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ABSTRACT

Modelling claims severity for obtaining insurance premium is one of the major concerns of

the insurance industry. There is a considerable amount of literature on the actuarial appli-

cation of the copula model to calculate the pure premium. In this paper, we model claims

severity for computing the pure premium in the collision market by means of the count cop-

ula model. Moreover, we apply a regression model using a generalized beta distribution of

the second kind (GB2) to compute the premium for an average claim and the conditional

computation for all coverage levels. Like many other researchers, we assume that the num-

ber of accidents is independent from the size of claims. For real data application, we use a

portfolio of a major automobile insurer in Iran in 2007-2008, with a subsample of 59,547

policies available in their portfolio. We then proceed to compare the estimated premiums

with the real premiums. The results demonstrate that there is strong positive dependency

between the real premium and the estimated one.

Key words: count copula, GB2 regression, pure premium, collision insurance.

1. Introduction

Premium is the payment that a policyholder pays for buying full or partial insurance

coverage versus a specified risk. Premium ratemaking is a vital subject to balancing insur-

ance payments (Zhang et al., 2015). In confronting with financial outcomes of the random

phenomenon, insurance plays the role of supporting policyholders. It includes the accumu-

lation of a big bunch of policyholder risks such that, within a given time cycle, a number

of insurance claims and an accumulated loss to the insurer can be determined. Nowadays,

estimating premium plays a pivotal role for insurance companies in the competitive mar-

kets. The biased computation may lead to losing the market share and confronting ruin.

There is a range of works in this field such as Weisberg (1982), David (2015), Marton et al.

(2015), Zhang et al. (2015), Schirmacher (2016), Yang et al. (2017), Shi and Yang (2018),

Lesmana et al. (2018), Wolny-Dominiak et al. (2018) and Avanzi et al. (2019). However,

using the copula model in ratemaking and actuarial application is to some extent new. Frees

et al. (2013) used a multivariate two-part regression model such that the correlation ratio

and copula regression for the claims and severity modelling were considered, respectively.
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For more information, one can refer to Shi (2016). We cannot distinguish risky policy-

holders beforehand but the severity and the number of claims in a portfolio of an insurance

company are predictable. In this paper, our aim is to calculate pure premium by using the

insured coverage selection preferences and the number of accidents during the policy pe-

riod. For this goal, the authors use a generalized beta distribution of the second kind (GB2)

regression model to model the average claims for each level of coverage preferences. In

the actuarial literature, the assumption between the number of accidents and the size of the

claim is common, which is used here as well. The wide variety application of the probabilis-

tic model for claim severities can be justified by the “long-tail” nature of insurance losses,

which appear as a result of the delay in reporting and long settlement periods of claims. So,

this matter makes it difficult to evaluate the exact price of some liability insurance products

and actuary job is to compute the average loss, or pure premium, for different classes of

insurance products for fairly rating insurance policies. They use the observed past claim

data from a portfolio of an insurance company for predicting the future pure premium for

a determined period. Shi and Valdez (2011) and Katesari and Vajargah (2015) used count

Copula model for examining asymmetric information in the insurance industry. The former

computed pure premium using the information of selected coverage level and loss number

for a specific year, and here with following the latter we try to compute the premium. Frees

and Valdez (2008) computed premiums under alternative reinsurance coverage. However,

Katesari and Zarodi (2016) predicted accident probability after observing the accidents for

a specific year by using the copula model in the latter.

In this paper, we use the count copula model for computing the pure premium of the

severity data from a major insurance company in Iran. Specifically, we consider the gener-

alized beta distribution of the second kind (GB2) regression model for the severity claims.

For this, we need the joint distribution of coverage selection and the risk of policyholders.

An ordered multinomial model is used to measure the coverage levels and a negative bi-

nomial regression model is used to measure the risk of policyholders for the specific year.

Moreover, a copula regression model is used to measure the linear and nonlinear dependence

between these two margins and the estimated results are presented. The estimation results

of the fitted model using Frank copula is available in Katesari and Vajargah (2015). Instead,

we use another tow famous members of the Archimedean copula family that is Clayton and

Gumbel to measure this dependence. The benefit of our bivariate copula regression model

is that it provides the joint distribution of coverage levels and the risk of policyholders. We

exploit this joint distribution in conditional expectation for computing the pure premium of

the severity data. For real data application, we use a portfolio of major automobile insurer in

Iran in the calendar year 2007-2008 with a subsample of 59,547 policies in their portfolio.

Also, this dataset was used to the work of Katesari and Vajargah (2015) to test asymmetric

information in the collision insurance portfolio of this company.

We have organized the remains of the article as follows. In Section 2, the data de-

scription is given. In Section 3, the count copula regression model will be considered for

computing the pure premium and the estimation results are given. In Section 4, premium

estimation is presented and the results are compared with the actual premium. Finally, in

Section 5 we provide some concluding remarks.
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2. Data attributes

For fitting the model, we use a portfolio of a major automobile insurer in Iran in 2007-

2008 with a total of 59,547 policies available in their portfolio. According to the policy of

the company, policyholders buy insurance policy from these main and overall claims: over-

all accident, overall theft and overall fire. Furthermore, policyholders are able to purchase

one or more coverage options from the below items:

1. Damaged caused by flood, earthquake and hurricanes,

2. Broken glass,

3. Stolen parts and accessories of vehicle,

4. Damage caused by spills or splashes of paint, acid and chemicals,

5. Compensation by not using the vehicle in repair period,

6. Slippage (only in minor damage).

For our purpose, we ordered the levels as follows:

1. overall coverage of collision insurance,

2. overall coverage of collision insurance as well as one or two more item(s),

3. (comprehensive) overall coverage of collision insurance plus three, four, five or all of

more item(s).

Note that with increasing the levels (from 1 to 3), the insured coverage will increase. The

dataset comes from a major insurer in Iran and we use a subsample of 59,547 cases from

more than 800,000 recorded cases the portfolio in 2007-2008 for this insurer. One can find

frequency statistics of policy selection and the number of losses in Table (1).

Table 1: Frequency statistics of policy selection and number of losses

Levels

Claims 1 2 3 Total Number Percent

0 30176 20033 4879 55088 92.51

1 405 1497 2130 4032 6.77

2 39 161 192 392 0.66

3 2 11 21 34 0.06

4 0 1 0 1 0.00

Total Number 30622 21703 7222 59547

Percent 51.42 36.45 12.13 100

Like every insurance database, more than 90 percent of the policyholders did not have an

accident during the considered year. Moreover, Table (2) elaborates the available covariates



4 Safari-Katesari H., Zaroudi S.: Count copula regression model...

Table 2: Descriptive statistics of the covariates

Variable Explanation Level 1 Level 2 Level 3
Mean StdDev Mean StdDev Mean StdDev Mean StdDev

Driver
attributes

Sexinsured =1 F, 0 M 0.2014 0.1694 0.2306 0.2779
NCD =1(0-15%) 0.4383 0.4538 0.4289 0.3827

=2(15-30%) 0.2156 0.2187 0.2131 0.2066
=3 (30-45%) 0.2529 0.2393 0.2684 0.2725
=4 (≥ 45%) 0.9320 0.0882 0.0896 0.1382

Vehicle
attributes

Vage 4.2951 3.4921 4.5838 4.0601 3.8714 2.5323 4.2597 2.8845
Vtype =Sedan 0.8849 0.8002 0.9882 0.9818

=Others 0.1151 0.1998 0.0117 0.0182
Vapplication =Personal 0.8632 0.7672 0.9798 0.9741

=Non-Personal 0.1368 0.2328 0.0202 0.0259

Table 3: Severity size by months for the calendar year 2007-2008

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
Severity 1.3 4 6.3 9.5 13.1 13.8 19.2 21.1 26.2 28.5 26.8 17.2

in the dataset. One can classify each of these covariates as a driver or vehicle attributes.

Vehicle age (Vage), vehicle type (Vtype: Sedan or Non-Sedan) and vehicle application

(Vapplication: Personal or Non-Personal) are vehicle attributes while sex (Female and Male)

and No Claim Discount (NCD) are driver attributes. As can be seen from Table (2), many of

these covariates are categorical, which demonstrates the proportion of an observed variable

in each class. Moreover, both mean and standard deviation are presented for vehicle age,

which is the only continuous covariate in this dataset. Like Shi and Valdez (2011), we

used average claims in the observed calendar year. Table (3) provides summary of the

severity claims for different months of the year 2007-2008. As demonstrated in Table (3),

the majority of the policyholder’s loss, nearly 28.5 in this case, occurred in January and the

minority of the policyholder’s loss, roughly 1.3, occurred in April. One of our restrictions

is that the amounts of these losses are adjusted and we cannot distribute the exact amounts

to all.

3. Count copula model fitted to the data

A bivariate copula C(., .) is a joint cumulative distribution function C : [0,1]−→ [0,1]2.

The application of copula comes from Sklar’s theorem. Sklar (1959) says that for random

variables y1 and y2 with corresponding marginal distributions F1(y1) and F2(y2), the bivari-

ate distribution F(y1,y2) can be stated as

F(y1,y2) =C(F1(y1),F2(y2);θ) (1)
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where C is a copula function with dependence parameter θ . If the marginal distributions

are continuous, then the copula in Equation (1) is unique, otherwise C is uniquely deter-

mined on RanF1 × RanF2. In Shi and Valdez (2011) and Katesari and Vajargah (2015),

count copula models were used for testing asymmetric information and adverse selection

in automobile insurance market. Here, according to our database, we take yi1 and yi2 as

selected coverage level and loss number, correspondingly, for each policyholder. yi1 shows

the selected coverage level such that first level (overall), second level, and third level (com-

prehensive) coverages are connected with possible values 1, 2 or 3, correspondingly. We

use latent variables y∗i1 and y∗i2, for modelling yi1 and yi2 with a parametric copula C(., .).The

joint probability mass function of yi1 and yi2 can be express as:

fi(yi1,yi2) =C(Fi1(yi1),Fi2(yi2))−C(Fi1(yi1−1),Fi2(yi2)) (2)

−C(Fi1(yi1),Fi2(yi2−1))+C(Fi1(yi1−1),Fi2(yi2−1))

where Fi1 and Fi2 are the CDF of yi1 and yi2, correspondingly. Now, we need to calibrate

the marginal distribution functions of Fi1 and Fi2 for model identification (Shi and Valdez,

2011). For coverage level and catching the connection between yi1 and y∗i1, we use an

ordered multinomial model as follows:

yi1 =

⎧⎨
⎩

1, if y∗i1 ≤ α1

2, if α1 ≤ y∗i1 ≤ α2

3, if y∗i1 > α2

,

where α1 and α2 are unknown and should be estimated. Also, for estimating yi1, we fit an

ordered logistic regression model as follows:

Fi1(yi1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

1+ exp(−(α1−xi
′β ))

, if yi1 = 1

1

1+ exp(−(α2−xi
′β ))

, if yi1 = 2

1, if yi1 = 3

(3)

where xi is the vector of covariates used for the coverage level of the ith policyholder.

Another marginal variable yi2 can be calibrated by using a negative binomial regression

model. Like Shi and Valdez (2011), we define its probability mass function as follows:

fi2(yi2) = Pr(Yi2 = yi2) =
Γ(yi2 +ψ)

Γ(ψ)Γ(yi2 +1)
(

ψ
ψ +λi

)ψ(
λi

ψ +λi
)yi2 (4)

where ψ is the dispersion parameter for policyholder i, and we use a log link function for

the conditional mean that is Yi2|zi. Note that zi is the vector of covariates used for the risk

of the ith policyholder. For estimating this model, we can use maximum likelihood method.

The copula functions of the Gumbel and Clayton can be expressed, respectively, as follow:

C(u1,u2;θ) = exp{−[(−logu1)
θ +(−logu2)

θ ]1/θ},θ ≥ 1 (5)
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Table 4: Estimation results of Clayton copula model for all reported accidents

Choice-Cumulative Logit Risk-Negative Binomial
Estimate StdErr Estimate StdErr

Choice -α1 -0.9033 0.0131
Choice-α2 0.3767 0.0125 Risk-intercept -2.1585 0.0194
Choice-sex (F) 0.4938 0.0194 Risk-sex (F) 0.0189 0.9339
Choice-Vage 0.0614 0.0012 Risk-Vage 0.0235 0.0015
Choice-(NCD=2) 0.0675 0.0199 Risk-(NCD=2) -0.4443 0.0389
Choice-(NCD=3) 0.2301 0.0190 Risk-(NCD=3) -0.7799 0.0441
Choice-(NCD=4) 0.1362 0.0269 Risk-(NCD=4) -1.3939 0.0826
Choice-Vapplication (2) -0.0858 0.1036 Risk-Vapplication (2) -0.3052 0.2911
Choice-Vtype (2) -0.1704 0.0698 Risk-Vtype (2) -0.3052 0.2911

Dispersion 0.8326 0.0734
Dependence parameter θ 0.2615 0.0184
-2Loglikelihood 160165.1

C(u1,u2;θ) = (u−θ
1 +u−θ

2 −1)−1/θ ,θ > 0 (6)

where θ is the dependence parameter that shows the amount of association between two

marginals. For more details about application of copula in finance and actuarial science,

see Frees and Valdez (1998), Cherubini et al. (2004), Joe (2014), Zaroudi et al. (2018a),

Zaroudi et al. (2018b), and Shi and Yang (2018). In the similar work of Katesari and Va-

jargah (2015), they explained the problems arising from adverse selection based on copula

model. They estimated parameter of Frank copula with θ = 1.3 referred to the existence of

adverse selection in their dataset. In this paper, we are interested in modelling the severity

of claims and we will use the modelled copula for computing the pure premium with the

same database.

The estimation results of the fitted model by using the maximum likelihood method

for Frank copula is available in Table 2 of Katesari and Vajargah (2015). Here, we fit the

aforementioned model using the maximum likelihood method for two other members of

the Archimedean copula family, which are Gumbel and Clayton in equations (5) and (6),

respectively. The estimation results of these two famous copulas are presented in Table (4)

and Table (5). As can be seen from the results of Table (4) and Table (5), the dependence

parameter θ for Clayton and Gumbel copula is 0.2615 and 1.10207, respectively. These

results show a strong dependence between coverage level and the risk of policyholders in

the portfolio of the insurance company in Iran.

4. Computing premium

Here, we describe, discuss and compute the pure premium formula from a mathematical

viewpoint and then compare it with the gross premium in the original data. We define the

premium by ∏X that an insurance company charges to pay a loss X , which is a random

variable. Thus, a premium formula is of the form ∏X = φ(X) where φ is some function.

At first, we consider the mean of X and the simplest premium, which is called pure risk

premium (∏X = E(X)), which means the pure premium is equal to the insurer’s expected

claims under the considered risk (Dickson, 2016). Additional statistical properties of the
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Table 5: Estimation results of Gumbel copula model for all reported accidents

Choice-Cumulative Logit Risk-Negative Binomial
Estimate StdErr Estimate StdErr

Choice-α1 -0.9032 0.0131
Choice-α2 0.3768 0.0126 Risk-intercept -2.1590 0.0193
Choice-sex (F) 0.4947 0.0194 Risk-sex (F) 0.0188 0.0151
Choice-Vage -0.0194 0.2013 Risk-Vage 0.0172 1.6611
Choice-(NCD=2) 0.0671 0.0209 Risk-(NCD=2) -0.4435 0.0391
Choice-(NCD=3) 0.2299 0.0191 Risk-(NCD=3) -0.7780 0.0413
Choice-(NCD=4) 0.1633 0.0276 Risk-(NCD=4) -1.3928 0.1828
Choice-Vapplication (2) -1.7275 0.0765 Risk-Vapplication (2) 0.3179 0.0280
Choice-Vtype (2) -1.8164 0.1371 Risk-Vtype (2) -0.5796 0.2811

Dispersion 0.8321 0.0739
Dependence parameter θ 1.10207 0.4579
-2Loglikelihood 160164.8

premium computation were explored in Dickson (2016). Our data comes from a big insur-

ance company in Iran. In this section, we use the severity of losses for one year (in the

year 2007-2008) for this insurer with a sample of 62,602 policyholders out of total 800,769

recorded cases. Here, we compute the pure premium by using the selected coverage level

and the number of losses for the year in the work of Katesari and Vajargah (2015). The

common method for price evaluation in the automobile insurance market is modelling the

number and severity of losses separately. In reality, the independence assumption between

the number and severity of losses is straightforward and we need to model the size of claims

to compute the pure premium. So, we compute the claims mean for each of the three levels

of coverage using a regression model of Generalized Beta distribution of the second kind

(GB2) . The density function of GB2 with four positive parameter goes as follows (Kleiber

and Kotz, 2003):

f (x) =
axap−1

bapB(p,q){1+(x/b)a}p+q , x > 0, a,b, p,q > 0, (7)

where b is a scale parameter and a, b, c are shape parameters and B(p,q) is the usual Euler

beta function. For more information about GB2, one can refer to McDonald and Butler

(1987), Sun et al. (2008), Frees and Valdez (2008) and Shi and Valdez (2011). Here, we

follow the same way of Shi and Valdez (2011) with taking as bi = exp(l
′
i β ), where l

′
i and

β show covariates vector for each policyholder and the coefficients, respectively. In our

GB2 regression model, sets of parameters for estimation purpose are (β j,a j, p j,q j) , with

possible values j = 1,2,3, which show the three selected coverage levels, correspondingly.

Table (6) shows the results of estimating the three sets of parameters by using the likelihood-

based estimation method. Figure (1) demonstrates the pp-plots of the residuals from the

three regression models of GB2 for showing the quality of the fitted model. According to

the copula method that was used in Shi and Valdez (2011), we can additionally compute the

impact of the policyholder’s coverage preference yi1 on the number of losses (accidents) yi2,
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Table 6: Estimate results of the GB2 regressions for all coverage levels

1st level 2nd level 3rd level
Estimate StdError Estimate StdError Estimate StdError

a 3.1465 0.0016 4.6151 0.0100 3.7952 0.7432
Intercept 2.3920 0.0037 3.3120 0.0071 3.3122 0.0650
sexinsured (F) 0.0124 0.0095 0.0088 0.0003 - 0.0445 0.0286
NCD=2 0.0357 0.0024 0.0421 0.0416 - 0.0107 0.0099
NCD=3 0.1068 0.0052 0.0449 0.0003 0.0741 0.0683
NCD=4 0.2026 0.0010 0.1367 0.1164 - 0.0204 0.0835
Vapplication (2) 0.1193 0.0088 - 0.0802 0.0016 - 0.0056 0.0477
Vage - 0.0001 0.0001 - 0.0063 0.0000 - 0.0063 0.0059
Vtype (2) - 0.1443 0.0117 0.0736 0.0014 0.0256 0.1407
p 9.9716 0.0001 0.8890 0.0429 1.0804 0.2853
q 0.3398 0.0091 0.2567 0.0079 0.3388 0.0808
-2Loglikelihood 10127.15 14029.72 21469.40

conditionally by using Bayes’ formula:

Pr(Yi2 = yi2|Yi1 = yi1) = fi2|1(yi2|yi1,x,z)× fi(yi2,yi1|x,z)
fi1(yi1|x) . (8)

By applying this conditional formula, we can anticipate the likelihood of the number of

claims, condition on the policy selection. In the above equation, the joint probability dis-

tribution in the numerator can be computed by copula distribution in equation (2) and ob-

viously the marginal distribution of yi1 in the denominator by equation (3). According to

the coverage selection for yi1, we can conditionally compute the pure premium for the ith

policyholder as follows:

∏
i
=E(Yi2|Yi1 = yi1)×E(Xi|Yi1 = yi1) (9)

=
∞

∑
yi2=0

yi2 fi2|1(yi2|yi1,x,z)× exp(l
′
i β yi1)B(pyi1 +(1/a)yi1 ,qyi1 − (1/a)yi1)

B(pyi1 ,qyi1)

where B(p,q) =
Γ(p)Γ(q)
Γ(p+q)

, ∏X is the pure premium for the ith policyholder and Γ(.) is the

Gamma function. Using the above formula, we are able to compute the pure premium for

each policyholder in our dataset.

Dependency coefficients among the real gross premium and the estimated one for all

coverage levels have been computed by Spearman’s rho and demonstrated in Table (7),

which shows strong positive dependency. This strong positive correlation shows that the

actual premium paid by the policyholder is according to the conditional computation. In

comparison with the results of Shi and Valdez (2011), one can see the same positive de-

pendency in the portfolio of automobile insurance in Singapore. More precisely, the depen-

dency between real and computed premiums for the first, second and third levels of our work

is 0.6636, 0.2328, and 0.8372, respectively. This is while that the dependency between real

and computed premiums for the first, second and third levels of the work of Shi and Valdez

(2011) is 0.58282, 0.62215, and 0.80632, respectively. Also, descriptive statistics of the real
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Figure 1: pp-plot for GB2 regression models.

Table 7: Dependency between real and computed premiums

dependency p-value

first level 0.6636 0.0098
second level 0.2328 0.0223
third level 0.8372 0.0025

and computed premiums for all coverage levels have been shown in Table (8). These results

are not surprising at all and we expected the positive difference between the two premiums.

This positive difference can be justified by covering loading expenses such as profits, taxes

and other administrative charges, which the policyholder should pay for them as well.

Table 8: Comparison of real and computed premiums

first level second level third level
Mean StdDev Mean StdDev Mean StdDev

Real 23.3024 17.4888 17.6657 14.7873 19.6919 18.4127
Estimated 15.6222 9.1653 13.4348 7.8841 14.3349 16.8840

5. Conclusions

The main focus of this paper is to compute pure premium by using copula models in the

automobile insurance market. We applied a GB2 regression model to compute the claims

mean and conditional computation for all coverage levels. This model permits us to compare
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real and estimated premiums. For this comparison, the coverage level of policyholders is

fitted using an ordered multinomial model and the risk of the policyholder is measured with

a negative binomial regression model in the specific year. The difficulty of this method

is to modelling two count variables for finding the joint distribution, which is useful in

computing the pure premium for the ith policyholder. To address this problem, we used a

copula regression model, which builds a bivariate distribution function and measures both

linear and nonlinear dependency between marginal distributions. For testing the quality of

our model we used pp-plots of residuals of the fitted model. The estimation results of our

model showed a strong positive dependence between real and estimated premiums.

One of our restrictions in this research is that we used a cross-sectional dataset to fit

our model. If we could use a longitudinal dataset that followed each policyholder’s records

during the years, we would reach out to more knowledgeable results.
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