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A new generalization of the Pareto distribution
and its applications

Ehab M. Almetwally', Hanan A. Haj Ahmad®

ABSTRACT

This paper introduces a new generalization of the Pareto distribution using the Marshall-
Olkin generator and the method of alpha power transformation. This new model has several
desirable properties appropriate for modelling right skewed data. The Authors demonstrate
how the hazard rate function and moments are obtained. Moreover, an estimation for the
new model parameters is provided, through the application of the maximum likelihood and
maximum product spacings methods, as well as the Bayesian estimation. Approximate
confidence intervals are obtained by means of an asymptotic property of the maximum
likelihood and maximum product spacings methods, while the Bayes credible intervals are
found by using the Monte Carlo Markov Chain method under different loss functions.
A simulation analysis is conducted to compare the estimation methods. Finally, the
application of the proposed new distribution to three real-data examples is presented and its
goodness-of-fit is demonstrated. In addition, comparisons to other models are made
in order to prove the efficiency of the distribution in question.

Key words: Marshall-Olkin distribution, alpha power transformation, maximum likelihood
estimator, maximum product spacings, Bayes estimation, simulation.

1. Introduction

Marshall-Olkin (MO) is a well-known distribution, which was generated by
Marshall and Olkin (1997). The basic idea in this generator is to add a parameter
through which the new distribution will be more flexible and will have many good
properties. Many authors used MO to generate new lifetime models, for example Jose
and Alice (2001, 2005), Ghitany et al. (2005), Ghitany and Kotz (2007), Jose and Uma
(2009), Haj Ahmad et al. (2017), Bdair and Haj Ahmad (2019) and Ahmad and
Almetwally (2020). The method of alpha power transformation (APT) class is
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a procedure which makes the lifetime distribution more applicable and rich towards
real data analysis. It was first introduced by Mahdavi and Kundu (2017). A new
generalization appeared in the literature by doing combination between MO and APT,
this was first studied by Nassar et al. (2019), and the new family is called “G-family
(MOAP-G). It was noticed that the MOAP-G family is analytically tractable and
efficient for real data analysis.

The cumulative distribution function (CDF) of MOAP-G random variable X is of the
form

€61
Fronp (@, 0) = J@D+a-0) @D (ae@-1)] '~ a1 (1)
G(x) ,a=1
The corresponding probability density function (pdf)
Qs > 0,0 1
fuoap(x; @, 8) = (@-D[O+—(a®-1)]2 (2)
g(x) ,a=1

where G(x) is the baseline distribution.

In this paper we will consider Pareto distribution with shape parameter A as a
baseline distribution, where the pdf and cdf are respectively as follows:

9 =—m,x>1 (3)
G)=1-—, x>1 (4)

The new generated distribution, namely Marshall-Olkin Alpha Power Pareto
(MOAPP), is a lifetime model with three parameters. This distribution has several
desirable properties and acts well for modelling right skewed data, it has upside-down
bathtub hazard rate and attractive time series representation by which many statistical
computations can be easily handled. Real data examples show that MOAPP behaves
better than many other generalized Pareto distributions.

The main purpose of this paper is to introduce MOAPP distribution and study
some of its statistical properties, which are useful in data modelling. We use statistical
inference such as maximum likelihood, maximum product spacings and Bayes
estimation methods to perform point estimation. We construct confidence intervals for
the unknown parameter as well. A simulation study is conducted to check the
performance of the different estimation methods applied in this work This is done by
comparing the bias and the mean square error (MSE) for point estimation methods and
by using interval length for interval estimation. Finally, we present numerical examples
that illustrate the model efficiency.

The rest of this paper is organized as follows: In Section 2 we introduce MOAPP
distribution with some of its properties. Classical point estimation methods for the
unknown parameters are discussed in Section 3, while in Section 4 the Bayesian
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estimation method is considered. In Section 5 interval estimation methods are
presented. In Section 6 a simulation study and real-life data analysis are conducted and
finally conclusions are given in Section 7.

2. Probability Density Function

Let X be a continuous random variable with Marshall-Olkin Alpha Power Pareto
distribution (MOAPP), then using Eqgs. (1) and (2) and assuming that the baseline
distribution G(x) is Pareto distribution given in Egs. (3) and (4), we obtain the pdf and
CDF of (MOAPP) respectively as

9/1(logoc)051"‘_/1
(@-1)x**+1[0+(1-6) (@-1)~*(a2x*-1))

at=xt_q
(a—1)[9+(1—9)(a—1)-1(a1-x"‘-1)]
In the following subsection we investigate some important properties of MOAPP

fmoarp(x; @,0,1) = x=>lLa#1l (5

FMOAPP(x; a’,@,l) = ,x=21,a#1, (6)

distribution such as: monotonicity, hazard rate function, series representation,
moments and quantiles.

2.1. Monotonicity of MOAPP Distribution

The monotonicity of MOAPP distribution is necessary to be investigated for data
modelling, many areas such as medical, industrial, engineering and reliability
researches need data modelling for prediction of future values and estimation of some
unknown or missing variables; hence, in this section we study the monotonicity of
MOAPP distribution. We consider the pdf of MOAPP distribution in Eq. (5), and study
the monotonicity of this pdf by using the logarithmic function of its pdf. The following
lemma illustrates the behaviour of MOAPP distribution for different parameter values,
and Figure (1) shows these cases.

Lemma 1

The pdf of MOAPP distribution is either decreasing when 0 < 8 < 1, or upside-
down bathtub curve that attains its maximum at some point x, € [1, ) when 6 > 1
and1>1

Proof
Consider the pdf of MOAPP density in Eq. (5), then the derivative of the
logarithmic function of pdf with respect to x is

lLog(0{)ﬂ0c1_"‘_/1x‘)“_1

dLog fyoapp(x;0,8,1) —a-1 _A+1 (a-1)
o = ALog(a)x o [9+E1;(3(a1_x—/1_1)]
o

dLog fyoapp(x:0,8,1) _ S(x)(ALog(@)—(A+1)x*)—2ALog(a)
dx - s(x)xA+1

(7)
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(a-1)
(1-6)

where S(x) = [ 01+ (1—a* ). Equating (7) to zero, we obtain the
cases:

1- If 0 < 6 < 1 then S(x) is positive and since ALog(a) < (A + 1)x* then the
numerator of equation (7) is negative hence the derivative of the logarithmic
function of MOAPP is negative, which indicates that the pdf of MOAPP is
a decreasing function.

2- If 8 > 1 and 1 > 1 then by using Bolzano theorem on the interval [1,00) there

exist a root xy € [1,0) of Log fy04pp hence fy04pp attains its maximum at ;.

2.2. Hazard Rate Function

The hazard rate function or failure rate is important in survival analysis and
reliability theory. The hazard rate function for MOAPP distribution is of the form

ALog(a)x~(+D

h(x;a,0,4) = — _ ’
xa ) (a* 1—1)(9+(1‘9)(¢¥—1)‘1(a1—x )l_l))

x=>1 (8)

In order to determine the shape of h(x;a,6, A) it is quite enough to determine the
shape of log h(x;a,9, 1), as shown in the following lemma.

Lemma 2
The hazard rate of MOAPP distribution is either decreasing or upside down curve
where the curve is skewed to the right.

Proof:
We consider a logarithmic function of the hazard rate given in Eq. (8) and take the
first derivative with respect to x so that:

dlog h(x; a, 6, 1)
dx
—(1+1) (0{"_/1 - 1) w(x) + Alog(a) x~ A w()a* " = (1 = O)a(l —a~*M)]
B x(a""1 - 1)W(x)
where w(x) =« (6 (1 — a"‘_l) + a_x_l) — 1. The hazard rate curve may take
several shapes according to different parameter values, so we summarize these cases by:

1- f6>1and @ > 1 then a* " < 1 and hence w(x) < 0, then logh(x; a, 6, 1)
attains its maximum at a certain point hy € (1, ) so the hazard rate function is

increasing on the interval (1, hy) and is decreasing (hg, o).
2-1f 0<f<1 and 0<a<1 then a®* *>1 hence w(x) >0 and
logh(x; a,0,1) is decreasing for all values of x, which indicates a decreasing

ALog(a) _
g and h(e0)=0.

hazard rate where h(1)=
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Figure 2 illustrated the shape of the hazard rate function for some selected
parameters’ values.
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Figure 1. pdf of MOAPP under different values of the parameters
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Figure 2. Hazard rate function of MOAPP under different values of the parameters

2.3. Moments

In order to obtain the moments for MOAPP distribution we use series
representation for the pdf that is given in Eq. (5). The generalized binomial expansion
will be used for this purpose, hence the MOAPP density can be rewritten as:

fmoarp(X) = X0 Pm Ums1 (V) %)
where p,,, =

S0 TEo(— 1) (k + 1O — 0)F (¥) ak~ CBDTZUHT g < g < g

(a—D*k*1(m+1) ’

o vk i —1Kk (k) dog @)™ (k+1- )™
B B0+ (1 - 07 () SIS 0>

>

A (m+1)
yﬂ.+1

and Q41 (V) =

1- y—ll)m , y=1, which is the exponentiated-Pareto
distribution with two shape parameters (m+1, 1).
Eq. (9) represents the MOAPP family density as a linear combination of

exponentiated-Pareto density, hence some mathematical properties can be determined
from this representation.
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The 7" moment MOAPP distribution can be computed from
EX) = ) pm B,
m=0

where E(Y,,") = flw Y Qi1 ()dy = (m+1)B(m+ 1,1 - %), and B(a, B) is beta

function.

2.4. Quantile function

By inverting Equation (6), we have the quantile of MOAPP distribution as follows:

xo=(1-—n(14+-20@ =D _1/1-0< <1 (19
1=\ " Tin() 1-q(1-0) =1

3. Classical Point Estimation Methods

In this section we discuss two different classical point estimation methods, namely
maximum likelihood estimation and maximum product spacing. Simulation analysis
will take place in Section 6 in order to compare between the efficiency of these two
methods.

3.1. Maximum Likelihood Estimation

The maximum likelihood estimation (MLE) is used in inferential statistics since it
has many attractive properties, such as invariance, consistency and normal
approximation properties. It depends basically on maximizing the likelihood function
of MOAPP distribution. Let X;,Xs,...,X, be a random sample from MOAPP distribution,
then the log likelihood function for the vector of parameters y=(,, A) can be expressed
by

£(y) = nLog[6ALog(a)] + (n -2t xi‘A)Log(a) —nLog(a —1) —
1-6)

A+ DY~ Logx; — 2X7%, Log[6 + @D (0{1_’“_'1 - 1)] (11)

In order to obtain the MLE of the parameters a, 6 and A it is necessary to find the
derivative of equation (11) with respect to a, 0 and A respectively.

6{’()/)_n+L0g(a)(n—Z?:1xi)_L_2 n (1—B)a_xi_l[(1—a)xi‘}“+axi_l—1]
B s = CIaT ) |

(a—

da aLog(a) a—1

9t(y) _n 257" 1—(a—1)-1(a1—xi_2t_1)
a8 0 i=1 [g+@(a1—xi-l_1)]

(a-1)
(1-0)(@-1D) "1 * " x;ALog (x)Log (@)
1-0)[ 1-x. -2
[e+(a_1)(a %" 1))]

) _n n
ar 2 +2¥
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The solution for the above normal equations is not in an explicit form, hence the
MLEs can be obtained numerically by using Newton or Newton-Raphson methods.

3.2. Maximum Product Spacings

The Maximum Product Spacings (MPS) method is a new point estimation method
that is considered as an alternative to MLE, see Cheng and Amin (1983). This method
was recently used by many authors, see, for example Singh et al. (2014), Singh et al.
(2016), and Almetwally and Almongy (2019.,,). It was observed that MPS acts better
than MLE in many cases. The MPS is defined as:

M = (T Dy,
where M is defined as the geometric mean of the product spacings function D; such
that

Dy = F(xq)
D; =F(x;) —F(x;_1);i=2,..,n
Dpyr =1—=F(xp)
It is easy to see that X' D; = 1. The MPS method is based on the observed

ordered sample x;<:--<x, from MOAPP distribution, hence the product spacings
function is

M(y) = al=x1™*_q (1 _ al‘xn_’l—1) n ati g _ at=xici T ||
V) = 1 auta) (a-Du(xn)) =2 |(@-Dulx)  (@-Dulxi—1) ’

whereu(x;)) =0+ (1—0)(a—1)71 (al_"i_/1 - 1).

The natural logarithm of the product spacings function is

M) = n—ll{ln (0 1) = In(a — DuGep) +1n (1 - 2 =1)

A T (a-Dulxy)
-2 -2
n @™ -1 alTHi1 -1
=2 tn [(a—l)u(xi) (a—l)u(xi_l)]}' (12

To obtain the normal equations for the unknown parameters, we differentiate Eq.

(12) partially with respect to the vector parameter y and equate them to zero.

+

aiMy) _ 1 j A= a1 u) e Dugta) | @ DuGem)(1-xn~)a=*n (@17 _1)(a=DugCen) tuCrn)]
da n+1l ata g (@-Du(xy) ((@-1uCr)’ - (@ DuGrar—n""~1)

n ((a—1)u(xi))2 ((a71)u(xi_1))2
i=1

—x;—A —x;_,—A
QX gl X1y

—x;—A —x;—A - -
(@-Du(x)(1-xA)a ™% —(al *i *1>[(a*1)"a(xi)+"("i)] (a-Du(xi_q)(1-x_4 H)a' ¥i-1 l—(al”’ifl l—l)[(a—1)ua(xi1)+u(xi1)l

(@-Du(x;) (@Dulx;_1)
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dlnM(y) 4 up(ry) | (@ " ~1)up (xn)
T on+1 lu(xo e (e Dutom @ -1
-2
(al * 1 ug(x;) (@ %ie1” —1)u9(xl 1)]
Z f 2
n (u(xp)) ((xi-1))
=2 al—xl‘_)‘_l al—xi_l_l_l ’
u(xy) u(xj—1)
ainM@y) _ 1 Log(axq)x,~* _(e-Duglxy) u(Xn)al_xn_lwg(axn)xn_a—(051_Xn_l—1)uz(xn) n
da n+1 ) 1-qr17A-1 (a—1)u(xy) () (=D uley)—(al=*n"*-1))

-1 -1 -1 -1
(el Loglaxe (T - Jup(e) ueiop)at i1 bog(ari i H-(aH1 T 1 (o)

—x—A —x: A
n u(x)((@a—Du(x)-(@ i "1y u(xi_g)(a=Du(xi_q)-(@ -1 "-1))
i=2 )

I
-1 ot ¥i-1 "

(a—l)u(xi) (a—l)u(xi_l)

(13)
where uy, ug and uy represent the partial derivative of u(x;) with respect to a, 8 and
A respectively. The estimators of y can be obtained by solving the above system of
nonlinear equations numerically, so the MPS of a, § and A are denoted by &@y;p, Oy pand
Aup respectively.

4. Bayesian Estimation Method

In this section we consider the non-classical method of estimation that is Bayes
estimates for the unknown parameters a, 6 and A of MOAPP distribution.
The quadratic loss and LINEX loss functions are the assumed loss functions.

In Bayesian method, all parameters are random variables with a certain distribution
called prior distribution. If prior information is not available which is usually the case,
we need to select a prior distribution. Since the selection of prior distribution plays an
important role in estimation of the parameters, our choice for the prior of a,6 and A are
the independent gamma distributions, which are G(ai, bi), G(as, b2) and G(as, bs)
respectively. Thus, the suggested prior for a, 6 and A can be written as:

(@) < a®~le 01 1,(0) x % Le P20 (1) ox 1%l bsd

respectively, where a;, a,, as, by, b, and bs are the hyper parameters of prior
distributions.

The joint prior of a, 0 and A is

k(a,0,1) o« qt1719%~ 112~ 1g=b1a=b26=bsA o 9 1 a. a,,as, by, by, by > 0.
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The joint posterior of a, 8 and A is given by
p(a,6,1/x) < L(x/a,6,)k(a,0,1),
where L(x/a,0, A) is the likelihood function of MOAPP distribution. When substituting
the likelihood function L(x/a, 8, \) and the joint prior k(a, 6, 1)in the above equation,
the joint posterior will be:

n -2
A n o -2 1 Loga 1-9 2
- n-YiL, X *+a;—1gn+a,-1jn+az—1,—bia—-b,0-bzA 1-x;7% _
p<a,0,£>o<a 1 1=1gn+az—1)n+az—1,-bja—b6-bz | |a—1xi’”1 <9+ a—l(a 1)

i=1

p(ar B!A/ﬁ) LS Ga\A(n - ?zlxi_}L +ay, bl)GB (Tl + ay, bZ)GA(n +as, b3)e¢(a'e'}\)’

1L (1=6) [ q1_x;~2
where d)((x, 9’}\) = ?=1 ln_ﬂ_ 2ln (9 +E(a1 xi~ " _ 1))

a-1xAt1

In the case of quadratic loss function, Bayes estimate is the posterior mean, the
determination of posterior mean for the purpose of obtaining Bayes estimation of the
parameters a, 6 and A, is not easy to obtain unless we use numerical approximation
methods.

In the literature, there are several approximation methods available to solve this
kind of problem. Here, we consider Monte Carlo Markov Chain (MCMC)
approximation method, see Karandikar (2006). This approximation method reduces
the ratio of integrals into a whole and produces a single numerical result.

A wide variety of MCMC schemes are available. An important sub-class of MCMC
methods are Gibbs sampling and more general Metropolis within Gibbs samplers.
Indeed, the MCMC samples may be used to completely summarize the posterior
uncertainty about the parameters a, 0 and A, through a kernel estimate of the posterior
distribution. This is also true of any function of the parameters.

Therefore, to generate samples from MOAPP distribution, we use the Metropolis-
Hastings method (Metropolis et al. (1953) with normal proposal distribution).
For details regarding the implementation of the Metropolis-Hasting algorithm, the
readers may refer to Robert and Casella (2013) and Almetwally et al. (2018). The full
conditional posterior densities of a, 6 and A and the data are given by:

n
(/6,2 x) X Gaya (Tl - Z Xt + ay, b1> e$(@BM)

=1

a-1

_ A=0)( y1-x; A _
n(0/a,4,x) = Go(n + ay, by)e Zln(9+ (o 1)>

m(A/,0,x) = Gy(n + az, by)e® @O

(14)

To apply the Gibbs technique we need the following algorithm:
(1) Start with initial values (g, 8, A¢)
(2) Use M-H algorithm to generate posterior sample for a, 0 and A from Eq. (14)
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(3) Repeat step 2 (T)-times and obtain (aq, 61, 41), @3, 05, 15),....( ar, O, A7)
(4) After obtaining the posterior sample, the Bayes estimates of a, 6 and A with respect

to quadratic loss function are:
T-T,

1
@M = [Ex(a/0)] = e Y. @)
i=1

T_TO

T-T,

0 = [E.(0 /)] ~ = ). 6)
i=1

T_TO

T-T,

1 = (B4 /0) ~ =g D )
i=1

where T is the burn-in-period of Markov Chain.

The Bayes estimates of the unknown parameters a, 6 and A under the LINEX loss
function can be calculated through the following equation:

—oy®
_ -1 L e
n=2n(E )

where v reflects the direction and degree of asymmetry, L is number of periods in the
MCMC.

5. Interval Estimation Methods

In this section we consider three methods of approximate confidence intervals for
the parameters of MOAPP distribution. Numerical analysis via simulation is used for
comparisons between these methods in Section 6.

5.1. Asymptotic confidence Interval for (MLE)

When the sample size is large enough, the normal approximation of the MLE can
be used to construct asymptotic confidence intervals for the parameters a, 6 and A. The

d
asymptotic normality of MLE can be stated as Vn@ —y) - N3(0,I"'(y)), where

y=(a,0, A) is a vector of parameters, ke denotes convergence in distribution and I(y) is
the Fisher information matrix
E(fa(x) E({ae) E({a/'l)
1) = —|E(foa) E(fog) E(fo2)
E(t3a) E(tag) E(f12)
The expected values of the second derivatives can be found by using some
integration techniques. Therefore, the (1- {) 100% approximate CIs for a, 0 and A are

@+ zg\uq ,éizgvz ,2iZ§1/U3 ,
2 2 2
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respectively, where vy, U3, U3z are the entries in the main diagonal of the Fisher matrix

I"'(y), and z¢ is the ( g) 100% lower percentile of the standard normal distribution.
2

5.2. Asymptotic Confidence Interval for (MPS)

In this section, we propose the asymptotic confidence intervals using MPS method.
As it was mentioned by Cheng and Amin [1979], Ghosh and Jammalamadaka [2001]
and Anatolyev and Kosenok [2005], the MPS method also shows asymptotic properties
like the maximum likelihood estimator and is asymptotically equivalent to MLE.
Therefore, we may propose the asymptotic confidence intervals using MPS. The exact
distribution of the MPS cannot be obtained explicitly. Therefore, the asymptotic
properties of MPS similar to that of MLE can be used to construct the confidence
intervals.

E(Maa) E(Mae) E(Ma}{)
J(¥) = —|[E(Mge) E(Mgg) E(Mp;)
E(Mpq) EMze) E(Mjz)

The first derivatives of the product of spacing, i.e. the function M with respect to
parameters a, 6 and A, are given by Equation (13), second derivative can be found
numerically and hence one can obtain the (1- {) 100% asymptotic confidence intervals
based on MPS as follows:

Aup T 2e\ 011, Oup T 2\ W32 > Ayp T 284 W33,
2 2 2
where w11, Wy, and w33 are the diagonal entries of the Fisher matrix ] ~(y).

5.3. Credible intervals

Using MCMC techniques in Section (4), the Bayes credible intervals of the
parameter a, 8 and A can be obtained as follows:

(1) Arrange a;, 0; and A;; in ascending order as follow Ay Ap2)s 0 A7)
011, O12), - Oy and Ay, Agzy, e, Ay

(2) A two-sided (1- {) 100% credible intervals for the unknown parameters a, 6 and
\ are given by

“Ud “Ird” e T el g

respectively, where [x] denoted the largest integer less than or equal to x.
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6. Simulation Study and Data Analysis

6.1. Simulation Study

In this section, we consider some experimental results that are produced to see the
effectiveness of different point and interval estimation methods. We mainly compare
different point estimates in terms of mean squared errors (MSE) and bias values.
Efficiency of confidence intervals is compared in terms of average interval length (AIL).
Based on the generated data, we compute MLE and MPS estimates using the Newton-
Raphson method. Further, we compute Bayes estimates using a Monte Carlo simulation
and the MH algorithm under both squared error and LINEX loss functions with v=1.5
by using R language.

We start by building our model with generating all simulation controls. In this
stage, we must do the following steps in sequence:

Step 1: Suppose the following values for the parameter vector of MOAPP distribution
y=(a,0, \), case 1=(0.5, 0.5, 1.5), case 2=(1.5, 0.5, 1.5), case 3=(3,0.5,1.5), case 4=(0.5,1.5,
1.5), case 5 =(1.5,1.5,1.5) and case 6=(3,1.5,1.5), case 7=(0.5,3,1.5), case 8=(1.5,3,1.5),
case 9=(3,3,1.5).

Step 2: Choose sample sizes n =30, 70 and 200.

Step 3: Generate the sample random values of MOAPP distribution by using quantile

- /
functionX = (1 - In (1 + M)) /1, where U is a uniform distribution (0, 1).

In(a) 1-U(1-6)
Step 4: Solve differential equations for each estimation methods, to obtain the

estimators of the parameters for MOAPP distribution, so we calculate a, 6, and A.
Step 5: Repeat this experiment (L-1) times. In each experiment use the same values of
the parameters. It is certain that the values of generating random samples are varying
from experiment to experiment even though the sample size (n) does not change.
Finally, we have L-values of bias and MSE. We compute the average biases and average
MSE's over 10,000 runs. This number of runs will give the accuracy in the order £0.01
(see Karian and Dudewicz (1998)). The bias of estimator is equal to ¥ — y, where 7 is
the estimated value of y, and the mean squared error (MSE) of the estimator is
MSE=Mean (¥ — y)>.
The simulated results of point estimation methods are presented in Tables (1) to
(3), where the MSE and the bias are given in each cell and it can be pointed out that the
MPS and Bayesian methods for estimating the unknown parameters of MOAPP
distribution are better than the MLE method, where the MSE value is considered for
comparison. We summarize the cases as follows:
1- For 0 < a < 1, the best point estimation method for estimating « is the Bayesian
method under LINEX loss function, while for ¢ > 1 the best estimation method is
the MPS and Baysian under the SE loss function.
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2-For 0 < 6 < 1, the best point estimation method for 8 is the Bayesian method
under LINEX loss function, while for 8 > 1 the best estimation method is the MPS
and Bayesian under the SE loss function.

3- For all values of A the Bayesian under the SE loss function is the best estimation
method.
4- The average bias and MSE decrease as the sample size increases. It verifies the

consistency properties of all the estimators.

5- The MLE overestimates a, 8 and A for almost all cases except for case 3, where the
MLE underestimates a. It is also noticed that when the sample size n=200, the MLE
underestimate a for cases 1, 3, 6 and underestimate 6 for case 7, see Table (3).

6- MPS and Bayesian estimation sometimes overestimate the parameters and

sometimes underestimate them.

Figure 3 shows the three dimension plots of MSE with different parameters values

For confidence interval estimation of MOAPP parameters a, 6 and A, we observe

the 95% confidence intervals (L,U) where L represents the lower bound and U is the

upper bound of this interval. Three confidence intervals are considered in simulation

analysis, i.e. asymptotic confidence intervals of MLE and MPS, also the credible

intervals of Bayesian method under SE and LINEX loss functions. The comparison is

conducted depending on the average interval length (AIL), hence the smaller the AIL

is the better confidence estimate we observe. The results are reported in Tables (4) to

(6) below.
Table 1. Bias and MSE for a, 8, and A, with n=30
MLE MPS SE LINEX (v = 1.5)
A 0 a n=30
Bias MSE Bias MSE Bias MSE Bias MSE
a 0.1072 0.1866 -0.0160 0.0818 0.1051 0.0994 0.0310 0.0661
0.5 0 0.3212 0.4946 0.0540 0.2012 0.0517 0.0536 0.0071 0.0395
A 0.3134 0.9250 -0.2585 0.6378 -0.0858 0.1772 -0.1893 0.1832
a 0.0975 0.4482 0.0092 0.0306 -0.2242 0.3509 -0.3552 0.4101
0.5 1.5 0 0.2341 0.3511 -0.0125 0.1299 0.1058 0.0816 0.0559 0.0549
A 0.2786 0.6504 -0.1677 0.4781 -0.0966 0.1989 -0.1919 0.2103
a -0.0792 1.1131 -0.0032 0.0421 -0.3287 0.5870 -0.5214 0.8308
3 0 0.2925 0.4977 -0.0030 0.1425 0.1049 0.0894 0.0561 0.0620
A 0.2350 0.4980 -0.1624 0.3824 -0.0554 0.1675 -0.1436 0.1748
L2 a 0.3291 0.6917 0.0265 0.1905 0.1369 0.1079 0.0642 0.0693
0.5 0 0.2813 0.7987 -0.0524 0.3616 -0.1709 0.2413 -0.2738 0.2666
A 0.1274 0.4280 -0.2490 0.4257 -0.1173 0.1662 -0.2064 0.1787
a 0.4186 1.2902 -0.0008 0.1538 -0.1472 0.2932 -0.2716 0.3255
1.5 1.5 0 0.3391 1.1591 -0.0960 0.5198 -0.1357 0.2656 -0.2441 0.2761
A 0.1351 0.2503 -0.1453 0.2163 -0.1746 0.1315 -0.2488 0.1643
a 0.2624 2.2557 0.0121 0.1190 -0.2997 0.5282 -0.4753 0.7364
3 0 0.5562 1.8669 -0.0793 0.6735 -0.1658 0.2256 -0.2638 0.2538
A 0.1207 0.2080 -0.1428 0.1813 -0.1191 0.0944 -0.1806 0.1122
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Table 1. Bias and MSE for «, 8, and A, with n=30 (cont.)

MLE MPS SE LINEX (v = 1.5)
A 2 a n=30
Bias MSE Bias MSE Bias MSE Bias MSE
a 0.4689 1.2082 0.0355 0.2951 0.1449 0.1438 0.0665 0.0872
0.5 0 0.1613 0.9882 -0.0498 0.3326 -0.3164 0.4939 -0.4915 0.7154
15 3 A 0.0897 0.2667 -0.2146 0.2902 -0.0869 0.0977 -0.1582 0.1124
a 0.6631 3.0228 -0.1891 0.6353 -0.1309 0.3296 -0.2644 0.3409
1.5 [ 0.4555 2.2871 -0.0747 0.5972 -0.3635 0.5986 -0.5534 0.8297
1 0.0844 | 0.1606 | -0.1612 | 0.1698 | -0.1407 | 0.0853 | -0.1967 | 0.1038
Table 2. Bias and MSE for «, 8, and A, with n=70
MLE MPS SE LINEX (v = 1.5)
A 0 a n=70

Bias MSE Bias MSE Bias MSE Bias MSE

a 0.0336 0.1130 -0.0739 0.0776 0.0250 0.0670 -0.0041 0.0572

0.5 (% 0.2013 0.2553 0.0725 0.1261 0.0400 0.0359 0.0215 0.0304

A 0.1153 0.3558 -0.2104 0.3237 -0.0639 0.1000 -0.0990 0.1095

a 0.0623 0.2540 0.0138 0.0160 -0.0476 0.1202 -0.0944 0.1319

0.5 1.5 (% 0.0885 0.0804 -0.0261 0.0491 0.0456 0.0296 0.0289 0.0255

A 0.1287 0.2330 -0.1076 0.2087 -0.0293 0.0771 -0.0618 0.0782

a -0.0249 0.6191 0.0128 0.0235 -0.0472 0.1116 -0.0870 0.1191

3 [ 0.1154 0.1198 -0.0197 0.0518 0.0161 0.0295 0.0005 0.0265

A 0.1113 0.1867 -0.0977 0.1677 -0.0338 0.0770 -0.0667 0.0822

a 0.1695 0.3175 -0.0285 0.1061 0.0281 0.0477 0.0027 0.0410

L2 0.5 (2 0.1438 0.3712 0.0043 0.1709 -0.0248 0.0884 -0.0606 0.0921
A 0.0368 0.1866 -0.1745 0.2275 -0.0403 0.0616 -0.0687 0.0652

a 0.2486 0.6849 -0.0010 0.0723 -0.0557 0.1385 -0.1022 0.1463

1.5 (% 0.1372 0.4181 -0.0742 0.2391 -0.0262 0.0840 -0.0630 0.0839

1.5 A 0.0646 0.1015 -0.0772 0.0965 -0.0315 0.0444 -0.0537 0.0460

a 0.1262 1.3314 0.0191 0.0541 -0.0835 0.1412 -0.1363 0.1604

(% 0.2561 0.6573 -0.0634 0.3260 -0.0548 0.0829 -0.0907 0.0905

3 A 0.0609 0.0867 -0.0736 0.0816 -0.0377 0.0371 -0.0590 0.0397

(% 0.2134 0.7791 -0.0560 0.2755 -0.0493 0.1043 -0.0916 0.1168

A 0.0865 0.2809 -0.1488 0.2530 -0.0658 0.0681 -0.0989 0.0762

Table 3. Bias and MSE for a, 8, and A, with n=200
MLE MPS SE LINEX (v = 1.5)
1 [ a n=200

Bias MSE Bias MSE Bias MSE Bias MSE

a -0.0015 0.0775 -0.0905 0.0613 0.0009 0.0125 -0.0042 0.0124

0.5 0 0.1046 0.0836 0.0714 0.0588 0.0091 0.0066 0.0058 0.0064

A 0.0222 0.1137 -0.1368 0.1294 -0.0161 0.0117 -0.0210 0.0119

a 0.0142 0.0877 0.0118 0.0068 -0.0160 0.0178 -0.0224 0.0182

1.5 | 0.5 1.5 0 0.0353 0.0227 -0.0186 0.0152 -0.0021 0.0049 -0.0053 0.0049
A 0.0528 0.0709 -0.0515 0.0683 -0.0041 0.0117 -0.0087 0.0119

a -0.0391 0.3088 0.0124 0.0111 -0.0136 0.0120 -0.0189 0.0124

3 0 0.0460 0.0303 -0.0153 0.0155 -0.0028 0.0054 -0.0058 0.0054

A 0.0470 0.0581 -0.0453 0.0551 -0.0054 0.0120 -0.0103 0.0120
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Table 3. Bias and MSE for a, 8, and A, with n=200 (cont.)

a 0 " 12200 MLE MPS SE LINEX (v = 1.5)
Bias MSE Bias MSE Bias MSE Bias MSE

a 0.0811 0.1085 | -0.0388 | 0.0462 | -0.0007 | 0.0105 | -0.0051 | 0.0104

0.5 0 0.1062 0.2893 0.0313 0.0781 -0.0098 | 0.0133 | -0.0153 | 0.0133

A 0.0015 0.0617 | -0.0828 | 0.0750 | -0.0065 | 0.0107 | -0.0110 | 0.0110

a 0.2053 0.7433 | -0.0043 | 0.0249 | -0.0106 | 0.0184 | -0.0164 | 0.0189

15 | 1.5 0 0.0514 0.1709 | -0.0382 | 0.0765 | -0.0062 | 0.0175 | -0.0120 | 0.0177

A 0.0244 0.0320 | -0.0322 | 0.0321 | -0.0068 | 0.0093 | -0.0111 | 0.0093

a -0.0239 | 1.1126 0.0035 0.0187 | -0.0147 | 0.0171 | -0.0205 | 0.0176

3 0 0.1709 0.3354 | -0.0348 | 0.1077 | -0.0227 | 0.0146 | -0.0285 | 0.0151

1.5 A 0.0272 0.0289 | -0.0302 | 0.0276 | -0.0167 | 0.0074 | -0.0207 | 0.0077
a 0.0965 0.1246 | -0.0138 | 0.0489 | -0.0011 | 0.0108 | -0.0056 | 0.0106

0.5 0 -0.0013 | 0.2440 0.0044 0.0374 | -0.0133 | 0.0136 | -0.0191 | 0.0139

A 0.0164 0.0375 | -0.0498 | 0.0434 | -0.0005 | 0.0076 | -0.0047 | 0.0076

a 0.0865 0.2790 | -0.0494 | 0.1157 | -0.0120 | 0.0160 | -0.0177 | 0.0163

’ 0 0.0794 0.2092 | -0.0320 | 0.1043 | -0.0416 | 0.0195 | -0.0484 | 0.0209

1.5 A 0.0205 0.0219 | -0.0281 | 0.0209 | -0.0158 | 0.0063 | -0.0195 | 0.0064

0 0.0329 0.5907 | -0.0334 | 0.1001 -0.0094 | 0.0162 | -0.0155 | 0.0166

A 0.0312 0.0863 | -0.0568 | 0.0813 | -0.0111 | 0.0129 | -0.0162 | 0.0131

From Tables (4) to (6) we notice that the (AIL) of the credible intervals under SE
and LINEX are smaller than the (AIL) of MLE and MPS in most cases except for some
restricted ones.

We can summarize the analysis of the confidence interval estimation in the

following points:

1. For 0 < a < 1, the best interval estimate for « is the Bayesian credible interval
under SE and LINEX loss functions, while for & > 1 the best interval estimation
is the asymptotic interval under the MPS method except for cases 8 and 11, where
the Bayesian credible interval under LINEX has the smallest AIL.

2. For 6 < 3, the best interval estimate for 8 is the Bayesian credible interval under
LINEX loss function, while for 8 = 3, the best interval estimation is the
asymptotic interval under the MPS method and the Bayesian credible interval
under the SE loss function.

3. Bayesian credible interval under the LINEX loss function has the smallest AIL for
estimating A , and hence it can be considered as the best confidence interval of 1.
For the case 5, the Bayesian credible interval under the SE loss function is
preferable to estimate A.

4. AIC decreases as the sample size increases.
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Table 4. 95% confidence intervals and Average Interval length for a, 6, and A4, with n=30

MLE MPS SE LINEX(v = 1.5)
A 6 a 30
L U AIL L U AIL L U AIL L U AIL
a |-0.2133 | 1.4278 | 1.6411 | -0.0759 | 1.0439 | 1.1198 | 0.0210 | 1.1892 | 1.1683 | 0.0294 1.0326 1.0033
0.5 6 | -0.4056 | 2.0480 | 2.4536 | -0.3191 | 1.4271 | 1.7462 | 0.1082 | 0.9952 | 0.8870 | 0.1169 0.8972 0.7803
A 0.0303 | 3.5965 | 3.5662 | -0.2403 | 2.7233 | 2.9636 | 0.6044 | 2.2240 | 1.6196 | 0.5564 2.0650 1.5086
a 0.2986 | 2.8963 | 2.5976 | 1.1668 | 1.8515 | 0.6847 | 0.1985 | 2.3531 | 2.1546 | 0.0978 2.1918 2.0940
05 | 1.5 6 | -0.3332 | 1.8014 | 2.1346 | -0.2188 | 1.1938 | 1.4126 | 0.0845 | 1.1270 | 1.0425 | 0.1088 1.0030 0.8942
A 0.2944 | 3.2627 | 2.9683 | 0.0168 | 2.6477 | 2.6309 | 0.5480 | 2.2588 | 1.7108 | 0.4897 2.1264 1.6367
a 0.8578 | 4.9839 | 4.1260 | 2.5943 | 3.3992 | 0.8049 | 1.3115 | 4.0312 | 2.7196 | 1.0097 3.9475 2.9379
3 6 | -0.4663 | 2.0514 | 2.5176 | -0.2431 | 1.2372 | 1.4803 | 0.0549 | 1.1549 | 1.1000 | 0.0793 1.0329 0.9535
A 0.4303 | 3.0398 | 2.6095 | 0.1675 | 2.5076 | 2.3401 | 0.6478 | 2.2414 | 1.5936 | 0.5849 2.1280 1.5430
a | -0.6687 | 2.3269 | 2.9956 | -0.3277 | 1.3808 | 1.7085 | 0.0501 | 1.2236 | 1.1735 | 0.0627 1.0658 1.0031
0.5 6 0.1178 | 3.4447 | 3.3268 | 0.2730 | 2.6223 | 2.3493 | 0.4241 | 2.2340 | 1.8099 | 0.3661 2.0863 1.7202
A 0.3690 | 2.8857 | 2.5167 | 0.0684 | 2.4337 | 2.3653 | 0.6155 | 2.1500 | 1.5345 [ 0.5688 2.0184 1.4496
a | -0.1520 | 3.9892 | 4.1412 | 0.7303 | 2.2682 | 1.5379 | 0.3290 | 2.3767 | 2.0476 | 0.2425 22143 1.9718
1.5 | 1.5 | 1.5 6 | -0.1647 | 3.8429 | 4.0076 | 0.0028 | 2.8053 | 2.8025 | 0.3874 | 2.3412 | 1.9539 | 0.3417 2.1701 1.8284
A 0.6905 | 2.5797 | 1.8892 [ 0.4884 | 2.2209 | 1.7325 | 0.7009 | 1.9499 | 1.2489 | 0.6224 1.8800 1.2576
a 0.3625 | 6.1622 | 5.7997 | 2.3361 | 3.6882 | 1.3521 | 1.3994 | 4.0013 | 2.6020 | 1.1209 3.9286 2.8078
3 6 | -0.3910 | 4.5035 | 4.8945 | -0.1811 | 3.0224 | 3.2035 | 0.4596 | 2.2088 | 1.7492 | 0.3928 2.0797 1.6869
A 0.7583 | 2.4830 | 1.7247 | 0.5705 | 2.1440 | 1.5735 | 0.8245 | 1.9374 | 1.1129 | 0.7651 1.8737 1.1086
a | -0.9806 | 2.9184 | 3.8990 | -0.5275 | 1.5985 | 2.1261 | -0.0438 | 1.3336 | 1.3774 | 0.0013 1.1317 1.1304
0.5 6 1.2377 | 5.0848 | 3.8470 | 1.8234 [ 4.0769 | 2.2535 | 1.4506 | 3.9167 | 2.4661 1.1560 3.8610 2.7050
A 0.5923 | 2.5870 | 1.9946 | 0.3165 | 2.2544 | 1.9379 | 0.8230 | 2.0032 | 1.1802 | 0.7610 1.9227 1.1617
a | -0.9886 | 5.3148 | 6.3033 | -0.2075 [ 2.8293 | 3.0368 | 0.2708 | 2.4675 | 2.1967 | 0.2128 2.2585 2.0457
1.5 6 0.6277 | 6.2833 | 5.6557 | 1.4170 | 4.4336 | 3.0166 | 1.2945 | 3.9785 | 2.6840 | 1.0250 3.8681 2.8431
A 0.8161 | 2.3526 | 1.5364 [ 0.5950 | 2.0826 | 1.4876 | 0.8565 | 1.8621 | 1.0056 | 0.8019 1.8046 1.0027
a 0.2547 | 6.8300 | 6.5753 | 1.7246 | 4.0180 | 2.2933 | 1.3338 | 4.0549 | 2.7210 | 1.0840 3.9622 2.8781
3 6 | -0.0412 | 7.4860 | 7.5271 | 0.4755 | 4.9025 | 4.4270 | 1.4397 | 3.8171 | 2.3774 | 1.1806 3.7464 2.5657
] A 0.8854 | 2.2719 | 1.3865 [ 0.7585 | 1.9615 | 1.2030 | 0.9602 | 1.8124 | 0.8522 [ 0.9186 1.7663 0.8477
’ a |-0.3982 | 7.9265 | 8.3247 | 1.7148 | 4.0117 | 2.2969 | 1.4737 | 4.0449 | 2.5712 | 1.2437 3.9261 2.6824
6 | -0.4460 | 8.2602 | 8.7062 | 0.5164 | 4.8636 | 4.3472 | 1.4178 | 3.9410 | 2.5232 | 1.1647 3.8338 2.6690
A 1.7433 | 4.6034 | 2.8601 | 1.5358 [ 3.9054 | 2.3696 | 1.9628 | 3.6126 | 1.6498 | 1.8242 3.5302 1.7061
’ a | -1.4085 | 6.2428 | 7.6513 | -0.1771 | 2.8018 | 2.9789 | 0.2497 | 2.5138 | 2.2641 | 0.2016 2.3069 2.1053
15 6 0.1217 | 6.8545 | 6.7328 | 1.4359 | 4.4034 | 2.9675 | 1.4646 | 3.7652 | 2.3006 | 1.2311 3.6803 2.4492
A 1.6064 | 4.7305 | 3.1241 | 1.2692 | 4.1083 | 2.8392 | 1.7903 | 3.6714 | 1.8810 | 1.6402 3.5800 1.9398
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MLE MPS SE LINEX (v = 1.5)
A 6 a | n=70
L 1) AIL L U AIL L U AIL L U AIL
a -0.1221 | 1.1894 | 1.3115 | -0.1005 | 0.9527 | 1.0532 | 0.0188 | 1.0311 | 1.0124 | 0.0262 | 0.9656 0.9394
0.5 0 -0.2076 | 1.6101 | 1.8178 | -0.1093 | 1.2543 | 1.3636 | 0.1760 | 0.9040 | 0.7280 | 0.1817 | 0.8613 0.6796
A 0.4676 | 2.7630 | 2.2954 | 0.2531 | 2.3260 | 2.0729 | 0.8275 | 2.0448 | 1.2173 | 0.7805 | 2.0215 1.2410
a 0.5817 | 2.5430 | 1.9613 | 1.2670 | 1.7606 | 0.4936 | 0.7775 | 2.1272 | 1.3497 | 0.7164 | 2.0948 1.3784
05 [ 1.5 0 0.0601 | 1.1169 | 1.0568 | 0.0424 | 0.9054 [ 0.8630 | 0.2195 [ 0.8717 | 0.6522 | 0.2204 | 0.8373 0.6170
A 0.7164 | 2.5410 | 1.8245 | 0.5217 | 2.2631 | 1.7413 | 0.9281 | 2.0133 | 1.0852 | 0.9025 1.9740 1.0715
a 1.4329 | 4.5173 | 3.0844 | 2.7130 | 3.3126 | 0.5996 | 2.3029 | 3.6027 | 1.2998 | 2.2568 3.5692 1.3124
3 0 -0.0246 | 1.2553 | 1.2798 | 0.0356 | 0.9250 | 0.8893 | 0.1800 | 0.8521 | 0.6721 | 0.1808 | 0.8201 0.6392
A 0.7925 | 2.4301 | 1.6376 | 0.6225 | 2.1821 [ 1.5596 | 0.9249 | 2.0075 | 1.0826 | 0.8856 1.9810 1.0954
a -0.3842 | 1.7232 | 2.1074 | -0.1648 | 1.1079 | 1.2727 | 0.1026 | 0.9535 | 0.8509 | 0.1047 | 0.9007 0.7960
0.5 0 0.4829 | 2.8048 | 2.3218 | 0.6937 | 2.3150 | 1.6213 | 0.8930 | 2.0574 | 1.1644 | 0.8552 | 2.0236 1.1684
A 0.6928 | 2.3809 | 1.6882 | 0.4551 | 2.1960 | 1.7409 | 0.9784 [ 1.9410 | 0.9626 | 0.9481 1.9144 0.9664
a 0.2007 | 3.2964 | 3.0957 | 0.9716 | 2.0263 | 1.0547 | 0.7212 | 2.1673 | 1.4461 | 0.6736 | 2.1221 1.4485
1.5

15 [ 1.5 0 0.3980 | 2.8763 | 2.4782 | 0.4780 | 2.3736 | 1.8957 | 0.9067 | 2.0409 | 1.1342 | 0.8816 1.9925 1.1109
A 0.9529 | 2.1763 | 1.2234 | 0.8326 | 2.0130 | 1.1804 | 1.0593 | 1.8778 | 0.8185 | 1.0385 1.8541 0.8156
a 0.8771 | 5.3753 | 4.4982 | 2.5645 | 3.4737 [ 0.9093 | 2.1967 | 3.6364 | 1.4397 | 2.1237 3.6038 1.4801
3 0 0.2477 | 3.2646 | 3.0169 | 0.3239 | 2.5493 [ 2.2254 | 0.8900 | 2.0004 | 1.1105 | 0.8455 1.9730 1.1275
A 0.9959 | 2.1259 | 1.1300 | 0.8850 | 1.9677 | 1.0827 | 1.0909 | 1.8337 | 0.7428 | 1.0669 1.8151 0.7481
a -0.3870 | 1.7949 | 2.1819 | -0.2668 | 1.2531 | 1.5200 | 0.0700 | 1.0371 | 0.9671 | 0.0774 | 0.9710 0.8936
0.5 0 1.9630 | 4.1461 | 2.1831 | 2.3265 | 3.6698 | 1.3434 | 2.2411 | 3.5523 | 1.3113 | 2.1837 3.5206 1.3369
A 0.8594 | 2.2130 | 1.3536 | 0.6518 | 2.0811 [ 1.4293 | 1.0213 | 1.9079 | 0.8866 | 0.9933 1.8881 0.8948
a -0.0243 | 3.5307 | 3.5550 | 0.2681 | 2.5019 | 2.2338 | 0.7207 | 2.0742 | 1.3535 | 0.6664 2.0365 1.3701

3
0 1.5904 | 4.7831 [ 3.1927 | 1.9043 | 3.9939 | 2.0896 | 2.2433 | 3.6152 | 1.3719 | 2.1870 3.5810 1.3940
1.5 A 1.0468 | 2.0441 [ 0.9973 | 0.9438 | 1.9072 | 0.9634 | 1.1532 | 1.7436 | 0.5904 | 1.1356 1.7237 0.5881
0 1.5340 | 4.8929 | 3.3589 | 1.9207 | 3.9674 | 2.0467 | 2.3237 | 3.5777 | 1.2540 | 2.2615 3.5554 1.2940
A 2.0612 | 4.1119 | 2.0507 | 1.9090 | 3.7934 | 1.8844 | 2.4380 | 3.4304 | 0.9924 | 2.3947 3.4075 1.0128
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Table 6. 95% confidence intervals and Average Interval length for @, 8, and A, with n=200
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MLE MPS SE LINEX (v = 1.5)
A 6 a | n=200
L U AIL L U AIL L U AIL L U AIL
a -0.0474 | 1.0444 | 1.0918 | -0.0423 | 0.8613 | 0.9036 | 0.2813 | 0.7205 | 0.4392 | 0.2773 0.7142 0.4369
0.5 0 0.0758 | 1.1333 | 1.0575 | 0.1171 | 1.0257 | 0.9086 | 0.3506 | 0.6677 | 0.3170 | 0.3491 0.6625 0.3134
A 0.8623 | 2.1822 | 1.3198 | 0.7108 | 2.0155 | 1.3046 | 1.2741 | 1.6937 | 0.4196 | 1.2683 1.6898 0.4216
a 0.9343 | 2.0941 | 1.1598 | 1.3516 | 1.6720 | 0.3204 | 1.2235 | 1.7445 | 0.5210 | 1.2160 1.7392 0.5232
0.5 1.5 6 0.2482 | 0.8224 | 0.5742 | 0.2421 | 0.7207 | 0.4786 | 0.3602 | 0.6356 | 0.2754 | 0.3582 0.6313 0.2731
A 1.0410 | 2.0647 | 1.0237 | 0.9461 | 1.9510 | 1.0049 | 1.2832 | 1.7086 | 0.4254 | 1.2777 1.7049 0.4272
a 1.8739 | 4.0479 | 2.1739 | 2.8074 | 3.2174 | 0.4099 | 2.7727 | 3.2001 | 0.4273 | 2.7659 | 3.1963 0.4304
3 4 0.2169 | 0.8750 | 0.6581 | 0.2425 | 0.7268 | 0.4843 | 0.3527 | 0.6417 | 0.2890 | 0.3508 | 0.6377 0.2869
A 1.0836 | 2.0104 | 0.9268 | 1.0031 | 1.9064 | 0.9032 | 1.2794 | 1.7098 | 0.4304 | 1.2751 | 1.7044 0.4293
a -0.0451 | 1.2072 | 1.2524 | 0.0466 | 0.8758 | 0.8292 | 0.2982 | 0.7004 | 0.4022 | 0.2951 0.6946 0.3996
0.5 [ 0.5721 | 2.6402 | 2.0681 | 0.9867 | 2.0760 | 1.0893 | 1.2644 | 1.7159 | 0.4516 | 1.2599 1.7095 0.4495
A 1.0143 | 1.9886 | 0.9742 | 0.9054 | 1.9290 | 1.0236 | 1.2903 | 1.6968 | 0.4065 | 1.2839 1.6940 0.4101
a 0.0633 | 3.3473 | 3.2840 | 1.1863 | 1.8051 | 0.6189 | 1.2238 | 1.7549 | 0.5311 | 1.2157 1.7515 0.5358
1.5

1.5 1.5 0 0.7470 | 2.3557 | 1.6086 | 0.9246 | 1.9990 | 1.0744 | 1.2344 | 1.7532 | 0.5188 | 1.2278 1.7482 0.5204
A 1.1770 | 1.8718 | 0.6948 | 1.1222 | 1.8135 | 0.6913 | 1.3046 | 1.6819 | 0.3772 [ 1.3006 1.6772 0.3767
a 0.9082 | 5.0440 | 4.1358 | 2.7353 | 3.2717 | 0.5364 | 2.7297 | 3.2409 | 0.5112 | 2.7223 3.2367 0.5145
3 6 0.5858 | 2.7560 | 2.1702 | 0.8252 | 2.1053 | 1.2801 | 1.2441 | 1.7105 | 0.4665 | 1.2366 1.7064 0.4698
A 1.1981 | 1.8563 | 0.6581 | 1.1494 | 1.7902 | 0.6408 | 1.3176 | 1.6489 | 0.3313 | 1.3123 1.6464 0.3341
a -0.0692 | 1.2622 | 1.3314 | 0.0536 | 0.9188 | 0.8651 [ 0.2951 | 0.7027 | 0.4076 | 0.2927 | 0.6961 0.4034
0.5 4 2.0302 | 3.9673 | 1.9371 | 2.6254 | 3.3834 | 0.7580 | 2.7593 | 3.2140 | 0.4547 | 2.7524 | 3.2095 0.4571
A 1.1380 | 1.8949 | 0.7569 | 1.0534 | 1.8470 | 0.7936 | 1.3280 | 1.6709 | 0.3429 | 1.3247 | 1.6658 0.3410
a 0.5647 | 2.6084 | 2.0437 | 0.7906 | 2.1106 | 1.3200 | 1.2407 | 1.7352 | 0.4946 | 1.2341 1.7304 0.4963

3
[ 2.1961 | 3.9628 | 1.7668 | 2.3378 | 3.5981 | 1.2603 | 2.6968 | 3.2200 | 0.5232 | 2.6839 3.2194 0.5355
1.5 A 1.2333 | 1.8076 | 0.5743 | 1.1939 | 1.7498 | 0.5559 | 1.3316 | 1.6369 | 0.3053 | 1.3275 1.6334 0.3059
0 1.5271 | 4.5387 | 3.0116 | 2.3497 | 3.5835 | 1.2338 | 2.7410 | 3.2402 | 0.4993 | 2.7333 3.2356 0.5023
A 2.4584 | 3.6040 | 1.1456 | 2.3951 | 3.4913 | 1.0962 | 2.7670 | 3.2109 | 0.4439 | 2.7608 3.2069 0.4461
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Figure 3. MSE for MLE, MPS and Bayes estimation under SE and LINEX Loss Functions for n= 120.

6.2. Data Analysis

In this section we take three different examples of real-life data set. The MLEs
estimates of the parameters are reported in Tables (9), (10) and (11), then the MOAPP
model is compared with other special case models like Pareto type 1, generalized Pareto
(GP), and alpha power Pareto (APP). This comparison was conducted using
Kolmogorov-Smirnov (KS) distance (D) between the fitted and the empirical
distribution functions and the corresponding p-values. Also, Akaike information
criterion (AIC) such that AIC=-2 L(y)+2p, where p is the number of parameters in the
model and L is the maximized value of the likelihood function for the model. Given
a set of candidate models for the data, the preferred model is the one with the minimum
AIC value. Bayesian information criterion (BIC) is also used for comparison between
models, where BIC can be defined as: BIC=-2 L(y)+p In(n), where n is the sample size.
As a model selection criterion, the researcher must choose the model with the
minimum BIC value. The MLEs of @, 8,and A are computed numerically using the
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function optimal in R statistical package. The values of the KS statistic with p-values,
AIC and BIC are reported in Tables (7), (8) and (9).

The first example is from Lawless (1982). The data set consists of failure times or
censoring times for 36 appliances subjected to an automated life test. Failures are
mainly classified into 18 different modes, although among 33 observed failures only
7 modes are present and only model 6 and 9 appear more than once. We are mainly
interested in the failure mode 9. The data are given below:

Data 1: 1167, 1925, 1990, 2223, 2400, 2471, 2551, 2568, 2694, 3034, 3112, 3214, 3478,
3504, 4329, 176976, 7846.

Table 7. MLE estimation with KS, p-values and different model goodness of fit criterion for data 1

i Ouie Avie D P-value AIC BIC
P - - 0.12231 0.57843 6.34E-06 385.4278 3.86E+02
GP - 3341.032 0.609273 0.33089 0.03686 334.5826 336.2491
APP 78.74852 - 0.257025 0.48467 0.00034 367.7567 3.69E+02
MOAPP 9.00E+07 4.60E+07 2.57536 0.2088 0.3941 324.6243 327.124

The second example represents survival times of guinea pigs injected with different
amount of tubercle bacilli studied by Bjerkedal [1960]. Guinea pigs are subject to high
susceptibility of human tuberculosis, which is one of the causes for choosing this
species.

Table 8. MLE estimation with KS, p-values and different model goodness of fit criterion for data 2

Ayis Ouie Aie D P-value AIC BIC
P - - 0.199805 0.51093 2.2E-16 1098.51 1.10E+03
GP - 237.9788 0.393478 0.23142 0.000895 879.3132 883.8665
APP 152.982 - 0.446334 0.40147 1.67E-10 1009.978 1014.531
MOAPP 112100 322998.1 3.011837 0.06837 0.8894 857.2212 864.0512

The third example is from Almetwally et al. (2019). The data set consists of
economic data of 31 observations subjected to a GDP growth of Egypt. The data are
given below.

Table 9. MLE estimation with KS, p-values and different model goodness of fit criterion for data 3

@yie (2. Auie D P-value AIC BIC
P - - 0.6473 0.3956 0.0001 186.7626 188.1966
GP - 6.8839 -0.6607 0.2910 0.0080 149.8744 152.7423
APP 90.2664 - 1.3679 0.2501 0.0340 160.3021 163.1700
MOAPP 8.5373 153.5946 3.7857 0.0726 0.9927 139.4962 143.7982
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When comparing the values of KS statistics of MOAPP and other sub models like
Pareto type 1, GP and APP for the two data examples above, we obtain the minimum
KS for MOAPP with highest p-values. Also, it can be noticed that the values of AIC and
BIC take their minimum values when the distribution is MOAPP. Therefore, this
indicates that the MOAPP distribution fits the two sets of data very well and is better
than other distributions. This also emphasizes the need of new distributions in
managing real-life data. So, in general we can say that the new distribution is superior
according to other sub models.

7. Conclusions

In this study we have considered MOAPP distribution which has three unknown
parameters. This new distribution proved to be more flexible and more appropriate for
monotone and right skewed lifetime data, also its hazard rate function can be either a
decreasing or upside-down bathtub curve. We estimate the parameters of MOAPP
using MLE, MPS and Bayesian method under SE and LINEX loss functions. It is not
possible to compare different methods theoretically, so we have used some simulations
to compare different estimators. We have compared different estimators mainly with
respect to biases and mean squared errors. Confidence intervals are obtained and are
compared numerically in terms of interval lengths. The best method for estimating «
and 0 is the Bayesian method under the LINEX and SE loss functions depending on the
values of a and 6, it is also noticed that the MPS method acts better for estimating «
and 6 than the MLE method. The Bayesian method under the SE loss function is the
best appropriate method for estimating A. Confidence intervals under the MPS method
and the Bayesian credible interval are preferable to confidence intervals under the MLE
method. Therefore, we recommend the use of the MPS and Bayes estimation methods
for practical purposes. The flexibility of this distribution was illustrated in some
applications to real data sets, where the new model proves to better fit data than some
other sub models.
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