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Extended residual coherence with a financial application

Xuze Zhang,1 Benjamin Kedem2

ABSTRACT

Residual coherence is a graphical tool for selecting potential second-order interaction terms
as functions of a single time series and its lags. This paper extends the notion of residual
coherence to account for interaction terms of multiple time series. Moreover, an alternative
criterion, integrated spectrum, is proposed to facilitate this graphical selection. A financial
market application shows that new insights can be gained regarding implied market volatility.

Key words: interaction, residual coherence, nonlinear, time series, volatility index.

1. Introduction

Nonlinear phenomena in random processes have attracted much attention going back to the
work of Wiener (1958) concerning random nonlinear oscillators excited by a random input,
random shot effect as input for testing nonlinear circuits, and more generally concerning
a class of nonlinear polynomial functionals to model input-output relationships in nonlin-
ear systems. In Wiener’s words, he was interested in “methods of handling the spectrum,”
which motivates the use of higher order spectra dealt with by quite a few authors includ-
ing Brillinger (1965), Brillinger and Rosenblatt (1967), Hinich (1979), Nikias and Mendel
(1993), and Elgar et al. (1998). The excellent review paper by Sanaullah (2013) provides
numerous additional references about applications of nonlinear techniques based on higher
order spectra. Inherent in all nonlinear systems is the problem of assessing the degree and
extent of nonlinearity, which can be approached by the detection of nonlinear components
or interactions (Tick (1961), Elgar et al. (1998)).

In this paper, the detection of nonlinear second-order interactions is done by an ex-
tension of residual coherence introduced in Khan, Katzoff and Kedem (2014) and applied
in mortality forecasting. Residual coherence is a nonlinear variation of the well-known
measure of linear coherence. The method is then applied to two volatility indices, the
Chicago Board Options Exchange Volatility Index (VIX), and the Russell 2000 Volatility
Index (RVX).
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2. Extensions of residual coherence

2.1. Preliminaries

The coherence between two time series (X(t),Y (t)) measures the extent of linear relation-
ship between them in the frequency domain. Provided all auto- and cross-spectra exist, it is
defined as

γXY (λ ) =
| fXY (λ )|2

fXX (λ ) fYY (λ )

(see Koopmans (1974)) where fXX and fYY are the spectra of X(t) and Y (t), respectively,
and fXY is the cross-spectral density of X(t) and Y (t). This is widely used in detecting con-
nections and clustering of time series. Relevant works include Sun, Miller and D’Esposito
(2004), Maharaj and D’Urso (2010) and Euan, Sun and Ombao (2019), among many oth-
ers. When the relationship is nonlinear, it is frequently analyzed by bispectra, trispectra,
or higher-order spectra. For example, a bispectral method for detecting lag processes was
proposed by Hinich (1979). Lagged coherence and residual coherence were first introduced
in Kedem-Kimelfeld (1975) and Khan, Katzoff and Kedem (2014), respectively, to detect
and select potential interaction effects as input to nonlinear systems, based on an orthogonal
decomposition in Kimelfeld (1974) without involving bispectrum or higher-order spectra.

Let Y (t) be the output of a system of which the input consists of linear and quadratic
filters of X(t) plus noise ε(t),

Y (t) = L[X(t)]+
∞

∑
k=1

Luk [X̃uk(t)]+ ε(t)

where X̃uk is a lag process defined as X̃uk(t) = X(t)X(t− uk)−E[X(t)X(t− uk)]. For sim-
plicity, assume that Y (t) and X(t) are zero-mean real valued jointly stationary processes
and that all relevant auto- and cross-spectra exist. Then, for sufficiently large n, Y (t) can be
approximated by

Y ∗(t) = G1(t)+
n

∑
k=1

G2,k(t)+ ε(t) (1)

where G1(t) is a linear filter of X(t), and as in Kedem-Kimelfeld (1975), G2,k(t) is a sum of
a linear filter of X(t) and a linear filter of X̃uk(t), such that G2,k(t)⊥G1(t) for k = 1, . . . ,n.

Kedem-Kimelfeld (1975) showed that if there is prior knowledge that Y (t) takes on a
simpler form

Y (t) = L[X(t)]+Lu[X̃u(t)]+ ε(t), (2)

then it can be rewritten as a sum of two orthogonal processes, G1(t) and G2(t;u) plus noise
ε(t),

Y (t) = G1(t)+G2(t;u)+ ε(t). (3)

Then the lag process, or interaction, X̃u(t) that minimizes Eε2(t) can be selected by finding
the lag u that maximizes the lagged coherence S2(λ ;u) over all frequencies λ ∈ [−π,π]
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such that

S2(λ ;u) =
fG1G1(λ )+ fG2G2(λ ;u)

fYY (λ )
.

However, as mentioned in Kedem-Kimelfeld (1975), there might not exists a u that
maximizes S2(λ ;u) over all frequencies. One way to resolve this issue is to define the
residual coherence as

RC(u) = sup
λ

fG2G2(λ ;u)
fYY (λ )

and find u that maximizes RC(u). This is shown to be useful for interaction selection in
Khan, Katzoff and Kedem (2014) and Kedem (2016).

2.2. Lagged coherence and residual coherence for more than two orthogonal compo-
nents

Consider the model

Y (t) =
n

∑
k=1

Lk,uk [Xk,uk(t)]+ ε(t). (4)

The goal is to select Xk,uk(t) from a certain family of processes {Xk,uk(t) : uk = 1,2, . . .} for
k = 1, . . . ,n. Assume that all relevant series are jointly stationary and all relevant auto- and
cross-spectra exist. This reduces to (2) when n = 2 and L1,u1 [X1,u1(t)] is the linear filter of
X(t). For n > 2, we shall extend the orthogonal decomposition (3)

Y (t) =
n

∑
k=1

Gk(t;u1, . . . ,uk)+ ε(t)

where all Gk’s for k = 1, . . . ,n are mutually orthogonal, to account for more orthogonal
components, given by

Gk(t;u1, . . . ,uk) =
k

∑
j=1

∫
π

−π

eitλ A j,k− j+1(λ )dZX j,u j
(λ )

for k = 1, . . . ,n, where the A’s are non-zero and Z’s are the corresponding spectral measures.
The A’s can be obtained by using the orthogonal conditions among Gk’s such that

Ak,1(λ ) =

[
∑

k
j=1 ck, j(λ ) fX j,u jY

(λ )

∑
k
j=1 ck, j(λ ) fX j,u j Xk,uk

(λ )

]
k = 1, . . . ,n

and
A j,k− j+1(λ ) = ck, j(λ )Ak,1(λ ) j = 1, . . . ,k, k = 1, . . . ,n

where

ck,k(λ ) = 1,ck, j(λ ) =
Fk, j(λ )

Fk(λ )
,Fk(λ ) = ( fi, j(λ ))(k−1)×(k−1),
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fi, j ≡ fX j,u j Xi,ui
and Fk, j(λ ) is equivalent to Fk(λ ), of which jth column is replaced by

fk(λ )≡−[ f1,k(λ ), . . . , fk−1,k(λ )]
T .

More details are provided in Appendix.
Subsequently,

fGkGk(λ ;u1, . . . ,uk) = |Ak,1(λ )|2
[

k

∑
j=1

ck, j(λ ) fX j,u j Xk,uk
(λ )

]

Sk(λ ;u1, . . . ,uk) =
∑

k
j=1 fG jG j(λ ;u1, . . . ,u j)

fYY (λ )

RC(u1, . . . ,uk) = sup
λ

[Sk(λ ;u1, . . . ,uk)−Sm(λ ;u1, . . . ,um)] 1≤ m≤ k

(5)

for k = 1, . . . ,n. Note that Sk(λ ;u1, . . . ,uk) and RC(u1, . . . ,uk) depend only on um+1, . . . , uk

once u1, . . . ,um are determined. The estimates of the above quantities are obtained based on
the estimates of the relevant auto- and cross-spectra. Also, to avoid confusion, we denoted
the residual coherence in (5) by RC(m+1):k(um+1, . . . ,uk) when u1, . . . ,um are determined.

2.3. Selection Criteria

In this section, lagged coherence and residual coherence are examined and an alternative
criterion is proposed. Take n = 2 and fix u1, then it reduces to the case in Kedem-Kimelfeld
(1975). It illustrates that if there exists a u2 that maximizes S2(λ ;u2) for all λ , then such u2

minimizes Eε2(t) in

Eε
2(t) =

∫
π

−π

fεε(λ )dλ =
∫

π

−π

fYY (λ )[1−S2(λ ;u2)]dλ .

Indeed, the quantity we wish to maximize is
∫

π

−π
fG2G2(λ ;u2)dλ since∫

π

−π

fYY (λ )S2(λ ;u2)dλ =
∫

π

−π

[ fG1G1(λ )+ fG2G2(λ ;u2)]dλ

based on (5). Such criterion works even if such u2 does not exist so that this can be an
alternative to residual coherence. This criterion can be readily extended to a more general
case. Suppose there is prior knowledge for the inclusion of first m processes, i.e. u1, . . . ,um

are fixed, then we define the integrated spectrum

IS(m+1):n(um+1, . . . ,un)≡
∫

π

−π

n

∑
k=m+1

fGkGk(λ ;uk, . . . ,un)dλ

and find um+1, . . . ,un that maximizes IS(m+1):n(um+1, . . . ,un).
Once all u’s are determined, the regression-based selection method proposed in Khan,

Katzoff and Kedem (2014) and Kedem (2016) is used to select significant terms within
the processes selected by the graphical method and this is illustrated in both Section 3 and
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Section 4. Relevant regression for time series that the selection entails can be found in
Kedem and Fokianos (2002).

3. Simulation

In this section, a simulation is performed with n = 4 and u1,u2 fixed to validate and com-
pare the two criteria, residual coherence and integrated spectrum. The steps are as follows:

1. Generate {x1(t)}1010
t=1 from an AR(1) process X1(t)= 0.4X1(t−1)+u1(t) and {x2(t)}1010

t=1
from an AR(1) process X2(t)= 0.2X2(t−1)+u2(t), where u’s are white noise N(0,1).

2. Obtain

y(t) = 0.4x1(t)+0.3x2(t)+0.4x1(t−2)x2(t−1)+0.3x1(t)x2(t−4)+ ε(t), (6)

where ε’s are white noise N(0,1) and t=11,. . . ,1010 so that all relevant series have
length 1000.

3. This is the model (4) with n = 4 and known X1(t), X2(t). We considered selecting
X3,u3(t) and X4,u4(t) from the family {X1(t + h)X2(t) : h = −9,−8, . . . ,0, . . . ,9}. In
fact, this family can be made larger and the choice here only serves as an exam-
ple. Then, we estimated all relevant auto- and cross-spectra using Tukey-Hamming
kernel with window size 10 for frequencies λk = −π + kπ/1000, k = 0, . . . ,2000.
Subsequently, we estimated RC3:3(u3), IS3:3(u3), RC4:4(u4) and IS4:4(u4) for u3,u4 =

−9,−8, . . . ,0, . . . ,9. Note that

ÎS3:3(u3) =
2000

∑
k=1

π f̂G3G3(λk;u3)/1000

ÎS4:4(u4) =
2000

∑
k=1

π f̂G4G4(λk;u3,u4)/1000

and RC4:4(u4), IS4:4(u4) only depend on u4 once u3 is fixed.

The results are shown by Figure 1, which indicates that the process X1(t − 1)X2(t) is
the optimal choice for the third input. It is also observed from Figure 1 that X1(t +4)X2(t)
is another potential input since the bars that correspond to u3 = 4 are the second highest
ones in both graphs. With u3 =−1 fixed, u4 can be determined by R̂C4:4(u4) and ÎS4:4(u4),
as shown by Figure 2, and both graphs indicate that u4 = 4 is the optimal choice, which
accords with the original model (6).

With u3 and u4 determined, we select significant covariates from the selected pro-
cesses X1(t− 1)X2(t) and X1(t + 4)X2(t) using the regression-based method in Khan, Kat-
zoff and Kedem (2014) and Kedem (2016). We selected four lag terms from each input,
i.e. x1(t), . . . ,x1(t−3),x2(t), . . . ,x2(t−3),x1(t−1)x2(t), . . . ,x1(t−4)x2(t−3),x1(t)x2(t−
4), . . . ,x1(t − 3)x2(t − 7) and regressed y(t) on all the selected covariates. We then per-
formed stepwise selection based on AIC and it is observed from Table 1 that the selected
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Figure 1. R̂C3:3(u3) (left) and ÎS3:3(u3) (right) for u3 =−9, . . . ,9.
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Figure 2. R̂C4:4(u4) (left) and ÎS4:4(u4) (right) for u4 = −9, . . . ,9. Note that the bars that
correspond to u4 =−1 are set to be 0 since u3 =−1.
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Table 1. Regression result of the selected model

Estimate SE p-value

Intercept -0.0264 0.0322 0.4125
x1(t) 0.3876 0.0292 0.0000
x2(t) 0.2907 0.0303 0.0000
x2(t−2) 0.0571 0.0307 0.0629
x2(t−3) -0.0555 0.0307 0.0708
x1(t−2)x2(t−1) 0.3729 0.0277 0.0000
x1(t)x2(t−4) 0.2569 0.0275 0.0000

model is similar to (6) since the significant (α = 0.05) covariates are identical to the ones in
(6) and the estimated coefficients correspond to the ones in (6), which validates the method.

Remark: It seems that regression-based selection criteria of interaction terms can be
applied directly, thus bypassing the need for our graphical method. However, we rationalize
the use of our spectral graphical selection for the following reason. The number of potential
covariates in the initial model might be too large, which could result in conflicting selec-
tions and possible inconsistencies depending on the model selection method. Our graphical
method identifies potentially useful interactions which can then be taken into account and
reduce significantly the number of covariates fed into any model selection method, thus
rendering the selection more manageable.

4. An Application to Volatility Index

The Volatility Index of a certain underlying asset gives the expectation of the correspond-
ing market volatility in a certain future period. The first and most famous one, VIX, was
introduced by Whaley (1993). The underlying asset for VIX is the S&P 500 index so that
it reflects the implied volatility of the stock performance of large capitalization companies.
For the implied volatility of small capitalization stocks, we have chosen RVX. These two
volatility indices shall be considered here as indicators for the stock market. For commodity
markets, two important volatility indices, the Crude Oil Exchange Traded Funds Volatility
Index (OVX) and the Gold Exchange Traded Funds Volatility Index (GVX) were used. The
two-year (2018-2019) daily data of these four series were taken from the Federal Reserve
Economic Data Website (https://fred.stlouisfed.org/).

The above methods were applied to analyze the relationships between the volatility in-
dices of the stock and commodity markets. This section is divided into two parts, one
investigates the influence of OVX and GVX on VIX and the other examines the influence
on RVX.

Before the analysis, the four series were pre-processed to render them approximately
stationary. That was achieved by first-order differencing of the original series and centring
at zero. Figure 3 depicts the four series before and after processing.
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Figure 3. VIX, RVX, OVX and GVX series before and after processing

Table 2. Regression result of y(t) on x1(t) and x2(t)

Estimate SE p-value

x1(t) 0.1486 0.0347 0.0000
x2(t) 0.9395 0.1075 0.0000

4.1. VIX, OVX and GVX

Consider the processed VIX series as the output and the processed OVX and GVX series as
the input. Denote the processed VIX as y(t), processed OVX as x1(t), and processed GVX
as x2(t). The results of linear regression of Y (t) on x1(t) and x2(t) in Table 2 indicate that
it is reasonable to include these two series as input since their coefficients are significant.
Note that the intercept is omitted since all three series were centred at zero.

Then, the goal is to find the third input based on the cross products of x1(t) and x2(t).
This resembles the simulation problem so that we perform the same analysis as we did in
Section 3. We first select the third input from the family of processes {X1(t + h)X2(t) :
h = −9,−8, . . . ,0, . . . ,9} and the estimated RC’s and IS’s are shown in Figure 4 and it is
observed that both criteria indicate that u3 = 4 is the optimal choice. The u4 is checked
with u3 = 4 fixed and Figure 5 shows that none of the bars is particularly prominent so
that we stop at the third input. In correspondence to Section 3, we selected four lag terms
from each of the three input series and performed a stepwise selection. The final model
selected by AIC is shown in Table 3. It includes the two significant (α=0.05) interaction
terms x1(t)x2(t−4) and x1(t−1)x2(t−5).

4.2. RVX, OVX and GVX

We repeated the analysis in Section 4.1 with VIX replaced by RVX. We still consider the
processed OVX and GVX as input and try to detect possible significant interactions. In
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Figure 4. R̂C3:3(u3) (left) and ÎS3:3(u3) (right) for u3 =−9, . . . ,9.
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Figure 5. R̂C4:4(u4) (left) and ÎS4:4(u4) (right) for u4 = −9, . . . ,9. Note that the bars that
correspond to u4 = 4 are set to be 0 since u3 = 4

Table 3. Regression result of the selected model

Estimate SE p-value

Intercept -0.0007 0.0717 0.9927
x1(t) 0.1677 0.0360 0.0000
x2(t) 0.9039 0.1133 0.0000
x2(t−1) -0.2504 0.1078 0.0206
x1(t)x2(t−4) 0.1344 0.0498 0.0072
x1(t−1)x2(t−5) -0.1010 0.0508 0.0473
x1(t−2)x2(t−6) -0.0914 0.0504 0.0707
x1(t−3)x2(t−7) 0.0817 0.0501 0.1037
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Figure 6. R̂C3:3(u3) (left) and ÎS3:3(u3) (right) for u3 =−9, . . . ,9.
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Figure 7. R̂C4:4(u4) (left) and ÎS4:4(u4) (right) for u4 = −9, . . . ,9. Note that the bars that
correspond to u4 = 4 are set to be 0 since u3 = 4
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Table 4. Regression result of the selected model

Estimate SE p-value

Intercept 0.0035 0.0626 0.9549
x1(t) 0.1253 0.0314 0.0001
x2(t) 0.8296 0.0994 0.0000
x2(t−1) -0.2130 0.0954 0.0261
x1(t)x2(t−4) 0.1191 0.0440 0.0071
x1(t−1)x2(t−5) -0.1114 0.0448 0.0132
x1(t−3)x2(t−7) 0.0632 0.0432 0.1438
x1(t)x2(t−1) 0.1049 0.0512 0.0410
x1(t−1)x2(t−2) -0.1313 0.0497 0.0085

Figure 6, both bar plots indicate that the optimal choice for u3 is 4 while the bar plot of
R̂C3:3(u3) indicates that we might need to consider 1 and−5 as well. Therefore, we checked
for u4 and Figure 7 shows that no bar stands out in the graph of R̂C4:4(u4) while the bar of
u4 = 1 is prominent in the graph ÎS4:4(u4). Therefore, we took X1(t +1)X2(t) as the fourth
input.

We selected the lag terms as in Section 3 and 4.1 and the result of stepwise regression
based on AIC is shown in Table 4. Four significant (α = 0.05) interation terms, x1(t)x2(t−
4), x1(t−1)x2(t−5), x1(t)x2(t−1) and x1(t−1)x2(t−2), are detected where the first two
are from X1(t +4)X2(t) and the last two are from X1(t +1)X2(t).

5. Conclusion

Residual coherence and integrated spectrum proposed in this paper are graphical devices
which point to possible significant interactions based on the result of Sections 3 and 4.
Significant interactions could produce one or more than one prominent bars in the bar plots
of RCk:k(uk) and ISk:k(uk) as functions of the kth input interaction.

When there are multiple prominent bars, one could consider uk+1 for more possible
significant interactions. Once the input processes are determined, one can employ the
regression-based selection method proposed in Khan, Katzoff and Kedem (2014) and Ke-
dem (2016) to search for significant covariate interactions.

In addition, it is observed from the analysis in Section 4 that the cross product interaction
X1(t + 4)X2(t) of the first order differences of OVX and GVX has significant influence on
the first order differences of VIX and RVX. This suggests that daily increments of implied
volatility of the stock market are possibly influenced by products of the daily increments
(and their lags) of implied volatility of commodity markets. The process X1(t + 4)X2(t)
might be an essential factor in the relationship between the implied volatility of stock market
and certain commodity markets and therefore further exploration is warranted.
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APPENDIX

Since all Gk’s are mutually orthogonal, fix k, then ∀h,

EGk(t +h;u1, . . . ,uk)G j(t;u1, . . . ,u j) = 0 j = 1, . . . ,k−1

⇒
∫

π

−π

eihλ
k

∑
l=1

Al,k+l−1(λ ) fXl,ul
X j,u j

(λ )dλ = 0 j = 1, . . . ,k−1

⇒
k

∑
l=1

Al,k+l−1(λ ) fXl,ul
X j,u j

(λ )dλ = 0 j = 1, . . . ,k−1

⇒Fk(λ )Ak(λ ) = fk(λ )Ak,1(λ )

where Ak(λ )≡ [A1,k(λ ),A2,k−1, . . . ,Ak−1,2]
T . Then, by Cramer’s rule,

A j,k− j+1(λ ) =
Fk, j(λ )

Fk(λ )
Ak,1(λ ) = ck, j(λ )Ak,1(λ )

for j = 1, . . . ,k− 1. Based on the orthogonality and the uniqueness of Fourier transform,
we also have

EGk(t +h;u1, . . . ,uk)Y (t) = EGk(t +h;u1, . . . ,uk)Gk(t;u1, . . . ,uk)

k

∑
j=1

Ak,k− j+1(λ ) fX j,u jY
(λ ) = Ak,1(λ )

k

∑
j=1

Ak,k− j+1(λ ) fX j,u j Xk,uk
(λ )

Ak,1(λ )
k

∑
j=1

ck, j(λ ) fX j,u jY
(λ ) = |Ak,1(λ )|2

k

∑
j=1

ck, j(λ ) fX j,u j Xk,uk
(λ )

Ak,1(λ ) =

[
∑

k
j=1 ck, j(λ ) fX j,u jY

(λ )

∑
k
j=1 ck, j(λ ) fX j,u j Xk,uk

(λ )

]

Therefore, all A’s for Gk are solved.


