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Statistical Properties and Estimation of Power-Transmuted 
Inverse Rayleigh Distribution 

Amal S. Hassan1, Salwa M. Assar2, Ahmed M. Abdelghaffar3 

ABSTRACT  

A three-parameter continuous distribution is constructed, using a power transformation 
related to the transmuted inverse Rayleigh (TIR) distribution. A comprehensive account of 
the statistical properties is provided, including the following: the quantile function, 
moments, incomplete moments, mean residual life function and Rényi entropy. Three 
classical procedures for estimating population parameters are analysed. A simulation study 
is provided to compare the performance of different estimates. Finally, a real data application 
is used to illustrate the usefulness of the recommended distribution in modelling real data. 
Key words: transmuted inverse Rayleigh, mean residual life function, maximum likelihood, 
percentiles. 
 

1.  Introduction 

Trayer (1964) introduced an important model for lifetime analysis, known as the 
inverse Rayleigh (IR) distribution. The probability density function (pdf) and the 
cumulative distribution function (cdf) of a random variable Y have the IR distribution 
with scale parameter   and are defined by: 

23( ; ) 2 ,y
IRf y y e  

  ; 0,y  0.   
and 

2

( ; ) ; , 0.y
IRF y e y 

   
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Voda (1972) studied some properties of the maximum likelihood (ML) of its scale 
parameter. Gharraph (1993) provided closed-form expressions for the mean, harmonic 
mean, geometric mean, mode and the median of the IR distribution. A lot of works 
have been done in the literature upon estimation of the IR distribution; the reader can 
refer to Mohsin and Shahbaz (2005), Soliman et al. (2010), Dey (2012), Sindhu et al. 
(2013), Fan (2015), Rasheed et al. (2015), Panwar et al. (2015), Rasheed and Aref (2016). 

In recent years, a number of extensions for the IR distribution have been developed 
using different methods of generalization by several authors, see, for example, beta IR 
distribution (Leao et al.; 2013), transmuted IR (TIR) distribution (Ahmed et al. 2014), 
modified IR (MIR) distribution (Khan; 2014), transmuted modified IR (TMIR) 
distribution (Khan and King; 2015) transmuted exponentiated IR (TEIR) distribution 
(Haq; 2015), Kumaraswamy exponentiated IR (KEIR) distribution (Haq; 2016), 
weighted IR distribution (Fatima and Ahmad; 2017) and odd Fréchet IR distribution 
(Elgarhy and Alrajhi; 2018). 

The power transformation (PT) methodology has been used in many statistical 
aspects, although PT has been first proposed by Box and Cox (1964). One of the most 
important uses of the PT methodology is developing new distributions out of well-
known distributions by adding an additional parameter, which gives several desirable 
properties and more flexibility in the form of the hazard rate and density functions. 
Also, it offers a more flexible model that can describe different types of real data. So, 
our objective in this study is developing a power transmuted inverse Rayleigh (PTIR) 
distribution out of the TIR distribution via the PT technique. Several statistical 
properties and different methods of estimation are discussed to obtain the point 
estimators regarding the proposed distribution.  

This paper is organized as follows. Section 2 introduces the formation of the PTIR 
model. The structural characteristics of the PTIR distribution are studied in Section 3. 
Section 4 discusses parameter estimators for the PTIR distribution based on ML, least 
squares and percentile methods. Simulation schemes are performed in Section 5. A real 
life data application illustrates the potential of the PTIR distribution compared with 
some other distributions in Section 6. The article ends with some concluding remarks. 

2. Model Formulation 

The TIR distribution is a generalization of the IR distribution using the quadratic 
rank transmutation map (see Ahmed et al. 2014). The cdf of the TIR distribution is 
given by: 

2 2

( ; , ) (1 ), ; 0, 1, 0.y y
TIRF y e e y      

         
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Here, we propose a new extension of the TIR distribution by considering 
1

X Y  , 
where the random variable Y follows the TIR distribution with parameters  and . 
The distribution function of a random variable X has the PTIR distribution and is 
defined as follows: 

2 2

( ; , , ) (1 ); , 0, 1, 0.x x
PTIRF x e e x

         
                         (1) 

The pdf of the PTIR distribution corresponding to (1) is given by 

2 2

2 1

2
( ; , , ) (1 2 ); , 0, 1, 0.x x

PTIRf x e e x
x

  


       
  

                     (2) 

A random variable X that follows the distribution (2) is denoted by X ~ ( , , ).    
Two special sub models can be obtained from (2) as follows. 

 For 0,  the pdf (2) reduces to a power IR (PIR) distribution as a new model. 
 For 0  and 1,  the pdf (2) reduces to the IR distribution.  
Some descriptive pdf plots of X have the PTIR distribution, which is illustrated 

in Figure 1 for some specific values of parameters. 
 

(a) 
 

(b) 

Figure 1.  The pdf plots of the PTIR distribution (a) for some choices of parameters (b) for
1.5, 1.0, =0.5     

 
From Figure 1, it can be shown that the shape of the PTIR distribution is unimodal. 

It can also be said that the distribution is positively skewed. 
Furthermore, the survival function and the hazard rate function (hrf) are given, 

respectively, by 
2 2

( ; , , ) 1 (1 ),x x
PTIRS x e e

      
       

 
and 
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 2 2 2 2 1
(2 1)( ; , , ) 2 (1 2 ) 1 (1 ) .x x x x

PTIRh x e x e e e
              

    
            

Some descriptive hrf plots of X are illustrated in Figure 2 for some specific values 
of parameters. 
 

 

Figure 2. The hrf plots of the PTIR distribution for some choices of parameters  

 
From Figure 2, it can be shown that the plots at several selected values of the 

parameters of hrfs have an increasing tendency.  
The reversed hrf and cumulative hrf are given, respectively, by: 

2 1( ; , , ) 2 ,PTIRr x x        

and 

 2 2

( ; , , ) ln 1 (1 ) .x x
PTIRH x e e

      
        

 
 
 

3.  Some Structural Properties 
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In this section some structural properties are provided. 

3.1. Quantile Function 

The quantile function of the PTIR distribution, say 
1( ) ( )Q u F u of X can be 

obtained by inverting (1) as follows: 

                     
    2 22

( ) ( )(1 ) 0,Q u Q ue e u
                                                    (3)                       

Factorizing (3) leads to 

                             
1

22
1 1 4

( ) ln ,
2

u
Q u


  




        
  
   

                               (4) 

where u has a uniform random variable on (0, 1). Also, (4) can be used in simulating 
PTIR random variables when the parameters ,   and   are known. Median (m) of 
the distribution is obtained by setting u = 0.5 in (4). Also, the first and third quantiles 
can be obtained by setting u = 0.25 and u = 0.75 in (4). 

3.2. Moments of the PTIR Distribution 

Moments are used to understand various characteristics of a frequency 
distribution. They have been applied in order to obtain mean, variance, in addition to 
some measures, such as skewness and kurtosis. 

The rth moment of X has the PTIR distribution and is derived by using (2) as follows: 

                         2 2

2 1
0

2
( ) (1 2 ) .r r x xE X x e e dx

x
 
 



  
 



 
   

  
                               (5) 

Let
 

2 ,z x    then the rth moment of the PTIR distribution is given by 

22 2 2 2

0 0 0

( ) 2 ,
r r r r

r z z zE X z e z e z e dz     
    

  
  

        
    

which is the gamma function, so the rth moment can be formed as follows:   

2 2( ) 1 1 2 ,
2

r r
r r

E X    


  
      

    
2 ,r  1,2,3,...r   

Hence, the mean and variance of the PTIR distribution are given, respectively, by 
1 1

2 21
1 1 2 ,

2
    


  

      
    

> 0.5,  

and 
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2
1 1 1 1

2 21 1
( ) 1 1 2 1 1 2 ,

2
Var X         

 

       
                           

 > 1.  

 
Measurement of skewness and kurtosis of the distribution is obtained from 

complete moments using the well-known relationship. Plots of the PTIR skewness and 
kurtosis for some selected values are displayed in Figure 3. 
 

 
 

Figure 3. The skewness and kurtosis of the PTIR for 0.5  and different values of  and   

 
From Figure 3, it can be seen that both the skewness and the kurtosis are decreasing 

functions of ,   and .  

3.3. Incomplete Moments  

The answer to many important questions in economics requires more than just 
knowing the mean of a distribution, but its shape as well. This is obvious not only in 
the study of econometrics and income distribution, but in other areas as well (see Butler 
and McDonald; 1989). 

The ths  incomplete moment of a random variable X has the PTIR distribution 
and is obtained as follows: 

2 2(2 1)

0

( ) 0
( ; , , ) 2 (1 2 )( ) .£

t
s x x

PT R

t s
s It f x dx x ex x e dx

 
 

     
 

  
   

  
    

 

Let 2 ,z x   then the ths  incomplete moment of the PTIR distribution is given 
by: 
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2

22 2 2
)

2
(£ ( ) 2 ,

s s s s
z z z

t

s t z e z e z e dz



   



  
  

  
 

    
 


 

which is the upper incomplete moments, so 

  2 2
2 2( ) 2

2
1 , 1 , 2 1 , ,

2 2 2
£ ( )

s

s

s
s s s

t
t t t

 
  

    
  

      
              

       

            (6)                       

where (.,x) is the upper incomplete moments. The first incomplete moment can be 
obtained by setting 1s   in (6). The mean deviation about the mean ( ) , denoted by

1
, and the mean deviation about the median, denoted by 

2 , can be obtained, respectively, 
as follows: 

 
2 2

1

1

(1)

1

2 2

1 1

2 2
2 2 2

2 2 ( )

1
    =2 1 1 2 (1 )

2

1 1 1 2
   2 1 , 1 , 2 1 , .

2 2

£

2

PTIRF

e e
 
 

   

 
  

   

    


    
     

 

 

    
                   

      
              

       

 

(1)2

1 1 1 1

2 2 2 2
2 2 2

2 ( ).

1 1 1 1 2
    = 1 1 2 2 1 ,    1 , 2 1 , .

2 2 2 2

£ m

m m m
   

  

 

       
   

 

                                                

 

Lorenz curve of the PTIR distribution is obtained as follows:                                       

(1)

1

2
2 2 2

1

2

1 1 1 2
1 , 1 , 2 1 ,

2 2 2
( ) .

( ) 1
1 1

£ ( )

2
2

F

t t tt
L t

E T


  



   
  

 


      
             
        

  
     
    

 

Bonferroni curve is obtained as follows: 

2 2

1

2
2 2 2

1

2

1 1 1 2
1 , 1 , 2 1 ,

2 2 2( )
( ) .

( ) 1
1 1 2 (1 )

2

F
F

t t

t t tL t
B t

F t
e e

 


  

 


   
  

   


 

      
             
        

   
               

 

3.4. Mean Residual Life Function 

Mean residual life (MRL) function has been used in estimating time to failure for 
one or more existing and future failure modes. For an example nowadays MRL or 
remaining useful life is recognized as a key feature in maintenance strategies, while the 
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real prognostic systems are rare in industry, even in mining industry. The thn moment 
of the residual life of X is given by 

    1
( ) ) ( t) ( )

( )
n n

n

t

m t E X t X t X f x dx
S t



      

Using the binomial expansion, for the term (X-t)n, then mn(t) will be 

                   0( t)

( )

) ( ) d .
( )

n
n j

j jn
n

t

n
t

m t E X X t
j

x f x x
S t




 


 


  


                            (7) 

The nth moment of the residual life is obtained by substituting (2) in (7) and using
2 ,z x   which leads to 

   
2

0

22

0(

1
( ) (1 2

)
) ,

jn j t

n
P

n j z z

jT IR

n
t z e e dz

j
m t

S t




  


  




         

   

which is the lower incomplete gamma function, so the nth moment of the PTIR 
distribution takes the following form: 

    22
2 2 2

0

1 2
( ) 1 , 1 , 2 1 , ,

2 2( 2)

jn j
n j

n
T R jP I

n j j j
t

j t t
m t

S tt


  

     
  





        
           

       


 



  

where  .,x is the lower incomplete moments. 

3.5. Rényi Entropy 

The Rényi entropy is used to quantify the diversity, uncertainty or randomness of 
a system; it has various fields of application such as ecology, statistics. Also, it is   
important in quantum information, where it can be used as a measure of entanglement.  

 1
( ) ln ,

1R

R

I X f x dx


    

   
  

where for some real values 0   and 1  , the entropy of the PTIR random variable 
X has the pdf (2) and is given by                   

2 2
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By using binomial expansion and after simplification, the Rényi entropy is  
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4.  Parameter Estimation 

In this section, parameter estimators are obtained for the PTIR distribution based 
on ML, least squares (LS) and percentiles (PR) methods. 

4.1. Maximum Likelihood Estimators 

The ML estimator procedure is considered to estimate the population parameters 
of the PTIR distribution. The likelihood function is given by  
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
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The log likelihood function is given by 
2

2
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 Therefore, the ML estimators of ,   and , which maximizes (8), satisfy the 
following normal equations. 
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Then ML estimators of the parameters ,  and denoted by , 
 

and 


 are 
determined by solving numerically the non-linear Equations (9), (10) and (11) after 
setting them equal to zeros simultaneously. 

4.2. Least Squares Estimators 

Let X1,...,Xn be a random sample of size n from the PTIR distribution. Suppose that 
X(1),...,X(n) denotes the corresponding ordered sample. Therefore, the LS estimators of 

,  and   say, ,   and   respectively, can be obtained by minimizing the following 
function with respect to ,   and .  
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Differentiating (12) with respect to ,  and   respectively, and equating with 
zeros, allows the LS estimators ,   and  to be obtained. 

4.3. Percentiles Estimators 

Let X1,…,Xn be a random sample of size n from the PTIR distribution. Suppose that 
X(1),...,X(n) denotes some estimates of  ( ) ; , ,iF x    then the estimates of ,   and 
can be obtained by minimizing the following equation: 
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with respect to ,   and .  In percentiles method, we estimate the unknown parameters 
,   and  by equating the sample percentile points with the corresponding population 

percentile points, where  1ip i n   is the estimates for  ( ) ; , , .iF x    Then the PR 

estimators of ,   and  say, ,  and   respectively, can be obtained by minimizing 
(13) with respect to ,   and .  

5.  Simulation Studies 

A numerical study is performed to evaluate and compare the performance of the 
estimates with respect to their absolute biases (ABs), and mean square errors (MSEs) 
for different sample sizes and for different parameter values. The numerical procedures 
are described as follows: 
Step (1): A random sample X1,…,Xn of sizes n=10,20,30,100 is selected. These random 
samples are generated from the PTIR distribution by using the transformation (4). 
Step (2): Four different set values of the parameters are selected as: 
Set 1 = ( 1.0,  0.5,  0.5     ), Set 2 =( 1.0,  0.5,  1.5     ), Set 3 = (

1.0,  0.5,  2     ) and Set 4 = ( 0.5,  0.7,  1      ). 

Step (3): The ML, LS and PR estimates of ,   and  are computed for each set of 
parameters and for each sample size. 
Step (4): Steps from 1 to 3 are repeated 5000 times for each sample size and for selected 
sets of parameters. Then, the ABs and MSEs of the ML, LS, PR estimates are computed.  
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Table 1. ABs and MSEs of the PTIR distribution for Set 1, Set 2, Set 3 and Set 4 

n Method    Properties 
Set 1 Set 2 

         

10 

ML MSE 0.0022 0.0055 0.0002 0.0017 0.0041 0.0013 
AB 0.0425 0.0667 0.0132 0.0365 0.0540 0.0319 

LS MSE 0.0048 0.0122 0.0006 0.0005 0.0027 0.0007 
AB 0.0695 0.1106 0.0241 0.0226 0.0516 0.0259 

PR MSE 0.0121 0.0397 0.0008 0.0060 0.0175 0.0038 
AB 0.1101 0.1993 0.0282 0.0774 0.1325 0.0619 

20 

ML MSE 0.0003 0.0006 0.0000 0.0010 0.0025 0.0007 
AB 0.0043 0.0016 0.0013 0.0282 0.0442 0.0240 

LS MSE 0.0015 0.0035 0.0002 0.0005 0.0016 0.0007 
AB 0.0386 0.0595 0.0128 0.0219 0.0396 0.0258 

PR MSE 0.0013 0.0039 0.0001 0.0031 0.0088 0.0018 
AB 0.0367 0.0622 0.0095 0.0554 0.0939 0.0428 

30 

ML MSE 0.0002 0.0004 0.0000 0.0005 0.0013 0.0005 
AB 0.0027 0.0010 0.0009 0.0177 0.0292 0.0181 

LS MSE 0.0011 0.0022 0.0001 0.0003 0.0011 0.0002 
AB 0.0333 0.0470 0.0116 0.0160 0.0326 0.0155 

PR MSE 0.0006 0.0014 0.0000 0.0013 0.0038 0.0008 
AB 0.0244 0.0375 0.0060 0.0360 0.0618 0.0275 

100 

ML MSE 0.0001 0.0002 0.0000 0.0001 0.0002 0.0001 
AB 0.0020 0.0058 0.0005 0.0035 0.0058 0.0048 

LS MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
AB 0.0068 0.0070 0.0029 0.0009 0.0050 0.0006 

PR MSE 0.0001 0.0003 0.0000 0.0005 0.0014 0.0003 
AB 0.0098 0.0170 0.0040 0.0218 0.0373 0.0187 

(cont.) 

 

N Method    Properties 
Set 3 Set 4 

         

10 

ML MSE 0.0006 0.0013 0.0002 0.0002 0.0018 0.0000 
AB 0.0065 0.0176 0.0091 0.0053 0.0226 0.0023 

LS MSE 0.0156 0.0287 0.0044 0.0008 0.0071 0.0000 
AB 0.1248 0.1695 0.0663 0.0277 0.0844 0.0068 

PR MSE 0.0129 0.0222 0.0025 0.0004 0.0051 0.0006 
AB 0.1135 0.1489 0.0500 0.0189 0.0712 0.0240 

20 

ML MSE 0.0003 0.0006 0.0001 0.0001 0.0011 0.0000 
AB 0.0043 0.0017 0.0015 0.0040 0.0166 0.0007 

LS MSE 0.0054 0.0112 0.0016 0.0007 0.0061 0.0000 
AB 0.0734 0.1060 0.0401 0.0266 0.0784 0.0060 

PR MSE 0.0045 0.0093 0.0010 0.0001 0.0016 0.0001 
AB 0.0668 0.0967 0.0309 0.0115 0.0400 0.0108 

30 

ML MSE 0.0002 0.0005 0.0001 0.0001 0.0007 0.0000 
AB 0.0057 0.0076 0.0005 0.0027 0.0105 0.0009 

LS MSE 0.0040 0.0079 0.0012 0.0005 0.0041 0.0000 
AB 0.0632 0.0887 0.0340 0.0219 0.0637 0.0028 

PR MSE 0.0030 0.0059 0.0005 0.0001 0.0008 0.0000 
AB 0.0550 0.0766 0.0232 0.0086 0.0291 0.0061 

100 

ML MSE 0.0001 0.0002 0.0000 0.0000 0.0002 0.0000 
AB 0.0077 0.0101 0.0038 0.0009 0.0049 0.0015 

LS MSE 0.0004 0.0007 0.0001 0.0000 0.0002 0.0000 
AB 0.0206 0.0270 0.0106 0.0045 0.0124 0.0007 

PR MSE 0.0002 0.0003 0.0000 0.0000 0.0001 0.0000 
AB 0.0132 0.0170 0.0052 0.0046 0.0106 0.0002 
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The following conclusions can be observed on the properties of estimated parameters 
(see Table 1). 

 The MSEs of the ML, LS and PR estimates decrease as the sample sizes increase 
for selected sets of parameters. 

 The MSEs for the ML estimates of ,   and   take the smallest values compared 
to the MSEs of the LS and PR estimates in almost all of the cases. 

 The ABs of the ML estimates are smaller than the ABs of the PR and LS estimates 
in almost all of the cases especially at small and moderate sample sizes. 

 The ABs and MSEs of the ML, PR and LS estimates of   are smaller than the 
corresponding estimates of   and   in almost all of the cases. 

6.  Applications to Real Data 

In this section, a real data analysis is provided in order to assess the goodness-of-fit 
of the PTIR model comparing with some known distributions such as IR, TIR, PIR, 
MIR, TMIR, KEIR. 

In order to compare the models, criteria like maximized likelihood ( ˆ2  ), Akaike 
information criterion (AIC), consistent AIC (CAIC), Bayesian information criterion 
(BIC) and Hannan-Quinn information criterion (HQIC) are applied. The model with 
the minimum values of AIC, BIC, CAIC and HQIC is considered to be the best model 
to fit the proposed data.  

The data set represents the survival times (in days) of 72 guinea pigs infected with 
virulent tubercle bacilli, observed and reported by Bjerkedal (1960).  Plots of the 
estimated PTIR density and cumulative functions in addition to that of the compared 
models (TIR – PIR – IR – KEIR – MIR - TMIR) for the data set are displayed in Figure 4. 
 

 
Figure 4. Estimated pdfs and cdfs of models for the data set 
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It can be observed from Figure 4 that the PTIR distribution is the most fitted 
distribution compared with the other models mentioned above concerning the 
Bjerkedal data. 

The ML estimates and their standard errors (SEs) of the PTIR model compared 
with some known distributions such as IR,TIR, PIR,MIR, TMIR, KEIR are computed 
(see Table 2). Also, the corresponding measures of fit statistic using ˆ2  , AIC, BIC, 
CAIC, and HQIC, are provided in Table 3. 
 

Table 2. ML estimates of the model parameters and the corresponding SEs  

 

Table 3. The statistics ˆ2  , AIC, CAIC, BIC and HQIC 

Distribution PTIR IR TIR PIR MIR TMIR KEIR 

ˆ2   225.273 327.518 280.538 236.332 237.825 236.819 280.492
AIC 231.273 329.518 284.538 240.332 241.825 243.825 288.492

CAIC 231.625 329.575 284.712 240.506 241.999 244.178 289.089
BIC 238.103 331.795 289.092 244.885 246.378 250.655 297.599

HQIC 233.992 330.424 286.351 242.145 243.638 246.544 292.118

 
 
Also, it can be confirmed from Table 3 that the PTIR distribution is the most fitted 

distribution among other models for the data set as the PTIR distribution has the 
minimum values of AIC, BIC, CAIC and HQIC. 

Model         a  b  

PTIR 0.6056 
(0.0808) 

0.6577 
(0.0463) 

-0.9108 
(0.0873)    

TIR 0.3525 
(0.0434)  

 
-0.9416 

(0.0539) 
   

PIR 1.0691 
(0.1325) 

0.5865 
(0.0421)     

IR 
0.4629 

(0.0546)      

KEIR 0.4001 
(4.7575)   0.3657 

(4.3316) 
1.4444 

(17.4921) 
0.4045 

(0.0581) 

MIR 0.0465 
(0.0187)   1.2500 

(0.1537)   

TMIR 0.0105 
(0.0278)  -0.9166 

(0.0989) 
0.6575 

(0.0960)   
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7.  Concluding Remarks  

In this article, a new model, called a power transmuted inverse Rayleigh 
distribution is introduced. Some statistical properties of the proposed distribution are 
derived and discussed. The estimation of the model parameters is discussed through 
the maximum likelihood, least squares and percentiles methods. A simulation study is 
carried out to compare the performance of different estimates. The simulation study 
revealed that the ML performs better than the LS and PR estimates, in approximately 
most of the situations.  An application to a real data set indicates that the new model is 
superior to the fits than the other suggested distributions. 
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