ECDNETOR

Make Your Publications Visible.

A Service of

Al-Jararha, J.; Sulaiman, Mazen

Article
 Horvitz-Thompson estimator based on the auxiliary variable

Statistics in Transition New Series

Provided in Cooperation with:
Polish Statistical Association

```
Suggested Citation: Al-Jararha, J.; Sulaiman, Mazen (2020) : Horvitz-Thompson estimator based on the auxiliary variable, Statistics in Transition New Series, ISSN 2450-0291, Exeley, New York, Vol. 21, Iss. 1, pp. 37-53,
https://doi.org/10.21307/stattrans-2020-003
```

This Version is available at:
https://hdl.handle.net/10419/236753

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

[^0]

Horvitz-Thompson estimator based on theauxiliary variable J. Al-Jararha ${ }^{1}$, Mazen Sulaiman ${ }^{2}$

Abstract

In this paper, the Horvitz and Thompson (1952) estimator will be modified; so that, the modified estimators will use the availability of the auxiliary variable. Furthermore, the modified estimators are extended to be used in stratified sampling designs. Empirical studies are given for comparison purposes.

Key words: Horvitz-Thompson Estimator, Stratified Sampling Designs, Dual Calibration, GREG Type Estimator.

1. Introduction

Consider the finite population U of N units indexed by the set $\{1,2, \cdots, N\}$. For the i th unit, let y_{i} be the value of the interest variable Y, and x_{i} be the value of the auxiliary variable X. The values of X are known for all the units in the population and correlated with the study variable Y. Without loss of generality, we can assume that $x_{i}>0$ for $i=1,2, \ldots, N$. Based on a probability sampling design $p($.$) , draw a random sample s$ from U. The first order inclusion probability π_{i} is defined by $\pi_{i}=\sum_{s \ni i} p(s)$, and the second inclusion probability $\pi_{i j}$ is defined by $\pi_{i j}=\sum_{s \ni i, j} p(s)$, for $i \neq j$, and $\pi_{i j}=\pi_{i}$ when $i=j$. The probability sampling design $p($.$) is assumed to be a measurable design. The population total for the$ auxiliary variable X is $t_{x}=\sum_{i \in U} x_{i}$.

Horvitz and Thompson (1952) proposed the following estimator

$$
\begin{align*}
\hat{t}_{y \pi} & =\sum_{i \in U} \frac{y_{i}}{\pi_{i}} I_{\{i \in s\}} \\
& =\sum_{i \in s} d_{i} y_{i} \tag{1}
\end{align*}
$$

to estimate the finite population total $t_{y}=\sum_{i \in U} y_{i}$, where $d_{i}=1 / \pi_{i}$ are the sampling design weights and $I_{\{i \in s\}}$ is one if $i \in s$ and zero otherwise. The $\hat{t}_{y \pi}$ is exactly an unbiased estimator for t_{y}.

Remark 1.1 The availability and the calibration on the auxiliary variables can be used to increase the precision of estimators. However, the Horvitz and Thompson (1952) estimator does not use the availability of the auxiliary variables. Therefore, the Horvitz and Thompson (1952) estimator will be modified, so that the modified estimators will use the availability of the auxiliary variable.

[^1]Deville and Särndal proposed the following estimator

$$
\begin{equation*}
\hat{t}_{y . d s}=\sum_{i \in U} w_{i} y_{i} I_{\{i \in s\}}=\sum_{i \in s} w_{i} y_{i}, \tag{2}
\end{equation*}
$$

for estimating t_{y}, where $w_{i}, i \in s$, are the new sampling design weights that calibrated the sampling design weights d_{i} defined by Eq.(1) based on the calibration on the known population total for the auxiliary variable X and the chi-square distance. The calibrated weights w_{i} are obtained by minimizing the chi-square distance, subject to the side condition. As a result of this, the calibrated weights w_{i} are given by

$$
\begin{equation*}
w_{i}=d_{i}+\frac{t_{x}-\hat{t}_{x \pi}}{\sum_{i \in s} d_{i} q_{i} x_{i}^{2}} d_{i} q_{i} x_{i}, \tag{3}
\end{equation*}
$$

Therefore, Eq. (2) is reduced to

$$
\begin{equation*}
\hat{t}_{y . d s}=\hat{t}_{y \pi}+\hat{\beta}_{d s}\left(t_{x}-\hat{t}_{x \pi}\right) \tag{4}
\end{equation*}
$$

which is a GREG type estimator, where q_{i} 's are known positive weights unrelated to d_{i}, $\hat{\beta}_{d s}=\frac{\sum_{i \in s} d_{i} q_{i} x_{i} y_{i}}{\sum_{i \in s} d_{i} q_{i} i_{i}^{2}}$, and $\hat{t}_{x \pi}$ is the Horvitz and Thompson (1952) estimator of t_{x}.

Stearns and Singh (2008) summarized the developments by several researchers on the GREG estimators and used the calibration idea to propose three new estimators of the variance of the GREG estimators.

Singh (2013) estimated t_{y} based on the dual calibration approach and his approach is summarized by the following.

Let

$$
\begin{equation*}
\hat{t}_{s i n}=\sum_{i \in s} \omega_{i} x_{i} \tag{5}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{i \in s} d_{i}=\sum_{i \in s} \omega_{i} \tag{6}
\end{equation*}
$$

and a new constraint α defined by

$$
\begin{equation*}
\alpha=\frac{1}{2} \sum_{i \in s} \frac{\left(\omega_{i}-d_{i}\right)^{2}}{d_{i} q_{i}} \tag{7}
\end{equation*}
$$

As a result of this, the proposed estimator is

$$
\begin{equation*}
\hat{t}_{y . \sin }=\hat{t}_{y \pi}+\hat{\beta}_{\sin }\left(t_{x}-\hat{t}_{x \pi}\right) \tag{8}
\end{equation*}
$$

to estimate the finite population total $t_{y} ; \hat{t}_{y . s i n}$ is a GREG type estimator, where

$$
\begin{equation*}
\hat{\beta}_{s i n}=\frac{S_{x y}}{S_{x x}} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{x y}=\sum_{i \in s} d_{i} q_{i}\left(y_{i}-\frac{\sum_{i \in s} d_{i} q_{i} y_{i}}{\sum_{i \in s} d_{i} q_{i}}\right)\left(x_{i}-\frac{\sum_{i \in s} d_{i} q_{i} x_{i}}{\sum_{i \in s} d_{i} q_{i}}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{x x}=\sum_{i \in s} d_{i} q_{i}\left(x_{i}-\sum_{i \in s} d_{i} q_{i} x_{i} / \sum_{i \in s} d_{i} q_{i}\right)^{2} \tag{11}
\end{equation*}
$$

Two concerns about Eq.(8) are raised by Singh (2013), Remark 1 and Remark 2. Al-Yaseen (2014) showed that the estimator given by Eq.(8) can be obtained theoretically, which clarifies the first concern mentioned in Remark 1. Al-Jararha (2015) made an attempt to suggest a way to use the dual calibration of the design weights in the case of multi-auxiliary variables; in other words, an attempt to give an answer to the second concern in Remark 2.

Sugden and Smith (2002) defined the term strictly linear estimator and proposed two exactly unbiased estimators for the general linear estimates. The possibility of construction an exactly unbiased estimator from a general linear estimator, the constructed unbiased estimator is called a strictly linear estimate. Consider the general linear estimates of t_{y}, defined by Godambe (1955), to be of the form

$$
\begin{equation*}
\hat{t}_{y}=\sum_{i \in s} b_{s i} y_{i} \tag{12}
\end{equation*}
$$

The exactly unbiased estimators, based on the Sugden and Smith (2002) approach, from \hat{t}_{y} are defined by

$$
\begin{equation*}
\hat{t}_{y(1)}=\hat{t}_{y}-\sum_{i \in s}\left(B_{i}-1\right) y_{i} / \pi_{i} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{t}_{y(2)}=\sum_{i \in s} b_{s i} y_{i} / B_{i} \tag{14}
\end{equation*}
$$

for estimating the finite population total t_{y}, where

$$
\begin{equation*}
B_{i}=\sum_{s \ni i} p(s) b_{s i} . \tag{15}
\end{equation*}
$$

Recently, different authors have adopted the calibration technique to modify the original weights in stratified sampling designs. In the case of stratified sampling designs, Nidhi, Sisodia, Singh and Singh (2017) proposed a class of calibration estimators for estimating
the population mean. Based on the availability of two auxiliary variables in the study and in the case of stratified sampling designs, Ozgul (2018) proposed a calibration estimator for estimating the population mean.

The Horvitz and Thompson (1952) estimator is well known in survey sampling for estimating the finite population total t_{y}. However, this estimator does not use the availability of the auxiliary variable. In order to improve the precision of this estimator, an attempt to generalize this estimator will be given, so that the modified Horvitz and Thompson (1952) estimators will use the availability of the auxiliary variable. Furthermore, our approach can be applied in the case of stratified sampling designs.

2. Proposed Approach

Based on the dual calibration approach, the estimator

$$
\begin{equation*}
\hat{t}_{y \cdot n e w}=\sum_{i \in S} \omega_{i} y_{i} \tag{16}
\end{equation*}
$$

is proposed to estimate the finite population total t_{y}, by modifying the constraint α of the Singh (2013) approach. In other words, redefine α as

$$
\begin{equation*}
\alpha=\frac{1}{2} \sum_{i \in s} \frac{\left(\omega_{i}-d_{i}\right)^{2}}{d_{i} q_{i}}+\frac{1}{2} \phi^{2} \sum_{i \in s} \frac{\omega_{i}^{2}}{d_{i} q_{i}}, \tag{17}
\end{equation*}
$$

where ϕ is a positive quantity.
The problem now is to minimize

$$
\begin{equation*}
\hat{t}_{x}=\sum_{i \in s} \omega_{i} x_{i} \tag{18}
\end{equation*}
$$

with respect to ω_{i} subject to

$$
\begin{equation*}
\sum_{i \in s} \omega_{i}=\sum_{i \in s} d_{i} \tag{19}
\end{equation*}
$$

and a new constraint α defined by Eq.(17).
The Lagrange function is defined by

$$
\begin{equation*}
l=\sum_{i \in s} \omega_{i} x_{i}-\lambda_{1}\left(\sum_{i \in s} \omega_{i}-\sum_{i \in s} d_{i}\right)-\lambda_{2}\left(\frac{1}{2} \sum_{i \in s} \frac{\left(\omega_{i}-d_{i}\right)^{2}}{d_{i} q_{i}}+\frac{1}{2} \phi^{2} \sum_{i \in s} \frac{\omega_{i}^{2}}{d_{i} q_{i}}-\alpha\right) \tag{20}
\end{equation*}
$$

where λ_{1} and λ_{2} are the Lagrange multipliers.
Differentiating the right hand side of Eq.(20) with respect to ω_{i}, equate to zero, and
solving for ω_{i}, we have

$$
\begin{equation*}
\omega_{i}=\frac{1}{1+\phi^{2}}\left(d_{i}+\frac{d_{i} q_{i}}{\lambda_{2}}\left(x_{i}-\lambda_{1}\right)\right) \tag{21}
\end{equation*}
$$

Summing both sides of Eq.(21) over all possible sampled values and using Eq.(19), we have

$$
\begin{equation*}
\lambda_{1}=\frac{1}{\sum_{i \in s} d_{i} q_{i}}\left(\sum_{i \in s} d_{i} q_{i} x_{i}-\phi^{2} \lambda_{2} \sum_{i \in s} d i\right) \tag{22}
\end{equation*}
$$

Now, substituting Eq.(21) into Eq.(17), we have

$$
\begin{equation*}
2 \alpha\left(1+\phi^{2}\right) \lambda_{2}^{2}=\phi^{2} \lambda_{2}^{2} \sum_{i \in s} \frac{d_{i}}{q_{i}}+\sum_{i \in s} d_{i} q_{i} x_{i}^{2}-2 \lambda_{1} \sum_{i \in s} d_{i} q_{i} x_{i}+\lambda_{1}^{2} \sum_{i \in s} d_{i} q_{i} \tag{23}
\end{equation*}
$$

Substituting Eq.(22) into Eq.(23), we have

$$
\begin{equation*}
\lambda_{2}= \pm \frac{1}{c} \sqrt{\sum_{i \in s} d_{i} q_{i}\left(x_{i}-\sum_{i \in s} d_{i} q_{i} x_{i} / \sum_{i \in s} d_{i} q_{i}\right)^{2}} \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
c=\sqrt{2 \alpha\left(1+\phi^{2}\right)-\phi^{2} \sum_{i \in s} d_{i} / q_{i}-\phi^{4}\left(\sum_{i \in s} d_{i}\right)^{2} / \sum_{i \in s} d_{i} q_{i}} . \tag{25}
\end{equation*}
$$

Ignore the negative sign, where the sign is to be determined by the choice of the sign of c. Substituting Eq.(24) into Eq.(22) and using the result in Eq.(21), multiplying ω_{i} by y_{i} and summing over $i \in s$ we have

$$
\begin{equation*}
\hat{t}_{y . n e w}=\frac{1}{1+\phi^{2}}\left(\sum_{i \in s} d_{i} y_{i}+\phi^{2}\left(\sum_{i \in s} d_{i} / \sum_{i \in s} d_{i} q_{i}\right) \sum_{i \in s} d_{i} q_{i} y_{i}+\delta c\right) \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta=S_{x y} / \sqrt{S_{x x}}, \tag{27}
\end{equation*}
$$

where $c, S_{x y}$, and $S_{x y}$ are given by Eq.(25), Eq.(10), and Eq.(11) respectively. With the same reasons adopted by Singh (2013), the best choice of c is

$$
c=\frac{t_{x}-\hat{t}_{x \pi}}{\sqrt{S_{x x}}} \sim N(0,1) ;
$$

therefore,

$$
\begin{equation*}
\hat{t}_{y . n e w}=\lambda \hat{t}_{y . s i n}+(1-\lambda) \widetilde{t}_{y \pi}, \tag{28}
\end{equation*}
$$

where $\lambda=1 /\left(1+\phi^{2}\right), \hat{y}_{\text {y.sin }}$ is defined by Eq.(8), and

$$
\begin{equation*}
\widetilde{t}_{y \pi}=\frac{\hat{t}_{1 \pi}}{\hat{t}_{q \pi}} \hat{t}_{q y \pi} \tag{29}
\end{equation*}
$$

Furthermore, $\hat{t}_{1 \pi}=\sum_{i \in s}\left(1 / \pi_{i}\right), \quad \hat{t}_{q \pi}=\sum_{i \in s}\left(q_{i} / \pi_{i}\right)$, and $\hat{t}_{q y \pi}=\sum_{i \in s}\left(q_{i} y_{i} / \pi_{i}\right)$ be the Horvitz and Thompson (1952) estimators for N, t_{q}, and $t_{q y}$, respectively.

Remark 2.1 Since $\lambda \in(0,1)$, Eq. (28) is a convex transformation between $\hat{y}_{y . s i n}$ and $\widetilde{t}_{y \pi}$, defined by Eq.(8) and Eq.(29) respectively. At the same time, as $\phi^{2} \rightarrow \infty \Rightarrow \lambda \rightarrow 0 \Rightarrow$ $\hat{t}_{y . n e w} \rightarrow \widetilde{t}_{y \pi}$; moreover, as $\phi^{2} \rightarrow 0 \Rightarrow \lambda \rightarrow 1 \Rightarrow \hat{t}_{y . n e w} \rightarrow \hat{t}_{y . s i n}$.

The performance of $\hat{t}_{y . n e w}$ will be discussed through simulations from real data set. We will compare $\hat{t}_{y . n e w}, \hat{t}_{y . s i n}$, and $\widetilde{t}_{y \pi}$. Consider the FEV data set which was used by Singh (2013) and downloaded from http://www.amstat.org/publications/jse/datasets/fev.dat.txt. Let Y be the Forced expiratory volume, $t_{y}=1724$; and the auxiliary variable X be the Children height in inches, $t_{x}=39988$. Our aim is to estimate t_{y} by using $\hat{t}_{y . n e w}, \hat{t}_{y . s i n}$, and $\widetilde{t}_{y \pi}$. To achieve our aim, simulate $v=3000$ independent random samples from the FEV data set by using procedure surveyselect of SAS Institute, under SRSWR design. For $q_{i}=x_{i}$ and based on the random samples, estimate t_{y} by $\hat{t}_{y . n e w}, \hat{t}_{y . s i n}$, and $\tilde{t}_{y \pi}$. Furthermore, compute the empirical mean (Em.Mean), relative bias (RB), and empirical relative mean squares error (REMSE) of the estimators $\hat{t}_{y . n e w}, \hat{t}_{y . s i n}$, and $\widetilde{t}_{y \pi}$; where

$$
\begin{align*}
\operatorname{EM.Mean}\left(\hat{t}_{y}^{*}\right) & =\frac{1}{v} \sum_{i=1}^{v}\left(\hat{t}_{y}^{*}\right)_{i} \tag{30}\\
\operatorname{RB}\left(\hat{t}_{y}^{*}\right) & =\frac{\operatorname{EM.Mean}\left(\hat{t}_{y}^{*}\right)-t_{y}}{t_{y}} \times 100 \% \tag{31}\\
\operatorname{REMSE}\left(\hat{t}_{y}^{*}\right) & =\frac{\sum_{i=1}^{v}\left(\hat{t}_{y}^{*}-t_{y}\right)^{2}}{\sum_{i=1}^{v}\left(\hat{t}_{y . n e w}-t_{y}\right)^{2}}, \tag{32}
\end{align*}
$$

where EM.Mean $\left(\hat{t}_{y}^{*}\right), \operatorname{RB}\left(\hat{t}_{y}^{*}\right)$, and $\operatorname{REMSE}\left(\hat{t}_{y}^{*}\right)$ are the empirical mean, relative bias, and relative mean squares error of the estimator \hat{t}_{y}^{*}. For $n=25,35,45,55,65$, and 75 . The results are summarized in Table (1).

From Table (1), in the sense of REMSE, the estimator $\hat{y}_{y . s i n}$ performs better than $\hat{t}_{y . n e w}$ and $\widetilde{t}_{y \pi}$ for all values of n and for the different values of $\lambda=0,0.25,0.5,0.75$, and 1 . However, $\operatorname{REMSE}\left(\tilde{y}_{y \pi}\right)$ varies from 1 to 6.74 ; at the same time, $\operatorname{REMSE}\left(\widetilde{t}_{y \pi}\right)=6.74$ is attainable for large $n=75$. From this point, concentrations will be focused on the performance of $\widetilde{f}_{y \pi}$ in order to improve the performance of $\hat{t}_{y . n e w}$. The remaining of this article will be focused on the improvement of $\widetilde{t}_{y \pi}$.

Remark 2.2 The Horvitz and Thompson (1952) estimator defined by Eq.(1) is a special case from Eq.(29), namely when $q_{i}=1$ (or a positive constant). Hence, $\tilde{t}_{y \pi}$ is modified $\hat{y}_{y \pi}$ for estimating the finite population total t_{y}. Further, $\tilde{t}_{y \pi}$ uses the availability of the auxiliary variable through q_{i} 's.

To the first order and by using Taylor expansion, expanding the right hand side of Eq.(29), we have

$$
\begin{equation*}
\tilde{t}_{y \pi} \simeq \frac{t_{1}}{t_{q}} t_{q y}+\frac{t_{q y}}{t_{q}}\left(\hat{t}_{1 \pi}-t_{1}\right)+\frac{t_{1}}{t_{q}}\left(\hat{t}_{q y \pi}-t_{q y}\right)-\frac{t_{1} t_{q y}}{t_{q}^{2}}\left(\hat{t}_{q \pi}-t_{q}\right) \tag{33}
\end{equation*}
$$

Therefore, the bias of $\widetilde{t}_{y \pi}$ is given by

$$
\begin{equation*}
\operatorname{Bias}\left(\widetilde{t}_{y \pi}\right)=t_{y}-\frac{t_{1}}{t_{q}} t_{q y} . \tag{34}
\end{equation*}
$$

Remark 2.3 It is clear from Eq.(34) that $\tilde{t}_{y \pi}$ is a biased estimator for estimating the finite population total t_{y}. However, $\tilde{t}_{y \pi}$ is a strictly linear estimator; therefore, we can deduce two exactly unbiased estimators from $\tilde{y}_{y \pi}$ based on Sugden and Smith (2002).

From Eq.(29), rewrite $\tilde{t}_{y \pi}$ as

$$
\begin{equation*}
\tilde{t}_{y \pi}=\sum_{i \in s} b_{s i} y_{i} \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{s i}=\frac{q_{i} / \pi_{i}}{\sum_{i \in s}\left(q_{i} / \pi_{i}\right) / \sum_{i \in s}\left(1 / \pi_{i}\right)} . \tag{36}
\end{equation*}
$$

From Eq.(15), recall the definition of B_{i},

$$
\begin{align*}
B_{i} & =\sum_{s \ni i} p(s) b_{s i} \\
& =\frac{q_{i}}{\pi_{i}} \sum_{s \ni i}\left[p(s) \frac{\sum_{i \in s}\left(1 / \pi_{i}\right)}{\sum_{i \in s}\left(q_{i} / \pi_{i}\right)}\right] \tag{37}
\end{align*}
$$

Based on Sugden and Smith (2002) approach, the two exactly unbiased estimators deduced from $\tilde{t}_{y \pi}$ for t_{y} are

$$
\begin{equation*}
\tilde{t}_{y \pi(1)}=\tilde{t}_{y \pi}-\sum_{i \in s}\left(B_{i}-1\right) y_{i} / \pi_{i} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{t}_{y \pi(2)}=\sum_{i \in s} \frac{b_{s i}}{B_{i}} y_{i} \tag{39}
\end{equation*}
$$

where $b_{s i}$ and B_{i} are defined by Eq.(36) and Eq.(37) respectively.

Remark 2.4 Eq.(35) shows that $\widetilde{t}_{y \pi}$ is a general linear estimator of t_{y}. Furthermore, $\widetilde{t}_{y \pi(1)}$ and $\tilde{t}_{y \pi(2)}$ are two exactly unbiased estimators for t_{y} deduced from $\tilde{t}_{y \pi}$; therefore, $\tilde{t}_{y \pi}$ is a strictly linear estimator based on the Sugden and Smith (2002) definition. Hence, the estimators $\widetilde{t}_{y \pi(1)}$ and $\widetilde{t}_{y \pi(2)}$ are generalization of the Horvitz and Thompson (1952) estimator and use the availability of the auxiliary variable.

Since $\tilde{t}_{y \pi(1)}$ and $\widetilde{t}_{y \pi(2)}$ are exactly unbiased estimators for t_{y}, the infinite number of exactly unbiased estimators is defined by

$$
\begin{equation*}
\tilde{t}_{y \pi}=\omega \tilde{t}_{y \pi(1)}+(1-\omega) \tilde{t}_{y \pi(2)}, \quad \text { for } \quad 0 \leq \omega \leq 1 . \tag{40}
\end{equation*}
$$

Remark 2.5 The estimator $\tilde{t}_{y \pi}$ is a convex transformation and an unbiased estimator for estimating the population total t_{y}.

2.1. Modified Horvitz-Thompson and Stratified Sampling Designs

The finite population U of size N is divided into L non-overlapping strata $U_{1}, U_{2}, \ldots, U_{L}$; $U=\bigcup_{h=1}^{L} U_{h}$. The population total for the $h^{t h}$ stratum is $t_{y h}=\sum_{i \in U_{h}} y_{i}$. Furthermore, the $h^{t h}$ stratum is of size N_{h} and $N=\sum_{h=1}^{L} N_{h}$. The population total t_{y} is redefined as

$$
\begin{equation*}
t_{y}=\sum_{h=1}^{L} t_{y h} \tag{41}
\end{equation*}
$$

For the $h^{t h}$ stratum and based on a measurable sampling design p_{h} (.), draw a random sample s_{h} of size n_{h} from U_{h}. Assume $\bar{x}_{h}=\sum_{i \in U_{h}} x_{i} / N_{h}$ is known for $h=1,2, \ldots, L$. Apply $\widetilde{t}_{y \pi(1)}$ and $\widetilde{t}_{y \pi(2)}$ to the $h^{t h}$ stratum. In other words, estimate $t_{y h}$ by

$$
\begin{equation*}
\tilde{t}_{y \pi(1) . h}=\tilde{t}_{y \pi . s t}-\sum_{i \in s_{h}}\left(B_{i}-1\right) y_{i} / \pi_{i}, \tag{42}
\end{equation*}
$$

or by

$$
\begin{equation*}
\tilde{t}_{y \pi(2) \cdot h}=\sum_{i \in s_{h}} \frac{b_{s_{h i}}}{B_{i}} y_{i} . \tag{43}
\end{equation*}
$$

In this case, $\tilde{t}_{y \pi(1) . h}$ and $\widetilde{t}_{y \pi(2) . h}$ are exactly two unbiased estimators for $t_{y h}$, where

$$
\begin{equation*}
\widetilde{t}_{y \pi . s t}=\sum_{h=1}^{L} \frac{\hat{t}_{1 \pi . h}}{\hat{t}_{q \pi . h}} \hat{t}_{q y \pi . h} ; \tag{44}
\end{equation*}
$$

$\hat{t}_{1 \pi . h}=\sum_{i \in s_{h}}\left(1 / \pi_{i}\right), \quad \hat{t}_{q \pi . h}=\sum_{i \in s_{h}}\left(q_{i} / \pi_{i}\right)$, and $\hat{t}_{q y \pi . h}=\sum_{i \in s_{h}}\left(q_{i} y_{i} / \pi_{i}\right)$ be the Horvitz and Thompson (1952) estimators for $N_{h}, t_{q . h}$, and $t_{q y . h}$, respectively.

From Eq.(41), estimate t_{y} by

$$
\begin{equation*}
\tilde{t}_{y \pi(1) \cdot s t}=\sum_{h=1}^{L} \tilde{t}_{y \pi(1) \cdot h}, \tag{45}
\end{equation*}
$$

or by

$$
\begin{equation*}
\tilde{t}_{y h \pi(2) \cdot s t}=\sum_{h=1}^{L} \tilde{t}_{y \pi(2) \cdot h} \tag{46}
\end{equation*}
$$

where $\tilde{t}_{y \pi(1) . h}$ and $\widetilde{t}_{y \pi(2) . h}$ are defined in Eq.(42) and Eq.(43), respectively.
Remark 2.6 The two estimators $\tilde{t}_{y \pi(1) . h}$ and $\tilde{t}_{y \pi(2) . h}$ are two exactly unbiased estimators for $t_{y h}$. Based on this idea, the two estimators $\widetilde{t}_{y \pi(1) . s t}$ and $\widetilde{t}_{y \pi(2) . s t}$ are exactly unbiased estimators for t_{y}; therefore, the accumulation of bias across strata is avoided.

2.2. Special Cases

The exactly unbiased estimators $\widetilde{t}_{y \pi(1)}$ and $\widetilde{t}_{y \pi(2)}$ are given by Eq.(38) and Eq.(39) respectively, deduced from the modified HT estimator $\widetilde{t}_{y \pi}$, depending on the weight q_{i}. Therefore, $\widetilde{t}_{y \pi(1)}$ and $\widetilde{t}_{y \pi(2)}$ can use the availability of the auxiliary variables through q_{i}. In this section, different special cases are considered.

As we mentioned earlier, $\tilde{t}_{y \pi}$ reduces to $\hat{y}_{y \pi}$, the ordinary Horvitz and Thompson (1952) estimator, when q_{i} 's are one or positive constant. Furthermore, from Eq.(36), $b_{s i}=1 / \pi_{i}$ and from Eq.(37), $B_{i}=1$. Therefore,

$$
\begin{equation*}
\tilde{t}_{y \pi(1)}=\tilde{t}_{y \pi(2)}=\hat{t}_{y \pi}, \tag{47}
\end{equation*}
$$

i.e. $\widetilde{t}_{y \pi(1)}$ and $\widetilde{t}_{y \pi(2)}$ are identical; in other words, $\widetilde{t}_{y \pi}$ is exactly an unbiased estimator for t_{y}. In this case, the Sugden and Smith (2002) approach gives exactly one unbiased estimator for estimating t_{y}.

Draw a random sample s of size n from the population U of size N by using the simple random sample without replacement (SRSWR) design. Under SRSWR design, $p(s)=1 /\binom{N}{n}$ and $\pi_{i}=n / N$. Consider the following two cases:
a. $q_{i}=\pi_{i}$.

In this case, $b_{s i}=\frac{N}{n}$ and $B_{i}=1$. Therefore,

$$
\begin{equation*}
\hat{t}_{y \pi}=\widetilde{t}_{y \pi(1)}=\widetilde{t}_{y \pi(2)}=N \bar{y}_{s}, \tag{48}
\end{equation*}
$$

which is well-known estimator for estimating t_{y}, where $\bar{y}_{s}=\sum_{i=1}^{n} y_{i} / n$. In this case, the two exactly unbiased estimators based on Sugden and Smith (2002) are reduced to one unbiased estimator, i.e. the Sugden and Smith (2002) approach produces exactly only one unbiased estimator.
b. $q_{i}=x_{i}, x_{i}>0$.

In this case, $b_{s i}=N x_{i} / \sum_{j \in s} x_{j}$ and $B_{i}=N x_{i} p(s) \sum_{s \ni i}\left(\sum_{j \in s} x_{j}\right)^{-1}$. Therefore,

$$
\begin{equation*}
\tilde{t}_{y \pi(1)}=N\left[\frac{\sum_{i \in s} x_{i} y_{i}}{\sum_{i \in s} x_{i}}+\bar{y}_{s}-\frac{1}{\binom{N-1}{n-1}} \sum_{i \in s}\left\{\sum_{s \ni i}\left(\sum_{j \in s} x_{j}\right)^{-1}\right\} x_{i} y_{i}\right], \tag{49}
\end{equation*}
$$

and

$$
\begin{align*}
\tilde{t}_{y \pi(2)} & =\binom{N}{n} \sum_{i \in s}\left[\frac{y_{i}}{\sum_{s \ni i}\left(\sum_{j \in s} x_{j}\right)^{-1}}\right] / \sum_{j \in s} x_{j} \tag{50}\\
& =\hat{T}_{R(2)} \tag{51}
\end{align*}
$$

where $\hat{T}_{R(2)}$ is an estimate of t_{y} defined by Sugden and Smith (2002), Eq.(4.5).

3. Empirical Studies

Sugden and Smith (2002) considered the ratio estimator

$$
\begin{equation*}
\hat{T}_{R}=t_{x} \frac{\hat{t}_{y \pi}}{\hat{t}_{x \pi}} \tag{52}
\end{equation*}
$$

as a general linear estimator for the population total $t_{y} . \hat{T}_{R}$ is asymptotically an unbiased estimator of t_{y}. Since \hat{T}_{R} produces two exactly unbiased estimators of t_{y}, \hat{T}_{R} is a strictly linear estimator for t_{y}. Under SRSWR, $B_{R i}=t_{x} \sum_{s \ni i}\left(\sum_{j \in s} x_{j}\right)^{-1} /\binom{N}{n}$. In this case, the exactly unbiased estimators are

$$
\begin{equation*}
\hat{T}_{R(1)}=\hat{T}_{R}-\frac{N}{n} \sum_{i \in s}\left(B_{R i}-1\right) y_{i}, \tag{53}
\end{equation*}
$$

and $\widetilde{T}_{R(2)}$, defined by Eq.(51).
Assume all the values of the auxiliary variable are available in the study; under SRSWR design, the estimators $\hat{t}_{y \pi}, \tilde{t}_{y \pi(1)}, \tilde{t}_{y \pi(2)}, \hat{T}_{R(2)}, \hat{T}_{R}$, and $\hat{T}_{R(1)}$ defined by Eq.(48), (49), (50), (51), (52), (53) respectively, will be used in the empirical studies.

Consider the data set given by Example(4.9), Page 139, Lohr (2010). In this example, X is the photo counts of dead trees and Y is the field counts of dead trees; $N=25, t_{x}=$ 265 , and $t_{y}=289$. From this data set, under SRSWR, draw all random samples of sizes $n=2,3,4$. The computations are implemented by using a SAS program written under the iml procedure. The number of all random samples is $m=300,2300,12650$ for $n=2,3,4$ respectively. The relative efficiency of the ratio family is defined by $\operatorname{MSE}\left(\hat{T}_{R(i)}\right) / \operatorname{MSE}\left(\hat{T}_{R}\right)$ and relative efficiency of the Horvitz and Thompson (1952) family is defined by $\operatorname{MSE}\left(\widetilde{t}_{y \pi(i)}\right) / \operatorname{MSE}\left(\hat{t}_{y \pi}\right)$ for $i=1,2$. The results are given in Table(2).

In the case of a stratification, consider the data set cars93 from Scheaffer, Menden-
hall and Ott (2006). The data set cars93 consists of different variables; for our study, let $X:=M P G C I T Y, Y:=M P G H I G H$, and the stratifications based on the variable "typecode". The cars93 data set is summarized by the following table.

$h^{\text {th }}$ stratum	1	2	3	4	5	6	total
N_{h}	20	16	22	11	14	9	$N=92$
$t_{x h}$	598	363	430	202	305	153	$t_{x}=2051$
$t_{y h}$	712	478	588	294	403	197	$t_{y}=2672$

For the $h^{\text {th }}$ stratum, $h=1, \ldots, 6$, the results are given in Tables (3),...,(8) respectively. Based on the stratified sampling design, the population total t_{y} is estimated by using the estimators $\hat{t}_{y \pi}, \widetilde{t}_{y \pi(1)}, \widetilde{t}_{y \pi(2)}, \hat{T}_{R(2)}, \hat{T}_{R}$, and $\hat{T}_{R(1)}$; for $n=12,18,24$. The results are given in Table (9). At the same time, Table (9) is computed from Tables (3),...,(8).

4. Concluding Remarks

In this paper, the Horvitz and Thompson (1952) estimator is modified so that the modified estimators can use the availability of the auxiliary variable in the study. Based on the Sugden and Smith (2002) approach, two exactly unbiased estimators for estimating the population total t_{y} are deduced from the modified estimator. Furthermore, the exactly two unbiased estimators can be used in stratified sampling designs.

From Table(2), the deduced estimators $\tilde{t}_{y \pi(1)}$ and $\widetilde{t}_{y \pi(2)}$ are exactly unbiased estimators for estimating t_{y} and perform better than the original Horvitz and Thompson (1952) estimator $\hat{t}_{y \pi}$, in the sense of relative efficiency. Moreover, Table(2) supports the same conclusion mentioned by Sugden and Smith (2002), i.e. the estimators $\hat{T}_{R(1)}$ and $\hat{T}_{R(2)}$ are exactly unbiased estimators and perform better than the original ratio estimator \hat{T}_{R}, in the sense of relative efficiency.

Based on the Sugden and Smith (2002) approach, the two exactly unbiased estimators based on their families for estimating t_{y} perform better than the original estimators even if the original estimators are asymptotically unbiased or unbiased estimators. Furthermore, the estimators deduced from Horvitz and Thompson (1952) perform better than the deduced estimators from the ratio estimator. Small sample sizes are usually selected in the case of stratified sampling design; moreover, the deduced estimators can be applied to every stratum and aggregated together to estimate the population total.

For $h=1, \ldots, 6$ the results are given by Tables (3),...,(8), respectively. Table (9) is computed from Tables (3),..,(8), and shows that $\widetilde{t}_{y \pi(1)}, \widetilde{t}_{y \pi(2)}, \hat{T}_{R(1)}$, and $\hat{T}_{R(2)}$ are exactly unbiased estimators for t_{y}. Furthermore, the bias of the ratio estimator \hat{T}_{R}, is negligible (asymptotically unbiased) and performs better than $\hat{t}_{y \pi}$ (exactly unbiased) in the sense of relative efficiency. $\hat{T}_{R(1)}$ and $\hat{T}_{R(2)}$ estimators perform better than the ratio estimator \hat{T}_{R} for all $n=12,18,24$. At the same time, the relative efficiency of $\hat{T}_{R(1)}$ and $\hat{T}_{R(2)}$ are approximately the same for $n=12,18,24$. In the case of the Horvtiz-Thompson family, the deduced estimators $\widetilde{t}_{y \pi(1)}$ and $\widetilde{t}_{y \pi(2)}$ perform significantly better than the original estimator $\hat{t}_{y \pi}$, in the sense of relative efficiency. Furthermore, the estimators $\widetilde{t}_{y \pi(1)}$ and $\widetilde{t}_{y \pi(2)}$ deliver approximately the same performance, for all $n=12,18,24$.

From Eq.(51), we have $\tilde{t}_{y \pi(2)}=\hat{T}_{R(2)}$; therefore, the ratio family and the Horvitz-Thompson family can be compared. Tables (2), (3),..., (9) show that

$$
\frac{\operatorname{MSE}\left(\tilde{t}_{y \pi(1)}\right)}{\operatorname{MSE}\left(\tilde{t}_{y \pi(2)}\right)} \cong \frac{\operatorname{MSE}\left(\hat{T}_{R(1)}\right)}{\operatorname{MSE}\left(\hat{T}_{R(2)}\right)},
$$

for all values of n. Therefore, the deduced estimators $\tilde{t}_{y \pi(1)}$ and $\tilde{t}_{y \pi(2)}$ from the HorvitzThompson family and $\hat{T}_{R(1)}$ and $\hat{T}_{R(2)}$ from the ratio family perform better than the original families even though the original families are unbiased or asymptotically unbiased estimators.

Acknowledgement

The authors are grateful to the referees for their valuable comments and suggestions. Also, our thanks are extended to the editorial office of Statistics in Transition new series for their cooperation.

		$\hat{t}_{y . \sin }$	$\tilde{t}_{y} \pi$	$\hat{t}_{\text {y.new }}$			$\hat{t}_{y . \sin }$	$\widehat{t}_{y} \pi$	$\hat{t}_{\text {y.new }}$
$\begin{aligned} & n=25 \\ & \lambda \rightarrow 0 \end{aligned}$	Em.Mean	1720.34	1770.59	1770.59	$n=55$	Em.Mean	1722.70	1768.77	1768.77
	RB	-0.24	2.68	2.68	$\lambda \rightarrow 0$	RB	-0.10	2.57	2.57
	REMSE	0.21	1.00	1.00		REMSE	0.17	1.00	1.00
$\begin{gathered} n=25 \\ \lambda=0.25 \end{gathered}$	Em.Mean	1720.34	1770.59	1758.03	$n=55$	Em.Mean	1722.70	1768.77	1757.25
	RB	-0.24	2.68	1.95	$\lambda=0.25$	RB	-0.10	2.57	1.90
	REMSE	0.32	1.54	1.00		REMSE	0.27	1.58	1.00
$\begin{gathered} n=25 \\ \lambda=0.50 \end{gathered}$	Em.Mean	1720.34	1770.59	1745.47	$n=55$	Em.Mean	1722.70	1768.77	1745.73
	RB	-0.24	2.68	1.22	$\lambda=0.50$	RB	-0.10	2.57	1.23
	REMSE	0.52	2.51	1.00		REMSE	0.45	2.68	1.00
$\begin{gathered} \hline n=25 \\ \lambda=0.75 \end{gathered}$	Em.Mean	1720.34	1770.59	1732.90	$n=55$	Em.Mean	1722.70	1768.77	1734.21
	RB	-0.24	2.68	0.49	$\lambda=0.75$	RB	-0.10	2.57	0.57
	REMSE	0.83	3.98	1.00		REMSE	0.78	4.58	1.00
$\begin{aligned} & n=25 \\ & \lambda \rightarrow 1 \end{aligned}$	Em.Mean	1720.34	1770.59	1720.34	$n=55$	Em.Mean	1722.70	1768.77	1722.70
	RB	-0.24	2.68	-0.24	$\lambda \rightarrow 1$	RB	-0.10	2.57	-0.10
	REMSE	1.00	4.81	1.00		REMSE	1.00	5.89	1.00
$\begin{aligned} & n=35 \\ & \lambda \rightarrow 0 \end{aligned}$	Em.Mean	1722.08	1770.28	1770.28	$n=65$	Em.Mean	1722.93	1768.89	1768.89
	RB	-0.14	2.66	2.66	$\lambda \rightarrow 0$	RB	-0.09	2.58	2.58
	REMSE	0.19	1.00	1.00		REMSE	0.16	1.00	1.00
$\begin{gathered} n=35 \\ \lambda=0.25 \end{gathered}$	Em.Mean	1722.08	1770.28	1758.23	$n=65$	Em.Mean	1722.93	1768.89	1757.40
	RB	-0.14	2.66	1.96	$\lambda=0.25$	RB	-0.09	2.58	1.91
	REMSE	0.30	1.55	1.00		REMSE	0.26	1.57	1.00
$\begin{gathered} n=35 \\ \lambda=0.50 \end{gathered}$	Em.Mean	1722.08	1770.28	1746.18	$n=65$	Em.Mean	1722.93	1768.89	1745.91
	RB	-0.14	2.66	1.26	$\lambda=0.50$	RB	-0.09	2.58	1.24
	REMSE	0.49	2.56	1.00		REMSE	0.44	2.67	1.00
$\begin{gathered} n=35 \\ \lambda=0.75 \end{gathered}$	Em.Mean	1722.08	1770.28	1734.13	$n=65$	Em.Mean	1722.93	1768.89	1734.42
	RB	-0.14	2.66	0.56	$\lambda=0.75$	RB	-0.09	2.58	0.58
	REMSE	0.80	4.17	1.00		REMSE	0.76	4.59	1.00
$\begin{aligned} & n=35 \\ & \lambda \rightarrow 1 \end{aligned}$	Em.Mean	1722.08	1770.28	1722.08	$n=65$	Em.Mean	1722.93	1768.89	1722.93
	RB	-0.14	2.66	-0.14	$\lambda \rightarrow 1$	RB	-0.09	2.58	-0.09
	REMSE	1.00	5.20	1.00		REMSE	1.00	6.07	1.00
$\begin{aligned} & n=45 \\ & \lambda \rightarrow 0 \end{aligned}$	Em.Mean	1721.84	1769.24	1769.24	$n=75$	Em.Mean	1723.25	1770.39	1770.39
	RB	-0.15	2.60	2.60	$\lambda \rightarrow 0$	RB	-0.07	2.66	2.66
	REMSE	0.19	1.00	1.00		REMSE	0.15	1.00	1.00
$\begin{gathered} \begin{array}{c} n=45 \\ \lambda=0.25 \end{array} \end{gathered}$	Em.Mean	1721.84	1769.24	1757.39	$n=75$	Em.Mean	1723.25	1770.39	1758.61
	RB	-0.15	2.60	1.91	$\lambda=0.25$	RB	-0.07	2.66	1.98
	REMSE	0.29	1.55	1.00		REMSE	0.25	1.59	1.00
$\begin{gathered} n=45 \\ \lambda=0.50 \end{gathered}$	Em.Mean	1721.84	1769.24	1745.54	$n=75$	Em.Mean	1723.25	1770.39	1746.82
	RB	-0.15	2.60	1.22	$\lambda=0.50$	RB	-0.07	2.66	1.30
	REMSE	0.48	2.57	1.00		REMSE	0.42	2.73	1.00
$\begin{gathered} n=45 \\ \lambda=0.75 \end{gathered}$	Em.Mean	1721.84	1769.24	1733.69	$n=75$	Em.Mean	1723.25	1770.39	1735.04
	RB	-0.15	2.60	0.54	$\lambda=0.75$	RB	-0.07	2.66	0.61
	REMSE	0.78	4.22	1.00		REMSE	0.74	4.81	1.00
$\begin{aligned} & n=45 \\ & \lambda \rightarrow 1 \end{aligned}$	Em.Mean	1721.84	1769.24	1721.84	$n=75$	Em.Mean	1723.25	1770.39	1723.25
	RB	-0.15	2.60	-0.15	$\lambda \rightarrow 1$	RB	-0.07	2.66	-0.07
	REMSE	1.00	5.39	1.00		REMSE	1.00	6.47	1.00

Table 1: Computations are based on Eq.(28). The REMSE's are computed by using Eq. (32) for $\hat{t}_{y}^{*}=\hat{t}_{y . \sin }, \widetilde{t}_{y \pi}$, and $\hat{t}_{y . n e w}$.

Estimator	$n=2$		$n=3$		$n=4$	
	ty	S_{y}^{2}	ty	S_{y}^{2}	ty	S_{y}^{2}
\hat{T}_{R}	294.3058	$\begin{array}{r} 2545.752 \\ (\mathbf{2 5 7 3 . 9 0 4}) \end{array}$	292.291	$\begin{array}{r} 1549.1841 \\ (\mathbf{1 5 6 0 . 0 2 1 3}) \end{array}$	$\begin{aligned} & 291.322 \\ & (2.322) \end{aligned}$	$\begin{array}{r} 1081.5572 \\ (\mathbf{1 0 8 6 . 9 4 8 8}) \end{array}$
$\hat{T}_{R(1)}$	289	1684.9349	289	1111.1305	289	834.9348
$\hat{T}_{R(2)}$	289	1650.5674	289	1087.7975	289	821.8695
$\hat{t}_{y} \pi$	289	2613.375	289	1666.5	289	1193.0625
${ }^{t_{y}} \pi$ (1)	289	1689.2317	289	1115.3438	289	845.6788
${ }^{t} y \pi(2)$	289	1650.5674	289	1087.7975	289	821.8695
\hat{T}_{R} Family	MSE MSE MSE MSE MSE MSE	$=0.6546$ $=0.6413$ $=1.0208$	MSE MS MSE MS MSE MSE	$\begin{aligned} & =0.7123 \\ & =0.6973 \\ & =1.0215 \end{aligned}$	MSE MSE MSE MSE MSE MSE	$\begin{aligned} & =0.7682 \\ & =0.7561 \\ & =1.0159 \end{aligned}$
Horvtiz-Thopson family	$M S E($ $M S E$ $M S E($ $M S E$ $M S E($	$\begin{aligned} & =0.6464 \\ & =0.6316 \\ & =1.0234 \end{aligned}$	$\begin{gathered} M S E \\ \hline M S t \\ M S E \\ \hline M S E \\ M S E \\ \hline M S E \end{gathered}$	$\begin{aligned} & =0.6693 \\ & =0.6527 \\ & =1.0253 \end{aligned}$	MSE $M S E$	$\begin{aligned} & =0.7088 \\ & =0.6889 \\ & =1.029 \end{aligned}$

Table 2: Empirical results based on real data set. For the estimator \hat{T}_{R} : the number between brackets under the mean is the bias and the bold one under the variance is the MSE of \hat{T}_{R}.

Estimator	$n_{h}=2$		$n_{h}=3$		$n_{h}=4$	
	$t_{\text {yh }}$	$S_{\text {yh }}^{2}$	$t_{y h}$	$S_{\text {yh }}^{2}$	$t_{y h}$	$S_{\text {yh }}^{2}$
\hat{T}_{R}	715.7886	1533.6014	714.4398	975.7520	713.7416	691.1576
	(3.7886)	(1547.9549)	(2.4398)	(981.7046)	(1.741556)	(694.1906)
$\hat{T}_{R(1)}$	712	1363.2611	712	522.6314	712	358.48553
$\hat{T}_{R(2)}$	712	1405.6602	712	523.4136	712	353.7434
$\hat{t}_{y \pi}$ $\tilde{t}_{y \pi(1)}$ $t_{y \pi(2)}$	712	5900.2105	712	3714.9474	712	2622.3158
	712	1483.1003	712	578.5657	712	391.3314
	712	1405.6602	712	523.4136	712	353.7434
\hat{T}_{R} Family	$\frac{M S E\left(\hat{T}_{R(1)}\right)}{M S\left(T_{R}\right)}=0.8807$$\frac{M S E\left(T_{R(2)}\right)}{M S E\left(\hat{I}_{R}\right)}=0.9081$$\frac{M S E\left(\hat{T}_{R(1)}\right)}{M S E\left(\hat{T}_{R(2)}\right)}=0.9698$		$\begin{aligned} & \hline \frac{\operatorname{MSE}\left(\hat{T}_{R(1)}\right)}{M S\left(T_{R}\right)}=0.5324 \\ & \frac{M S E\left(T_{R(2)}\right)}{M S E\left(\hat{T}_{R}\right)}=0.5332 \\ & \frac{M S E\left(T_{R(1)}\right)}{M S E\left(\hat{T}_{R(2)}\right)}=0.9985 \end{aligned}$		$\begin{aligned} & \hline \hline \frac{M S E\left(\hat{T}_{R(1)}\right)}{M S E}=0.5164 \\ & \frac{M S E\left(\bar{T}_{R}\right)}{}=15\left(\hat{T}_{2}\right) \\ & M S E=0.5096 \\ & \frac{M S E\left(T_{R(1)}\right)}{M S E\left(\hat{T}_{R(2)}\right)}=1.0134 \end{aligned}$	
Hort-Thom family	$\frac{M S E\left(t_{y n}\right.}{M S\left(t_{1}\right.}$ $\frac{M S E\left(t_{y}\right.}{M S E\left(t_{1}\right)}$ $\frac{M S E}{M S E\left(t_{y}\right)}$	$\begin{aligned} & \text {) }=0.2514 \\ & =0.2382 \\ &)=1.0551 \end{aligned}$	$\begin{aligned} & \frac{M S E\left(t_{y \pi(1)}\right)}{M S E\left(t_{1}\right)} \\ & \frac{M S E\left(t_{y \pi \pi}\right)}{M S E(t))} \\ & \left.\frac{M S E\left(t_{y \pi \pi}\right)}{M S E\left(t_{y \pi(1)}\right)}\right) \end{aligned}$	$\left\{\begin{array}{l} =0.1557 \\ =0.1409 \\ =1.10537 \end{array}\right.$		$\begin{aligned} & =0.1492 \\ & =0.1349 \\ & =1.1063 \end{aligned}$

Table 3: Empirical results from cars93 for Stratum (1): When typecode=1

Estimator	$n_{h}=2$	$n_{h}=3$	$n_{h}=4$	
	$t_{y h} \quad S_{y h}^{2}$	$t_{y h} \quad S_{y h}^{2}$	$t_{y h}$	$S_{y h}^{2}$
\hat{T}_{R}	$478.0681 \quad 306.3392$	478.0383188 .7059	478.0252	130.3291
	(0.0681) (306.3439)	(0.0383) (188.7074)	(0.0252)	(130.3297)
$\hat{T}_{R(1)}$	478 443.4048	$478 \quad 219.6018$	478	139.9649
$\hat{T}_{R(2)}$	478 444.9974	478 220.1128	478	140.1862
$\hat{t}_{y \pi}$	$478 \quad 968.8000$	$478 \quad 599.7333$	478	415.2000
$\widetilde{t}_{y}{ }_{\text {d }}(1)$	$478 \quad 446.9986$	$478 \quad 221.5335$	478	141.1973
$\widetilde{t}_{y \pi(2)}$	$478 \quad 444.9974$	478 220.1128	478	140.1862
\hat{T}_{R} Family	$\begin{aligned} & \frac{\operatorname{MSE}\left(\hat{T}_{R(1)}\right)}{M S\left(T_{R}\right)}=1.4474 \\ & \frac{M S E\left(T_{R(2)}\right)}{M S E\left(\hat{T}_{R}\right)}=1.4526 \\ & \frac{M S E\left(T_{R(1)}\right)}{M S E\left(\hat{T}_{R(2)}\right)}=0.9964 \end{aligned}$	$\begin{aligned} & \frac{\operatorname{MSE}\left(\hat{T}_{R(1)}\right)}{M S\left(T_{R}\right)}=1.1637 \\ & \frac{M S E\left(T_{R(2)}\right)}{M S E\left(T_{R}\right)}=1.1664 \\ & \frac{M S E\left(T_{R(1)}\right)}{M S E\left(\hat{T}_{R(2)}\right)}=0.9977 \end{aligned}$	$\frac{M S E\left(\hat{T}_{R(1)}\right)}{M S E\left(T_{R}\right)}$ $\frac{M S E\left(\hat{T}_{R(2)}\right)}{M S E\left(\hat{T}_{R}\right)}$ $\frac{M S E\left(\hat{T}_{R(1)}\right)}{M S E\left(\hat{T}_{R(2)}\right)}$	$\begin{aligned} & =1.0739 \\ & =1.0756 \\ & =0.9984 \end{aligned}$
Hort-Thom family	$\begin{aligned} & \frac{M S E\left(t_{y \pi(1)}\right)}{M S\left(\hat{t}_{\pi \pi}\right)}=0.4614 \\ & \frac{M S E\left(t_{y \pi(2)}\right)}{M S E E\left(t_{y \pi \pi}\right)}=0.4593 \\ & \frac{M S E\left(t_{y \pi(1)}\right)}{M S E\left(t_{y \pi(2)}\right)}=1.0045 \end{aligned}$	$\begin{aligned} & \frac{M S E\left(t_{y \pi(1)}\right)}{M S E}=0.3694 \\ & \frac{M S E\left(t_{y \pi \tau}\right)}{M S E(2))} \\ & =0.3671 \\ & \frac{M S E\left(t_{y \pi \pi}\right)}{M S E\left(t_{y \pi(1)}\right)} \end{aligned}=1.0065$		$\begin{aligned} & =0.3401 \\ & =0.3376 \\ & =1.0072 \end{aligned}$

Table 4: Empirical results from cars93 for Stratum (2): When typecode=2

Estimator	$n_{h}=2$		$n_{h}=3$		$n_{h}=4$	
	$t_{y h}$	$S_{y h}^{2}$	${ }^{\text {t }}$ yh	$S_{y h}^{2}$	${ }^{\text {y }}$ y	$S_{y h}^{2}$
\hat{T}_{R}	588.4592	449.2140	588.2849	277.1965	588.2004	194.4815
	(0.4592)	(449.4248)	(0.2849)	(277.2777)	(0.2004)	(194.5216)
$\hat{T}_{R(1)}$	588	525.4486	588	260.7300	588	174.2959
$\hat{T}_{R(2)}$	588	527.9447	588	261.3186	588	174.4998
$\begin{aligned} & \hline \hat{t}_{y \pi} \\ & \tilde{t}_{y \pi(1)} \\ & \tilde{t}_{y \pi(2)} \\ & \hline \end{aligned}$	588	1386.6667	588	878.2222	588	624.0000
	588	532.0924	588	264.2138	588	176.5988
	588	527.9447	588	261.3186	588	174.4998
\hat{T}_{R} Family	$\operatorname{MSE}\left(\hat{T}_{R(1)}\right)$	$\frac{\operatorname{MSE}\left(\hat{T}_{R}\right)}{}=1.1692$	$\operatorname{MSE}\left(\hat{T}_{R(1)}\right)$		$\operatorname{MSE}\left(\hat{T}_{R(1)}\right)=0.8960$	
	$\operatorname{MSE}\left(\hat{T}_{R(2)}\right)$	$=1.1747$	$\frac{M S E(}{M S E}$	$=0.9424$	$\operatorname{MSE}\left(\hat{T}_{R(2)}\right)$	
	$\operatorname{MSE}\left(\hat{T}_{R(1)}\right)$		$\begin{array}{r} \text { MSE } \\ \text { MSE } \\ \hline \end{array}$	$=0.9978$	$\operatorname{MSE}\left(\hat{T}_{R(1)}\right)$	
	$\frac{K(1))}{\operatorname{MSE}\left(\hat{T}_{R(2)}\right)}=0.9953$		$\operatorname{MSE}\left(\hat{T}_{R(2)}\right)$		$\operatorname{MSE}\left(\hat{T}_{R(2)}\right)$	
Hort-Thom	$\operatorname{MSE}\left(\tilde{t}_{y \pi}(1)\right)$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(1)}\right)$		$\operatorname{MSE}\left(\tilde{t}_{y \pi}(1)\right)$	
family	$\frac{\operatorname{MDL}\left({ }^{l} y \pi(2)\right)}{\operatorname{MSE}\left(\hat{t}_{y} \pi\right)}=0.3807$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(2)}\right)$		$\frac{(y \pi(2))}{\operatorname{MSE}\left(\hat{t}_{y \pi}\right)}=0.2797$	
	$\operatorname{MSE}\left(\tilde{t}_{y \pi(1)}\right)$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(1)}\right)$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(1)}\right)$	$=1.0120$
	$\frac{\operatorname{MSE}\left(\tilde{t}_{y \pi(2)}\right)}{}=1.0079$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(2)}\right)$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(2)}\right)=1.0$	

Table 5: Empirical results from cars93 for Stratum (3): When typecode=3

Estimator	$n_{h}=2$		$n_{h}=3$		$n_{h}=4$	
	$t_{y h}$	$S_{y h}^{2}$	$t_{y h}$	$S_{y h}^{2}$	${ }^{t}{ }_{y h}$	$S_{y h}^{2}$
\hat{T}_{R}	294.4412	99.6516		58.9851	294.1697	38.6799
	(0.4412)	(99.8463)	(0.2596)	(59.0524)	(0.1697)	(38.7087)
$\hat{T}_{R(1)}$	294	32.2542	294	28.9585	294	24.42012
$\hat{T}_{R(2)}$	294	31.9504	294	28.8365	294	24.3733
$\begin{aligned} & \hat{t}_{y} \pi \\ & t_{y \pi(1)} \\ & \tilde{t}_{y \pi(2)} \\ & \hline \end{aligned}$	294	80.1000	294	47.4667	294	31.1500
	294	32.0873	294	29.0126	294	24.5711
	294	31.9504	294	28.8365	294	24.3733
\hat{T}_{R} Family	$\frac{1}{\operatorname{MSE}\left(\hat{T}_{R}\right)}=0.3230$	0.3230	$\frac{M S E(}{M S E}$	$=0.4904$	$\operatorname{MSE}\left(\hat{T}_{R(1)}\right)$	
	$\begin{array}{r} M S E \\ M S E(\\ \hline M S E \end{array}$	$=0.3199$	$\begin{array}{r} \text { MSE } \\ M S E(\\ \hline M S E \end{array}$	$=0.4883$	$\begin{array}{r} \hline M S E \\ M S E(\hat{T} \\ \hline M S E \end{array}$	$=0.6297$
	$\operatorname{MSE}\left(\hat{T}_{R(1)}\right)$		$\operatorname{MSE}\left(\hat{T}_{R(1)}\right)$		$\operatorname{MSE}\left(\hat{T}_{R(1)}\right)$	
	$\operatorname{MSE}\left(\hat{T}_{R(2)}\right)$		$\operatorname{MSE}\left(\hat{T}_{R(2)}\right)$		$\overline{\operatorname{MSE}\left(\hat{T}_{R(2)}\right)}$	
Hort-Thom	$\operatorname{MSE}\left(\tilde{t}_{y \pi(1)}\right)$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(1)}\right)$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(1)}\right)$	
family	$\operatorname{MSE}\left(\tilde{t}_{y \pi(2)}\right)$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(2)}\right)$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(2)}\right)$	
	$\operatorname{MSE}\left(\tilde{t}_{y \pi(1)}\right)$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(1)}\right)$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(1)}\right)$	
	$\overline{\operatorname{MSE}\left(\tilde{t}_{y \pi(2)}\right)}=1.0043$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(2)}\right)$		$\operatorname{MSE}\left(\tilde{t}_{y \pi(2)}\right)$	

Table 6: Empirical results from cars93 for Stratum (4): When typecode=4

Estimator	$n_{h}=2$		$n_{h}=3$		$n_{h}=4$	
	$t_{y h}$	$S_{y h}^{2}$	$t_{y h}$	$S_{y h}^{2}$	$t_{y h}$	$S_{y h}^{2}$
\hat{T}_{R}	404.9682	$\begin{gathered} 464.2094 \\ (\mathbf{4 6 8 . 0 8 3 3}) \end{gathered}$	$\begin{aligned} & 404.2003 \\ & (1.2003) \end{aligned}$	$\begin{array}{r} 279.8831 \\ (\mathbf{2 8 1 . 3 2 3 8}) \end{array}$	$\begin{gathered} 403.8170 \\ (0.8170) \end{gathered}$	189.1534 $(\mathbf{1 8 9 . 8 2 0 9})$
$\hat{T}_{R(1)}$	403	219.7774	403	117.0185	403	96.4114
$\hat{T}_{R(2)}$	403	221.1506	403	114.8667	403	94.8695
$\hat{t}_{y} \boldsymbol{r}$	403	1113.6923	403	680.5897	403	464.0385
${ }^{t_{y}} \boldsymbol{y}$ (1)	403	234.9529	403	123.6658	403	100.9741
$\tilde{t}_{y \pi}(2)$	403	221.1506	403	114.8667	403	94.8695
\hat{T}_{R} Family	$\begin{aligned} & \frac{\operatorname{MSE}\left(\hat{T}_{R(1)}\right)}{\operatorname{MSE}\left(\hat{T}_{R}\right)}=0.4695 \\ & \frac{\operatorname{MSE}\left(\hat{T}_{R(2)}\right)}{\operatorname{MSE}\left(\hat{T}_{R}\right)}=0.4725 \\ & \frac{\operatorname{MSE}\left(\hat{T}_{R(1)}\right)}{\operatorname{MSE}\left(\hat{T}_{R(2)}\right)}=0.9938 \end{aligned}$		$\begin{aligned} & \frac{\operatorname{MSE}\left(\hat{T}_{R(1)}\right)}{\operatorname{MSE}\left(\hat{T}_{R}\right)}=0.4160 \\ & \frac{\operatorname{MSE}\left(\hat{T}_{R(2)}\right)}{\operatorname{MSE}\left(\hat{T}_{R}\right)}=0.4083 \\ & \frac{\operatorname{MSE}\left(\hat{T}_{R(1)}\right)}{\operatorname{MSE}\left(\hat{T}_{R(2)}\right)}=1.0187 \end{aligned}$		$\begin{aligned} & \frac{\operatorname{MSE}\left(\hat{T}_{R(1)}\right)}{\operatorname{MSE}\left(\hat{T}_{R}\right)}=0.5079 \\ & \frac{\operatorname{MSE}\left(\hat{T}_{R(2)}\right)}{\operatorname{MSE}\left(\hat{T}_{R}\right)}=0.4998 \\ & \frac{\operatorname{MSE}\left(\hat{T}_{R(1)}\right)}{\operatorname{MSE}\left(\hat{T}_{R(2)}\right)}=1.0163 \end{aligned}$	
Hort-Thom family	MSE MSE MSE $M S E$ $M S E$ $M S E$	$\begin{aligned} & =0.2110 \\ & =0.1986 \\ & =1.0624 \end{aligned}$	$\begin{array}{r} \text { MSE } \\ \hline M S E \\ M S E(\\ \hline M S E \\ M S E(\\ \hline M S E(\end{array}$	$\begin{aligned} & =0.1817 \\ & =0.1688 \\ & =1.0766 \end{aligned}$	MSE $M S E$ $M S E($ $M S E$ $M S E($	$=0.2176$ $=0.2044$ $=1.0644$

Table 7: Empirical results from cars93 for Stratum (5): When typecode=5

Estimator	$n_{h}=2$	$n_{h}=3$	$n_{h}=4$
	$t_{y h} \quad S_{y h}^{2}$	$t_{y h} \quad S_{y h}^{2}$	$t_{y h} \quad S_{y h}^{2}$
\hat{T}_{R}	197.091923 .2645	$197.0515 \quad 13.2744$	197.03198 .2891
	(0.0919) (23.2730)	(0.0515) (13.2770)	(0.0319) (8.2901)
$\hat{T}_{R(1)}$	$197 \quad 22.6543$	19711.1726	$197 \quad 7.1120$
$\hat{T}_{R(2)}$	197 22.6484	$197 \quad 11.1820$	$197 \quad 7.1201$
$\hat{t}_{y \pi}$	$197 \quad 66.5000$	$197 \quad 38.0000$	$197 \quad 23.75$
$\tilde{t}_{y}{ }_{\sim}(1)$	197 22.6953	$197 \quad 11.2614$	$197 \quad 7.2046$
$\tilde{t}_{y \pi(2)}$	$197 \quad 22.6484$	$197 \quad 11.1820$	$197 \quad 7.1201$
\hat{T}_{R} Family	$\frac{M S E\left(\hat{T}_{R(1)}\right)}{M S E\left(\hat{T}_{R}\right)}=0.9734$ $\frac{M S E\left(\hat{T}_{R(2)}\right)}{M S E\left(\hat{T}_{R}\right)}=0.9732$ $\frac{M S E\left(\hat{T}_{R(1)}\right)}{M S E\left(T_{R(2)}\right)}=1.0003$	$\frac{\operatorname{MSE}\left(\hat{T}_{R(1)}\right)}{M S E\left(T_{T}\right)}=0.8415$ $\frac{M S E\left(\hat{T}_{R(2)}\right)}{M S E\left(\hat{T}_{R}\right)}=0.8422$ $\frac{M S E\left(\hat{T}_{R(1)}\right)}{M S E\left(T_{R(2)}\right)}=0.9992$	$\begin{aligned} & \frac{\operatorname{MSE}\left(\hat{T}_{R(1)}\right)}{M S\left(T_{R}\right)}=0.8579 \\ & \frac{M S E\left(T_{R(2)}\right)}{M S E\left(T_{R}\right)}=0.8589 \\ & \frac{M S E\left(T_{R(1)}\right)}{M S E\left(\hat{T}_{R(2)}\right)}=0.9989 \end{aligned}$
Hort-Thom family			

Table 8: Empirical results from cars93 for Stratum (6): When typecode=6

Table 9: Empirical results from cars93 based on stratified sampling designs

REFERENCES

AL-JARARHA, J., (2015). A Dual Problem of Calibration of Design Weights Based on Multi-Auxiliary Variables, Communications for Statistical Applications and Methods, 22(2), pp. 137-146.

AL-YASEEN, A., (2014). Penalized Chi-Square Distance and the Dual Calibration for Estimating the Finite Population Total, Master Thesis. Statistics Deperatment. Yarmouk University, Jordan.

DEVILLE, J.-C., SÄRNDAL, C.-E., (1992). Calibration Estimators in Survey Sampling, Journal of the American Statistical Association, 87, pp. 376-382.

GODAMBE, V. P., (1955). A Unified Theory of Sampling from Finite Populations, J. Roy. Statist. Soc., B17, pp. 269-278.

HORVITZ, D. G., THOMPSON, D. J., (1952). A generalization of sampling without replacement from a finite universe, Journal of the American Statistical Association, 47, pp. 663-685.

LOHR, S. L. (2010). Sampling: Design and Analysis (2nd ed.), Boston: Brooks/Cole, Cengage Learning.

NIDHI, B. V. S., SISODIA, S. SINGH, SINGH S. K., (2017). Calibration approach estimation of the mean in stratified sampling and stratified double sampling, Communications in Statistics - Theory and Methods, 46(10), pp. 4932-4942.

OZGUL, N., (2018). New calibration estimator based on two auxiliary variables in stratified sampling. Communications in Statistics - Theory and Methods, doi $=10.1080 / 03610926.2018 .1433852$, pp. 1-12.

SCHEAFFER, R. L., MENDENHALL, W., OTT, R. L. (2006). Elementary Survey Sampling (6th ed.), Belmont, CA: Duxbury.

SINGH, S., (2013). A Dual Problem of Calibration of Design Weights, Statistics: A Journal of Theoretical and Applied Statistics, 47(3), pp. 566-574.

STEARNS, M., S. SINGH, (2008). On the estimation of the general parameter, Computational Statistics Data Analysis, 52, pp. 4253-4271.

SUGDEN, R., SMITH T., (2002). Exact linear unbiased estimation in survey sampling, Journal of Statistical Planning and Inference, 102 (1), pp. 25-38.

[^0]: Terms of use:
 Documents in EconStor may be saved and copied for your personal and scholarly purposes.

 You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

 If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

[^1]: ${ }^{1}$ Department of Statistics, Yarmouk University, Irbid, Jordan. E-mail: jehad@yu.edu.jo. ORSID: https://orcid.org/0000-0001-8233-9849.
 ${ }^{2}$ Department of Statistics, Yarmouk University, Irbid, Jordan . E-mail: jomaa_mazen@yahoo.com

