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Abstract 

We provide a new framework to identify demand elasticities in markets where managers rely on 
algorithmic recommendations for price setting, and apply it to a dataset containing bookings for 
a sample of mid-sized hotels in Europe. Using non-binding algorithmic price recommendations 
and observed delay in price adjustments by decision makers, we demonstrate that a control-
function approach, combined with state-of-the-art model selection techniques, can be used to 
isolate exogenous price variation and identify demand elasticities across hotel room types and 
over time. We confirm these elasticity estimates with a difference-in-differences approach that 
leverages the same delays in price adjustments by decision makers. However, the difference-in-
differences estimates are more noisy and only yield consistent estimates if data is pooled across 
hotels. We then apply our control-function approach to two classic questions in the dynamic 
pricing literature: the evolution of price elasticity of demand over time as well as the effects of a 
transitory price change on future demand due to the presence of strategic buyers. Finally, we 
discuss how our empirical framework can be applied directly to other decision-making situations 
in which recommendation systems are used. 
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1 Introduction

Revenue management provides a toolkit for sellers to optimally price goods with uncertain

demand and fixed capacity. By combining rigorous statistical methods with business applica-

tions, the discipline has become a resounding success and is now a standard tool in multiple

industries. In the classical framework, firms adjust prices over time in response to the arrival

of new consumers with uncertain demand, taking into account the opportunity cost of sell-

ing an additional unit (Talluri and van Ryzin, 2004; Phillips, 2005). In addition to accurate

demand forecasting, optimal pricing also requires precise knowledge of the marginal effect a

(transitory) price change has on the final quantity sold of a given item. In this paper, we

provide a novel approach to causally estimate price elasticities of demand that can be used in

static as well as dynamic settings. The estimation approach is particularly well suited for en-

vironments which require controlling for a large number of potentially confounding variables.

We demonstrate its strength in an application to dynamic hotel room pricing, using a dataset

that contains all bookings, prices and algorithmic price recommendations for 9 European ho-

tels for a period of 14 months. Our application is directly relevant for revenue management in

the hospitality industry, one of the largest sectors in the worldwide economy.1 The approach

can also be applied to an array of decision problems that rely on recommendation systems

outside our specific application.

Unlike standard ways of estimating demand, our method leverages demand shocks rather

than cost shocks. This difference is important especially in the service and financial sectors

in which demand shocks are frequent while cost shocks are rare and often hard to identify.

Consequently, estimating demand is notoriously difficult in these industries. The problem

is exacerbated by managers increasing prices in periods of high demand, inducing a positive

correlation between prices and sales (Athey, 2017; Bajari et al., 2015). In the hotel industry,

1 According to Eurostat statistics (https://ec.europa.eu/eurostat/), EU27 citizens spent in 2018 about 124

billion euros or 1.7% of their total consumption expenditures on accommodation services.
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our main focus, this correlation has been widely documented using market-level and hotel-level

data (e.g. Enz and Canina, 2010; Cho et al., 2018). Our approach offers an alternative to cost

shock-based methods in situations where those cost shocks are not available and it produces

plausible negative elasticities when traditional methods fail to do so. It can therefore be used

in practice, allowing revenue managers to set prices more accurately, as well as by researchers

who require accurate demand elasticities as parameters in their models of competition and

industry-level welfare.

Our identification strategy rests on the ability to observe prices adjusting with delay

to demand shocks. Intuitively, holding demand constant on its new, post-shock level, the

difference in sales before and after the price change informs us of the price elasticity of demand.

Such variation is abundantly available in industries which rely on price recommendation

systems for pricing decisions (cf. the accommodation, transportation, car rental, and other

inventory management industries). We show in our application to hotel room pricing that

hoteliers follow the algorithmic recommendations very closely but do so with a delay, thereby

generating exactly the type of variation required by our estimation approach.

The above identification strategy suggests a simple difference-in-differences estimator

which compares sales in a period after the recommended price changed but before the actual

price change has been implemented to sales in a period following the actual price change. As

a first step, we implement this simple method and show, using both real-world and simulated

data, that it produces accurate demand estimates when there are enough purchasing events

within a short interval around the time of the actual price change. However, the frequency of

purchasing events in our sample is relatively low which leads to noisy estimates. We conclude

that the difference-in-differences estimator is only appropriate for pricing homogeneous prod-

ucts that are purchased frequently and in relatively large quantities. In contrast, the estimates

are too inaccurate for pricing hotel rooms whose demand varies by room type, location, and

across seasons.

We remedy the low efficiency of the difference-in-differences estimator by applying a high

dimensional control function approach for causal inference developed recently in the machine

learning literature (Belloni et al., 2014). It allows us to use all of the relative variation on prices

and price recommendations, and all of the purchasing events while flexibly controlling for a

large number of potential omitted variables. This approach provides accurate estimates even
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at the level of a single room type for a single season. Furthermore, compared to structurally

modeling demand and the response of hotel managers to recommendations, the method is

less susceptible to functional misspecification because it allows for a high dimensional set of

competing functional forms. The results from the control function approach agree with the

difference-in-differences results on the pooled data which makes us also confident in its ability

to measure price elasticities accurately at the room type level. We further demonstrate the

robustness and accuracy of the results with simulations even for the case in which the model

is misspecified.

Our approach is related to recent attempts to obtain causal inference on managerial de-

cisions in various industries, such as ride-sharing (Cohen et al., 2016; Castillo, 2019), staffing

(Mani et al., 2015) and loan markets (Costello et al., 2020); each of these papers exploits

a specific institutional or technological feature which generates exogenous variation in the

implemented policy. In contrast, our estimation approach uses a ‘behavioral reaction’ of

managers that can be applied potentially in many other contexts in which decisions are based

on algorithmic recommendations. For example, it could be used to estimate the expected

marginal value of inventory in retail applications where an inventory management system

recommends restocking times and quantities to a local store manager (Conlon and Mortimer,

2013; Cachon et al., 2019);2 see Section 3.2 for more examples.

In our application, we extend our estimation framework and investigate two aspects of

inter-temporal demand important for optimal pricing in dynamic settings. First, we estimate

how much the demand elasticity for hotel rooms varies over the booking horizon. Note that if

the demand elasticity was constant over different booking horizons, then revenue-maximizing

prices would tend to decrease as the day of arrival approaches, because the opportunity

cost of an unsold room is decreasing over time. Instead, our results reveal that prices are

roughly constant, suggesting increasing markups. In particular, the price sensitivity (semi-

elasticity) of consumers is highest for very early bookers and lowest for those buying between

21 and 50 days before the date of stay. Overall, our findings are consistent with the idea

that consumers, who are more price sensitive, search early on. Our results also corroborate

2 Exogenous, behavioral delays in the time it takes a manager to follow a recommendation to restock their

wares can be used to estimate the marginal effect of an extra unit of stock on the probability of running out

of stock. As long as stock-outs are relatively short and demand continuous over time, lost demand during a

stock-out can be estimated using the number of units sold before and after the stock-out. Alternatively, one

can also use sales data from similar stores which did not run out of stock.
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evidence from airline tickets (Williams, 2018), and help reconciling the profile of constant or

increasing prices with decreasing opportunity costs.

Second, we measure to what extent hotel customers delay their purchase when facing

a higher price. To answer this question, we follow ideas in Li et al. (2014), who estimate

strategic consumer behavior in the market for airline tickets, and include lagged prices to

identify the effect of variation in past prices on current demand.3 We show that past prices

have lasting effects on current demand, but these effects vary across hotels. For one of the

hotels in our sample, high past prices are likely to discourage searchers, reducing current

demand, while for another hotel the pattern is reversed.

In summary, we provide in this paper a new reduced form regression approach to identify

demand elasticities in markets with dynamic demand and a limited access to observable

supply shocks. In an application to hotel-room pricing, we then study the variation in demand

elasticity as the day of arrival approaches and the impact of strategic consumers on optimal

pricing. An advantage of our approach is that it provides, in contrast to other methods,

reliable estimates for relatively small sample sizes and circumvents the need for experimental

variation (e.g. Moon et al., 2018; Nambiar et al., forthcoming) or structural modeling (e.g. Li et

al., 2014; Cho et al., 2018). A key innovation of our approach is that it leverages recommended

rates produced by an advanced pricing algorithm and the associated behavioral responses of

managers to this kind of information.

1.1 Contribution to the Literature

Our contribution to the literature is twofold. First, we provide a simple yet powerful approach

to estimate demand leveraging on recommendation data that is very often available to decision

makers. The approach combines machine-learning algorithms with modern causal-inference

methods (cf. Belloni et al., 2014, 2016; Chernozhukov et al., 2015). The only paper we are

aware of that uses similar ideas for identifying demand is the contemporaneous work by

Castillo (2019). We both use a reduced-form approach, isolating short-run price changes

which are arguably uncorrelated with both demand and supply. Castillo (2019) exploits

3 There are a number of important differences between hotel room and airline pricing with regards to

strategic consumer behavior. Hotels for instance rarely use markdowns to price discriminate across consumers

based on the time of the day or the day of the week in which consumers search. From an applied revenue

management perspective, our empirical applications provides useful insights for optimal pricing in the hotel

industry.
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discontinuities in the specific price setting algorithm of a ride-hailing company to identify

customers’ willingness-to-pay. Instead, we use sluggish price adjustment by managers as the

source of exogenous variation. The ‘behavioral response’ can be applied in a broad range of

settings, from estimating the marginal impact of an additional worker in a retail store to the

foregone profits due to stock-outs as discussed in Section 3.2.

Our second main contribution concerns an application to hotel-room pricing (cf. Section 5).

Extending our estimation approach, we address two questions relevant for optimal dynamic

pricing: how does the price-sensitivity of demand change over time and what is the effect

of a price change on behavior of forward-looking consumers? To the best of our knowledge,

only a handful of papers attempt to estimate demand in dynamic markets. These include Li

et al. (2014), Lazarev (2013) and Williams (2018) who study the market for airline tickets;

Joo et al. (forthcoming) in the holiday cruise industry; and Li et al. (2018) and Cho et al.

(2018) who, like us, focus on dynamic pricing in the hotel industry. Most of them resort to

structural modeling to estimate dynamic demand.4

In the first application, we recover time-varying demand elasticities for the biggest hotels in

our sample. In a related work, Williams (2018) develops a structural model and identifies the

consumer demand elasticity over time as well as the welfare implications of dynamic pricing

by combining posted prices of airline tickets and flight availability data from aircraft seat

maps. Lazarev (2013) uses a high-frequency data set on airfares to study the welfare effects

of dynamic pricing in a structural model which also allows for individuals to learn about their

travel needs by delaying purchases. They both find that earlier consumers are more price

sensitive. An exception is the recent work by Joo et al. (forthcoming) who estimate demand

for holiday cruises, using a cost shock for identification, and find that demand becomes more

elastic as the departure date approaches.

The second application concerns the role of forward-looking consumers. Whereas the

classical dynamic pricing literature assumed that consumers act myopically, there has been

a growing interest in the theoretical literature on strategic, or forward-looking, behavior of

consumers in dynamic settings. Our empirical results are hence not only of interest for

4 Li et al. (2018) is the only paper, other than the present article, to obtain credible estimates of dynamic

demand for hotels using reduced-form methods. Reduced-form methods are undoubtedly more useful for

practitioners. Indeed, both Cho et al. (2018) and Li et al. (2014) acknowledge that they use structural

methods because in their applications reduced-form estimates are likely to be contaminated by unobserved

demand shocks.
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practitioners but can also inform theoretical work on optimal dynamic pricing.5 To our

knowledge, there are very few papers that try to identify the presence of strategic consumers,

most of them rely on structural identification using data from the airline industry. In terms

of magnitudes, our results are broadly consistent with those of Li et al. (2014) and suggest

that, for the biggest hotel in our sample, approximately one third of consumers is willing to

delay their purchasing decisions in the hope of obtaining a better price in the future.

2 Data and Institutional Background

Our data set contains more than 5 million observations of hotel-room pricing information and

the corresponding universe of about 60 thousand bookings, all aggregated at the daily level.

This high-resolution proprietary data set was made available by our corporate sponsor, whose

identity is withheld by request. The corporate sponsor is based in Europe and provides a

number of revenue management services, including price recommendations, to a large number

of independent hotels. The rate and booking data comes from 9 different hotels, eight located

at resort destinations and one (hotel 6) located in an urban area. Our data contains bookings

and prices for each hotel over a period of about 14 months. For each potential arrival date we

observe the flow of bookings, actual rates charged by the hotel, and rates recommended for

every room by the revenue management company. The actual rate can be thought of as an

index price set by the hotel. It is is modified by pre-specified and channel-specific discounts

or fees and is then pushed to each channel in which the product is offered. We also the actual

rate in our analysis because both the revenue management system (RMS) and the hotelier

use this variable as the main instrument for price optimization.6 In addition, we observe for

each booking the unique customer identifier, date of booking, date of arrival, length of stay,

5 Various strategies have been proposed recently to accommodate strategic behavior by consumers in the

theoretical literature. Some models study how frequent discounts (Cachon and Feldman, 2015) or randomized

pricing policies (Chen et al., 2018) can counteract strategic behavior of customers. There is also a number of

recent articles in operations research that complements the literature by providing novel robust approaches

to dynamic pricing with strategic consumers (e.g. Besbes and Lobel, 2015; Caldentey et al., 2016; Chen and

Farias, 2018).
6 The total price paid can include, on top of channel-specific discounts, also promotional discounts

(e.g. ’book x nights but pay only x-1’) as well as extra charges (e.g. for room service or spa visits). As

shown in Table 1, the average total price paid by customers is a relatively stable share of the average actual

price of a product. For details on prominent distribution channels, specific discounts and contractual settings

relevant in the hotel industry, see for example Hunold et al. (2018) who study the effects of best price clauses

previously used by some online travel agencies (OTAs). Note also that rooms that are sold through long-term

contracts between the hotel and a reseller, who may be free to set their own prices, are not included in data.
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and the total price paid by a customer as can be seen from Table 1.

For our empirical analysis, we construct an unbalanced panel from the data. We define

a product i = 1, . . . , N as a combination of an arrival date and a room type in a given

hotel h = 1, . . . , 9. Possible arrival dates span over at least 396 consecutive days for each

hotel. Across all hotels, we have 75 room types which we often aggregate into four larger

categories: single, standard, superior, and suite. For each product, we observe daily bookings,

recommended and actual rates for all possible booking dates t = 0, 1, . . . , Ti with Ti ≤ 365

being the maximum number of days before arrival in our sample for product i. If a customer

buys multiple nights at a hotel, she buys, according to our definition of a product, multiple

products from this hotel.

2.1 Bookings

In Table 1 we present summary statistics on bookings, actual rates set by the hotelier, and

recommended rates from the revenue manager’s pricing algorithm for each room category.

Mean daily actual rates vary substantially across room categories, ranging from 82 euros for

single rooms to 211 euros for suites. The most popular category is the standard room, both

in terms of availability and occupancy. With regards to the duration of stay, approximately

50% of the bookings involve a single night but the mean length of stay exceeds three nights.

Clearly, there is a lot of seasonal variation in the industry, especially at resort destinations.

We observe demand peaks in the Winter and Summer holiday seasons and relatively low

demand in Spring and Fall.

There is substantial dispersion in both the flow of bookings and the actual rates for the

same room over time. Figure 1 shows the number of bookings as a function of days before

arrival for the two largest hotels (ID 6 and 175). Most bookings occur within 30 days of

arrival but there is a long right tail in each hotel. Given the booking pattern, it is not

surprising that hotels change actual rates more often as the day of arrival approaches.7 Table

2 summarizes the distribution of actual rate changes over the booking horizon of a product.

Over the complete booking horizon, hoteliers change the actual rate of a product on average

7 The majority of transactions of a hotel is realized through online travel agencies (OTAs) or through a

hotel’s website but we do not have information about the specific booking channel used in a transaction. As

mentioned above, we do not consider prices for specific booking channels in our analysis to estimate demand

because we have direct access to actual rates.
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once a month. Because most bookings and price changes happen close to the arrival date,

the median consumer can expect to see a price change every two weeks.8 Conditional on the

actual rate changing, the median absolute adjustment amounts to about 8 euros per night.

2.2 Price Recommendations

A crucial input to our analysis are recommended rates provided by the revenue management

system (RMS). We are not aware of any other study that exploits price recommendations

provided to managers to estimate demand. The RMS which produces recommended rates

for the hotel manager works as follows. The revenue management company offers a RMS

service with the objective to maximize the client’s revenue through optimized pricing. It

is incentivized to provide the best possible performance because the fee hotels pay for the

service is benchmarked against expected revenue increases generated by the service. For price

optimization, the revenue management company has access to all bookings from a hotel on

a real-time basis, as well as additional demand-related information such as local variation in

weather conditions, events, public holidays, hotel reputation, competitor prices, etc.

In addition, the revenue manager and the hoteliers are regularly exchanging information

about local demand conditions. Clients are trained to transmit private information about lo-

cal demand shocks to the revenue management company. The company combines all relevant

information and feeds it into their proprietary pricing algorithm to produce a rate recom-

mendation for each product of the hotel.9 The hotelier decides every day whether to log into

the system. If she does, she observes the current rate recommendation for each room and

then decides which rates to update and by how much .10 After manual confirmation by the

hotelier, updated actual rates are pushed from the RMS to the hotel’s property management

8 This calculation assumes that the arrival of potential customers is proportionate to the number of

bookings. In contrast to the setting in Li et al. (2014), in which strategic consumers can predict the direction

of the price change of airline tickets, it is extremely difficult for the average potential customer to predict

the direction or the magnitude of a change in the price of a product in our setting, without observing the

recommendation. Rate updates are not serially correlated and they are fairly symmetrically distributed (see

Figure 2).
9 We do not have access to the company’s proprietary pricing algorithm. A common concern in competition

policy is that algorithmic pricing can be used to coordinate with competitors (Miklós-Thal and Tucker, 2019).

We believe that coordination through algorithmic pricing is not much of a concern in our context. Given the

highly fragmented nature of the industry, the number of hotels which use recommendations from our corporate

sponsor is very small (≤ 1%) compared to the size of the industry in the considered regions.
10 In addition to recommended rates, the hotelier has also access to additional information on the RMS

platform, such as prices of local competitors, own performance metrics, etc.
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system and distribution channels (mostly OTAs).

Although the hotels in our data are typical for their respective regions, with about 50

rooms per hotel they are relatively small by international standards. Most of them are

family run which means that the manager’s job description includes many responsibilities

beyond revenue management. From private communications with the revenue management

company we learned that managing prices takes only a small fraction of a hotelier’s weekly

work schedule. In Section 3.4, we provide a detailed account of the behavioral response of hotel

managers to rate recommendations. There, we show that hotel managers follow algorithmic

recommendations quite closely, but do so with a delay. This will be an important ingredient

of our identification approach.

3 Empirical Framework

A common challenge encountered in market studies is to find sources of exogenous variation

in prices that allow to identify demand. In our setting, the statistical inference problem is

further complicated because we are interested in price variation over time for the same physical

object. An instrument, therefore, should vary not only across arrival dates (e.g. shocks to

capacity) but also across booking dates for a given arrival date and these shocks should

be unanticipated (e.g. news shocks about future costs). We circumvent this problem by

leveraging rate recommendations, which allows us to isolate price changes that are plausibly

uncorrelated with contemporaneous demand shocks.

3.1 Demand Estimation

In each booking period t = 0, 1, . . . , T , with t = 0 representing the date of arrival, the manager

at hotel h sets a price for product i = 1, . . . , N (e.g. a standard room for March 20) according

to

phit = gh(rhit, Xhit, ωhit) + νhit, (1)

where rhit is the price recommendation of the revenue manager, Xhit is a vector of observable

characteristics, with a typical element Xj
hit, j = 1, 2, . . . , J , ωhit is the information observed

by the hotelier but unobserved by the econometrician, and νhit is the price innovation. The

characteristics Xhit can contain information that depends on both the booking period t and

10



the arrival-date-room-type combination. Examples include available capacity at booking time

t for room i and information about the seasonality of demand for hotel h.

The revenue manager forms recommendations according to

rhit = R(Xhit,Ωhit), (2)

where Ωhit is information observed by the revenue manager but not by the econometrician.

Key for our identification strategy is that the revenue manager receives all demand-related

information that the hotel manager observes, in other words that ωhit is measurable with

respect to Ωhit. Given some room characteristics Xhit, we assume that the recommendation

is a sufficient statistic for the information held by the revenue manager Ωhit. That is, Ωhit 7→

R(Xhit,Ωhit) has a measurable inverse for allXhit. Denote this inverse by fh(rhit, Xhit)+λht =

Ωhit, where λht captures hotel and time (days aheads) specific effects on demand; this includes

the arrival rate of potential consumers to hotel h as a function of days before arrival t which

we assume to be known to the revenue manger.

We assume that the number of bookings for a given product i that occur t days before

arrival can be written as

Qhit = λht + phitη
h +X ′hitβ

h + Ω̃hit + εhit, (3)

where ηh is the parameter of interest, Ω̃hit = Ωhit − λht, and εhit is an error term.11 Given

the structure of the model, the two assumptions that guarantee identification of ηh are then

the following.

Asumption 1 (Exogeneity)

E [εhit | Xhit,Ωhit] = 0

Asumption 2 (Conditional Independence)

E [εhitνhit | Xhit, rhit] = 0

As shown below, we do not need to include the price in the exogeneity assumption be-

cause it is determined by the recommendation and observables. The second assumption is

guaranteed, for instance, if νhit captures only variations in the availability of the hotelier to

11 In our empirical analysis, see Section 4, we also include a model with a multiplicative structure.
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make changes in actual rates and local cost shocks, but does not include information about

demand shocks. For this to hold it is sufficient that any information that the hotelier obtains

about demand is incorporated in the revenue management system.12 It then follows that we

can directly estimate the parameter ηh from

Qhit = λht + phitη
h +X ′hitβ

h + fh(rhit, Xhit) + εhit, (4)

as now

E [phitεhit] = E [E [phitεhit | rhit, Xhit]]

= E
[
E
[
(gh(rhit, Xhit, ωhit) + νhit)εhit | rhit, Xhit

]]
= 0. (5)

The last last equality holds, because of the two identifying assumptions, the fact that gh(rhit, Xhit, ωhit)

is measurable with respect to (rhit, Xhit) and the identical equality (Ωhit, Xhit) ≡ (fh(rhit, Xhit), Xhit)

where fh is measurable.

In the empirical implementation of our framework in Section 4, we allow fh(rhit, Xhit) to

vary across different room-type-arrival month combinations, days before arrival t, and also

across weekdays in which hoteliers update rates. The latter variable allows us to pick up

manager-specific variation, e.g. arising from her schedule at work.13 Finally, notice that ηh

in eq. 4 can be interpreted as the marginal impact of the price on the probability that a

booking occurs on a given date. It can be thought of as an estimate of the derivative of the

residual demand curve of a given product (hotel-room-type-arrival-date combination), which

contains information about the responsiveness of consumers to a price change as well as an

implicit conduct parameter measuring market competitiveness. In Appendix C, we extend

our framework and study heterogeneity in price elasticities by allowing ηh to vary across

different dimensions such as booking weekdays and seasons of arrival.

3.2 Generality of empirical framework

The above estimation approach is neither restricted to the particular institutional setting nor

the pricing application we study empirically in this paper. It can be adapted to a variety of

12 See Section 3.4 for a more detailed discussion of the validity of the identifying assumptions.
13 An alternative specification would be a control function approach, using a two-step estimation method

(price on recommendation and controls and quantity on these residuals). In our case, however, this is not

necessary because we can confidently rule out any direct effect of the recommendation on demand.
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setups that use recommendation systems, or decision support systems (DSS), more generally.

The fundamental idea is to use plausibly exogenous variation in how recommendations are

implemented behaviorally by decision makers to identify the marginal impact of the choice

variable (e.g. prices) on the outcome variable (e.g. sales). In the following, we present two

examples that fit well in our framework.

Staffing. A number of papers have estimated the effect an additional worker has on

profits by constructing a predictive model of staffing behavior and then exploiting observed

departures from it as the exogenous variation in staff levels (e.g. Mani et al., 2015; Fisher et al.,

2018). While such methods may work well in some cases, it is generally difficult to assess the

extent to which the econometrician’s model is misspecified and the observed departures truly

exogenous. Nevertheless, many organizations adjust their workforce at different locations

based on their own demand predictions. This adjustment is rarely perfect because managerial

inattention and worker availability can generate deviations from the ideal level of staff given

the predicted demand. Our framework can be directly applied to identify the marginal effect

of an additional worker on sales if the realized number of workers does not perfectly match

the firm’s own prediction of the optimal staffing level. To be more specific, let pit denote

the staff level at location i at time t, and let the rest of the variables in eq. 1 be as before,

with rit denoting the ideal level of staff given the predicted demand. Provided that there

is some exogenous variation how the realized level of staff is determined, conditional on the

ideal level, one may obtain a causal estimate of the marginal impact of a worker on sales by

estimating the analogue of eq. 4.

Inventory management. One of the areas in which DSS have been employed heavily is

inventory management (e.g. Shang et al., 2008; Van Donselaar et al., 2010). As above, let rit

denote the restocking recommendation from the DSS and pit its realized flow. Our framework

can be used to estimate the marginal effect of an additional stocked unit on sales. Holding

excess inventory is costly and therefore the causal impact of stock on revenue is a critical

component of optimal inventory management.14 This can be directly identified using the

model described in eq. 4.

Finally, it is also illustrative to consider the limits of our framework. For example, consider

a loan officer who has to assess the creditworthiness of a client with the help of a DSS. Suppose

14 See Conlon and Mortimer (2013) and Cachon et al. (2019) for recent work on the same question.
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a researcher has data on these decisions and wants to to estimate the marginal return of

funds allocated to credit. In case the officer’s decision differs from the DSS’s recommendation

because her decision is based on additional soft information about the client (Liberti and

Mian, 2008), rather than being a by-product of managerial inattention, then our critical

assumption is violated and our approach cannot be used. For this reason, we provide in

Section 3.4 a wealth of evidence suggesting that managerial inattention is the main source of

variation in our hotel sample.

3.3 Machine Learning and Model Selection

The recent literature on statistical inference with machine learning has shown that proper

model selection can have important effects on estimated demand elasticities (e.g. Cher-

nozhukov et al., 2015; Dube et al., forthcoming; Athey and Imbens, 2019). Applied to our

setting, these insights mean that correctly selecting fh can be highly important for guaran-

teeing unbiased estimates of ηh. Especially, if the revenue manager is not perfectly informed

about the hotelier’s objective function, it becomes critical to correctly control for possible

confounds. Even conditional on the revenue manager’s recommendations there may remain

demand-related confounds that are correlated with both the price and frequency of bookings.

For example, a combination of fixed costs and credit constraints may lead the hotel man-

ager to price more aggressively during off-season to guarantee enough bookings to remain

solvent. Consequently, the relationship between the actual rate and the recommended rate

could vary in a way that is correlated with the intensity of demand, violating our identifying

assumption.15

Furthermore, the response of the hotel manager to the price recommendation may depend

both on its magnitude as well as its timing. Allowing for flexible controls for weekday-month

combinations, the days before arrival, a third-order polynomial of the recommended prices

and its interactions with both the weekday and arrival month dummies already implies more

than 500 potential parameters. When the median number of bookings in a hotel is less than

7500, informative inference on the effect of price on demand while estimating all of these

parameters is challenging. We solve this problem by applying the “post-double-selection”

15 Using a simulated dataset, we provide in Appendix B evidence that the estimates from a simple linear

model are severely biased.
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method from Belloni et al. (2014) to select the approximately right set of controls that leads

to consistent estimates of the price elasticity of demand. We demonstrate in Appendix B that

the nuisance parameter problem is indeed binding for simulated datasets comparable to the

ones used in our application; in particular, estimates of the price semi-elasticity of the linear

model are shown to be downward biased.

For the application of the post-double-selection method, and with a slight abuse of nota-

tion, let J , with a typical element j, be the index set of possible controls, X̃j
hit, that includes

a flexible polynomial of the recommended price and its interactions with weekday and month-

of-arrival dummies. As a first stage, we use a standard LASSO to estimate

phit = X̃ ′hitα
h
1 + ξhit, (6)

where ξhit is the error term. Denote the set of controls Xj
hit selected by the LASSO by

Jh1 ⊂ J . Intuitively, these controls are correlated with the price per night and thus are

potentially important confounding factors. We then run another LASSO to estimate

Qhit = X̃ ′hitα
h
2 + νhit, (7)

where νhit is the error term. For this equation the LASSO picks a potentially different set of

controls Jh2 ⊂ J . This estimation stage selects covariates that are important in the equation

of interest and hence helps to reduce the residual variance as well as potentially captures

confounds that are strongly correlated with bookings and only weakly correlated with the

price.

The post-double-selection estimator η̂h for hotel h is then given by the least squares

estimator obtained by regressing Qhit on phit and the control terms selected in the previous

stages, Xj
hit, with j ∈ Jh1 ∪ Jh2:

(η̂h, γ̂h) = argmin
ηh∈R, γh∈Rp


∑T

t=0

∑N
i=1

(
Qhit − phitηh − X̃ ′hitγh

)2

N + T + 1
: γhj = 0, ∀j /∈ Jh1 ∪ Jh2

 .

The vector γh contains the regularized regression coefficients for the control variables.

Belloni et al. (2014) show the consistency and asymptotic normality of this estimator and

also demonstrate that the standard errors for the last stage yield asymptotically correct

confidence sets. They also provide an algorithm for estimating the penalty loadings for the

two LASSOs in the selection stages.16

16 In terms of computational resources, the complete estimation procedure took more than 8000 CPU hours
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3.4 Validity of the Identifying Assumptions

In addition to controlling correctly for fh, identification relies on two behavioral assumptions

on the relationship between the hotel manager and revenue manager. First, we assume that

the price recommendation is a sufficient statistic for the information held by the revenue

manager. Second, we assume that the variation in actual rates, conditional on observable

product characteristics and recommended rates, is due to factors orthogonal to variation in

demand. In addition to the information about the institutional relationship between the

revenue manager and hotelier presented in Section 2, we present in this subsection evidence

in support of these two identifying assumptions. To do so, we perform a deeper analysis of

the recommendation data from the pricing algorithm as well as the behavior of the hotelier

when making pricing decisions.

The first assumption can be recast as a communication game between the revenue manager

and the hotel manager. In this game, the recommendation sent by the revenue manager is

the message and the actual rate is the action of the hotelier. If the incentives of the revenue

manager are sufficiently aligned with those of the hotel manager, a truth-telling equilibrium, in

which the recommendation is the best predictor for the current demand shock, exists.17 More

realistically, however, incentives of the two contracting parties may not be perfectly aligned.

In comparison to the hotelier, the revenue manager may for instance weigh revenue more

heavily than profits and may not face negative consequences from excessive price variation.

If this was the case, it would suffice that the revenue manager would suffer an additional

reputational or moral cost if she distorted her recommendation excessively (see e.g. Kartik,

2009). This would allow for a monotone signaling equilibrium and the invertibility assumption

would still hold. In Appendix B, we report on a simulated model in which recommendations

are systematically biased; our estimates remain valid despite the bias.

To further evaluate the role of price recommendations in the formation of actual rates,

we construct a large LASSO prediction model, which does not include recommended rates,

to predict the actual rates. We then compare the residuals from this model to (i) the same

LASSO prediction model which includes recommended rates as a predictor and (ii) to the raw

for the data set including all 9 hotels (using 9 supercomputing nodes each containing 256GB of memory and

2 INTEL Xeon processors).
17 For instance, in Crawford and Sobel (1982), as the bias of the sender converges to zero, the most

informative equilibrium becomes perfectly informative.
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difference between the actual rates and the recommended rates. The resulting distributions of

residuals from the three models are shown in Figure 3. Although, observable characteristics

clearly help in predicting the actual rate, the recommended rate alone does a much better

job than our large LASSO model without recommended rates. The figure also shows that the

LASSO predictions improve considerably when the recommended rate is added as a control.

This improvement implies that the hotelier finds revenue manager’s recommendations highly

relevant when setting prices. Furthermore, the high frequency at which the price recommen-

dation matches the actual rate demonstrates clearly that a hotel manager often copies the

price recommended by the revenue manager perfectly. This strongly indicates that a hotel

manager often follows the revenue manager’s advice.18

Regarding the second identifying assumption, we show that the residual variation in the

difference between actual and recommended rates is unlikely to be related to variation in

demand. To do so, we first consider the variation in the frequency of updates on different

weekdays in both the actual rate and the recommended one. Figure 4 plots the distribution

of rate updates in both the actual rate and the recommended rate for every day of the week in

the two biggest hotels in our data (ID 6 and 175). The distribution of updates in the actual

rate has clear gaps that are likely related to the hotel manager’s work flow. For example, the

manager of hotel 6 probably works on other things than pricing on Thursdays and Sundays

and updates most frequently on Tuesdays and Saturdays. The recommendation updates are

much more evenly distributed over the week and their frequency does not seem to be related

to the peaks in the hotelier’s distribution of rate updates. Similar patterns can be seen for

all hotels in Table 3.

Note that updating the prices for all arrival dates within the next two months in the

median hotel requires to manually update 300 different rates. It is hence reasonable for a hotel

manager to economize on this dimension by concentrating the workload on certain weekdays.

Observed updating behavior is also in line with the work schedule and responsibilities of hotel

managers in our data given in Section 2 (see also Footnote 18).

18 A cursory inspection of Figure 3 might lead to the conclusion that the recommended rate is doing a

better job at predicting the actual rate than the LASSO that includes the recommended rate. This, of course,

is not possible. The LASSO prediction has much less mass on the absolute errors in the 15-30 euro range. In

terms of mean squared error, these mistakes are much more expensive than the errors in the 5-10 euro ranges

where the LASSO has considerably more mass than the simple recommended rate. Notice, however, that the

LASSO that does not include the recommendation has more mass on all but the smallest errors than either of

the two other predictions and hence performs considerably worse than them.
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The timing and magnitude of deviations between the actual and recommended rates,

conditional on an update, can be rationalized by standard models of price adjustment (see

e.g. Reis, 2006; Alvarez et al., 2011). In these models, managers have only partial information

about demand and incur some observation cost for reassessing the optimal price. Managers

trade off the benefits of a more precise price with these observation costs and chooses to

pay these costs only when the average expected update is sufficiently high. From this it

follows that the realized average update will be roughly independent of time. The posited

behavior matches exactly the pattern we see in our data. The scatter plot in Figure 8 shows

the magnitude of all rate updates as a function of time since the last update. The locally

smooth best predictor of the magnitude of the price update as a function of days since the

last update is roughly constant, and is the same for price increases and decreases and across

different hotels. Similarly, consistent with models with observation costs, the correlation

between recommendations and prices is fairly constant over the booking horizon.19

Price-setting heuristics of hotel managers. As a final piece of evidence, we show that part

of the variation in prices is consistent with satisficing behavior by managers (Simon, 1956).20

Hotel managers often resort to behavioral heuristics in room pricing, because keeping a large

number of prices up to date is a perpetual and daunting task. A particularly common behavior

of hotel managers observed in our data is to accept all rate recommendations for a given room

in a given week, i.e. implement the recommended rate in every single night of the week. With

approximately 22,000 such events in our data, they account for 52.2% of all rate updates

by hotel managers. It is unlikely that these events are driven by private information of a

hotel manager. Indeed, the data shows that on days in which we observe a hotel manager

‘accepting all’ recommendations for a room for a given arrival week, we typically also observe

dozens of other unrelated rate updates, often for completely different arrival dates. This can

be seen in Figure 6, where we plot the total number of actual rate changes (in log scale) on

booking days when the hotelier copies all recommendations for at least one whole week, and

on booking days when none of the arrival weeks fully match the recommendation. It can

19 The idea of fixed costs for adjustment as well as the use of heuristics in price setting have a long tradition

in economics and management.
20 Simon (1962, p.10) argued that “...price setting involves an enormous burden of information gathering and

computation that precludes the use of any but simple rules of thumb as guiding principles. Through detailed

study of pricing by multiple interviews throughout the firm we begin to get a picture of the informational and

computational constraints that hedge in the pricing process and give it form.’
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be seen from Figure 6 that hoteliers adjust considerably more rates on days in which they

copy recommendations. This indicates that following algorithmic recommendations is much

less costly for the hotelier than coming up with a large number of optimal prices herself. We

will present a number of difference-in-difference estimations in Section 4.1, which leverage

the timing of these events, to obtain a credible quasi-experimental benchmark for our main

specification.

To illustrate the weekly updating pattern of actual rates by hotel managers, we first run a

simple regression (see column 1 in Table 5) which predicts changes in actual rates by changes

in recommended rates, and hotel-room type and arrival month fixed effects. We group all

observations from booking dates that share the same room type and the same arrival week;

we refer to these observations as ‘peer’ products. We then regress the residuals from the

first regression on the average change in actual rates of other peer products as well as the

average change in prices of non-peers with the same booking date. One would expect any

private information about demand that is not already incorporated in the recommendation

in the first stage to be correlated with demand for other products and hence induce a strong

correlation between the non-peer prices and the residual from the first stage. According to

our results in column 2 in Table 5, a 1 euro increase in the prices of all peer products is

associated to a 0.96 euro increase in the price of a given product, while a 1 euro increase

in the prices of non-peer products is associated with an increase of only 4 cents in the price

of that same product. The adjusted R2 in the residual regression is 0.96. Together, these

results imply that almost all of the residual variation in the actual rate is captured by the

average actual rate for that calendar week and room type. Hence, hotel managers update

mostly rates for one calendar week at a time for a given room type using similar adjustment

heuristics for all arrival days in that week. At the same time, spillovers across arrival weeks

and room types are marginal at best.

4 Empirical Results

Based on our demand estimation framework, we now report results from various specifications

of the following model

Qhit = λht + phitη
h +X ′hitβ

h + fh(rhit, Xhit) + εhit. (8)
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In this model, the dependent variable Qhit equals one if there is a booking for a room-type-

arrival-date combination, or product, i (e.g. standard room for March 21st) at hotel h, t

days before arrival. The average probability of a booking on a given day is 2.4%, and only

very rarely do we observe multiple customers purchasing the same room-type-arrival-date

combination on the same booking date. The main regressors are the actual rate, or price,

phit, and the rate recommended by the revenue manager rhit. We allow the recommended

rate to have a non-linear impact on the actual rate and allow for different hotels to adjust

rates differently. We allow the LASSO to pick from a set of controls that includes month-

and weekday-of-arrival fixed effects, their interactions with a third-order polynomial of the

recommended rate, booking horizon fixed effects and all interactions between the month of

arrival and the weekday of arrival. The strength of the double selection method is that it

allows for highly flexible forms of the potentially infinite dimensional ‘nuisance parameter’ fh

with finite amount of data while still delivering consistent estimates of ηh.

We start by estimating the relationship between actual rates and daily bookings using a

double selection (DS) procedure in which recommended rates are completely omitted. The

results are summarized in column 2 in Table 6 where we report the seventh (L), fifth (M) and

third (H) highest semi-elasticities out of our nine hotels. Omitting recommended rates yields

often positive or very small coefficients of price on quantity, suggesting endogeneity despite the

large number of seasonal controls. Even those hotels for which we would estimate negative

price elasticities would be able to charge markups ranging from 100-200% of their price,

i.e. implying prices inconsistent with profit maximization. We then consider a simple fully

linear specification without double selection, where we include only actual rates, recommended

rates, and room-type fixed effects on the right-hand side. The results can be found in column

1 of Table 6. More hotels exhibit now a negative relation between price and quantity but

there is still huge dispersion across hotels.21

Next, we run a double selection regression in which we include the same large set of po-

tential controls as in column 2 of Table 6, including a flexible polynomial of the recommended

rate and interactions between seasonal characteristics and recommendations. These interac-

tions capture the (possibly) non-linear response of hotels to information and are consistent

with the model described in the previous section. Results from this (preferred) specification

21 This is consistent with the results from the simulated model, where OLS estimates are biased in the

presence of sufficiently many confounders, see Appendix B.
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are summarized in column 3.22 The median hotel faces a 1% drop in bookings should they

increase their price by 3 euros. Translated into markups, these estimates suggest that the me-

dian hotel’s variable profit from an additional purchase is approximately 55% of its price.23

This median masks substantial variation across hotels. For example, hotels 175 and 6 are

facing much more elastic residual demand functions, as we show below. Similar results are

obtained using both a log-log and a logit specification (see columns 4 and 5 in Table 6). The

first allows for the baseline arrival rate to affect demand multiplicatively rather than addi-

tively, while the second appropriately handles the large number of days with zero bookings

in our data set.

Leveraging the richness of our data, we can also compute hotel-room-type specific semi-

elasticites. For each hotel, we estimate the following model

Qhit = λht +
∑
ρ

phitη
ρ
1i∈ρ + fh(rhit, Xhit) +X ′hitβ

h + εhit, (9)

with index ρ denoting the room-type associated with room i and 1 is the indicator function.

Figure 7 plots the distribution of estimated coefficients, weighted by the booking rate of each

room type. As expected, most coefficients are negative and statistically significant. The

median coefficient is quite close to the median of the distribution of semi-elasticities across all

hotels. Taken together, these results imply markups of around 50% of the price, and hence

significant market power for the median room type. Based on these estimates, we can also

perform a back-of-the-envelope calculation for the potential losses associated with sub-optimal

price setting. The average hotel in our data has some 2,000 active rates at every point in

time. If each of these rates are off by 7 euros (approximately 5% of the average rate), the

daily loss in profits from managerial inattention would add up to 40 euros, hardly justifying

the required investment in time and effort.24

22 We experimented with a version of this model that includes an even larger set of potential fixed effects

and that is estimated using the method suggested in Kock and Tang (2019). The results are quantitatively

comparable and available from the authors on request.
23 The hotel’s variable profits are given by (p − c)q(p), where p is the price, q is the quantity sold as a

function of price, and c is the marginal cost. The first-order condition for optimizing this with respect to the

price can be written as (p− c)ψ = −1, where ψ = 1
q
· dq(p)

dp
is the semi-elasticity of demand which according to

our preferred model equals approximately −0.0038. The average expenditure, p, is approximately 477 euros.

These computations disregard cross-price effects which multi-product firms such as these hotels may want to

take into account in their pricing; see Section 6 and D for more details.
24 This number is computed by simply performing the Taylor approximation of the profit function (p −

c)Q(p) around the optimal price p∗. Using our linear demand estimates, the average loss per room is ∆Π ≈
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For more advanced dynamic pricing features, we can also investigate heterogeneity in price

elasticities beyond the hotel-room type. As an illustration, we provide in Appendix C price

elasticity estimates for different bookings days of the week as well arrival seasons which may

both depend on the type of consumer, e.g. holiday or business traveler, a hotel faces.

4.1 Difference-in-Differences Estimations Using Accept-All Events

An alternative, more direct approach to exploit the variation in our data is to run a simple

difference-in-differences estimation. To this end, we restrict our analysis to ‘accept-all’ events,

that is, events in which a hotelier updates all rates for a given week and room type by following

the recommendation perfectly. We restrict our data to 2-day windows around these events

observing the prices and demand before and after the event. As the hotelier is exactly

matching the recommended rate for a whole week of arrival dates, these events are unlikely to

be driven by new information, and should rather be interpreted as a useful behavioral heuristic

busy managers fall back on when updating rates. In particular, our identification assumption

is that the exact timing of the actual rate update is uncorrelated with contemporaneous,

hotel-specific demand shocks within the 2-day window. Because the recommendation was

already in place on the first day, it is natural to assume that, had the manager decided to

make a change for this particular week the day before, she would have chosen the same actual

rate. In other words, the difference between the two rates was due to managerial inattention.

This arguably quasi-experimental variation allows us to apply a difference-in-differences logic

comparing demand and actual rate changes over those two days, using similar rooms in other

hotels without an ‘accept-all’ event on that same day for the same arrival week as the control

group.

Denote by ∆ the first-difference operator on a given variable, such that ∆Qhit = Qhit −

Qhit−1. Let δhit be a dummy variable that takes the value 1 if hotel h has an ‘accept-all’

event on date t for room i. Our regression equation is

∆Qhit = ηδhit∆phit + θ∆phit + βδhit + µit + εhit, (10)

where µit is a room-category, arrival-date combination fixed effect. The marginal effect of a

1 euro increase in the actual rate on the probability of observing a booking is captured by

1
2
(∆p)2Π′′(p). Since Π′′(p) = 2Q′(p) ≈ 2× 10−4, multiplying by the number of rooms yields a loss of about 40

euros.
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η + θ.

Table 7 summarizes the results. The estimated coefficient for the change in price across

consecutive days, θ, is very small and statistically insignificant. In particular, the coefficient

corresponds to an implausibly low semi-elasticity of −0.045 p.p., and is very precisely esti-

mated (s.e. 0.05). That is, we find no significant correlation between changes in actual rates

and contemporaneous quantity changes at the product level for those price changes that do

not exactly match the recommendation. Instead, we find a sizeable and statistically signif-

icant effect of the interaction term: the estimated coefficient of the difference-in-differences

equation, η, translates into a semi-elasticity of −1.2 p.p., and we cannot reject the null hy-

pothesis that the estimated coefficient equals the estimated semi-elasticity for the median

room (see Figure 7).

The treatment group for the difference-in-differences regression above requires that the

hotel manager updates rates for a full week of arrival dates for a given room type and matches

the recommended price while doing so. A natural question here is whether the event of up-

dating a full week of prices for the same room type will introduce enough exogenous variation

in the prices in form of pricing mistakes and delays to yield reasonable estimates even if price

recommendations are unavailable. When we run the same model as in the first column of

Table 7 but do not require that all prices in the treatment group match the recommendation

after the price change, the estimated elasticity becomes positive (the estimated coefficient is

0.045 with a standard error equal to 0.025). We conclude that a sizable number of simultane-

ous prices changes, without controlling for the recommended prices, is not enough to control

for the endogeneity resulting from hotel manager’s information about demand shocks.

The lack of power of the above difference-in-difference approach using accept-all events

might seem surprising at first, especially since there are 819 hotel-booking day pairs on which

the hotel manager copied the recommendation for a whole week. However, given the low

average booking rate, very few of the day pairs around the copying event have contempora-

neous bookings, explaining the low power (see also simulation results in B). As the variation

in prices in this model is very likely to be exogenous, we think that the results presented here

serve as an excellent test for whether the estimates from the double selected model in the

previous section are close to the truth.

The direct applicability of this difference-in-differences approach in real-world applica-

23



tions is however quite limited as the method requires data sets with very large numbers of

bookings and cannot be applied at the hotel-level at least for the medium-sized hotels in our

sample (because our hotel-level estimates exhibit considerable heterogeneity). Furthermore,

the difference-in-differences approach provides only a local average treatment effect around

the days the hotel manager copied recommendations. If the sporadic updating behavior is

driven by adjustment costs, hotel managers are adjusting prices more frequently when the

payoff from doing so is high. Consequently, such estimates are going to be applicable only

in times of relatively high demand. Lastly, the difference-in-difference model requires panel

data while our control-function approach can be applied to cross-sectional data as well.

4.2 Why Standard Instrumental Variables Do Not Work

The classical approach to demand estimation involves the use of instrumental variables.

Roughly speaking, three types of instruments have been used in the literature: cost shifters,

characteristics of other products and prices in other markets (Hausman instruments). In the

hotel industry, there are no obvious cost shifters that move frequently enough to help identify

demand when firms engage in dynamic pricing. Similarly, characteristics of other competing

hotel rooms vary only over the very long run and, thus, cannot be used as instruments for

these types of datasets. The only remaining potential candidate is to leverage prices in other

markets to capture supply shocks. The key identifying assumption is that, conditional on

product characteristics, the contemporaneous demand shock of hotels h and h̃ are uncorre-

lated if they are located in different markets. This assumption is likely to hold in markets

where demand is driven by income shocks or taste parameters but perhaps less likely to hold in

the hotel industry. In particular, weather shocks are strongly correlated across local markets.

To investigate the performance of this instrumental variable (IV) approach, we use the

‘triple selection’ IV algorithm from Chernozhukov et al. (2015) in which we include as instru-

ments prices of hotels located in other regional markets. The algorithm allows us to select

both the relevant exogenous controls as well as instruments. In particular, we estimate

phit =
∑

h̃∈H\{h}

ph̃itγ
h
h̃

+X ′hitγ
h
x + uhit, (11)

Qhit = phitη
h +X ′hitβ

h + εhit, (12)

where H is the set of 9 hotels in our data and Xhit is the same set of controls as in the double
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selected regressions above. In other words, we use for each hotel all of the other hotels as

instruments. In addition, we perform a similar exercise in which we use only hotel 6, which

is located in a large city, as an instrument for prices of the other hotels which are located in

resort destinations. This gives the best chance for the IV regression model to yield consistent

estimates. We also estimate IV model specifications which include price recommendations as

controls.

Table 8 shows that the above IV model yields mostly positive and highly heterogeneous

coefficients. This suggests that the instruments are endogenous or, put differently, that the

identifying assumption of demand shocks for hotels in different markets does not hold. The

endogeneity is so strong that the estimates are biased even when controlling for recommended

rates.

One might argue that the main driver of correlation in demand shocks across hotels in

our application is weather. Since weather forecasts are not very reliable more than 15 days

ahead, excluding the last 15 days before arrival would remove any endogeneity resulting

from common weather shocks. Results from the IV model, excluding the last 15 days before

arrival, are reported in the last two columns of Table 8. Only if we include recommended

rates as a control, the IV regression is able to identify a negative price coefficient (see column

4). This illustrates that price recommendations contain information about common demand

shocks which is not related to only weather across hotel locations. Overall, we conclude that

Hausman-type instruments are unlikely to provide credible estimates due to unobserved and

correlated demand shocks in the hotel industry.

5 Applications: Dynamic Components of Demand

We now demonstrate our empirical framework by investigating two essential features of de-

mand in the hospitality industry. First, we perform a heterogeneity analysis by studying

variation in price sensitivity of consumers across different time horizons which is crucial for

inter-temporal price discrimination. Second, we introduce lagged prices in our main regression

framework to investigate whether, and to which extent, current demand is affected by previ-

ous price changes. The idea is that if some consumers would be willing to delay their purchase

in the hope of a better price in the future, lagged prices would be positively correlated with

current demand.
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5.1 Time-Varying Price Elasticities

Williams (2018) shows in an application of dynamic pricing in the airline industry that the

benefits of inter-temporal price discrimination depend crucially on the temporal pattern of

consumers’ price sensitivity. Since the average opportunity cost (conditional on not having

sold the room) is decreasing over time, the optimal price should fall as long as the semi-

elasticity of demand remains constant. To investigate inter-temporal price sensitivity of cus-

tomers for our hotel data set, we run our double-selected baseline specification for two hotels

(6 and 175) separately for different booking horizons.25 Results suggest that the estimated

price semi-elasticity is highest for early bookings and lowest for late bookings as shown in

Table 10. Our results are consistent with the intuition that consumers who search early on

are relatively more price sensitive. This finding contrasts with recent work by Joo et al.

(forthcoming) who find that the price sensitivity increases over time for holiday cruises.

We can also use these results to decompose the observed price into the markup and the op-

portunity cost (containing both marginal operating costs and foregone future opportunities),

disregarding potential cross-substitution patterns across products and forward-looking con-

sumers. This decomposition is depicted in Figure 9. Prices in hotel 6 are remarkably constant

over time, while for hotel 175 prices are increasing slightly with the arrival day approaching.

Because opportunity costs fall over time, this pattern is prima facie inconsistent with profit

maximization. Constant prices can only be rationalized if the hotel 6 faces a decreasing price-

elasticity over time, which is what we find: our estimated price elasticity is decreasing and

the implied optimal markups are increasing, see blue dashed line in Figure 9. This suggests

that properly accounting for demand heterogeneity, such as temporal differences in demand

of consumers, is key for dynamic pricing policies in our setting.

5.2 Forward-Looking Consumers

Suppose that some consumers are willing to delay their purchasing decision and instead

continue searching for a better price. We refer to these consumers as strategic, whereas the

rest of consumers are assumed to be myopic. Strategic consumers, who delay their purchase

waiting for better future prices, introduce a dynamic component in demand. Previous prices

25 Specifically, we distinguish between very early bookings (> 100 days ahead), early bookings (51 − 100

days ahead), late bookings (21 − 50 days ahead) and very late bookings (≤ 20 days ahead).
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now have an impact on the probability that a strategic consumer who considered purchasing

in the past remains active in the market.

More precisely, a price hike in the past has two distinct effects on the current demand of

strategic consumers as we show in the Electronic Companion (section A). First, an increase

in the price leads some consumers to strategically delay purchases in the hope of obtaining

a better price in the future. Second, some consumers who would have otherwise waited will

exit the market in response to a price hike. The second effect is relatively important in our

setting because prices seem to follow a martingale, in the sense that the best predictor for

tomorrow’s price is today’s price (unless one has access to price recommendations).26 We

refer to the sum of these two opposing mechanisms as the ‘market-size effect’ of a price hike.

Empirically, we consider the following model:

Qhit = λht + phitη
h + phit′η

h
τ + fh(rhit, Xhit) +X ′hitβ

h + εhit, (13)

where t′ = t+ τ for some τ > 0. The coefficients of interest are ηh and ηhτ , which capture the

contemporaneous and dynamic demand elasticity respectively. The identifying assumption

is now that (Ωhit′ , εhit′) for t′ > t are conditionally independent from νhit given (Xhit, rhit).

Provided that rhit is a sufficient statistic for current and future demand, the assumption is

satisfied.

Results from the double selection model for hotels 175 and 6 are summarized in column 2 of

Table 9. We find that there is a persistent negative effect of lagged prices on contemporaneous

demand for hotel 175, while this effect is positive for hotel 6. The magnitude of these effects

is slightly bigger than a half of the effect of contemporaneous prices, suggesting that the

proportion of customers willing to delay purchases is substantial for both. Taken at face value,

these results suggest that there exists significant heterogeneity in the response of customers

to price changes across different hotels in our sample.

In addition, price changes in the past are known to change the composition of potential

customers (Li et al., 2014). When prices are increasing (decreasing), the fraction of consumers

who wait for future price reductions is smaller (larger, respectively). Consequently, the price

elasticity depends mostly on the behavior of myopic consumers when prices are increasing and

26 Intuitively, this can be seen from Figure 2 which plots the distribution of changes in actual rates. Price

hikes and markdowns are distributed similarly and the median change in either direction is 8 euros per night

or 22 euros on an average booking; see also Figure 9.
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on strategic consumers when they are decreasing. To quantify these effects, we run the model

described in equation (8) interacting the actual rate with an indicator variable that equals

one if the actual rates has increased and zero otherwise. Formally, restricting the sample to

periods in which ∆ := phit − phit′ 6= 0 for t′ = t+ 1, we estimate

Qhit = phitη
h+phit1∆>0η

h
+ +phit1∆<0η

h
−+X ′hitβ

h + fh(rhit) + θ+1∆>0 + θ−1∆<0 +λht + εDhit,

(14)

where θ+ and θ− are the regression coefficients associated with the level effects and λht is a

hotel specific arrival rate. The dynamics in our hotel-room demand estimates are generally

consistent with findings by Li et al. (2014) in the air-travel industry. Results are reported in

column 3 of Table 9. Again, these hotels present different patterns. In hotel 175, in periods

of increasing prices, demand becomes slightly less elastic. In hotel 6, instead, we find that

the responsiveness of demand to a price change is lowest when prices are falling, although

the magnitude of this effect is also small. Coupled with the results above, they suggest that

patient consumers may not be more price sensitive than their myopic counterparts in our

sample. A possible explanation is that patient consumers have a higher willingness-to-pay for

this specific hotel and simply optimize the timing of their purchase.

6 Conclusion

Recommendation systems that support pricing, inventory and production decisions are be-

coming ubiquitous with the rise of machine learning and artificial intelligence. In this paper,

we have provided a novel approach leveraging historical recommendation data to isolate ex-

ogenous variation in pricing decisions which can be used in static as well as dynamic settings.

Our approach credibly identifies the causal impact a price change has on demand as long

as algorithmic price recommendations are not perfectly passed on to final prices. It also al-

lows for counterfactual analysis in environments where such inference was not possible with

traditional methods, such as instrumental variable approaches.

Applying our general framework to pricing in the hotel industry, we provide evidence that

hotel managers seem to face significant fixed costs for adjusting actual rates. Consequently,

they integrate the information contained in price recommendations sluggishly and only par-

tially into realized prices. We then show how the discrepancies between the recommendations
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and realized prices can be used to identify hotel- and room-type-level demand elasticities.

Our paper adds to the empirical literature on dynamic pricing also because we can leverage

our high-frequency pricing and booking data to identify a subset of the data that exhibits

quasi-experimental variation in prices. A simple difference-in-differences estimation applied

to this subset validates our more general hotel-level estimates.

Our method can be used to measure dynamic patterns in demand that have critical im-

plications for optimal pricing. In our application to hotel pricing, we have provided evidence

for strategic behavior by a significant fraction of consumers and established the existence of

substantial heterogeneity in the price sensitivity of the average consumer as a function of

the number of days before arrival. In comparison to structural models, our reduced form

approach can be easily adapted to account for the dependence of the price elasticity on other

variables, by estimating the interactions between the variable of interest and prices. A typical

example is estimating cross-price elasticities for substitutes. Note that we have not included

cross-price effects of substitute products for the elasticity estimations in the main text because

they seem negligible in our application (see D for details). For other applications, however,

extending the estimation approach and the underlying identification strategy to incorporate

cross-price elasticities more generally would be a valuable exercise which we leave for future

research.

Finally, our approach only requires transaction-level data and, thus, represents an inex-

pensive alternative to both structural modeling and price experimentation which are often

outside the reach of all but the largest and technologically most advanced corporations. It ex-

tends easily to many environments in which managers face a large number of small decisions,

daily prices in our setting, and have access to algorithmic recommendations.
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Tables and Figures (intended for main text)

Table 1: Summary Statistics of Rates and Bookings by Room Category

Single Standard Superior Suite

Actual rate 81.56 160.53 173.94 210.61

Actual rate (conditional on booking) 81.34 159.35 168.88 198.75

Total price per night 69.79 125.97 130.27 174.38

Recommended rate 81.25 161.08 176.20 215.05

Bookings per room 0.31 0.36 0.33 0.26

Duration of stay (days) 1.92 2.25 2.70 2.77

Notes: Mean values are reported by room category. Actual rate is the baseline price

charged by the hotel, total price is the final price paid by the customer for one night,

recommended rate is the price provided by the pricing algorithm, and booking per room is

the mean utilisation of capacity, 1
T

∑
t

[
1
N

∑
h bh,t/nh

]
, with bh,t the number of bookings

in the given room category at hotel h at time t and nh the capacity of hotel h in that room

category.
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Table 2: Actual Rate Updates over Time

Days before arrival

100–0 50–0 30–0 14–0

Single 0.0251 0.0367 0.0444 0.0553

Standard 0.0465 0.0717 0.0918 0.1130

Suite 0.0189 0.0262 0.0322 0.0393

Superior 0.0347 0.0498 0.0616 0.0769

Notes: Fraction of days with an actual rate update by

the hotel manager for different intervals of days before

arrival. Data includes only products for which we ob-

serve T ≥ 100 days before arrival.

Table 3: Distribution of Actual Rate Updates

Hotel ID Monday Tuesday Wednesday Thursday Friday Saturday Sunday

6 0.19 0.24 0.11 0.04 0.12 0.25 0.04

10 0.19 0.06 0.27 0.09 0.07 0.16 0.17

11 0.17 0.47 0.02 0.04 0.18 0.12 0.00

23 0.14 0.14 0.19 0.12 0.24 0.10 0.08

30 0.22 0.10 0.17 0.25 0.16 0.06 0.03

131 0.14 0.15 0.16 0.07 0.16 0.17 0.16

175 0.22 0.16 0.12 0.19 0.19 0.08 0.04

192 0.12 0.16 0.30 0.04 0.14 0.11 0.13

208 0.07 0.31 0.07 0.08 0.36 0.03 0.06

Notes: Numbers in bold indicate the day with maximal or minimal density of actual rate updates

for each hotel. Rate updates for each hotel sum to 1, rounding errors may apply. Data includes only

products for which we observe T ≥ 100 days before arrival.
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Table 4: Pass-Through of Recommended Rate into Actual Rate

Dependent variable∑t+9
s=t ∆ actual rate (s)

∑t+9
s=t |∆ actual rate (s)|

∆recommended rate (t) 0.101∗∗∗

(0.001)

|∆recommended rate (t)| 0.140∗∗∗

(0.002)

R2 0.025 0.041

N 193,844 193,844

Notes: All regressions are estimated conditional on a change in the recommended rate. Pass-

through of recommended rate into actual rate, is the sum of changes in the actual rate over

the next ten days, i.e. instantaneous change together with the cumulative variation within

the following nine days, regressed on the change in recommended rate (without a constant).

Standard errors in parentheses. Data includes only products for which we observe T ≥ 100

days before arrival. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Hotel Managers’ Updating Behavior and Product Similarity

Dependent variable

∆actual rate Residual from column 1

∆recommended rate 0.936∗∗∗

(0.073)

Days before arrival -0.005

(0.009)

Mean ∆actual rate peers 0.964∗∗∗

(0.013)

Mean ∆actual rate non-peers 0.036∗∗∗

(0.013)

Hotel-room type fe Yes –

Arrival month fe Yes –

R̄2 0.26 0.96

N 131,699 117,469

Notes: All regressions are estimated conditional on a change in the actual rate. A

‘peer’ of a product is defined as a room in a hotel on a given arrival date that

is otherwise identical to the product in question but has its arrival date within a

calendar week from the product being considered. For example, on the booking date

January 2 for a double room in Hotel 6 on the arrival date of June 1 (Thursday) the

Mean ∆actual rate peers would be the average change in actual rate between January

1 and January 2 for double rooms in Hotel 6 for all arrival dates in May 29 (Monday)

- May 31 (Wednesday) and June 2 (Friday) - June 4 (Sunday). The difference in the

number of observations between column 1 and 2 is due to some products having no

peers or all of the remaining observations being its peers. Standard errors clustered

at the hotel level. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: Demand Semi-Elasticities in p.p.

Model specification

Simple OLS DS linear DS linear DS log-log DS logit

Actual rate (L) 0.23 0.27∗∗ −0.18∗∗∗ 0.04 0.05

(0.16) (0.11) (0.03) (0.18) (0.06)

Actual rate (M) −0.59∗∗∗ −0.15 −0.54∗∗∗ −0.29 −0.92∗∗∗

(0.06) (0.15) (0.19) (0.29) (0.20)

Actual rate (H) −2.34∗∗∗ −0.38∗∗∗ −1.24∗∗∗ −0.84∗∗∗ −1.52∗∗∗

(0.10) (0.11) (0.36) (0.11) (0.24)

Recommended rate Yes No Yes Yes Yes

Notes: The dependent variable is the probability of a booking for a given product on a given

date. We run a separate regression for each hotel. The OLS results control for room type and

recommended price. DS in columns 2-5 refers to double selected models. In columns 3-5 the

double selection method is allowed to select from a third-order polynomial of the recommended

rate and its interactions with the month of arrival and weekday of booking, room type, interac-

tions between the weekday of arrival and arrival month, and indicators for the number of days

before arrival. In column 2 the set of controls is the same but does not include the recommended

rate or any of its interactions. Reported coefficients correspond to the 3rd (H), 5th (M), and 7th

(L) most elastic estimate out of the 9 hotels. The semi-elasticities for the logit model in the last

column are calculated using the average marginal effect of a price change divided by the average

booking rate. Standard errors in parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01
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Table 7: Estimates of the Slope of the Demand Curve and Implied Demand Semi-Elasticities in p.p.

from the Difference-in-Differences Specification

Model specification

All observations Excl. suites Last 20 days Excl. last 20 days

∆actual rate −0.0018 −0.0027 −0.0044 −0.0012

(0.0018) (0.0024) (0.0055) (0.0018)

∆actual rate × copied all recs −0.044∗∗∗ −0.047∗∗∗ −0.063∗∗∗ −0.040∗∗

(0.017) (0.016) (0.17) (0.18)

Copied all recommendations −0.827∗∗∗ −0.94∗∗∗ −0.145 1.07∗∗∗

(0.262) (0.271) (0.274) (0.341)

Average booking rate 0.038 0.041 0.077 0.019

Semi-elasticity in p.p. (interaction) −1.20 −1.22 −0.88 −2.22

Product category - time fe Yes Yes Yes Yes

N 5,886,196 4,603,198 631,864 5,254,332

Notes: The dependent variable is the change in the number of a bookings (in p.p.). Copied all recs equals one

if on that booking day the hotel manager updated at least one price and all of the prices for that arrival week

matched the recommendation. Note that this requires matching prices also for other room types. Fixed effects are

at the level of unique combinations of room category, date of arrival and booking date. Standard errors shown in

the parentheses are clustered at the hotel level. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8: Triple-Selected Instrumental-Variable Regressions

Set of instruments and booking horizon

All Only hotel 6 All excluding last 15 days

Actual rate (L) 1.6∗∗∗ 0.12∗

(0.03) (0.05)

Actual rate (M) 0.8∗∗∗ 0.05 0.001 −0.5∗∗∗

(0.20) (0.04) (0.004) (0.02)

Actual rate (H) −0.025 0.01

(0.07) (0.20)

Recommended rate Yes Yes No Yes

Hotel ID All 6 excluded 175 175

Notes: The dependent variable is the number of bookings for a given product on a

given date. All specifications use the three-step selection procedure introduced in

the main text. We run a separate regression for each hotel. Reported coefficients

correspond to the 3rd (H), 5th (M), and 7th (L) most elastic estimate out of the 9

hotels. Control variables include month and day of arrival and room-type indicators

and days before arrival. In columns 1, 2 and 4, the triple selection method is allowed

to select from a third-order polynomial of the recommended rate and its interactions

with the month of arrival and weekday of booking, room type and fixed effects for days

until arrival. Instruments are prices in other hotels. In column 2 we only use prices

in hotel 6 as instrument, and we drop hotel 6 from the main analysis. In columns

3 and 4 we exclude the last 15 days. Standard errors in parentheses. Significance

levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

40



Table 9: Double-Selected Demand Semi-Elasticities in p.p. Including Lagged

Prices

Model specification

Baseline Incl. 8-day lags Incl. interactions

Hotel 175 (N = 827, 797)

Actual rate −2.75∗∗∗ −1.62∗∗∗ −3.02∗∗∗

(0.12) (0.45) (0.14)

Lagged rate −1.36∗∗

(0.45)

Actual rate × hike 0.22∗∗∗

(0.03)

Actual rate × drop 0.08∗∗

(0.03)

Hotel 6 (N = 204, 635)

Actual rate −1.49∗∗∗ −3.22∗∗∗ −1.61∗∗∗

(0.22) (0.54) (0.22)

Lagged rate 1.63∗∗∗

(0.51)

Actual rate × hike 0.13

(0.07)

Actual rate × drop 0.30∗∗∗

(0.08)

Notes: The dependent variable is the probability of a booking for a given product

on a given date. Control variables that the double selection is allowed to select from

include month and weekday of arrival, room type indicators, a third-order polynomial

of the recommended rate and its interactions with the month and weekday of arrival,

interactions between the weekday of booking and arrival month, and indicators for the

number of days before arrival. Actual rate is the rate on the day of booking. Lagged

rate is the rate 8 days before the booking. Hike (drop) equals one if the current price

exceeds (is lower than) the lagged price. Standard errors in parentheses. Significance

levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 10: Double-Selected Demand Semi-Elasticities in

p.p. Over Time

Days before arrival

≥ 100 100− 51 50− 21 20− 0

Hotel 6 −1.83∗∗∗ −1.15∗∗ −0.31 −0.81∗∗

(0.58) (0.58) (0.56) (0.34)

Hotel 175 −2.15∗∗∗ −1.61∗∗∗ −1.41∗∗∗ −1.78∗∗∗

(0.21) (0.23) (0.19) (0.12)

Notes: The dependent variable is the probability of a booking in

hotels 175 or 6 for a given product on a given date. Control vari-

ables that the double selection is allowed to select from include

month and weekday of arrival, room type indicators, a third-

order polynomial of the recommended rate and its interactions

with the month and weekday of arrival, interactions between

the weekday of booking and arrival month, and indicators for

the number of days before arrival. Actual rate is the rate on

the day of booking. Lagged rate is the rate 8 days before the

booking. We run separate regressions for each hotel and each

booking horizon. Standard errors in parentheses. Significance

levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

42



0.00

0.03

0.06

0.09

0 100 200 300

Days Before Arrival

R
el

at
iv

e 
F

re
qu

en
cy

Hotel ID

175

6

Figure 1: Arrival of Bookings as a Function of Time Before Arrival

0.0

0.1

0.2

0.3

-40 -30 -20 -10 0

Magnitude of Change in the Actual Rate

D
en

si
ty

Hotel ID

175

6

(a) Price Decreases
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(b) Price Increases

Figure 2: Empirical Distribution of Actual Rate Changes
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from LASSO Predictions With and Without Recommended Rate
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Figure 4: Frequency of Updates in Actual and Recommended Rate Across Weekdays for Hotel

6 and 175
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Figure 5: Distribution of Number of Changes (in Log) in Actual Rate Conditional on at Least

One Rate Update
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ommended Rates

46



Diff in diff estimate
with 95% CI bands

density estimate
Double selected

0

20

40

60

D
en

si
ty

-.04 -.02 0 .02
Semi-elasticity

Figure 7: Distribution of Estimated Semi-Elasticities Across all Room Types and Hotels

Note: Kernel density plot (Epanechnikov kernel with bandwidth = 0.0027) of the estimated semi-elasticities

across all room types and hotels using double selection, see Table 6. Although kernel density estimates exhibit

some mass at positive values, only three estimates are statistically larger than zero. The figure also plots the

difference-in-differences estimate reported in Table 7. The vertical line represents the difference-in-differences

estimate and the dashed lines the corresponding 95% confidence intervals.
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Figure 8: Changes in Actual Rate as a Function of Days Since the Last Update

Note: An observation corresponds to an update in the actual rate. The blue line plots the best locally smooth

predictor of the average change as a function of days since last update.
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Figure 9: Markups and Acutal Rates by Days Before Arrival

Note: Bookings 21-50 days before arrival for Hotel 6 are excluded due to imprecise estimates (Table 10

column 4).
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A Dynamic Demand Model

A strategic consumer who considers hotel h at date t has three alternatives. First, she may

decide to book a room and obtain vt − pt. Second, she may execute her outside option of wt.

Finally, she may decide to wait obtaining a (perceived) present value of St(vt, pt), independent

of wt. We assume that St(vt, pt) is weakly increasing in vt and decreasing in pt and that the

function vt−pt−St(vt, pt) is strictly increasing in vt, strictly decreasing in pt and there exists

a unique value v∗(p) such that v∗(p) − p − S(v∗(p) − p) = 0. Let Fw(w) be the distribution

of the value of the outside option and let F tv(v) be the distribution of valuations for hotel h

among consumers alive in period t (which may be endogenous). We define

∆1 =

∫
v∗(p)

fw(v − p)dF tv(v) + f tv(v
∗(p)). (15)

The first term captures those consumers who would otherwise buy now but a price increase

leads to execute the outside option. The second term contains those consumers who are

discouraged from buying now but are willing to wait. Similarly,

∆2 =

∫ v∗(p)

fw(S(v, p))Sp(v, p)dF
t
v(v) (16)

captures the fraction of consumers who are now discouraged from waiting further. Notice

that in the basic framework presented in the main text, ∆2 = 0. In general, however, ∆2 ≥ 0

as some consumers become pessimistic about their future prospects following a higher price

realization. The main hypothesis can then be written as

ηtf
t
v(v
∗(pt)) <

∫ v∗(pt)

fw(S(v, pt))Sp(v, pt)dF
t
v(v) (17)

for all t. This will always hold if there is sufficient variation in the perceived distribution of

prices over time so that Sp(v, pt) is low enough. This does not require, however, that prices
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are independent over time. For instance, if consumers expect that pt = pt−1 with probability

q and pt is distributed according to H(p) with probability 1 − q, then Sp(v, pt) = 0 even if

the serial correlation in prices is arbitrarily large.

B Simulations

In this section we describe the simulation models which set up to estimate the price semi-

elasticity of demand for the different econometric specifications presented in the main text.

For the baseline simulation model, we first generate the price and quantity paths of 1000

rooms (or products) over a booking horizon of 100 days. For each room, we draw the ’initial

utility’ of a consumer, uiT , using the linear model

uiT =

250∑
k=1

vkiδk, (18)

where δk = 0 if variable k is irrelevant for demand and otherwise δk is distributed according

to a log-normal with mean 2e1/2. Variable vki is the realization of variable k in hotel i,

drawn from a standard uniform distribution. We keep the model sparse by setting parameter

δk = 0 with probability 0.8. We assume further that the time-specific mean utility a consumer

received from product i in period t = T, T − 1, ..., 1 follows a random walk, with

uit = uit+1 + εit,

where εit is normally distributed (with standard deviation equal to 1/50 of the expected

initial utility). We generate a similar model on the supply side with the initial marginal cost

of production, ciT , drawn according to

ciT =

250∑
k=1

vkiθk, (19)

and subsequent costs are given by

cit = cit+1 + εit,

with εit normally distributed (with standard deviation equal to 1/50 of the expected initial

cost). Similarly to the demand component, θk = 0 if variable k is irrelevant for supply and is

distributed according to a log-normal with mean 2e1/2 otherwise. Cost shocks are correlated

with prices but not with demand, introducing exogenous variation in prices.
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Given utility uit, the probability that a consumer purchases in period t is λt(uit − bpit);

parameter λt measures the arrival rate at period t and pit is the realized price. We set

the initial price equal to the optimal price, assuming unlimited capacity, and formulate the

following adjustment model. The revenue manager submits a new recommendation in every

period with a certain probability. The recommended price is interpreted as the revenue-

maximizing price in that period. We assume the hotel manager can perfectly infer the demand

shock from this recommendation. Whenever the hotel manager decides to adjust the price,

she will choose the optimal price given the shock. Consistent with evidence from our data

set, we assume that price adjustments are less frequent than updates in recommended rates.

We outline different simulation models as a proof of concept of our estimation approach.

As shown in Table 11, the simulated models are then estimated for different econometric

specifications, including the double-selected framework (DS linear), and compared against

the simulated model’s true price semi-elasticity. In the ‘baseline’ simulated model (column

1), parameters are chosen in order to obtain an average booking rate of 0.05, and a price

semi-elasticity of approximately −1.5 p.p. In addition to the baseline simulation, we exlude

supply shocks in the ‘no supply shock’ model (column 2) by setting the variance of ε equal

to 0. In the ‘low inertia’ model (column 3), we change the frequency of price adjustments

by increasing the probability of adjustment in prices from 0.2 to 0.4. Finally, we reduce

the number of nuisance parameters from 250 to 100 in the ‘low dimension’ model (column

4). Note that we compute the true model-specific demand semi-elasticity using numerical

derivatives because direct comparison across models is not possible.

Table 11 provides the estimated price semi-elasticity for each of the four different esti-

mation specifications (in rows) and the four different simulation models (in columns). The

first row shows the estimates of a linear model (LM) in which price recommendations are

omitted. Similarly to the empirical results reported in the main text, the linear model is

severely biased and yields positive elasticities for any of the simulated models. We also run a

simple difference-in-differences model for which we use only variation in prices in periods in

which the recommendation is constant. Since the sample size becomes relatively small, the

coefficient for each of the simulation models is quite noisy as shown in row 2. Results of a

simple linear model including the price recommendation and time fixed-effects are shown in

row 3. Including recommended rates, we identify a negative price coefficient but the regres-

52



Table 11: Estimated Price Semi-Elasticity in p.p. for Simulated Models

Simulation model

Baseline No supply shocks Low inertia Low dimension

LM without recommended rate 0.56∗∗∗ 0.57∗∗∗ 0.79∗∗∗ 0.65∗∗∗

(0.01) (0.01) (0.01) (0.01)

Diff-in-Diff −1.10∗∗ −1.11∗∗ −1.17∗∗ −1.14∗∗

(0.39) (0.39) (0.37) (0.36)

LM with recommended rate −0.90∗∗∗ −0.74∗∗∗ −1.50∗∗∗ −1.42∗∗∗

(0.12) (0.12) (0.14) (0.10)

DS linear −1.62∗∗∗ −1.49∗∗∗ −1.53∗∗∗ −2.10∗∗∗

(0.16) (0.17) (0.12) (0.14)

True coefficient −1.39 −1.50 −1.48 −1.77

Notes: The dependent variable is the probability of a booking. The specifications of the simulated models

are described in the text of this section. The econometric specifications used to estimate price semi-

elasticities for each simulated model are the ones used in the main text. Bootstrapped standard errors

for a simulated sample with 1000 rooms and 100 booking days in parentheses. Boldface estimates if we

cannot reject the true value at p = 0.05. Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

sion model underestimates its magnitude. We find that difference-in-differences estimates are

close to the true coefficient only if there is substantially more variation in prices (’low inertia’

model in column 4) or fewer confounders (’low dimension’ model in column 5). As can be

seen from Table 11, our preferred double-selected linear model obtains estimates much closer

to the true price effect than any other regression specification for all but the simulated model

in column 4.

As a further robustness test of our empirical approach, we also study the performance of

our empirical estimation framework by relaxing some of the following main assumptions. In

the simulated model with ’endogenous adjustments’ (column 1), we implement adjustment

costs of hotel manager such that prices adjust only if the difference between the current price

and the optimal price exceeds 4% of the mean price (conditional on an observation). In

the model assuming ‘biased recommendations’ (column 2), recommendations are allowed to

53



Table 12: Estimated Price Semi-Elasticity in p.p. for Simulated Models

Simulation model

End. adjustment Biased recs Mean-reverting Strategic

LM without recommended rate 0.80∗∗∗ 1.13∗∗∗ 0.79∗∗∗ 0.79∗∗∗

(0.01) (0.01) (0.01) (0.01)

Diff-in-Diff −1.18∗∗ −2.12∗∗∗ −1.12∗∗ −0.92∗

(0.41) (0.87) (0.37) (0.37)

LM with recommended rate −0.87∗∗∗ −2.52∗∗∗ −0.71∗∗ −0.02

(0.11) (0.25) (0.12) (0.13)

DS linear −1.61∗∗∗ −3.43∗∗∗ −1.39∗∗∗ −1.16∗∗∗

(0.16) (0.36) (0.12) (0.16)

True coefficient −1.52 −3.92 −1.42 −0.86

Notes: The dependent variable is the probability of a booking. The specifications of the simulated

models are described in the text. The econometric specifications used to estimate price semi-elasticities

for each simulated model are the ones used in the main text. Bootstrapped standard errors for a

simulated sample with 1000 rooms and 100 booking days in parentheses. Boldface estimates if we

cannot reject the true value at p = 0.05. Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

be biased so the manager chooses pit = φrit + (1 − φ)p0 + νit, with φ = 0.8 and νit being

white noise (equal to the variance of ε). In the ‘mean-reverting’ simulated model (column 3),

we allow for the consumer’s utility uit to be mean-reverting by assuming an autocorrelation

parameter of 0.9. Finally, we also introduce a simulation model with strategic consumers

(column 4). We model this by simply assuming that if a consumer arrives but does not buy

in a given period, she stays in the market in the future with probability δ = 0.3.

Estimation results are reported in Table 12. We find that, in all of the simulated models,

estimates of our DS linear regression model are consistent with the true price elasticities

and are much more precise than the difference-in-differences estimates. Note also that the

average price elasticity in the model with biased recommendations (column 2) is much higher

because realized prices depart substantially from the static optimal, and the average selling

probability is only half of the one in the other models. In addition, we also run the DS linear
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model specification with lagged prices (as the one in Table 9) using the simulated data with

patient consumers. In this case, we identify a slightly higher contemporaneous price elasticity

(−1.29) than in the specification without a lag (see column 4). The effect of the lag is positive

(0.37) and around 1/3 of the main coefficient but insignificant due to lack of power; these

results are in line with the ones found for hotel 6 in Table 9.

C Heterogeneous Price Elasticities

Our method can also be applied to estimate the extent of heterogeneity in demand elasticities

that is critical for the development of more complex dynamic pricing algorithms. To demon-

strate the flexibility of the method, we estimate the demand semi-elasticities first for different

booking weekdays and then for different arrival seasons.

Heterogeneity in booking patterns creates an opportunity for more nuanced pricing if

consumers, who differ in their weekday booking pattern, also exhibit differences in willingness

to pay for a room. In the airline industry, for example, it is known that different types of

consumers typically book their flights on different weekdays (e.g. Puller and Taylor, 2012). We

investigate whether similar booking patterns are also present in our hotel data. The first row in

Table 13 presents the lowest, highest and the median estimate of the price semi-elasticity over

the seven possible booking weekdays. In hotel 175 the elasticities are highly constant across

days of the week, except for weekends (especially Saturdays), when the demand elasticity

is considerably lower than on other booking weekdays. In hotel 6 we see somewhat more

variation across booking days than in hotel 175. The most elastic booking day for hotel 6 is

Thursday while Tuesdays are the least elastic. The difference between the two hotels is likely

to be due to differences in consumer types, because hotel 6 is a city hotel and hotel 175 a

holiday resort.

In the regions where the two hotels operate, the months from December to March and June

to September are considered high seasons, especially among holiday travelers, and remaining

months are considered off-season. We estimate the hotels’ demand semi-elasticities for these

three groups of months. The ‘arrival season’ results are presented in Table 13. The expected

demand pattern is reflected in the estimates for hotel 175: demand is highly inelastic during

the winter months and fairly elastic during the off-season. For the city hotel 6, demand varies

much less across seasons.
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Table 13: Double-Selected Demand Semi-Elasticities in p.p.

Hotel 175 Hotel 6

Min Median Max Min Median Max

Booking
weekday

−2.82∗∗∗ −2.51∗∗∗ −0.62∗ −4.22∗∗∗ −2.97∗∗∗ −1.36∗

(0.21) (0.23) (0.33) (0.60) (0.70) (0.60)

Winter Summer Off-season Winter Summer Off-season

Arrival
season

−0.49 −2.42∗∗∗ −4.22∗∗∗ −3.18∗∗∗ −2.71∗∗∗ −2.17∗∗∗

(0.29) (0.18) (0.23) (0.75) (0.82) (0.43)

Notes: The dependent variable is the probability of a booking for a given product on a given date.

Control variables include month and weekday of arrival, month of arrival, their interaction, number

of days before arrival, room type, and a third-degree polynomial of the recommended rate, interacted

with month of arrival, weekday of booking and the number of days before arrival. Standard errors

in parentheses. Semi-elasticity estimate uses the average probability of a booking as the quantity

sold. Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Finally, note that the method presented in Semenova et al. (2017) can be combined with

our method to select and estimate the most important dimensions of demand heterogeneity.

However, such application is beyond the scope of this paper.

D Cross-Price Effects

Cross-price effects, if not included in the analysis, can lead to biased price elasticity estimates.

The analysis in the main text abstracted from cross-price effects by assuming implicitly that

a hotel sells a single room type. In this section, we comment on how our approach can

be adapted to account for cross-price effects between products. We then present results

of regression specifications including prices and price recommendations of other products

(e.g. substitutes) and establish, for our data, robustness of the approach presented in the

main text.

First, note that the estimation approach presented in the main text remains valid and

produces consistent estimates as long as price changes, conditional on covariates and recom-

mendations, are crucially not correlated across different rooms in the same hotel. Table 5

56



shows that price changes, conditional on the recommendation, are highly correlated across

different dates in a given arrival week for the same room but not across different room cat-

egories in the same week or across weeks. Given that the average length of stay is less than

three days and the fact that prices of a room are almost perfectly correlated within a week,

our estimates would be robust to substitution of the same room at a different day of the week;

consumers would not find it profitable to switch across nights given the strong co-movement

of relevant prices.

Considering a possible substitution between different room types for the same arrival day,

we next show that our original price estimates are robust to adding cross-price effects across

room types to our model. To this end, we use the regression specification in equation 8 in

the main text, restrict the data to the most popular room type (usually a standard double),

and include prices and price recommendations of the most popular alternative room type

(most often a single room or a suite) for a hotel. Moreover, we restrict the sample so that

both types of rooms are offered at the same time. We then compare the estimated price

coefficient (η) from regressions including and excluding prices and price recommendations of

the most-popular alternative room type.

The estimated price coefficients for the two specifications for hotel 6 and 175 are as follows.

For hotel 175, the coefficient is -6.42e-04*** (8.67e-05) if the alternative room type is excluded

from the regression and -5.28e-04*** (8.65e-05) with the alternative room included. For hotel

6, the coefficients are -0.0011*** (1.40e-04) with the alternative room type excluded and -

6.94e-04* (3.50e-04) in the case of inclusion. The above results show that the inclusion of

the alternative room type does not change price coefficient estimates significantly as the null

hypotheses that the coefficients are the same cannot be rejected at the 5% level for the two

hotels. The same result holds for all other hotels in our data set which had significantly

negative elasticity estimates in the original model presented in the main text.
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