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Abstract

To understand the potentials of bayesian panel data analysis, simu-

lated data are used to estimate a random effects model. Prior Gaussian

distributions of various precision are used to understand the influence

of the prior information on continuous, discrete, time varying and time

constant variables. It is demonstrated that parameters of dummy vari-

ables are far more sensitive to priors than parameters of continuous

variables. Time varying variables are less sensitive than their time con-

stant counterparts. It is concluded that bayesian panel data analysis is

of interest if data do not provide enough information and if adequate

extraneous information is available.

1 Introduction

The idea of this paper is to build a theoretical framework that combines

information provided by data and information from extraneous sources by

applying bayesian statistics. In Bayesian frameworks the prior informa-

tion about the parameters is summarized in terms of a probability density

function and once the data becomes available, this prior is updated. The

inference is then made from the posterior distribution, which is obtained

∗Discussion Paper, Institute of Sustainable Economic Development, University of Nat-

ural Resources and Applied Live Science, Vienna.
†Special thanks to Elena Moltchanova from IIASA who brought bayesian statistics in

my life and and helped me whenever I was stuck.
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by combining prior and likelihood derived from the data. The data used

for this simulation have panel structure while the the prior information is

embodied in a distribution. The latter can be interpreted as information

provided by experts, results from previous research or results from another

scientific discipline. The prior information is then updated by the data.

The study focuses in particular on the influence of prior information on the

estimated effects of different factors. It is done for panel data since it is an

often appearing structure of data.

The next chapter gives an overview about panel data analysis to be

followed by a chapter that focuses on Bayesian panel data analysis. The

bayesian panel data model is explained there. In chapter 4 the simulated

variables are presented. This is followed by the discussion of the results and

finally by the conclusion. The appendices include the code of the WinBUGS

Model, the tables with the results of the estimation and some illustration.

The models were estimated with the freely available statistical software pack-

ages R [8] and WinBUGS [10].

2 On panel data models

Analysis of panel data requires to take account of the panel specific struc-

ture of several observations for each individual. If ordinary least-square

(OLS) regression is used, the standard assumptions must be fulfilled (see

for example Greene [4], page 10). But it is unlikely, that the error terms

are uncorrelated between individuals and over time. The two most popular

approaches to take account of the special time structure are fixed and ran-

dom effects models. The fixed effects model has individual-specific dummy

variables and it is assumed that the differences across units can be captured

in differences in this constant term. The model can be reformulated by tak-

ing the deviation of the mean of all explaining variables instead of including

individual specific dummy variables by applying the Frisch-Waugh Theorem

(see Frisch and Waugh [2]). This reformulation has no effect on the results

of the estimated parameters but since the number of variables is reduced

this formulation has computational advantages. The most appealing aspect

of the fixed effect model is that it is robust to the omission of any relevant
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time-invariant regressors. On the other hand, time-invariant regressors can-

not be estimated because their influence is captured in the individual specific

dummy or, in the case of the simplified formulation, because the variables

are zero. The second most popular approach is the random effects model.

It is assumed that the individual specific effects are uncorrelated with the

explaining variables. Data therefore do not carry useful information about

the error term. A variance-covariance matrix can be used to describe how

much certain observation depend on each other. In a frequentist framework,

this is identical to a Generalized Leased Square (GLS) estimation where the

variance-covariance matrix for the feasible GLS can be taken either from a

fixed effects or OLS regression. For a detailed discussion see e.g. Baltagi [1].

Lancaster [7] gives on page 270 a nice example of what the random effects

model assumption imply:

A classic example is that of an agricultural production func-

tion in which the output of the farm, bushels of wheat for exam-

ple, is taken to depend on the levels of factor inputs such as the

amounts of labour and capital that are used, so that, for example

q = α + β1k + β2l + ǫ

where q is output, k, l are measures of capital and labour in-

puts (usually measured in logarithms) and ǫ summarizes all other

sources of variations in output. In a randomized experiment k

and l would be allocated to a farm by random number generator

and so they can be plausibly assumed independent of the unmea-

sured determinants of output represented by ǫ. In a controlled

experiment matters will be arranged so that when k and l are

changed ǫ remains the same. But without these conditions we

surely must believe that farmers choose their capital and labour

inputs and that they do so in the light of some of the factors that

enter into ǫ. These may include particular features of the land

being farmed, of the weather, of the anticipated behavior of com-

petitors, etc. This line of thought suggests that independence of

ǫ and k, l is unpersuasive.
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If the assumption of independence between the explaining variables and the

error terms is not met, the model may suffer from inconsistency due to this

correlation (Hausman and Taylor [6]). Unfortunately, the independence can

not be tested directly. But Hausman [5] developed a test based on the idea

that under the hypothesis of no correlation, both – fixed and random effects

model – are consistent. But under this hypothesis the fixed effects model is

inefficient, whereas under the alternative hypothesis, the fixed effects model

is consistent, but the random effects model is not. Therefore, under the null

hypothesis with no correlation, the two estimates should not differ system-

atically, and a test can be based on the difference. A justification of the

random effects assumptions can be based on the Hausman test. However,

to estimate time constant variables even if the assumptions are not met,

Hausman and Taylor [6] introduced an instrumental variable random effects

model. This allows to estimate a random effects model even if the unit

specific constant terms are correlated with the explaining variables by using

instrumental variables. In their model they distinguish between variables

that are uncorrelated with the error term and those that are correlated.

The tricky part is the determination which of the variables are correlated

with the error term. Since the determination has a major impact on the

estimated parameters, and there are no tests available, its application is

problematic.

3 Bayesian panel data analysis

The models described above have been mainly applied in a frequentist frame-

work. But it is also possible to build models with the same theoretical char-

acteristics using Bayesian statistics. According to the convention in Bayesian

statistics not the variance but the precision, which is the inverse of the vari-

ance, is used through out the text. The normal distribution is therefore

given as N ∼ (mean, precision) in stead of N ∼ (mean, variance).

3.1 Fixed effects model

The fixed effects model can be understood as an OLS model with the matrix

of explaining variables, X, being augmented by vectors of dummy variables
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for each individual. The fixed effects model can then be written as

yi = Xiβ + αijT + ǫi, ǫi ⊥ Xi, β, αi, ǫi ∼ n(0, τIT ). (1)

The dependent variable yi is a vector of length T giving the consecutive y

values for agent i , Xi is a T ×k matrix and β is a k×1 vector of coefficients

common to all agents. The error term ǫi is of length T × 1 and is normal,

homoscedastic, not autocorrelated and independent of Xi, αi, and β. The

term IT represents the identity matrix of size T . Equation 1 can be written

for all agents as

y =
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, (2)

where y is of size N × T , the matrix with the explaining variables is of

order NT × (k + N) and the coefficient vector is of length k + N .

For the resulting model a likelihood function and a priori distribution

must be determined. Combining the matrix of the independent variables,

X, and the matrix of the dummy variables, αij , in a new variable Z and

defining the respective parameter vector as δ, the fixed effects model can be

written as

y = Zδ + ǫ, ǫ|Z, ǫ ∼ n(0, τINT ). (3)

The likelihood function of this model is then given by (see eg. Lan-

caster [7]),

ℓ(δ, τ) ∝ τNT/2exp
{

−(τ/2)(y − Zδ)′(y − Zδ)
}

. (4)

An non-informative prior, which is a distribution with a very high vari-

ance, does not impose strong preconditions on the parameter and as a result

the posterior is almost completely determined by the data. It makes sense if

nothing is known of the parameter before the experiment. If, however, such
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information is available it can be incorporated into an informative prior.

The posterior distribution is proportional to the product of prior and like-

lihood. Once it is evaluated, inferences may be drawn, using e.g. measures

of central tendency (mean, median) and variation.

3.2 Random effects model

The fixed effects model assumes that the individual effects, αi, are distrib-

uted uniformly. This assumption is made implicitly by not estimating a

common mean for the αi. But in many cases it is more reasonable to as-

sume that the constant are all similar and are located around a common

value. This can be done in a hierarchical Bayesian random effects model.

The individual effects are assumed to vary normally around ᾱ with precision

φ. The two resulting equations are:

yi = Xiβ + αijT + ǫi, (5)

αi = ᾱ + ηi (6)

where ǫi and ηi are independently normally distributed with precision τ and

φ respectively. By taking equation 5 and 6 together

yi = Xiβ + αjT + (ǫi + ηij) (7)

is derived. Equation 7 can be expressed less compressed as

y =
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XN jT
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ǫN + jT ηN





















. (8)

The two parts of the error term are normally distributed around zero and

the precision and the variance-covariance matrix can be determined (see

Lancaster [7], page 192).

The likelihood function for this model is then given by

ℓ(β, τ, αi) ∝ τNT/2exp

{

−(τ/2)
N

∑

i=1

(yi − Xiβ − αij)
′(yi − Xiβ − αij)

}

(9)
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where αi is as in equation 6.

Within Bayesian frameworks all the parameters should be assigned a

prior distribution. The posteriori distribution is proportional to the product

of priori distribution and the likelihood function.

4 Simulation

The goal of the simulation is to check how useful a Bayesian analysis is for

panel data with prior information. Of special interest is the behavior of

variables that do not change over time since their variation is limited and

prior information could help to improve the estimation. All variables that

are time constant for an individual cannot be estimated in a fixed effects

model. For the fixed effects model, the result is only determined by the prior.

Hence, if the prior for a time constant variable is uninformative, the starting

value determines the results. The random effects model is different since the

individual dummies do not capture all the time constant influences but are

forced to vary around a mean. This leaves some room for individual constant

terms to be estimated without running into an identification problem. But

the variation of the time constant variables is smaller than the variation

of a freely varying variable since the number of different observations is

substantially smaller.

The data simulated consist of 400 individuals. For each individual 5

observations are simulated. Hence the data consists of 2000 observations

in total. There are 8 explaining variables, x1 to x8. The variables are

described in table 1. The variables x1 to x4 are all normally distributed

around zero with standard deviation 100. The variables x5 to x8 are binary

random variables which are equal to 1 with probability 0.5 and are equal to

0 otherwise. Variables x1 and x5 are constant over time for each individual.

Variables x2 and x6 are time invariant for 99.5% of the individual. The

variables x3 and x7 are time invariant for 95% of the individuals. And

finally the variables x4 and x8 vary freely in time. All other variables and

parameters of the model necessary to calculate the dependent variable y

were simulated as well: the coefficients of the variables, beta1 to beta8 were

sampeld from a normal distribution with mean 5 and standard deviation of
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variable type over time parameter

x1 continuous constant N ∼ (0, 100)

x2 continuous 99.5% constant N ∼ (0, 100)

x3 continuous 95% constant N ∼ (0, 100)

x4 continuous varying N ∼ (0, 100)

x5 discrete constant B ∼ (400 ∗ 5, 0.5)

x6 discrete 99.5% constant B ∼ (400 ∗ 5, 0.5)

x7 discrete 95% constant B ∼ (400 ∗ 5, 0.5)

x8 discrete varying B ∼ (2000, 0.5)

Table 1: Description of variabels

0.005. The error term, ǫ, is sampled from a normal distibution with mean

zero and standard deviation 10. The mean of the constants, ᾱ, is determined

to be 50 and the variance of its normal distribution, φ, as
√

10. Having

determined these variables, the dependent variable, y, was calculated.

To observe the behavior of the posterior distribution under differently

precise prior distributions eight models are estimated. All the priori distri-

butions of the β coefficients are identical within a model. This allows to

compare the influence of the data. In order to compare the effect of dif-

ferently precise prior information, the precision of the β parameters’ priors

are different between the models. The variance in the different models is

between 10000 and 1. The mean of the priori distribution of the parameters

is in all models 50. The mean of all (simulated) beta parameters from the

data is around 5. An overview of the prior information of the parameters

in different models is provided in table 2. The model written in WinBUGS

code can be found in appendix A. There is also documented that phi (φ) has

mean 1 and variance 0.1. This relatively precise distribution is necessary as

the model will oterhwise converge only very slowly (see Lancaster [7], page

293).
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distribution precision

N ∼ (50, 10000) 0.0001

N ∼ (50, 100) 0.01

N ∼ (50, 50) 0.02

N ∼ (50, 25) 0.04

N ∼ (50, 10) 0.1

N ∼ (50, 5) 0.2

N ∼ (50, 2) 0.5

N ∼ (50, 1) 1

Table 2: Priori distributions for parameters of different models.

5 Results

The results of the estimations are summarized in tables 3 to 10 and in

the figures in appendix C. As can be seen from the tables, the potential

scale reduction factor, R̂, of all parameters of interest is close to 1. The

potential scale reduction factor, R̂, helps to monitor the convergence of

the iterative simulation by estimating the factor by which the scale of the

current distribution of the parameter might be reduced if the simulations

were continued in the limit n → ∞. After all convergence has been reached,

R̂ is 1. Gelman at al. (page 332) [3] argue that approximate convergence of

an parameter has been reached when R̂ is smaller than 1.2. Convergence was

only feasible through 50,000 Markov Chain Monte Carlo (MCMC) iterations.

This is in particular true for the models with precise prior as for them

more iterations were required to reach convergence. This probably happened

because the data and prior information are quite far apart if their precision is

taken into account. Hence the resulting posteriori distribution was bimodal

and this can cause problems for the convergence of MCMC simulations.

Comparing the parameters for the continuous variables and those for

the dummy variables, as depicted in the figures in appendix C, it becomes

obvious that the influence of the prior is much stronger in the case of dummy

variables. This is due to the higher variance of the continuous variables.

This higher variance is enough to dominate the prior. The coefficients of

the continuous variables in the different models are all around 5, while the
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coefficient of the dummy variables are between 5 and 50, depending on the

precision of the prior. Also the standard deviation of the parameters is by

far higher for the dummy variable coefficients.

Interestingly, the parameters for beta1, beta3 and beta4 are slightly un-

derestimated in all models. From the tables can be seen that for models with

a very uninformative prior (precision between 0.0001 and 50), the standard

deviations are practically identical. In models with more informative priors,

the coefficients for variables with higher variance (beta4 and beta3) have a

smaller standard deviation. Here the data are more dominant because of

their higher variance. The figures show that the influence of the prior is

very limited on the mean of the posteriori distribution1. But the variance

increases with increasing precision of the prior. At the same time, more

variation in the variable reduces this increase.

For the discrete dummy variables the conclusions are different. The

figures in the tables show a substantial influence of the prior information.

The more precise the prior, the bigger its influence. Therefore the means of

the posterior distribution of models with higher precision are closer to 50.

As for the continuous variables, this effect is stronger for variables with less

variation. Also the standard deviation is higher for more precise priors.

As can be seen from table 3 to table 10, the parameter for alphabar (ᾱ)

reduces with increasing precision of the priors of the β parameters. This is

due to the fact that the estimated β parameters increase while y remains

the same. Hence alphabar must reduce. The precision of alphabar, which

is phi, is close to 1 for the models with non-informative priors and almost 0

for the models with precise priors for the beta parameters. The parameter

tau (τ) which estimates the precision of the estimation, reduces slightly with

increasing precision of the priors of the beta parameters.

For each model WinBUGS automatically evaluates Deviation Informa-

tion Criteria (DIC; Spiegelhalter [9]) which may the be used for model com-

parison.

1It is even smaller for a higher precision in the case of beta3.
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6 Conclusions

Models commonly used in frequentist panel data analysis can also be con-

structed in Bayesian statistics. The advantage of a Baysian approach is that

prior information can systematically be included in the analysis. The influ-

ence of the prior depends mainly on its precision and on the variance of the

variables. The higher the precision of the priori distribution, the bigger its

influence. But also the structure of the data has an influence on the poste-

rior distribution. If there is more variation within a variable, the influence

of the data is bigger. These results have the following consequences for a

random effects panel data analysis. First, discrete data modeled by dummy

variables typically have a much smaller variance than continuous variables.

Hence, informative priors have a much higher influence on dummy variable

parameters than on continuous variable parameters. Secondly the influence

of the prior is bigger for variables that are constant over time. The reason

is that these data provide less information as there cannot be more different

observations than there are individuals. For these variables it is especially

interesting to find appropriate prior information since not that much infor-

mation can be gained from the data. But it must also be taken extra care

since it is important that the prior distribution is appropriate. The potential

improvement of the estimation results through correct prior information can

also be a disadvantage if the prior information is wrong.

This can be summarized in two potential advantages of the Bayesian

model. Firstly, information from different sources can systematically be

included in the model. Hence information gathered by other scientists can

be used as starting point. Secondly the prior information can help out where

the data have weaknesses. Data weakness can either occur from unreliable

data sources or from data with insufficient variance. In other words, if we

know better than the data, the Bayesian model allows to use this knowledge

within an econometric model.

A possible application is agricultural economics. Here different scientific

disciplines determine parameters of interest, such as the influence of a fertil-

izer on the growth of a plant. While plant breeders tend to gather their data

from controlled experiments, economists use data from surveys. Bayesian
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statistics allows to merge information from these two sources systematically.

This also applies to time constant variables. The soil of a farm’s fields is

typically constant over time. If there is a limited number of soil types the

econometrician would use dummies to model differences in the crop yield

due to the soil types. If there are no correlations with other data that dis-

turb the dummy variable estimation, the results will be correct. But due to

their simple structure time constant dummy variables are often correlated

with other variables. These other variables might or might not be part of

the specified model. This makes the dummy variables vulnerable for biases.

If non-data information about the yields for different soil types exist, this

can help to solve this identification problem. This is important because a

biased parameter estimate can also have implications for other parameter

estimations if there is correlation.

The model presented here would use the plant breeder’s findings as priors

and update them with panel survey data. But the set up could also be the

other way round, such that the survey data provide the prior information

and the breeders finding is used as an update.
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A WinBUGS Model Code

model{ #def. of the model

for(n in 1:N){ #N total observations

y[n]~dnorm(mu[n],tau)

mu[n]<-

beta1*x1[n]+

beta2*x2[n]+

beta3*x3[n]+

beta4*x4[n]+

beta5*x5[n]+

beta6*x6[n]+

beta7*x7[n]+

beta8*x8[n]+

alpha[farm[n]]}

for (f in 1:T){ #T obs. per individual

alpha[f]~dnorm(alphabar,phi)}

alphabar~dnorm(0,.0001) #def. prior distributions

beta1~dnorm(50,pre) #dnorm(mean,precision)

beta2~dnorm(50,pre) #precision=1/variance

beta3~dnorm(50,pre)

beta4~dnorm(50,pre)

beta5~dnorm(50,pre)

beta6~dnorm(50,pre)

beta7~dnorm(50,pre)

beta8~dnorm(50,pre)

tau~dgamma(0.01,0.01) #gamma(r,mu)

phi~dgamma(10, 10) #mean=r/mu, var=r/mu^2}
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B Tables of Results

Table 3: Results for β prior distributions N ∼ (50, 10000)

mean stand. dev. 2.5% 97.5% R̂

alphabar 48.152 0.753 46.760 49.770 1.015

beta1 4.988 0.003 4.982 4.994 1.000

beta2 5.000 0.003 4.994 5.006 1.000

beta3 4.998 0.003 4.992 5.004 1.003

beta4 4.998 0.003 4.992 5.004 1.004

beta5 5.646 0.666 4.365 6.977 1.003

beta6 6.762 0.639 5.501 7.965 1.002

beta7 6.475 0.627 5.253 7.734 1.000

beta8 4.687 0.641 3.353 5.909 1.001

tau 0.005 0.000 0.005 0.005 1.005

phi 0.947 0.306 0.434 1.606 1.000

deviance 16280.860 9.796 16260.000 16300.000 1.003
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Table 4: Results for β prior distributions N ∼ (50, 100)

mean stand. dev. 2.5% 97.5% R̂

alphabar 47.780 0.752 46.390 49.400 1.015

beta1 4.988 0.003 4.982 4.994 1.000

beta2 5.000 0.003 4.994 5.006 1.000

beta3 4.998 0.003 4.992 5.004 1.003

beta4 4.998 0.003 4.992 5.004 1.004

beta5 5.842 0.665 4.568 7.172 1.003

beta6 6.943 0.637 5.686 8.143 1.002

beta7 6.649 0.626 5.427 7.905 1.000

beta8 4.864 0.640 3.532 6.084 1.001

tau 0.005 0.000 0.005 0.005 1.005

phi 0.946 0.306 0.432 1.605 1.000

deviance 16281.170 9.830 16260.000 16300.000 1.001

Table 5: Results for β prior distributions N ∼ (50, 50)

mean stand. dev. 2.5% 97.5% R̂

alphabar 47.407 0.751 46.020 49.030 1.015

beta1 4.988 0.003 4.982 4.994 1.000

beta2 5.000 0.003 4.994 5.006 1.000

beta3 4.998 0.003 4.992 5.004 1.003

beta4 4.998 0.003 4.992 5.004 1.004

beta5 6.038 0.664 4.772 7.364 1.003

beta6 7.125 0.636 5.872 8.323 1.002

beta7 6.824 0.625 5.602 8.076 1.000

beta8 5.042 0.639 3.714 6.261 1.001

tau 0.005 0.000 0.005 0.005 1.005

phi 0.945 0.306 0.432 1.603 1.000

deviance 16282.210 9.793 16260.000 16300.000 1.001
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Table 6: Results for β prior distributions N ∼ (50, 25)

mean stand. dev. 2.5% 97.5% R̂

alphabar 46.667 0.750 45.290 48.280 1.015

beta1 4.988 0.003 4.982 4.994 1.000

beta2 5.000 0.003 4.994 5.006 1.000

beta3 4.998 0.003 4.992 5.004 1.003

beta4 4.998 0.003 4.992 5.004 1.004

beta5 6.426 0.662 5.162 7.743 1.003

beta6 7.484 0.635 6.238 8.680 1.002

beta7 7.171 0.623 5.950 8.418 1.000

beta8 5.395 0.637 4.070 6.611 1.001

tau 0.005 0.000 0.005 0.005 1.005

phi 0.941 0.306 0.430 1.601 1.000

deviance 16285.540 10.383 16260.000 16300.000 1.002

Table 7: Results for β prior distributions N ∼ (50, 10)

mean stand. dev. 2.5% 97.5% R̂

alphabar 44.480 0.754 43.090 46.101 1.015

beta1 4.988 0.003 4.982 4.994 1.000

beta2 5.000 0.003 4.994 5.006 1.000

beta3 4.998 0.003 4.991 5.003 1.002

beta4 4.998 0.003 4.992 5.004 1.004

beta5 7.572 0.661 6.300 8.904 1.003

beta6 8.548 0.633 7.310 9.745 1.002

beta7 8.197 0.622 6.975 9.445 1.000

beta8 6.440 0.636 5.118 7.662 1.001

tau 0.005 0.000 0.005 0.005 1.005

phi 0.916 0.306 0.410 1.583 1.000

deviance 16310.490 14.452 16280.000 16340.000 1.000
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Table 8: Results for β prior distributions N ∼ (50, 5)

mean stand. dev. 2.5% 97.5% R̂

alphabar 40.791 0.783 39.350 42.460 1.014

beta1 4.988 0.003 4.981 4.994 1.000

beta2 5.000 0.003 4.994 5.006 1.000

beta3 4.997 0.003 4.991 5.003 1.003

beta4 4.998 0.003 4.992 5.005 1.004

beta5 9.500 0.672 8.211 10.870 1.003

beta6 10.342 0.642 9.084 11.550 1.002

beta7 9.933 0.630 8.712 11.200 1.000

beta8 8.203 0.643 6.868 9.438 1.001

tau 0.005 0.000 0.004 0.005 1.004

phi 0.826 0.313 0.292 1.509 1.000

deviance 16396.540 24.212 16350.000 16440.000 1.002

Table 9: Results for β prior distributions N ∼ (50, 2)

mean stand. dev. 2.5% 97.5% R̂

alphabar −6.515 1.953 −10.492 −2.813 1.000

beta1 4.985 0.014 4.959 5.012 1.001

beta2 5.005 0.013 4.980 5.029 1.001

beta3 4.991 0.009 4.974 5.009 1.002

beta4 4.998 0.004 4.990 5.005 1.003

beta5 41.231 1.454 38.179 43.991 1.002

beta6 39.803 1.371 37.130 42.500 1.002

beta7 34.194 1.155 31.989 36.490 1.001

beta8 15.488 0.755 14.000 17.050 1.000

tau 0.004 0.000 0.004 0.004 1.003

phi 0.001 0.000 0.001 0.002 1.001

deviance 16706.210 48.502 16610.000 16800.000 1.000
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Table 10: Results for β prior distributions N ∼ (50, 1)

mean stand. dev. 2.5% 97.5% R̂

alphabar −21.692 1.871 −25.402 −18.199 1.001

beta1 4.995 0.016 4.963 5.027 1.001

beta2 5.011 0.015 4.981 5.041 1.001

beta3 4.993 0.010 4.973 5.015 1.002

beta4 4.999 0.005 4.990 5.008 1.003

beta5 46.484 1.001 44.508 48.440 1.004

beta6 45.767 0.994 43.820 47.670 1.003

beta7 42.582 0.892 40.820 44.341 1.001

beta8 25.487 0.831 23.870 27.160 1.000

tau 0.003 0.000 0.003 0.003 1.003

phi 0.001 0.000 0.001 0.001 1.001

deviance 17343.140 61.536 17229.750 17460.000 1.000

19



C Comparison of Parameters

Comparison of beta1 in different Models
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Comparison of beta2 in different Models
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Comparison of beta3 in different Models
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Comparison of beta4 in different Models
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Figure 1: Means and 95% credibilty intervals for parameters of latent vari-

ables.
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Comparison of beta5 in different Models

Prec. of different Models
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Comparison of beta6 in different Models
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Comparison of beta7 in different Models
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Comparison of beta8 in different Models

Prec. of different Models
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Figure 2: Means and 95% credibility intervals for parameters of dummy

variables.
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