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Abstract. In the context of 100% renewable electricity systems, prolonged periods with persistently 

scarce supply from wind and solar resources have received increasing academic and political attention. 

This article explores how such scarcity periods relate to energy storage requirements. To this end, we 

contrast results from a time series analysis with those from a system cost optimization model, based 

on a German 100% renewable case study using 35 years of hourly time series data. While our time 

series analysis supports previous findings that periods with persistently scarce supply last no longer 

than two weeks, we find that the maximum energy deficit occurs over a much longer period of nine 

weeks. This is because multiple scarce periods can closely follow each other. When considering storage 

losses and charging limitations, the period defining storage requirements extends over as much as 12 

weeks. For this longer period, the cost-optimal storage capacity is about three times larger compared 

to the energy deficit of the scarcest two weeks. Adding other sources of flexibility for the example of 

bioenergy, the duration of period that defines storage requirements lengthens to more than one year. 

When optimizing system costs based on single years rather than a multi-year time series, we find 

substantial inter-annual variation in storage requirements with the most extreme year needing more 

than twice as much storage as the average year. We conclude that focusing on short-duration extreme 

events or single years can lead to an underestimation of storage requirements and costs of a 100 % 

renewable system. 

Keywords. Renewable energy, wind and solar power, inter-annual variability, low-wind events, 

Dunkelflaute, electricity system, energy storage, hydrogen, batteries. 

1 Introduction 

Background. The viability of 100% renewable electricity supply continues to be a controversial topic 

(Jacobson et al., 2015; Clack et al., 2017; Heard et al., 2017; Brown et al., 2018; Bogdanov et al., 2019; 

Tröndle et al., 2020). Because a fully renewable electricity system must heavily rely on wind and solar 

energy in most countries, one frequently discussed aspect is the system reliability during events with 

low availability of these variable energy sources. For the example of Germany, such extreme events 

have also received public and political attention (German Federal Government, 2021; Wetzel, 2019), 

and the German term for dark doldrums, Dunkelflaute, has made it to the international debate (de 

Vries and Doorman, 2021; Li et al., 2021, 2020; Ohlendorf and Schill, 2020). 

Time series analyses on low-wind-speed events. Previous studies on renewable scarcity periods 

mostly focused on wind power (Cannon et al., 2015; Patlakas et al., 2017; Ohlendorf and Schill, 2020). 

These studies are similar in their approaches and results (Table 1). They define a threshold below which 

wind power or wind speed is considered “low”. On this basis, they characterize the frequency and 
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duration of low-wind periods based on decades-long, national time series. The maximum duration of 

low-wind events identified in these studies is 4–10 days. 

Table 1: Previous studies on low-wind events 

 Cannon et al. (2015) Patlakas et al. (2017) Ohlendorf and Schill (2020) 

Definition Capacity factor 
below 10% 

Wind speed  
below 3 m/s 

Mean capacity factor  
below 10% 

Regional scope Great Britain North Sea Germany 

Temporal scope 33 years 10 years 40 years 

Maximum 
duration 

< 4 days Near shore: 10 days 
Open sea: 4-5 days 

8 days 

 

Further time series analyses. Further time series analyses found that, due to geographical smoothing, 

low-wind events are more pronounced when focusing on single locations (Leahy and McKeogh, 2013) 

and become less extreme when extending the geographical scope to the continental scale (Grams et 

al., 2017; Handschy et al., 2017; Kaspar et al., 2019). Finally, Raynaud et al. (2018) extended the scope 

to solar, hydro, and load to examine “energy droughts”, defined as periods when renewables supply 

less than 20% of demand. They found that a mix of renewables reduces the duration of energy 

droughts by a factor of two or more when compared to single energy sources, and that the duration 

of energy droughts will not exceed two days in 100% renewable scenarios. While several studies 

claimed that the identified scarcity periods will define storage requirements in renewable electricity 

systems, it remains unclear whether and how storage requirements can be inferred from the results. 

Existing optimization studies. Meanwhile, many studies have analyzed the cost-optimal configuration 

of 100% renewable electricity systems (see Hansen et al. (2019) for a review). These studies employ 

optimization models to decide on the investment in renewable generators and energy storage, solving 

the trade-off between storage and renewable curtailment (Zerrahn et al., 2018). Besides storage, the 

models usually consider other flexibility options such as flexible supply from bioenergy, demand 

response, and international electricity trade. The results of five German and European studies are 

summarized in Table 2. The reported optimal storage energy capacities are large enough to supply 12–

32 days of the average load within the considered region, which is about 2–3 times longer than what 

time series analyses found as the duration of low-wind events.  

Table 2: Storage requirements in cost optimization studies 

 Region Optimization 
period 

Maximum storage discharge 
per average loada 

Bussar et al. (2014) Europe 3 years 15 days 

Schill and Zerrahn (2018) Germany 1 year 12 days 

Child et al. (2019) Europe 1 year 32 days 

Tröndle et al. (2020) Europe 1 year 12 days 

Neumann and Brown (2021) Europe 1 year 23 days 
a Including hydro reservoirs. 

 

Research gap. Contrasting the results from time series analyses and optimization models seems 

interesting for three reasons. First, the larger storage volumes in the optimization studies suggest that 

storage requirements may not directly be inferred from the length of the worst Dunkelflaute as 
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identified by time series analyses. Second, the larger storage volumes in the optimization studies seem 

counter-intuitive given that these studies include flexibility options beyond storage, which are not 

considered in the times series analyses. Third, the above optimization models are based on 1-3 

weather years, and it remains unclear whether these years include the worst Dunkelflaute as identified 

by the time series analyses based on multiple-decades-long datasets. While previous studies analyzed 

the inter-annual variability of renewables and implications for system planning in general (Collins et 

al., 2018; Kumler et al., 2019; Pfenninger, 2017; Schlachtberger et al., 2018; Zeyringer et al., 2018), the 

implications for storage energy requirements in particular remain unclear. A notable exception is a 

study by Dowling et al. (2020), which relates long-term storage requirements to the inter-annual 

variability of renewables but without analyzing the role of extreme events. 

This study. This study bridges the gap between time series analyses of extreme events and 

optimization models. On the one hand, we analyze 35 years of renewable and load time series to 

characterize the Dunkelflaute in terms of the maximum energy deficit accumulating over a certain 

period. We also calculate the required storage energy capacity with a stylized cost optimization model 

using the same input time series. The role of other flexibility options on storage requirements is 

analyzed using the example of flexible bioenergy. Finally, we contrast the optimization results based 

on single versus multiple years of data. 

Contribution. Our work contributes to the understanding of how the variability of renewable sources 

defines storage requirements in a 100% renewable electricity system. Our findings suggest that both 

time series analyses and optimization models often come with simplifications that may lead to an 

underestimation of storage requirements. Regarding time series analyses, it appears insufficient to 

look at short periods with extreme scarcity because these can be surrounded by other scarcity periods, 

which jointly define storage needs. Regarding optimization models, analyzing single years seems 

insufficient because these do not necessarily include extreme events. Furthermore, with an increase 

in other flexibility options, the role of long-term storage transitions from bridging extreme events to 

smoothening the inter-annual variability of renewables. 

Outline. The remainder of this paper is structured as follows. Section 2 describes the applied methods 

and utilized data, Section 3 presents the results, Section 4 discusses the findings, and Section 5 draws 

conclusions. 

2 Methods and data 

Outline. This section describes the time series analysis (Subsection 2.1), the optimization model 

(Subsection 2.2), and the joint input data (Subsection 2.3). To highlight methodical similarities and 

differences, we use rather stylized assumptions—the limitations of which are discussed in Section 4. 

2.1 Time series analysis 

Capacity and energy deficit. Based on the time series data described in Subsection 2.3, we define the 

maximum energy deficit as follows: 

 𝐸𝑑𝑒𝑓,𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑡0,𝑡1
∫ 𝑃𝑙𝑜𝑎𝑑(𝑡) − 𝑃𝑅𝐸(𝑡) 𝑑𝑡

𝑡1

𝑡0

, (1) 

where 𝑃𝑙𝑜𝑎𝑑(𝑡) is the hourly load data and 𝑃𝑅𝐸(𝑡) is the sum of wind and solar generation profiles 

scaled with the capacity resulting from the cost optimization model plus hydro power input time series 
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and a constant profile for bioenergy. Such a perfectly inflexible bioenergy generation is a hypothetical 

and conservative assumption, which was chosen to make the results of the different methods 

comparable, and which is relaxed in Subsection 3.4. In addition to the overall maximum energy deficit, 

we compute the maximum energy deficit for different durations 𝑇 = 𝑡0 − 𝑡1. 

2.2 Cost optimization model 

Optimization model. We use an optimization model to find the least-cost 100% renewable electricity 

system for the example of Germany. The model decides on investment in variable renewable 

generators and electricity storage in batteries and via hydrogen. Simultaneously, the dispatch of 

storage is optimized, while considering existing bioenergy and hydro power (including pumped hydro 

storage). The optimization problem extends over a 35-year-long horizon with an hourly resolution of 

dispatch. For perspective, the results of the multi-year optimization are contrasted with those based 

on single years.  

Investment. The investment variables for variable renewables include three distinct technologies: 

solar photovoltaic (PV), onshore wind, and offshore wind. The investment in batteries is distinguished 

into an energy-specific component (the battery packs) and a power-specific component (the inverters). 

For hydrogen storage, three investment dimensions are considered: energy (salt caverns), charging 

power (electrolyzers), and discharging power (combined cycle gas turbines, CCGT). The annualized 

investment costs and the fixed operation and maintenance costs for all these technologies are included 

in the objective function of the optimization model.  

Dispatch. The hourly dispatch optimization is based on the time series data described in 

Subsection 2.3. Load time series are used as is, and the generation profiles for wind and solar energy 

are scaled according to the corresponding investment variables. Fixed generation time series are 

applied to hydro run-of-river (Hydro ROR), while reservoir and pumped hydro are modeled as one 

generic dispatchable hydro technology (Hydro DIS), which is constrained by existing capacity. For 

comparability with the time series analysis, bioenergy is conservatively assumed to produce at 

constant load in the base case, and a more flexible operation is considered in a sensitivity analysis. 

More details. Further assumptions used in the cost optimization model are described in the Appendix. 

2.3 Time series data 

Time series data. Both methods use 35-year-long time series data form ENTSO-E (2020) as an input. 

These time series reflect a scenario for 2030 based on weather reanalysis data from 1982-2016. This 

dataset is used by European system operators for adequacy calculations and, more generally, 

reanalysis data have frequently been used in the literature on renewable electricity systems (Cannon 

et al., 2015; Neumann and Brown, 2021; Ohlendorf and Schill, 2020; Tröndle et al., 2020). The dataset 

includes hourly load data and hourly generation profiles for wind and solar energy. Furthermore, daily 

generation time series are provided for hydro run-of-river, as well as weekly time series for the natural 

inflow to hydro reservoirs and to pumped hydro storage. 

3 Results 

Outline. This section starts with an overview of the multi-year cost optimization results 

(Subsection 3.1). We then present the output from the time series analysis (Subsection 3.2) and 

compare it with the cost-optimal storage requirements (Subsection 3.3). Furthermore, we analyze the 
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impact of flexibility on storage requirements for the example of bioenergy (Subsection 3.4) and 

contrast the results of the multi-year optimization with those of single years (Subsection 3.5). 

3.1 Cost-optimal system configuration and storage requirements 

Installed capacity. The characteristics of the multi-year cost-optimal 100% renewable German 

electricity system are summarized in Figure 1. On the supply side, almost 300 GW of variable renewable 

generators are installed: 92 GW solar PV, 94 GW onshore wind, and 98 GW offshore wind (Figure 1a). 

For solar PV and onshore wind power, this is nearly twice as much as the installed capacity in 2020; for 

offshore wind power, this means more than a tenfold increase (Agora Energiewende, 2021). These 

variable generators are complemented with about 81 GW of storage discharging capacity, including 

mostly hydrogen-fired CCGT (62 GW). For perspective, the installed capacity of CCGT almost equals 

the average load, while the overall discharging capacity can supply 77% of the peak load (105 GW). 

The storage charging capacity is about 72 GW, which is somewhat lower than the discharging capacity. 

Up to 161 GW of renewable surplus generation is curtailed because this is more economical than 

building more storage.  

 

Figure 1: Cost-optimal power capacity (a), storage energy capacity (b), annual energy balance (c) and cost breakdown (d) 

Storage volume. The storage energy capacity, which is the focus of the present paper, is 56 TWh 

(Figure 1b). Most of this is hydrogen storage (54.8 TWh), while existing pumped hydro storage 

contributes 1.3 TWh and batteries just 59 GWh (0.059 TWh). Accounting for discharging efficiency, the 

storage volume translates into a maximum supply of 36 TWh electricity.1 This is about 7% of the annual 

load or 24 days of average load—much longer than what previous time series analyses find based on 

their definition of a Dunkelflaute. The storage duration is 23 days for hydrogen, 6 days for pumped 

hydro, and 6 hours for batteries.2 

Energy balance. The total primary supply from renewable sources is about 700 TWh, which is roughly 

130% of the annual load (Figure 1c). The largest contribution comes from offshore wind (53%), onshore 

wind (26%), and solar PV (13%). Only 65% of the primary energy supply directly serve load (455 TWh), 

 
1 34.5 TWh from hydrogen, 1.1 TWh from hydro power, and 56 GWh from electricity. 
2 Here, we define this as the storage volume in electricity terms divided by storage discharge capacity (also 
referred to as energy-to-power ratio). 
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while 23% are charged into storage (160 TWh) and 12% are curtailed (84 TWh). Storage discharge 

accounts for 92 TWh (17% of load). 

Cost. Although not in the focus, Figure 1d reports the cost for storage (about €30 per MWh of load) 

and variable renewables (€50 per MWh of load). Note that these costs include neither the cost of 

existing hydro and bioenergy, nor grid cost. Nevertheless, even the reported fraction of total system 

costs is relatively high compared to previous studies. For example, Tröndle et al. (2020) report total 

system costs of €50–60 per MWh, depending on the distribution of renewables. On the one hand, the 

fact that we model Germany as an island may lead to an overestimation of cost. On the other hand, as 

opposed to previous studies, we consider multiple years of data, which means that our estimate 

includes the cost related to the inter-annual variability of renewables (see Subsection 3.5).  

3.2 Maximum energy deficit based on time series analysis 

Intro. Using the multi-year cost-optimal wind and solar capacity as an input, we analyze renewable 

and load times series to find the maximum energy deficit. 

Maximum 10-day energy deficit. Because previous time series analyses identified scarcity events with 

a duration of up to 10 days (Table 1), we first focus on the scarcest 10-day period. We find that this 

period occurs in December 2007. with a maximum energy deficit of 12.4 TWh (8 days of average load). 

Figure 2 reveals that there is very low supply form all renewable sources throughout this entire period, 

which is in line with the intuition behind the concept of Dunkelflaute. However, it can be seen from 

Figure 2 that the two days before and the first day after the worst ten-day period are also short on 

energy, even though supply is not as scarce as during the ten days. As a result, storage requirements 

can be expected to be defined by a period longer than ten days. 

 

Figure 2: Hourly generation and consumption patterns for the maximum 10-day energy deficit 

Maximum energy deficit as a function of duration. This expectation is confirmed in Figure 3a, which 

displays the maximum energy deficit as a function of duration. In fact, the maximum energy deficit 

increases monotonously with duration for up to 14 days and starts oscillating for longer durations. 

Intuitively, this means that, for every increase in duration up to 14 days, another day with renewable 

scarcity is included in the calculation of the energy deficit; for longer durations, the period with the 

maximum energy deficit may also include single days with energy surplus. It should be noted however, 

that scarcity periods of different duration do not necessarily coincide (Figure 3b). 
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Figure 3: Maximum energy deficit (a) and start of the corresponding period (b) as a function of the duration of the scarcest 
period. 

Max. overall energy deficit. The overall maximum energy deficit is 27 TWh (18 days of average load) 

and accumulates over 61 days (almost 9 weeks). Rather than one period with constantly low supply, 

these 61 days include several scarce periods in a row, interrupted by short periods with energy surplus 

(Figure 4). This finding will be compared to the results from the cost optimization in the following. 

 

Figure 4: Hourly generation and consumption patterns for the maximum 61-day energy deficit  
(the overall maximum in the 35-year dataset) 

3.3 Bridging the gap between cost optimization and time series analysis 

Gap. The electricity-equivalent storage energy capacity in the cost optimization model (36 TWh) is 

considerably higher than the maximum energy deficit identified in the time series analysis (27 TWh). 

This may be for two reasons. First, the cost optimization model considers storage losses, which means 

that one unit of excess energy during the worst period reduces the storage requirement only by one 

unit of energy times the storage cycle efficiency (50.4% for hydrogen). By contrast, the time series 

analysis ignores storage losses, as one unit of excess energy reduces the energy deficit by exactly one 

unit. Second, the cost optimization model accounts for curtailment when excess energy exceeds the 

storage charging capacity. As it can be seen in Figure 4, such curtailment occurs even during the worst 

61-day period. 
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Sensitivity runs. To test these potential reasons, we conduct two sensitivity runs with the cost 

optimization model, fixing renewable capacities. One run ignores storage losses (“No losses”) and, in 

addition to this, the other also ignores charging capacity limitations (“Unlimited charging”). Figure 5 

reports the resulting storage volumes. As expected, both assumptions reduce storage requirements, 

and the results in the “Unlimited charging” scenario coincide with the maximum energy deficit 

calculated in the time series analysis. Put differently, to derive realistic storage requirements from time 

series analyses, one needs to consider charging limitations and storage losses.3 

 

Figure 5: Storage energy capacity in the reference scenario and for the hypothetical cases of loss-free storage and, in 
addition, unlimited charging capacity 

Periods when storage is fully used. Finally, we identify the periods when the overall storage volume is 

fully used in the optimization model, that is, periods starting when all types of storage are fully charged 

and ending when the state-of-charge initially reaches zero. In the sensitivity runs without storage 

losses and with unlimited charging, the identified periods perfectly coincide with the worst 61 days 

identified with the time series analysis. Accounting for storage losses, however, prolongs the worst 

period from 61 to 84 days (12 weeks, almost 3 months). Figure 6 reveals that this period includes the 

61 days identified with the time series analysis but also about 3 weeks before this period.  

 

Figure 6: Hourly generation and consumption patterns for the period when storage is fully used 

 
3 For example, Heide et al. (2011) and Rasmussen et al. (2012) employ a more elaborated time series analysis, 
which accounts for storage losses but not for charging limitations. 
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3.4 Flexibility as a substitute for storage: the example of bioenergy 

Flexibility assumptions. To enhance the comparability of the cost optimization and the time series 

analysis, we have so far assumed that bioenergy runs as baseload. In fact, German bioenergy-based 

electricity generation historically runs almost baseload at around 4.6 GW despite a much higher 

installed capacity of 8 GW. However, this is mostly due to inadequate regulatory incentives and market 

price signals and can be expected to change in a future 100% renewable electricity system (Thrän et 

al., 2015). Against this background, we now relax this assumption, allowing for bioenergy to reduce 

and increase its output by ±100% (4.6 GW). As a sensitivity, we increase the maximum amount of 

bioenergy that can be shifted in steps of 2 TWh up to 10 TWh in electricity terms. For comparison, the 

assumed annual electricity production from bioenergy is 40 TWh. This means that 3 months of 

production can be stored, which is longer than the previously identified period when storage was fully 

used. Note that we use bioenergy as an example of flexibility. Similar effects may be observed with 

demand-side flexibility or international trade. 

Results. The impact of flexible bioenergy on the need for other storage technologies is ambiguous: the 

electricity-equivalent volume of other storage decreases less than proportionately with increasing 

bioenergy flexibility (Figure 7a), the decrease in discharging capacity equals exactly the capacity by 

which flexible bioenergy can increase production (Figure 7b), and the charging capacity initially 

decreases by much more than the capacity by which flexible bioenergy can decrease production but 

then increases at larger bioenergy flexibility (Figure 7c). These partly counter-intuitive results can be 

explained by the fact that flexible bioenergy not only substitutes for storage but also for part of the 

renewable overcapacity (Figure 7d). Interestingly, the decrease in renewable overcapacity in parallel 

to the increase in overall storage volume means that the period when storage is fully used is prolonged 

to more than one year (10 October 1995 to 3 February 1996). 

 

Figure 7: Impact of flexible bioenergy on storage energy capacity (a), storage charging capacity (b), storage discharging 
capacity (c), and renewable capacity (d) 

3.5 Comparing multi- and single-year optimization 

Single-year optimization. This section contrasts the results from the multi-year optimization to those 

based on single years. In the multi-year optimization, we found that storage requirements are defined 

by a winter period crossing the turn of the calendar year. To capture this period in one of the single-

year optimizations, we now consider 12-month periods from July to June of the next year instead of 

calendar years. For comparability, bioenergy is assumed to be inflexible again. 
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Results. Figure 8 presents the distribution of the single-year results relative to the multi-year results. 

The investment in variable renewables varies by a lot (Figure 8a). This can be linked to the inter-annual 

variability of wind energy: for years with relatively high wind yields, the optimization model decides to 

build more wind power and less solar, and vice versa. Furthermore, we find a tendency toward more 

solar and less wind power in single-year optimizations. There is also a tendency toward more batteries 

(Figure 8b-d), which is correlated with solar deployment. For hydrogen storage, which is decisive to 

bridge the largest energy deficit, the relative variation is less pronounced, but it should be noted that 

that the absolute hydrogen storage volume is in the TWh scale while batteries are deployed in the 

GWh scale. Remarkably, the single-year optimization systematically underestimates long term storage 

volume (by 50% on average). The one single year that almost matches the multi-year storage 

requirements is the 12-month period from July 1996 to June 1997—which includes the previously 

identified scarcest period. The fact that the required storage volume does not match exactly can be 

explained by a slightly different mix of renewables when this 12-month period is optimized in isolation. 

The single-year optimization also tends to underestimate cost, with 1996–1997 being closest to the 

multi-year estimate (Figure 8d).4 

 

Figure 8: Single-year results divided by the results from multi-year optimization. The black lines in the middle of the boxes 
indicate the median, the boxes extend from the first to the third quartile (inter-quartile range), and the whiskers include the 

5-95% confidence interval of the observations. Observations outside of this confidence interval are depicted as black dots 
and the white points represent the mean of the distribution. 

4 Discussion 

Comparison with time series analyses. The results of this study can be compared to the literature. 

First, our results support the finding from previous time series analyses that the Dunkelflaute—a 

period with constantly high load and low renewables—does not exceed two weeks (Table 1). However, 

we demonstrate for the example of Germany that storage requirements are defined by a much longer 

period of about 12 weeks, including multiple periods with low renewable supply but also some surplus. 

With increased flexibility from bioenergy, the defining period may even be longer.  

 
4 Note that the key result that single-year optimization underestimates storage volume and cost holds true also 
for calendar years, but the worst single year is then different from the worst period in the multi-year 
optimization. 
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Comparison with optimizations models. Second, our finding that single-year optimization generally 

underestimates the required storage volume when compared to multi-year optimization is in line with 

Dowling et al. (2020). However, while we find that the multi-year storage need is almost equal to that 

of the worst single year, that study reports that multi-year storage is even larger than that. This may 

be explained by the larger geographical scope analyzed by Dowling et al. (2020) compared to the 

present study. Like the above-discussed effect of bioenergy flexibility, geographical smoothing may 

reduce variability on shorter time scales such that the remaining variability, which needs to be 

addressed by long-term storage, spans multiple years. Note that both single- and multi-year results on 

storage energy capacity lie within the wide range of results from previous cost-optimization studies 

(Table 2).  

Geographical scope. Some limitations of the present study and possibilities for further research may 

be highlighted. First, for simplicity and comparability this study narrowly focuses on Germany, ignoring 

both international trade and intra-national grid constraints. While geographical smoothing within 

Europe will certainly reduce challenges and costs related to wind and solar variability, the effect on 

optimal storage deployment is not trivial due to the trade-off with renewable overcapacity. In this 

regard, it should be mentioned that during the period of the largest energy deficit in Germany—winter 

1996–1997—neighboring countries were suffering severe deficits as well. This included the Swedish 

and Norwegian hydroelectric system, which usually exports electricity to central Europe but 

experienced its historically highest energy deficit during 1996. It is therefore unlikely that including 

modelling of international electricity trade would fundamentally impact our general results on storage 

requirements in 100% renewable electricity systems. Finally, sub-national grid constraints within 

countries may increase the requirement for storage and/or renewable overcapacity. 

Demand side. Furthermore, this study has a limited view on changes on the demand side of the 

electricity system. The decarbonization of other energy sectors may require additional electricity for 

electric heat pumps, electric vehicles, and the production of synthetic fuels (Ruhnau et al., 2019). Our 

input load time series already consider part of this for the horizon of 2030, but a fully decarbonized 

system may require additional changes in the demand profile and the related flexibility. Furthermore, 

we ignore load shedding, which may substitute for part of the storage requirements.  

Changing climate. Finally, future load and renewable profiles may change due to climate change, which 

has been neglected in the current analysis. While the impact of climate change on wind and solar 

output is subject to large uncertainty (Bloomfield, 2021), extreme events are likely to increase (Bennett 

et al., 2021). Hence, storage requirements may be even higher than our estimates. 

Comparison with existing natural gas storage. Despite these limitations, our quantitative results on 

storage requirements may be compared with the size of existing energy storage. The estimated 

59 GWh of required battery storage in our reference scenario mean a 40-fold increases versus the 

1.5 GWh installed capacity of small- and large-scale batteries in Germany 2018 (Figgener et al., 2020). 

As underground hydrogen storage is currently limited to pilot systems in Germany, the currently 

250 TWh of German natural gas storage, which is mostly underground storage in salt caverns, may 

serve as a reference (Sterner et al., 2015). After accounting for the 70% lower volumetric energy 

density of hydrogen and an about 20% lower feasible peak pressure,5 this is in the same order of 

magnitude as the estimated 56 TWh of required hydrogen storage in our reference scenario. 

 
5 250 TWh * 0.3 * 0.8 = 57.6 TWh 
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5 Conclusions 

Conclusions. Based on our results, we conclude that focusing on short extreme events or single years 

can be misleading when estimating the amount of storage needed in 100% renewable electricity 

systems. Instead, for the example of Germany, storage requirements are defined by a 12-week or 

longer period of intermittent scarcity, and system planning based on average years significantly 

underestimates storage requirements and system costs. Despite these economic challenges and 

remaining technological uncertainty with a large-scale deployment of hydrogen infrastructure, the 

estimated necessary storage energy capacity seems feasible when compared to the current German 

natural gas storage capacity. 
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Appendix: Assumptions used for the cost optimization 

The cost assumptions are summarized in Table 3. They are based on the 2050 estimates in De Vita et 

al. (2018), except for the assumptions on hydrogen storage and electrolyzers, which we take from 

Element Energy (2018) and Ruhnau (2021), respectively. A discount rate of 6% is applied to the 

investment cost. 

Table 3: Cost assumptions. 

Technology Unit Investment 
cost (unit) 

Lifetime 
(years) 

Fixed O&M 
(unit p.a.) 

Solar PV €/kW 450 25 10 

Wind onshore €/kW 900 25 13 

Wind offshore €/kW 1800 25 26 

Hydrogen CCGT  €/kW 750 25 15 

Hydrogen electrolyzer €/kW 450 25 9 

Hydrogen storage €/kWh 2 25 - 

Battery inverter €/kW 100 15 - 

Battery pack €/kWh 125 15 - 

 

The natural inflow to the dispatchable hydro technology is set to the sum of the weekly timeseries on 

natural inflow to reservoirs and to pumped hydro storage. The reservoir size is set to the sum of 

reservoirs (0.26 TWh) and pumped hydro (1.02 TWh), and the aggregated turbine and pump capacities 
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are set to 8.85 and 7.96 GW, respectively. Bioenergy is assumed to constantly produce 4.6 GW, which 

is the average value of 2016-2020. 

The cycle efficiency for pumped hydro storage and batteries is assumed to be 80% and 90%, 

respectively (https://www.eesi.org/papers/view/energy-storage-2019). The conversion efficiency of 

hydrogen electrolyzers and combined cycle turbines is set to 80% (IEA, 2019) and 63% (De Vita et al., 

2018), respectively. As a constraint, the storage levels at the end of one year must be equal to the 

levels at the beginning of the next year, and the storage levels at the end of the last year must be equal 

to the levels at the beginning of the first year. To avoid arbitrary results related to unintended storage 

cycling, a penalty term in the objective function ensures that electricity is only stored when needed 

and curtailed otherwise (Kittel and Schill, 2021). 

The model is implemented in the modeling software GAMS and solved on an individual computer 

within less than two hours using the solver CPLEX.  
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