.92 0.88

FMCG 0.65 0.57 0.65 0.68 0.74 0.72 0.85 0.74 0.72

Agriculture 0.68 0.59 0.70 0.73 0.71 0.77 0.86 0.84 0.74

CD 0.58 0.51 0.56 0.63 0.66 0.74 0.81 0.71 0.77

Diversified 0.50 0.30 0.45 0.63 0.66 0.72 0.77 0.95 0.95

Overall 0.87 0.81 0.91 0.94 0.95 0.97 0.98 0.97 0.93

Table 3 Wavelet betas for Mid Cap stocks

Industry CAPM Beta D1 D2 D3 D4 D5 D6 D7 S7 Mean (D1 to S7) D1 = D5 D1 = D7

CG 0.95 0.89 0.95 0.97 1.11 1.12 0.85 1.19 1.12 1.03 2.50a 1.19

IT 1.01 1.04 0.92 1.03 1.04 1.06 0.98 0.88 1.14 1.01 0.80 1.87b

Banking 0.94 0.86 1.01 1.00 1.06 0.92 1.01 0.81 0.95 0.95 0.69 0.87

Metal 1.10 1.04 1.28 1.06 0.89 1.19 0.68 1.45 1.44 1.13 1.88b 2.56a

O&G 0.88 0.83 0.89 0.92 0.93 0.93 0.96 0.89 0.74 0.89 1.03 0.67

Pharmacy 0.65 0.61 0.70 0.61 0.68 0.67 0.72 0.58 0.60 0.65 0.65 1.10

Housing 1.19 1.22 1.15 1.11 1.20 1.32 1.33 1.13 1.38 1.23 1.18 1.82b

Power 0.91 0.44 1.06 1.14 1.25 1.11 0.98 0.71 0.90 0.95 4.20a 3.15a

Trans. 0.89 0.84 0.90 0.92 0.90 0.93 0.95 1.05 1.10 0.95 0.77 1.08

Agriculture 0.66 0.63 0.73 0.55 0.77 0.70 0.75 0.59 0.67 0.68 1.51 0.81

FMCG 1.05 1.02 1.07 1.10 1.12 1.22 0.92 1.08 0.77 1.04 2.80a 2.70a

CD 0.99 0.94 1.00 0.96 1.19 1.08 1.12 0.71 1.15 1.02 1.38 3.83a

Diversified 0.74 0.55 0.76 0.90 0.91 1.08 0.81 1.29 1.00 0.91 4.59a 3.31a

Overall 0.91 0.84 0.91 0.95 0.92 0.97 0.97 0.97 0.97 0.89 1.18 0.76

Superscripted letters a, b, denote values with statistical significance at 1%, and 5% respectively
CG, O&G and CD denotes Capital Goods; Oil & Gas and Consumer Durables Industry respectively

Shah et al. Financial Innovation  (2018) 4:18 Page 13 of 17



industrial stocks. However, there is only one industrial stock FMCG for which beta in-

creases monotonically from D1 to D4. The table reports the higher price swings for

Bank, Metal, Oil & Gas, and Housing and Diversified stocks across all frequency inter-

vals. By and large, it appears that both short and long-term investors are exposed to

same level of risk when holding stocks in these specific industries. On the other hand,

there is smaller movement in the stock prices of Pharmaceutical, Transport, FMCG,

Agriculture and Consumer durables across all wavelet scales. However, an interesting

observation to be noticed is that unlike Large and Mid Cap stocks, the overall prices of

Small Cap stocks in general tend to move more than the market across all frequency

intervals except for 32 and 128 days investment period i.e., at D5 & D7. Moreover, the

prices of small capitalised stocks swing more than the market in two, four, eight and

sixteen day’s investment periods. The evidence is apparent for seven industrial stocks.

Like Large Cap stocks, there is little evidence of statistical difference between estimated

beta values at D1 and beta values at (D2). However, like Mid Cap stocks, the difference

is more evident with eight industrial stocks when beta values at (D5) are compared

with beta values at (D7).

Table 6 summarizes R2 values of wavelet betas for Small Cap stock. Unlike Large and

Mid-Cap stocks, where corresponding explanatory falls mostly when investment hori-

zon is extended either for 16 and 128 days investment period, the R-square for

Small-Cap stocks started falling only when the investment horizon is extended for

128 days investment period. This implies that market in general is more able to explain

the stock variations for 64 days investment horizon period. It is noteworthy to observe

here that for Capital Goods, Agricultural, IT and Housing stocks, beta coefficients gen-

erally decreased from D1 to D4 with the increase in wavelet scale. The decrease in beta

value for IT stock is evident also from Large Cap sample.

A more interesting result appears from observing the behavior of R2 for all stocks

viz., Large, Mid and Small-Cap from D6-D7 which decreased when investment horizon

is about 128 days period or roughly four months. This means that systematic risk of

Table 5 Wavelet betas for Small Cap stocks

Industry CAPM Beta D1 D2 D3 D4 D5 D6 D7 S7 Mean (D1 to S7) D1 = D5 D1 = D7

CG 1.03 1.06 1.03 1.00 1.03 0.92 1.00 1.17 0.95 1.03 1.41 2.76a

IT 1.11 1.06 1.03 1.02 0.96 0.87 0.95 0.81 1.02 0.96 1.92b 1.03

Bank 1.11 1.08 1.12 1.08 1.23 1.04 1.15 1.26 1.18 1.13 0.68 2.83a

Metal 1.08 1.12 1.04 1.07 1.07 1.06 1.08 1.13 1.22 1.08 0.58 1.76b

O&G 1.19 1.17 1.22 1.27 1.10 1.27 1.19 1.07 1.10 1.15 1.75b 2.704a

Parma 0.84 0.83 0.89 0.85 0.78 0.90 0.81 0.70 0.76 0.82 0.66 1.70b

Housing 1.19 1.22 1.22 1.12 1.08 1.21 1.17 1.40 1.21 1.21 0.69 3.66a

Power 1.05 0.98 0.96 1.10 1.15 0.99 1.55 1.20 1.21 1.13 0.81 2.806a

Transport 0.91 0.90 0.94 0.88 0.95 0.95 0.82 0.89 0.85 0.90 0.76 0.83

FMCG 0.55 0.82 0.89 0.93 0.99 0.80 0.95 0.70 0.88 0.87 0.71 0.66

Agricultur 0.92 0.98 0.91 0.87 0.78 0.95 0.85 0.92 0.77 0.90 0.63 0.63

CD 0.85 0.84 0.76 0.90 0.97 0.85 0.95 0.66 1.15 0.85 0.80 1.68b

Diversified 1.21 1.20 1.23 1.21 1.18 1.19 1.39 1.15 1.14 1.22 0.66 0.86

Overall 1.01 1.11 1.02 1.01 1.01 0.98 1.03 0.99 1.10 1.01 1.13 0.63

Superscripted letters a, b, denote values with statistical significance at 1%, and 5% respectively
CG, O&G and CD denotes Capital Goods; Oil & Gas and Consumer Durable industries respectively
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underlying stocks is better captured for 64 days period. The results also suggest that

CAPM will be supported more if one can use returns that are measured during this

period. An even more interesting result appears from observing the CAPM beta on

un-decomposed returns and the average beta for wavelet scales. A closer glimpse par-

ticularly on Mid and Small Cap betas shows that the CAPM beta is essentially an aver-

age of wavelet betas which means that but the later provides a resolution more

appropriate and hence need to be considered in a realistic risk assessment of securities.

These results are the unique contribution of this study.

Conclusion
Under the homogenous expectations assumption, the CAPM model fails to recognize

diverse kinds of market participants seeking investments for different time horizons.

For instance, there are traders who take a very long view for the investment and conse-

quently concentrate on what is termed as ‘market fundamentals’. These traders ignore

ephemeral phenomena. In contrast, other traders trade on a much shorter time-scale

and as such are interested in temporary deviations of the market. And yet other traders

may operate in the market for which even a day is long time. Each of these classes of

traders analyzes their own trading with their own perception of yardstick, consistent

with their trading horizons. However, econometric tools were not adequate to

characterize and break down the complex heterogonous market behavior. With this

background, this paper provides a comprehensive insight about beta risk measurement

by resorting to wavelet analysis as it allows one to evaluate simultaneous

time-frequency varying features of the given return series within unified framework.

Based on the empirical findings, it is argued that the conventional beta estimate based

on CAPM is near to the “average” of the wavelet beta estimates. The results indicate

that the traditional ways of estimating beta through picking an arbitrary time scale to

measure return and simply run CAPM model to estimate beta may not be statistically

appropriate since a lot of information about beta dynamics across different intervals

could be lost in terms of reduced observations. The results further suggest that the

Table 6 Corresponding wavelet R-squares

Industry CAPM D1 D2 D3 D4 D5 D6 D7 S7

CG 0.83 0.79 0.81 0.86 0.87 0.88 0.92 0.89 0.91

IT 0.72 0.67 0.70 0.77 0.76 0.77 0.84 0.75 0.84

Bank 0.64 0.55 0.61 0.71 0.76 0.73 0.85 0.88 0.89

Metal 0.78 0.73 0.76 0.80 0.80 0.86 0.90 0.86 0.93

O&G 0.67 0.57 0.65 0.76 0.76 0.81 0.86 0.74 0.74

Pharma 0.73 0.68 0.72 0.76 0.77 0.85 0.87 0.86 0.82

Housing 0.72 0.68 0.70 0.75 0.77 0.81 0.84 0.82 0.86

Power 0.59 0.50 0.52 0.64 0.69 0.73 0.83 0.64 0.82

Transport 0.68 0.59 0.67 0.74 0.77 0.78 0.85 0.79 0.74

FMCG 0.46 0.47 0.55 0.68 0.67 0.69 0.81 0.57 0.72

Agriculture 0.63 0.57 0.60 0.67 0.71 0.76 0.89 0.76 0.79

CD 0.55 0.43 0.52 0.64 0.65 0.75 0.86 0.72 0.86

Diversified 0.78 1.20 0.76 0.82 0.81 0.86 0.96 0.93 0.89

Overall 0.96 0.50 0.53 0.64 0.69 0.73 0.84 0.64 0.82
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market risk for stocks of large capitalized companies are more stable than mid and

small capitalized stocks. This implies that large cap investors are more tolerant with

the fluctuations in the stock prices or changes in the business cycles of their companies.

The results provide the importance of capturing the variation in beta through time in

predicting market return for small and mid cap investors. The paper leaves a huge

scope to consider return aspect to conduct a thorough investigation of capital asset pri-

cing model across simultaneous time frequency domains.

Endnotes
1As Percival and Walden (2000) note, the MODWT is also commonly referred to by

various names in the wavelet literature. Equivalent labels for this transform are

non-decimated DWT, time-invariant DWT, un-decimated DWT, translation-invariant

DWT and stationary DWT.
2Ramsey, J. (2002). Wavelets in economics and finance: Past and future. Studies in

Nonlinear Dynamics and Econometrics 6:1-27.
3Out of BSE-500, the required data was available for only 311 companies. Selected

companies were classified into their respective industries.
4The data source for individual stocks and the BSE- 500 index were retrieved from

CMIE Database Prowess. The MIBOR daily rates were collected from NSE official

website.
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