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Developing calibration estimators for population mean using 
robust measures of dispersion under stratified random sampling 

Ahmed Audu1, Rajesh Singh2, Supriya Khare3  

ABSTRACT 

In this paper, two modified, design-based calibration ratio-type estimators are presented. 
The suggested estimators were developed under stratified random sampling using 
information on an auxiliary variable in the form of robust statistical measures, including 
Gini’s mean difference, Downton’s method and probability weighted moments. The 
properties (biases and MSEs) of the proposed estimators are studied up to the terms of first-
order approximation by means of Taylor’s Series approximation. The theoretical results 
were supported by a simulation study conducted on four bivariate populations and 
generated using normal, chi-square, exponential and gamma populations. The results of the 
study indicate that the proposed calibration scheme is more precise than any of the others 
considered in this paper. 

Key words: calibration, outliers, percentage relative efficiency (PRE), stratified sampling. 

1.  Introduction 

In sampling survey, calibration is a commonly used technique to produce 
estimation weights. These calibrations weights in turn satisfy calibration equation that 
incorporates auxiliary information. The calibration approach consists of (a) 
computation of new weights that incorporate specified auxiliary information and are 
restrained by calibration equations (b) the use of these weights to compute linearly 
weighted estimate of mean, totals and other finite population parameters satisfying an 
objective of obtaining nearly unbiased estimate. This technique has been used to 
develop cosmetic estimators (estimators interpretable both as design-based and as 
prediction-based estimators) (see Sarndal and Wright (1984), Brewer (1995, 1999), 
etc.). The calibration technique has also been utilized to develop design-based estimator 
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under different sampling schemes like stratified random sampling, stratified random 
double sampling, two-stage sampling, etc. In this direction many authors like Deville 
and Sarndal (1992), Singh and Mohl (1996), Estevao and Sarndal (2000), Estevao and 
Sarndal (2002), Singh (2003),Tracy et al. (2003), Kim et al. (2007), Barktus and 
Pumputis (2010), Sud et al. (2014),  Clement and Enang (2016), Rao et al. (2016) and 
Subzar et al. (2018) have proposed estimators and studied their properties for 
estimating population mean under different calibration constraints in stratified 
random sampling. Tracy et al. (2003) obtained calibration weights for population mean 
by using first and second order moments of auxiliary variable in stratified random 
sampling. Nidhi et al. (2017) considered estimation of population mean using 
calibration approach in stratified and stratified double sampling schemes. Kim et al. 
(2007) utilized calibration approach in defining estimators for population variance in 
stratified random sampling. Other authors like Horvitz and Thompson (1952), Estevao 
and Sárndal (2006), Aditya et al. (2016), Salinas et al. (2019) considered estimation of 
population mean under two stage sampling scheme using the calibration approach. 

In this paper, we have suggested two calibrated schemes in stratified random 
sampling by utilizing auxiliary information on certain robust statistical measures like 
Gini’s mean difference, Downton’s method and Probability weighted moments, all of 
which are insensitive against the presence of outliers in the population and are less 
susceptible to fluctuations in sampling whenever extreme observations are present as 
alternatives to Rao et al. (2016) calibration estimators. 

2.  Some existing estimators in literature 

Let  , 1,2,...,
hN N h K    be a stratified non-overlapping heterogeneous 

population with K  strata of size 
1

K

hh
N N


   with units , 1, 2,...,hi hiy i N  and 

, 1,2,...,hi hix i N  for study variable y and auxiliary variable x  respectively. 
1

1

hN

h h hii
Y N y


   and 1

1

hN

h h hii
X N x


   are means of study and auxiliary variables 

respectively. A random sample of size 
1

K

hh
n n


   is selected from the population 

using SRSWOR. The conventional unbiased estimator of the population mean and its 
variance is given in Eq. (2.1) and Eq. (2.2), respectively. 

1

K

st h hh
y y


                        (2.1) 

   2 1 1 2

1

K

st h h h yhh
Var y n N S 


            (2.2)  
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Where, 

   
211 2

1 1 1
/ , , 1 ,h hn N K

h h h h hi yh h hi h h hi i h
N N y n y S N y Y Y Y


  

           

Singh (2003) suggested a design-based calibration estimator with two constraints 
for estimating population mean in stratified sampling. The suggested calibration 
estimator is given in Eq. (2.3).  

1

K S
S h hh

y y


               (2.3)  

where S
h  is the new calibration weight of stratum  thK  to be obtained by solving (2.4). 

 2

1

1 1 1 1

min /

. ,

K S
S h h h hh

K K K KS S
h h h h h hh h h h

Z

s t x X




   

    

      


   

    (2.4)  

where h  are suitably chosen positive scale factors, which decide the form of the 
estimator. 

Eq.(2.4) yields a calibration weight in Eq. (2.5) and the estimator Sy  was obtained 
as in Eq. (2.6). 

 
 1

2
2

K K
Kh h h h h h h h h hS h h

h h h hhK K K

h h h h h h h hh h h

x x
X x

x x

   

  
 



  

   
     

   

  
  

    

  (2.5) 

 
 1 1 1 1

21 1
2

1 1 1

K K K K
K Kh h h h h h h h h h h hh h h h

S h h h hh hK K K

h h h h h h h hh h h

x y x y
y y X x

x x

   

  
   

 

  

    
    

   

    
  

      

    

(2.6)  

Clement and Enang (2016) suggested a design-based calibration estimator for the 
combined ratio estimator in stratified random sampling. The suggested estimators with 
the associated calibration constraint are given in Eq. (2.7) and Eq. (2.8). 

1
ˆK CE

CE hh
y RX


                (2.7)  

 2

1

1

min /

.

K CE
CE h h h hh

K CE
h hh

Z

s t x X






    

  




       (2.8)  
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where ˆ /h h hR y x  CE
h  is the proposed calibration weight of thK  stratum. 

The calibration weight *
h , estimator CEy  and  var CEy were obtained as given 

in Eq. (2.9), Eq. (2.10) and Eq. (2.11) respectively. 

 12

1

KCE h h h
h h h hK h

h h hh

x
X x

x


 




     





       (2.9) 

1 1
/

K K

CE h h h hh h
y X y x

 
             (2.10) 

    1 1 1 2

1

K

CE h h h xh yxhh
Bias y X n N RS S  


          (2.11) 

        2 2 1 1 2 2

1

ˆ/
K

CE st h h h h sth
Var y X Var x n N S X Var x   


      

 (2.12) 

where 

  2 2 2 2 2

1 1

ˆ , , 2 , /
K K

h h st h xh h yh xh yxhh h
X x Var x S S S R S RS R Y X 

 
         , 

    1

1
1 hN

yxh h hi h hi hi
S N y Y x X




     

Rao et al. (2016) proposed two new design-based calibration schemes by 
incorporating coefficient of variation in the constraint to the chi-square distance 
function for the new calibration weight defined to improve the precision of the sample 
mean estimator in stratified random sampling. The first scheme proposed is given 
in Eq. (2.13). 

1

K

RTK h h
h

y y



          (2.13)   

where h
  is the new calibration weight such that the chi-square function *Z  is defined 

as 

 

   

2

*
1

1 1

min

.

K
h h

h h h

K K

h h xh h h Xh
h h

Z

s t x c X C









 

 





     




 
           (2.14)  
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where 

   

   

1 22 1

1 1

212

1

/ , / , 1 ,

1

h h

h

n n

xh xh h Xh Xh h xh h hi h h h hii i

N

Xh h hi hi

c s x C S X s n x x x n x

S N x X

 
 





     

  

 


 

Solving Eq. (2.14) and let   1

h h xhx c   , the calibration weight *
1h  and the 

estimator RTKy  are given by Eq. (2.15) and Eq. (2.16) respectively. 

     
1

1
1 1 1

K K K

h h h h h Xh h h xh h h xh
h h h

X C x c x c




  

             
  
           (2.15) 

   
1

1
1 1 1

K K K

RTK h h h h Xh h h xh
h h h

y y X C x c


  

       
 

                 (2.16) 

Similarly, function *Z  is also subjected to another constraint defined in Eq. (2.17), 

   
1 1

1 1
K K

h h xh h h Xh
h h

x c X C

 

              (2.17) 

which lead to another estimator given as 

     
1

2
1 1 1

1 1 1
K K K

h h h h h Xh h h xh h h xh
h h h

X C x c x c




  

                
  
     (2.18) 

   
1

2
1 1 1

1 1
K K K

RTK h h h h Xh h h xh
h h h

y y X C x c


  

         
 

          (2.19) 

However, estimators 1RTKy  and 2RTKy  are functions of coefficients of variation 
which are easily affected outliers or extreme values.  

3.  Suggested calibration estimators 

Motivated by Clement and Enang (2016) and Rao et al. (2016), we proposed two 
classes of design-based calibration estimators in stratified random sampling using 
robust measures such as Gini’s mean difference MDG , Downton’s method MD and 

probability weighted moments WMP  of the auxiliary information, which are insensitive 
to the presence of outliers or extreme values in the data.  

Let z   with units , 1,2,...,iz i N , then: 
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     11

1
2 1 2 1

N

MD ii
G z N N i N z




         (3.1) 

      11

1
2 1 1 / 2

N

M ii
D z N N i N z 


         (3.2) 

    2

1
2 1

N

WM ii
P z N i N z 


         (3.3) 

3.1. First calibration scheme proposed 

Consider an estimator defined in Eq. (3.4) under stratified sampling having 
distance function as given in Eq. (3.5), 

1

, 1, 2,3.
K

AR hi h
h

y y i



          (3.4) 

where hi
  is the new calibration weights such that the chi-square function Z   is 

defined as 

 

     

2

1

1 1

min

. , 1, 2,3

K
hi h

h h h

K K

hi h hi h h hi
h h

Z

s t x x X x i



 








 

 





      




 
       (3.5)  

where 1 2 3( ) ( ), ( ) ( ), ( ) ( )h MDh h Mh h WMhx G x x D x x P x      

To compute the new calibrated weights hi
 , we use the Lagrange multipliers 

function of the form given by Eq. (3.6), 

       
2

1 1 1

2
K K K

hi h

hi h hi h h hi
h h hh h

x x X x  





  

             
    (3.6) 

Partially differentiating Eq. (3.6) with respect to h
  and   and equating to zero, 

we have 

  hi h h h h hix x               (3.7) 

     
1 1

0
K K

hi h hi h h hi
h h

x x X x 

 

            (3.8) 

Substituting Eq. (3.7) in Eq. (3.8) to get   and then substituting the expression 

obtained into Eq. (3.7). By putting    1

h h hix x 


  , the new calibration weight 

hi
  is obtained as 
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1

1 1 1

K K K

hi h h h h hi h h hi h h hi
h h h

X x x x x x  




  

             
  
  

   
(3.9)  

Now, substituting Eq. (3.9) in Eq. (3.4) and letting  hi x  be either ( )MDhG x  or

( )MhD x or ( )WMhP x , the new estimators are obtained as, 

   

   

   

1

1
1 1 1

1

2
1 1 1

1

3
1 1 1

( ) ( )

( ) ( )

( ) ( )

K K K

AR h h h h MDh h h MDh
h h h

K K K

AR h h h h Mh h h Mh
h h h

K K K

AR h h h h WMh h h WMh
h h h

y y X G x x G x

y y X D x x D x

y y X P x x P x



  



  



  

        
  


         
  

           

  

  

  

 

 (3.10)  

3.2. Second calibration scheme proposed 

To obtain the second class of the proposed estimators, we let  

1

, 1, 2,3.
K

AS hi h
h

y y i



           (3.11)  

where hi
  is the new calibration weight such that the chi-square function U   is 

defined as 

 

    

2

1

1 1

min

. 1 ( ) 1 , 1,2,3

K
hi h

h h h

K K

hi h hi h h hi
h h

U

s t x x X x i



 








 

 





        




 
  (3.12)  

Solving for h
  using the Lagrange multipliers technique and putting

   1
1h h hiX x 


   , we have the new calibrated weight given by Eq. (2.14). 

        
1

1 1 1

1 1 1
K K K

hi h h h h hi h h hi h h hi
h h h

X x x x x x  




  

                
  
  

        
(3.13) 
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By putting Eq. (3.13) in Eq. (3.11) and letting  hi x  be either ( )MDhG x  or

( )MhD x or ( )WMhP x , the new estimators are obtained as 

   

   

   

1

1
1 1 1

1

2
1 1 1

1

3
1 1 1

1 ( ) 1 ( )

1 ( ) 1 ( )

1 ( ) 1 ( )

K K K

AS h h h h MDh h h MDh
h h h

K K K

AS h h h h Mh h h Mh
h h h

K K K

AS h h h h WMh h h WMh
h h h

y y X G x x G x

y y X D x x D x

y y X P x x P x



  



  



  

          
  


           
  

             

  

  

  

     

(3.14)  

3.3. Properties (bias and MSE) of the proposed estimators 

To obtain bias and MSE of the suggested estimators  ,ARi ASiy y , the following error 

terms are defined:    0 1/ , /st ste y Y Y e x X X     with expected values 

defined in Eq. (3.15) 

       
       

2 2
0 1 0

2 2
1 0 1

0, / ,

/ , ov /

st

st st st

E e E e E e Var y Y

E e Var x X E e e C y x YX

   


  
  (3.15)   

where  

       2 1 1 2 2 1 1

1 1
, ov

K K

st h h h xh st h h h yxhh h
Var x n N S C y n N S   

 
       . 

 
Expressing Eq. (3.10) and Eq. (3.14) in terms of , 0,1ie i  and simplifying up to 

the second degree approximation, we obtained Eq. (3.16) and Eq. (3.17) respectively as 

        0 11 1
1 /

K K

ARi h h ih h h ihh h
y Y e X x Xe X x 

 
         

 (3.16) 

        0 11 1
1 1 / 1

K K

ASi h h ih h h ihh h
y Y e X x Xe X x 

 
         

 
(3.17) 

Simplifying Eq.  (3.16) and Eq. (3.17), we get Eq. (3.18) and Eq. (3.19) 

   1

0 11 1ARi iy Y e e            (3.18) 



STATISTICS IN TRANSITION new series, June 2021 

 

133

   1

0 11 1ASi iy Y e e             (3.19)  
where 

   
1 1 1 1

/ ( ) , / 1 ( )
K K K K

i h h h h ih i h h h h ih
h h h h

X X x X X x   
   

            . 

Simplifying Eq. (3.18) and Eq. (3.19) up to the first order approximation, we 
obtained 

 2 2
0 1 1 0 1ARi i i iy Y Y e e e e e            (3.20) 

 2 2
0 1 1 0 1ASi i i iy Y Y e e e e e             (3.21)  

Take expectation of Eq. (3.20), Eq. (3.21) and using the results obtained in Eq.  
(3.15), we obtained the  ARiBias y  and  ASiBias y as 

     1 2 1 ovARi i st i st stBias y RX Var x X C y x        (3.22) 

     1 2 1 ovASi i st i st stBias y RX Var x X C y x        (3.23)  

where / .R Y X  

Squaring Eq. (3.20) and Eq. (3.21), and taking expectations and substituting the 
results of Eq. (3.15), we obtained the  ARiMSE y  and  ASiMSE y as given in Eq. 
(3.24) and Eq. (3.25) respectively. 

       2 2 2 ov , 1,2,3ARi st i st i st stMSE y Var y R Var x R C y x i    
 (3.24)  

       2 2 2 ov , 1,2,3ASi st i st i st stMSE y Var y R Var x R C y x i      
 (3.25) 

3.4. Properties of the New Weights  hi
 and , 1,2,3hi i   

Theorem 1: The proposed weights hi
 and , 1,2,3hi i  are consistent. 

Proof: As the sample size in each stratum tends to the stratum size, i.e. as n hn N , 

the stratum sample mean converges to the stratum population mean, i.e. h hx X . 

Then, the expression      
1 1

K K

h h hi h h hi
h h

X x x x 
 

       in 
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, 1, 2,3hi i   and expression      
1 1

1 1
K K

h h hi h h hi
h h

X x x x 
 

         

in , 1,2,3hi i   tend to zeros. So, 

lim 1
h h

hi

n N
h









         (3.26) 

lim 1
h h

hi

n N
h









         (3.27) 

Theorem 2: The sum of the proposed weights hi
 and , 1,2,3hi i  converged to 

unity. 
Proof:  Taking the summation of hi

 and , 1,2,3hi i   over K , we obtained 

    1 1
1 /

K K

hi st h h hih h
K X x x x

 
            (3.28) 

    1 1
1 / 1

K K

hi st h h hih h
K X x x x

 
            (3.29) 

As n hn N , h hx X  and stx X , then 

1 1
lim lim 1
h h h h

K K

hi hih hn N n N

 
  
               (3.30) 

Theorem 3: The proposed weights 0 1hi
   and 0 1, 1,2,3hi i    . 

Proof:  As n hn N , h hx X  and stx X , then 

lim lim /
h h h h

hi hi h hn N n N
N N 

 
                (3.31) 

Since 0, 0hN N  and hN N , then 0 1h   . 

4. Empirical study 

4.1. Simulation study 

In this section, we perform a simulation study to examine the superiority of the 
proposed estimators over other estimators considered in the study. For this, we 
generate a bivariate random population of size N=1000 for study population stratified 
into 3 non-overlapping heterogeneous groups of size 200, 300 and 500 using function 
defined in Table 4.1. Samples of sizes 20, 30 and 50 were selected 10,000 times by the 
SRSWOR method from each stratum respectively. The precision (PRE) of the 
considered estimators was computed using Eq. (4.1). 
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10000

1

1ˆ ˆ
10000 j

Bias Y 


                  (4.1) 

     
10000 2

1

1ˆ ˆ ˆ/
10000 j

j

MSE Var Y  


                                     (4.2) 

      ˆ ˆ/ 100stPRE Var y Var                 (4.3) 

where 

   
10000

2

1 2 1 2
1

1 ˆvar , , , , , , ,
10000st st st CE CE RTK RTK ARi ASi

j

y y Y y y y y y y y


     

 

Table 4.1.  Populations used for Empirical Study 

Population Auxiliary variable x  Study variable y  

I 
  1 1

2 2 3 3

, , 60, 50,

50, 70, 30, 40
h h hx N    
   

 

   
 

 

2 ,

0.5,1,1.5, 2.0,2.5,3

0,1 , 1,2,3

hi hi hi hi

h

y x x

N h

 



  



 II 

 
  1 2 3, 1, 2, 3h hx chsq        

III   1 2 3exp , 0.2, 0.3, 0.1h hx      
 

IV 
  1 1

2 2 3 3

, , 3, 2,

3, 1, 3, 3,
h h hx gamma    

   
 

   
 

 
Table 4.2 shows the biases, MSEs and PREs of the traditional, Rao et al. (2016), 

Clement and Enang (2016) and the proposed estimators using population I defined in 
Table 4.1. The proposed estimators have smaller MSEs compared to other estimators. 
This implies that the estimates of the proposed estimators are on average closer to the 
true estimate than that of other estimators. The PREs of the proposed estimators are 
higher than that of other estimators. The proposed estimator  under   has PRE of 326.4 
implying 200% and 100% gain in efficiency over and respectively. However, the 
proposed estimators are averagely more biased compared to other estimators 
considered in the study. 
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Table 4.2.  PRE of the Proposed and Some Existing Estimators using Pop. BI 

Estimators 
Values of   

0.5 1.0 1.5 
Bias MSE PRE Bias MSE PRE Bias MSE PRE 

sty  0.1 404126.7  100 0.1 406568.4 100 0.1 409023.1 100 
Rao et al. (2016) 

1RTKy  -0.8 176491.7 229 -0.8 176432.9 230.4  -0.9 176374.1 231.9 

2RTKy  -2 174926 231 -2.1 174866.3 232.5  -2.1 174806.6 234 
Clement and  Enang (2016) 

CEy  8.9 192907.5 209.5 8.9 192907.5 210.8  8.9 192907.5 212 
Proposed 

1ARy  -17.2 123802.4 326.4 -17.2 124216.1 327.3 -17.2  124636 328.2 

1ASy  -17.2 125626.8 321.7 -17.2 126052.3 322.5 -17.2 126484.1 323.4 

2ARy  -17.4 119408.2 338.4 -17.4 119731.9 339.6 -17.4 120061.1 340.7 

2ASy  -17.4 121356.7 333 -17.4 121693.5 334.1 -17.4 122035.9 335.2 

3ARy  58.2 125249.8 322.7 58.5 125596.7 323.7  58.8 125949.3 324.8 

3ASy  57.4 127154.8 317.8 57.7 127514.5 318.8  58.0 127879.9 319.8 

Estimators 
Values of   

2.0 2.5 3.0 

sty   0.2 411490.7  100  0.2 413971.2 100 0.2 416464.8 100.0 
Rao et al. (2016) 

1RTKy  -0.9 176315.5 233.4 -0.9 176256.9 234.9 -1.0 176198.3 236.4 

2RTKy  -2.1 174747 235.5 -2.2 174687.5 237 -2.2 174628.1 238.5 
Clement and Enang (2016) 

CEy  8.9 192907.5 213.3  8.9 192907.5 214.6 8.9 192907.5 215.9 
Proposed 

1ARy  -17.2 125062 329 -17.3 125494.3 329.9 -17.3 125932.7 330.7 

1ASy  -17.2 126922 324.2 -17.3 127366.1 325 -17.3 127816.4 325.8 

2ARy  -17.4 120395.9 341.8 -17.5 120736.2 342.9 -17.5 121082 344 

2ASy  -17.5 122383.8 336.2 -17.5 122737.4 337.3 -17.5 123096.5 338.3 

3ARy  59.1 126307.7 325.8 59.5 126671.8 326.8 59.8 127041.7 327.8 

3ASy  58.3 128251.1 320.8  58.6 128628.1 321.8 58.9 129010.9 322.8 
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Table 4.3 also shows the biases, MSEs and PREs of the traditional, Rao et al. (2016), 
Clement and Enang (2016) and the proposed estimators using population II defined 
in Table 4.1 The proposed estimators have smaller MSEs compared to other estimators. 
These results are in conformity with that of population in Table 4.2. 

Table 4.3. PRE of the Proposed and Some Existing Estimators using Pop. II 

Estimators 
Values of   

0.5 1.0 1.5 
Bias MSE PRE Bias MSE PRE Bias MSE PRE 

sty   0.02 3.3 100 0.03 3.6 100  0.03 4.0 100 
Rao et al. (2016) 

1RTKy  0.05 1.4 235.7 0.04 1.4 257.1 0.02 1.5 266.7 

2RTKy  0.03 1.7 194.1 0.02 1.8 200 0.04 2.0 200 
Clement and  Enang (2016) 

CEy  -0.1. 1.0 330 -0.1 1.0 360 -0.1 1.0 400 
Proposed 

1ARy  -0.1 0.9 366.7 -0.1 0.8 450 -0.1 0.8  500 

1ASy  -0.1 1.2 275 -0.1 1.2 300  -0.1 1.2 333.3 

2ARy  -0.1 0.9 366.7  -0.1 0.8  450 -0.1 0.8 500 

2ASy   -0.1 1.2 275 -0.1 1.2 300 -0.1 1.2 333.3 

3ARy  0.1 0.9 366.7 0.1 0.9 400 0.1 0.9 444.4 

3ASy  0.02 1.2 275 0.01 1.2 300 0.1 1.3 307.7 

Estimators 
Values of   

2.0 2.5 3.0 

sty  0  4.4 100 0 4.8 100 0 5.2 100 

Rao et al. (2016) 

1RTKy  0 1.5 293.3 0 1.6 300 0 1.7 305.9 

2RTKy  0 2.1 209.5 0 2.2 218.2 0 2.3 226.1 
Clement and  Enang (2016) 

CEy   -0.1 1 440 -0.1 1 480 -0.1 1 520 
Proposed 

1ARy   -0.1 0.8 550 -0.1 0.8 600 -0.1 0.8 650 

1ASy  -0.1 1.3 338.5 -0.1 1.3 369.2 -0.1 1.3 400 

2ARy  -0.1 0.8 550 -0.1 0.8 600 -0.1 0.8 650 

2ASy  -0.1 1.3 338.5 -0.1 1.3 369.2 -0.1 1.3 400 

3ARy   0.1 0.9 488.9 0.1 0.9 533.3 0.1 0.9 577.8 

3ASy   0.1 1.3 338.5 0.1 1.3 369.2 0.1 1.4 371.4 
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Table 4.4.  PRE of the Proposed and Some Existing Estimators using Pop. III 

Estimators 
Values of   

0.5 1.0 1.5 
Bias MSE PRE Bias MSE PRE Bias MSE PRE 

sty  -0.1 396  100 -0.1 405.7 100 -0.1 415.5 100 
Rao et al. (2016) 

1RTKy  -1.0 199.4 198.6 -1.0 200.4 202.4 -1.0 201.3 206.4 

2RTKy  -1.0 223.2 177.4 -1.0 225.1 180.2 -1.0 227.1 183 
Clement and  Enang (2016) 

CEy  -1.3 175.3 225.9 -1.3 175.3 231.4 -1.3 175.3 237 
Proposed

1ARy  -1.4 152.7 259.3 -1.4  152.1 266.7 -1.4 151.4 274.4 

1ASy  -1.4 170.1 232.8 -1.4 170 238.6 -1.4 170 244.4 

2ARy  -1.4 153.8 257.5 -1.4 153.2 264.8 -1.4 152.5 272.5 

2ASy  -1.4 172.1 230.1 -1.4 172.1 235.7 -1.4 172.1 241.4 

3ARy  -0.5 156.8 252.6 -0.5 156.2 259.7 -0.5 155.5 267.2 

3ASy  -0.6 175.5 225.6 -0.5 175.6 231 -0.5 175.6 236.6 

Estimators 
Values of   

2.0 2.5 3.0 

sty  -0.1 425.4 100 -0.1  435.5 100 -0.1 445.7 100 
Rao et al. (2016) 

1RTKy  -1.0 202.3 210.3 -1.0 203.3 214.2 -1.0 204.2 218.3 

2RTKy  -1.0 229 185.8 -1.0 231 188.5 -1.0 233 191.3 
Clement and  Enang (2016) 

CEy  -1.3 175.3 242.7 -1.3 175.3 248.4 -1.3 175.3 254.2 
Proposed

1ARy
 -1.4 150.8 282.1 -1.4 150.1 290.1 -1.4 149.5 298.1 

1ASy
 -1.4 170 250.2 -1.4 170 256.2 -1.4 170.1 262 

2ARy
 -1.4 151.9 280.1 -1.4 151.3 287.8 -1.4 150.7 295.8 

2ASy
 -1.4 172.2 247.0 -1.4 172.3 252.8 -1.4 172.3 258.7 

3ARy
 -0.4 154.9 274.6 -0.4 154.2 282.4 -0.4 153.6 290.2 

3ASy
 -0.5 175.7 242.1 -0.5 175.7 247.9 -0.4 175.8 253.5 

Table 4.4 also shows the biases, MSEs and PREs of the traditional, Rao et al. (2016), 
Clement and Enang (2016) and proposed estimators using population III. 
The proposed estimators with the exception of 3ASy , which performed below Clement 
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and Enang (2016) estimator, have smaller MSEs compared to other estimators. These 
results are in conformity with that of population in Table 4.2. 

Table 4.5.  PRE of the Proposed and Some Existing Estimators using Pop. IV 

Estimators 
Values of   

0.5 1.0 1.5 
Bias MSE PRE Bias MSE PRE Bias MSE PRE 

sty  0 0.66 100 0  0.74  100 0  0.83 100 
Rao et al. (2016) 

1RTKy  0 0.32 206.2 0 0.33 224.2 0 0.34 244.1 

2RTKy  0 0.4 165 0 0.43 172.1 0 0.46 180.4 
Clement and  Enang (2016) 

CEy  0 0.26 253.8 0 0.26 284.6 0 0.26 319.2 
Proposed 

1ARy  0 0.22 300 0 0.22 336.4 0 0.22 377.3 

1ASy  0 0.31 212.9 0 0.32 231.2 0 0.33 251.5 

2ARy  0 0.22 300 0 0.22 336.4 0 0.22 377.3 

2ASy  0 0.31 212.9 0 0.32 231.2 0 0.34 244.1 

3ARy  0 0.23 287 0 0.23 321.7 0.1 0.23 360.9 

3ASy  0 0.32 206.2 0 0.33 224.2 0 0.34 244.1 

Estimators 
Values of   

2.0 2.5 3.0 

sty  0 0.92 100 0 1.02  100 0  1.13 100 
Rao et al. (2016) 

1RTKy  0 0.35 262.9 0 0.37 275.7 0  0.39 289.7 

2RTKy  0 0.49 187.8 0 0.52 196.2 0 0.56 201.8 
Clement and  Enang (2016) 

CEy  0 0.26 353.8 0 0.26 392.3 0 0.26 434.6 
Proposed 

1ARy  0 0.22 418.2 0 0.22 463.6 0 0.22 513.6 

1ASy  0 0.34 270.6 0 0.36 283.3 0 0.37 305.4 

2ARy  0 0.22 418.2 0 0.22 463.6 0 0.22 513.6 

2ASy  0 0.35 262.9 0 0.36 283.3 0 0.38 297.4 

3ARy  0.1 0.23 400 0.1 0.23 443.5 0.1 0.23 491.3 

3ASy  0 0.36 255.6 0 0.37 275.7 0.1 0.39 289.7 
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Table 4.5 also shows the biases, MSEs and PREs of the traditional, Rao et al. (2016), 
Clement and Enang (2016) and proposed estimators using population III. The 
proposed estimators with the exception of 3ARy  and other estimators are unbiased. The 

proposed estimators 1 2 3, ,AR AR ARy y y performed better compared to other estimators. 

However, the proposed estimators 1 2 3, ,AS AS ASy y y , which outperformed Rao et al. 

(2016) estimators and usual unbiased estimator sty , performed below the estimator of 
Clement and Enang (2016). 

5.  Discussion 

Tables 4.2, 4.3, 4.4 and 4.5 report PREs of the sample mean in stratified sampling, 
Rao et al. (2016), Clement and Enang (2016) and proposed calibration estimators using 
populations I, II, III and IV (Normal, Chi Square, exponential and gamma 
distributions) respectively defined in Table 4.1 for different values of  

 0.5,1.0,1.5,2.0,2.5,3.0  . The results of the PREs reveal that as the values of 
 (coefficients of linear component of response variable model) increase, the efficiency 
of the all the estimators increases. The results also revealed that all the proposed 
estimators have higher PREs compared to their counterparts considered in the study. 
This implies that the proposed estimators are more efficient in estimation of population 
mean than other related estimators considered in this study. 

6.  Conclusion 

In this study, we utilized auxiliary information for a heterogeneous population in 
the form of robust statistical measures based on Gini’s mean difference, Downton’s 
method and probability weighted moments. These measures which are not unduly 
affected by outliers present in the data and provide more efficient estimates of 
population parameters in the presence of extreme values were used as alternatives for 
the coefficient of variation used by Rao et al. (2016). From the results of Tables 4.2, 4.3, 
4.4 and 4.5, it is observed that in general the estimators proposed under both the 
calibration schemes are not only robust but more efficient than the usual ratio estimator 
in stratified sampling, Clement and Enang (2016) and Rao et al. (2016) calibration 
estimators making them applicable in real life situation when data is somewhat affected 
by the presence of extreme values. However, the proposed estimators 1 2 3, ,AS AS ASy y y
performed below the estimator of Clement and Enang (2016) under population IV and 
generally the efficiency of the proposed estimators is higher when the study variables 
are characterized by outliers. 
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