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Horvitz-Thompson estimator based on theauxiliary
variable

J. Al-Jararha', Mazen Sulaiman?

ABSTRACT

In this paper, the Horvitz and Thompson (1952) estimator will be modified; so that, the mod-
ified estimators will use the availability of the auxiliary variable. Furthermore, the modified
estimators are extended to be used in stratified sampling designs. Empirical studies are given
for comparison purposes.

Key words: Horvitz-Thompson Estimator, Stratified Sampling Designs, Dual Calibration,
GREG Type Estimator.

1. Introduction

Consider the finite population U of N units indexed by the set {1,2,---,N}. For the ith
unit, let y; be the value of the interest variable Y, and x; be the value of the auxiliary variable
X. The values of X are known for all the units in the population and correlated with the study
variable Y. Without loss of generality, we can assume that x; > 0 fori=1,2,...,N. Based
on a probability sampling design p(.), draw a random sample s from U. The first order
inclusion probability 7; is defined by m; =Y (5; p (), and the second inclusion probability
m;j is defined by m;; = ¥ i5; ;p(s), fori # j, and m;; = m; when i = j. The probability
sampling design p(.) is assumed to be a measurable design. The population total for the
auxiliary variable X is ty = Y ;cy Xi.

Horvitz and Thompson (1952) proposed the following estimator

~ Vi
b = ) i€}
icu i
= Ydy (1)
ics
to estimate the finite population total #, = Y ;c;; yi, where d; = 1/m; are the sampling design
weights and /j;c ) is one if i € s and zero otherwise. The fyx is exactly an unbiased estimator
for t,.
¥

Remark 1.1 The availability and the calibration on the auxiliary variables can be used to
increase the precision of estimators. However, the Horvitz and Thompson (1952) estimator
does not use the availability of the auxiliary variables. Therefore, the Horvitz and Thompson
(1952) estimator will be modified, so that the modified estimators will use the availability
of the auxiliary variable.
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Deville and Sirndal proposed the following estimator

fras = Y, wivilgies) = Y, wivi, (2)

icU ics

for estimating t,, where w;, i € s, are the new sampling design weights that calibrated
the sampling design weights d; defined by Eq.(1) based on the calibration on the known
population total for the auxiliary variable X and the chi-square distance. The calibrated
weights w; are obtained by minimizing the chi-square distance, subject to the side condition.
As a result of this, the calibrated weights w; are given by

tx - fxﬂ:
wi=d;+ d-q-x-, 3)
i i Z,‘es d,'q,'x,-z 1M

Therefore, Eq. (2) is reduced to
z?y.ds = fyn + 3ds (tx - fxﬂ) “4)

which is a GREG type estimator, where g;’s are known positive weights unrelated to d;,

Bus = %, and 7,5, is the Horvitz and Thompson (1952) estimator of ,.
ics 4iqiX;

Stearns and Singh (2008) summarized the developments by several researchers on the
GREG estimators and used the calibration idea to propose three new estimators of the vari-
ance of the GREG estimators.

Singh (2013) estimated #, based on the dual calibration approach and his approach is
summarized by the following.

Let

fsin = Z ;X @)

i€s

subject to

Ya=) o (6)

ics ics

and a new constraint o defined by

(7

As aresult of this, the proposed estimator is

fy.sin == fyﬂ: + Bsin (tx - fxﬂ:) (8)
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to estimate the finite population total f,; fy_x,-n is a GREG type estimator, where

A S\
ﬁsin = ?n’ (9)
where
Yiesdiqiyi Yicsdiqixi
Sy =) diqi (y~—‘ X — — (10)
» ,EZ; T\ Yiesdigi " Yiesdigi
and

ics ics ies

2
S = ). digi (xi - ZdiQixi/Zdiqi> an

Two concerns about Eq.(8) are raised by Singh (2013), Remark 1 and Remark 2. Al-Yaseen
(2014) showed that the estimator given by Eq.(8) can be obtained theoretically, which clari-
fies the first concern mentioned in Remark 1. Al-Jararha (2015) made an attempt to suggest
a way to use the dual calibration of the design weights in the case of multi-auxiliary vari-
ables; in other words, an attempt to give an answer to the second concern in Remark 2.

Sugden and Smith (2002) defined the term strictly linear estimator and proposed two
exactly unbiased estimators for the general linear estimates. The possibility of construction
an exactly unbiased estimator from a general linear estimator, the constructed unbiased
estimator is called a strictly linear estimate. Consider the general linear estimates of f,,
defined by Godambe (1955), to be of the form

fy =Y by (12)

ics

The exactly unbiased estimators, based on the Sugden and Smith (2002) approach, from
fy are defined by

hay=b—=Y Bi—1)yi/m (13)
ics
and
fyo) =Y biyi/Bi (14)
ics

for estimating the finite population total ¢,, where

Bi=Y p(s)bs. (15)

KEYi

Recently, different authors have adopted the calibration technique to modify the original
weights in stratified sampling designs. In the case of stratified sampling designs, Nidhi,
Sisodia, Singh and Singh (2017) proposed a class of calibration estimators for estimating
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the population mean. Based on the availability of two auxiliary variables in the study and
in the case of stratified sampling designs, Ozgul (2018) proposed a calibration estimator for
estimating the population mean.

The Horvitz and Thompson (1952) estimator is well known in survey sampling for es-
timating the finite population total ¢,. However, this estimator does not use the availability
of the auxiliary variable. In order to improve the precision of this estimator, an attempt to
generalize this estimator will be given, so that the modified Horvitz and Thompson (1952)
estimators will use the availability of the auxiliary variable. Furthermore, our approach can
be applied in the case of stratified sampling designs.

2. Proposed Approach

Based on the dual calibration approach, the estimator

fynew = Z ;y; (16)

icS

is proposed to estimate the finite population total #,, by modifying the constraint & of the
Singh (2013) approach. In other words, redefine & as

(0 —d)* 1, 0F
a=-yY — 4 , (17)
2 ; diq; 2¢ ,GZZ diqi

where ¢ is a positive quantity.

The problem now is to minimize

fx = Z(J),'xi (18)

i€s

with respect to ®; subject to

Z(Oizzdi (19)

ies i€s

and a new constraint o defined by Eq.(17).
The Lagrange function is defined by

i€s ics ics ics diCIi ics diCIi

FAY 2
l:Zw,»x,»—ll (Za)i—Zd,)—)Q (;Z(a)ldl)-i-;(PzZ i —OC> (20)

where A; and A; are the Lagrange multipliers.

Differentiating the right hand side of Eq.(20) with respect to ;, equate to zero, and
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solving for w;, we have

L RN
w,—H(pz(dl“F Az (xl l])) (21)

Summing both sides of Eq.(21) over all possible sampled values and using Eq.(19), we
have

— 1 e — )2 :
A= Zig‘ydi%‘ (Zdlqlxl ¢ )*ZZdl> (22)

i€s ics

Now, substituting Eq.(21) into Eq.(17), we have

20 (14+¢*) A5 = 9?25 )" Z— + Y digii? =20 Y digixi + A2 Y. digi (23)

ies 1t ies ics ies

Substituting Eq.(22) into Eq.(23), we have

2
1
A= +- Y digi (xi - Zdi‘]ixi/zdi%> (24)

i€s i€s i€s

where

2
c= 2a(1+¢2)¢22di/qi¢4<2d,»> /Y digi. (25)

ies i€es ies

Ignore the negative sign, where the sign is to be determined by the choice of the sign of c.
Substituting Eq.(24) into Eq.(22) and using the result in Eq.(21), multiplying @; by y; and
summing over i € s we have

ics ics ics ices

N 1
Ly.new = 547 (Zdiyi +¢° <Zdi/zdi%’> Zdiﬂb'yi + 66) (26)
where

§ = Su/v/Sm 27)

where c, Sy, and Sy, are given by Eq.(25), Eq.(10), and Eq.(11) respectively. With the same
reasons adopted by Singh (2013), the best choice of ¢ is

c= L—hn ~N(0,1);
S)CX
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therefore,
fy.new = lfy.sin + (1 - }f)’t;nf, (28)
where A = 1/ (1+ %), fy.5in is defined by Eq.(8), and

~ fiz A
tyr = 7 lgyr- (29)
tqn'
Furthermore, f1z =Y, ic (1/7), fyn = Yics(qi/ ™), and fyyz = Yic s (giyi/ ;) be the Horvitz
and Thompson (1952) estimators for N, f,, and 4y, respectively.

Remark 2.1 Since A € (0,1), Eq.(28) is a convex transformation between fyism and ?yn,
defined by Eq.(8) and Eq.(29) respectively. At the same time, as ¢> — oo = A — 0 =
Ty new — tyr; moreover, as P> =0=21—1= fy.new — Ty sin-

The performance of 7 ,,, will be discussed through simulations from real data set. We
will compare fy_,,ew, fy_sm, and t~y,,. Consider the FEV data set which was used by Singh (2013)
and downloaded from http://www.amstat.org/publications/jse/datasets/fev.dat.txt. Let Y be
the Forced expiratory volume, t, = 1724; and the auxiliary variable X be the Children height
in inches, t, = 39988. Our aim is to estimate #, by using fy_new, fy.xm, and g,ﬁ. To achieve our
aim, simulate v = 3000 independent random samples from the FEV data set by using pro-
cedure surveyselect of SAS Institute, under SRSWR design. For ¢g; = x; and based on
the random samples, estimate ¢, by fy_new, fy_s,-n, and ftvy,r. Furthermore, compute the empirical
mean (Em.Mean), relative bias (RB), and empirical relative mean squares error (REMSE)
of the estimators #y.yey, fy.sin, and fyz; where

% 1 & o
EM.Mean (7¥) = Bzf(ty)" (30)
=
EM.Mean (7) —
RB (i) = ea;:(tY) b 100% 31)
v (1)’
REMSE(;) = —=l—h) (E=1) (32)

A 2
Z})=1 (ty.new - ty)

where EM.Mean (f;‘) .RB (f;‘) , and REMSE (fy") are the empirical mean, relative bias, and
relative mean squares error of the estimator 7. For n = 25,35, 45,55, 65, and75. The re-
sults are summarized in Table (1). )

From Table (1), in the sense of REMSE, the estimator 7, 5, performs better than #y,,,, and
g;n for all values of n and for the different values of A =0, 0.25, 0.5, 0.75, and 1. However,
REMSE (?W) varies from 1 to 6.74; at the same time, REMSE (tNW) = 6.74 is attainable for
large n = 75. From this point, concentrations will be focused on the performance of tNy,r in
order to improve the performance of fy,new. The remaining of this article will be focused on
the improvement of Zy7.
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Remark 2.2 The Horvitz and Thompson (1952) estimator defined by Eq.(1) is a special
case from Eq.(29), namely when g; = 1 (or a positive constant). Hence, ?yn is modified tyz
for estimating the finite population total t,. Further, }vy” uses the availability of the auxiliary
variable through q;’s.

To the first order and by using Taylor expansion, expanding the right hand side of
Eq.(29), we have

~ 5] tgy a . gy A
tyr = —tgy+—= (fix —t1) + = (lgyn —tgy) — —5— (fgn —14) (33)
Iy Iy 1y 2
Therefore, the bias of tNyn is given by
.~ 3]
Bias (tyn) =t — t—tqy. (34)
q

Remark 2.3 It is clear from Eq.(34) that tNyn is a biased estimator for estimating the finite
population total t,. However, ?yn is a strictly linear estimator; therefore, we can deduce two
exactly unbiased estimators from tNyn based on Sugden and Smith (2002).

From Eq.(29), rewrite 7,7 as

ho = Y bavi, (35)
i€s
where
qi/ 7
by = . (36)
Y Yies(i/m) [ Lie s (1/m)
From Eq.(15), recall the definition of B;,
B, = Z )4 (S) b si
KEY
i ics (1/mi
- 4 Z p(‘g)M (37)

i S Ziex(qi/ni)

Based on Sugden and Smith (2002) approach, the two exactly unbiased estimators deduced
from 7,7 for t, are

L) = — Y (Bi—1)yi/7; (38)
i€s
and
~ bsi
ha2) = X 5 Vi (39)
ies 1

where bg; and B; are defined by Eq.(36) and Eq.(37) respectively.
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Remark 2.4 Eq.(35) shows that };ﬂ is a general linear estimator of ty. Furthermore, tyz1)
and ?},”(2) are two exactly unbiased estimators for t, deduced from ?yn; therefore, ?yﬂ is
a strictly linear estimator based on the Sugden and Smith (2002) definition. Hence, the
estimators gﬂ(l ) and 'tvy,,(z) are generalization of the Horvitz and Thompson (1952) estimator

and use the availability of the auxiliary variable.

Since fyy(1y and f,4(5) are exactly unbiased estimators for #,, the infinite number of ex-
actly unbiased estimators is defined by

Ly = Otyz(1) + (l — (J)) Lyr(2) for 0<w<1. 40)
Remark 2.5 The estimator ?yﬂ is a convex transformation and an unbiased estimator for
estimating the population total t,.

2.1. Modified Horvitz-Thompson and Stratified Sampling Designs

The finite population U of size N is divided into L non-overlapping strata Uy, Ua,...,Ur;
U = Uj_, Uy. The population total for the 4" stratum is t,, = Y.icu, yi- Furthermore, the hth
stratum is of size N, and N = ):}Ll:l Nj. The population total #, is redefined as

L
=Y ty. (41)
h=1

For the /" stratum and based on a measurable sampling design py (.) , draw a random sam-
ple s, of size ny, from Uj,. Assume %, = Ycy, Xi/Ny is known for h=1,2,..., L. Apply t,z1)
and ?yn@) to the 4" stratum. In other words, estimate tyr by

Leyn = bos— Y, (Bi—1)yi/m;, (42)
ic Sp
or by
Y _ bshi 43
L) = Z E)’i- (43)

In this case, (1), and t:,ﬂ(z)'h are exactly two unbiased estimators for #,;, where

L

~ fln'.h PN
bymst = Z = lgyn.h (44)
h=1 lgm.h

fion = Yies, (1/M),  fgnn = Yies, (4i/ i), and fyyn = Yicy, (9ivi/ ™) be the Horvitz and
Thompson (1952) estimators for Ny, t, ,, and t,y.,, respectively.
From Eq.(41), estimate ¢, by

L
La(l).st = Z Lyr(1).h> (45)
h=1
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or by

Lhm(2).st =

1=
SR

7(2).h (46)

h=1

where ftvy,r(l).h and ft;,r(z)'h are defined in Eq.(42) and Eq.(43), respectively.

Remark 2.6 The two estimators t~y7r(1)‘h and ?yn(~2).h are two exactly unbiased estimators

Jor ty,. Based on this idea, the two estimators tyg 1)y and 'fyﬂ@)‘st are exactly unbiased
estimators for t,; therefore, the accumulation of bias across strata is avoided.

2.2. Special Cases

The exactly unbiased estimators ft;,,(l ) and 7yn(2) are given by Eq.(38) and Eq.(39) respec-
tively, deduced from the modified HT estimator #,;, depending on the weight g;. Therefore,
fyz(1) and fyz () can use the availability of the auxiliary variables through g;. In this section,
different special cases are considered.

As we mentioned earlier, 't;,,r reduces to fyz, the ordinary Horvitz and Thompson (1952)
estimator, when ¢;’s are one or positive constant. Furthermore, from Eq.(36), by, = 1/m;
and from Eq.(37), B; = 1. Therefore,

fyx(1) = lyx(2) = bym, (47)

i.e. tyz(1) and 1,55 are identical; in other words, 7,7 is exactly an unbiased estimator for #,.
In this case, the Sugden and Smith (2002) approach gives exactly one unbiased estimator
for estimating ¢,.

Draw a random sample s of size n from the population U of size N by using the
simple random sample without replacement (SRSWR) design. Under SRSWR design,

p(s)=1/ ( IZ ) and m; = n/N. Consider the following two cases:

a. g =T,.
In this case, by; = % and B; = 1. Therefore,
fyr = tyz(1) = yn(2) = N5, (48)

which is well-known estimator for estimating #,, where y, = Y/, y;/n. In this case,
the two exactly unbiased estimators based on Sugden and Smith (2002) are reduced to
one unbiased estimator, i.e. the Sugden and Smith (2002) approach produces exactly
only one unbiased estimator.

b. qi = Xi, Xj > 0.
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In this case, by = Nx;/ ¥ je ;x; and B; = Nxip (8) ¥ s5; (L jes X)) ! Therefore,

ies | s2i \JeEs

-1

~ i S.X,' i _ 1

tyr(1) =N Z):ix),] +ys—<N_1 Y Z(Z%) XiYi| s (49)
n—1 )

and

~ N Vi
Lr = — 7 j (50)
¥(2) < n ) IEZ\ |‘Zs9i (Z/Gsxj) 1] /jgsx‘]

= TR(Z) ) (5 1)

where TR(Z) is an estimate of #, defined by Sugden and Smith (2002), Eq.(4.5).

3. Empirical Studies

Sugden and Smith (2002) considered the ratio estimator

R f
Tr =122 (52)
XTT
as a general linear estimator for the population total f,. Tx is asymptotically an unbiased
estimator of f,. Since T produces two exactly unbiased estimators of ty, Tr is a strictly

linear estimator for #,. Under SRSWR, Bg; =1, ) 5, ():jesxj)_l / < N ) . In this case, the
n

exactly unbiased estimators are

A A

Tray =1 _QZ(BRi_l)yi» (53)
nics
and TR@), defined by Eq.(51).

Assume all the values of the auxiliary variable are available in the study; under SRSWR
design, the estimators Az, Zyz(1), fy(2)> Tr(2), Tk, and Ty defined by Eq.(48), (49), (50),
(51), (52), (53) respectively, will be used in the empirical studies.

Consider the data set given by Example(4.9), Page 139, Lohr (2010). In this example,
X is the photo counts of dead trees and Y is the field counts of dead trees; N = 25, t, =
265, and t, = 289. From this data set, under SRSWR, draw all random samples of sizes
n = 2,3, 4. The computations are implemented by using a SAS program written under the
iml procedure. The number of all random samples is m = 300, 2300, 12650 forn =2, 3,4
respectively. The relative efficiency of the ratio family is defined by MSE (T ;) /MSE (k)
and relative efficiency of the Horvitz and Thompson (1952) family is defined by
MSE (tyz(s)) /MSE (fyz) for i = 1, 2. The results are given in Table(2).

In the case of a stratification, consider the data set cars93 from Scheaffer, Menden-
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hall and Ott (2006). The data set cars93 consists of different variables; for our study, let
X :=MPGCITY,Y := MPGHIGH, and the stratifications based on the variable "typecode".
The cars93 data set is summarized by the following table.

WP stratum |1 2 3 4 5 6 total
N, 20 16 22 11 14 9 N=92
teh 598 363 430 202 305 153 || 1, =2051
ty 712 478 5838 294 403 197 || 1, =2672

For the A" stratum, h = 1,...,6, the results are given in Tables (3),...,(8) respectively. Based
on the stratified sampling design, the population total #, is estimated by using the estimators
s by(1)> byn(2)s TR(2)7 Tr, and TR(I); for n = 12, 18, 24. The results are given in Table
(9). At the same time, Table (9) is computed from Tables (3),...,(8).

4. Concluding Remarks

In this paper, the Horvitz and Thompson (1952) estimator is modified so that the mod-
ified estimators can use the availability of the auxiliary variable in the study. Based on
the Sugden and Smith (2002) approach, two exactly unbiased estimators for estimating the
population total ¢, are deduced from the modified estimator. Furthermore, the exactly two
unbiased estimators can be used in stratified sampling designs.

From Table(2), the deduced estimators ?;ﬂ(l) and tNy,r(z) are exactly unbiased estimators
for estimating #, and perform better than the original Horvitz and Thompson (1952) estima-
tor 7z, in the sense of relative efficiency. Moreover, Table(2) supports the same conclusion
mentioned by Sugden and Smith (2002), i.e. the estimators fR(l) and TR(z) are exactly un-
biased estimators and perform better than the original ratio estimator 7z, in the sense of
relative efficiency.

Based on the Sugden and Smith (2002) approach, the two exactly unbiased estimators
based on their families for estimating t, perform better than the original estimators even
if the original estimators are asymptotically unbiased or unbiased estimators. Furthermore,
the estimators deduced from Horvitz and Thompson (1952) perform better than the deduced
estimators from the ratio estimator. Small sample sizes are usually selected in the case of
stratified sampling design; moreover, the deduced estimators can be applied to every stratum
and aggregated together to estimate the population total.

For h = 1,...,6 the results are given by Tables (3)....,(8), respectively. Table (9) is
computed from Tables (3).....(8), and shows that 7,z (1), Tyz(2), Tr(1), and 7:"R(2) are exactly
unbiased estimators for #,. Furthermore, the bias of the ratio estimator Ty, is negligible
(asymptotically unbiased) and performs better than 7, (exactly unbiased) in the sense of
relative efficiency. TR(I) and TR(z) estimators perform better than Ehe ratio eAstimator Tr
for all n =12, 18, 24. At the same time, the relative efficiency of Tg(;) and T, are ap-
proximately the same for n = 12, 18, 24. In the case of the Horvtiz-Thompson family, the
deduced estimators g,ﬂm and ?yﬂ@) perform significantly better than the original estimator
fyz, in the sense of relative efficiency. Furthermore, the estimators Fl}n(l) and ?yn(z) deliver
approximately the same performance, for all n = 12, 18, 24.
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From Eq.(51), we have ?yn(Z) = TR(Q); therefore, the ratio family and the
Horvitz-Thompson family can be compared. Tables (2), (3)...., (9) show that

MSE (iyn(1)) _ MSE (Tr(1))
MSE (tyz(2)) ~ MSE (Tr))’

for all values of n. Therefore, the deduced estimators };n(l) and };,n(z) from the Horvitz-
Thompson family and TR(I ) and TR(Z) from the ratio family perform better than the original

families even though the original families are unbiased or asymptotically unbiased estima-

tors.
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ty.sin iym fy.new 1y.sin iyr fy.new

n=25 Em.Mean 1720.34 1770.59 1770.59 n=355 Em.Mean 1722.70 1768.77 1768.77
A0 RB -0.24 2.68 2.68 A—=0 RB -0.10 2.57 2.57
REMSE 0.21 1.00 1.00 REMSE 0.17 1.00 1.00

n=25 Em.Mean 1720.34 1770.59 1758.03 n=>55 Em.Mean 1722.70 1768.77 1757.25
A=025 RB -0.24 2.68 1.95 A =025 RB -0.10 2.57 1.90
REMSE 0.32 1.54 1.00 REMSE 0.27 1.58 1.00

n=25 Em.Mean 1720.34 1770.59 1745.47 n=>55 Em.Mean 1722.70 1768.77 1745.73
A =050 RB -0.24 2.68 1.22 A =050 RB -0.10 2.57 1.23
REMSE 0.52 2.51 1.00 REMSE 0.45 2.68 1.00

n=25 Em.Mean 1720.34 1770.59 1732.90 n=>55 Em.Mean 1722.70 1768.77 1734.21
A =075 RB -0.24 2.68 0.49 A =075 RB -0.10 2.57 0.57
REMSE 0.83 3.98 1.00 REMSE 0.78 4.58 1.00

n=25 Em.Mean 1720.34 1770.59 1720.34 n=>55 Em.Mean 1722.70 1768.77 1722.70
A—1 RB -0.24 2.68 -0.24 A—1 RB -0.10 2.57 -0.10
REMSE 1.00 4.81 1.00 REMSE 1.00 5.89 1.00

n=35 Em.Mean 1722.08 1770.28 1770.28 n=65 Em.Mean 1722.93 1768.89 1768.89
A—=0 RB -0.14 2.66 2.66 A—=0 RB -0.09 2.58 2.58
REMSE 0.19 1.00 1.00 REMSE 0.16 1.00 1.00

n=35 Em.Mean 1722.08 1770.28 1758.23 n=65 Em.Mean 1722.93 1768.89 1757.40
A =025 RB -0.14 2.66 1.96 A =025 RB -0.09 2.58 1.91
REMSE 0.30 1.55 1.00 REMSE 0.26 1.57 1.00

n=35 Em.Mean 1722.08 1770.28 1746.18 n=65 Em.Mean 1722.93 1768.89 1745.91
A =050 RB -0.14 2.66 1.26 A =050 RB -0.09 2.58 1.24
REMSE 0.49 2.56 1.00 REMSE 0.44 2.67 1.00

n=35 Em.Mean 1722.08 1770.28 1734.13 n=065 Em.Mean 1722.93 1768.89 1734.42
A =075 RB -0.14 2.66 0.56 A =075 RB -0.09 2.58 0.58
REMSE 0.80 4.17 1.00 REMSE 0.76 4.59 1.00

n=35 Em.Mean 1722.08 1770.28 1722.08 n=065 Em.Mean 1722.93 1768.89 1722.93
A—1 RB -0.14 2.66 -0.14 A—1 RB -0.09 2.58 -0.09
REMSE 1.00 5.20 1.00 REMSE 1.00 6.07 1.00

n=45 Em.Mean 1721.84 1769.24 1769.24 n=175 Em.Mean 1723.25 1770.39 1770.39
A—=0 RB -0.15 2.60 2.60 A—=0 RB -0.07 2.66 2.66
REMSE 0.19 1.00 1.00 REMSE 0.15 1.00 1.00

n=45 Em.Mean 1721.84 1769.24 1757.39 n=175 Em.Mean 1723.25 1770.39 1758.61
A =025 RB 0.15 2.60 1.91 A =025 RB 0.07 2.66 1.98
REMSE 0.29 1.55 1.00 REMSE 0.25 1.59 1.00

n=45 Em.Mean 1721.84 1769.24 1745.54 n=175 Em.Mean 1723.25 1770.39 1746.82
A =050 RB 0.15 2.60 1.22 A =050 RB 0.07 2.66 1.30
REMSE 0.48 2.57 1.00 REMSE 0.42 2.73 1.00

n=45 Em.Mean 1721.84 1769.24 1733.69 n=175 Em.Mean 1723.25 1770.39 1735.04
A=0.75 RB -0.15 2.60 0.54 A =075 RB -0.07 2.66 0.61
REMSE 0.78 4.22 1.00 REMSE 0.74 4.81 1.00

n=45 Em.Mean 1721.84 1769.24 1721.84 n=175 Em.Mean 1723.25 1770.39 1723.25
A—1 RB -0.15 2.60 -0.15 A—1 RB -0.07 2.66 -0.07
REMSE 1.00 5.39 1.00 REMSE 1.00 6.47 1.00

Table 1: Computations are based on Eq.(28). The
(32) for f;; = fy.sim grm and fy.new~

REMSE’s are computed by using Eq.
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n=2 n=3 n=4
Estimator 1y 53 1y s} 1y 53
Tx 2943058 2545.752 292.291 1549.1841 291.322 1081.5572
(53059) (2573.904) (3.292) (1560.0213) (2.322) (1086.9488)
Tr(1) 289 1684.9349 289 1111.1305 289 834.9348
Tr(2) 289 1650.5674 289 1087.7975 289 821.8695
A 289 2613.375 289 16665 | 289 1193.0625
(1) 289 1689.2317 289 1115.3438 289 845.6788
yx(2) 289 1650.5674 289 1087.7975 289 821.8695
Ty, Fami MSE (Tg(y)) wSE (T 1)) MSE (Tyy))
'z Family — AR 6546 — M 07123 0.7682
MSE (Tg) MSE (Tg) “MSE(Tg)
MSE(T(R(Z))) —0.6413 MAE(T(R(Z;) ~0.6973 MDF(T(R(Z)» ~0.7561
MSE(T; - MSE (Tg MSE(T; 7
M 1.0208 MSE(TR“)) —1.0215 MSE(TR“)> —1.0159
MSE((TR( )% MSEéTR(Z))) MSE((TR(Z)))
MSE MSE (1, MSE (1,
i (1)) _ ye(l)) _ yr()) _
Horvtiz-Thopson MSE(T_V;[) = 0.6464 MSE (fyrr) =0.6693 MSE(/};[) =10.7088
MSE (1, MSE (1, MSE (1,
family <~"fr(2)) =0.6316 ( ”‘(2)) —=0.6527 ( "Z’(z)) —0.6889
MSE (iyr) MSE (iyr) MSE (iyr)
MSE(?'”(”) = 1.0234 7MSE("”(”) = 1.0253 MSE(?'”(I)) 1029
MSE (iyz(2) ) MSE (i,z(2)) MSE (7, z(2)

Table 2: Empirical results based on real data set. For the estimator Tk : the number between
brackets under the mean is the bias and the bold one under the variance is the MSE of T.

np = 2 np = 3 np = 4
]i,stimator tyn S)z,h tyn Sgh tyn th
Tr 715.7886 1533.6014 | 714.4398 975.7520 713.7416  691.1576
(3.7886) (1547.9549) | (2.4398) (981.7046) | (1.741556) (694.1906 )
TR(I) 712 1363.2611 712 522.6314 712 358.48553
TR(Z) 712 1405.6602 712 523.4136 712 353.7434
fyn 712 5900.2105 | 712 3714.9474 712 2622.3158
};ﬂ(l) 712 1483.1003 712 578.5657 712 391.3314
g,ﬂ(z) 712 1405.6602 712 523.4136 712 353.7434
f ; MSE(Tr)) _ MSE (Tr1) _ MSE(Tw)) _
Tk Family MSE(Ty) 0.8807 MSE(Te) 0.5324 MSE(T) 0.5164
MSE(Tre)) _ MSE(Tie) _ MSE(Tre)) _
MSE(R) — 0.9081 MSE(R) 0.5332 MSE(R) 0.5096
MSE(Tyy) MSE(Tyy) MSE(Tyy)
MSE% ))) =0.9698 MSEETR(z))) =0.9985 MSEETR(Z))) =1.0134
MSE (1)) MSE (1)) MSE (t,201))
Hort-Thom MS}E,E )) =0.2514 W =0.1557 MSIZ,( )) =0.1492
. MSE tyn(2) MSE hr)) MSE tyx(2)
family MS?( )) =0.2382 MS({( )) =0.1409 MS?() )) =0.1349
MSE (f,z01) MSE (fyz1)) MSE (f,z1))
MSE(i) — 1.0551 WSE () 1.10537 MSE (i) — 1.1063

Table 3: Empirical results from cars93 for Stratum (1): When typecode=1
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ny = 2 ny = 3 ny = 4
Estimator tyh Sih fyh Sﬁh tyh Sih
Tr 478.0681 306.3392 | 478.0383 188.7059 | 478.0252 130.3291
(0.0681) (306.3439) | (0.0383) (188.7074) | (0.0252) (130.3297)
TR(I) 478 443.4048 478 219.6018 478 139.9649
TR@) 478 4449974 478 220.1128 478 140.1862
o 478 968.8000 478 599.7333 478 415.2000
'fyﬂ(l) 478 446.9986 478 221.5335 478 141.1973
7),”(2) 478 4449974 478 220.1128 478 140.1862
4 ~ MSE (Te)) _ MSE (Tr)) _ MSE (Tr)) _
Tk Family MSE@) =1.4474 MSE(Te) 1.1637 MSE@) =1.0739
MSE(Trp) MSE(Tr)) MSE(Typ))
WSE(Tr) 1.4526 VSE(Tr) 1.1664 WSE(Tr) 1.0756
MSE(Tr)) _ MSE (Tr1) _ MSE(Tr)) _
MSngR(Z))) =0.9964 MSE%TR@)) =0.9977 MSngR(Z))) =0.9984
MSE L)) MSE ha(1)) MSE L))
Hort-Thom Wtw)) =0.4614 VISE f'n)) 0.3694 MSE(f,,,)) 0.3401
. MSE () _ MSE () _ MSE () _
family W =0.4593 MS?()I},,)) =0.3671 W =0.3376
MSE (tyr1y) MSE (ty1)) MSE (fyz(1 _
MSE () 1.0045 MSE () 1.0065 VSE (i) 1.0072

Table 4: Empirical results from cars93 for Stratum (2): When typecode=2

=2 =3 =Y
Estimator t 52 t, 52 t 52
vh Vi yh vh yh vh
o 588.4592 3492140 5882849 2771965 | 5882004 1944815
(0.4592) (449.4248) (0.2849) @217y | (02004) (194.5216)
Tr) 588 525.4486 588 260.7300 588 1742959
Tr) 588 527.9447 588 2613186 588 174.4998
o 588 1386.6667 588 8782222 588 6240000
fa(1) 588 532.0024 588 2642138 588 176.5988
) 588 527.9447 588 2613186 588 174.4998
T Family MSE(T"’ >) ~ 1.1692 MSE(TR“)) —0.9403 MSE(TR(])> —0.8960
R MSE(Tg) MSE(Tg) ) MSE(Tg) ’
MYE(TR( ) = 11747 wSE (T ) —0.9424 MSE(TI{(Z)) ~0.8971
MSE(Tg) MSE (Tg) ’ MSE (Tg)
MSE (T MSE (T, MSE (T,
) ~0.9953 <>R<”) ~0.9978 (}e(])) —0.9988
MSI:( )) MSE (1‘R<2]) MSE (Tig(a)
MSF( MsE (i, MSE(T,
g >7f(1)> _ ()‘MU) _ (.\'ﬂ(l)) _
Hort-Thom WSE () = 0 WSE () = 03009 WSE ] =028
MSE <I MsE (T, MSE(T,
ami )75(2)> - (}'ﬂ(2>) _ (.\'ﬂ(Z)) _
family WSE () = 03807 WSE ] = 0276 WS le] =02
MSE (1)) = 1.0079 MSE (1)) — 10111 MSE (1)) = 1.0120
MSE (fy(0) MSE (y(0) MSL(‘”(Z)

Table 5: Empirical results from cars93 for Stratum (3): When typecode=3
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np =2 ) np =3 ) ny, =4 5
Estimator yp Svh ’yh S‘,h t],h S)_h
r 2944412 996516 294.259% 58.9851 294.1697 386799
(0.4412) (99.8463) | (0.2596) (59.0524) | (0.1697) (38.7087)
Tr(1) 204 322542 204 28.9585 294 2442012
Tri2) 204 31.9504 294 28.8365 204 243733
W 204 80.1000 294 474667 294 311500
fyr() 294 32,0873 204 290126 294 245711
iir(2) 204 31.9504 204 28.8365 204 243733
o Fami MSE (1)) _ MSE(Ty))
'z Family AU 0.4904 AU~ 0.6300
MSE (Tg) MSI:!IR)
WSE (T ) —0.4883 WSt (1)) ~06297
MSE (Tg) : MSE (Tg)
MSE (T ) = 1.0042 WSE (T ) = 10019
MSE((TR(Z))) MSE((TR(Z)))
MSE (1, MSE (I
(1) yr(1)
Hort-Thom 2] 6112 ) — o.7888
MS‘(?('yﬂ) ) MSE (iyr) )
MSE (1, MSE (I
fami (2)) _ 2)) _
family WS ]~ 075 WS ]~ 07825
MSE(”"'“» = 1.0061 MSE(""‘(”) = 1.0081
MSE (yno)) MSE (1yr(o))
Table 6: Empirical results from cars93 for Stratum (4): When typecode=4
= R =2 R =4 ,
Estimator Iyh Svh Iyh S),h Iyp S‘_h
Tr 3049682 4642094 3042003 279.8831 4038170 189.1534
(1.9682) (468.0833) | (1.2003) (281.3238) | (0.8170) (189.8209)
Tr(1) 403 219.7774 403 117.0185 403 964114
Tre2) 403 2211506 403 114.8667 403 94.8695
W 403 1113.6923 403 680.5897 303 464.0385
Tun(l) 403 234.9529 403 123.6658 403 1009741
iye(2) 403 221.1506 403 114.8667 403 94.8695
T Famil M —0.4695 WSE (T) 0.5079
R Tamly MSE(Tg) MSE(Tg)
MSE(TRA(Z)) — 04725 WSE (1) = 0.4998
MSE (Tg) ’ MSE(Tg) ’
MSE (T, MSE (1,
(AR(1)> 09938 E}R(”) ~1.0163
MSE( T, MSE (T,
( R(Z)j R(2)
mse (i MSE (7,
, wr(1) _ (br(r)
Hort-Thom WS (o)~ 02110 WSt (o)~ 02176
MSE (iyz(2)) mse (i,
. yn(2)) yr(2)) _
family WS (o) = %1986 WS o]~ 0204
MSEVQ"”“)) =1.0624 MS'Z_(ZV”(])) = 10644
MSE () MSE ()

Table 7: Empirical results from cars93 for Stratum (5): When typecode=5
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np = 2 np = 3 ny = 4
]?stimator tyh S§h tyh Sih tyn S}Z,h
Tr 197.0919 23.2645 | 197.0515 13.2744 | 197.0319  8.2891
(0.0919) (23.2730) | (0.0515) (13.2770) | (0.0319) (8.2901)

TR(]) 197 22.6543 197 11.1726 197 7.1120

fR(z) 197 22.6484 197 11.1820 197 7.1201

o 197 66.5000 197 38.0000 197 23.75

7,77(1) 197 22.6953 197 11.2614 197 7.2046

t:,,r(z) 197 22.6484 197 11.1820 197 7.1201

~ MSE (Tr1)) _ MSE (Te)) _ MSE (Ter)) _

Tr Family MSE(Ty) 0.9734 MSE(ATR) 0.8415 WMSE(T) 0.8579
MSE(Ty)) MSE(Ty)) MSE(Ty)
7MSE(AR 0.9732 MSE(AR =0.8422 MSE(TR) =0.8589
MSE (Trr)) MSE (Tiqr)) MSE(Tx))

=1.0003 = =0.9992 = =0.9989

MSE (Tra) (2))) MSE(TR(Z))) 999 MSE((TR(2>) i
MSE (tyn1)) _ MSE(tyn)) _ MSE(n1)) _

- MSE(vrm) MSE(wm) MSE (t,22)) _
MSE(fa) _ MSE (i) MSE (tyx1))
—— 2L —1.0021 — 2L = 1.0071 — 7L =1.011
MSE () ~ MSE () WSE (ixa) ’

Table 8: Empirical results from cars93 for Stratum (6): When typecode=6

n=12 n=18 n=24

Estimator ty S% ty S/% ty S%

iR 2678.8172 453844.48 2676.2744 178628.06 2674.9857 88260.276

(6.8171677) (453863.13) (4.2743444) (178635.6) (2.9856758) (88264.047 )

TR( 1) 2672 431418.52 2672 117843.17 2672 56576.944

TR(Z) 2672 439877.98 2672 117935.4 2672 56173.604

fyn 2672 1575220 2672 621987.81 2672 308599.03

1}7[(1) 2672 456121.5 2672 125146.15 2672 59655.399

/‘,1(2) 2672 439877.98 2672 117935.4 2672 56173.604

vty | 0U0) ooy | 2E0) oy [ 2 0) g

MSE (T MSE (T, MSE Ty

MSEE (';(2)); =0.9692 - s% (RTS)); —0.6602 MS% (';;)); —0.6364
MSE 'i‘R(l) B MSE ’i‘R(]) B MSE TR(I) B

VSE iR(z) =0.9808 W 0.9992 m =1.0072

Hort-Thom Mi[:gz:grl))) ~0.289 M;:g}[’;;‘;) ~02012 MZYEN (r‘( ))) ~0.1933

family M;[bsgzl"ff))) 02793 M;’;g;gf))) ~0.1896 ijsg(r ( ))) ~0.1820
MSE(F"”(”) ~ 1.0369 MSE(;)'”“)) 1.0611 MSE (fyr1) ~ 1.0620
MSE er(z)) ’ MSE (fy20) MS‘L(W(Z)

Table 9: Empirical results from cars93 based on stratified sampling designs
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