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ABSTRACT
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SISTA: Learning Optimal Transport Costs 
under Sparsity Constraints

In this paper, we describe a novel iterative procedure called SISTA to learn the underlying 

cost in optimal transport problems. SISTA is a hybrid between two classical methods, 

coordinate descent (“S”-inkhorn) and proximal gradient descent (“ISTA”). It alternates 

between a phase of exact minimization over the transport potentials and a phase of 

proximal gradient descent over the parameters of the transport cost. We prove that this 

method converges linearly, and we illustrate on simulated examples that it is significantly 

faster than both coordinate descent and ISTA. We apply it to estimating a model of 

migration, which predicts the flow of migrants using country-specific characteristics and 

pairwise measures of dissimilarity between countries. This application demonstrates the 

effectiveness of machine learning in quantitative social sciences. 
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1 Introduction

Optimal transport has received a great deal of attention recently, see [22], [23], [21],
and [11]. The discrete version of the problem in a nutshell is as follows. Consider a
N ×N matrix ci j called a transport cost, which is the cost of pairing i ∈ {1, ...,N}
with j ∈ {1, ...,N}, and consider two marginal probability distributions p and q

with support {1, ...,N}. The optimal transport problem is the problem of finding the
optimal transport plan, the joint probability distribution πi j over {1, ...,N}2 which
is optimal in the sense that ∑1≤i, j≤N πi jci j is minimal over all the probability π with
marginal distributions p and q. A variant of this problem where one seeks to mini-
mize the cost with a regularizing entropy term, namely ∑1≤i, j≤N πi jci j +T πi j lnπi j,
with T > 0 being a temperature parameter, has been proposed by various authors
and has been found to enjoy attractive computational and statistical properties, see
e.g. [16] and references therein.

Most of the literature on optimal transport takes the transport cost matrix c

as given and seeks to compute the optimal transport plan π . However, in some
situations, one observes π and would like to learn the cost c. This problem, which
belongs to the general class of “inverse problems,” see [15], arises in particular in
economics, see [12], where one observes optimally matched agents and one would
like to infer why they have chosen to match. The problem of learning the transport
cost has received relatively little attention in the machine learning literature. Some
exceptions are [8], who use a Difference of Convex (DC) functions approach, [14],
who use a strategy based on Neighborhood Components Analysis (NCA), and [10],
who compute a rank-regularized moment matching estimator of the ground distance
using proximal gradient descent.

In this paper, we assume that the transportation cost ci j takes a parametric

form c
β
i j, where the parameter vector β is assumed to be sparse. We introduce an

iterative procedure to estimate β by minimizing a convex loss function under an l1
penalization based on the dual formulation of the optimal transport problem. Our
procedure is a hybrid between coordinate descent and proximal gradient descent:
indeed, a phase of exact minimization with respect to the transport potentials
alternates with a phase of proximal gradient descent (ISTA, see [1]) with respect to
the parameters of the transport cost. This procedure is thus a natural extension of
the celebrated Sinkhorn algorithm (see an account in [19] and a historical overview
in [16]), a.k.a. the Iterative Proportional Fitting Procedure (IPFP), which is a
coordinate descent algorithm with respect to the transport potentials, for a fixed
value of the parameter vector. One important advantage of the Sinkhorn algorithm
compared with alternative methods is that it is fast, parameteter-free and can be
naturally parallelized, as documented for example in [7] and [6].

The remainder of the paper is organized as follows. Section 2 presents the
optimal transport problem, recalls duality results, and introduces the inverse problem
of learning the parameter vector of the transport cost under an l1 penalization.
Section 3 describes the SISTA algorithm, states results on its linear convergence, and
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benchmarks its speed of convergence via numerical experiments. Section 4 applies
this procedure to a model of migration based on country-specific characteristics
and pairwise measures of dissimilarity between countries. Section 5 concludes the
paper.

2 Optimal transport with entropic regularization

2.1 Problem formulation

Consider two discrete probability distributions p and q supported by N points1 .
The optimal transport problem between p and q, see [22], is classically defined as

(2.1) min
π∈Π

∑
1≤i, j≤N

πi jci j

where ci j is the transport cost from i to j, and Π is the set of probability mass vectors
π with margins p and q, that is

(2.2) Π =

{
πi j ≥ 0 :

N

∑
j=1

πi j = pi and
N

∑
i=1

πi j = q j

}
.

Recently, the literature (see for instance [12], where a microfoundation using a
random utility model is given, and [7]) has considered the entropic regularization of
(2.1), that is

(2.3) min
π∈Π

∑
1≤i, j≤N

πi jci j +T πi j lnπi j

where T > 0 is a temperature parameter, so that T → 0 recovers the previous object.
The dual version of (2.3) is

(2.4) max
u,v

N

∑
i=1

piui +
N

∑
j=1

q jv j −T ∑
1≤i, j≤N

exp

(
ui + v j − ci j

T

)
.

Note that by homogeneity, the solution of problem (2.3) is left invariant by dividing
c and T by the same constant. Taking this constant to be T , we can without loss of
generality set

(2.5) T = 1,

which we will do in the sequel. After taking the negative, we obtain the following
dual optimization problem

(2.6) min
u,v

∑
1≤i, j≤N

exp(ui + v j − ci j)−
N

∑
i=1

piui −
N

∑
j=1

q jv j.

1 The analysis extends without modification to the case when the support of p and q don’t have the
same number of points.
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By first order conditions, the optimal π in (2.3) and the optimal (u,v) in (2.6)
are such that

(2.7) πi j = exp(ui + v j − ci j) ,

where u and v are adjusted so that the primal constraints are satisfied, i.e. π ∈ Π as
in (2.2).

The dual problem (2.6) is a convex minimization problem, which can be solved
by gradient descent. However, it is well-known that blockwise coordinate descent
over u and v iteratively, a procedure called Sinkhorn’s algorithm, see [19] and
references therein, is a preferable alternative. Given (ut ,vt), the minimization of
problem (2.6) with respect to ui yields, by first order conditions,

(2.8) exp
(
ut+1

i

)
=

pi

∑
N
j=1 exp

(
vt

j − ci j

) ,

while the minimization of (2.6) with respect to v j yields

(2.9) exp
(

vt+1
j

)
=

q j

∑
N
i=1 exp

(
ut+1

i − ci j

) .

Alternating the minimization steps with respect to ui and v j therefore yields to
alternating between the closed-form updating formulas (2.8) and (2.9).

2.2 Learning the transport cost

We now turn to the inverse problem of recovering the transport cost c
β
i j based on

the observed transport plan π̂ ∈ Π. To achieve this, we assume that the cost function
can be represented by a linear combination of basis functions dk, k ∈ {1, ...,K} as

(2.10) c
β
i j =

K

∑
k=1

βkdk
i j,

where each dk
i j is some measure of dissimilarity between i and j, and β =(β1, · · · ,βK)

⊤

is a parameter vector to be learned.
We present a few choices of dissimilarity measures dk

i j.

(a). If xi and y j are vectors of characteristics for i and j, one may set dk
i j =(

xi
k − y

j

k

)2
, where the subscript k denotes the k-th component of a vector.

(b). Similarly, if k = (r,s) stands for a pair of indices, one may set drs
i j =(

xi
r − y

j
s

)2
as is done in [9], in order to capture off-diagonal interactions between

characteristics. The matrix parameter βrs to be learned measures the interaction
between two distinct characteristics.

(c). If, like in our application, i and j are countries, then dk
i j may be the share of

inhabitants of country i who do not speak the language of country j. Note that this
measure has no reason to be symmetric since dk

i j 6= dk
ji in general.



SISTA 5

Our learning procedure is based on looking for β such that π
β
i j = exp

(
ui + v j − c

β
i j

)

solves the margin constraints πβ ∈ Π, and matches the moments of dk for k =
1, ...,K, that is

(2.11)
N

∑
i=1

π
β
i j = q j,

N

∑
j=1

π
β
i j = pi, ∑

1≤i, j≤N

π
β
i jd

k
i j = ∑

1≤i, j≤N

π̂i jd
k
i j.

Following the argument in [12], equations (2.11) can be interpreted as the first
order conditions of a maximum likelihood estimation procedure, which can be
recast as the following minimization problem

(2.12) min
u,v,β

F (u,v,β ) ,

where

(2.13) F (u,v,β ) := ∑
1≤i, j≤N

exp
(

ui + v j − c
β
i j

)
+ ∑

1≤i, j≤N

π̂i j

(
c

β
i j −ui − v j

)

is a convex function.
Now if agents match only on a small number of characteristics, because a large

number of them are irrelevant in the matching process, then β , the parameter vector,
will be sparse. One way to handle this problem is to add the l1 penalty term in (2.12),
namely considering the following problem:

(2.14) min
u,v,β

Φ(u,v,β ) := F (u,v,β )+ γ |β |1 ,

where γ is a regularization parameter. This regularization is similar in spirit to [10],
who have introduced a rank regularization technique using the nuclear norm in a
problem where β is a matrix. In the next section, we provide the SISTA algorithm
for the computation of (2.14).

3 SISTA

3.1 Algorithm

The SISTA algorithm consists of the minimization of Φ(u,v,β ) in (2.14) by
iterating three alternating phases:

• an exact minimization of with respect to u, holding β and v constant;
• an exact minimization of with respect to v, holding β and u constant;
• a proximal gradient descent step with respect to β , holding u and v constant.

Each of these three phases is straightforward. The exact minimization with
respect to u is done in closed-form by the updating formula (2.8) and for v done by
(2.9). The proximal gradient descent step with respect to β yields

β t+1 = proxργ|·|1

(
β t −ρ∇β F

(
ut+1

,vt+1
,β t

))
,
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which is explicit and whose components are given by the well-known soft-thresholding
formula:

proxργ|·|(z) =





z−ργ if z > ργ

0 if |z| ≤ ργ

z+ργ if z <−ργ

.

Combining these three steps yields SISTA, which we describe in algorithm 1.

Algorithm 1 The SISTA algorithm

Input: Initial guess of parameter vector β 0, of potentials u0 and v0, step size ρ ,
and dissimilarity measures dk

i j

while not converged do

(Sinkhorn step). Set c
β t

i j := ∑
K
k=1 β t

kdk
i j and update:





exp
(
ut+1

i

)
= pi

∑
N
j=1 exp

(
vt

j−c
β t

i j

)

exp
(

vt+1
j

)
=

q j

∑
N
i=1 exp

(
ut+1

i −c
β t

i j

)

(ISTA step). Let π
β t

i j := exp
(

ut+1
i + vt+1

j − c
β t

i j

)
. For k = 1, . . . ,K,

β t+1
k = proxργ|·|

(
β t

k −ρ ∑
1≤i, j≤N

(
π̂i j −π

β t

i j

)
dk

i j

)
.

end while

Return: β

3.2 Convergence

We introduce two assumptions on the dissimilarity measures dk
i j:

(3.1) ∀k = 1, . . . ,K,

N

∑
i=1

dk
i j = 0, ∀ j,

N

∑
j=1

dk
i j = 0,∀i,

and

(3.2) the matrices {d1
, . . . ,dK} are linearly independent.

Note that (3.1) is without loss of generality, see section 3.3. In addition, we
assume

(3.3) π̂i j > 0, ∀(i, j) ∈ {1, . . . ,N}2
.

We are now ready to state our main theorem of the paper:

Theorem 3.1. Assume (3.1)-(3.2)-(3.3). The sequence xt := (ut ,vt ,β t) generated

by the SISTA scheme in algorithm 1 converges to the solution x∗ = (u∗,v∗,β ∗) of
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(2.14) as t →+∞ provided the step ρ > 0 is chosen small enough. Moreover, in this

case, there exists δ > 0 such that

(3.4) Φ(xt)−Φ(x∗)≤
Φ(x0)−Φ(x∗)

(1+δ )t
, ∀t ∈ N.

3.3 Proof of convergence

We present a full proof of Theorem 3.1 in this section.

Preliminaries

Our aim is to solve the convex problem

(3.5) inf
(u,v,β )∈RN×RN×RK

Φ(u,v,β ) := G◦Λ(u,v,β )+ γ|β |1,

where Λ is the linear map R
N ×R

N ×R
K → MN defined entrywise by

(3.6) (Λ(u,v,β ))i j := ui + v j − c
β
i j, ∀(i, j),

and G is the (smooth, strictly convex and separable) function defined by:

(3.7) G(λ ) := ∑
1≤i, j≤N

(exp(λi j)− π̂i jλi j), ∀λ ∈ MN .

Since

(3.8) ∇G(λ ) = exp(λ )− π̂, D2G(λ ) = diag(exp(λ ))

(where exp(λ ) denotes the matrix with entries exp(λi j), and diag(exp(λ )) is the
N2 ×N2 diagonal matrix having entries exp(λi j) on its diagonal), we also have
(setting x = (u,v,β ) to shorten notations):

(3.9) ∇F(x) = ΛT (expΛ(x)− π̂), D2F(x) = ΛT diag(exp(Λ(x)))Λ.

Properties of F of course strongly rely on properties of Λ. Recall the two assump-
tions (3.1) and (3.2):

∀k = 1, . . . ,K,

N

∑
i=1

dk
i j = 0, ∀ j,

N

∑
j=1

dk
i j = 0,∀i,

and

the matrices {d1
, . . . ,dK} are linearly independent.

Note that (3.1) is not really a restiction. Indeed, if we introduce the new matrices d̃k

d̃k
i j := dk

i j −ak
i −bk

j

where

ak
i :=

1
N

N

∑
j=1

dk
i j, bk

j :=
1
N

N

∑
i=1

dk
i j −

1
N2 ∑

1≤p,q≤N

dk
p,q
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then, obviously {d̃1, . . . , d̃K} satisfies the row and columns zero sum conditions
from (3.1). Defining

c̃β :=
K

∑
k=1

βkd̃k
, ∀β ∈ R

K

as well as the linear map, Λ̃:

Λ̃(ũ, ṽ,β )i j := ũi + ṽ j − c̃
β
i j,

we immediately see that Λ(u,v,β ) = Λ̃(u−∑
K
k=1 βkak,v−∑

K
k=1 βkbk,β ). In other

words, there is no loss of generality in replacing the matrices dk by the matrices
d̃k in our minimization problem. Observing finally that for every constant vector
m, Λ(u+m,v−m,β ) = Λ(u,v,β ), we can remove this invariance by imposing a
normalization conditon on u or v, we will impose the simplest one, namely u1 = 0.
Let us then set

(3.10) E := {(u,v,β ) ∈ R
N ×R

N ×R
K : u1 = 0} ≃ R

2N−1+K
.

Lemma 3.2. Assume (3.1)-(3.2), then Λ is an injective map from E to MN . In
particular Φ is strictly convex on E.

Proof. Let (u,v,β ) ∈ E be in the null space of Λ i.e.

(3.11) ui + v j =
K

∑
k=1

βkdk
i j,∀i, j.

Summing over j and using (3.1) give Nui +∑
N
j=1 v j = 0 and then taking i = 1 gives

∑
N
j=1 v j = 0 hence u = 0 and v = 0 as well. Therefore (3.11) becomes ∑

K
k=1 βkdk = 0

so that β = 0 thanks to (3.2). �

From now on, we will assume that (3.1)-(3.2) hold. Then, thanks to Lemma
3.2 and formulas (3.8)-(3.9), we see that for every M > 0 there exist ν = ν(M)> 0
and α = α(M) such that whenever x := (u,v,β ) and y := (u′,v′,β ′) are in E and
max(‖Λ(u,v,β )‖∞,‖Λ(u′,v′,β ′)‖∞)≤ M, one has the ellipticity condition

(3.12) F(x)≥ F(y)+∇F(y)(x− y)+
ν

2
‖x− y‖2

2

(one can just take ν(M) := e−Mσmin where σmin > 0 is the smallest eigenvalue of
ΛT Λ) as well the Lipschitz estimate

(3.13) ‖∇F(x)−∇F(y)‖2 ≤ α‖x− y‖2, with α = eM‖Λ‖2‖ΛT‖2,

where ‖A‖2 denotes the 2-operator norm of a matrix A.
Our last assumption (3.3) is

π̂i j > 0, ∀(i, j) ∈ {1, . . . ,N}2
.
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Rewriting our initial optimization problem with the normalization constraint u1 = 0
as

(3.14) inf
(u,v,β )∈R2N−1+K

Φ(u,v,β ) = G(Λ(u,v,β ))+ γ|β |1

we then have:

Proposition 3.3. Under assumptions (3.1)-(3.2)-(3.3), we have:

• Φ is coercive on R
2N−1+K , i.e. its sublevels are bounded,

• problem (3.14) admits a unique solution x∗ := (u∗,v∗,β ∗)
• x∗ := (u∗,v∗,β ∗) is characterized by the optimality conditions

(3.15) ∇uF(x∗) = 0, ∇vF(x∗) = 0, −∇β F(x∗) ∈ γ∂ |.|1(β
∗).

Proof. Observe that whenever p > 0 one has et − pt ≥ p− p log(p) for every t ∈ R

(Young’s inequality). Obviously, if λ < 0 we have eλ − π̂i jλ ≥ π̂i j|λ |. If λ ≥ 0,
eλ − π̂i jλ = π̂i j|λ |+ eλ − 2π̂i jλ , using Young’s inequality and the fact that π̂i j ∈
[0,1], we get

eλ − π̂i jλ ≥ π̂i j|λ |−2log(2).

Hence

(3.16) Φ(u,v,β )≥ ∑
1≤i, j≤N

π̂i j|Λ(u,v,β )i j|−2N2 log(2)+ γ|β |1.

Thanks to (3.3) and the injectivity of Λ, the coercivity of Φ follows. Since Φ is
continuous, there therefore exists a solution for (3.14) which is unique by strict
convexity. Since Φ is the sum of the smooth term F and the l1 norm of the last
component, it is easy to see that the optimality condition 0 ∈ ∂Φ(u∗,v∗,β ∗) is
exactly the system (3.15). �

Proof of convergence

Starting from (u0,v0,β 0) ∈R
2N−1+K , inductively define the sequence (ut ,vt ,β t)

via:

(3.17) ut+1 = argminF(.,vt
,β t), vt+1 = argminF(ut+1

, .,β t).

Note that these coordinate descent updates are explicit:

exp(ut+1
i ) =

pi

∑
N
j=1 exp(vt

j − c
β t

i j )
,exp(vt+1

j ) =
q j

∑
N
i=1 exp(ut+1

i − c
β t

i j )
.

We now consider the SISTA hybrid method where the updates for β are given
by the ISTA algorithm (see [1]) with a constant step ρ > 0:

(3.18) β t+1 = proxργ|.|1

(
β t −ρ∇β F(ut+1

,vt+1
,β t)

)

i.e. β t+1 is obtained by minimizing with respect to β ∈ R
K

(3.19) β 7→ ργ|β |1 +
1
2
‖β − (β t −ρ∇β F(ut+1

,vt+1
,β t))‖2

2.
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Note that the solution of (3.19) is explicit and given by a well-known thresholding
formula. So all the steps for algorithm (3.17)-(3.18) are totally explicit. The step
size ρ has to be chosen in an appropriate way to ensure convergence. Setting
C = Φ(u0,v0,β 0), thanks to (3.16) we have

Φ(u,v,β )≤C ⇒ |β |1 ≤ R :=
C+2N2 log(2)

γ
.

Defining A :=C+2N2 log(2)+1 we thus have

(3.20) A > γR, and F ≤ A whenever Φ ≤C.

Now let θ ∈C∞(R,R) be a nondecreasing function such that
(3.21)

θ(t) = t when t ≤ A, θ(t)≥ t when t ∈ [A,2A] and θ(t) = 2A when t ≥ 2A.

The function F̃ := θ ◦F is nonconvex but its gradient is globally Lipschitz. Let
α > 0 be a Lipschitz constant of ∇F̃ (and of ∇F on F ≤ A), and now take our step
ρ so as to satisfy

(3.22) 0 < ρ ≤
1
α
.

Note that since ∇F̃ is α-Lipschitz, we have

(3.23) F̃(x)≤ F̃(y)+∇F̃(y) · (x− y)+
α

2
‖x− y‖2

2, ∀(x,y) ∈ E2
.

Let us now show inductively that for ρ satisfying (3.22), the iterates (3.17)-(3.18)
remain in the sublevel set Φ ≤C. Of course, if Φ(ut ,vt ,β t)≤C then by (3.17), C ≥
Φ(ut+1,vt ,β t)≥ Φ(ut+1,vt+1,β t). Proving that Φ(ut+1,vt+1,β t+1)≤C requires a
little more work. First note that

F(ut+1
,vt+1

,β t) = F̃(ut+1
,vt+1

,β t) and ∇F(ut+1
,vt+1

,β t) = ∇F̃(ut+1
,vt+1

,β t).

Now, it follows from (3.18) that β t −β t+1−ρ∇β F(ut+1,vt+1,β t)∈ ργ∂ (|.|1)(β
t+1),

hence

(3.24) γ|β t |1 ≥ γ|β t+1|1 +
1
ρ
‖β t+1 −β t‖2

2 −∇β F(ut+1
,vt+1

,β t) · (β t −β t+1)

but thanks to (3.23) we also have

F(ut+1
,vt+1

,β t)≥ F̃(ut+1
,vt+1

,β t+1)

+∇β F(ut+1
,vt+1

,β t) · (β t −β t+1)−
α

2
‖β t+1 −β t‖2

2.

Summing this inequality with (3.24) and using (3.22), we thus get

(3.25) Φ(ut+1
,vt+1

,β t)≥ F̃(ut+1
,vt+1

,β t+1)+ γ|β t+1|1 +
α

2
‖β t+1 −β t‖2

2.

If F(ut+1,vt+1,β t+1)≤ 2A then by (3.21) we have F̃(ut+1,vt+1,β t+1)≥F(ut+1,vt+1,β t+1)
and therefore Φ(ut+1,vt+1,β t+1)≤C. If, on the contrary, F(ut+1,vt+1,β t+1)> 2A
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then (3.25) would imply that 2A ≤ F(ut+1,vt+1,β t)+ γ|β t |1 ≤ A+ γR which con-
tradicts our choice of A in (3.20). This shows that

(3.26) Φ(ut+1
,vt+1

,β t)≥ Φ(ut+1
,vt+1

,β t+1)+
α

2
‖β t+1 −β t‖2

2

and in particular this proves the desired conclusion that Φ(ut+1,vt+1,β t+1)≤C. The
iterates of SISTA therefore remain bounded and the value of Φ along these iterates
converges monotonically. In particular, these iterates remain in a ball where both
the uniform ellipticity condition (3.12) and the Lipschitz estimate (3.13) on ∇F are
satisfied. Using (3.12) together with ∇uF(ut+1,vt ,β t) = 0 , ∇vF(ut+1,vt+1,β t) = 0,
we get

F(ut
,vt

,β t)−F(ut+1
,vt

,β t) ≥
ν

2
‖ut+1 −ut‖2

2

F(ut+1
,vt

,β t)−F(ut+1
,vt+1

,β t) ≥
ν

2
‖vt+1 − vt‖2

2.

Summing and using F(ut ,vt ,β t)−F(ut+1,vt+1,β t)=Φ(ut ,vt ,β t)−Φ(ut+1,vt+1,β t),
we deduce

(3.27) Φ(ut
,vt

,β t)−Φ(ut+1
,vt+1

,β t)≥
ν

2
(‖ut+1 −ut‖2

2 +‖vt+1 − vt‖2
2).

Together with (3.26), this gives

Φ(ut
,vt

,β t)−Φ(ut+1
,vt+1

,β t+1)≥
ν

2
(‖ut+1−ut‖2

2+‖vt+1−vt‖2
2)+

α

2
‖β t+1−β t‖2

2.

Setting At := Φ(xt)−Φ(x∗), using that α ≥ ν , we thus have:

(3.28) At−1 −At ≥
ν

2
‖xt − xt−1‖2

2, ∀t ≥ 1.

Let us now bound At from above. By construction of β t by proximal gradient
descent, we have

qt :=
β t−1 −β t

ρ
−∇β F(ut

,vt
,β t−1) ∈ γ∂ (|.|1)(β

t).

Using (3.12) and the fact that qt ∈ γ∂ (|.|1)(β
t), we thus obtain

Φ(x∗)≥ Φ(xt)+∇uF(xt) · (u∗−ut)+
ν

2
‖ut −u∗‖2

2

+∇vF(xt) · (v∗− vt)+
ν

2
‖vt − v∗‖2

2

+(∇β F(xt)+qt) · (β
∗−β t)+

ν

2
‖β t −β ∗‖2

2.

Using Young’s inequality: q · z+ ν
2‖z‖2

2 ≥− 1
2ν ‖q‖2

2, this yields

(3.29) At ≤
1

2ν

(
‖∇uF(xt)‖2

2 +‖∇vF(xt)‖2
2 +‖∇β F(xt)+qt‖

2
2

)
.
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Now since ∇uF(ut ,vt−1,β t−1) = 0 and ∇vF(ut ,vt ,β t−1) = 0, thanks to (3.13), we
have

‖∇uF(xt)‖2
2 +‖∇vF(xt)‖2

2 ≤ 2α2‖xt − xt−1‖2
2.

Thanks to (3.13), the monotonicity of ∇β F(ut ,vt , .) and the definition of qt , we have

‖∇β F(xt)+qt‖
2
2 =

∥∥∥∥
β t−1 −β t

ρ
+∇β F(xt)−∇β F(ut

,vt
,β t−1)

∥∥∥∥
2

2

≤ (ρ−2 +α2)‖β t−1 −β t‖2
2

+
2
ρ
(β t−1 −β t) · (∇β F(xt)−∇β F(ut

,vt
,β t−1))

≤ (ρ−2 +α2)‖β t−1 −β t‖2
2.

Using these inequalities in (3.29), we deduce that

(3.30) At ≤
3α2 +ρ−2

2ν
‖xt − xt−1‖2

2,

which, combined with (3.28), gives the desired linear convergence rate:

At ≤
At−1

1+δ
with δ =

ν2ρ2

3α2ρ2 +1
.

Remark 3.4. Since ‖xt − xt+1‖2 ≤
√

2(Φ(xt)−Φ(x∗))
ν , linear convergence of Φ(xt)−

Φ(x∗) together with the triangle inequality straightforwardly gives ‖xt − x∗‖2 =

O((1+δ )−
t
2 ).

Discussion

We point out a few remarks that are useful in applying SISTA in practice.

• It is clear from the proof above that using varying steps ρt that are bounded
away from 0 and satisfy (3.22) leads to the same convergence results, which
also allows in practice to use line search methods.

• Assumption (3.3) may look restrictive in some applications. However, all
of our analysis can be generalized to cases where some of the π̂i j are zero.
In those cases, setting I+ := {(i, j) : π̂i j > 0}, F should just be replaced by
the corresponding sum over I+. In the context of migration we study in our
application, for example, the number of migrants from country i to country
j is only defined if i 6= j.

• Our method also applies to the case where one imposes sign constraints on
some of the βk’s. Indeed, the corresponding proximal operator is explicit
as well. More generally, SISTA can be used for any simple (i.e. having a
closed-form prox) penalization, for instance, the group lasso.
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FIGURE 3.1. Comparison of SISTA, coordinate descent, and ISTA for
the specified problem sizes. The top row has sparsity level = 0.05 and
the bottom row has sparsity level = 0.1.

3.4 Numerical simulations

We demonstrate the fast convergence of SISTA in practice on simulated examples
varying K and N, the dimensionality of β and size of the margins of π , respectively.
We compare against two other algorithms: ISTA and coordinate descent. In ISTA,
we perform gradient descent on u, v (as the objective function is smooth for these
parameters), and ISTA on β , which is the only part of the variables subject to a
nonsmooth penalization. For coordinate descent, we apply Sinkhorn minimization
to u, v and univariate coordinate descent (using the bisection method) to each
component of β .

We generate each dk
i j from an i.i.d. standard normal distribution. We additionally

draw each π̂i j from an i.i.d. standard log normal distribution. For each problem
size, we choose γ such that the sparsity level, defined as the number of non-zero β
components divided by K, is at 0.05 or 0.1. We run SISTA on the simulated data
with high precision to obtain (u∗,v∗,β ∗) and then plot |Φ(ut ,vt ,β t)−Φ(u∗,v∗,β ∗)|
against T (t), the computation time at iteration t in seconds, in a log-log plot, as
illustrated in figure 3.1.

For comparability, the three methods are run using the same initial estimate of
the variables, in practice by setting them all to be zero. We can see from figure 3.1
that SISTA runs an order of magnitude faster than the two pure methods it is a hybrid
of. The ISTA method has two major drawbacks compared to the other two. First,
a proper initialization of u,v is crucial to ensure a quick convergence of gradient
based approaches. Second, a step size has to be set for u,v in addition to β , which
adds extra complexities to the algorithm as they do not necessarily have the same
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scale as β . The limitations of coordinate descent are also straightforward to see.
As the dimensionality of β increases, which is common in practical applications,
the cost of coordinate descent increases dramatically, since the algorithm needs to
evaluate the gradient after each component’s update, which is time-intensive.

4 Application to migration flows

4.1 Literature

Our goal in this section is to predict migration flows between countries. In this
application, π̂i j is the probability that a migrant drawn from the overall population
of migrants has origin country i and destination country j.

The recent compilation of country-to-country migration data (see [18] for in-
stance) has initiated a fast growing literature in economics whose aim is to predict
bilateral migration flows using measures of dissimilarity between an origin and a
destination country (see [3] for a recent critical review). The dissimilarity measures
are built to capture various dimensions of attractiveness of a destination country for
migrants from a given origin country, which can be classified into two broad classes:
those that are constructed using country-specific characteristics such as Examples
(a) and (b) in section 2.2 and pairwise measures such as Example (c).

The current literature has only considered a limited number of dissimilarity
measures so far – a minimum of five in [2] and up to a maximum of eight in
[20]. The considered ones generally include geographic distances, economic gaps,
differences in immigration policy, and cultural differences (see [2, 4, 5, 13, 20]).
The parameters are estimated using classical non-linear panel data techniques,
where the dependent variable is the logarithm of the bilateral migration flow, and
the dissimilarity measures act as independent variables. Countries of origin and
destination fixed-effects are usually included in the regression to account for the
potential bias due to the fact that the attractiveness of a destination country is relative
to that of alternative destination countries, the so-called “multilateral resistance.”

However, the relatively small number of dissimilarity measures studied in this
literature is in sharp contrast with the fact that countries differ along many di-
mensions. A recent effort from various organizations including the World Bank
Group, the Centre d’Études Prospectives et d’Informations Internationales (CEPII),
Freedom House, has greatly increased the range of measures available for coun-
tries. Combining these various sources of data enables one to distinguish more
than 200 countries along over 100 dimensions, significantly augmenting the size of
dissimilarity measures from five or eight.

While this offers scope for improvement in the prediction of bilateral migration
flows, it also raises the questions of how to select the most relevant measures of
dissimilarity and how to estimate their corresponding parameters. The methodology
outlined in the previous section contributes to this literature by providing a solution
to them.
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4.2 Data

Our application requires access to a working dataset containing information
about bilateral migration flows. Each unit in our dataset is an origin-destination
country pair. We compile the dataset using five different sources, which gives us
over 40,000 observations of bilateral migration flows and more than 100 measures
of dissimilarity, including nine pairwise measures.

We use data about bilateral migration flows between 1990 and 2000. These data
are obtained in two steps. First, we obtain data about migration stocks in 1990 and
2000 from the dataset compiled by [18], which were collected using census records
from 226 countries of origin and destination. Second, we follow the literature (e.g.
[4]) and calculate bilateral migration flows between 1990 and 2000 as the change in
bilateral stocks of migrants between the two decades.

[4] argues that the existence of a social network at destination, defined as
the stock of migrants from the same origin, explains the size and the patterns of
international migration flows. We follow [4] and use the stock of migrants from
origin country i in destination country j in 1990 as a proxy measure of the network
of migrants from i in j in 2000.

We obtain the second set of dissimilarity measures using the data compiled by
CEPII and documented in [17]. These data cover 223 countries and contain eight
pairwise measures of dissimilarity, including the geographic distance between two
countries, whether they are contiguous, and whether they have had a colonial link
after 1945.

We incorporate three additional sources to append information about country-
specific characteristics covering a vast range of topics.

From the World Development Indicators (WDI), compiled by the World Bank,
we obtain 73 variables containing information about economic development (GDP,
income, unemployment, inflation, human capital), demography, health (life ex-
pectancy, access to improved sanitation facilities), and environment (climate, pollu-
tion) for 217 countries.

From the Worldwide Governance Indicators (WGI), also compiled by the World
Bank, we obtain six variables about the quality of governance: voice and accountabil-
ity, political stability and absence of violence, government effectiveness, regulatory
quality, rule of law, and control of corruption for 213 countries.

Finally, from Freedom in the World Indicators, compiled by the Freedom House
organization, we obtain another 15 variables providing information about political
rights and civil liberties for 210 countries.

Combining all these variables, we end up with a vector of 94 characteristics for
each country. We then construct 94 measures of dissimilarity as in Example (a) in
section 2.2.
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4.3 Results

We apply SISTA to our working dataset complied in the previous section. Since
the current literature uses between five and eight dissimilarity measures, we perform
two sets of experiments, where we conduct a grid search of γ so that five and eight
components are non-zero in the learned β .

TABLE 4.1. Learned β with (top) five (bottom) eight non-zero components.

Contiguity
Common
language

Colonial link
after WWII

(log) Geo.
distance

Network
Improved sanitation

facilities, urban
Ori.*Dest.

Area
Ori.*Dest.

Life expect. female
Ori.*Dest.

1.797 (0.057) 0 1.224 (0.194) -1.540 (0.020) 1.309 (0.178) 0 -0.630 (0.043) 0

2.438 (0.058) 4.412 (0.108) 2.118 (0.431) -1.992 (0.048) 1.633 (0.211) 2.801 (0.318) -0.927 (0.062) 4.202 (0.535)

Note: Standard errors, calculated using 1,000 bootstrapped samples, are in parentheses.

Table 4.1 shows the learned β from the two experiments. The top row indicates
that if only five measures of dissimilarity are allowed in the prediction of migration
flows, three of the selected ones are used in most papers in this literature: whether
two countries are contiguous, logarithm of geographic distance between them, and
whether they have had a colonial link after World War II. The fourth one is the
network measure introduced in [2]. Moreover, the signs of βk’s corresponding to
these four measures match precisely with previous results. Interestingly, the fifth
selected one has never been used. It corresponds to the interaction between the areas
of the origin and destination countries. The negative sign of the parameter indicates
that migration flows are larger between small (vast) origin countries and vast (resp.
small) destination countries compared to origin-destination countries with similar
areas.

The second row indicates that if only eight measures of dissimilarity are to be
selected, besides the five mentioned above, the three additional ones are: whether
two countries share a language spoken by at least nine percent of their respective
population, the interaction between the share of urban population that has access to
improved sanitation facilities, and the interaction between the female life expectancy
at birth in the origin and destination countries. While the first measure has already
been used in [20], with its parameter having the same sign as ours, the other two
have not appeared in the literature. The parameters for these new measures are
positive, indicating that migration flows tend to be larger between countries with
similar urban access to improved sanitation facilities and female life expectancy at
birth.

5 Conclusion

This paper introduces a new algorithm, which we called SISTA, to learn the
transport cost in optimal transport problems. In this type of problems, one needs to
optimize simultaneously over the potentials and over the parameters of the cost. As
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the parameter vector is sparse, we add an l1 penalization over the parameters. SISTA
alternates between a phase of exact minimization over the transport potentials and
a phase of proximal gradient descent over the parameters of the transport cost.
We prove its linear convergence and illustrate through numerical experiments its
rapid convergence compared to coordinate descent and ISTA. In our application of
predicting bilateral migration flows, SISTA allows us to learn which measures of
dissimilarity between an origin and a destination country are the most important
ones. Our approach reveals that dissimilarities between origin and destination
countries in terms of area, female life expectancy, and urban access to improved
sanitation facilities, are critical predictors of bilateral migrations flows that have
been absent from this literature.

Our method applies to a broad range of problems in quantitative social sci-
ences. We present an application to the prediction of bilateral migration flows using
country-specific characteristics and pairwise measures of dissimilarity between
countries. The same technique could be applied to predicting bilateral trade flows,
the matching of workers to jobs, men to women, children to schools, etc. In all
these applications, there exists a long list of attributes/characteristics upon which
measures of dissimilarity between countries of origin and countries of destination,
men and women, workers and jobs can be constructed and could explain flows or
matches. Our approach allows one to select those that matter the most.

More generally, the idea underlying the SISTA algorithm is broadly applicable.
In many other optimization problems, it may be worthwile using hybrid methods
combining the strengths of several existing descent methods. As exemplified by
SISTA, the hybrid version can be much more efficient than the methods it combines.
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