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Influenza and air pollution each pose significant public health risks with large global 

economic consequences. The common pathways through which each harms health 

presents an interesting case of compounding risk via interacting externalities. Using 

instrumental variables based on changing wind directions, we show increased levels of 

contemporaneous pollution significantly increase influenza hospitalizations. We exploit 

random variations in the effectiveness of the influenza vaccine as an additional instrument 

to show vaccine protection neutralizes this relationship. This suggests seemingly disparate 

policy actions of pollution control and vaccination campaigns jointly provide greater returns 

than those implied by addressing either in isolation.
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Influenza (flu) and air pollution are significant public health risks that impact nations around the

world. The flu causes an estimated 3-5 million severe cases per year, and nearly half a million deaths

(Lambert & Fauci 2010, Iuliano et al. 2018). Air pollution causes 4.5 million annual deaths (Cohen

et al. 2017), with annual economic costs estimated to exceed $US 800 billion in the U.S. alone (Putri

et al. 2018, Tschofen, Azevedo & Muller 2019). While public health policies to address these issues

are often considered in isolation, both share common etiological pathways through which they harm

human health.1

Interactions between the flu and pollution are an illustrative economic case of compounding risk

from interacting externalities. Influenza is an infectious disease whereby the actions of one infected

individual impose negative externalities on others by increasing risk of infection, while air pollution

is a negative externality of economic activity. Our analysis demonstrates that policies to address these

distinct externalities have significant interactive effects: the flu vaccine can protect against certain harms

from air pollution, and reduced levels of air pollution lessen the harmful effects of influenza exposure.

Thus, the seemingly disparate policy actions of pollution control and expanded vaccinationmay jointly

provide greater returns than when studied in isolation.

Causal estimation of these interactions are challenging because pollution exposure and vaccination

uptake are endogenously determined. We overcome this challenge using a novel dual instrumental

variables approach. We begin by extending the cross-sectional epidemiological literature2 to establish

a causal relationship between air pollution and flu cases. We use patient-level administrative data on

inpatient hospitalizations from 2007-2017 across 21 U.S. states, which allows us to focus on cases with a

definitive influenza diagnosis.3 We estimate econometricmodelswith spatial and temporal fixed effects

to control for numerous unobservable factors, and build on the pioneering work of (Deryugina et al.

2019) by using plausibly exogenous variation inwind directions as an instrument for pollution. We find

higher pollution levels significantly increase flu inpatient hospitalizations; a one-standard-deviation

increase in the monthly Air Quality Index (10.9-unit increase in our data) amounts to approximately

1Air pollution could affect influenza hospitalizations via both susceptibility and exposure. Like smoking (Han et al. 2019),
air pollution can impair the respiratory functioning of patients, e.g., by damaging the respiratory epithelium, thereby facili-
tating the progression of influenza virus beyond the epithelial barrier into the lungs (Diamond, Legarda & Ryan 2000, Jaspers
et al. 2005, Ciencewicki & Jaspers 2007, Rivas-Santiago et al. 2015). Existing medical research finds exposing in vitro respira-
tory epithelial cells to air pollution increases susceptibility and penetration of influenza (Jaspers et al. 2005), and experimental
exposure of mice to air pollution before influenza infections increases morbidity and mortality (Hahon et al. 1985, Lee et al.
2014). Like humidity and temperature (Lowen et al. 2007, Shaman & Kohn 2009, Shaman et al. 2010, Ijaz et al. 1985, Casanova
et al. 2010), air pollution particles could also impact the airborne survival of viruses outside the body (Ijaz et al. 1985, Tel-
lier 2009, Chen et al. 2010, Khare & Marr 2015, Lou et al. 2017, Wolkoff 2018) and thus increase the probability of disease
transmission.

2See, for example, Brauer et al. (2002),Wong et al. (2009), Chen et al. (2010), Liang et al. (2014) and the important economic
history paper by Clay, Lewis & Severnini (2018). In a study of the Spanish flu in 1918, Clay, Lewis & Severnini (2018) show
cities with higher coal-fired power generating capacity saw higher mortality rates, potentially through exposure to higher air
pollution.

3Estimation based simply on physician encounters is more difficult, as influenza testing is not conducted systematically,
and reporting of positive cases is not mandatory for this patient population.
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35.7% additional flu-related inpatient hospitalizations in the U.S. during influenza season. Compared

to the effect of air pollution on all respiratory hospitalizations, our findings suggest influenza accounts

for around 18% of all air pollution-induced respiratory inpatient hospitalizations.

Next, we explore whether influenza vaccine protection, which we define as a combination of vac-

cine take-up and effectiveness, moderates the estimated relationship above. As vaccine take-up can be

endogenous across both time and location, we instrument for vaccine protection using vaccine effec-

tiveness weighted by influenza-susceptibility. Effectiveness of the flu vaccine varies from year to year:

producers forecast viral strain matchmonths ahead of time, and antigenic drift or shift induces random

deviations in realized match quality.4 This makes the random draw of the viral match orthogonal to

unobserved determinants of health, allowing us to identify a causal relationship between the vaccine

and health harms from pollution. The orthogonality of vaccine effectiveness also offers an additional

test that pollution has a causal effect on flu admissions. If a vaccine designed specifically to protect

against the flu diminishes the impact of pollution on influenza hospital admissions, then it must be

the case that pollution contributes to influenza hospitalizations. When we include an interaction be-

tween air pollution and vaccine protection, we find that the flu vaccine offers significant protection

from influenza-related costs of pollution. Vaccine protection levels close to the average across time in

our sample fully neutralize the relationship between pollution and additional flu hospitalizations.

Given the unequal burden of both flu and pollution exposure across society, we also explore results

by race and ethnicity. Both of our main findings – that air pollution increases flu hospitalizations and

vaccine protection moderates this relationship – are consistent across these dimensions. Combined

with evidence of significant differences in flu incidence and severity by race (e.g. Quinn et al. 2011), our

results suggest that the well-established differences in ambient pollution concentrations across racial

and ethnic groups (e.g. Banzhaf, Ma & Timmins 2019, Colmer et al. 2020, Currie, Voorheis & Walker

2020) serve as an important mechanism driving disparities in influenza outcomes across such groups.

Moreover, since flu vaccines protect against some pollution-induced harms, our results imply that the

private and external benefits from vaccines is considerably higher in communities disproportionately

exposed to poor air quality.

An important feature of our context is that the spread of influenza and pollution are externalities,

in which risks to human harm are stochastic. As externalities, they justify government intervention in

the form of policies, such as increased vaccine take-up and improved air quality.5 Insofar as pollution

and flu risks have independent variation – the variability in pollution levels and vaccine effectiveness

that enables our empirical identification ensures this holds – policies to address them will be comple-

4Other papers using similar variation include Ward (2014) and White (2019).
5A similar logic applies to themore difficult task of improving vaccine effectiveness. In that case, policies aremore likely to

utilize the standard push and pull mechanisms used to overcome the underinvestment problem that arises due to the public
good nature of scientific knowledge (Kremer & Williams 2010).
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mentary. A back of the envelope calculation suggests a 10% (3.5 AQI points) reduction in the AQI in an

historically ineffective vaccine year (11% vaccine take-up adjusted for effectiveness) would avert 16.6%

of all influenza-associated hospitalizations across the U.S. Meanwhile a 10% improvement in vaccine

take-up at the average vaccine effectiveness (or, equivalently, a 10% improvement in vaccine effective-

ness at the average vaccine take-up) in a historically polluted year (38.2 AQI) would avert 34.6% of

pollution-driven influenza hospitalizations. Given the safety-first approach to environmental and pub-

lic health regulations, which emphasize protection of the most vulnerable (Lichtenberg & Zilberman

1988), it appears that interventions on either can play an important role in hedging against these com-

pounding health risks and their associated economic costs.

The paper proceeds as follows. We begin by describing our data and presenting why it is partic-

ularly well-suited to addressing the question of interacting externalities (Section I.). We then discuss

our econometric model, and describe in detail the various instruments we use to address issues of

endogeneity and measurement error (Section II.). After we present our main results and explore vari-

ations in our model assumptions, we discuss the implications of our findings, both in the context of

our analysis and the larger question of social welfare maximization (Section III.), before we conclude

(SectionIV.).

I. Data

We combine data frommultiple sources with health outcomes, pollution concentrations, vaccine infor-

mation and weather variables.

Inpatient hospitalizations: Our primary health outcome is inpatient hospitalizations for influenza.

We use patient-level data on inpatient hospitalizations from the Health Care and Utilization Project

(HCUP 2018b). We focus on influenza cases by using patient level information on diagnosed diseases

per International Classification of Diseases (ICD) codes.6 We limit analysis to data from 2007 to 2017,

for which we also have detailed vaccine effectiveness data available. This gives us an unbalanced panel

of 21 U.S. states, with an average of 5.5 years of observations per state (see Table A.1 in Appendix A.1

for details on data availability by state and year).

We define our outcome as the count of inpatient admissions per county-year-month where the ICD

code indicates influenza.7 Given the presence of primary and secondary diagnosis codes, we conduct

analysis using three possible classifications of flu admissions: (i) cases where the only diagnosis is

influenza (most restrictive); (ii) cases where any diagnosis is influenza (least restrictive); and (iii)

6We exclude patients whose zip code is from a different state than the hospital in which they are treated.
7We use the Clinical Classifications Software (CCS) from the Agency for Healthcare Research and Quality (AHRQ) to

classify relevant influenza ICD codes. These are all 5-digit ICD codes grouped under the following 3-digit ICD-9-CM codes:
487, 488; and, for the period fromOctober 2015when the systemwas changed to ICD-10-CM, the following 3-digit ICD-10-CM
codes: J09, J10, J11.
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cases where the primary diagnosis is influenza. The third option reflects a middle ground which we

use as our baseline outcome.

We focus on the influenza season, which theU.S. Centers for Disease Control and Prevention (CDC)

defines asOctober toMarch, and explore results extending the season inAppendixA.3. Figure 1a shows

seasonality of inpatient hospitalizations in our data, whichmatches closely with general CDC-reported

influenza-like illnesses (see Table A.1 in Appendix A.1). Based on month of admission and patient

zip code, we aggregate hospitalization data to the county-year-month level and assign a zero value to

counties in months with no reported influenza admission conditional on reporting data in the given

year.8 During the influenza season, 54% of county-year-months have no reported influenza-related

hospital admissions in the HCUP data, and our results are robust to inclusion or exclusion of zero

valued county-year-months. To compare our main results with the more general effect of air pollution

on any respiratory hospitalization (including influenza), we also construct a variable that contains the

count of inpatient hospitalizations where the primary diagnosis is any respiratory diagnosis.9 Finally,

for a falsification test we use primary ICD codes associated with osteoarthritis as an outcome variable,

which is unlikely to be affected by air quality and influenza.10

Air quality: As our measure of pollution, we begin with the U.S. Environmental Protection Agency’s

(EPA 2020) Air Quality Index (AQI) at the county-day level, which we aggregate to county-by-year-by-

month to match hospitalization outcomes.11 We focus on the AQI as a summary measure of overall air

quality, based on the primary criteria pollutants specified in the Clean Air Act.12 We do so as the high

degree of correlation between several individual pollutants makes it challenging to separately identify

the effect of each pollutant independently. We note that most of the “forcing” pollutant that drives

variation in the AQI in our setting is PM2.5.

Weather, winddirections and inversions: To addressweather as a confounder, weusemonthlyweather

averages from Xia et al. (2012), Mocko & NASA/GSFC/HSL (2012), including temperature, specific

humidity, vertical and horizontal wind speed, and precipitation at the 0.125 by 0.125 degree level, all

aggregated up to the county-by-year-by-month level.

8Put another way, we only impute zeros for counties and year-months in states that report data in that given year but have
zero influenza hospitalizations in a given month. We use the crosswalk from zip codes to counties from the U.S. Department
of Housing and Urban Development (Din & Wilson 2020).

9These are all 5-digit ICD codes grouped under the following 2-digit ICD-9-CM codes: 46, 47, 48, 49, 50, 51; and the
following 2-digit ICD-10-CM code: J0, J1, J2, J3, J4, J5, J6, J7, J8, J9.

10Osteoarthritis consists of all 5-digit ICD codes grouped under the following 3-digit ICD-9-CM codes: 715, V134; and the
following 3-digit ICD-10-CM code: M15, M16, M17, M18, M19.

11The EPA pre-aggregates data to the daily county level in the case of multiple monitors per county. For missing county-
year-months, we take the average value of the adjacent counties in the same month. We winsorize the AQI at the top and
bottom 1% for the main analysis, and show robust results to both data cleaning choices in Appendix A.3.

12The AQI captures pollution from particulate matter (PM2.5 or PM10), sulfur dioxide (SO2), carbon monoxide (CO),
nitrogen dioxide (NO2) and ozone (O3). See Appendix A.1 for descriptive statistics. The EPA provides further details on
AQI calculation in EPA (2018).
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To construct our main instrument for pollution, we construct wind direction for a county-year-

month by taking the average horizontal (ui) and vertical (vi) wind components from the monthly raw

data and calculating the average angle thewind is blowing fromasWDIRi = 180/π arctan 2(−ui,−vi).13

Temperature inversions can also influence ground-level pollution levels (Arceo, Hanna & Oliva

2016), which allows us to use inversions as an additional pollution instrument. To calculate inversions,

we use daily three-dimensional temperature averages between midnight and 6AM at each location on

each day from GMAO (2015), regridded to the 0.25 by 0.25 degree level. We use the difference in

temperature between the two pressure levels closest to the surface at each location, and average this

difference up to the county-day level. We then calculate the share of days with inversions in a county-

year-month as the share of days when the difference between the layer further away from the surface

and the layer closest to the surface is positive, i.e., the temperature rises with altitude. We calculate the

average strength of inversion in a county-year-month as the average difference in temperature between

the two altitude levels on the days where inversions are present.

Vaccine take-up and effectiveness: We obtain average vaccine take-up rates (V R) by state, season, and

age group or racial group from CDC (2008, 2009, 2015, 2020), Lu et al. (2013), Schiller & Euler (2009).

Figure 1b shows that on average, vaccine take-up is highest among those 65 years and older or those

8 years and younger. Figure A.3a in Appendix A.1 shows temporal variation in vaccine take-up rates

by age group and Figure A.3b by race. Figure A.3c shows spatial variation by taking a cross-section of

vaccine take-up rates among those 65 years and older across different states in a given influenza season,

in this case 2009/2010. The figures illustrate that the variation in vaccine take-up is larger across age

groups than across racial groups, across time or across space.

We obtain measures of vaccine effectiveness by influenza season and age group, V Eraw, from the

studies underlying CDC estimates (CDC 2019), available beginning in the 2007/2008 season (Belongia

et al. 2011, Griffin et al. 2011, Treanor et al. 2012, Ohmit et al. 2014, McLean et al. 2015, Gaglani et al.

2016, Zimmerman et al. 2016, Jackson et al. 2017, Flannery et al. 2019, Rolfes et al. 2019, Flannery et al.

2020) with the exception of the 2008/2009 season.14 These studies measure vaccine effectiveness as the

vaccination-induced percentage reduction in the odds of testing positive for influenza conditional on

having influenza-like symptoms. One can interpret vaccine effectiveness as the approximate share of

vaccinated people who do not test positive but would have absent the vaccine.15

Figure 1c plots age-specific vaccine effectiveness against influenza season, showing variation both

across seasons and age groups. Across seasons, the match between circulating viral strains and the

13We calculate wind speed for our control variables asWSPEEDi =
√

u2

i + v2i .
14The CDCmeasures vaccine effectiveness across influenza seasons rather than calendar years, as seasons overlap calendar

years (e.g., October-December for year y and January-March for year y + 1.
15The odds ratio is approximately the relative risk due to a small number of influenza positive cases (Zhang & Kai 1998).
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Figure 1: Descriptive figures on influenza inpatient hospitalizations and vaccine take-up and effective-
ness

Notes: Panel (a) shows the average count of influenza inpatient hospitalizations per county-month in the HCUP (2018b) data. Panel (b)
shows the age group shares of influenza inpatient admissions, as well as age group-specific vaccine take-up, both pooled across states and
time. Panel (c) plots (raw) reported vaccine effectiveness for each age group over influenza seasons (with the exception of 08/09 where
no data are available). The thick black line plots our weighted measure of overall vaccine effectiveness. Panel (c) plots vaccine protection
averaged across states as the thick line. The bands illustrate the variation within each season across states by plotting the states with the
maximum and minimum vaccine protection in each season.

vaccines based on forecasts is imperfect and varies due to antigenic drift. Within a season, the match

can be of different quality for different age groups due to “original antigenic sin” (Francis 1960); the

first influenza strain to which the immune system is exposed imprints immunological memory with

that specific strain, such that different generations with different antigenic imprints respond differently

to new vaccines and strains within years.

Constructing vaccine protection: The share of people protected by the vaccine in each season and state

is a combination of take-up rate V R and age group-weighted vaccine effectiveness V E. As an example,

for a group with homogeneous effects from exposure, if 50% of people are vaccinated, but the vaccine

is only 30% effective, the effective vaccine protection (V P ) is the same as when only 30% of people are
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vaccinated but the vaccine is 50% effective. For groups with heterogeneous vulnerability, aggregate

hospitalizations also depend on whether those individuals that are more vulnerable than others have

a higher take-up rate or vaccine effectiveness. An 80-year old without a vaccine, for example, is much

more likely to be hospitalized with influenza than a 30-year old without a vaccine. Figure 1b shows

hospitalization incidence is highest for two age groups: 65-years and older and 8-years and younger.16

To construct a population-level measure of vaccine protection that accounts for such differences in vul-

nerability, we weight age-specific vaccine take-up rates and vaccine effectiveness by influenza hospital-

ization shares of each age group:

V Pcs =
1

∑

a

(

HSa

)

∑

a

V Eraw
sa × V Rcsa ×HSa (1)

where c denotes counties (V Rcsa varies at the state level, but we index by counties for simpler nota-

tion in the following sections), s denotes influenza seasons, and a denotes age groups. Hospitalization

weightsHSa are a simple average across influenza seasons s, i.e.,HSa = 1

S

∑

sHSsa, and the first term

1∑
a(HSa)

ensures that the age weights sum to one, such that overall hospitalizations do not affect our

values of V Pcs. We plot V Pcs averaged across states in Figure 1d, along with the V Pcs of the state with

the highest and lowest V Pcs in each influenza season. The minimum of V Pcs is 0.08 and the maximum

is 0.33.

Since V P is constant within the season, vaccination rates V Rcsa that differ across states solely drive

cross-sectional spatial variation in V Pcs. The sources of temporal variation in V Pcs are both vaccination

rates V Rcsa and vaccine effectiveness V Eraw
sa which vary across influenza seasons. Equation (1) shows

that a 10% increase in V Pcs can either be the result of a 10% increase in vaccine rates in all age groups

or a 10% increase in vaccine effectiveness in all age groups (or some combination of both effects). For

our analysis of heterogeneity across different age groups, we only use vaccination rates and vaccine

effectiveness for the relevant age groups in constructing V Pcs. For heterogeneity analysis across differ-

ent racial groups, we use our overall measure of vaccine protection scaled by the ratio of race specific

take-up in a season to overall vaccine take-up in a season.

Mortality and emergency department (ED) visits: Although our primary focus is on inpatient hospi-

talizations, we also extend our analysis to consider influenza-related emergency department visits and

mortality. Data on visits to emergency departments is fromHCUP (2018a), and has overlapping spatial

coverage with our main inpatient data. Individual level mortality data fromNCHS (2019) covers every

county in the U.S. and includes deaths that happen inside or outside of hospitals. For both ED visits

and mortality, we count every hospitalization or death with influenza as primary cause as above, and

16We construct groups with these age cutoffs because they coincide with the common age cutoffs in vaccine effectiveness
studies.
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aggregate to the county-by-year-by-month level.

Employment: Weuse employment counts at the county-by-year-by-month level from the of Labor Statis-

tics (2021) as an additional control in robustness checks.

II. Empirical Strategy

Given the nature of our outcome variables, we estimate a count model as our primary specification,

though we also estimate linear models as a specification check. We estimate the relationship between

the count of influenza-related inpatient hospitalizationsHcym and the lagged air quality indexAQIcym−1

at the county c by year y by calendar monthm level using the following conditional exponential mean

function (consistent with a Poisson count data model):

E[Hcym|AQIcym−1,Xcym, γcsy, µym] = exp(βAQIcym−1 +X
′

cymδ1 +X
′

cym−1
δ2 + γcsy + µym). (2)

We lag the AQI one month to capture exposure to air pollution before hospital admission, and control

for a wide variety of both regional and temporal factors. Our preferred specification includes county-

by-season-by-year (γcsy) and year-by-month fixed effects (µym). Since each influenza season s spans

October through March and overlaps calendar years y and y + 1, the county-by-season-by-year fixed

effects (γcsy) are tantamount to county by three-month period fixed effects.17 While county-by-season-

by-year fixed effects capture the bulk of climatic differences across counties, we also include contem-

poraneous weather controls Xcym and lagged weather controls Xcym−1 to address the link between

both influenza andweather (temperature and humidity can influence influenza transmission rates) and

weather and pollution (different climatic conditions can lead to different levels of air quality) within

county-season-years.18

A potential concern due to using influenza diagnosed in the hospital is that it can differ from true

influenza rates as obtained by random diagnostic testing. Our fixed effects absorb potential bias from

discrepancy between actual and observed hospitalizations as long as the ratio between them is constant

within county-season-years and/or year-months.19

17The county-by-season-by-year fixed effects (γcsy) are equivalent to including county-by-year and county-by-season fixed
effects separately.

18This includes information on temperature, specific humidity, precipitation, and wind speed. Temperature and humidity
have been shown to affect both virus survival (Lowen et al. 2007, Shaman & Kohn 2009, Shaman et al. 2010, Casanova et al.
2010, Harper 1961) and air pollution (Ijaz et al. 1985, Lou et al. 2017, Greenburg et al. 1967). In our baseline model we include
five quintile bins for temperature (C), five quintile bins of specific humidity, and linear terms for precipitation and wind
speed, all of which include contemporaneous and lagged versions.

19Suppose actual (unobserved) influenza hospitalizations Hactual
cym and measured diagnosed influenza hospitalizations

Hcym relate in the following way: Hactual
cym = Hcym × Rcsy × Rym, where Rcsy × Rym captures arbitrary discrepancy be-

tween actual and observed hospitalizations. If we insert this relationship in Equation (2), we can multiply both sides by
exp(log(Rcsy)+ log(Rym)) such that our estimation recovers the effect on the unobservedHactual

cym as dependent variable, and
the fixed effects absorb exp(log(Rcsy) + log(Rym)).
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County-by-season-by-year effects γcsy control for differences in unobserved confounders that influ-

ence pollution exposure and health outcomes across counties separately for every threemonths, such as

demographics, socio-economic factors, or health care access and protocols. Year-by-month fixed effects

control for seasonality and general monthly trends within each year in both influenza and pollution.

For example, two common lung irritants included in the AQI, particulate matter and carbon monox-

ide, peak in winter months much like influenza admissions; year-by-month fixed effects capture such

seasonality. In robustness checks, we examine models using alternative fixed effects specifications.

Given the included fixed effects, the remaining threat to identification is unobserved confounding

within each county-by-three month period. For example, increased economic activity and interaction

between people at the local level could drive both air pollution and influenza infections. We control for

lagged employment at the county-by-year-by-month level in our regressions as one approach, but our

more robust main strategy for addressing this is to employ instrumental variables for air quality.

A. Instrumenting for air quality

We follow the insights in Deryugina et al. (2019) to exploit changes in wind direction as an instru-

ment for the AQI. The idea behind the instrument is that wind blowing in from neighboring locations

can bring in pollution. Because wind direction is exogenously determined within a given county-year-

month cell conditional on controls, the resulting change in pollution levels in a neighborhood is un-

correlated with the local determinants of pollution (conditional on wind speed, other weather controls

and the various fixed effects). The identifying assumption is that, conditional on our weather controls

and fixed effects, wind direction affects influenza hospitalizations only through its effect on the AQI,

but does not have a direct effect.

While we borrow the premise of this design from Deryugina et al. (2019), we modify the precise

construction of the instruments. Specifically, Deryugina et al. (2019) construct instruments (ZD
i ) by

using dummy variables for wind direction bins WDIRq
i (e.g., WDIRNW

i for when wind is blowing

from the North-West for observation i belonging to a particular county in a particular point in time)

interacted with geographical region level indicators Gc: ZD
i =

∑

c

∑

q WDIRq
i ×Gc. One challenge in

constructing this set of instruments is the choice of geographical granularity for Gc. On the one hand,

if Gc are large regions including multiple counties, a particular wind direction requires that pollution

shifts in the same direction and to the same degree for all counties in the same groupGc. Counties just

North or just South of an urban center, however, are likely to receive the pollution shock when wind

blows from the opposite direction, rather than from the same direction. Similarly, a county South of a

large urban center, and a county South of a small urban center, should receive a pollution shock when

wind is blowing from the North, but the size of the pollution shock likely differs. On the other hand,

if Gc are small entities, e.g., counties themselves, each county is allowed to have different pollution
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shocks in different sizes from different wind directions, but the set of instruments grows larger than

the number of panels or countiesNc. This can lead to computational difficulties and inefficient standard

errors.20 Deryugina et al. (2019) balance this trade-off by selecting the granularity of Gc based on a k-

means cluster algorithm, which on average generates groups that include nine counties.

We instead solve this trade-off by using a different approach that allows full flexibility in howwind

directions shift pollution in different counties (i.e.,Gc at the county level), while dramatically reducing

the number of instruments as well. Instead of interacting wind direction bins with county indicators,

we transform the values in the wind direction dummies to capture both the sign and size of pollution

shock from neighboring counties. We do this in two steps. First, we create a new variable ˜AQIqc which

is pollution in county c averaged over the entire sample when wind is blowing from direction q in

county c, demeaned by the average pollution level in county c:

˜AQIqc =
1

∑

i∈qc

∑

i∈qc

AQIqci −
1

∑

i∈c

∑

i∈c

AQIi (3)

We then use ˜AQIqc to generate a set of instruments Zq
i , where each instrument corresponds to a

particular wind direction (e.g., ZNW
i ), and the values of Zq

i are populated by ˜AQIqc if a particular

observation i belongs to county c and the wind in this particular year-month in this county is blowing

from q:

Z
q
i =











˜AQIqc ifWDIRq
i = q and i ∈ c,

0 otherwise
(4)

This generatesNq instruments instead ofNq×Nc instruments. Zq
i also addresses the two restrictions

that arise when pooling multiple counties into groups. First, a single coefficient on a particular wind

direction bin (e.g., the coefficient for ZNW
i ) accounts for different signs of pollution shocks for different

counties from the same wind direction. For example, a county South-East of a major urban center

is likely to have a positive value in ZNW
i , whereas a county North-West of the major urban center is

likely to have a negative value in ZNW
i . Therefore the coefficient for ZNW

i can shift pollution for the

two counties into different directions. Second, a single coefficient on a particular wind direction bin

also accounts for different sizes of pollution shocks. For example, a county South-East of a large urban

center may experience larger pollution shocks when wind blows from the North-West than a county

South-East of a small urban center. Since the average size of pollution shocks is captured in ZNW
i , the

20Optimal (two-step) GMM with a clustered weighting matrix at the county level is infeasible, for example, because the
number of instruments is larger than the number of clusters.
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same coefficient on ZNW
i can shift pollution to a different extent in different counties.

We design the instrumentsZq
i to capture pollution shocks that occur from changes in wind direction

through demeaning in ˜AQIqc . Since we use wind-induced pollution shocks averaged across the entire

sample when constructingZ
q
i , we do not capture individual events that generate pollution shocks only

in a particular year-month in a particular county that may also correlate with influenza cases. Note

that we control for changes in weather that might affect influenza hospitalizations directly and might

correlate with changes in wind direction, such as temperature, humidity, precipitation or wind speed.

Finally, since we use a one-month lagged AQI as our variable of interest, we use a one-month lagged

wind direction instrument to form our moment conditions.

For our baseline model, we use the four quadrants as wind direction bins, but have also performed

robustness checks with alternative numbers of wind direction bins. We estimate our instrumented

model with a Poisson GMM-IV procedure that accounts for fixed effects through quasi-mean differ-

encing, and construct moment conditions with our set of instruments. Note that the non-instrumented

PoissonGMMestimates are numerically equivalent to a Poisson Pseudo-MaximumLikelihood (PPML)

estimator.21 We cluster standard errors at the county level to allow for arbitrary heteroskedasticity and

serial correlation. For our linear specification, we use the corresponding Linear GMM-IV procedure

that is numerically equivalent to standard linear GMM optimization. We provide econometric details

in Appendix A.2.

As an expansion, we include further instruments for AQI based on thermal inversions (Arceo,

Hanna & Oliva 2016). Typically, air is colder the farther from the earth’s surface. Thermal inversions

appearwhen awarm air layermoves above a cold air layer, reducing air cycling and generating stagnant

air conditions. While inversions do not directly affect health (conditional on temperature), they trap

pollutants closer to the ground, leading to increases in pollution concentrations.22 We use the share of

days with inversions and the average strength of inversions at the county-year-month level. We then

interact both variables with a scaling variable that is the average county AQI across the entire sample.

This allows inversions in more pollution-intensive regions (e.g., large urban centers) to shift pollution

more than in less pollution-intensive regions (e.g., rural counties).

While our PoissonGMM-IV fixed effects estimation does not have an explicit first stage regression as

in two-stage least squares estimations, we can approximate a first stage by running a linear regression

of AQI on our instruments and controls. Table A.3 in Appendix A.3 shows that our wind instruments

shift pollution with a Kleibergen-Paap F-stat of 176.8 (Column (1)).23 Inversions also shift pollution,

21We show the PPML (Correia, Guimarães & Zylkin 2019) estimates in the Appendix. The PPML point estimates are
consistent as long as the conditional mean is correctly specified, irrespective of the distribution of the outcome or errors
(Gourieroux et al. 1984). The PPML estimator performs well with a large number of zeros and over- or under-dispersion in
the data (Silva & Tenreyro 2006, 2011).

22We use inversions between midnight and 6AM to limit potential confounding through behavioral responses.
23Note that all wind direction bins have a positive coefficient, because the values of the instrument are negative when
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however, the Kleibergen-Paap F-stat is lower at 8.6 when including inversions alone (Column (4)), and

91 when including wind direction and inversion instruments simultaneously (Column (7)).24 For this

reason, our preferred specification relies solely on the instruments based on wind direction, though we

also show results with both sets of instruments.

B. Vaccines

To estimate the impact of vaccine protection (V Pcs) on the pollution-hospitalization relationship, we

modify Equation 1 to include an interaction term AQIcym−1 × V Pcs:

E[Hcym|AQIcym−1, V Pcs,Xcym, γcsy, µym]

= exp(β1AQIcym−1 + β2 (AQIcym−1 × V Pcs)X
′

cymδ1 +X
′

cym−1
δ2 + γcsy + µym) (5)

Several econometric challenges exist in evaluating how the influenza vaccine alters the effect of

pollution on influenza. Recall vaccine protection V Pcs is a composite measure of vaccine take-up and

effectiveness. Individuals may reduce avoidance behavior if vaccinated, or be more likely to get the

vaccine in seasons with more reported influenza cases, both of which attenuate the raw effect of the

vaccine. Selection bias in vaccine take-up may also pose a problem if the most susceptible or most

cautious are more likely to seek out vaccines. To address these issues, we instrument for potentially

endogenous vaccine protection (V Pcs) using exogenous vaccine effectiveness (V Es). Our identifying

variation exploits the natural variation in vaccine effectiveness, determined by the random variations

in the quality of the match between the influenza vaccine and the viral strain in circulation.25 Note

that at the time of vaccination, which is usually early in the influenza season, it is not yet known how

effective the vaccine will turn out over the course of the season. Therefore, vaccine take-up should

generally not be affected by vaccine effectiveness. We confirm this empirically by regressing take-up on

effectiveness separately for our five age groups and find no statistically significant association in any of

the five regressions.

Effectiveness based on antigenic drift is, in principle, orthogonal to unobserved determinants of

health in a given year. This provides insights into how vaccines affect the pollution-induced spread

of influenza and provides a test of the causal effects of pollution on influenza. If vaccines moderate

the effect of pollution on influenza, it must be that pollution causally relates to influenza hospitaliza-

particular wind direction tends to blow in clean air for a particular county.
24Note that the sum of the two coefficients, the coefficient on the interaction between share of inversion dayswith the county

average AQI (AQI) and the coefficient on share of inversion days, is positive at the average ofAQI(34.7), and the same holds
for the strength of inversions.

25See also Ward (2014) and White (2019) who, however, calculate vaccine effectiveness based on the names of the viral
strains in the vaccine and in circulation, which in contrast to our measure, do not take into account variations in vaccine
effectiveness across age groups and imperfectly map into clinical measures of effectiveness.
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tions, though we cannot distinguish between whether the vaccine is: (i) reducing the probability any

pollution-harmed individual is exposed to the flu due to external benefits from vaccination of others,

or (ii) changing the probability that a pollution-harmed individual contracts a severe case of flu when

exposed.

To generate an overall measure of vaccine effectiveness (V Es) to instrument for V Pcs, we construct

a weighted average of time-varying age specific raw vaccine effectiveness (V Eraw
sa , which Figure 1c

shows). The weights for age groups are time-invariant and capture the age groups where vaccine ef-

fectiveness matters relatively more: those with a greater tendency of hospitalization and those with

higher vaccine take-up rates. Figure 1b shows these weights and that both hospitalization incidence

and vaccination rates are highest for those 65-years and older and 8-years and younger, the two most

vulnerable groups in our sample. Our measure of vaccine effectiveness is:

V Es =
1

∑

a

(

V Ra ×HSa

)

∑

a

V Eraw
sa × V Ra ×HSa, (6)

where vaccine take-up rate weights V Ra and hospitalization shares HSa are simple averages across

influenza seasons s, e.g. V Ra = 1

S

∑

s V Rsa, and the first term 1∑
a(V Ra×HSa)

ensures that the age

weights sum to one such that overall vaccine take-up or hospitalizations do not affect our values of

vaccine effectiveness. As we use time-averaged hospitalization shares and vaccination rates, vaccine

effectiveness is the only source of temporal variation in our instrument. Figure 1c shows our final

measure of weighted vaccine effectiveness ranges between 0.17 and 0.51 during our study period.

By defining vaccine protection as a combination of vaccine effectiveness and vaccine take-up, we

interpret β2 as a change in either component, suggesting policy can focus on either measure. This helps

maintain a direct policy implication of our results — while random variation in vaccine effectiveness

provides a compelling identification strategy, policy efforts to improve it are met with limited success.

Vaccine take-up rates, however, may be more amenable to policy intervention through efforts to reduce

the costs of obtaining a vaccine or promote its benefits. With this policy lens inmind,wediscuss changes

in β2 as the effect of a relative increase in vaccine take-up rates.

To estimate Equation (5), we use the same Poisson GMM-IV fixed effects estimator as for Equation

(2)withwinddirection instruments for theAQI. Themoment conditions for our interaction termAQI×

V P use the interaction of wind direction instruments with our V E instrument. Table A.3 in Appendix

A.3 shows that our wind instruments interacted with V E shift the interaction term with a Kleibergen-

Paap F-stat of 35.3 (Column (3)).
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Table 1: The effect of air pollution on severe influenza cases

Influenza is primary ICD code Influenza is any ICD code Influenza is only ICD code
Poisson GMM Poisson GMM-IV Poisson GMM Poisson GMM-IV Poisson GMM Poisson GMM-IV
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

AQI
.0076*** .034*** .028*** .11*** .0082*** .031*** .021*** .088*** .014** .037* .043** .11**
(.0024) (.0076) (.0074) (.026) (.0024) (.007) (.0069) (.024) (.0058) (.02) (.017) (.049)

AQI X VP
-.14*** -.53*** -.12*** -.41*** -.13 -.49
(.036) (.16) (.032) (.14) (.1) (.32)

Observations 17668 17668 17668 17668 20013 20013 20013 20013 3954 3954 3954 3954
Mean of outcome 6.04 6.04 6.04 6.04 11.05 11.05 11.05 11.05 0.81 0.81 0.81 0.81
Mean of AQI 35.27 35.27 35.27 35.27 35.06 35.06 35.06 35.06 38.07 38.07 38.07 38.07
Mean of VP - 0.21 - 0.21 - 0.21 - 0.21 - 0.2 - 0.2
Mean of VE - 0.36 - 0.36 - 0.36 - 0.36 - 0.35 - 0.35

Notes: The dependent variable in Columns (1-4) is the count of inpatient hospital admissions with influenza as primary diagnosis within a
county-year-month. The dependent variable in Columns (5-8) is the count of inpatient hospital admissions with influenza as any (primary or
secondary) diagnosis within a county-year-month. The dependent variable in Columns (9-12) is the count of inpatient hospital admissions
with influenza as only diagnosis within a county-year-month. We limit analysis to the influenza intensive months of October throughMarch
and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. Vaccine
protection (VP) is weighted by hospitalization shares across age groups and is measured between 0 (low) and 1 (high). The results are from
a Poisson GMM estimation with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls. Weather
controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind
speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI
means worse air quality. The columns indicating “GMM-IV” use our instruments based on wind direction instead of the AQI to generate
moment conditions, and in even-numbered columns additionally use our VE instrument instead of VP to form moment conditions. The
number of included observations can vary across different outcomes due to fixed effects and varied counts in each county-year-month cell.
Standard errors in parentheses are clustered at the county level. *** Significant at the 1 percent level, ** significant at the 5 percent level, *
significant at the 10 percent level.

III. Results and Discussion

A. Influenza Hospitalizations

Table 1 shows estimates from our Poisson GMM estimations. Coefficients represent the AQI semi-

elasticity of the count of inpatient hospitalizations with primary diagnosis influenza within a county-

year-month, or an approximate percentage change in inpatient counts per unit of AQI when estimates

are sufficiently small. Estimates from Column (1) correspond to Equation 2, without using any instru-

ments, and imply a 1-unit increase in the monthly AQI associates with a 0.76% increase in influenza

inpatient admissions. Column (3) shows that the estimate is larger when using instruments for the AQI

based on wind direction.26 A 1-unit increase in the monthly AQI results in a 2.8% increase in influenza

inpatient admissions. The increase inmagnitude from instrumenting is also consistent with the pattern

found in Deryugina et al. (2019). To put this estimate into a national context, a one-standard-deviation

increase in AQI (10.9-unit increase in our data) amounts to approximately 27,182 (35.7%) additional

inpatient hospitalizations for a 6-month influenza season in the U.S.27

26One reason for the smaller non-instrumented estimates could be attenuation bias from measurement error. The p-value
of Hansen’s J-statistic of overidentifying restrictions in Column (3) is 0.53, so we cannot reject validity of the model.

27Weuse the 10.9-unit increase and the coefficient 0.028 for the relative increase exp(0.028∗10.9)−1 = 0.3569, andmultiply
it by the average inpatient admissions per county-year-month (4.04), the total number of US county equivalents according
to the US Census Bureau (3142) (United States Census Bureau 2018) and by the 6 months within a influenza season. Note
that we are using average admissions across our pre-estimation sample of summary statistics from Table A.2 (4.04), which
is lower than the average reported in the estimation sample in Table 1 (6.04), since a count model drops counties with zero
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Figure 2: Air quality, vaccine protection and influenza hospitalizations and charges

Notes: Panels (a) and (b) show binned scatterplots with 30 bins and a linear regression on the underlying data. Each shows the correlation
net of county-by-season-by-year andmonth fixed effects aswell asweather controls, where the vertical axis shows the residuals from a Poisson
regression and the horizontal axis the residuals from a linear regression without instruments. The panels show the relationship for below
(a) and above (b) median vaccine protection in the sample. Panel (c) shows a contour plot of additional inpatient hospitalization charges
for different vaccine protection and AQI levels. The contour lines indicate the additional charges in billion $US aggregated across the U.S.
per influenza season from October to March. They are calculated from our Poisson GMM-IV estimates in Column (4) of Table 1, the average
hospital charges per county-year-month (117 th. $US), the count of U.S. county equivalents (3142) and months in an influenza season (6).
The charges are additional compared to a zero average AQI, conditional on our controls and fixed effects.

To explore the moderating role of the influenza vaccine, Figure 2 shows the regression-adjusted

relationship between AQI and influenza admissions separately in a sample with low vaccine protection

in Panel (a) and high vaccine protection in Panel (b). We determine each group using amedian vaccine

protection (0.21) sample split. The relationship between air quality and admissions rates is positively

sloped in Panel (a), indicating that theAQI affects flu admissionswhen the vaccine is a bad strainmatch

and/or vaccine take-up is low. When vaccine protection is high, however, this relationship flattens

almost completely, as Panel (b) shows, suggesting an effective vaccine with sufficient take-up nullifies

the relationship between pollution and the flu. This does not imply a high vaccine protection eliminates

all influenza hospitalizations or all pollution-related respiratory hospitalizations. Rather, sufficiently

high vaccine effectiveness and take-up eliminate those flu hospitalizations directly attributable to the

negative shock of pollution.

To test for the moderating role of vaccine protection, we present estimates of Equation (5) using our

Poisson GMM framework in Table 1. Column (2) shows the estimates without using instruments, and

Column (4) uses our instruments based on wind direction for the AQI, and our vaccine effectiveness

instrument (VE) interactedwith thewinddirection instruments for the interaction termofAQI and vac-

valued outcomes within the level of the fixed effect. This only counts cases with primary diagnosis influenza, making this
estimate of absolute numbers a lower bound. Using hospitalization with any influenza diagnosis (Column (7)) doubles the
additional predicted cases because the base of hospital admissions is much larger.
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cine protection (VP). The instrumented estimates are larger than the non-instrumented estimates by

around the same factor as for the non-interacted results in Column (1) and (3). Vaccine protection sub-

stantially moderates pollution-driven influenza cases. Our negative interaction coefficient in Column

(4) implies that a vaccine protection up to 21%, which coincides with the average vaccine protection in

our sample (the maximum is 33%), nullifies the link between air pollution and influenza hospitaliza-

tions. This supports prior evidence of thresholds in influenza vaccination where the positive external

benefits are large enough to almost eliminate influenza spread even at incomplete vaccination take-up

and effectiveness (Boulier, Datta & Goldfarb 2007, Ward 2014). In seasons with poor viral match of

the vaccine (see Figure 1c), vaccine protection is substantially lower (see Figure 1d). To compensate

for a vaccine effectiveness at the 25th percentile (0.32), vaccine take-up would need to increase by 18%

across all age groups to have an equal impact of vaccine effectiveness at the median (0.39). Table A.4 in

Appendix A.3 provides reduced form results where we include vaccine effectiveness directly instead

of instrumenting for vaccine protection.

In our baseline specifications in Columns (1) through (4), we include only cases where the pri-

mary diagnosis is influenza, thus ignoring occurrences of influenza in secondary diagnoses. This likely

misses some influenza-related hospitalizations, but is arguably more robust to over-counting cases that

might arise by including patients who suffer from different health conditions triggered by air pollu-

tion (e.g., asthma) and then happen to be tested for influenza upon hospital admission due to health

protocols. To show robustness to different counting strategies, Columns (5) to (8) repeat our analysis

counting patients that have any (primary or secondary) influenza diagnosis. This yields an average

number of influenza admissions per county-year-month in our estimation sample that is roughly dou-

ble (11.05) compared to our baseline approach (6.04). The estimated coefficients, which again reflect

semi-elasticities, are close to baseline results both for the level effect of AQI as well as the interaction

with vaccine effectiveness. In Columns (9) to (12), we use amore restrictive condition by counting hos-

pital admissions where the only diagnosis is influenza. This reduces the average count of admissions

per county-year-month to 0.81 (the majority of influenza hospital admissions have further influenza-

induced complications, e.g., pneumonia). The estimated coefficients are again comparable to our base-

line estimates, though with larger standard errors given the considerable drop in sample size due to

more cells with zero counts.

Table 2 explores heterogeneity by age and race using our Poisson GMM-IV specifications (we show

non-instrumented results in Table A.5 in Appendix A.3).28 Columns (1) through (6) show results for

three distinct age groups: up to age 8, age 9 through 64, and age of at least 65 years, where the first and

28For our regressions with age-specific outcomes in Table 2, we only use the vaccine take-up rate and raw vaccine effec-
tiveness data of the corresponding age groups for constructing our overall measure of vaccine protection (VP) and vaccine
effectiveness (VE). We show means of VP and VE for each regression at the bottom of the table. We note that vaccines have
private and external benefits, so vaccine take-up of any one group generates positive spillovers to other groups.
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Table 2: Heterogeneity by age and race

≤ 8y 9-64y ≥ 65y Black/Hispanic White
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AQI
.034*** .13*** .032*** -.039 .005 .037*** .024** .086** .04*** .13***
(.0093) (.051) (.008) (.054) (.013) (.014) (.012) (.035) (.007) (.023)

AQI X VP
-.34** .45 -.33** -.43** -.56***
(.16) (.34) (.15) (.2) (.13)

Observations 10593 10593 13984 13984 13619 13619 7740 7740 15553 15553
Mean of outcome 1.89 1.89 2.76 2.76 3.51 3.51 3.27 3.27 4.17 4.17
Mean of AQI 36.51 36.51 35.7 35.7 35.5 35.5 37.5 37.5 35.46 35.46
Mean of VP - 0.31 - 0.16 - 0.2 - 0.21 - 0.23
Mean of VE - 0.48 - 0.4 - 0.3 - 0.36 - 0.37

Notes: The dependent variable is the count of inpatient hospital admissionswith influenza as primary diagnosis within a county-year-month.
The columns indicate which age or race subgroups are counted in the dependent variable. We limit analysis to the influenza intensivemonths
of October through March and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness
data is not available. Vaccine protection (VP) is weighted by hospitalization shares across age groups and is measured between 0 (low) and
1 (high). We only use the vaccine take-up rates and raw vaccine effectiveness for the age groups indicated in each column. For the results by
racial groups, we use our VP scaled by the ratio of race specific to overall vaccine take-up by season. The results are from Poisson GMM-IV
estimations with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls. Weather controls consist
of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind speed. All weather
variables are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI means worse air
quality. The results use our instruments based on wind direction instead of the AQI to generate moment conditions, and in even-numbered
columns additionally use our VE instrument instead of VP to formmoment conditions. The number of included observations can vary across
different outcomes due to fixed effects and varied counts in each county-year-month cell. Standard errors in parentheses are clustered at the
county level. *** Significant at the 1 percent level, ** significant at the 5 percent level, * significant at the 10 percent level.

last reflect the more vulnerable groups.29 Patterns across the youngest and oldest groups are similar

to each other and consistent with our main results. The interaction with vaccine protection for the

middle age group, however, is imprecise and positive. A positive point estimate on the interaction

term implies that vaccines do not help reduce influenza hospitalizations due to air pollution, but can

still reduce influenza hospitalizations not driven by air pollution. The confidence intervals are large,

however, and overlap with the confidence intervals of the other age groups, so we draw little inference

from this age group estimate.

Estimates are similar across racial and ethnic groups (Blacks/Hispanics andWhites in Columns (7)

through (10)), with overlapping confidence intervals.30 Combining these results with well-established

racial and ethnic differences in pollution exposure (Banzhaf, Ma & Timmins 2019, Colmer et al. 2020,

Currie, Voorheis & Walker 2020) may help explain the higher influenza burdens experienced by those

communities (e.g. Quinn et al. 2011). As such, our results suggest that air quality control could be an

additional policy lever to help reduce severe influenza cases among these vulnerable groups, particu-

larly within those communities in which vaccine access is limited and reluctance to receive the vaccine

is particularly high.31

Althoughwe focus primarily on inpatient hospital admissions for influenza, Table 3 shows estimates

29We define these age splits based on the age splits available in the vaccine effectiveness measures.
30We adjust vaccine protection by the seasonal ratio of vaccine take-up of the particular ethnic group to overall vaccine

take-up, which results in a slightly higher mean of VP for Whites, as reported in the bottom of the table.
31These benefits are in addition to any improvements in pollution-related health not associated with influenza. See

(Deryugina et al. 2021) for a discussion of policy targeting regarding polluted areas and vulnerable people.
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Table 3: The effect of air pollution and vaccines on emergency department visits and mortality

ED visits Mortality
Poisson GMM Poisson GMM-IV Poisson GMM Poisson GMM-IV
(1) (2) (3) (4) (5) (6) (7) (8)

AQI
.018*** .059*** .038*** .11*** .011*** .024*** .0014 .053*
(.0027) (.01) (.0071) (.019) (.0023) (.0059) (.008) (.029)

AQI X VP
-.22*** -.43*** -.073** -.3**
(.047) (.11) (.03) (.15)

Observations 10049 10049 10049 10049 23126 23126 23126 23126
Mean of outcome 38.4 38.4 38.4 38.4 0.96 0.96 0.96 0.96
Mean of AQI 35.3 35.3 35.3 35.3 37.41 37.41 37.41 37.41
Mean of VP - 0.21 - 0.21 - 0.18 - 0.2
Mean of VE - 0.37 - 0.37 - 0.35 - 0.35

Notes: The dependent variable is the count of emergency department visits (in Columns (1) to (4)) or the count of deaths (in Columns
(5) to (6)), all with influenza as primary diagnosis within a county-year-month. We limit analysis to the influenza intensive months of
October through March and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness data
is not available. Vaccine protection (VP) is weighted by hospitalization shares across age groups and is measured between 0 (low) and 1
(high). We only use the vaccine take-up rates and raw vaccine effectiveness for the age groups indicated in each column. For the results by
racial groups, we use our VP scaled by the ratio of race specific to overall vaccine take-up by season. The results are from Poisson GMM-IV
estimations with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls. Weather controls consist
of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind speed. All weather
variables are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI means worse air
quality. The results are from a Poisson GMM estimation with county-by-season-by-year fixed effects and year-by-month dummies as well
as weather controls. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms
for precipitation and wind speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged
one month and a higher AQI means worse air quality. The columns indicating “GMM-IV” use our instruments based on wind direction
instead of the AQI to generate moment conditions, and in even-numbered columns additionally use our VE instrument instead of VP to form
moment conditions. The number of included observations can vary across different outcomes due to fixed effects and varied counts in each
county-year-month cell. Standard errors in parentheses are clustered at the county level. *** Significant at the 1 percent level, ** significant
at the 5 percent level, * significant at the 10 percent level.

of the effect of air pollution and vaccines on two alternative outcomes: emergency department (ED)

visits and mortality. ED visits may pick up less severe cases of the flu, though visiting the ED can

be plagued by selection concerns since they often serve as a source of primary care for lower income

groups that are typically uninsured (Finkelstein et al. 2012). Despite the fact that our data on ED visits

has slightly different geographical and temporal coverage than the data for inpatient hospitalizations,

the estimates are close to our main results. In Columns (5) to (8) we instead look at influenza deaths,

which are less frequent than inpatient hospitalizations but also less subject to selection concerns.32 The

estimates for mortality also show a similar pattern to our main results. Together, these suggest that air

pollution, and the protective role of vaccines, each affect a wide range of flu case severity.

In Table 4 we perform three further tests. First, Columns (1) to (4) explore robustness by using a

linear mean function instead of the exponential mean function consistent with a Poisson count model.

Columns (1) and (2) show a linear GMMmodel without instruments, which is equivalent to OLS, and

Columns (3) and (4) show the linear estimates when using our instruments. As in our baseline Poisson

GMM model, the IV estimates in Column (3) are around three times larger than those in Column (1).

Since the point estimates now reflect level effects, we divide by the mean of the dependent variable to

32Since the data on mortality covers the entire U.S., these results also improve the representativeness of our main findings.
The estimation sample size reported in the table is only slightly higher than for ourmain results because themortality outcome
has more zeros resulting in more observations being dropped by the count model.
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Table 4: Linear specification, all respiratory hospitalizations, and osteoarthritis as falsification test

Influenza hospitalizations All respiratory hospitalizations Osteoarthritis
Linear GMM Linear GMM-IV Linear GMM Linear GMM-IV Poisson GMM Poisson GMM-IV
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

AQI
.063*** .19*** .18*** .51*** .17** .014 .5* .33 -.00054** .00019 -.0016 .00069
(.025) (.073) (.058) (.16) (.067) (.16) (.29) (.38) (.00027) (.00084) (.0014) (.0029)

AQI X VP
-.61** -1.9** .72 -1.3 -.0034 -.015
(.28) (.79) (.69) (2.2) (.0041) (.015)

Observations 17668 17668 17668 17668 24596 24596 24596 24596 24255 24255 24255 24255
Mean of outcome 6.04 6.04 6.04 6.04 141.32 141.32 141.32 141.32 43.51 43.51 43.51 43.51
Mean of AQI 35.27 35.27 35.27 35.27 34.52 34.52 34.52 34.52 34.54 34.54 34.54 34.54
Mean of VP - 0.21 - 0.21 - 0.21 - 0.21 - 0.21 - 0.21
Mean of VE - 0.36 - 0.36 - 0.37 - 0.37 - 0.37 - 0.37

Notes: The dependent variable is the count of inpatient hospitalizations with influenza as primary diagnosis in Columns (1) to (4), the
count of inpatient hospitalizations with any respiratory primary diagnosis in Columns (5) to (8), and the count of inpatient hospitalizations
with osteoarthritis as primary diagnosis, all at the county-year-month level. We limit analysis to the influenza intensive months of October
through March and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness data is not
available. Vaccine protection (VP) is weighted by hospitalization shares across age groups and is measured between 0 (low) and 1 (high).
The results are from a Linear GMM estimation in Columns (1) to (8) and from a Poisson GMM estimation in Columns (9) to (12), all with
county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls. Weather controls consist of five bins of
temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind speed. All weather variables are
based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI means worse air quality. The
columns indicating “GMM-IV” use our instruments based on wind direction instead of the AQI to generate moment conditions, and in even-
numbered columns additionally use our VE instrument instead of VP to form moment conditions. The number of included observations
can vary across different outcomes due to fixed effects and varied counts in each county-year-month cell. Standard errors in parentheses are
clustered at the county level. *** Significant at the 1 percent level, ** significant at the 5 percent level, * significant at the 10 percent level.

obtain percent effects that are more readily comparable to the estimates from the count model. Doing

so, the linear estimate in Column (3) of 0.18 translates to a 3% effect, which is very close to the estimate

of 2.8% using the count model. Vaccine protection is also comparable in magnitude. In Appendix Table

A.6, we showequivalence of our PoissonGMMestimator (without instruments)with a Poisson Pseudo-

MaximumLikelihood estimator, andwe estimate a linearmodel using the inverse hyperbolic sine (IHS)

of hospitalizations as our outcome. The estimates using the IHS are similar to semi-elasticities (but,

unlike the log function, allow for zeros) and can therefore bemore directly comparedwith our baseline

Poisson GMM estimates. The effect of 0.02 in Column (7) in Appendix Table A.6 is close to our baseline

effect of 0.028 in Table 1. Together, these results suggest that our estimates are largely insensitive to the

functional form choice of our dependent variable.

Second, we ask how the effect of air pollution on influenza hospitalization compares to the effect

on any respiratory hospitalization (including influenza) in Columns (5) to (8). As indicated in Table

4, the mean of hospitalizations with any respiratory hospitalization per county-year-month (141.32) is

much higher than for influenza hospitalizations alone (6.04). Columns (5) and (6) show the effect on

all respiratory hospitalizations without instruments and Columns (7) and (8) with instruments. The

absolute effect of a one-unit increase of the AQI on influenza hospitalizations (0.18, Column (3)) is

roughly one-third of the size of the effect on all respiratory hospitalizations (0.5, Column (7)). Assum-

ing that outside of influenza season the effect on all respiratory hospitalizations remains the same, but

the effect on influenza hospitalizations drops to zero, influenza hospitalizations due to air pollution
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accounts for roughly 18% of all respiratory hospitalizations due to air pollution. This suggests that the

increased incidence of influenza accounts for a sizeable share of the health harms from air pollution. It

also implies that greater vaccine strain matches and increased take-up rates can reduce a sizeable share

of hospitalizations from air pollution.

Third, as a general specification test for our model, we perform a falsification test by repeating our

analysis using an outcome we do not expect to be related to pollution or vaccines. We choose to narrow

our focus to osteoarthritis, which is unlikely to be related to short-term variation in pollution. Our Pois-

sonGMM-IV results in Column (11) andColumn (12) of Table 4 indicate precise zero coefficients on the

effect of AQI and the interaction with vaccine protection, lending support to our model specification.

As an expansion to ourwind instrumental variables, we explore an additional source of variation by

using inversions in Appendix Table A.7. In Columns (1) and (2) we use only inversions (without using

instruments based onwind direction). The coefficients are similar as in ourmain results in Table 1, with

overlapping confidence intervals. We next use both the inversion and wind based sets of instruments

in Columns (3) and (4), again with estimates close to our main results.33 These patterns lend support

to the validity of our model design, and demonstrate that our IV estimates are not a unique feature of

our measure of wind direction in the first stage.

Finally, Table A.8 in Appendix A.3 explores further robustness of our main Poisson GMM-IV re-

sults to changes in control variables, calculation of AQI, or including off-seasonal cases. In Columns

(1) and (2), we replace our county-by-season-by-year fixed effects with coarser county-by-influenza

season effects. In Columns (3) and (4) we drop all weather controls. In Columns (5) and (6) we use

the full controls and additionally include lagged employment at the county-year-month level to con-

trol for economic activity at our level of analysis. In Columns (7) and (8) we do not winsorize the

AQI, and in Columns (9) and (10) we do not spatially interpolate the AQI. In Columns (11) and (12)

we additionally include all county-year-month cells with positive influenza hospitalization cases. The

estimates remain similar to our main estimates.

B. Medical Charges and Policy Implications

Given the above effects, we calculate the additional hospital charges attributable to pollution-associated

influenza to assess the costs generated by air pollution and the role of vaccine protection in mitigat-

ing those costs.34 In Figure 2c, we use our estimates from Column (4) of Table 1, together with the

33The test of overidentifying restrictions is rejected at the 5% level, both when using inversion instruments alone and when
using inversions and wind instruments jointly. The test for overidentifying restrictions is passed only with instruments based
on wind direction alone as in our main results. This together with the lower first stage F-stat for inversion instruments drives
using soley wind direction instruments as main results.

34Hospital charges are around $US 29 thousand per patient per influenza diagnosed inpatient hospitalization, so $US 117
thousand per county-year-month. Note hospital charges are distinct from hospital costs, which are notoriously difficult to
ascertain because they differ significantly across institutions and units within institutions. Further, these estimates ignore
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average charges per county-year-month ($US 117 thousand), to draw a contour plot of additional hos-

pital charges spanning the support of AQI and vaccine protection (VP) in our data. Contour lines

show pollution-induced influenza inpatient hospitalization charges at various levels of AQI (decreas-

ing along the horizontal axis so as to represent an improvement in air quality) andVP (increasing along

the vertical axis to represent improvements in vaccine protection) during the average influenza season

across the U.S. in billions of $US. Contour lines are similar to isocost curves, but instead of measuring

levels of charges, they represent additional charges compared to an AQI of zero.

This illustrates ourmain results in terms of additional hospital charges. When VP is high (the top of

Figure 2c), an increase in AQI – no matter how large -– has no marginal impact on flu-specific hospital-

ization charges due to the protective nature of the vaccine. In contrast, when VP is low (at the bottom

of the figure), even small changes in the AQI generate large increases in additional influenza-specific

hospitalization charges. Going from an AQI of 40 to 50 (both of which are well below US regulatory

standards) generates roughly 26 billion $US in additional influenza inpatient hospitalization charges

at a vaccine protection of 0.086, the minimum in our sample. Conversely, when air quality is high

(AQI<20), a drop in VP generates little additional pollution-driven influenza hospitalization charges

(though influenza cases that are not pollution driven still might be greatly affected). On the other

hand, when air quality approaches an AQI of 70 (which is still relatively clean byWHO standards), VP

is highly impactful. In particular, a drop in vaccine protection from its median (0.21) to the 25th per-

centile (0.159), generates around 0.5 billion $US in additional pollution-driven influenza charges when

AQI is at the low end of our sample range but around 12 billion $US at the high end of the pollution

range.

Since the ex-ante marginal benefit from improving VP or air quality decreases in the level of the

other variable, it is tempting to viewvaccine and air quality policies as substitutes in preventingpollution-

induced influenza cases. The reality is more complex for several reasons. First, and most simply, their

substitutability will depend on their relative costs on the margin. Second, both policies have ‘spillover’

impacts thus complicating any inference based on simple comparisons. Perhaps most important, how-

ever, is the stochastic nature of these public health risks. Vaccine effectiveness (VE), and by extension

vaccine protection (VP), is a stochastic outcome due to unforeseen and random antigenic drift and high

variability from season to season (see Figure 1c). Air quality is also inherently stochastic because of

the imperfect control of emissions, variations in activities that cause emissions, the role weather plays

in converting emissions to pollution, and natural sources of emissions, such as wildfires (Borgschulte,

Molitor & Zou 2020). In this non-deterministic setting, the safety-first approach to public health reg-

ulations is tantamount to an extreme form of risk aversion (Lichtenberg & Zilberman 1988), making

the policies appear as complements. Random variations in both VP and air quality results in a higher

indirect costs to patients, such as forgone earnings.
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ex-post marginal benefit of one variable when increasing the level of the other variable.

We formalize this intuition in Appendix A.4 based on three simple assumptions that flow from

the preceding discussion. First, the regulator has two policies at her disposal to manage influenza risk:

vaccines and air quality control. Second, both policies offer imperfect control due to the aforementioned

stochasticity. Third, the regulator has some distaste for risk. Under these assumptions, and a condition

that policies are sufficiently imperfect or risk in hospitalization counts is sufficiently large, the benefit

of jointly implementing both policies is larger than the sum of the benefits of implementing each policy

individually. Each policy serves as a hedge against the other, such that the value of one policy increases

if the other policy is also implemented, making them complements rather than substitutes.

This hedging value can most easily be seen by returning to our data. A back of the envelope calcu-

lation suggests that a 10% (3.5 AQI points) reduction in the AQI in an historically bad vaccine effective-

ness year (17% VE and 11% VP) would avert 12,607 (16.6%) hospitalizations across the U.S. or $US 365

million in influenza medical charges, while a 10% improvement in either vaccine take-up or vaccine

effectiveness from average vaccine take-up or effectiveness in a historically polluted year (38.2 AQI)

would avert 26,378 (34.6%) of pollution driven influenza hospitalizations, or $US 764 million. Thus,

for seasons with poor vaccine effectiveness, improved air quality can provide an important hedge to re-

duce influenza cases. Similarly, for seasons with higher local air pollution, effective vaccines or higher

vaccine take-up rates can provide protective effects from pollution-driven influenza.

IV. Conclusion

Using a rich, longitudinal dataset, we provide evidence that air pollution increases seasonal influenza

hospitalization rates, and that improved vaccine protection, either through high vaccine effectiveness or

vaccine take-up, greatly diminishes this relationship and reduces the social andmedical costs of poor air

quality. Our empirical strategy, based on instrumental variables usingwind direction and the stochastic

nature of vaccine effectiveness across influenza seasons, limits risks of confounding. Our results are

robust to numerous assumptions about functional form, omitted variables, alternative outcomes, and

falsification tests.

That policies to combat air quality can protect citizens from the most serious threats of influenza

is a new insight that offers an additional tool in the global battle against the flu. At the same time, it

appears that increased flu vaccination rates and improvements in flu vaccine strain matches can avert

some of the harms from pollution. As such, the returns to policies designed to address pollution and

infection externalities are inextricably connected, such that approaching either in isolation will be sub-

optimal from a social welfare perspective. The stochastic nature of these interacting externalities also

underscores their complementary nature – each policy can serve as a hedge against underperformance

of the other. Thus, ‘resilient’ policy strategies can help decrease medical spending, avoid lost produc-
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tivity, and reduce loss of life. These returns may be particularly high in dense urban centers around the

world, and developing countries in particular, where population density and high levels of pollution

(de Lataillade, Auvergne & Delannoy 2009) increase the intensity of these interactions.

Our insights regarding compounding risks from pollution and flumay extend to other viral respira-

tory illnesses with similar etiological pathways, including the current COVID-19 pandemic.35 Though

research remains preliminary, evidence suggests significant positive correlations between COVID-19

hospitalizations and pollution levels (Wu et al. 2020). Since large scale reductions in economic activity

aimed at reducing viral spread have reduced current air pollution (NASA 2020), the importance of this

relationship may be masked in the data, even if the pollution-COVID-19 link is causal. As economic

activity resumes, pollution will increase, which may compound the threat from COVID-19 infections.

If governments suspend environmental regulations in an effort to bolster the economic recovery, as

has been recently seen in the U.S. (Bodine 2020), hospitalizations and deaths from the pandemic may

be further hastened. While recent vaccine developments have produced a vaccine that is highly effec-

tive against existing strains of the disease, new strains may emerge that diminish vaccine protection,

and limited roll-out or take-up hesitancy can hobble attempts to drastically reduce hospitalizations.

Our results suggest an additional possible policy direction, whereby environmental controls serve as a

complementary investment to optimallymanage the harms fromnewviral threats, while also providing

additional protection against more established respiratory infections.
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A.1 Additional Descriptive Statistics

Table A.1 contains states and years with available admissionmonths and patient zip codes in theHCUP

(2018b) inpatient hospitalization data we use. Table A.2 contains summary statistics at the county-year-

month level for inpatient hospital admissions with a primary influenza diagnosis, associated hospital

charges, and the average monthly AQI. We use the standard deviation of the AQI during the influenza

season (10.9), the average inpatient hospitalization admissions (4.04) and charges (117,000 US$) for

the calculation of absolute effects based on our Poisson GMM-IV estimates.

To further illustrate the influenza seasonality, we use data on the timing of national influenza-like

illnesses from the Centers for Disease Control and Prevention (CDC 2020). Figure A.1 shows that the

seasonality of inpatient hospitalizations in our datamatches closelywith general influenza-like illnesses

reported by the CDC.

The AQI is based on multiple pollutants, but for each county-day, a single pollutant is the defining

pollutant of the AQI (EPA 2018). Figure A.2 showswhich pollutants are themain defining pollutants of

the AQI during the influenza season fromOctober throughMarch for three different intervals covering

our sample. Particulate matter (PM2.5 and PM10) and ozone are the defining pollutants in the AQI for

the majority of cases in each time period.
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Table A.1: Data coverage with available zip codes and admission months

Arizona 2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017

Arkansas 2009

Colorado 2007,2008,2009,2010,2011,2012

Hawaii 2009

Iowa 2009

Kentucky 2007,2008,2009,2010,2011,2012,2013,2014

Maryland 2009,2010,2011,2012

Massachusetts 2007,2008,2009,2010,2011,2012,2013,2014

Michigan 2008,2009,2010,2011,2012,2013,2014,2015,2016,2017

Minnesota 2014,2015,2016

Nevada 2010,2011,2012,2013,2014,2015

New Jersey 2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017

New York 2007,2008,2009,2010,2011,2012,2013,2014,2015

North Carolina 2008,2009,2010,2011,2012,2013,2014,2015,2016,2017

Oregon 2008,2009

Rhode Island 2007,2008,2009,2010,2011,2012,2013,2014,2015

South Dakota 2009

Utah 2009

Vermont 2009

Washington 2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017

Wisconsin 2009

Notes: The table shows the states and years with available admission month and patient zip code used in the analysis for influenza hospital-
izations.

Table A.2: Summary statistics of influenza hospitalizations and air pollution (AQI)

Mean SD Min 5th p. 10th p. 25th p. 75th p. 90th p. 95th p. Max

Hospital admissions

per county per month

Oct-Mar 4.04 16.3 0 0 0 0 2 8 17 588

Apr-Sep 0.526 3.41 0 0 0 0 0 1 2 170

Hospital charges (th. USD)

per county per month

Oct-Mar 117 567 0 0 0 0 39.1 202 503 23729

Apr-Sep 16.7 124 0 0 0 0 0 18 57.5 6883

Average AQI across

county-months

Oct-Mar 34.5 10.9 7.14 16.3 21 28 40.6 47.3 52.9 72.4

Apr-Sep 42.9 14.1 11.3 17.8 23.5 35.2 50.2 59.7 67.6 84.8

Notes: The table shows summary statistics for influenza diagnosed inpatient hospital admissions and charges, and air pollutionmeasured by
theAQI.We pool and report data separately by the influenza season of October throughMarch and the off season of April through September.
The AQI statistics are based on the coverage of the hospitalization sample.
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Figure A.1: Influenza-like illnesses in U.S.

05,00010,00
015,00020,000

Average count of influenza dia
gnoses per year in the US

Jan FebMar AprMayJun Jul AugSep Oct NovDec
Notes: The figure shows the distribution of recorded influenza-like illnesses from CDC (2020), which includes non-hospitalized cases. Data
are pooled across the U.S. spanning 1997-2019. Not all health providers report to the Influenza-Like Illness (ILI) Network, and the number
of providers reporting grew over time so total number of cases is a lower bound of true infection rates.

Figure A.2: Defining pollutants of the AQI

0 .1 .2 .3 .4 .5 0 .1 .2 .3 .4 .5 0 .1 .2 .3 .4 .5SO2PM2.5PM10OzoneNO2CO
SO2PM2.5PM10OzoneNO2CO

SO2PM2.5PM10OzoneNO2CO2007-2010 2011-2014 2015-2017
Share of defining pollutant in AQI (Oct-Mar)

Notes: The figure shows each pollutant’s share in days when it was the defining pollutant for calculating the AQI at the county-day level. The
shares in days are calculated for the three to four year periods as indicated and are based on the months of the influenza season (Oct-Mar).
The data on defining pollutants comes from EPA (2020).
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(a) V R by age over time

00.10.20.3
0.40.50.60.7Average vaccine take-up rate

 (VR) by race
07/08 08/09 09/10 10/11 11/12 12/13 13/14 14/15 15/16 16/17 17/18Influenza seasonBlack Hispanic White

(b) V R by race over time
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age ≥ 65
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(c) V R across states in 09/10, age ≥ 65

Figure A.3: Vaccine take-up rates over time and across states

Notes: Panel (a) shows vaccine take-up rates by age group averaged across states, and Panel (b) by race averaged across states. Panel (c)
shows vaccine take-up rates for age group 65 years and older in 2009/2010 for different states.
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A.2 Econometric details

In this section we detail how we estimate our Poisson GMM-IV model with fixed effects. To simplify

notation, we index observations by i and collect all variables on the right hand side of Equation (2) into

Xi except the fixed effects γji at the county-by-year-by-month level j with total observations J =
∑

i∈j

per fixed effect cell. The conditional mean of hospitalization counts Hi is given by:

E[Hi|Xi, γ
j
i ] = g(Xiβ + γji ) = αj

i exp(Xiβ) (7)

where Xi are the AQI, control variables, as well as year by month dummies. In our baseline expo-

nentionalmean specificiation consistentwith a Poisson countmodel, the function g(.) is the exponential

function exp(.), such that we can rewrite g(Xiβ + γji ) = αj
i exp(Xiβ), where αj

i = g(γji ). In our linear

mean specification, the function g(.) is just a linear function, i.e. the argument itself. We use a general

methods of moments (GMM) estimator using standard moment conditions:

E[ǫi|Zi] = 0 (8)

whereZi are instruments and ǫi the errors. Note thatwedonot require any additional distributional

assumptions for consistency of β, only that the conditional mean function is correctly specified and that

our moment conditions hold. When our instruments Zi are the variables themselves (Xi), our GMM

estimator is numerically equivalent to a standard fixed effects Poisson Pseudo-Maximum Likelihood

(PPML) estimator.

We account for fixed effects γji by first defining H̄j
i = J−1

∑

i∈j Hi as the average count of hos-

pitalizations within a county-season-year cell j corresponding to the level of our county-year-season

fixed effect γji , i.e. averaging across months in each cell. Next, note that γji or αj
i does not vary across

observations i at the fixed effect level j, and therefore:

E[H̄j
i |Xi, γ

j
i ] = J−1

∑

i∈j

g(Xiβ + γji ) = J−1
∑

i∈j

αj
ig(Xiβ) = αj

iJ
−1

∑

i∈j

g(Xiβ) = αj
i ḡ

j
i (β) (9)

The last equality defines ḡji (β) = J−1
∑

i∈j g(Xiβ). The key insight is that:

αj
i ≡ g(γji ) = E

[

H̄j
i

ḡji (β)
|Xi, γ

j
i

]

(10)

Combining Equations (7), (8) and (10) yields an expression for the moment conditions that re-
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moves the fixed effect through quasi-mean differencing:

E[ǫi|Zi] = E[Hi − αj
i ḡ

j
i (Xi)|Zi] = E

[

Hi −
H̄j

i

ḡji (β)
g(Xiβ)|Zi

]

= 0 (11)

Since ḡji (β) is a function of β, it needs to be recomputed in every iteration of the GMM algorithm.

Defining residuals as ǫ̂i, the empirical moment conditions are:

E[Z ′
iǫ̂i] = 0 (12)

Dropping subscripts, β minimizes the GMM objective function Q:

β = argmin
β

Q = (Z ′
ǫ̂)′W (Z ′

ǫ̂) (13)

where W = ( 1

N
Z ′Z)−1 is a weighting matrix. We compute clustered standard errors using the

covariance matrix of β:

V COV (β) =
1

N
(G′

WG)−1
G

′
WSWG(G′

WG)−1 (14)

where S = 1

N

∑

j

∑

i∈j(Z
′
iǫ̂i)(Z

′
iǫ̂i)

′ and G = 1

N

∑

iZ
′
i
∂ǫi
∂β′ . In our empirical application, we use a

fixed effect demeaned version of our instrumentmatrixZi tomatch the instruments that would be used

in a two stage least squares regression, which we denote Z̃i = Zi − J−1
∑

i∈j Zi.
36 We use a two-step

optimal GMM procedure where we use S−1 from the first step as weighting matrix for the second step.

Finally, for robustness checks, we use a linear conditional mean function instead of an exponential

conditional mean function where Hi is either the count of hospitalizations or the inverse hyperbolic

sine (IHS) of hospitalizations counts:

E[Hi|Xi, γ
j
i ] = Xiβ + γji (15)

This changes themoment conditions in Equation (11) to a standardmean-differenced version for linear

GMM:

E[ǫi|Zi] = E
[

(Hi − H̄j
i )− (Xi −

¯
X

j
i )β|Zi

]

= 0 (16)

36In practices, it makes little difference whether we use Z̃i or Zi.
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A.3 Additional tables

Table A.3: First stage results

Wind IVs Inversion IVs Wind + Inversion IVs
AQI AQI AQI X EVT AQI AQI AQI X EVT AQI AQI AQI X EVT
(1) (2) (3) (4) (5) (6) (7) (8) (9)

ZNE .47*** .47*** .011 .47*** .45*** .006
(.042) (.089) (.022) (.042) (.089) (.022)

ZSE .72*** .83*** .055*** .72*** .79*** .047***
(.035) (.09) (.015) (.035) (.09) (.015)

ZSW .5*** .71*** .013 .48*** .68*** .013
(.058) (.11) (.022) (.058) (.11) (.022)

ZNW .56*** 1.1*** .11*** .56*** 1.1*** .11***
(.066) (.17) (.026) (.066) (.17) (.026)

ZNE X VE
.0045 .25** .025 .25**
(.41) (.11) (.41) (.11)

ZSE X VE
-.35 .25*** -.26 .28***
(.26) (.056) (.26) (.055)

ZSW X VE
-.74* .25*** -.69* .25***
(.41) (.095) (.42) (.096)

ZNW X VE
-1.7*** -.071 -1.7*** -.075
(.44) (.086) (.45) (.087)

InvDays X AQI
.54*** 1*** .06 .47*** .88*** .045
(.13) (.3) (.063) (.12) (.26) (.061)

InvDays
-15*** -37*** -3.1 -12*** -31*** -2.5
(4.6) (11) (2.2) (4.2) (9.2) (2.1)

InvStr X AQI
.021 .081 .0087 .018 .054 .0049
(.02) (.062) (.0095) (.018) (.05) (.0086)

InvStr
-.55 -3 -.39 -.52 -2.2 -.28
(.71) (2.2) (.34) (.65) (1.8) (.3)

InvDays X AQI X VE
-1.4 .095 -1.2 .11
(1) (.26) (.94) (.25)

InvDays X VE
66* 1.9 54* 1.1
(35) (8.7) (32) (8.5)

InvStr X AQI X VE
-.16 -.013 -.097 -.0038
(.16) (.03) (.14) (.029)

InvStr X VE
6.6 .85 4.6 .54
(5.7) (1.1) (4.8) (1)

Observations 17668 17668 17668 17668 17668 17668 17668 17668 17668
F (K-P) 176.8 35.3 35.3 8.6 3.1 3.1 91 20.9 20.9
F (S-W) 176.8 93.2 73.9 8.6 8.7 8.0 91 48.1 38.6

Notes: The table showsfirst stage results by using linear regressions of the endogenous variables on our instruments, controls andfixed effects.
Columns (1), (4) and (7) show the results from our model with one endogenous variables (without interacting with V P ) in Equation (2).
The other Columns show first stage results from our model with two endogenous variables (with interacting with V P ) in Equation (5). The
dependent variables are the endogenous variables indicated at the top of the table. In Columns (1) to (3) we use our instruments based on
wind directions. In Columns (4) to (6) we use our instruments based on thermal inversions. In Columns (7) to (9) we use our both our
instruments based on wind directions and thermal inversions. We limit analysis to the influenza intensive months of October throughMarch
and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. Vaccine
effectiveness is weighted by average vaccination rates and hospitalization shares across age groups and is measured between 0 (low) and 1
(high). The results are from a Ordinary Least Squares regression with county-by-season-by-year and year-by-month fixed effects as well as
weather controls. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for
precipitation and wind speed. All weather variables are based on county-year-month averages. Standard errors in parentheses are clustered
at the county level. *** Significant at the 1 percent level, ** significant at the 5 percent level, * significant at the 10 percent level.
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Table A.4: Reduced form using vaccine effectiveness (VE) directly

Poisson GMM Poisson GMM-IV
(1) (2) (3) (4)

AQI
.0076*** .035*** .028*** .099***
(.0024) (.0078) (.0074) (.021)

AQI X VE
-.082*** -.28***
(.022) (.079)

Observations 17668 17668 17668 17668
Mean of outcome 6.04 6.04 6.04 6.04
Mean of AQI 35.27 35.27 35.27 35.27
Mean of VE - 0.36 - 0.36

Notes: The dependent variable is the count of inpatient hospital admissionswith influenza as primary diagnosis within a county-year-month.
We limit analysis to the influenza intensive months of October throughMarch and our sample spans 2007-2017 with the exception of October
2008 to March 2009 where vaccine effectiveness data is not available. Instead of using vaccine protection (VP), we use vaccine effectiveness
(VE) directly. Vaccine effectiveness is weighted by average vaccination rates and hospitalization shares across age groups and is measured
between 0 (low) and 1 (high). The results are from a Poisson-GMM estimation with county-by-season-by-year fixed effects and year-by-
month dummies as well as weather controls. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity
quintiles, and linear terms for precipitation and wind speed. All weather variables are based on county-year-month averages. The air quality
index (AQI) is lagged one month and a higher AQI means worse air quality. The columns indicating “GMM-IV” use our instruments based
on wind direction instead of the AQI to generate moment conditions, and in even-numbered columns use the interaction between wind
direction instruments and vaccine effectiveness (VE). Standard errors in parentheses are clustered at the county level. *** Significant at the
1 percent level, ** significant at the 5 percent level, * significant at the 10 percent level.

Table A.5: Heterogeneity by age and race (without instruments)

≤ 8y 9-64y ≥ 65y Black/Hispanic White
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AQI
.0075*** .015 .0096*** .011 .0035 .025*** .0087** .0092*** .034***
(.0027) (.011) (.0032) (.0075) (.0025) (.0056) (.0041) (.0021) (.007)

AQI X VP
-.025 -.0088 -.11*** -.11***
(.035) (.038) (.028) (.032)

Observations 10593 10593 13984 13984 13619 13619 7740 4 15553 15553
Mean of outcome 1.89 1.89 2.76 2.76 3.51 3.51 3.27 4.17 4.17
Mean of AQI 36.51 36.51 35.7 35.7 35.5 35.5 37.5 35.46 35.46
Mean of VP - 0.31 - 0.16 - 0.2 - - 0.23
Mean of VE - 0.48 - 0.4 - 0.3 - - 0.37

Notes: The dependent variable is the count of inpatient hospital admissionswith influenza as primary diagnosis within a county-year-month.
The columns indicate which age or race subgroups are counted in the dependent variable. We limit analysis to the influenza intensivemonths
of October through March and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness
data is not available. Vaccine protection (VP) is weighted by hospitalization shares across age groups and is measured between 0 (low)
and 1 (high). We only use the vaccine take-up rates and raw vaccine effectiveness for the age groups indicated in each column. For the
results by racial groups, we use our VP scaled by the ratio of race specific to overall vaccine take-up by season. The results are from Poisson
GMM estimations without instruments with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls.
Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and
wind speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher
AQI means worse air quality. The number of included observations can vary across different outcomes due to fixed effects and varied counts
in each county-year-month cell. Standard errors in parentheses are clustered at the county level. *** Significant at the 1 percent level, **
significant at the 5 percent level, * significant at the 10 percent level.
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Table A.6: Further robustness: PPML, and linear model with IHS of counts

Poisson GMM PPML OLS/Lin. GMM (IHS) Lin. GMM-IV (IHS)
(1) (2) (3) (4) (5) (6) (7) (8)

AQI
.0076*** .034*** .0076*** .034*** .0043*** .0094** .02*** .038***
(.0024) (.0076) (.0024) (.0076) (.0012) (.0039) (.0051) (.012)

AQI X VP
-.14*** -.14*** -.024 -.11*
(.036) (.036) (.017) (.066)

Observations 17668 17668 17668 17668 17668 17668 17668 17668
Mean of outcome 6.04 6.04 6.04 6.04 1.34 1.34 1.34 1.34
Mean of AQI 35.27 35.27 35.27 35.27 35.27 35.27 35.27 35.27
Mean of VP - 0.21 - - - 0.21 - 0.21
Mean of VE - 0.36 - - - 0.36 - 0.36

Notes: The dependent variable is the count of inpatient hospitalizations with influenza as primary diagnosis in Columns (1) to (4), and the
inverse hyperbolic sine (IHS) of the count of inpatient hospitalizations with influenza as primary diagnosis in Columns (5) to (8), all at the
county-year-month level. We limit analysis to the influenza intensive months of October through March and our sample spans 2007-2017
with the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. Vaccine protection (VP) is weighted by
hospitalization shares across age groups and is measured between 0 (low) and 1 (high). The results are from a Poisson GMM estimation
in Columns (1) and (2), from a Poisson Pseudo-Maximum Likelihood (PPML) in Columns (3) and (4), and from a linear GMM estimation
in Columns (5) to (8), all with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls. Weather
controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind
speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI
means worse air quality. Columns (7) and (8) indicating “GMM-IV” use our instruments based on wind direction instead of the AQI to
generate moment conditions, and in Column (8) we additionally use our VE instrument instead of VP to formmoment conditions. Standard
errors in parentheses are clustered at the county level. *** Significant at the 1 percent level, ** significant at the 5 percent level, * significant at
the 10 percent level.

Table A.7: Using instruments based on thermal inversions

Only inversions Wind and inversions
(1) (2) (3) (4)

AQI
.012 .29*** .029*** .12***
(.029) (.1) (.0076) (.022)

AQI X VP
-1.4*** -.6***
(.44) (.12)

Observations 17668 17668 17668 17668
Mean of outcome 6.04 6.04 6.04 6.04
Mean of AQI 35.27 35.27 35.27 35.27
Mean of VP - 0.21 - 0.21
Mean of VE - 0.36 - 0.36

Notes: The dependent variable is the count of inpatient hospitalizations with influenza as primary diagnosis in columns at the county-
year-month level. We limit analysis to the influenza intensive months of October through March and our sample spans 2007-2017 with
the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. Vaccine protection (VP) is weighted by
hospitalization shares across age groups and is measured between 0 (low) and 1 (high). The results are from a Poisson GMM estimation
with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls. Weather controls consist of five bins
of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind speed. All weather variables
are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI means worse air quality. In
Columns (1) and (2) we use our instruments based on thermal inversions instead of the AQI to generate moment conditions, and in Columns
(3) and (4) we additionally use our instruments based on wind direction. In even-numbered columns we also use our VE instrument instead
of VP to form moment conditions. Standard errors in parentheses are clustered at the county level. *** Significant at the 1 percent level, **
significant at the 5 percent level, * significant at the 10 percent level.
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Table A.8: Further robustness: Fixed effects, controls, AQI construction, and including off-seasonal
cases

Fewer FE No weather ctr. Incl. emp ctr. AQI not wins. AQI not interpol. Incl. off-seas. cases
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

AQI
.025*** .066*** .015* .062*** .028*** .11*** .028*** .11*** .02** .091*** .011* .058***
(.0065) (.018) (.008) (.021) (.0074) (.025) (.0073) (.025) (.0081) (.026) (.0066) (.016)

AQI X VP
-.26** -.32** -.53*** -.58*** -.47*** -.27***
(.11) (.15) (.16) (.15) (.15) (.071)

Observations 21459 21459 17668 17668 17665 17665 17668 17668 8950 8950 21702 21702
Mean of outcome 4.98 4.98 6.04 6.04 6.04 6.04 6.04 6.04 9.83 9.83 5.5 5.5
Mean of AQI 35.05 35.05 35.27 35.27 35.27 35.27 35.43 35.43 36.26 36.26 36.61 36.61
Mean of VP - 0.21 - 0.21 - 0.21 - 0.21 - 0.21 - 0.21
Mean of VE - 0.37 - 0.36 - 0.36 - 0.36 - 0.37 - 0.37

Notes: The dependent variable is the count of inpatient hospitalizations with influenza as primary diagnosis at the county-year-month level.
We limit analysis to the influenza intensive months of October through March, except in Columns (11) and (12) where we also include all
county-year-month cells with influenza cases between April and September. Our sample spans 2007-2017 with the exception of October
2008 to March 2009 where vaccine effectiveness data is not available. Vaccine protection (VP) is weighted by hospitalization shares across
age groups and is measured between 0 (low) and 1 (high). The results are from a Poisson GMM estimation with county-by-season-by-year
fixed effects (except Columns (1) and (2)) and year-by-month dummies as well as weather controls (except Columns (3) and (4)). Weather
controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind
speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI
means worse air quality. In Columns (1) and (2), we include coarser fixed effects at the county-season level instead of at the county-season-
year level. In Columns (3) and (4) we drop all weather controls. In Columns (5) and (6) we additionally include lagged employment counts
at the county-year-month level. In Columns (7) and (8) we construct our AQI variable without winsorization at the top and bottom 1%. In
Columns (9) and (10) we do not spatially interpolate, i.e. do not take the average value of the adjacent counties in the same month if the
AQI is missing for certain county-year-month cells. All results use our instruments based on wind direction instead of the AQI to generate
moment conditions, and in even-numbered columns additionally use our VE instrument instead of VP to form moment conditions. The
number of included observations can vary across different outcomes due to fixed effects and varied counts in each county-year-month cell.
Standard errors in parentheses are clustered at the county level. *** Significant at the 1 percent level, ** significant at the 5 percent level, *
significant at the 10 percent level.

A-10



A.4 A model with risk and two imperfect policy investments

We denote the number of people who are in good health and do not require hospitalization as y. The

expected value of y is ȳ, and we can express y as the sum of ȳ and a zero mean shock ǫ with variance

σǫ:

y = ȳ + ǫ (17)

This equation is consistent with the notion that in some years, there are more harmful viral strains

in circulation that affect more people than in other years. As is often the case for environmental or

public health policies, the policy maker is risk averse. She cares about the number of people who are in

good health and do not require hospitalization in a typical year as well as less typical years , such that

we can write expected benefits (EU) as a simple mean-variance composite:

EU = E[y]− γV ar[y] = ȳ − γσǫ (18)

where the parameter γ ≥ 0 captures dislike for variability in the outcome. Suppose there are two

imperfect polices i ∈ {1, 2} available that can be implemented by the policymaker. One of those policies

is vaccination, and the other policy is improving air quality. The effect of these policies on the fraction

of people in good health is, net of implementation cost pi (in utility units) is:

−ǫ+ µi + νi − pi (19)

The average positive impact on the number of people in good health is µi. While the policies can

also offset the shock ǫ, they only do so imperfectly as they introduce a new mean-zero shock νi with

variance σi. The policies imperfectly insure against uncertainty as σǫ,i ≡ COV (νi, ǫ) > 0. That is, the

variance of y is reduced by implementing a policy but only partially so. The higher σǫ,i, the lower the

protection by the policy against the variability in the outcome, while the change in the expected level

of the outcome is governed by µi. This captures two key features of both vaccination policies and air

quality improvements. First, they improve health on average via µi. Second, they help to imperfectly

reduce the volatility in health outcomes via−ǫ+νi. Vaccines, for example, may be less effective in some

years due to antigenic drift, where hospitalization cases are high irrespective of vaccines. Similarly, air

pollution shocks may occur irrespective of clean air policies, e.g. through wildfires.

The policy maker has four choices. She can either implement no policy (subscript 0), implement

one of the two policies (subscript i) or implement both policies (subscript 1, 2). In each of these cases,
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the associated number of people in good health is:

y0 = ȳ + ǫ (20)

y1 = ȳ + ǫ− ǫ+ µ1 + ν1 − p1 = ȳ + µ1 + ν1 − p1 (21)

y2 = ȳ + ǫ− ǫ+ µ2 + ν2 − p2 = ȳ + µ2 + ν2 − p2 (22)

y1,2 = ȳ + ǫ− ǫ+ µ1 + ν1 − p1 − ǫ+ µ2 + ν2 − p2 = ȳ − ǫ+ µ1 + µ2 + ν1 + ν2 − p1 − p2 (23)

The associated expected utilities are:

EU0 = ȳ − γσǫ (24)

EU1 = ȳ + µ1 − p1 − γσ1 (25)

EU2 = ȳ + µ2 − p2 − γσ2 (26)

EU1,2 = ȳ + µ1 + µ2 − p1 − p2 − γ (σǫ + σ1 + σ2 + 2σ1,2 − 2σǫ,1 − 2σǫ,2) (27)

We assume that antigenic drift and pollution shocks are orthogonal, such that σ1,2 = 0, but the

following proposition can easily be modified to relax this assumption. The model implies that, if a

certain condition is met (σǫ,1 + σǫ,2 > σǫ), the benefit of jointly implementing policies relative to no

policy is larger than the sum of the benefits of implementing both policies individually.

Proposition A.4.1. If σǫ,1 + σǫ,2 > σǫ, jointly implementing both policies provides more benefits over imple-

menting no policy than the sum of the benefits from individually implementing each policy over implementing no

policy, i.e. EU1,2 − EU0 > (EU1 − EU0) + (EU2 − EU0).

Proof. The two relative benefits are given by:

EU1,2 − EU0 = µ1 + µ2 − p1 − p2 − γ (σ1 + σ2 + 2σ1,2 − 2σǫ,1 − 2σǫ,2) (28)

(EU1 − EU0) + (EU2 − EU0) = µ1 + µ2 − p1 − p2 − γ (−2σǫ + σ1 + σ2) (29)

The difference is:

EU1,2 − (EU1)− (EU2 − EU0) = −γ (2σ1,2 − 2σǫ,1 − 2σǫ,2) + γ(−2σǫ) (30)

= γ(−2σ1,2 + 2σǫ,1 + 2σǫ,2 − 2σǫ) (31)

Therefore,

σǫ,1 + σǫ,2 > σǫ (32)
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is a necessary and sufficient condition that EU1,2−EU0 > (EU1−EU0)+ (EU2−EU0), since σ1,2 = 0.

The interpretation of condition σǫ,1+σǫ,2 > σǫ is that the sum of the two covariances involving ǫ that

represent the imperfection of policies need to be larger than the variance of ǫ itself. That is the protection

from uncertainty in hospitalizations cannot be too large relative to the variance in hospitalizations itself,

or in other words, the hedges need to be sufficiently imperfect.
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