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Horvitz-Thompson estimator based on theauxiliary
variable

J. Al-Jararha1, Mazen Sulaiman2

ABSTRACT
In this paper, the Horvitz and Thompson (1952) estimator will be modified; so that, the mod-
ified estimators will use the availability of the auxiliary variable. Furthermore, the modified
estimators are extended to be used in stratified sampling designs. Empirical studies are given
for comparison purposes.
Key words: Horvitz-Thompson Estimator, Stratified Sampling Designs, Dual Calibration,
GREG Type Estimator.

1. Introduction

Consider the finite population U of N units indexed by the set {1,2, · · · ,N}. For the ith
unit, let yi be the value of the interest variable Y, and xi be the value of the auxiliary variable
X . The values of X are known for all the units in the population and correlated with the study
variable Y. Without loss of generality, we can assume that xi > 0 for i = 1, 2, . . . ,N. Based
on a probability sampling design p(.) , draw a random sample s from U. The first order
inclusion probability πi is defined by πi = ∑s3 i p(s) , and the second inclusion probability
πi j is defined by πi j = ∑s3 i, j p(s) , for i 6= j, and πi j = πi when i = j. The probability
sampling design p(.) is assumed to be a measurable design. The population total for the
auxiliary variable X is tx = ∑i∈U xi.

Horvitz and Thompson (1952) proposed the following estimator

t̂yπ = ∑
i∈U

yi

πi
I{i∈ s}

= ∑
i∈ s

diyi (1)

to estimate the finite population total ty = ∑i∈U yi, where di = 1/πi are the sampling design
weights and I{i∈ s} is one if i∈ s and zero otherwise. The t̂yπ is exactly an unbiased estimator
for ty.

Remark 1.1 The availability and the calibration on the auxiliary variables can be used to
increase the precision of estimators. However, the Horvitz and Thompson (1952) estimator
does not use the availability of the auxiliary variables. Therefore, the Horvitz and Thompson
(1952) estimator will be modified, so that the modified estimators will use the availability
of the auxiliary variable.
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Deville and Särndal proposed the following estimator

t̂y.ds = ∑
i∈U

wiyiI{i∈s} = ∑
i∈ s

wiyi, (2)

for estimating ty, where wi, i ∈ s, are the new sampling design weights that calibrated
the sampling design weights di defined by Eq.(1) based on the calibration on the known
population total for the auxiliary variable X and the chi-square distance. The calibrated
weights wi are obtained by minimizing the chi-square distance, subject to the side condition.
As a result of this, the calibrated weights wi are given by

wi = di +
tx− t̂xπ

∑i∈s diqix2
i

diqixi, (3)

Therefore, Eq. (2) is reduced to

t̂y.ds = t̂yπ + β̂ds (tx− t̂xπ) (4)

which is a GREG type estimator, where qi’s are known positive weights unrelated to di,

β̂ds =
∑i∈s diqixiyi
∑i∈s diqix2

i
, and t̂xπ is the Horvitz and Thompson (1952) estimator of tx.

Stearns and Singh (2008) summarized the developments by several researchers on the
GREG estimators and used the calibration idea to propose three new estimators of the vari-
ance of the GREG estimators.

Singh (2013) estimated ty based on the dual calibration approach and his approach is
summarized by the following.

Let

t̂sin = ∑
i∈s

ωixi (5)

subject to

∑
i∈s

di = ∑
i∈s

ωi (6)

and a new constraint α defined by

α =
1
2 ∑

i∈s

(ωi−di)
2

diqi
(7)

As a result of this, the proposed estimator is

t̂y.sin = t̂yπ + β̂sin (tx− t̂xπ) (8)
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to estimate the finite population total ty; t̂y.sin is a GREG type estimator, where

β̂sin =
Sxy

Sxx
, (9)

where

Sxy = ∑
i∈s

diqi

(
yi−

∑i∈s diqiyi

∑i∈s diqi

)(
xi−

∑i∈s diqixi

∑i∈s diqi

)
(10)

and

Sxx = ∑
i∈s

diqi

(
xi−∑

i∈s
diqixi/∑

i∈s
diqi

)2

(11)

Two concerns about Eq.(8) are raised by Singh (2013), Remark 1 and Remark 2. Al-Yaseen
(2014) showed that the estimator given by Eq.(8) can be obtained theoretically, which clari-
fies the first concern mentioned in Remark 1. Al-Jararha (2015) made an attempt to suggest
a way to use the dual calibration of the design weights in the case of multi-auxiliary vari-
ables; in other words, an attempt to give an answer to the second concern in Remark 2.

Sugden and Smith (2002) defined the term strictly linear estimator and proposed two
exactly unbiased estimators for the general linear estimates. The possibility of construction
an exactly unbiased estimator from a general linear estimator, the constructed unbiased
estimator is called a strictly linear estimate. Consider the general linear estimates of ty,
defined by Godambe (1955), to be of the form

t̂y = ∑
i∈s

bsiyi. (12)

The exactly unbiased estimators, based on the Sugden and Smith (2002) approach, from
t̂y are defined by

t̂y(1) = t̂y−∑
i∈ s

(Bi−1)yi/πi (13)

and

t̂y(2) = ∑
i∈ s

bsiyi/Bi (14)

for estimating the finite population total ty, where

Bi = ∑
s3 i

p(s)bsi. (15)

Recently, different authors have adopted the calibration technique to modify the original
weights in stratified sampling designs. In the case of stratified sampling designs, Nidhi,
Sisodia, Singh and Singh (2017) proposed a class of calibration estimators for estimating
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the population mean. Based on the availability of two auxiliary variables in the study and
in the case of stratified sampling designs, Ozgul (2018) proposed a calibration estimator for
estimating the population mean.

The Horvitz and Thompson (1952) estimator is well known in survey sampling for es-
timating the finite population total ty. However, this estimator does not use the availability
of the auxiliary variable. In order to improve the precision of this estimator, an attempt to
generalize this estimator will be given, so that the modified Horvitz and Thompson (1952)
estimators will use the availability of the auxiliary variable. Furthermore, our approach can
be applied in the case of stratified sampling designs.

2. Proposed Approach

Based on the dual calibration approach, the estimator

t̂y.new = ∑
i∈S

ωiyi (16)

is proposed to estimate the finite population total ty, by modifying the constraint α of the
Singh (2013) approach. In other words, redefine α as

α =
1
2 ∑

i∈s

(ωi−di)
2

diqi
+

1
2

φ
2
∑
i∈s

ω2
i

diqi
, (17)

where φ is a positive quantity.
The problem now is to minimize

t̂x = ∑
i∈s

ωixi (18)

with respect to ωi subject to

∑
i∈s

ωi = ∑
i∈s

di (19)

and a new constraint α defined by Eq.(17).
The Lagrange function is defined by

l = ∑
i∈s

ωixi−λ1

(
∑
i∈s

ωi−∑
i∈s

di

)
−λ2

(
1
2 ∑

i∈s

(ωi−di)
2

diqi
+

1
2

φ
2
∑
i∈s

ω2
i

diqi
−α

)
(20)

where λ1 and λ2 are the Lagrange multipliers.
Differentiating the right hand side of Eq.(20) with respect to ωi, equate to zero, and
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solving for ωi, we have

ωi =
1

1+φ 2

(
di +

diqi

λ2
(xi−λ1)

)
(21)

Summing both sides of Eq.(21) over all possible sampled values and using Eq.(19), we
have

λ1 =
1

∑i∈s diqi

(
∑
i∈s

diqixi−φ
2
λ2 ∑

i∈s
di

)
(22)

Now, substituting Eq.(21) into Eq.(17), we have

2α
(
1+φ

2)
λ

2
2 = φ

2
λ

2
2 ∑

i∈s

di

qi
+∑

i∈s
diqix2

i −2λ1 ∑
i∈s

diqixi +λ
2
1 ∑

i∈s
diqi (23)

Substituting Eq.(22) into Eq.(23), we have

λ2 =±
1
c

√√√√
∑
i∈s

diqi

(
xi−∑

i∈s
diqixi/∑

i∈s
diqi

)2

(24)

where

c =

√√√√2α (1+φ 2)−φ 2 ∑
i∈s

di/qi−φ 4

(
∑
i∈s

di

)2

/∑
i∈s

diqi. (25)

Ignore the negative sign, where the sign is to be determined by the choice of the sign of c.
Substituting Eq.(24) into Eq.(22) and using the result in Eq.(21), multiplying ωi by yi and
summing over i ∈ s we have

t̂y.new =
1

1+φ 2

(
∑
i∈s

diyi +φ
2

(
∑
i∈s

di/∑
i∈s

diqi

)
∑
i∈s

diqiyi +δ c

)
(26)

where

δ = Sxy/
√

Sxx, (27)

where c, Sxy, and Sxy are given by Eq.(25), Eq.(10), and Eq.(11) respectively. With the same
reasons adopted by Singh (2013), the best choice of c is

c =
tx− t̂xπ√

Sxx
∼ N (0, 1) ;
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therefore,

t̂y.new = λ t̂y.sin +(1−λ ) t̃yπ , (28)

where λ = 1/
(
1+φ 2

)
, t̂y.sin is defined by Eq.(8), and

t̃yπ =
t̂1π

t̂qπ

t̂qyπ . (29)

Furthermore, t̂1π =∑i∈s (1/πi) , t̂qπ =∑i∈s (qi/πi) , and t̂qyπ =∑i∈s (qiyi/πi) be the Horvitz
and Thompson (1952) estimators for N, tq, and tqy, respectively.

Remark 2.1 Since λ ∈ (0,1), Eq.(28) is a convex transformation between t̂y.sin and t̃yπ ,

defined by Eq.(8) and Eq.(29) respectively. At the same time, as φ 2 → ∞⇒ λ → 0⇒
t̂y.new→ t̃yπ ; moreover, as φ 2→ 0⇒ λ → 1⇒ t̂y.new→ t̂y.sin.

The performance of t̂y.new will be discussed through simulations from real data set. We
will compare t̂y.new, t̂y.sin, and t̃yπ . Consider the FEV data set which was used by Singh (2013)
and downloaded from http://www.amstat.org/publications/jse/datasets/fev.dat.txt. Let Y be
the Forced expiratory volume, ty = 1724; and the auxiliary variable X be the Children height
in inches, tx = 39988. Our aim is to estimate ty by using t̂y.new, t̂y.sin, and t̃yπ . To achieve our
aim, simulate υ = 3000 independent random samples from the FEV data set by using pro-
cedure surveyselect of SAS Institute, under SRSWR design. For qi = xi and based on
the random samples, estimate ty by t̂y.new, t̂y.sin, and t̃yπ . Furthermore, compute the empirical
mean (Em.Mean), relative bias (RB), and empirical relative mean squares error (REMSE)
of the estimators t̂y.new, t̂y.sin, and t̃yπ ; where

EM.Mean
(
t̂∗y
)

=
1
υ

υ

∑
i=1

(
t̂∗y
)

i (30)

RB
(
t̂∗y
)

=
EM.Mean

(
t̂∗y
)
− ty

ty
×100% (31)

REMSE
(
t̂∗y
)

=
∑

υ
i=1
(
t̂∗y − ty

)2

∑
υ
i=1 (t̂y.new− ty)

2 , (32)

where EM.Mean
(
t̂∗y
)
, RB

(
t̂∗y
)
, and REMSE

(
t̂∗y
)

are the empirical mean, relative bias, and
relative mean squares error of the estimator t̂∗y . For n = 25, 35, 45, 55, 65, and75. The re-
sults are summarized in Table (1).

From Table (1), in the sense of REMSE, the estimator t̂y.sin performs better than t̂y.new and
t̃yπ for all values of n and for the different values of λ = 0, 0.25, 0.5, 0.75, and1. However,
REMSE

(
t̃yπ

)
varies from 1 to 6.74; at the same time, REMSE

(
t̃yπ

)
= 6.74 is attainable for

large n = 75. From this point, concentrations will be focused on the performance of t̃yπ in
order to improve the performance of t̂y.new. The remaining of this article will be focused on
the improvement of t̃yπ .
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Remark 2.2 The Horvitz and Thompson (1952) estimator defined by Eq.(1) is a special
case from Eq.(29), namely when qi = 1 (or a positive constant). Hence, t̃yπ is modified t̂yπ

for estimating the finite population total ty. Further, t̃yπ uses the availability of the auxiliary
variable through qi’s.

To the first order and by using Taylor expansion, expanding the right hand side of
Eq.(29), we have

t̃yπ '
t1
tq

tqy +
tqy

tq
(t̂1π − t1)+

t1
tq
(t̂qyπ − tqy)−

t1tqy

t2
q

(t̂qπ − tq) (33)

Therefore, the bias of t̃yπ is given by

Bias
(
t̃yπ

)
= ty−

t1
tq

tqy. (34)

Remark 2.3 It is clear from Eq.(34) that t̃yπ is a biased estimator for estimating the finite
population total ty. However, t̃yπ is a strictly linear estimator; therefore, we can deduce two
exactly unbiased estimators from t̃yπ based on Sugden and Smith (2002).

From Eq.(29), rewrite t̃yπ as

t̃yπ = ∑
i∈ s

bsiyi, (35)

where

bsi =
qi/πi

∑i∈ s (qi/πi)/∑i∈ s (1/πi)
. (36)

From Eq.(15), recall the definition of Bi,

Bi = ∑
s3 i

p(s)bsi

=
qi

πi
∑
s3 i

[
p(s)

∑i∈ s (1/πi)

∑i∈ s (qi/πi)

]
(37)

Based on Sugden and Smith (2002) approach, the two exactly unbiased estimators deduced
from t̃yπ for ty are

t̃yπ(1) = t̃yπ −∑
i∈ s

(Bi−1)yi/πi (38)

and

t̃yπ(2) = ∑
i∈ s

bsi

Bi
yi (39)

where bsi and Bi are defined by Eq.(36) and Eq.(37) respectively.



44 Al-Jararha J. , Sulaiman M.: Horvitz-Thompson estimator ...

Remark 2.4 Eq.(35) shows that t̃yπ is a general linear estimator of ty. Furthermore, t̃yπ(1)
and t̃yπ(2) are two exactly unbiased estimators for ty deduced from t̃yπ ; therefore, t̃yπ is
a strictly linear estimator based on the Sugden and Smith (2002) definition. Hence, the
estimators t̃yπ(1) and t̃yπ(2) are generalization of the Horvitz and Thompson (1952) estimator
and use the availability of the auxiliary variable.

Since t̃yπ(1) and t̃yπ(2) are exactly unbiased estimators for ty, the infinite number of ex-
actly unbiased estimators is defined by

t̃yπ = ω t̃yπ(1)+(1−ω) t̃yπ(2), for 0≤ ω ≤ 1. (40)

Remark 2.5 The estimator t̃yπ is a convex transformation and an unbiased estimator for
estimating the population total ty.

2.1. Modified Horvitz-Thompson and Stratified Sampling Designs

The finite population U of size N is divided into L non-overlapping strata U1,U2, . . . ,UL;
U =

⋃L
h=1 Uh. The population total for the hth stratum is tyh = ∑i∈Uh

yi. Furthermore, the hth

stratum is of size Nh and N = ∑
L
h=1 Nh. The population total ty is redefined as

ty =
L

∑
h=1

tyh. (41)

For the hth stratum and based on a measurable sampling design ph (.) , draw a random sam-
ple sh of size nh from Uh. Assume x̄h = ∑i∈Uh

xi/Nh is known for h = 1,2, . . . ,L. Apply t̃yπ(1)
and t̃yπ(2) to the hth stratum. In other words, estimate tyh by

t̃yπ(1).h = t̃yπ.st − ∑
i∈ sh

(Bi−1)yi/πi, (42)

or by

t̃yπ(2).h = ∑
i∈ sh

bshi

Bi
yi. (43)

In this case, t̃yπ(1).h and t̃yπ(2).h are exactly two unbiased estimators for tyh, where

t̃yπ.st =
L

∑
h=1

t̂1π.h

t̂qπ.h
t̂qyπ.h; (44)

t̂1π.h = ∑i∈sh
(1/πi) , t̂qπ.h = ∑i∈sh

(qi/πi) , and t̂qyπ.h = ∑i∈sh
(qiyi/πi) be the Horvitz and

Thompson (1952) estimators for Nh, tq.h, and tqy.h, respectively.
From Eq.(41), estimate ty by

t̃yπ(1).st =
L

∑
h=1

t̃yπ(1).h, (45)
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or by

t̃yhπ(2).st =
L

∑
h=1

t̃yπ(2).h, (46)

where t̃yπ(1).h and t̃yπ(2).h are defined in Eq.(42) and Eq.(43), respectively.

Remark 2.6 The two estimators t̃yπ(1).h and t̃yπ(2).h are two exactly unbiased estimators
for tyh. Based on this idea, the two estimators t̃yπ(1).st and t̃yπ(2).st are exactly unbiased
estimators for ty; therefore, the accumulation of bias across strata is avoided.

2.2. Special Cases

The exactly unbiased estimators t̃yπ(1) and t̃yπ(2) are given by Eq.(38) and Eq.(39) respec-
tively, deduced from the modified HT estimator t̃yπ , depending on the weight qi. Therefore,
t̃yπ(1) and t̃yπ(2) can use the availability of the auxiliary variables through qi. In this section,
different special cases are considered.

As we mentioned earlier, t̃yπ reduces to t̂yπ , the ordinary Horvitz and Thompson (1952)
estimator, when qi’s are one or positive constant. Furthermore, from Eq.(36), bsi = 1/πi

and from Eq.(37), Bi = 1. Therefore,

t̃yπ(1) = t̃yπ(2) = t̂yπ , (47)

i.e. t̃yπ(1) and t̃yπ(2) are identical; in other words, t̃yπ is exactly an unbiased estimator for ty.
In this case, the Sugden and Smith (2002) approach gives exactly one unbiased estimator
for estimating ty.

Draw a random sample s of size n from the population U of size N by using the
simple random sample without replacement (SRSWR) design. Under SRSWR design,

p(s) = 1/
(

N
n

)
and πi = n/N. Consider the following two cases:

a. qi = πi.

In this case, bsi =
N
n and Bi = 1. Therefore,

t̂yπ = t̃yπ(1) = t̃yπ(2) = Nȳs, (48)

which is well-known estimator for estimating ty, where ȳs = ∑
n
i=1 yi/n. In this case,

the two exactly unbiased estimators based on Sugden and Smith (2002) are reduced to
one unbiased estimator, i.e. the Sugden and Smith (2002) approach produces exactly
only one unbiased estimator.

b. qi = xi, xi > 0.
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In this case, bsi = Nxi/∑ j∈s x j and Bi = Nxi p(s)∑s3i
(
∑ j∈s x j

)−1
. Therefore,

t̃yπ(1) = N

∑i∈s xiyi

∑i∈s xi
+ ȳs−

1(
N−1
n−1

)∑
i∈s

∑
s3i

(
∑
j∈s

x j

)−1
xiyi

 , (49)

and

t̃yπ(2) =

(
N
n

)
∑
i∈s

[
yi

∑s3i
(
∑ j∈s x j

)−1

]
/∑

j∈s
x j (50)

= T̂R(2), (51)

where T̂R(2) is an estimate of ty defined by Sugden and Smith (2002), Eq.(4.5).

3. Empirical Studies

Sugden and Smith (2002) considered the ratio estimator

T̂R = tx
t̂yπ

t̂xπ

(52)

as a general linear estimator for the population total ty. T̂R is asymptotically an unbiased
estimator of ty. Since T̂R produces two exactly unbiased estimators of ty, T̂R is a strictly

linear estimator for ty. Under SRSWR, BRi = tx ∑s3i
(
∑ j∈s x j

)−1
/

(
N
n

)
. In this case, the

exactly unbiased estimators are

T̂R(1) = T̂R−
N
n ∑

i∈s
(BRi−1)yi, (53)

and T̃R(2), defined by Eq.(51).
Assume all the values of the auxiliary variable are available in the study; under SRSWR

design, the estimators t̂yπ , t̃yπ(1), t̃yπ(2), T̂R(2), T̂R, and T̂R(1) defined by Eq.(48), (49), (50),
(51), (52), (53) respectively, will be used in the empirical studies.

Consider the data set given by Example(4.9), Page 139, Lohr (2010). In this example,
X is the photo counts of dead trees and Y is the field counts of dead trees; N = 25, tx =
265, and ty = 289. From this data set, under SRSWR, draw all random samples of sizes
n = 2, 3, 4. The computations are implemented by using a SAS program written under the
iml procedure. The number of all random samples is m = 300, 2300, 12650 for n = 2, 3, 4
respectively. The relative efficiency of the ratio family is defined by MSE

(
T̂R(i)

)
/MSE

(
T̂R
)

and relative efficiency of the Horvitz and Thompson (1952) family is defined by
MSE

(
t̃yπ(i)

)
/MSE (t̂yπ) for i = 1, 2. The results are given in Table(2).

In the case of a stratification, consider the data set cars93 from Scheaffer, Menden-
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hall and Ott (2006). The data set cars93 consists of different variables; for our study, let
X :=MPGCITY,Y :=MPGHIGH, and the stratifications based on the variable "typecode".
The cars93 data set is summarized by the following table.

hth stratum 1 2 3 4 5 6 total
Nh 20 16 22 11 14 9 N = 92
txh 598 363 430 202 305 153 tx = 2051
tyh 712 478 588 294 403 197 ty = 2672

For the hth stratum, h = 1, . . . ,6, the results are given in Tables (3),...,(8) respectively. Based
on the stratified sampling design, the population total ty is estimated by using the estimators
t̂yπ , t̃yπ(1), t̃yπ(2), T̂R(2), T̂R, and T̂R(1); for n = 12, 18, 24. The results are given in Table
(9). At the same time, Table (9) is computed from Tables (3),...,(8).

4. Concluding Remarks

In this paper, the Horvitz and Thompson (1952) estimator is modified so that the mod-
ified estimators can use the availability of the auxiliary variable in the study. Based on
the Sugden and Smith (2002) approach, two exactly unbiased estimators for estimating the
population total ty are deduced from the modified estimator. Furthermore, the exactly two
unbiased estimators can be used in stratified sampling designs.

From Table(2), the deduced estimators t̃yπ(1) and t̃yπ(2) are exactly unbiased estimators
for estimating ty and perform better than the original Horvitz and Thompson (1952) estima-
tor t̂yπ , in the sense of relative efficiency. Moreover, Table(2) supports the same conclusion
mentioned by Sugden and Smith (2002), i.e. the estimators T̂R(1) and T̂R(2) are exactly un-
biased estimators and perform better than the original ratio estimator T̂R, in the sense of
relative efficiency.

Based on the Sugden and Smith (2002) approach, the two exactly unbiased estimators
based on their families for estimating ty perform better than the original estimators even
if the original estimators are asymptotically unbiased or unbiased estimators. Furthermore,
the estimators deduced from Horvitz and Thompson (1952) perform better than the deduced
estimators from the ratio estimator. Small sample sizes are usually selected in the case of
stratified sampling design; moreover, the deduced estimators can be applied to every stratum
and aggregated together to estimate the population total.

For h = 1, . . . ,6 the results are given by Tables (3),...,(8), respectively. Table (9) is
computed from Tables (3),...,(8), and shows that t̃yπ(1), t̃yπ(2), T̂R(1), and T̂R(2) are exactly
unbiased estimators for ty. Furthermore, the bias of the ratio estimator T̂R, is negligible
(asymptotically unbiased) and performs better than t̂yπ (exactly unbiased) in the sense of
relative efficiency. T̂R(1) and T̂R(2) estimators perform better than the ratio estimator T̂R

for all n = 12, 18, 24. At the same time, the relative efficiency of T̂R(1) and T̂R(2) are ap-
proximately the same for n = 12, 18, 24. In the case of the Horvtiz-Thompson family, the
deduced estimators t̃yπ(1) and t̃yπ(2) perform significantly better than the original estimator
t̂yπ , in the sense of relative efficiency. Furthermore, the estimators t̃yπ(1) and t̃yπ(2) deliver
approximately the same performance, for all n = 12, 18, 24.
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From Eq.(51), we have t̃yπ(2) = T̂R(2); therefore, the ratio family and the
Horvitz-Thompson family can be compared. Tables (2), (3),..., (9) show that

MSE
(
t̃yπ(1)

)
MSE

(
t̃yπ(2)

) ∼= MSE
(
T̂R(1)

)
MSE

(
T̂R(2)

) ,
for all values of n. Therefore, the deduced estimators t̃yπ(1) and t̃yπ(2) from the Horvitz-
Thompson family and T̂R(1) and T̂R(2) from the ratio family perform better than the original
families even though the original families are unbiased or asymptotically unbiased estima-
tors.
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t̂y.sin t̃yπ t̂y.new t̂y.sin t̃yπ t̂y.new
n = 25 Em.Mean 1720.34 1770.59 1770.59 n = 55 Em.Mean 1722.70 1768.77 1768.77
λ → 0 RB -0.24 2.68 2.68 λ → 0 RB -0.10 2.57 2.57

REMSE 0.21 1.00 1.00 REMSE 0.17 1.00 1.00
n = 25 Em.Mean 1720.34 1770.59 1758.03 n = 55 Em.Mean 1722.70 1768.77 1757.25

λ = 0.25 RB -0.24 2.68 1.95 λ = 0.25 RB -0.10 2.57 1.90
REMSE 0.32 1.54 1.00 REMSE 0.27 1.58 1.00

n = 25 Em.Mean 1720.34 1770.59 1745.47 n = 55 Em.Mean 1722.70 1768.77 1745.73
λ = 0.50 RB -0.24 2.68 1.22 λ = 0.50 RB -0.10 2.57 1.23

REMSE 0.52 2.51 1.00 REMSE 0.45 2.68 1.00
n = 25 Em.Mean 1720.34 1770.59 1732.90 n = 55 Em.Mean 1722.70 1768.77 1734.21

λ = 0.75 RB -0.24 2.68 0.49 λ = 0.75 RB -0.10 2.57 0.57
REMSE 0.83 3.98 1.00 REMSE 0.78 4.58 1.00

n = 25 Em.Mean 1720.34 1770.59 1720.34 n = 55 Em.Mean 1722.70 1768.77 1722.70
λ → 1 RB -0.24 2.68 -0.24 λ → 1 RB -0.10 2.57 -0.10

REMSE 1.00 4.81 1.00 REMSE 1.00 5.89 1.00
n = 35 Em.Mean 1722.08 1770.28 1770.28 n = 65 Em.Mean 1722.93 1768.89 1768.89
λ → 0 RB -0.14 2.66 2.66 λ → 0 RB -0.09 2.58 2.58

REMSE 0.19 1.00 1.00 REMSE 0.16 1.00 1.00
n = 35 Em.Mean 1722.08 1770.28 1758.23 n = 65 Em.Mean 1722.93 1768.89 1757.40

λ = 0.25 RB -0.14 2.66 1.96 λ = 0.25 RB -0.09 2.58 1.91
REMSE 0.30 1.55 1.00 REMSE 0.26 1.57 1.00

n = 35 Em.Mean 1722.08 1770.28 1746.18 n = 65 Em.Mean 1722.93 1768.89 1745.91
λ = 0.50 RB -0.14 2.66 1.26 λ = 0.50 RB -0.09 2.58 1.24

REMSE 0.49 2.56 1.00 REMSE 0.44 2.67 1.00
n = 35 Em.Mean 1722.08 1770.28 1734.13 n = 65 Em.Mean 1722.93 1768.89 1734.42

λ = 0.75 RB -0.14 2.66 0.56 λ = 0.75 RB -0.09 2.58 0.58
REMSE 0.80 4.17 1.00 REMSE 0.76 4.59 1.00

n = 35 Em.Mean 1722.08 1770.28 1722.08 n = 65 Em.Mean 1722.93 1768.89 1722.93
λ → 1 RB -0.14 2.66 -0.14 λ → 1 RB -0.09 2.58 -0.09

REMSE 1.00 5.20 1.00 REMSE 1.00 6.07 1.00
n = 45 Em.Mean 1721.84 1769.24 1769.24 n = 75 Em.Mean 1723.25 1770.39 1770.39
λ → 0 RB -0.15 2.60 2.60 λ → 0 RB -0.07 2.66 2.66

REMSE 0.19 1.00 1.00 REMSE 0.15 1.00 1.00
n = 45 Em.Mean 1721.84 1769.24 1757.39 n = 75 Em.Mean 1723.25 1770.39 1758.61

λ = 0.25 RB -0.15 2.60 1.91 λ = 0.25 RB -0.07 2.66 1.98
REMSE 0.29 1.55 1.00 REMSE 0.25 1.59 1.00

n = 45 Em.Mean 1721.84 1769.24 1745.54 n = 75 Em.Mean 1723.25 1770.39 1746.82
λ = 0.50 RB -0.15 2.60 1.22 λ = 0.50 RB -0.07 2.66 1.30

REMSE 0.48 2.57 1.00 REMSE 0.42 2.73 1.00
n = 45 Em.Mean 1721.84 1769.24 1733.69 n = 75 Em.Mean 1723.25 1770.39 1735.04

λ = 0.75 RB -0.15 2.60 0.54 λ = 0.75 RB -0.07 2.66 0.61
REMSE 0.78 4.22 1.00 REMSE 0.74 4.81 1.00

n = 45 Em.Mean 1721.84 1769.24 1721.84 n = 75 Em.Mean 1723.25 1770.39 1723.25
λ → 1 RB -0.15 2.60 -0.15 λ → 1 RB -0.07 2.66 -0.07

REMSE 1.00 5.39 1.00 REMSE 1.00 6.47 1.00

Table 1: Computations are based on Eq.(28). The REMSE’s are computed by using Eq.
(32) for t̂∗y = t̂y.sin, t̃yπ , and t̂y.new.
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n = 2 n = 3 n = 4
Estimator ty S2

y ty S2
y ty S2

y
T̂R 294.3058 2545.752 292.291 1549.1841 291.322 1081.5572

(5.3059) (2573.904) (3.292) (1560.0213) (2.322) (1086.9488)
T̂R(1) 289 1684.9349 289 1111.1305 289 834.9348

T̂R(2) 289 1650.5674 289 1087.7975 289 821.8695

t̂yπ 289 2613.375 289 1666.5 289 1193.0625
t̃yπ(1) 289 1689.2317 289 1115.3438 289 845.6788

t̃yπ(2) 289 1650.5674 289 1087.7975 289 821.8695

T̂R Family
MSE

(
T̂R(1)

)
MSE

(
T̂R
) = 0.6546

MSE
(

T̂R(1)

)
MSE

(
T̂R
) = 0.7123

MSE
(

T̂R(1)

)
MSE

(
T̂R
) = 0.7682

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.6413

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.6973

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.7561

MSE
(

T̂R(1)

)
MSE

(
T̂R(2)

) = 1.0208
MSE

(
T̂R(1)

)
MSE

(
T̂R(2)

) = 1.0215
MSE

(
T̂R(1)

)
MSE

(
T̂R(2)

) = 1.0159

Horvtiz-Thopson
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.6464
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.6693
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.7088

family
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.6316
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.6527
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.6889

MSE
(

t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0234
MSE

(
t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0253
MSE

(
t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.029

Table 2: Empirical results based on real data set. For the estimator T̂R : the number between
brackets under the mean is the bias and the bold one under the variance is the MSE of T̂R.

nh = 2 nh = 3 nh = 4
Estimator tyh S2

yh tyh S2
yh tyh S2

yh
T̂R 715.7886 1533.6014 714.4398 975.7520 713.7416 691.1576

(3.7886 ) (1547.9549 ) (2.4398 ) ( 981.7046 ) ( 1.741556 ) (694.1906 )
T̂R(1) 712 1363.2611 712 522.6314 712 358.48553
T̂R(2) 712 1405.6602 712 523.4136 712 353.7434
t̂yπ 712 5900.2105 712 3714.9474 712 2622.3158
t̃yπ(1) 712 1483.1003 712 578.5657 712 391.3314
t̃yπ(2) 712 1405.6602 712 523.4136 712 353.7434

T̂R Family
MSE(T̂R(1))
MSE(T̂R)

= 0.8807
MSE(T̂R(1))
MSE(T̂R)

= 0.5324
MSE(T̂R(1))
MSE(T̂R)

= 0.5164
MSE(T̂R(2))
MSE(T̂R)

= 0.9081
MSE(T̂R(2))
MSE(T̂R)

= 0.5332
MSE(T̂R(2))
MSE(T̂R)

= 0.5096
MSE(T̂R(1))
MSE(T̂R(2))

= 0.9698
MSE(T̂R(1))
MSE(T̂R(2))

= 0.9985
MSE(T̂R(1))
MSE(T̂R(2))

= 1.0134

Hort-Thom
MSE(t̃yπ(1))

MSE(t̂yπ )
= 0.2514

MSE(t̃yπ(1))
MSE(t̂yπ )

= 0.1557
MSE(t̃yπ(1))

MSE(t̂yπ )
= 0.1492

family
MSE(t̃yπ(2))

MSE(t̂yπ )
= 0.2382

MSE(t̃yπ(2))
MSE(t̂yπ )

= 0.1409
MSE(t̃yπ(2))

MSE(t̂yπ )
= 0.1349

MSE(t̃yπ(1))
MSE(t̃yπ(2))

= 1.0551
MSE(t̃yπ(1))
MSE(t̃yπ(2))

= 1.10537
MSE(t̃yπ(1))
MSE(t̃yπ(2))

= 1.1063

Table 3: Empirical results from cars93 for Stratum (1): When typecode=1
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nh = 2 nh = 3 nh = 4
Estimator tyh S2

yh tyh S2
yh tyh S2

yh
T̂R 478.0681 306.3392 478.0383 188.7059 478.0252 130.3291

( 0.0681 ) ( 306.3439 ) (0.0383 ) ( 188.7074 ) (0.0252 ) (130.3297 )
T̂R(1) 478 443.4048 478 219.6018 478 139.9649
T̂R(2) 478 444.9974 478 220.1128 478 140.1862
t̂yπ 478 968.8000 478 599.7333 478 415.2000
t̃yπ(1) 478 446.9986 478 221.5335 478 141.1973
t̃yπ(2) 478 444.9974 478 220.1128 478 140.1862

T̂R Family
MSE(T̂R(1))
MSE(T̂R)

= 1.4474
MSE(T̂R(1))
MSE(T̂R)

= 1.1637
MSE(T̂R(1))
MSE(T̂R)

= 1.0739
MSE(T̂R(2))
MSE(T̂R)

= 1.4526
MSE(T̂R(2))
MSE(T̂R)

= 1.1664
MSE(T̂R(2))
MSE(T̂R)

= 1.0756
MSE(T̂R(1))
MSE(T̂R(2))

= 0.9964
MSE(T̂R(1))
MSE(T̂R(2))

= 0.9977
MSE(T̂R(1))
MSE(T̂R(2))

= 0.9984

Hort-Thom
MSE(t̃yπ(1))

MSE(t̂yπ )
= 0.4614

MSE(t̃yπ(1))
MSE(t̂yπ )

= 0.3694
MSE(t̃yπ(1))

MSE(t̂yπ )
= 0.3401

family
MSE(t̃yπ(2))

MSE(t̂yπ )
= 0.4593

MSE(t̃yπ(2))
MSE(t̂yπ )

= 0.3671
MSE(t̃yπ(2))

MSE(t̂yπ )
= 0.3376

MSE(t̃yπ(1))
MSE(t̃yπ(2))

= 1.0045
MSE(t̃yπ(1))
MSE(t̃yπ(2))

= 1.0065
MSE(t̃yπ(1))
MSE(t̃yπ(2))

= 1.0072

Table 4: Empirical results from cars93 for Stratum (2): When typecode=2

nh = 2 nh = 3 nh = 4
Estimator tyh S2

yh tyh S2
yh tyh S2

yh
T̂R 588.4592 449.2140 588.2849 277.1965 588.2004 194.4815

(0.4592) (449.4248) (0.2849) (277.2777) (0.2004) (194.5216)
T̂R(1) 588 525.4486 588 260.7300 588 174.2959

T̂R(2) 588 527.9447 588 261.3186 588 174.4998

t̂yπ 588 1386.6667 588 878.2222 588 624.0000
t̃yπ(1) 588 532.0924 588 264.2138 588 176.5988

t̃yπ(2) 588 527.9447 588 261.3186 588 174.4998

T̂R Family
MSE

(
T̂R(1)

)
MSE

(
T̂R
) = 1.1692

MSE
(

T̂R(1)

)
MSE

(
T̂R
) = 0.9403

MSE
(

T̂R(1)

)
MSE

(
T̂R
) = 0.8960

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 1.1747

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.9424

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.8971

MSE
(

T̂R(1)

)
MSE

(
T̂R(2)

) = 0.9953
MSE

(
T̂R(1)

)
MSE

(
T̂R(2)

) = 0.9978
MSE

(
T̂R(1)

)
MSE

(
T̂R(2)

) = 0.9988

Hort-Thom
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.3837
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.3009
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.2830

family
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.3807
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.2976
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.2797

MSE
(

t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0079
MSE

(
t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0111
MSE

(
t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0120

Table 5: Empirical results from cars93 for Stratum (3): When typecode=3



STATISTICS IN TRANSITION new series, March 2020 51

nh = 2 nh = 3 nh = 4
Estimator tyh S2

yh tyh S2
yh tyh S2

yh
T̂R 294.4412 99.6516 294.2596 58.9851 294.1697 38.6799

(0.4412 ) (99.8463 ) ( 0.2596 ) (59.0524) (0.1697) (38.7087)
T̂R(1) 294 32.2542 294 28.9585 294 24.42012

T̂R(2) 294 31.9504 294 28.8365 294 24.3733

t̂yπ 294 80.1000 294 47.4667 294 31.1500
t̃yπ(1) 294 32.0873 294 29.0126 294 24.5711

t̃yπ(2) 294 31.9504 294 28.8365 294 24.3733

T̂R Family
MSE

(
T̂R(1)

)
MSE

(
T̂R
) = 0.3230

MSE
(

T̂R(1)

)
MSE

(
T̂R
) = 0.4904

MSE
(

T̂R(1)

)
MSE

(
T̂R
) = 0.6309

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.3199

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.4883

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.6297

MSE
(

T̂R(1)

)
MSE

(
T̂R(2)

) = 1.0095
MSE

(
T̂R(1)

)
MSE

(
T̂R(2)

) = 1.0042
MSE

(
T̂R(1)

)
MSE

(
T̂R(2)

) = 1.0019

Hort-Thom
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.4006
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.6112
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.7888

family
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.3989
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.6075
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.7825

MSE
(

t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0043
MSE

(
t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0061
MSE

(
t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0081

Table 6: Empirical results from cars93 for Stratum (4): When typecode=4

nh = 2 nh = 3 nh = 4
Estimator tyh S2

yh tyh S2
yh tyh S2

yh
T̂R 404.9682 464.2094 404.2003 279.8831 403.8170 189.1534

(1.9682 ) (468.0833 ) (1.2003) (281.3238 ) ( 0.8170 ) ( 189.8209)
T̂R(1) 403 219.7774 403 117.0185 403 96.4114

T̂R(2) 403 221.1506 403 114.8667 403 94.8695

t̂yπ 403 1113.6923 403 680.5897 403 464.0385
t̃yπ(1) 403 234.9529 403 123.6658 403 100.9741

t̃yπ(2) 403 221.1506 403 114.8667 403 94.8695

T̂R Family
MSE

(
T̂R(1)

)
MSE

(
T̂R
) = 0.4695

MSE
(

T̂R(1)

)
MSE

(
T̂R
) = 0.4160

MSE
(

T̂R(1)

)
MSE

(
T̂R
) = 0.5079

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.4725

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.4083

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.4998

MSE
(

T̂R(1)

)
MSE

(
T̂R(2)

) = 0.9938
MSE

(
T̂R(1)

)
MSE

(
T̂R(2)

) = 1.0187
MSE

(
T̂R(1)

)
MSE

(
T̂R(2)

) = 1.0163

Hort-Thom
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.2110
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.1817
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.2176

family
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.1986
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.1688
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.2044

MSE
(

t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0624
MSE

(
t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0766
MSE

(
t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0644

Table 7: Empirical results from cars93 for Stratum (5): When typecode=5
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nh = 2 nh = 3 nh = 4
Estimator tyh S2

yh tyh S2
yh tyh S2

yh
T̂R 197.0919 23.2645 197.0515 13.2744 197.0319 8.2891

(0.0919 ) ( 23.2730 ) (0.0515 ) (13.2770) (0.0319) (8.2901 )
T̂R(1) 197 22.6543 197 11.1726 197 7.1120
T̂R(2) 197 22.6484 197 11.1820 197 7.1201
t̂yπ 197 66.5000 197 38.0000 197 23.75
t̃yπ(1) 197 22.6953 197 11.2614 197 7.2046
t̃yπ(2) 197 22.6484 197 11.1820 197 7.1201

T̂R Family
MSE(T̂R(1))
MSE(T̂R)

= 0.9734
MSE(T̂R(1))
MSE(T̂R)

= 0.8415
MSE(T̂R(1))
MSE(T̂R)

= 0.8579
MSE(T̂R(2))
MSE(T̂R)

= 0.9732
MSE(T̂R(2))
MSE(T̂R)

= 0.8422
MSE(T̂R(2))
MSE(T̂R)

= 0.8589
MSE(T̂R(1))
MSE(T̂R(2))

= 1.0003
MSE(T̂R(1))
MSE(T̂R(2))

= 0.9992
MSE(T̂R(1))
MSE(T̂R(2))

= 0.9989

Hort-Thom
MSE(t̃yπ(1))

MSE(t̂yπ )
= 0.3413

MSE(t̃yπ(1))
MSE(t̂yπ )

= 0.2964
MSE(t̃yπ(1))

MSE(t̂yπ )
= 0.3034

family
MSE(t̃yπ(2))

MSE(t̂yπ )
= 0.3406

MSE(t̃yπ(2))
MSE(t̂yπ )

= 0.2943
MSE(t̃yπ(2))

MSE(t̂yπ )
= 0.2998

MSE(t̃yπ(1))
MSE(t̃yπ(2))

= 1.0021
MSE(t̃yπ(1))
MSE(t̃yπ(2))

= 1.0071
MSE(t̃yπ(1))
MSE(t̃yπ(2))

= 1.0119

Table 8: Empirical results from cars93 for Stratum (6): When typecode=6

n = 12 n = 18 n = 24
Estimator ty S2

y ty S2
y ty S2

y
T̂R 2678.8172 453844.48 2676.2744 178628.06 2674.9857 88260.276

(6.8171677) (453863.13) ( 4.2743444 ) ( 178635.6) (2.9856758) (88264.047 )
T̂R(1) 2672 431418.52 2672 117843.17 2672 56576.944

T̂R(2) 2672 439877.98 2672 117935.4 2672 56173.604

t̂yπ 2672 1575220 2672 621987.81 2672 308599.03
t̃yπ(1) 2672 456121.5 2672 125146.15 2672 59655.399

t̃yπ(2) 2672 439877.98 2672 117935.4 2672 56173.604

T̂R Family
MSE

(
T̂R(1)

)
MSE

(
T̂R
) = 0.9506

MSE
(

T̂R(1)

)
MSE

(
T̂R
) = 0.6597

MSE
(

T̂R(1)

)
MSE

(
T̂R
) = 0.6410

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.9692

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.6602

MSE
(

T̂R(2)

)
MSE

(
T̂R
) = 0.6364

MSE
(

T̂R(1)

)
MSE

(
T̂R(2)

) = 0.9808
MSE

(
T̂R(1)

)
MSE

(
T̂R(2)

) = 0.9992
MSE

(
T̂R(1)

)
MSE

(
T̂R(2)

) = 1.0072

Hort-Thom
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.2896
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.2012
MSE

(
t̃yπ(1)

)
MSE

(
t̂yπ

) = 0.1933

family
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.2793
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.1896
MSE

(
t̃yπ(2)

)
MSE

(
t̂yπ

) = 0.1820

MSE
(

t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0369
MSE

(
t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0611
MSE

(
t̃yπ(1)

)
MSE

(
t̃yπ(2)

) = 1.0620

Table 9: Empirical results from cars93 based on stratified sampling designs
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