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Power Size Biased Two-Parameter Akash Distribution

Khaldoon Alhyasat', Ibrahim Kamarulzaman?, Amer Ibrahim Al-Omari’,
Mohd Aftar Abu Bakar*

ABSTRACT

In this paper, the two-parameter Akash distribution is generalized to size-biased two-
parameter Akash distribution (SBTPAD). A further modification to SBTPAD is introduced,
creating the power size-biased two-parameter Akash distribution (PSBTPAD). Several
statistical properties of PSBTPAD distribution are proved. These properties include the
following: moments, coefficient of variation, coefficient of skewness, coefficient of kurtosis,
the maximum likelihood estimation of the distribution parameters, and finally order
statistics. Moreover, plots of the density and distribution functions of PSBTPAD are
presented and a reliability analysis is considered. The Rényi entropy of PSBTPAD is proved
and the application of real data is discussed.

Mathematics Subject Classification: 62E10, 62F15.

Key words: Akash distribution, two-parameter Akash distribution, size-biased distribution,
moments, coefficient of variation, coefficient of skewness, coefficient of kurtosis, maximum
likelihood estimation, entropy.

1. Introduction

Recently, it has been noted that there has been an increasing interest in suggesting
new flexible distributions for explaining and fitting data in different fields of science
such as medicine, pharmacy, environment and so on. Many authors have introduced
several types of new flexible distributions such as weighted distributions. The weighted
distributions are quite flexible for model specification and data interpretation.
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Fisher (1934) was the first who introduced the concept of weighted distributions.
He studied how the verification methods can affect the form of the distribution of
recorded observations. Also, see Rao (1965), Patil and Rao (1978), Gupta and Keating
(1986), Gupta and Kirmani (1990), and (Oluyede 1999).

For a non-negative continuous random variable Y with probability density

function (pdf) f(Y), the pdf of the weighted random variable Y, is defined as

_wy)f(y)  wy)f(y)
MO Erwl 4 W

where W(Y) is a non-negative weight function. A special case of Equation (1) arises

when the weight function is W(y) = y” . In this case the distribution is known as a size-

biased distribution of order £ with pdf given by
i
L= LI
[ vty

where for =1 or 2, the resulting are known as the length-biased and area-biased
distributions, respectively.

Saghir et al. (2017) proposed several weighted distributions. A size biased Ishita
distribution is introduced by Al-Omari et al. (2019) as a generalization of the Ishita
distribution. Haq et al. (2017) proposed Marshall-Olkin length-biased exponential
distribution. Al-Omari and Alsmairan (2019) suggested a length-biased Suja
distribution as a modification of the Suja distribution, which is suggested by Shanker
(2017).

Shanker (2015) suggested a one-parameter Akash distribution (AD). Then,
Shanker and Shukla (2017) generalized the AD to suggest a two-parameter Akash

distribution (TPAD) with pdf given by
3

f(y;0,a)=—; (a-l—yz)e’gy, y>0,6,a>0, (2)
ald” +2

and a cumulative distribution function (cdf) defined as

F(y;&,a)=1—{1+W}e‘9y, y>0,6,a>0. (3)
af” +2
2
The mean of TPAD is given by E(Y) = u = Lﬁ.
O(ab” +2)

Abebe and Shanker (2018) suggested a discrete Akash distribution. Shanker et al.
(2018) proposed a two-parameter Poisson-Akash distribution. Shanker et al. (2016)
considered Poisson-Akash distribution. Shanker et al. (2018) proposed a generalized
Akash distribution. Tesfalem et al. (2019) suggested a weighted Quasi Akash
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distribution. Shanker (2016) suggested Qausi Akash distribution. Shanker and Shukla
(2017) introduced the power Akash distribution.

The main objective of this study is to add a more flexibility distribution for fitting
real data in the field. This paper is organized as follows: in Section 2, the pdf and the cdf
of SBTPAD and PSBTPAD are presented as well as the shapes of the distribution are
illustrated for various parameters. In Section 3 we present some statistical properties of
the PSBTPAD, including the I'th moment, mean, variance, coefficients of variation,
skewness and kurtosis. Also, some simulations results are presented to illustrate these
properties. The maximum likelihood estimators of the distribution parameters are
derived in Section 4. The distributions of order statistics and reliability analysis are
introduced in Section 5. An application of real data set is presented in Section 6 for
illustration. Finally, the main results and some conclusions are provided in Section 7.

2. Suggested distributions

This section presents the pdf and cdf of the suggested distributions. A random
variable Y is said to have a size biased two-parameter Akash distribution (SBTPAD) if
its probability density function is given by

O'y(a+y’
fSBTPAD(y;H,a):Meigyay>0,a>9>0> (4)
ab” +6
and a cumulative distribution function is in the form
6+ 9[«92y(a +y)+0(a+3y*)+ 6y]
atd’® +6
It is easy to derive the pdf given in Equation (4) by utilizing Equations (1) and the
pdf of the TPAD given in (2), with the mean of the TPAD.

Fegrenp (Y3 0,) =1~— e, (5)

In this paper we modified the SBTPAD to a power size biased two-parameter Akash
distribution (PSBTPAD) Taking the power transformation X = Y"/ in (4) a pdf of a
random variable X can be defined as

B’ _ _ox?
fosgrean (X0, @, ) :—aé’z 6 x>’ 1(OH- xzﬂ)e " x>0,a,0,8>0. 6)
We would call the density in (6) as the power size biased two-parameter Akash

distribution (PSBTPAD). It is easy to prove that .r f(x;0,a,p)dx=1.
0

Shukla and Shanker (2018) proposed a power Ishita distribution. Ghitany et al.
(2013) introduced power Lindley distribution. Al-Omari et al. (2019) proposed a power
length-biased Suja distribution. The corresponding pdf of the PSBTPAD is
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aGZF(Z, xﬂ0)+1“(4, xﬁe)
ab® +6

Fosarean (X0, , B) =1— x>0,0,a, >0, (7)

b

r

n
- z . .
where T'(n+1,z)=nle”* E — s the incomplete Gamma function. The lower
= I

incomplete gamma function is I'(&, X) :I t“ e 'dt.
0

Figures 1 and 2 illustrate the shape of the pdf and cdf of the PSBTPAD for various

values of the distribution parameters.

feseTPAD (X)
05
D4 = 6=
- g=2
LEL
- @=3
02 — s
01 - f§=5
x

Figure 1. The pdf of PSBTPAD random variable X for @ =1,2,3,4,5, 2 =1.7 and ﬂ =0.5

FreeTPAD (x)
1.0
0.8 = 8=
-_— g =2
0.6
- =3
0.4 — Bes
0.2 - §=5

Figure 2. The cdf of PSBTPAD random variable X for  =1,2,3,4,5, ¢ =1.7 and ,B =05

Based on Figure 1, it can be seen that the PSBTPAD is asymmetric and skewed to
the right.
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3. Statistical properties

This section presents the rth moment, mean, variance, coefficients of variation,
skewness and kurtosis of the PSBTPAD. Also, some simulations for these properties are
provided.

3.1. Moments of the PSBTPAD

Theorem 2: Let X ~ fogronn (X;6, @, ), then the I'th moment of X about the origin is

HLF[r+2J B (af +6)+1> +5pr

E(X")= p [ } (8)
B (a0’ +6)

for 28+1>0,0>0,4>0,r=1,2,3,..

Proof: By the expectation definition of the th moment we have

r r r 94 —| — Xf
Hpsgrpap = E(X )=ij —a£2+6xw l(OH-XM)(E " dx

al o ot
=ﬂ2— arX2ﬂ+r le Ox dx+rx4ﬂ+r le 228 dX
ald” +6[ "o 0

) aa'/r*'2r[r+2] 9'/;'4r(r+4]
P )0 s
a6 +6 A 3

ZHLFELHM B (0 +6)+1 +5rﬂ}
5 .

B ab® +6)

Based on Equation (8), it is simple to deduce the first, second, third and fourth
moments of the BTPAD, respectively, as

e”ﬂr[u;J (B(¥+5)+1)
B (at’ +6)
o2or| 242 (B(¥+10)+4)
E(X?)= B
B (a6’ +6)
0| 242 (B(¥+15)+9)
E(X})= B
B (at” +6)
or| 2+t (B(¥+20)+16)
E(X*)= B
B (at” +6)

E(X)=

>

>

s
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where ¥ = (0{6’2 + 6) . Hence, the variance of PSBTPAD is given by

var(X)=E(X?)-[E(X)T

QWPTF[H;J (ﬂ(\y+1o)+4)—r(z+;]2(/;(\1/+5)+1)2] )

ﬂZ\PZ

3.2. The coefficient of skewness

The coefficient of skewness determines the degree of skewness of SBTPAD. It is
given by:

a ﬂZ‘PZF[er;J ( ﬂ(‘P+15)+9)—3ﬂ‘P(1>F[2+;J (B(¥+10)+4)+20’ '

SkPSBTPAD 32 s

e 02//’[,6"{’1{2+zj(ﬂ(‘P+1O)+4)—<IJZJ
g

(10)

where ¥ = #(a6” +6) and @ :r[z+%} (B(¥+5)+1)

3.3. The coefficient of kurtosis

The coefficient of kurtosis measures the flatness of the distribution. The coefficient
of kurtosis for PSBTPAD is defined as

/33\113r[2+;] (B(W+20)+16)+68 D°A

—30* - 447V T 2+; (B(¥+15)+9)

(11)

KUPSBTPAD = 2
(@ 5]
where ‘P=ﬁ(0{6’2+6),and CD=F[2+%J (ﬂ(‘l’+5)+1),

A=‘PF[2+%J (B(¥+10)+4).
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3.4. The coefficient of variation

The coefficient of variation of the PSBTPAD is given by

07" p¥T 2+; (B(¥+10)+4)-0*

LYo’
B (a6® +6)
CVPSBTPAD = @ ,» (12)

where 8>0,5>0.

Theorem 2: Let X ~ foggroan (X6, ), then the harmonic mean of X is

H,a,p)= lﬂLP ,6>O,,B>%. (13)

0T 2—— || B(¥-5)+1
S |LACE=9)+1]

To investigate the behaviour of these measures, we calculate some values of
Hpsgtoap> Opsarpans CVpsarpans SKpsgrpap and KUpggrpap of the PSBTPAD for (6=5,
B=3),(6=5,="T), for various values of & and the results are presented in Tables
1 and 2, respectively.

Table 1. The mean, variance, coefficients of variation, skewness and kurtosis for the SBTPAD

distribution for some values of & with @ =5 and =3

a IUPSBTPAD GPSBTPAD CVPSBTPAD SkPSBTPAD KU PSBTPAD
1 0.736221 0.187730 0.254991 0.080619 2.79987
1.1 0.733241 0.186927 0.254933 0.085470 2.80863
1.2 0.730675 0.186195 0.254826 0.089115 2.81627
1.3 0.728442 0.185527 0.254690 0.091850 2.82290
1.4 0.726482 0.184916 0.254536 0.093889 2.82868
1.5 0.724746 0.184356 0.254373 0.095393 2.83371
1.6 0.723200 0.183842 0.254206 0.096480 2.83809
1.7 0.721813 0.183368 0.254039 0.097241 2.84192
1.8 0.720562 0.182931 0.253873 0.097745 2.84528
1.9 0.719427 0.182527 0.253711 0.098047 2.84822
2 0.718395 0.182151 0.253553 0.098188 2.85080
2.1 0.717450 0.181802 0.253400 0.098202 2.85308
2.2 0.716583 0.181477 0.253253 0.098113 2.85509
2.3 0.715784 0.181173 0.253111 0.097944 2.85687
2.4 0.715045 0.180888 0.252974 0.097711 2.85844
2.5 0.714361 0.180621 0.252843 0.097426 2.85984
2.6 0.713725 0.180370 0.252717 0.097102 2.86107
2.7 0.713132 0.180134 0.252596 0.096747 2.86218
2.8 0.712578 0.179912 0.252480 0.096368 2.86315
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Table 2. The mean, variance, coefficients of variation, skewness and kurtosis for the SBTPAD
distribution for some values of & with @ =5 and ﬂ =7

a luPSBTPAD GPSBTPAD CVPSBTPAD SkPSBTPAD Ku PSBTPAD
1 0.869614 0.098748 0.113554 -0.35893 3.12901
1.1 0.868112 0.098522 0.113490 -0.35521 3.13229
1.2 0.866818 0.098309 0.113413 -0.35250 3.13574
1.3 0.865692 0.098109 0.113330 -0.35056 3.13918
1.4 0.864704 0.097922 0.113244 -0.34918 3.14253
L5 0.863829 0.097748 0.113157 -0.34824 3.14572
1.6 0.863049 0.097587 0.113072 -0.34761 3.14874
1.7 0.862350 0.097436 0.112989 -0.34725 3.15158
1.8 0.861719 0.097296 0.112909 -0.34707 3.15424
1.9 0.861147 0.097165 0.112832 -0.34705 3.15673
2 0.860626 0.097042 0.112758 -0.34714 3.15906
2.1 0.860150 0.096928 0.112687 -0.34732 3.16123
2.2 0.859713 0.096821 0.112620 -0.34757 3.16326
2.3 0.859310 0.096720 0.112555 -0.34787 3.16515
2.4 0.858938 0.096625 0.112494 -0.34821 3.16693
2.5 0.858593 0.096536 0.112435 -0.34859 3.16859
2.6 0.858272 0.096452 0.112380 -0.34899 3.17015
2.7 0.857973 0.096373 0.112326 -0.34940 3.17162
2.8 0.857693 0.096298 0.112275 -0.34982 3.17300

From Tables 1- 3 we can conclude the following:
1. For fixed values of «, the values of fpsgrpap and KUpggrpap of the PSBTPAD
decrease as the values of £ increase.
2. The CVpggrpap Values are about 0.25 when @=5 and =3, and it is about 0.11
when =5 and B=7.
3. The SKpgrpap Vvalues are about 0.098 for all the parameter values in Table 1 and

about -0.35 in for the parameters in Table 2. This indicates that the shape of the
PSBTPAD depends on the parameter values.

4. Maximum likelihood estimation

Let X,,X,,..., X, be a random sample of size N from PSBTPAD with parameters

a>0, >0 and 0> 0.The maximum likelihood estimators for the parameters of
PSBTPAD can be derived based on the likelihood function as
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L(0,a.8)= % N '(a+xizﬁ)e-ax{’
0" ' iﬁx(’
:[a£2+6J ln_kz'g Ya+x)eT .

1=1

Then, the log likelihood function is given by

e ): 1{ [ 5 J | [ B (a+ xf”)eZﬂX/}J

af> +6) i
= 4nIn(@) + nIn(B)-nin(a6” +6) +iln(xi2ﬁ'l) (a+x* i&xﬂ.
1=1 =1
(14)
Take the derivative of Equation (14) with respect to @, @ and /3, respectively, as
olnL(8
oL f)_in_ et S ”
o0 0 af +6 M=
alnL(eaﬂ) n_ n¢ 1 (16)
oa B T a0 6 o+ x’

and

olnL(6,a ﬂ 22ln(x) 22ln(

op 2/31 gxﬁ In(x;). (17)

Since there is no closed form solutions for the above system of equations, the MLEs

of the PSBTPAD parameters «, 6, and S denotedas &, 6 and B, respectively, can

olnL(8 olnL(6
be obtained by solving the equations ( ’a’ﬁ):O, ( ’a’ﬂ)zo,
00 oa
olnL(0,a,
M =0 numerically.
op

5. Order statistics and reliability analysis

Let X,,X,,..X,, be a random sample of size M from the power size biased two-

parameter Akash distribution. Also, let X, X500 X denote the

(m:m)
corresponding order statistics of the sample. The probability density function of the ith
order statistic X ;,,,) for 1<i<m is

m!

f(i:m)(x) W

[F( )] [1—F(X)] f(X). (18)
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By substituting the pdf and cdf of the PSBTPAD in Equation (18), the pdf of X,

is given by
. B BO M (a+ x )e ™
f(i:m)(x’a’ejﬂ)_(m92+6)1“(i)1“(—i+m+1) (19)
- m—1
where H =| 1- a921"(2,xﬁ¢9)—1"(4,xﬁg) a@zr(zjxﬁg)+r(4’ Xﬁg)

ab® +6 ab® +6

Based on Equation (19) the pdfs of smallest order statistic, X, and largest order

statistic, X, are respectively, given by

pomxs (a+x?)e | aor(2.x00)+r(4x0)|"
(a92 + 6)m

f(l:m)(X;a,eaﬂ): >
(20)

and
-1

BO MY (o + X )e [ ab’ (1 —r(z,xﬂe)) ~T(4,x°0)+ 6} i

finm (X2.0,8)=
(m,m)(x a ﬂ) (a02+6)m

.(21)

The reliability and hazard rate functions of the PSBTPAD random variable are
given by
Resarean (X:¢,0, ) =1— Foggrpnn (X:2,0, )
a02r(2, xﬁe) + F(4, xﬁe) (22)

- a8’ +6 ’

fosarpan (X2, 6, )
1 - Foggrpnn (X, 60, B)

BO X (a+x7 ) Exp(-0x" )
B a02F(2, x”&) +r(4, xﬂe)

H PSBTPAD (X%a,0,B) =
(23)

Figure (3) shows the reliability and hazard rate functions of the PSBTPAD with
0=1,2,3,45,=1.7 and f=0.5.
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HpsETPAD (X)
RPSBTPAD (x)
i0 10
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; =2
f=2
08 ] =
8=3 6=3
04 04 4 =4
02 §=5 2 =5

1

3

4

X

1

3

4

X

Figure 3. The reliability and hazard rate functions PSBTPAD for € =1,2,3,4,5,a=1.7 and

B=05.

Figure (3) shows that the plots of the reliability and hazard rate functions of the
PSBTAD are decreasing functions.

The reversed hazard rate and odds functions of the PSBTAD, respectively, are
defined as

f x;a,6,
RHPSBTPAD(X;a,H,ﬁ) = PSBTPAD( : ﬂ)
Fesarean (X, 0, B)

BO X (a +x* ) Exp (—Hxﬁ) @3)
a0 +6-ab’T(2,x"0)+T(4,x°0)’
and
Onern (K. 0. ) = Fossronn (2,0, 8) a6 +6-a6°T (2,x"6)-T (4, xﬁe). 24)

1= Fosgrpno (X; 2,0, ) - 0!492F<2, X50)+F<4, xﬁa)

Figure (4) represents the reversed hazard and odds functions of the PSBTPAD
distribution with 8=1,2,3,4,5,2=1.7 and f=0.5.

RHpsETPAD (%) OPS]BE’II'F'.&DLIJ
10
8 8=1 8 =1
= g=2
5 g=2 B
=3 f=3
4 fes 4 f=4
=5 2 8=5

o

Figure 4. The reversed hazard and odds functions of the PSBTPAD for @ =1,2,3,4,5, a0 = 1.7
and ﬁ =0.5.

2

3

4

X

0

3

4

= x
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The mean residual life function is defined as

Mesgrenp (%60, a2, ) = E(X —X| X > X)

1
= 1-F t;0,a, 3))dt
1= Fosgrean (X: 6, aaﬂ)f: ( psotean IB))

_ ! sl ,
- aezr(z,xﬂa)+r(4,xﬁ0)fj (a0 (2.x°0)+1(4.x6) dt.

The Mills ratio of the PSBTAD is defined as

1

RH psgrpan (X2, 6, )
_ Foserean (X:2,6, B)
fosareno (2,0, )
a0’ +6-af’T(2,X"0)+T(4,x°0)

BO X" (a+x** ) Exp(-6x")

Plots of the Mills ratio of the PSBTAD are given in Figure (4) for various

parameters.

MRosgrpan (X @,0, ) =

MRPSBTRAD (x)
1

i}
8 - g=1
- =2
g
. \ \ , 6=3
2 3

4 - =4

- =5

0

Figure 4. The Mills ratio of the PSBTPAD for @ =1,2,3,4,5, ¢ = 1.7 and ﬁ =0.5

6. Rényi Entropy
The Rényi entropy (RE) of a random variable X is a measure of variation of

the uncertainty. The RE is defined as RE(w) = ! log(_[ f(x)” dX], >0 and

1

@ # 1. The entropy can be used for performing a goodness fit test. For more about
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entropy see, for example, Al-Omari and Zamanzade (2017, 2018) for goodness of fit for
Laplace and logistic distributions, respectively; Zamanzade and Mahdizadeh (2017) for
entropy estimation using ranked set sampling; Zamanzade (2014) for testing
uniformity using new entropy estimators, and Zamanzade and Arghami (2011) for
goodness-of-fit test with correcting moments of modified entropy estimator; Al-Omari
and Haq (2019) for novel entropy estimators of a continuous random variables.

Theorem 3: If X [ fogzron(X; 0,2, ), the Rényi entropy of X is defined as

™ Jw(ﬁ(a)e)})w-l «

1 abd’® +6
REPSBTPAD () = 1— log _
2[ C_"J (a6’ r[—2j+4w—“’—‘1J
J B

(25)

1=0

Proof: The Rényi entropy of the PSBTPAD can be obtained as

REpsgrenn (@) = - log{ J: (fosgrono (X: 0,0, B))° de
S
it [ T e
“riamn (sl Lo oo
o ﬁ w(ﬂ(wa>2)w']§m(aezwz)"
e F£—2j+4a)—w7_1J

To investigate the behaviour of the PSBTPAD Rényi entropy, Tables 3 and 4 involve
some Rényi entropy values of the PSBTPAD for some values of the distribution
parameters.
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Table 3. Rényi entropy values for the PSBTPAD with ,B =0=2, ®=9 and a= 2,3,...,46

a REpsgrpan (@) o REpsgrpan (@) o REpsgrpan (@)
1 0.191233 17 0.037523 32 0.014837
2 0.167737 18 0.034947 33 0.014018
3 0.143430 19 0.032617 34 0.013246
4 0.123293 20 0.030499 35 0.012515
5 0.107162 21 0.028566 36 0.011823
6 0.094186 22 0.026795 37 0.011167
7 0.083608 23 0.025166 38 0.010544
8 0.074857 24 0.023663 39 0.009951
9 0.067515 25 0.022272 40 0.009387

10 0.061276 26 0.020981 41 0.008849
11 0.055914 27 0.019779 42 0.008336
12 0.051260 28 0.018658 43 0.007845
13 0.047184 29 0.017610 44 0.007376
14 0.043585 30 0.016627 45 0.006928
15 0.040386 31 0.015705 46 0.006497

Table 4. Rényi entropy values for the PSBTPAD with =3, o= 4, o=1.1 and 6=1,2,...,45

9 REPSBTPAD (CO) 9 REPSBTPAD (CU) 9 I:QEPSBTPAD (CO)
1 0.56641 16 4.26337 31 5.36132
2 1.11634 17 4.36373 32 5.41414
3 1.62485 18 4.45843 33 5.46534
4 2.03848 19 4.54806 34 5.51501
5 2.37837 20 4.63313 35 5.56325
6 2.66442 21 4.71409 36 5.61013
7 2.91043 22 4.79132 37 5.65573
8 3.12584 23 4.86514 38 5.70012
9 3.31722 24 4.93583 39 5.74336

10 3.48928 25 5.00366 40 5.78551
11 3.64551 26 5.06884 41 5.82662
12 3.78853 27 5.13158 42 5.86674
13 3.92037 28 5.19205 43 5.90591
14 4.04264 29 5.25040 44 5.94419
15 4.15663 30 5.30678 45 5.98161

Based on Table 3, we can say that the RE values approach zero for f=60=2 and

@=9 as a starts increasing from 2 up to 46. But from Table 4, the RE values are
increasing as the values of @ are increasing for fixed values of =3, =4 and

o=1.1.
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7. Application and goodness of fit

In this section, the proposed PSBTPAD is applied to model data. We compare the fits
of the PSBTPAD model with
1) Sushila distribution (SD) suggested Shanker et al. (2013):

52 x ) -2x
f(x;a,5)=—(l+—je @ x>0, >0,a>0.
a(o+1) a

2) Akash distribution (AD) Shanker (2015):
f(x,a)=

(x.2) a’+2

3) Size biased Akash distribution (SBAD):

f(x.a)=

(1+x2)e"°‘x,x>0,a>0.

— +2(1+x2)e’a*,x>0,a>0.

4) Two-parameters Akash distribution (TPAD) Shanker and Shukla (2017):
3

fTPAD(X;g,a): (a+x2)e’”; x>0,80>0.

ab*+2

5) Two-parameter quasi Akash distribution (TPQAD):

2

0
f X;0,0) = a+0x*)e?; x>0,60>0.
TPQAD( ) o0 2( )

+

6) Marshall-Olkin Esscher Transformed Laplace distribution (MOETL), Georgea and
Georgea (2013):

Ak Exp(ix} x<0
f(X):l+k2 “
Exp(—kA4x), x> 0.

We considered the negative maximized log-likelihood values (-MLL), Hannan-
Quinn Information Criterion (HQIC), Bayesian Information Criterion (BIC), Akaike
Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC) and
Kolmogorov-Smirnov (K-S) test statistic. These measures are defined as

2in
n—-i—-1’
BIC =—2MLL +iLog(n) and HQIC = 2In[|n(n)(i —2|\/|LL)],

AIC = -2MLL +2i,CAIC = -2MLL +
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where 1 is the number of parameters and n is the sample size. Also, the Kolmogorov-
1 n

, where F (X) =—Z I, is
nia

the empirical distribution function and F(X) is the cumulative distribution function.

Smirnov (KS) test is defined as KS = Sup, |Fn(X) -F(x)

In general, lesser values of the above measures indicate a better fit of the model to the
data set. The data set represent the strength data of glass of the aircraft window
reported by Fuller et al. (1994). The data are as follows:

18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.80, 26.69, 26.77, 26.78,
27.05, 27.67, 29.90, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08,
37.09, 39.58, 44.045, 45.29, 45.381.

Table 5. The -2LL, KS, P-value, AIC, CAIC, BIC, HQIC and the MLE based on the real data
Model AIC CAIC BIC HQIC KS P-Value -2LL MLE

AD 242,68 24282 24412 24315 02987 0.0060 12034 & = 00971
SD 25648 25691 25935 257.42 03616 0.0004 12624 G =01327
SBAD  545.82 546.00 547.25 54629 06472 3.4e-13 27191 & =0.1298
O =0.0086
MOETL 27857 279.00 28144 27951 04585 18e-06 13729 | _ 0262
A =-1.2363
TPAD 24456 24499 24743 24550 02902 0.0083 12028 4 _ (0959
a = 03316
TPQAD 23877 23920 24164 23970 04520 27e-06 11738  j_ (0904
a =11.7621
PSBTPAD 215.84 21672 22014 217.24 0.1074 0.8295 10492 ) _ (0052
a =0.5914
B =194

Accordingly, the PSBTPAD is the appropriate model for fitting the data since it has
the smallest values of AIC, CAIC, BIC, HQIC and KS with larger P-value as compared
to the competitive models considered in this study.

7. Conclusions

In this paper, we proposed a new continuous distribution which generalizes the size
biased two-parameter Akash distribution. The distribution is named power size biased
two-parameter Akash distribution. Various statistical properties of the PSBTPAD are
derived and discussed such as the moments, coefficient of variation, coefficient of
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skewness, coefficient of kurtosis and the distribution of order statistics. The model
parameters are estimated using the maximum likelihood estimation procedure. Finally,
the distribution is fitted to real data. The new distribution is found to provide a better
fit than its competitors used in this study.
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