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We examine the persistence of the impact of early-life exposure to air pollution on children’s 

health from birth to school enrollment using administrative public health insurance records 

covering one third of all children in Germany. For identification, we exploit air quality 

improvements caused by the implementation of Low Emission Zones, a policy imposing 

driving restrictions on high-emission vehicles. Our results indicate that children exposed to 

cleaner air around birth require less medication for at least five years. The initially latent 

health response materializes only gradually in lower medication usage, leaving important 

but subtle health benefits undetected in common measures of infant health.
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1 Introduction

Poor air quality is a major public health concern worldwide. Various policy interventions

have curbed ambient air pollution considerably over recent decades (Shapiro and Walker

2018). To further improve air quality, policymakers in high-income countries increasingly

focus on clean air programs in urban areas where motor vehicles are the major source of

emissions. For instance, more than 200 European cities with already moderate pollution levels

have implemented Low Emission Zones banning emission-intensive vehicles from entering city

areas to achieve additional air pollution reductions. However, this raises questions about the

returns to investments in such ancillary clean air regulations which impose significant costs

while the specific health benefits from slight improvements in air quality remain uncertain.

In particular, important latent health effects are likely to remain undetected. First, it is

difficult to isolate causal effects in the presence of a health stock that changes slowly over

time (Almond and Currie 2011, Currie et al. 2014). Estimates of contemporaneous pollution

impacts may substantially underestimate “fully formed” health benefits. Few studies address

this issue indirectly by connecting pollution exposure at birth to productivity and earnings in

adulthood (Isen et al. 2017). However, there is no quasi-experimental evidence for the long-

term relationship between early-life exposure to air pollution and physical health that may

affect human capital acquisition and labor market outcomes in later life. Second, in contexts

characterized by a combination of high baseline population health, universal access to health

care, and comparatively low pollution levels, health benefits are likely to take subtle forms

that are hard to detect in the most widely used health measures such as low birth weight,

hospitalizations, or mortality.

In this paper, we examine the persistence of the impact of early-life exposure to air pollution

on children’s health stock from birth to school enrollment. Using quasi-experimental vari-

ation in the roll-out of Low Emission Zones (LEZs) in Germany and administrative health

insurance data covering one third of the entire population, we test whether children born just

before and just after policy-induced reductions in particulate matter concentrations exhibit

persistent differences in rarely studied medication usage for up to five years after treatment.

We characterize how health benefits accumulate over the course of pre-school childhood and

disentangle immediate from longer-term health effects in response to lower pollution levels.

By doing so, this paper provides novel evidence on the adjustment trajectory of the health

stock in the “middle years” between birth and school enrollment that have not been studied

before (Almond et al. 2018). Our findings suggest that moderate improvements in air quality
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due to the adoption of LEZs persistently reduce the number and cost of prescriptions for

respiratory diseases while results for more commonly used measures of infant health (e.g.,

birth weight) do not point to significant changes.

Our work draws on a data set and a setting which allow us to gain insight into whether pol-

lution reductions below levels that are already low by the standards of high-income countries

have lasting health benefits.1 Using medical records provided by Germany’s largest public

health insurer (AOK), we track children from birth to school enrollment and move beyond

the usual measures of infant health. Our preferred outcome variables are the cumulative

number and the cumulative costs of prescriptions for pharmaceuticals. Prescriptions are a

sensitive, real-time, and monetizable health measure that captures subtle effects, e.g. slightly

reduced medication requirements manifesting only over a prolonged time frame. While subtle

for the individual, these effects apply to a broader population and become large in aggregate.

Moreover, because medication alleviates morbidity, its effects are likely undetectable when

using the usual indicators such as hospitalizations. The German context is well suited for

the analysis of pharmaceutical prescriptions because Germany’s universal public health care

system covers all prescription costs without any deductibles for minors. Mandatory insur-

ance coverage implies that we observe health care for the general population rather than for a

specific group with insurance, as is the case in pioneering studies using pharmaceutical data

for the U.S. (Deschênes et al. 2017, Williams and Phaneuf 2019, Deryugina et al. 2019) and

China (Barwick et al. 2018).

The identification of causal effects rests on the staggered implementation of LEZs across

49 counties in Germany. De facto, LEZs constitute a ban of old, emission-intensive diesel

vehicles from city areas.2 Previous research has shown that LEZs are robust predictors of

statistically significant reductions in local concentrations of particulate matter smaller than

10 µm (PM10), which are however moderate in magnitude (Wolff 2014, Gehrsitz 2017, Pestel

and Wozny 2019, Margaryan 2021). Thus, we exploit the staggered policy introduction as

an instrumental variable for exogenous variation in PM10 exposure from motor vehicles. To

isolate health effects, we follow Isen et al. (2017) and compare cohorts of children born just

before and just after the policy-induced improvements in air quality. That way, cohorts

experience different levels of pollution exposure in early life but the same levels throughout

1Notably, even prior to LEZ implementation, the annual mean concentration of particles smaller than 10 µm
(PM10) of 26.4 µg/m3 is close to the corresponding WHO guideline level of 20 µg/m3.

2Restrictions are generally based on the Euro emission standards for gasoline and diesel vehicles. However,
German LEZs have banned very few gasoline vehicles because of the prevalence of catalytic converters that
transform pollutants into less toxic gases (Cyrys et al. 2014).
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subsequent years. Our sample is limited to children from “non-attainment” counties that

violated EU air quality standards regarding PM10. While treated counties introduce LEZs,

control counties comprise late-adopters and not-to-date-adopters.

Our research design accommodates important methodological advances in difference-in-

differences (DID) settings with staggered policy introduction (Goodman-Bacon 2018). We

implement a “stacked DID” estimator (Fadlon and Nielsen 2019, Deshpande and Li 2019)

that deals with the challenge of heterogeneous treatment effects inherent in the standard two-

way fixed effect DID estimator. The stacked design aligns treatment events by event-time not

calendar time. Therefore, it allows us to exploit a richer fixed effect structure: We remove

(i) event-time trends caused by policymakers relying on local pollution or socio-economic

trends in the years prior to the policy introduction as criteria to decide whether or when to

introduce an LEZ, and (ii) time-invariant unobservables that may influence outcomes and the

decision if or when to introduce an LEZ. Using this design, we demonstrate that pre-trends

run parallel for all outcomes studied.

We produce three key findings. First, we present evidence that the number of prescriptions

for children decreases significantly over early childhood in response to a moderate air quality

improvement caused by the adoption of LEZs. A one µg/m3 reduction in the concentration

of PM10 in utero and in the first year of life decreases the total number of prescriptions

for respiratory diseases over the five pre-school years by about 0.55 or by 3.9% in relative

terms. The number of prescriptions decreases by up to 6.8% when analyzing the subgroup

of pharmaceuticals closely tied to asthma. A decreasing share of children diagnosed with

asthma (i.e. the extensive margin) drives the total reduction of asthma drug prescriptions

and, thereby, also reduces prescriptions for respiratory diseases in general. However, we also

find that children suffering from any kind of respiratory disease require less medication. This

additional effect at the intensive margin suggests positive effects on children’s respiratory

health beyond asthma. Unconditional quantile regressions (Firpo et al. 2009) reveal sugges-

tive evidence for substantial heterogeneity at the intensive margin. With a point estimate of

2.8 fewer prescriptions, children who suffer most from respiratory diseases may benefit nearly

fives times as much from LEZs as the average sufferer.

Second, our results indicate that children’s health stock adjusts slowly to changes in pollution

levels which has rarely been documented because of a lack of real-time health measures.

The contemporaneous effect on medication needs during the first year of life is substantially
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smaller than the aggregate effect over the first five years of life. In fact, the effect in the first

year accounts for only about 6–20% of the cumulative savings over the period before school

enrolment. For asthma, the contemporaneous effect in the first year even remains statistically

insignificant. It is only from the second year of life that the initially latent health response

materializes in fewer children diagnosed with asthma and, thus, fewer total prescriptions.

The observed delay in adjustment may also explain why prior studies on LEZs could not

provide evidence for improved infant health measured by low birth weight (Gehrsitz 2017,

Pestel and Wozny 2019). We corroborate this conjecture by using hospital data on fetal

development disorders as alternative outcome variables for which treatment effects remain

statistically insignificant.

Third, the identified health benefits yield economically meaningful cost savings for public

health insurers. We find that a reduction of one µg/m3 PM10 reduces costs by 10.54 Euro

per child in their first five years of life. LEZs reduce PM10 levels by 1.37 µg/m3 so that

cost savings are 14.44 Euro per child. With average pre-treatment costs of 218.62 Euro per

child, LEZs cause an economically relevant relative cost reduction of 6.6%. With 1, 836, 434

children protected by LEZs in their in utero period and their first year of life, treatment

reduces pharmaceutical spending for children born between 2008 and 2017 over their pre-

school years by approximately 26.5 million Euros, or 42.4 million Euros when accounting for

positive spillover effects. Because all children benefit from LEZs from their second year of life

onward, cost savings originate from a single life year with slightly improved air quality. While

these savings represent only a fraction of the total policy benefits, they already account for

about 22% (or 35% when accounting for spillovers) of the up-front costs of owners of vehicles

that fail to meet LEZ standards calculated by Rohlf et al. (2020). Finding considerable health

benefits, even at overall low pollution levels, suggests that reducing pollution can have large

positive effects on children’s respiratory health in many settings.

This paper makes several contributions. First, our study is an important step forward in

credibly estimating the sustained health benefits of lower exposure to air pollution in early

life. There is robust evidence for particularly severe impacts of air pollution on infant and

fetal health (Chay and Greenstone 2003a, Chay and Greenstone 2003b, Currie and Neidell

2005, Currie et al. 2009, Sanders and Stoecker 2015, Knittel et al. 2016). Motivated by the

“fetal origins hypothesis”, a few papers investigate the persistent effects of early-life expo-

sure to air pollution on economic outcomes such as human capital formation (Sanders 2012,

Bharadwaj et al. 2017) and labor market outcomes (Isen et al. 2017) in the long-run. Relat-
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edly, Simeonova et al. (2019) exploit the sequential introduction of Stockholm’s congestion

charge to demonstrate that health benefits increase with the duration of exposure to cleaner

air. We add to this literature by presenting evidence for the persistence of health benefits from

exposure to cleaner air in a fixed period of time, i.e., the period before age one. By doing so,

we provide a first quasi-experimental estimate for the dose-response relationship between PM

pollution and physical health for the “missing middle”, i.e., the understudied period between

infancy and adulthood. We reveal a slowly adjusting health response over the years between

birth and school and demonstrate that commonly used contemporaneous infant health mea-

sures may be too crude to detect health benefits from moderate air quality improvements

in the context of already low pollution levels. By linking improvements in air quality from

banning pervasive high-emission vehicles to health benefits across the child population, the

estimates may also come with a higher external validity. The few seminal papers on the

health impact of traffic pollution focus on more disadvantaged populations (children living

next to highway toll stations, Currie and Walker 2011) or more unique pollution settings

(emissions-cheating diesel cars in the U.S., Alexander and Schwandt 2019).3

The second feature that sets this study apart is its focus on the use and the costs of pharma-

ceuticals. Guided by the medical literature (Fanta 2009) and a seminal paper by Deschênes

et al. (2017), we argue that direct morbidity and mortality conditions are a function of

pollution and compensatory adaptation in terms of drug therapy. Failing to account for

the pharmaceutical expenditures means to underestimate the benefits of clean air policies.

With the notable exceptions of Deschênes et al. (2017), Williams and Phaneuf (2019), and

Deryugina et al. (2019), the effect of air quality on defensive pharmaceutical expenditures

remains largely unevaluated. In our setting in Germany, characterized by universal health

care access, our finding of significant longer-term reductions in defensive spending is relevant

from a public finance perspective. Reduced pharmaceutical expenditures may lower insur-

ance contributions, lower labor costs for employers, and increase net income for households.4

The quantified policy benefits in terms of persistently lower defensive spending for children’s

3Alexander and Schwandt (2019) exploit the dispersion of emissions-cheating diesel cars in the U.S. to quantify
the morbidity costs of diesel pollution for a broader population of children. However, the U.S. passenger
vehicles exhibit only a low single-digit diesel share (only 1.5% of all light duty vehicles in 2014, U.S. DOT
2015). He et al. (2018) provide a careful study in the context of exceptionally high pollution levels, showing
a decrease in hospitalizations after the opening of a beltway diverting diesel trucks from passing through
São Paulo. In contrast, we examine the link between child morbidity and diesel pollution in the context of
German cities where (i) diesel vehicles are pervasive (45.9% in 2016, KBA 2017) and a major source of PM,
and (ii) initial pollution levels are low. Both characteristics are widespread in Europe and unaccounted for
in prior work.

4Presently, health care contributions are set to 14.6% of gross wages equally shared between employers and
employees.
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medication are a complement to recent estimates of Pestel and Wozny (2019) and Margaryan

(2021), indicating that LEZs also lead to contemporaneous reductions in hospital treatments

and ambulatory care claims related to cardiovascular and respiratory diseases for all age

groups. While hospitalizations and outpatient treatments of adults may also reflect medical

histories linked to pollution exposure and confounding influences in the distant past, such

confounders can be ruled out for infants observed from birth onward.

2 Low Emission Zones as a Research Design

2.1 Institutional Background

In Europe, LEZs are the main instrument for cities to meet EU air quality standards which

are among the strictest worldwide. To improve air quality and protect public health, the EU

enacted several directives that set legally binding limits for criteria pollutants. Since 2005,

for example, the annual mean of PM10 pollution must not exceed 40 µg/m3. Moreover, daily

PM10 readings must not exceed 50 µg/m3 more than 35 times per year at any measuring

station (Directive 2008/50/EC). For PM2.5, the EU implemented legally binding limits only

in 2015. EU Member States that violate these limits face considerable fines. In Germany,

the 16 federal states are responsible for compliance with the EU air quality standards. In

case of violations, state governments are obliged to develop city-specific Clean Air Plans

(Luftreinhaltepläne). The implementation of LEZs is by far the most tangible measure to

comply with Clean Air Plans. LEZs explicitly target traffic pollution. To date, 65 counties

implemented them in a staggered process where the time of introduction of each individual

LEZ depended on several idiosyncratic factors. First, the decision-making process usually

involves the respective city administrations and city councils as well as other stakeholders, but

state governments ultimately have to approve local Clean Air Plans.5 They may overrule the

decisions of local authorities and force cities to implement LEZs. Because of often conflicting

interests between state and local policymakers, the length of the decision-making process

regarding the introduction of an LEZ varies. Second, NGOs and private citizens frequently

appeal to the courts to advocate against or in favor of air quality regulations which creates

5At the federal level, regulations first had to (1) establish vehicle emission categories and (2) designate an
official road sign for LEZs. This was done in late 2007.
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Figure 1: The Staggered Implementation of LEZs

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Berlin, Hannover, Köln, Landkreis Heilbronn, Ludwigsburg, Mannheim, Ostalbkreis, Reutlingen, Stuttgart, Tübingen

Bochum, Bottrop, Dortmund, Duisburg, Essen, Frankfurt, Gelsenkirchen, Mühlheim, München, Oberhausen, Recklinghausen

Böblingen, Bremen, Düsseldorf, Enzkreis, Heilbronn, Karlsruhe, Pforzheim, Ulm, Wuppertal

Augsburg

Neu-Ulm
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Neuss
Krefeld, Leipzig
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Marburg-Biedenkopf
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Rheinisch-Bergischer Kreis

Limburg, Regensburg

The figure depicts introduction dates for all counties with an LEZ. The eleven implementation waves considered in this
paper are marked in grey.

further plausibly exogenous variation in the timing of LEZ introductions. Court rulings based

on EU air quality legislation have generally sped up the adoption of LEZs.6

Figure 1 shows that in almost every year since 2008 there have been waves of new LEZ

introductions. Some LEZs cover entire counties while others rather ban emission-intensive

vehicles from inner-cities. To secure access to LEZs, a vehicle must display an appropri-

ately colored windscreen sticker based on EU-wide tailpipe emissions categories. The most

emission-intensive diesel vehicles up to Euro1 standards (equivalent to 0.14g PM10 per km)

are banned from LEZs. Petrol-driven vehicles are banned if they do not have a catalytic

converter, which is very rare in Germany. Therefore, LEZs are de facto bans of old, emission-

intensive diesel vehicles.7 Police and local public order authorities enforce the policy with

penalties for its violation of currently 100 Euros.

We exploit the temporal and spatial variation in the introduction of LEZs to break well-known

sources of endogeneity in the link between health and pollution. For instance, local economic

conditions not only affect ambient air pollution (Chay and Greenstone 2003b) but also infant

6Examples from Wiesbaden and Halle shed light on the different paths leading to the introduction of LEZs.
In late 2010, Wiesbaden’s city council proposed the introduction of an LEZ which the state government of
Hesse rejected. After the appeal of an environmental interest group, Wiesbaden’s administrative court ruled
that the state government had to approve the LEZ in order to comply with air quality standards as soon as
possible (Wiesbadener Tagblatt 2011). In contrast, the city of Halle appealed plans by the state government
of Saxony-Anhalt to implement an LEZ. The city council decided to abandon their case against an LEZ
after it was made clear that the EU would otherwise penalize the city almost one million Euros per day
(Mitteldeutsche Zeitung 2011).

7Less emission-intensive vehicles with Euro2 and 3 standard are eligible for red or yellow stickers while cars
that meet Euro4 standards are eligible for green stickers.
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health (Dehejia and Lleras-Muney 2004, Lindo 2011). Therefore, we instrument changes

in PM10 with the implementation of LEZs. Prior research finds that LEZ implementation

decreased local PM10 concentrations by 4 – 9% (Wolff 2014, Malina and Scheffler 2015,

Gehrsitz 2017, Pestel and Wozny 2019, Margaryan 2021). Our approach of using a policy

intervention as an instrumental variable is similar to the identification strategy by Chay and

Greenstone (2005), Bento et al. (2015), and Isen et al. (2017) who use county attainment

status under the U.S. Clean Air Act as an instrument for changes in pollutant concentrations.

To address concerns that LEZs are not introduced randomly but in areas where air quality is

deteriorating, we follow Wolff (2014) and include in our sample only non-attainment counties,

that failed to meet the PM10 limits. Of these counties (i) 65 implemented an LEZ and (ii)

63 have not implemented an LEZ to date despite non-compliance. Only the 49 counties that

implement their LEZ until 2012 count towards the treated because we want to be able to

follow children after LEZ implementation for five years. Our identifying assumption is that

in the absence of LEZ introduction, air pollution and health outcomes in treated counties

would have evolved similarly to the control counties.

2.2 Isolation of Early-Exposure Effects

Our goal is to estimate the causal effect of PM exposure in the in utero period and the first

year of life on later life health outcomes measured before school enrollment. Due to rapid cell

proliferation and an intense phase of epigenetic programming, children in the prenatal and

immediate postnatal development period are especially vulnerable to the toxicological effects

of pollution (Holt 1998, Šrám et al. 2005, Gluckman et al. 2008, Baccarelli and Bollati 2009).

The empirical challenge is to isolate the long-term effect of PM exposure before age one from

any exposure throughout the subsequent lifetime. We want to compare individuals who are

exposed to different levels of PM pollution up to age one but who are exposed to the same

levels of PM pollution thereafter.

To this end, we resort to a cohort study design as proposed by Isen et al. (2017). Our analysis

compares differences in health outcomes of children born just before and just after LEZ

implementation relative to the difference in health outcomes between children from the control

group born at the same times. We restrict our sample so that within each county the policy

provides the same regulatory protection for all children after age one. Of the cohorts born

after LEZ implementation we include all those born at least four quarters post-treatment.

LEZs protect these children from conception onward. Of the cohorts born pre-treatment we

9



Figure 2: Isolating early-exposure effects

-3 -2 -1 0 1 2 3 4 5
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treated after

1st year

partly treated

in 1st year

partly treated

in utero

LEZ

The figure shows which cohorts are included in a given implementation wave. The numbers on the timeline measure
years with respect to the introduction date defining the implementation wave of interest. The green marks indicate the
post-treatment cohorts while the red marks indicate the pre-treatment cohorts.

include those born four to six quarters prior to LEZ implementation. These children are

not protected before age one but they are protected shortly thereafter (see Figure 2).8 We

exclude children born in the three quarters prior or post to LEZ implementation from the

sample because they are partly treated in utero or during their first year of life.

3 Methodology

Our empirical strategy combines the staggered introduction of LEZs in an instrumental vari-

able approach with a cohort design to isolate the persistent impacts of early-life exposure to

PM pollution. We first explain the basic difference-in-differences model (DID) underlying our

instrumental variable (IV) estimation. We then explain the stacked regression approach that

we implement to estimate the DID model. It addresses recent concerns about bias arising from

heterogeneous treatment effects in DID settings with staggered policy introduction.

3.1 Difference-in-Differences Model

Our first-stage regression of the IV estimator is a DID regression model specified as

Pct = αTreatedct +
∑

τ

δτDτ
ct +W ′

ctρ+X ′

ct̄πt + γc + ηst + νct (1)

8Note that to ensure equal exposure after age one, we would need to exclude all cohorts born more than four
quarters prior to LEZ implementation. To avoid limiting ourselves to a single pre-treatment observation of
the treated counties, we keep the two cohorts born five and six quarters prior to LEZ implementation in our
sample and ensure that this does not influence our results in a robustness check.
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where the dependent variable Pct is the mean PM10 exposure in µg/m
3 during the first quarter

of life of a cohort born in county c and year-quarter t. The binary variable Treatedct is equal

to 1 if county c has implemented an LEZ in quarter t. The indicators Dτ
ct are equal to 1

if quarter t is τ quarters before or after the quarter of LEZ implementation in county c.

Because we include cohorts of children born in the pre- and post-treatment periods defined

in Figure 2, τ ∈ {−6,−5,−4, 4, 5, 6, . . . , 19} (see Section 2.2).9 The vector W ′

ct comprises

weather controls in the county of birth c, which are exogenous and, thus, included for every

year of life. In some specifications, we also include pre-treatment controls for socio-economic

characteristics (e.g. population density, employment, income, and transfers) interacted with

year-quarter fixed effects denoted by X ′

ct̄
.10 Observing that the estimated treatment effect

changes significantly after allowing for these trends that vary with the levels of the exogenous

covariates would suggest that the results are driven by differential trends in pollution across

socio-economic characteristics (see Jaeger et al. (2020) and Hoynes et al. (2016) for similar

approaches). The county fixed effects γc control for time-invariant, unobserved determinants

of pollution exposure for children born in county c. The fixed effects ηst account for time-

varying determinants of pollution exposure that are common to all children born in state

s in year-quarter t.11 The coefficient α̂ provides a DID estimate of the impact of LEZ

implementation on quarterly PM10 levels at the county level.

In the second stage, predicted values for PM10 from Equation (1) serve as an explanatory

variable in

Hct = βP̂ct +
∑

τ

στDτ
ct +W ′

ctκ+X ′

ct̄µt + γc + ηst + ǫct (2)

where the coefficient of interest β describes the marginal effect of a one µg/m3 LEZ-driven

increase in PM10 exposure on the average health outcome Hct of a cohort born in county c

and year-quarter t. The health outcome is accumulated over the first five years of a child’s

life and is averaged over the children in cohort ct. We obtain the health outcome through an

9For instance, τ = 4 refers to the fourth quarter after LEZ implementation. Similarly, τ = −4 refers to
the fourth quarter prior to LEZ implementation. Note, that the number of treated cohorts depends on the
implementation timing because our sample only comprises children born between 2006 and 2012.

10We generate these controls by interacting year-quarter dummies with terciles of the variables measured in
t̄ = 2007, the year prior to the first LEZ implementations (Barrot and Sauvagnat 2016). Appendix D.1
holds a detailed description of the control variables.

11Note that the counties of Berlin, Hamburg, and Bremen are states in their own right. Including state–quarter
fixed effects absorbs the variation explained by the treatment in these counties. Therefore, we allocate these
three counties to neighboring states, i.e. we assign Berlin to Brandenburg, Hamburg to Schleswig-Holstein,
and Bremen to Lower Saxony. We ensure that this allocation does not determine the results by estimating
alternative specifications.

11



auxiliary regression that exploits the available information at the level of the individual child

(i.e. gender and area of residence within a county at the five-digit zip code), which controls

for some of the observed heterogeneity in individual health when aggregating the data.12 All

regressions are weighted by the number of children in a cohort. We cluster standard errors

at the county level, the level at which the treatment is assigned.

The unbiasedness of β̂ depends on two crucial assumptions. First, LEZs need to be a strong

instrument for changes in particulate matter pollution. We subsequently present evidence

for a strong first-stage, showing that PM10 levels decline significantly and persistently in

response to LEZ implementation. Second, for consistency, it must be the case that LEZ

introduction affects health outcomes only via its impact on air pollution. Given that our

results are largely insensitive to the choice of controls, and conditional on the full set of fixed

effects, we believe that the exclusion restriction holds. While we cannot conclusively show

its validity, we conduct various indirect tests: (i) we comprehensively assess whether LEZs

shift the composition in the underlying population in LEZ counties, (ii) we re-estimate our

IV model for medical conditions unrelated to air pollution, and (iii) we explore whether the

compliance costs of LEZs reduce emissions from industrial activity. Finally, the exclusion

restriction may be violated if LEZs affect any pollutants other than PM10 that also have a

direct impact on respiratory health (see discussion in Section 5.5). In fact, we show that

LEZs reduce both PM and NO2 but no other pollutants and argue that our identification

strategy suffices to identify the health effects of pollutants from motor vehicles rather than

of PM10 in particular. Similarly, other studies attribute estimated IV-effects to air pollution

more generally rather than to a particular pollutant (Chay and Greenstone 2003a, Currie

and Neidell 2005, Arceo et al. 2016, Knittel et al. 2016, Deryugina et al. 2019, Sager 2019,

Colmer et al. 2020).

3.2 Stacked Regression Design

To address concerns about bias arising from the combination of potentially heterogeneous

treatment effects and the weighting implied by the two-way fixed effects regression in set-

tings with staggered policy introduction (Goodman-Bacon 2018, Athey and Imbens 2018,

de Chaisemartin and d’Haultfoeuille 2020), we implement Equation (1) and (2) in a stacked

12Aggregating individual level data via auxiliary regressions and conducting regressions on the obtained ag-
gregates is a common approach in the literature (e.g. Currie et al. 2015, Isen et al. 2017) and asymptotically
equivalent to using the individual level data itself (e.g. Donald and Lang 2007). We provide a detailed
description of the procedure in the Appendix B.
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regression design (Deshpande and Li 2019, Cengiz et al. 2019, Fadlon and Nielsen 2019).

Goodman-Bacon (2018) shows that the two-way fixed effect DID estimator consists of com-

parisons between all combinations of early treated, late treated, and untreated units. The

units that are treated in the middle of the study period have higher weights in the regression

than those treated at the beginning or at the end.13 Because the effectiveness of treatment

may vary with policy adoption timing, we have to ensure that the weighting of cohorts does

not bias our average treatment effect. For instance, early implemented LEZs may be more

effective at reducing PM emissions than the later implemented ones due to the stock of old

high-emission vehicles decreasing over time. Our stacked DID design aligns treatment events

by event-time, not calendar time. This results in a setting that is equivalent to one where the

treatment events occur all at the same time instead of in a staggered fashion. This prevents

the unintended weighting of events driven by their timing.14 In addition, the stacked DID

design prevents potential bias from using units as controls that have been treated shortly

before and might still be on differential trends.

To implement the stacked DID design we create an individual data set for all LEZ implemen-

tation waves, i.e. year-quarters in which at least one county implemented an LEZ. For the

period between 2008 and 2012, there are 11 distinct LEZ implementation waves. Counties

that introduce LEZs in the year-quarter defining the respective implementation wave count

towards the treatment group. Counties that do not introduce an LEZ either because they

do so at a different point in time or never, are eligible for the control group. The stacked

design enables us to refine the selection of the control counties in each wave. Throughout

our main analysis we allow only LEZ-counties that implement the policy measure at least

four years before or five years after the implementation wave to enter the control group. This

selection ensures that we have a balanced control group in each implementation wave and

that the control group is not on a differential trend from recent treatment, as we explain in

detail in Appendix C.1. We stack the data sets for the 11 implementation waves for a pooled

regression.

13This is because each comparison is weighted by the size of the subgroup and the variance of treatment. If
treatment occurs either early or late, this results in lower treatment variance and, hence, a lower weight.

14The variance of treatment no longer biases the weighting (see also Abraham and Sun 2020). Regression
weights now mainly depend on the size of the subgroup.
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The first and second stage of the IV estimator in the stacked DID regression model are

specified as

Pctj = α(Treatedcj × Posttj) +
∑

τ

δτjD
τ
tj + λjDcj +W ′

ctjρ+X ′

ct̄jπt + γc + ηst + νctj (3)

Hctj = βP̂ctj +
∑

τ

στjD
τ
tj + ψjDcj +W ′

ctjκ+X ′

ct̄jµt + γc + ηst + ǫctj (4)

where the dependent variables are now given for a cohort born in county c and year-quarter

t for each treatment wave j, respectively. The binary variable Treatedcj is equal to 1 if

county c introduces an LEZ in implementation wave j. Posttj is a binary variable equal to

1 if quarter t is after the implementation quarter of wave j. For every implementation wave,

the indicators Dτ
tj are equal to 1 if quarter t is τ quarters before or after the quarter of LEZ

implementation j. Every wave j also has its own indicator Dcj which is equal to 1 if county

c introduces an LEZ specifically in that implementation wave.

Our stacked DID design enables us to remove important unobservables that may simulta-

neously drive treatment selection and outcomes. First, the indicators Dτ
tj in Equations (3)

and (4) remove LEZ wave-specific unobservable trends in event-time that emerge, for instance,

if policymakers use local pollution or socio-economic trends in the years prior to implemen-

tation as decision criteria for introducing LEZs. Accommodating calendar time effects will

not eliminate such pre-trends.15 Second, by including Dcj and allowing its effect to vary by

implementation wave, we remove time-invariant differences between treatment and control

groups for each LEZ implementation wave j and between different implementation waves.16

This accounts for time-invariant unobservables that may drive outcomes and selection into

LEZ adoption and earlier or later adoption.17

Conditional on fixed effects, we consistently show that there are no differences in the trends

of air pollution and health outcomes across the treatment and control groups before LEZ

implementation. To this end, we estimate event-study specifications of the first stage and

the reduced form model. For these specifications, we expand the pre-treatment window

of our sample to include all observations up to three years prior to LEZ implementation.

Furthermore, we include observations from the three quarters before and the three quarters

15One could restrict the effect of the wave-specific event-time binary variables Dτ
tj to be equal across treatment

waves, that means replacing δτj by δτ . However, we would then only remove the variation in event-time
pooled over all implementation waves.

16The latter is only true because we include Dτ
tj as well.

17In case we only included one wave-unspecific binary variable Treatedcj , we would only control for these
differences between the pooled treatment and the pooled control group.
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after LEZ implementation, so that τ ∈ {−12, . . . , 19}. To gain precision and prevent noise

potentially linked to estimating 32 quarter coefficients, we group the event study coefficients

at the year level throughout our paper (see also Appendix C.2).

4 Data

Air Pollution and LEZ Data

The German Environment Agency (UBA) provides data on air pollution for the years 2006

through 2012 for 128 counties that violated EU-wide limits for PM10. Specifically, monitoring

stations record daily concentrations of regulated air pollutants particulate matter (PM10),

nitrogen dioxide (NO2), ozone (O3), and sulphur dioxide (SO2). For the sample period, there

is no consistent data on fine particulate matter (PM2.5) concentrations available from UBA

because there were no legally binding thresholds for PM2.5 before 2015. Stations located

at the roadside primarily measure peak pollution exposure from traffic, while the remaining

stations measure the permanent exposition to pollution in residential areas (UBA 2019).

We combine measurements from both types of stations and interpolate the point measures

into county space using Inverse Distance Weighting (Currie and Neidell 2005, Karlsson and

Ziebarth 2018). Based on the daily records, we construct a weighted average of quarterly

levels of PM10, NO2, O3, and SO2. Following recent studies (i.e. Chay and Greenstone 2003a,

Isen et al. 2017), we use weights proportional to the number of monitor observations within

a quarter and limit our data to stations with at least 60 measurements per quarter (see

Appendix D.2 for a detailed description). UBA also provides data on the exact dates at

which LEZs are implemented.

Health Care Data

The health data comes from Germany’s largest public health insurer AOK. In Germany,

public health care applies to roughly 90% of the population, of which the AOK covers about

a third. The remaining 10%, in particular civil servants, self-employed, and high-income

employees, are insured privately. Within the population of the publicly insured, the AOK

data is the best available base for identifying generalizable effects. The insurance fund covers

a population share almost twice as high as is the case with U.S. Medicare and provides a

well-balanced representation of all population groups (Jaunzeme et al. 2013).18 We obtained

18For a detailed overview of the representativeness of the AOK population, refer to Appendix D.3.

15



access to the anonymized data through the “AOK Research Institute” (WIdO). The data is at

the level of the individual child and the individual quarter and provides us with information

on pharmaceutical prescriptions and in-hospital doctoral care.19 It holds information on

about a third of all children born in Germany, approximately 200,000 annually. The sample

includes the full medical records of all children born between January 1, 2006, and December

31, 2012, until the end of 2017, which marks the maximum range of data available at WIdO

when conducting this research. This allows for observing all children in the sample from

birth until age five. Because our analysis focuses on early childhood pollution effects, we

exclude children from our sample who move out of their birth county within the first year

of life. Likewise, we exclude children who are not continuously insured with AOK until the

age of five. Overall, our sample holds observations on about 1.1 million children across all

counties in Germany. The sample of counties underlying our analysis that either implement

or consider implementing an LEZ comprises 550,000 children.

The focal point of our analysis are respiratory health outcomes. It is well established in

the medical literature (e.g. Li et al. 2003) that PM pollution causes inflammations in the

respiratory tract that may irreversibly reduce lung growth and function. In consequence,

affected children are more vulnerable to suffer from respiratory problems in general and are

at a higher risk of developing severe chronic diseases such as asthma later in life. Because

respiratory diseases are primarily treated with pharmaceuticals, we restrict the main analysis

to prescriptions. Pharmacies electronically provide health insurers with data on prescriptions

(Swart et al. 2005). These data hold information on costs and pharmaceutical substances

classified according to the ATC-Code system.20 In Germany’s universal public health care

system, all prescription costs are covered by the insurance without any co-payments for chil-

dren. This applies to over-the-counter drugs as well, as public insurances are legally obligated

to bear the expenses for children up to the age of 12 (§34 Abs. 1 Satz 5 SGB V).

Prescription data are not linked to ICD-10 codes that reveal the diagnoses for which phar-

maceuticals are prescribed.21 Therefore, it is necessary to identify the relevant pharmaceu-

tical substances for the therapy of respiratory diseases. To this end, we follow two different

19Note, that we only observe stationary hospital treatments that accommodate overnight cases.
20The Anatomical Therapeutic Chemical (ATC) classification system categorizes drugs based on their active
ingredients according to the organ or the system on which they act as well as their therapeutic, pharmaco-
logical, and chemical properties. It is compiled by the World Health Organization (WHO) and adapted to
the German market on an annual basis (Swart et al. 2005).

21The ICD-10-Code is an international system for the statistical classification of diseases and related health
problems provided by the WHO. Germany uses the extended version ICD-10-GM. Outpatient and inpatient
physicians are legally required (§§295 and 301 SGB V) to classify diagnoses accordingly.
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approaches. First, we use a publication akin to the Red Book (“Gelbe Liste”) to link phar-

maceuticals and diagnoses for more than 120,000 drugs. This provides us with a broad group

of pharmaceuticals used to treat respiratory diseases. Second, we consider the 20 most often

prescribed substances for asthma and chronic obstructive pulmonary disease (ATC R03) in

a given year. This returns a small, strict subset of the pharmaceuticals identified in the first

approach. Appendix D.4 describes the procedures in detail. Costs of prescriptions are in real

values normalized to the fourth quarter of 2017 and account for market price changes, such

as expiring patents (see Appendix D.4).

We complement the analysis of respiratory health outcomes with placebo tests. To this end,

we consider three outcomes that are independent of air pollution but correlated with socio-

economic status: hospital treatments of injuries of the head (S00-S09), the arm (S40-S49),

or several body parts (T00-T07). Additionally, we use hospital data on pregnancy duration

and fetal growth (ICD-10 codes P05, P07, and P08) in our analysis of common infant health

measures.22 On the insured themselves, the medical records additionally offer information

about the birth dates, gender, and the precise location of residence within a county at the five-

digit zip code. Table 1 provides summary statistics of the prescription data for respiratory

diseases and pollution levels at the county and quarter level. Overall, the cross-sectional

dimension of our data covers 128 counties, while the longitudinal dimension covers 28 quarters

from 2006 to 2012. A detailed description is provided below the table.

Additional Data on Weather and County Characteristics

Weather is a strong correlate of pollution and health (Karlsson and Ziebarth 2018). There-

fore, we obtain data from the German Weather Service (DWD) on a battery of weather

phenomena at the level of the individual weather station as well as in an interpolated grid

format. We combine weather, pollution, and health data at the county level. In the re-

gressions, we include linear and quadratic terms of precipitation as well as 12 temperature

bins23 in addition to mean temperature, sunshine duration, relative humidity, pressure, and

wind speed. We include additional control variables from the Federal Institute for Research

on Building, Urban Affairs and Spatial Development (BBSR) such as socio-economic and

demographic characteristics as well as information on the age of mothers giving birth. We

22In accordance with common practice, we consider the discharge diagnosis as the main reason for hospital-
ization (Swart et al. 2005).

23Temperature bins count the number of days with temperatures above 0, 5, 10, 15, 20, 25, 29, 30, 31, 32, 33
and 34 degrees Celsius.
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Table 1: Summary Statistics of Pollution and Health Outcomes

(1) (2) (3) (4) (5)

mean sd min max N

Air pollution

PM10 (µg/m3) 23.7 6.2 9.0 57.3 3,584

Prescriptions for respiratory diseases

Number of prescriptions over five years per child 12.7 2.8 4.4 23.8 3,584

Prescription expenditures over five years per child (€) 195.8 54.1 63.6 635.3 3,584

Share of sufferers per cohort (%) 76.1 7.5 38.3 94.6 3,584

Prescriptions for asthma

Number of prescriptions over five years per child 2.0 0.8 0.1 6.1 3,584

Prescription expenditures over five years per child (€) 62.2 33.9 1.6 489.8 3,584

Share of sufferers per cohort (%) 18.3 6.1 1.3 50.6 3,584

Number of children per cohort 159.3 171.6 10 1,593 3,584

The table reports summary statistics of PM10 pollution (measured in µg/m3) and of cumulative prescriptions over the
five pre-school years linked to a broad group of respiratory diseases and asthma specifically. The variables are defined
for our study period from 2006 to 2012 and our sample of 128 German counties that violated EU-wide limits for PM10.
Cumulative prescriptions are calculated based on data until 2017. Health measures are in terms of the number or the
costs of prescriptions per child. Costs of prescriptions are in real values normalized to the fourth quarter of 2017. The
share of sufferers reflects the share of children in the cohort that require at least one prescription for a respiratory disease
or asthma, respectively.

use pre-treatment measures of these variables in 2007 and categorize them into terciles. For

a detailed description see Appendix D.1.

5 Results

5.1 Ambient Air Pollution

First, we present evidence that the relationship between LEZ implementation and particu-

late matter levels is strong. Table 2 shows estimates of the effect of LEZ introduction on

average quarterly PM10 concentrations following Equation (3) for two different sets of control

variables that increase in stringency from left to right. All regressions include birth county

and birth state–birth quarter fixed effects. Standard errors clustered at the county level are

in parentheses. The reported mean outcomes represent weighted averages for the depen-

dent variable in the pre-treatment period over all treated counties with weights equal to the

number of children per county.

Our most stringent specification shows that the presence of an LEZ reduces mean quarterly

PM10 concentrations by about 1.37 µg/m3. This estimate is statistically significant at the
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0.1% level and robust across control sets. The stability of our treatment effect estimates after

including heterogeneous trends that vary with the pre-treatment levels of the socio-economic

controls (see Section 3.1) suggests that the LEZ effect is not driven by differential trends in

pollution across socio-economic characteristics. Compared to the mean pollution exposure of

26.44 µg/m3, an LEZ decreases particulate matter by about 5.2%, which is in line with the

LEZ literature. An F -statistic of 20.14 provides evidence for a fairly strong first stage rela-

tionship. To accommodate remaining concerns about potential bias from weak instruments

(Andrews et al. 2019, Lee et al. 2020), we subsequently also report robust Anderson-Rubin

(AR) confidence intervals for our IV-estimates.

Figure 3 plots the event-study results for the effect of LEZs on PM10.
24 The post-treatment

patterns suggest that LEZs cause a level shift to persistently lower PM10 concentrations

with a strong immediate effect. Moreover, coefficients prior to treatment are close to zero

and statistically insignificant, which is in line with common trends in LEZ and non-LEZ

counties in the years preceding the policy interventions. Recall that our reported event study

coefficients exploit a rich fixed effect structure to remove (i) event-time trends caused by

policymakers relying on local pollution or socio-economic trends as criteria to decide whether

and when to introduce an LEZ and (ii) time-invariant unobservables that may drive outcomes

and selection into LEZ adoption and earlier or later adoption.

Table 2: The Effect of LEZ Implementation on PM10 Concentrations

First Stage Estimation

PM10 Pollution (in µg/m3)

(1) (2)

LEZ treatment -1.30∗∗∗ -1.37∗∗∗

(0.34) (0.30)

Mean outcome 26.44 26.44

First stage F-statistic 14.25 20.14

Weather controls x x

Socio-economic controls x

This table reports coefficients from two variants of the first stage regression in Equation (3). The dependent variable is
the quarterly mean PM10 concentration in a given county and year in µg/m3. Both columns include birth county, birth
state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects. Weather and socio-economic controls
are added sequentially moving from left to right. The regressions are weighted by the birth county–birth quarter cell
size. Standard errors in parentheses are clustered at the county level. The sample size is 9, 609.
* p < .05, ** p < .01, *** p < .001.

24Table A.1 in the Appendix provides the full regression results.
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Figure 3: Event-study Estimates of the Effect of LEZ Implementation on PM10 Concentra-
tions
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The figure presents event-study coefficients from Equation (C.1) that show how LEZs affect the quarterly mean PM10

concentration in µg/m3 in the years before and after LEZ implementation. The grey shaded area indicates the pre-
treatment period. The coefficient in the year prior to implementation is normalized to zero. The regression includes
county fixed effects, state–quarter fixed effects, LEZ wave–event time fixed effects, LEZ wave–treated fixed effects as
well as weather and socio-economic controls. It is weighted by the county–quarter cell size. Standard errors are clustered
at the county level. Confidence intervals refer to the 5% level of significance.

5.2 Medication of Respiratory Diseases

In the following, we show the persistent effects of lower PM10 pollution on the medication

of respiratory diseases. Our analysis comprises two groups of prescriptions to detect health

effects of varying severity. To comprehensively capture respiratory health effects, we consider

a broad group of pharmaceuticals. To capture effects related to asthma specifically, we

consider a subset of pharmaceuticals that is closely linked to the therapy of this chronic

disease. For both groups of prescriptions, we provide reduced form estimates that indicate

the health effect of LEZ implementation (upper panel) and IV estimates representing the

health effect of a one µg/m3 increase in PM10 levels (lower panel) in Table 3. The dependent

variable is either the number of prescriptions (left side) or their costs in Euro (right side)

that accumulate on average over the first five years of a child’s life.

All regression estimates show that LEZs benefit child health. The magnitude of our results

is robust and statistically significant across control sets. For the broad group of respiratory

diseases the most stringent IV estimate in column (2), for instance, shows that an LEZ-caused

decrease in pollution of one µg/m3 in utero and in the first year of life reduces the number

of medical prescriptions by about 0.55 per child, on average. With a standard error of 0.17,

the estimate is statistically significant at the 1% level. Relating the treatment effect to the
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Table 3: The Effect of Early-Life PM10 Exposure on Medication of Respiratory Diseases
throughout Early Childhood

A. Number of prescriptions B. Costs of prescriptions (€)

(1) (2) (3) (4)

Reduced Form Estimation

Respiratory diseases -0.65∗∗∗ -0.75∗∗∗ -10.98∗∗ -14.41∗∗

(0.17) (0.18) (3.58) (4.32)

Mean outcome 14.14 14.14 218.62 218.62

Asthma -0.21∗∗ -0.23∗∗ -6.34∗ -8.01∗

(0.07) (0.08) (2.57) (3.22)

Mean outcome 2.5 2.5 73.27 73.27

IV Estimation

Respiratory diseases 0.50∗∗ 0.55∗∗ 8.46∗ 10.54∗∗

(0.16) (0.17) (3.36) (3.97)

Mean outcome 14.14 14.14 218.62 218.62

Asthma 0.16∗∗ 0.17∗ 4.88∗ 5.86∗

(0.06) (0.07) (2.19) (2.74)

Mean outcome 2.5 2.5 73.27 73.27

First stage F-statistic 14.25 20.14 14.25 20.14

Weather controls x x x x

Socio-economic controls x x

This table reports reduced form estimates that indicate the health effect of LEZ implementation (upper panel) and
IV estimates from Equation (4) representing the health effect of a one µg/m3 increase in PM10 levels during the in
utero period and the first life year (lower panel). The dependent variable is either the number of prescriptions per
child (left side) or their costs in Euro per child (right side) that accumulate over the first five years of a child’s life
on average. It refers to either prescriptions for respiratory diseases in general or asthma specifically. The dependent
variable is composition-adjusted for the birth county–birth quarter cell. All regressions include birth county, birth
state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects. Weather and socio-economic controls
are added sequentially moving from left to right. The regressions are weighted by the birth county–birth quarter cell
size. Standard errors in parentheses are clustered at the county level. The sample size is 9, 609.
p < .05, ** p < .01, *** p < .001.

pre-treatment average of 14.14 prescriptions per child reveals a relative reduction of 3.9%.

Likewise, the coefficient in column (4) shows that the costs of prescriptions decrease by 10.54

Euro (4.8%) over the first five years of a child’s life on average. The relative reductions are

even higher in magnitude when considering the subset of prescriptions for asthma. While

the number of prescriptions decreases by about 6.8%, the costs decrease by about 8.0% on

average. Moreover, comparing the estimated coefficients for respiratory diseases in general

and asthma specifically, we find that about 56% (5.86/10.54) of the cost savings accrue due

to changes in chronic asthma diseases, while about 31% (0.17/0.55) of the reduction in the

number of prescriptions is attributable to asthma. AR confidence intervals (CIs) for the

IV-estimates reported in Table A.2 of the Appendix corroborate that all average effects are

positive and significantly different from zero.
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Based on the reported results we approximate the total cost savings from LEZ protection

during the in utero period and the first year of life. The most recent birth statistics tell us

that 1, 836, 434 children are protected by LEZs in utero and in the 12 months after birth.

Multiplying this number with 14.41 Euro in cost savings per child, the first reduced form

coefficient in column (4), we find that treatment reduces long-run pharmaceutical costs by

approximately 26.5 million Euro in children born until 2017.25 Similarly, the calculation

linked to asthma medication highlights cost savings of about 14.7 million Euro.

These specific savings represent an important component for a cost-benefit analysis of the

policy but only a fraction of the total health benefits that need to be included. In particular,

our study considers only new-born children rather than the whole population, purely physical

health not accounting for consequential effects on human capital formation, and only pre-

scriptions rather than doctor visits, hospitalizations, and fatalities. Moreover, the estimated

savings derive exclusively from early-exposure effects measured until school enrollment. Ben-

efits that persist over half a decade, however, are unlikely to cease suddenly with enrollment.

Nonetheless, the estimated 26.5 million Euro already account for about 22% of the up-front

costs of owners of vehicles that fail to meet LEZ standards calculated by Rohlf et al. (2020). In

combination with other empirically identified LEZ-benefits, namely reduced hospitalizations

(Pestel and Wozny 2019), ambulatory care claims (Margaryan 2021), and prescriptions (Rohlf

et al. 2020) in the general population, it is realistic to conclude that LEZ-costs can be recov-

ered within a few years. Our IV estimates may also serve to approximate the counterfactual

situation of implementing the WHO’s PM10 guideline of 20 µg/m3 already in 2008. Holding

constant health benefits at 10.54 Euro per child per µg/m3 and assuming all children born

into LEZ-counties until 2017 had benefited, the 6.4 µg/m3 PM10 reduction from the annual

mean of 26.4 µg/m3 could potentially have reduced longer-run pharmaceutical costs by about

6.4× 10.54 Euro × 2, 301, 305 children ≈ 155 million Euro.

Figure 4 plots the event-study results for the number and the costs of prescriptions for

respiratory diseases.26 They allow us to examine how LEZs affect long-run health depending

on a child’s age at the time of exposure. Because the year prior to LEZ implementation is the

reference category, we essentially test for differential effects of exposure relative to exposure

at age one and older. Therefore, the significant post-treatment decrease in the number and

25This back-of-the-envelope calculation does not account for potential differences between those insured with
AOK and the general population and is based on the assumption that children born after 2012 benefit
equally from the policy.

26Table A.1 in the Appendix provides the full regression results.
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Figure 4: Event-study Estimates of LEZ Effects on Medication for Respiratory Diseases

(a) Number of prescriptions
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(b) Costs of prescriptions
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The figure presents event-study coefficients based on the specification in Equation (C.1) that show how LEZs affect
the medication of respiratory diseases depending on the time between birth and LEZ implementation in years. The
dependent variable is the number of prescriptions per child (Panel A) or their costs in Euro per child (Panel B) that
accumulate over the first five years of a child’s life on average. The gray shaded area indicates the pre-treatment period.
The coefficient in the year prior to implementation is normalized to zero. The regression includes county fixed effects,
state–quarter fixed effects, LEZ wave–event time fixed effects, LEZ wave–treated fixed effects as well as weather and
socio-economic controls. It is weighted by the county–quarter cell size. Standard errors are clustered at the county
level. Confidence intervals refer to the 5% level of significance.

the costs of prescriptions suggests additional benefits of exposure to cleaner air between

conception and age one relative to exposure at age one and later. Also note that significant

pre-treatment coefficients could indicate differential benefits from exposure beginning at age

two or three relative to exposure at age one or that the common trends assumption is violated.

The fact that pre-treatment coefficients are close to zero, suggests that neither of the two

scenarios apply. The event-study plots for asthma prescriptions are similar to the ones for

respiratory diseases in general (see Figure A.2 in the Appendix).

Disaggregation by Year of Life

Using outcome measures that aggregate medication over the first five years of life neither

reveal whether health effects are persistent nor whether their intensity is constant over time.

To gain further insights in how early pollution exposure propagates through early life, we

analyze the pharmaceuticals prescribed in each of the five years separately in Panel A of

Table 4. Because numbers and costs of prescriptions have shown to exhibit very similar

behavior with respect to LEZ implementation, we focus on the number of prescriptions from

here on.

23



With regards to respiratory diseases in general, the reduced form and the IV estimations

consistently reveal that early pollution exposure persistently and statistically significantly

affects medication. For instance, the IV estimates indicate that a one µg/m3 decrease in PM10

exposure in utero and in the first year of life decreases the average number of prescriptions per

child in each of the five pre-school years. However, the coefficient in year five is statistically

significant only at the 10% level. Contemporaneous reductions in medication needs in the first

year of life account for only about 20% of the cumulative savings on prescriptions over the first

five years of life (0.11/0.55). With regards to asthma related prescriptions, this share reduces

to 6% (0.01/0.17). Moreover, the contemporaneous effect on asthma medication remains

statistically insignificant and effects occur only from the second year on. This suggests that

it requires time for improvements in chronic diseases to materialize. Note that the sum of the

coefficients estimated for each individual pre-school year is identical to the cumulative effect

over all five years presented previously and presented again in column (1) of Table 4.
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Disentangling the Extensive from the Intensive Margin

We assess how the extensive and the intensive margin drive the overall treatment effect in

Panel B and C of Table 4. The dependent variable in Panel B is the share of children in

the cohort that require at least one prescription for either a respiratory disease or asthma

specifically (i.e. extensive margin). The dependent variable in Panel C is the average num-

ber of prescriptions a child diagnosed with any respiratory disease or asthma specifically

requires (i.e. intensive margin).

For respiratory diseases in general, our IV estimate shows that a one µg/m3 decrease in PM10

pollution in utero and in the first year of life reduces the share of sufferers by one percentage

point (column 7). This finding is statistically significant at the 5% level. In addition, the lower

pollution level decreases the number of prescriptions in children diagnosed with any kind of

respiratory disease on average by about 0.42 over the five pre-school years (column 13). For

asthma specifically, we find a one percentage point reduction in the share of children newly

diagnosed with asthma (column 7). The prescription requirements of children suffering from

asthma, however, are not affected in a statistically significant way (column 13), which may

reflect that existing chronic diseases need constant treatment. Because the medication of

respiratory diseases comprises that of asthma and because we find clear treatment effects at

the intensive margin for respiratory diseases in general, our findings suggest that lower PM10

levels have positive effects on children’s respiratory health beyond asthma. While we cannot

positively identify these effects, we are able to make tentative inferences. For example, Beatty

and Shimshack (2014) find that air pollution affects upper respiratory infections such as

sinusitis and lower respiratory infections such as acute bronchitis or acute bronchiolitis.

Note that the estimated coefficients for the extensive and intensive margin confirm the overall

effect presented in column (1) of Table 4. For instance, for asthma the overall effect given by

the IV-coefficient in column (1) is approximated by the sum of the product of the extensive

margin coefficient in column (7) and the pre-treatment mean at the intensive margin in

column (13) and the product of the intensive margin coefficient in column (13) and the pre-

treatment mean at the extensive margin in column (7) (0.01× 11.32 + 0.24× 0.22 ≈ 0.17).27

Moreover, analyzing the health effects at the extensive and intensive margin for each year

27The formal relation is given as d(P/N)
d(x)

= d(P/S)
d(x)

×
S
N

+ d(S/N)
d(x)

×
P
S
, where P is the number of prescriptions

per child over the five pre-school years, N is the total number of children in the cohort and S is the share
of children in the cohort suffering from the disease.
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separately, we mostly observe initially latent effects that become prominent only after the

first year of life. This finding once more suggests that the health stock adjusts slowly.

Our estimates provide the first dose-response relationship between PM pollution in early-

life and health for the years of the “missing middle”. While our findings are not directly

comparable to related epidemiological and economic research, we provide context for their

magnitude in Appendix F. Moreover, we show that our results are robust to controlling

the false discovery rate following Benjamini and Hochberg (1995) for the 76 hypotheses we

test (Table A.11 in the Appendix).

Because the degree of suffering may vary substantially among children afflicted by respiratory

diseases, we deepen our analysis of heterogeneous treatment effects at the intensive margin by

Figure 5: Unconditional Quantile Treatment Effects of LEZs on Medication for Respiratory
Diseases

10th 25th 50th 75th 90th

−4

−2

0

Percentiles

Prescriptions

The figures present coefficients from unconditional quantile regressions (Firpo et al. 2009) at the level of the individual
child (Appendix E for further information). The dependent variable is the number of prescriptions for respiratory
diseases that accumulate over the first five years of a child’s life. The severity of suffering increases from left to right.
The bars indicate the 95% confidence interval.
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applying unconditional quantile regressions (Firpo et al. 2009) at the level of the individual

child. For computational tractability, the estimation is based on a reduced-form standard

DID.28 Our estimates in Figure 5 provide suggestive evidence that children who suffer worst

from respiratory diseases may benefit the most from LEZs. For example, with 2.8 fewer

prescriptions, point estimates for children in the 99th percentile indicate that they may

benefit nearly fives times as much from LEZs as the average sufferer with 0.58 prescriptions

(Table 4).29

5.3 Common Infant Health Measures

Health effects may be subtle if changes in pollution exposure are small and health effects

may be latent if the health stock only adjusts slowly. Our results indicate that this could

be the case in the context of LEZ implementation. To assess this hypothesis further, we

estimate the effect of a one µg/m3 decrease in PM10 exposure during the prenatal period on

fetal development. The outcome variables are postpartum stationary hospitalization due to

abnormal birth weight, unusual pregnancy duration, and fetal malnutrition.30 The estimated

treatment effects in Table 5 remain statistically insignificant. Given our findings for respi-

Table 5: Severe Effects of Exposure to PM10 During the Perinatal Period on Fetal Develop-
ment

IV Estimation

Hospital treatments per 1,000 children

developmental
disorder and
malnutrition

short gestation
period and low
birth weight

long gestation
period and high
birth weight

(1) (2) (3)

Mean PM10 (µg/m3) -0.03 1.50 0.12

(0.61) (2.49) (0.39)

Mean outcome 2.93 50.22 1.14

Weather controls x x x

Socio-economic controls x x x

This table reports coefficient estimates from three variants of the IV regression in Equation (4). The dependent variable
is the number of stationary hospital treatments of three different disorders linked to abnormal fetal development per
1,000 children. It is the composition-adjusted average for a birth county–birth quarter cell. All regressions include birth
county, birth state–birth quarter, LEZ wave–event time, LEZ wave–treated fixed effects, as well as weather and socio-
economic controls. The regressions are weighted by birth county–birth quarter cell size. Standard errors in parentheses
are clustered at the county level. The first stage F -statistic is 24.39. The sample size is 9,609.
* p < .05, ** p < .01, *** p < .001.

28For further information on the unconditional quantile estimator see Appendix E.
29Table A.3 in the Appendix features all coefficients and standard errors.
30As before, the sample comprises three cohorts born prior to and all cohorts born up to five years subsequent
to LEZ implementation. However, we exclude the first three cohorts born after implementation which are
only partially protected by LEZs in utero.
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ratory health, this indicates that infant health measures revolving around hospitalizations

immediately postpartum may be too coarse or too focused on the short-term to detect health

effects. Moreover, it might explain why prior studies on LEZs could not provide evidence for

improved infant health measured in the form of low birth weight (Gehrsitz 2017, Pestel and

Wozny 2019).

5.4 Effect Mechanisms

Different mechanisms may explain the effects of LEZs on pollution and health. First, overall

traffic could have decreased because of mode switching to public transport. Second, individ-

uals could have substituted their banned vehicles with “greener” vehicles. To assess these

two potential channels we draw on additional annual data at the county level provided by the

Federal Highway Research Agency (BAST) and the German Federal Motor Transport Au-

thority (KBA). The BAST data provides information on the number of passing vehicles on

all freeways (Autobahnen) and federal roads (Bundesstraßen) recorded by traffic monitors.

The KBA data provides information on the number of registered private and commercial

passenger vehicles by fuel type (diesel and gasoline) and emission class.

Table 6 shows that LEZ implementation has no statistically significant effect on the traffic

volume on an average day (column 1).31 However, it reveals a shift in the composition of the

vehicle fleet. As expected, we observe a significant 20% decrease (e0.18 − 1) in the number

of old diesel vehicles classified as Euro1 and lower that are banned by the LEZs (column 2).

Even vehicles with emission classes Euro2 through Euro4 decrease significantly (column 3).

The banned vehicles seem to be replaced by used gasoline vehicles with the emission standards

Euro2 through Euro4 (column 6). We find no significant changes in the number of the newest

diesel and gasoline cars (column 4 and 6).

In combination, these findings provide tentative evidence on the emission source of the policy-

induced PM10-reduction. Because overall traffic is not affected, particles from wear and tear

of brakes, tires, and road surfaces are unlikely to have changed upon LEZ implementation.

The “de-dieselization” of the vehicle fleet, however, suggests that after implementation the

same amount of traffic is caused by fewer dirty diesel vehicles and more cleaner gasoline

vehicles.32 Thus, diesel exhaust may be the main driver of the observed PM10-reductions.

31Given that LEZs usually cover city centers, it is possible that traffic from within the LEZ shifts to other,
unregulated areas of the county. While the data from BAST do not allow a closer examination, Wolff (2014)
and Gehrsitz (2017) provide evidence against this hypothesis.

32Diesel vehicles with Euro1 may emit up to 140 µg tailpipe PM10 per km. Gasoline vehicles with Euro2-4
emit about 1-2 µg PM10 per km according to HBEFA.
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Table 6: The Effect of LEZ Implementation on Traffic Volume and the Vehicle Fleet

Traffic
volume
(vehi-
cles/24
hours)

Diesel
vehicles
Euro1
and
worse

Diesel
vehicles
Euro2-4

Diesel
vehicles
Euro5
and

better

Gasoline
vehicles
Euro1

Gasoline
vehicles
Euro2-4

Gasoline
vehicles
Euro5
and

better

(1) (2) (3) (4) (5) (6) (7)

LEZ treatment -0.01 -0.18∗∗∗ -0.03∗ -0.01 0.04 0.02∗∗ -0.01

(0.02) (0.02) (0.01) (0.05) (0.06) (0.01) (0.15)

Sample size 5,584 6,514 6,514 5,418 6,514 6,514 5,418

Weather controls x x x x x x x

Socio-economic controls x x x x x x x

The dependent variable is the number of motor vehicles counted over the 24 hours of an average day in column (1),
the number of vehicles with a diesel engine in the emission class Euro1 or worse in column (2), in emission class Euro2
through Euro4 in column (3), and in emission class Euro5 or better in column (4), and the number of vehicles with
a gasoline engine in emission class Euro1 in column (5), in emission class Euro2 through Euro4 in column (6), and
in emission class Euro5 or better in column (7). The sample in column (4) and (7) is limited to the period after
2008 because the emission class Euro5 was only introduced in 2009. All outcome variables are transformed with the
inverse hyperbolic sine function. Accordingly, the percentage change in the outcome variable is given by (eβ − 1) · 100.
All regressions include county, state–year, LEZ wave–event time, LEZ wave–treated fixed effects, as well as weather
and socio-economic controls. The weather variables comprise only precipitation, temperature, and sunshine duration
because they are available for the entire period in which we observe the BAST and KBA data. The regressions are
weighted by the average cohort size. Standard errors in parentheses are clustered at the county level.
* p < .05, ** p < .01, *** p < .001.

Toxicological and epidemiological studies suggest that PM from diesel exhaust is particularly

harmful because it mainly consists of small particles that can penetrate far into the human

body (Krzyżanowski et al. 2005, HEI 2010).

5.5 Robustness Checks

Alternative Control Groups

Changes in the composition of the control group do not alter our results. Our baseline esti-

mates rely on a control group that comprises counties that implement LEZs at some point

and counties that violate EU PM10 standards but have no LEZ to date. Neither of the event-

study plots in Figure 3 or 4 point to differential trends in air pollution and health outcomes

across the treatment and control groups before policy introduction. This alleviates concerns

that LEZ adoptions are determined by any omitted local conditions or shocks that simulta-

neously affect air pollution and health outcomes. Nonetheless, we additionally restrict our

sample to counties that actually introduce LEZs to ensure that our results are not determined

by deliberate selection of counties into treatment. Recall that our full sample comprises 128

counties of which 65 actually implement LEZs; 49 between 2008 and 2012. Figure A.3 in the

Appendix shows event-study estimates based on the sample of the 65 ever-adopter counties.

Although the restriction to ever-adopters nearly slashes our sample in half, the event-study
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plots for the first stage and the reduced form continue showing well-behaved patterns that

are similar to those in Figure 3 and 4.

In our preferred DID setting, we observe cohorts born up to five years after treatment and

exclude all cohorts from counties that implement LEZs in this time period from the control

group in each of the stacked data sets. By choosing a five-year time window after treatment,

we are able to identify longer-run effects of LEZ introduction. However, the length of the time

window has implications for the composition of the control group. The shorter the window,

the more comparable are the control and the treatment group. This is because more control

units that introduce an LEZ with close proximity in time are eligible to the control group.

In Table A.4 in the Appendix we show that treatment effects remain robust when shortening

the time window after treatment sequentially from five to two years.

Spillover effects

Some of the counties in our control group directly neighbor counties implementing an LEZ.

These counties may be subject to positive or negative spillovers. This would bias our es-

timated effects on pollution and health. In particular, we are concerned that drivers may

change their routes to circumnavigate the LEZ such that traffic would merely be displaced. In

this case, LEZs would have worsened air pollution in neighboring counties and our estimates

would overestimate the policy‘s effectiveness. To address this concern, Table 7 replicates the

estimations from Tables 2 and 3. The only difference is that we include a binary variable

that takes on a value of 1 if a neighboring county implements an LEZ.33

We find negative but statistically insignificant policy effects in neighboring counties with

regard to either PM10 pollution, prescriptions for respiratory diseases, or asthma. In line

with these findings, Wolff (2014) and Gehrsitz (2017) show that treatment effects on pollu-

tion measuring stations outside of the LEZs are negative but insignificant. However, when

controlling for neighboring counties, the effect of LEZs on air pollution within LEZ counties

is −2.18 (Table 7) while our main estimate is −1.37 (Table 2). The reduced form effects of

LEZs on the number and costs of prescriptions are also higher when controlling for neigh-

boring counties compared to our preferred estimates in Table 3, the only exception being the

coefficient for the number of prescriptions for asthma. However, the IV effects remain almost

33In alternative tests, we exclude all neighboring counties from each treatment wave in the sample and account
for the number of neighboring LEZs when estimating spillover effects. In either case, the results remain
almost identical.
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Table 7: Air Pollution and Health Effects on Neighboring Counties

PM10 Pollution Number of prescriptions Costs of prescriptions

(in µg/m3) Respiratory
diseases

Asthma Respiratory
diseases

Asthma

(1) (2) (3) (4) (5)

[0.2cm] A. Reduced Form Estimation

LEZ effect on -2.18∗∗∗ -1.09∗∗∗ -0.24∗ -23.10∗∗∗ -14.34∗∗

LEZ-counties (0.53) (0.28) (0.12) (6.38) (5.39)

LEZ effect on -0.41 -0.16 -0.03 -1.56 -0.54

neighbor-counties (0.25) (0.13) (0.07) (3.56) (2.83)

B. IV Estimation

PM10 Pollution - 0.49∗∗ 0.11 10.34∗∗ 6.38∗

(0.15) (0.06) (3.47) (2.73)

Weather controls x x x x x

Socio-economic controls x x x x x

This table replicates the first stage regression in Table 2 and the reduced form and IV regressions in Table 3. In addition,
the treatment effect on counties adjacent to those that implement an LEZ is estimated. All regressions include birth
county, birth state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects, as well as weather and
socio-economic controls. The regressions are weighted by the birth county–birth quarter cell size. Standard errors in
parentheses are clustered at the county level. The sample size is 7,665. * p < .05, ** p < .01, *** p < .001.

unchanged given that the difference in the estimated effects on pollution and health are of

similar proportion.

While we cannot recover statistically significant effects on neighboring counties, the higher

magnitude of the reduced form treatment effects when controlling for neighboring counties

indicates that positive spillover effects are likely present. This conjecture is corroborated

when testing whether the policy-induced “de-dieselization” of the vehicle fleet identified in

Section 5.4 expands across county borders. In line with Wolff (2014), we find that neighboring

counties also exhibit a statistically significant reduction (−0.04∗, t = −2.06) in the number

of banned diesel cars classified as Euro1 and lower. This effect can be plausibly linked to the

fact that LEZs cover city centers where many workplaces and points of interest are located.

Individuals living in the neighboring counties have an incentive to ensure that their vehicles

allow access.

Overall, the findings alleviate concerns about overestimating and instead mark our main

analysis as conservative. In fact, when accounting for positive spillover effects the estimated

effectiveness of the policy could be considerably greater. While in Section 5.2 we estimate

that treatment reduces long-run pharmaceutical costs by approximately 26.5 million Euro in
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children born until 2017, the estimates in Table 7 suggest cost savings of 42.4 million Euro

(1, 836, 434 children × 23.10 Euro).

Accounting for Changes in Population Characteristics

A potential threat to identification in our IV design is that improved air quality might change

the composition of the cohorts in LEZ counties, leading to changes in the unobservable char-

acteristics of the children born there. This occurs if the implementation of LEZs changes how

individuals move in and out of the county which would invalidate the exclusion restriction.

For example, if LEZs either attract good health risks or induce bad health risks to locate

to other counties, improvements in child health may result from the changed socio-economic

structure of counties rather than from reduced pollution. While there exists no evidence in the

literature that LEZs affect the socio-economic structure of counties, we nevertheless report

a range of additional estimates that strengthen our confidence that the exclusion restriction

holds.

First, we analyze whether LEZ implementation significantly affects how individuals migrate in

and out of counties (Appendix Table A.5) and we conduct placebo tests (Appendix Table A.6).

To estimate treatment effects on mobility patterns we consider net migration in the overall

county population, net migration among families, and the fraction of AOK-insured children

moving out of their birth county. As placebo health outcomes we use hospital treatments of

injuries of the head, the arm, and of other body parts. All outcomes are typical health issues

in children and strongly correlated with socio-economic status (e.g. Faelker et al. 2000, Birken

and MacArthur 2004, Yates et al. 2006), while the air pollution literature does not indicate

a relationship. Table A.5 and Table A.6 in the Appendix do not reveal any statistically

significant policy effects on migration patterns and placebo outcomes. However, because

the coefficients are estimated imprecisely, we turn to another indirect test on changes in the

socio-economic composition of cohorts.

If unobservable population characteristics adjust gradually over time, comparing treated and

untreated cohorts will suffer less bias the closer they are in the time dimension. Therefore,

we reuse our previous robustness analysis in which we sequentially reduced the five-year

time window after treatment to two years. It is unlikely that population characteristics

change markedly within just two years. In the absence of gradual changes in unobserved

characteristics, the estimates for the limited samples should be close to those in the main
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analysis. Table A.4 in the Appendix shows that treatment effects remain indeed robust as

the post-treatment time window decreases.

A particular concern that remains unaddressed by the conducted tests is that LEZs could

impose an income shock on households that fail to meet the new standards. The policy

requires owners of non-compliant vehicles to invest in new cars or retrofitting. This could

come with extraordinary costs, potentially raising maternal stress during pregnancy and

thereby adversely affecting the long-term health of unborn children. Such a chain of effects

would counteract the LEZ-induced health benefits from air pollution reductions. It would

lead to downward bias in our estimates.

Effect on Other Air Pollutants

We use PM10 as a measure for PM exposure. By definition, PM10 includes particles below

10 µm, including the finer PM2.5 particles. We rely on PM10 because policymakers in Europe

are highly focused on this pollutant, and LEZs explicitly target PM10. Moreover, the EU only

set legally binding limits for PM2.5 in 2015. To evaluate whether LEZs also decrease PM2.5,

in a first robustness check, we resort to satellite-based PM2.5 estimates from van Donkelaar

et al. (2019).34 This data is available on a fine resolution grid (0.01 degrees) but only at

the annual level.35 Thus, we lose quarterly observations and the corresponding fixed effects.

Table 8 shows that the introduction of LEZs reduces mean PM2.5 concentrations by about

2%. The relatively modest magnitude compared to that for PM10 may reflect attenuation

bias from non-classical measurement error.

Our second robustness check is motivated by the fact that diesel vehicles emit significant

quantities of nitrogen oxides. In fact, road traffic emissions of nitrogen dioxide (NO2), which

serve as an indicator for different nitrogen oxides, are caused primarily by diesel vehicles.36

Therefore, we assess whether LEZ implementation also leads to notable changes in ambient

NO2 concentrations using our data from the German air monitoring network. Table 8 shows

that LEZs significantly reduce NO2 by about 3.27 µg/m3 (8.0%) on average. This finding is

consistent with the fact that LEZs are de facto bans of old diesel vehicles.

34Data from the German air monitoring network for PM2.5 is very limited. We have about 70% fewer obser-
vations for PM2.5 than for PM10.

35van Donkelaar et al. (2019) merge satellite measurements of aerosol optical depth with a particulate transport
model, and combine them with data from air monitoring stations to obtain estimates of PM2.5 for Europe.

36In Germany, about 72.5% of NO2 emissions from on-road traffic are from diesel vehicles (UBA 2017).
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Table 8: The Effect of LEZ Implementation on Different Pollutants

PM2.5 NO2 O3 SO2

(1) (2) (3) (4)

LEZ treatment -0.30∗ -3.27∗∗ -0.04 -0.12

(0.12) (1.07) (0.56) (0.25)

Mean outcome 15.51 40.81 39.27 4.3

First stage F-statistic 5.79 9.44 0.01 0.24

Weather controls x x x x

Socio-economic controls x x x x

This table reports coefficient estimates for the effect of LEZs on four different air pollutants. The dependent variable
is either the mean concentration of PM2.5, NO2, O3, or SO2 in µg/m3. All regressions include birth county, birth
state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects as well as weather and socio-economic
controls. The regressions are weighted by the birth county–birth quarter cell size. Standard errors in parentheses are
clustered at the county level. The sample size is 3, 466 in column (1) and 9, 609 in columns (2) through (4).
* p < .05, ** p < .01, *** p < .001.

Because LEZs reduce both PM and NO2, we cannot conclusively infer that PM10 determines

our observed health effects alone. Therefore, we caution against interpreting our IV results

as a causal estimate of the health effects of PM10 as a stand-alone pollutant. Instead, we

argue that our IV results represent health effects linked to air pollutants from diesel vehi-

cles. Similarly, other papers generalize their results to air pollution effects (c.p. Chay and

Greenstone 2003a, Currie and Neidell 2005, Arceo et al. 2016, Knittel et al. 2016, Deryugina

et al. 2019, Colmer et al. 2020). We subsequently show that the policy does not affect other

pollutants.

First, we examine whether LEZs have unintended effects on ozone (O3) concentrations. O3 is

negatively correlated with other local air pollutants, in particular with NO2 which is one of its

precursors. Therefore, we may be concerned that the implementation of LEZs increases O3

concentrations. However, Table 8 does not provide evidence for an unintended increase in O3.

Second, environmental regulation can have adverse impacts on firm output and productivity.

Therefore, we may be concerned that LEZs decrease industrial activity and, thereby, reduce

emissions of industrial pollutants, most notably SO2. To rule out that health effects are

subject to this channel, we also estimate effects for SO2 concentrations. Table 8 does not

reveal any statistically significant effects. Because transport only accounts for about 2% of

total SO2 emissions, this robustness check also serves as a placebo test, suggesting that our

first-stage results are not driven by confounding factors.
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Accounting for Treatment Differences After the First Year of Life

In our main analysis, we compare children who experience different pollution exposure levels

in utero and over their first year of life but the same exposure levels afterwards. A strict

implementation of this comparison requires that we restrict ourselves to cohorts born exactly

four quarters prior to LEZ implementation. However, to avoid limiting ourselves to a single

pre-treatment observation of the treated, we additionally include the two cohorts born five

and six quarters prior to treatment in our main analysis. The drawback of this approach is

that it neglects potentially different exposure levels in the second year of the children’s lives.

However, our event-study estimates in Figure 4 do not indicate additional benefits from

exposure at age one relative to exposure at age two and three. As a further robustness check,

we limit pre-treatment observations to cohorts born four quarters before implementation.

The results in Table A.7 in the Appendix show that our findings are robust with respect

to this sample restriction. The reduced form and the IV point estimates are very similar in

magnitude to the ones reported in Table 3.

Accounting for Increases in Policy Stringency

Our treatment estimate identifies the effect of LEZ introduction. Upon implementation, LEZs

ban the most emission-intensive diesel vehicles with tailpipe emission category Euro1 or lower

(no sticker). However, LEZs become more stringent over time so that they eventually also ban

vehicles with Euro2 (red sticker) and Euro3 (yellow sticker) standards. This gradual adoption

of more stringent restrictions raises the concern that children born after LEZ implementation

benefit from cleaner air for longer throughout their pre-school years than children born just

before LEZ implementation. This would imply that children in our pre- and post-treatment

comparison differ not only in exposure during their in utero period and their first year of

life. Reassuringly, our event-study results for the number and the costs of prescriptions in

Figure 4 provide no evidence that differences in exposure after age one have any additional

health benefits. If there were differential benefits from exposure beginning at age two or three

relative to exposure at age one, we would expect positive pre-treatment coefficients. Instead,

we observe statistically insignificant coefficient estimates close to zero. As a further robustness

check we enrich our event study specification for prescriptions in Equation C.1 by eight

additional binary variables:
∑5

y=2 f
Euro2
cy +

∑5
y=2 f

Euro3
cy , where fEuro2

cy (fEuro3
cy ) is equal to

one if Euro2 (Euro3) vehicles are banned in year of life y of cohort c. These dummy variables

should absorb potential additional health benefits in year of life two through five linked to
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the two more stringent LEZ regimes banning Euro2 and Euro3 vehicles, respectively. If there

were additional benefits from Euro2 and 3 vehicle bans, we would expect post-treatment

coefficients to decrease in event time.37 However, Figure A.4 in the Appendix exhibits very

similar patterns to our event study in Figure 4 that lacks the additional dummies capturing

changes in stringency. This suggests there are no additional benefits from the increasing

stringency of LEZs.

Two-way Fixed Effect DID Estimation

We also estimate the two-way fixed effect equivalent of our stacked difference-in-differences

estimator. The coefficient estimates in Table A.8 show similar, robust effects of PM10 on child

health. However, they tend to be lower in magnitude. For instance, the IV coefficient for

respiratory diseases is 0.55 in the stacked DID estimation in column (2) of Table 3 while it is

only 0.39 in the two-way fixed effect DID estimation in Table A.8. We expect that part of this

attenuation stems from the weighted aggregation of heterogeneous treatment effects revealed

in Goodman-Bacon (2018). It may also indicate violations in common trends that result

from including already-treated units in the control groups for the newly treated, although

they are on differential trends from prior treatment. Also note that it is impossible in the

two-way fixed effect setup to include fixed effects that absorb implementation wave-specific

unobservables in event-time and time-invariant differences between treatment and control

groups within and across implementation waves.

Functional form

We also test the robustness of our results with respect to the functional form. The outcome

variables in our baseline specifications are in levels. Using per capita prescriptions as outcome,

we implicitly assume that prescriptions per child would have evolved with the same absolute

changes in the absence of treatment. However, if prescriptions per child changed at the

same rate in the absence of any LEZ intervention instead, the parallel trends assumption

would be violated. Although our event-study plots do not reveal pre-trends that differ in a

statistically significant manner, we re-estimate our main results with logged outcome variables

in Table A.9 in the Appendix. We find that the estimated relative effects are nearly identical

to the ones derived from Table 3.

37We do not expect shifts in post-treatment patterns because the timing of Euro2 and 3 vehicle bans varies
across counties relative to the implementation date.
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6 Conclusion

This paper provides a quasi-experimental study that links moderate improvements in air

quality in a single year from banning emission-intensive vehicles to substantial health benefits

across children’s pre-school years. The context of our study are urban counties in Germany,

where motor vehicles are a major source of air pollution. Yet, average pre-treatment pollution

levels are low. These characteristics are widespread in Europe, so that our results are most

likely generalizable. Exploiting unique public health insurance data at the patient level

on one million children, we examine whether individuals born just before and just after

reductions in PM concentrations caused by the adoption of Low Emission Zones exhibit

persistent differences in rarely studied medication use up to five years after treatment. We

focus on children’s pharmaceutical prescriptions as a sensitive, real-time health measure that

overcomes the challenge of capturing health effects that may be both subtle if changes in

pollution exposure are moderate and initially latent if the health stock adjusts slowly.

We present strong evidence that the cumulative number and the cumulative costs of pharma-

ceutical prescriptions over early childhood decrease significantly after LEZ implementations

improve air quality. For instance, the number of prescriptions for asthma decreases by 6.8%

and their costs decrease by about 8.0% on average for every one µg/m3 reduction in PM10

concentration. Our findings provide strong support for the notion of health as a stock that

changes relatively slowly over time. It is only from the second year of life that the initially

latent health response materializes in fewer children diagnosed with asthma and, thus, fewer

total prescriptions. Contemporaneous reductions in prescriptions of asthma medication ac-

count for less than 6% of the cumulative savings over the first five years of life. This highlights

that estimates of contemporaneous pollution impacts may substantially underestimate ‘fully

formed’ health benefits. We identify economically meaningful cost savings for public health

insurers. With 1, 836, 434 children protected by Low Emission Zones in utero and during

their first year of life, treatment reduces costs for prescriptions in children born between 2008

and 2017 for respiratory diseases by about 26.5 million Euros over their pre-school years, or

42.4 million Euros when accounting for positive spillover effects. Because we compare chil-

dren who differ only in their pollution exposure during their in utero period and their first

year of life, these cost savings originate from a very short period with slightly improved air

quality.
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Our results inform contentious policy debates. Across Europe, vintage- and fuel-specific driv-

ing bans are a widespread and ever more stringent policy intervention. Major metropolitan

areas, including Paris, Madrid, and Rome, are even committed to full diesel bans by 2025.

Yet, opponents of driving restrictions prominently question whether a narrow focus on diesel

bans is a rational choice to effectively improve air quality and public health. Our study seeks

to provide first answers by quantifying an important fraction of the reduction in the public

health burden accomplished by LEZs - Germany’s flagship policy at the local level to comply

with air quality standards set by the EU clean air directives. Finding meaningful health im-

provements, even at low pre-treatment pollution levels, suggests that vintage-specific driving

bans that target particularly old and emission intensive diesels can have large and long-lasting

positive effects on children’s respiratory health in many settings.

Our study cannot assess whether additional restrictions for newer vehicles would yield further

health improvements. This is an important policy question for future research. Another

research question is how treatment effects progress through life. In our study, health effects

are latent in the first year before materializing. It is far from obvious whether health effects

persist permanently and how they impede cognitive or non-cognitive skill formation. To

address the progression of effects, we would need to follow the children in our study and

rerun our estimations at later points in time, for example at the end of elementary school, at

the end of high school, and some years into their professional lives.
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A Additional Figures and Tables

Figure A.1: Event-study Estimates of LEZ Effects - Excluding All Already Treated Counties
from the Control Group

(a) PM10
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The figure presents event-study coefficients that show how LEZs affect PM10 concentration and the medication of
respiratory diseases for a sample that excludes all already treated counties from the control group. The dependent
variable is the mean quarterly PM10 level (Panel a), the number (Panel b) or the costs (Panel c) of prescriptions that
accumulate over the first five years of a child’s life on average. The grey shaded area indicates the pre-treatment period.
The coefficient in the year prior to implementation is normalized to zero. The regression includes county fixed effects,
state–quarter fixed effects, LEZ wave–event time fixed effects, LEZ wave–treated fixed effects as well as weather and
socio-economic controls. It is weighted by the county–quarter cell size. Standard errors are clustered at the county
level. Confidence intervals refer to the 5% level of significance.
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Figure A.2: Event-study Estimates of LEZ Effects on Medication for Asthma
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−3 −2 −1 0 1 2 3 4

−0.60

−0.40

−0.20

0.00

0.20

before treatment with treatment

Years relative to LEZ introduction

treatment effect

(b) Costs of prescriptions

−3 −2 −1 0 1 2 3 4

−20.00

−10.00

0.00

10.00

before treatment with treatment

Years relative to LEZ introduction

treatment effect

The figure presents event-study coefficients that show how LEZs affect the medication of asthma depending on the
time distance between birth and LEZ implementation in years. The dependent variable is the number (Panel a) or the
costs (Panel b) of prescriptions that accumulate over the first five years of a child’s life on average. The grey shaded
area indicates the pre-treatment period. The coefficient in the year prior to implementation is normalized to zero. The
regression includes county fixed effects, state–quarter fixed effects, LEZ wave–event time fixed effects, LEZ wave–treated
fixed effects as well as weather and socio-economic controls. It is weighted by the county–quarter cell size. Standard
errors are clustered at the county level. Confidence intervals refer to the 5% level of significance.
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Figure A.3: Event-study Estimates Excluding the Never Treated
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The figure presents event-study coefficients that show how LEZs affect PM10 pollution and the medication of respiratory
diseases for a sample that excludes all never treated counties from the control group. The dependent variable is the
average PM10 level in µg/m3 (Panel a), the number (Panel b), or the costs (Panel c) of prescriptions that accumulate
over the first five years of a child’s life on average. We reduce the time window that defines our control group to 4 years
post-treatment and 3 years pre-treatment to avoid that the control groups for the later treated become very small. The
grey shaded area indicates the pre-treatment period. The coefficient in the year prior to implementation is normalized
to zero. The regression includes county fixed effects, state–quarter fixed effects, LEZ wave–event time fixed effects, LEZ
wave–treated fixed effects as well as weather and socio-economic controls. It is weighted by the county–quarter cell size.
Standard errors are clustered at the county level. Confidence intervals refer to the 5% level of significance.
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Figure A.4: Event-study Estimates of LEZ Effects - Accounting for Increases in Policy Strin-
gency
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The figure presents event-study coefficients that show how LEZs affect the medication of respiratory diseases based
on equation C.1 enriched by eight additional dummies

∑5
y=2 f

Euro2
cy +

∑5
y=2 f

Euro3
cy , which should absorb potential

additional health benefits in life years two to five linked to the two more stringent LEZ regimes banning Euro 2 and
Euro 3 vehicles, respectively. The dependent variable is either the number (Panel a) or the costs of prescriptions (Panel
b) that accumulate over the first five years of a child’s life on average. The grey shaded area indicates the pre-treatment
period. The coefficient in the year prior to implementation is normalized to zero. The regression includes county fixed
effects, state–quarter fixed effects, LEZ wave–event time fixed effects, LEZ wave–treated fixed effects as well as weather
and socio-economic controls. It is weighted by the county–quarter cell size. Standard errors are clustered at the county
level. Confidence intervals refer to the 5% level of significance.
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Table A.1: Event-study Estimates – The Effect of LEZ Implementation on PM10 Concentra-
tions and Health Outcomes by Year

PM10 Pollution
(µg/m3)

Number of
prescriptions

Costs of
prescriptions

(1) (2) (3)

LEZ treatment (θ = −2)) 0.026 -0.079 -3.094

(0.411) (0.137) (3.659)

LEZ treatment (θ = −1)) 0.007 0.034 -0.455

(0.284) (0.116) (3.694)

LEZ treatment (θ = 1)) -0.896∗∗∗ -0.304∗ -8.006∗∗

(0.254) (0.122) (2.969)

LEZ treatment (θ = 2)) -1.269∗∗∗ -0.480∗∗ -10.13∗

(0.249) (0.166) (3.969)

LEZ treatment (θ = 3)) -1.613∗∗∗ -0.674∗∗∗ -14.897∗∗∗

(0.289) (0.189) (3.852)

LEZ treatment (θ = 4)) -2.040∗∗∗ -0.675∗∗∗ -12.34∗∗

(0.387) (0.17) (3.967)

LEZ treatment (θ = 5)) -1.929∗∗∗ -0.788∗∗∗ -14.192∗∗

(0.388) (0.200) (4.243)

Weather controls x x x

Socio-economic controls x x x

This table reports estimated event-study coefficients underlying Figure 3 and Figure 4. The dependent variables are
the average PM10 level in µg/m3, the number or the costs in Euro of prescriptions that accumulate over the first
five years of a child’s life on average, respectively. The dependent variables are composition-adjusted for the birth
county–birth quarter cell. All regressions include birth county, birth state–birth quarter, LEZ wave–event time, and
LEZ wave–treated fixed effects as well as weather and socio-economic controls. The regressions are weighted by the birth
county–birth quarter cell size. They are based on an expanded pre-treatment window including all observations up to
three years prior to LEZ implementation. Furthermore, observations from the 3 quarters before and the 3 quarters after
LEZ implementation are included. The resulting sample size is 19, 290. Standard errors in parentheses are clustered at
the county level.* p < .05, ** p < .01, *** p < .001.

Table A.2: Anderson Rubin Confidence Sets

A. Number of prescriptions B. Costs of prescriptions (€)

Respiratory diseases

CSAR [0.25 - 1.03] [0.28 - 1.04] [3.01 - 19.31] [4.07 - 22.07]

FAR 15.11 16.72 9.41 11.10

p-value 0.0001 0.0000 0.0022 0.0009

Asthma

CSAR [0.06 - 0.33] [0.06 - 0.34] [1.05 - 11.44] [1.20 - 13.48]

FAR 8.83 9.04 6.07 6.18

p-value 0.0030 0.0026 0.0138 0.0129

Weather controls x x x x

Socio-economic controls x x

This table reports weak-instrument-robust inference for the IV-estimates in Table 3. The AR-confidence sets (CSAR)
provide robust confidence intervals with a coverage probability of 95%. The F-distributed AR-statistic (FAR) and its
p-value test the null hypothesis that the coefficient of the endogenous variable PM10 in the structural equation is equal
to zero.
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Table A.3: Unconditional Quantile Regression Estimates of the Effect of Early-Life Exposure
to LEZs on Respiratory Prescriptions throughout Childhood

(1) (2) (3) (4) (5) (6) (7)
Q-5 Q-10 Q-15 Q-20 Q-25 Q-30 Q-35

LEZ treatment −0.166∗ −0.310∗∗ −0.406∗∗ −0.470∗∗∗ −0.514∗∗∗ −0.547∗∗∗ −0.597∗∗∗

(0.065) (0.106) (0.129) (0.135) (0.146) (0.161) (0.176)

(8) (9) (10) (11) (12) (13) (14)
Q-40 Q-45 Q-50 Q-55 Q-60 Q-65 Q-70

LEZ treatment −0.662∗∗∗ −0.746∗∗∗ −0.814∗∗∗ −0.844∗∗∗ −0.853∗∗∗ −0.861∗∗∗ −0.922∗∗∗

(0.186) (0.197) (0.213) (0.228) (0.239) (0.244) (0.246)

(15) (16) (17) (18) (19) (20) (21)
Q-75 Q-80 Q-85 Q-90 Q-95 Q-97.5 Q-99

LEZ treatment −1.039∗∗∗ −1.146∗∗∗ −1.284∗∗∗ −1.498∗∗∗ −1.707∗∗∗ −1.899∗∗ −2.848∗∗

(0.261) (0.292) (0.314) (0.369) (0.480) (0.730) (0.969)

This table reports regression coefficients from unconditional quantile regressions. The dependent variable is the number
of prescriptions for respiratory diseases that accumulate over the first five years of a child’s life. All regressions include
birth county and birth state–birth quarter fixed effects. Standard errors in parentheses are clustered at the county level.
The sample size is 556, 898. * p < .05, ** p < .01, *** p < .001.

51



Table A.4: The Effect of Early-Life PM10 Exposure – Different Post-Treatment Time Win-
dows

(1) (2) (3)

∆ = 2 ∆ = 3 ∆ = 4

A. First Stage Estimation

Mean PM10 -1.14∗∗∗ -1.53∗∗∗ -1.55∗∗∗

(0.3) (0.3) (0.3)

Mean outcome 26.44 26.44 26.44

B. Reduced Form Estimation

Respiratory diseases -0.44∗∗ -0.50∗∗ -0.62∗∗∗

(0.16) (0.17) (0.17)

Mean outcome 14.14 14.14 14.14

Asthma -0.16∗ -0.21∗∗ -0.22∗∗

(0.07) (0.07) (0.07)

Mean outcome 2.5 2.5 2.5

C. IV Estimation

Respiratory diseases 0.39∗ 0.32∗ 0.40∗∗

(0.16) (0.13) (0.12)

Mean outcome 14.14 14.14 14.14

Asthma 0.14∗ 0.13∗∗ 0.14∗∗

(0.07) (0.05) (0.05)

Mean outcome 2.5 2.5 2.5

First stage F-statistic 14.50 25.92 27.19

Sample size 6,922 8,727 9,575

Weather controls x x x

Socio-economic controls x x x

This table reports coefficient estimates for shorter post-treatment windows. The time window increases sequentially
from two years (column 1) to four years (column 3). Panel A presents coefficients from first stage, Panel B the
coefficients from reduced form and Panel C coefficients from IV estimations. The dependent variable in Panel A is the
PM10 concentration; in panel B and C it is the number of prescriptions for respiratory diseases in general or asthma
specifically that accumulate over the first five years of a child’s life on average. The dependent variable in Panel B and
C is composition-adjusted for the birth county–birth quarter cell. All regressions include birth county, birth state–birth
quarter, LEZ wave–event time, and LEZ wave–treated fixed effects as well as weather and socio-economic controls. The
regressions are weighted by the birth county–birth quarter cell size. Standard errors in parentheses are clustered at the
county level.* p < .05, ** p < .01, *** p < .001.
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Table A.5: The Effect of LEZ Implementation on Migration Patterns

(1) (2) (3)

Total net
migration

Net migration
among families

Movers among
AOK children

LEZ treatment 0.66 -0.07 -0.56

(0.47) (0.55) (0.33)

Mean outcome 2.93 -1.86 9.44

Weather controls x x x

Socio-economic controls x x x

This table reports coefficient estimates for the effect of LEZ implementation on county migration. The dependent
variable in column (1) is net migration per 1,000 inhabitants of the total county population. The dependent variable in
column (2) is net migration per 1,000 inhabitants of the total county population younger than 18 years old and 30 to 50
years old. The dependent variable in column (3) is the fraction of AOK-insured children moving out of the birth county
after their first and before their sixth year of life in percent. All columns include birth county, birth state–birth quarter,
LEZ wave–event time, and LEZ wave–treated fixed effects as well as weather and socio-economic controls. Observations
of LEZ counties in the three quarters prior and subsequent to implementation are included. The regressions are weighted
by the birth county–birth quarter cell size. Standard errors are clustered at the county level and are in parentheses.
The sample size is 12, 865. * p < .05, ** p < .01, *** p < .001.

53



Table A.6: The Effect of Early-Life PM10 Exposure on Placebo Health Outcomes (per 1,000
children)

(1) (2) (3)

Arm injuries Head injuries Several injuries

A. Reduced Form

LEZ treatment 0.58 -0.97 -0.09

(1.04) (4.64) (0.11)

Mean outcome 5.7 68.81 0.12

B. IV Estimation

PM10 mean -0.43 0.71 0.06

(0.75) (3.39) (0.08)

Mean outcome 5.7 68.81 0.12

Weather controls x x x

Socio-economic controls x x x

This table reports reduced form estimates (Panel A) and IV estimates (Panel B) for three different placebo health
outcomes. The dependent variable is either the number of stationary hospital treatments of arm injuries, head injuries
or injuries involving several body parts, that accumulate over the first five years of a child’s life on average and per
1,000 children. The dependent variable is composition-adjusted for the birth county–birth quarter cell. All regressions
include birth county, birth state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects as well as
weather and socio-economic controls. The regressions are weighted by the birth county–birth quarter cell size. Standard
errors in parentheses are clustered at the county level. The sample size is 9, 609.* p < .05, ** p < .01, *** p < .001.
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Table A.7: The Effect of Early-Life PM10 Exposure when limiting pre-treatment observations
to cohorts born four quarters before implementation

A. Number of prescriptions B. Costs of prescriptions (€)

(1) (2) (3) (4)

Reduced Form Estimation

Respiratory diseases -0.63∗∗ -0.78∗∗ -10.85∗ -16.02∗

(0.21) (0.25) (4.70) (6.70)

Mean outcome 13.94 13.94 213.11 213.11

Asthma -0.30∗∗∗ -0.31∗∗ -9.29∗∗ -13.12∗∗

(0.08) (0.1) (3.53) (4.87)

Mean outcome 2.46 2.46 71.96 71.96

IV Estimation

Respiratory diseases 0.49∗ 0.49∗ 8.48 10.2∗

(0.22) (0.21) (4.51) (5.13)

Mean outcome 13.94 13.94 213.11 213.11

Asthma 0.23∗ 0.20∗ 7.26∗ 8.35∗

(0.09) (0.08) (3.59) (3.9)

Mean outcome 2.46 2.46 71.96 71.96

First stage F-statistic 9.05 12.75 9.05 12.75

Weather controls x x x x

Socio-economic controls x x

This table reports reduced form estimates (Panel A) and IV estimates (Panel B) for health effects when we use only
cohorts born four quarters prior to LEZ implementation as pre-treatment observations of the treated. The dependent
variable is the number of prescriptions that accumulate over the first five years of a child’s life on average. It refers to
either prescriptions for respiratory diseases in general or asthma specifically. The dependent variable is composition-
adjusted for the birth county–birth quarter cell. All regressions include birth county, birth state–birth quarter, LEZ
wave–event time, and LEZ wave–treated fixed effects. Weather and socio-economic controls are added sequentially
moving from left to right. The regressions are weighted by the birth county–birth quarter cell size. Standard errors in
parentheses are clustered at the county level. The sample size is 7, 893.* p < .05, ** p < .01, *** p < .001.
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Table A.8: The Effect of Early-Life PM10 Exposure on Medication of Respiratory Diseases
throughout Early Childhood - Two-Way Fixed Effect Estimation

A. Number of prescriptions B. Costs of prescriptions (€)

(1) (2) (3) (4)

Reduced Form Estimation

Respiratory diseases -0.50∗∗∗ -0.52∗∗ -9.13∗∗ -11.83∗∗

(0.15) (0.18) (2.97) (3.80)

Mean outcome 14.14 14.14 218.62 218.62

Asthma -0.18∗∗ -0.23∗∗ -6.04∗∗ -8.43∗∗

(0.06) (0.07) (2.14) (2.67)

Mean outcome 2.5 2.5 73.27 73.27

IV Estimation

Respiratory diseases 0.41∗∗ 0.39∗ 7.53∗ 8.84∗∗

(0.16) (0.15) (3.03) (3.32)

Mean outcome 14.14 14.14 218.62 218.62

Asthma 0.15∗∗ 0.17∗∗ 4.99∗ 6.30∗∗

(0.06) (0.06) (2.09) (2.35)

Mean outcome 2.5 2.5 73.27 73.27

First stage F-statistic 13.26 17.23 13.26 17.23

Weather controls x x x x

Socio-economic controls x x

This table replicates our main results in Table 3 using two-way fixed effect estimation. The dependent variable is either
the number (panel A) or the costs in Euro (panel B) of prescriptions that accumulate over the first five years of a child’s
life on average. It refers to either prescriptions for respiratory diseases in general or asthma specifically. In each panel,
coefficients from reduced form and IV estimations are presented. The dependent variable is composition-adjusted for
the birth county–birth quarter cell. All regressions include birth county and birth state–birth quarter fixed effects.
Weather and socio-economic controls are added sequentially moving from left to right. The regressions are weighted by
the birth county–birth quarter cell size. Standard errors in parentheses are clustered at the county level. The sample
size is 2, 904.* p < .05, ** p < .01, *** p < .001.
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Table A.9: The Effect of Early-Life PM10 Exposure on Medication of Respiratory Diseases
throughout Early Childhood - Logged outcomes

A. Number of prescriptions B. Costs of prescriptions (€)

(1) (2) (3) (4)

Reduced Form Estimation

Respiratory diseases -0.05∗∗ -0.06∗∗∗ -0.06∗∗ -0.07∗∗

(0.02) (0.02) (0.02) (0.02)

Mean outcome 14.14 14.14 218.62 218.62

Asthma -0.09∗∗ -0.10∗∗ -0.11∗ -0.12∗

(0.03) (0.04) (0.05) (0.05)

Mean outcome 2.5 2.5 73.27 73.27

IV Estimation

Respiratory diseases 0.04∗∗ 0.04∗∗ 0.05∗∗ 0.05∗

(0.01) (0.01) (0.02) (0.02)

Mean outcome 14.14 14.14 218.62 218.62

Asthma 0.07∗∗ 0.07∗ 0.08∗ 0.09∗

(0.02) (0.03) (0.04) (0.04)

Mean outcome 2.5 2.5 73.27 73.27

First stage F-statistic 14.25 20.14 14.25 20.14

Weather controls x x x x

Socio-economic controls x x

This table replicates our main results in Table 3 using logged outcome variables. The dependent variable is either the
number (panel A) or the costs in Euro (panel B) of prescriptions that accumulate over the first five years of a child’s
life on average. It refers to either prescriptions for respiratory diseases in general or asthma specifically. In each panel,
coefficients from reduced form and IV estimations are presented. The dependent variable is composition-adjusted for
the birth county–birth quarter cell. All regressions include birth county, birth state–birth quarter, LEZ wave–event
time, and LEZ wave–treated fixed effects. Weather and socio-economic controls are added sequentially moving from left
to right. The regressions are weighted by the birth county–birth quarter cell size. Standard errors in parentheses are
clustered at the county level. The sample size is 9, 609.* p < .05, ** p < .01, *** p < .001.
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Table A.10: The Effect of LEZ Implementation on PM10 Concentrations - no IDW interpo-
lation

First Stage Estimation

PM10 Pollution (in µg/m3)

(1) (2)

LEZ treatment -1.30∗∗ -1.50∗∗∗

(0.41) (0.40)

Mean outcome 27.26 27.26

First stage F-statistic 10.27 14.12

Weather controls x x

Socio-economic controls x

This table replicates our main results in Table 2 when we do not interpolate the pollution data but include only counties
with own measuring stations in the sample. The dependent variable is the quarterly mean PM10 concentration in a
given county and year in µg/m3. All columns include birth county, birth state–birth quarter, LEZ wave–event time, and
LEZ wave–treated fixed effects. Weather and socio-economic controls are added sequentially moving from left to right.
The regressions are weighted by the birth county–birth quarter cell size. Standard errors in parentheses are clustered
at the county level. The sample size is 8, 286. * p < .05, ** p < .01, *** p < .001.
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B Composition-Adjusted Health Outcomes

For the estimation of Equation (4), health outcomes observed at the level of the individual

child (Hict) are aggregated to the cohort level (Hct). We define a cohort by its birth county c

as well as its birth year and birth quarter t. However, additional information at the level of

the individual such as the individual’s sex or the precise location of residence within a county

at the five-digit zip code is available. To exploit this information, we conduct auxiliary

regressions that are commonly used in the literature (e.g. Currie et al. 2015). In a first

step, we regress the children’s health outcomes on individual-level covariates as well as birth

county–birth quarter fixed effects:

Hict = I ′ictζ + φct + ξict (B.1)

where the dependent variable Hict is the accumulated health outcome over the first five years

of life for individual i born in county c and year and quarter t. I ′ict is a vector of individual-

level covariates that includes gender and location of residence within a county at the five-digit

zip code. Additionally, Equation (B.1) controls for a full set of birth county–birth quarter

indicators φct. Their coefficient estimates φ̂ct are orthogonal to the covariates at the individual

level. In other words, they give the average health outcomes for a birth county–birth quarter

cohort after controlling for gender and residence. In line with Isen et al. (2017), we refer to

the predicted cohort means obtained by this approach as composition-adjusted. We use the

composition-adjusted outcomes as the dependent variable in Equation (4).

The use of composition-adjusted group means is asymptotically equivalent to using the indi-

vidual level data (e.g. Donald and Lang 2007) if the sampling variance of the composition-

adjusted group estimates is taken into account. In accordance with other studies (e.g. Angrist

and Lavy 2009, Albouy 2009, Currie et al. 2015, Isen et al. 2017), we estimate all regres-

sions by weighted least squares using the number of individuals in each birth county–birth

quarter cell as weights. This is assumed to be a reasonable approximation of weighting by

inverse sampling variance. Compared to running regressions on the individual level data, the

estimation of models collapsed to the level of variation ensures that tests are of correct size

given serial correlation in the within-group errors (Isen et al. 2017). Additionally, it requires

substantially less computational power.
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C Stacked DID Design

C.1 Control Group Definition

In our main analysis our control group only holds LEZ-counties that implement the policy

measure at least four years before or five years after the treatment wave for which they serve

as control units. The selection of this exclusion window results from two considerations.

First, we expect that the LEZ treatment effect on PM concentrations levels off one year after

implementation. Throughout the first year after implementation treated counties may be on

a differential trend and are therefore not suited to serve as control units. Second, we want to

have a balanced control group. Given our choice of an event time window of up to three years

prior and five years subsequent to LEZ implementation in the event study specification, we

thus determine the exclusion window to start one year earlier (-4 to +5 years). For instance,

the county Mainz serves as a control unit for Mannheim because it implements its own LEZ

more than five years later, in 2013. Likewise, Mannheim serves as a control unit for the county

Hagen because it implemented its own LEZ already four years earlier (see Figure 1).

The above selection is subject to an important trade-off. The longer the event time window,

the longer we can observe deviations from the parallel trend assumption and effects of LEZs

post implementation. The shorter the time window the higher the statistical power and the

higher the number of LEZ adopters that serve as control observations. Our preferred choice

of the event time window is based on the dates of the implementations of the LEZs, the

availability of data, and the observation of cumulative benefits over five years. To rule out that

this choice drives our results, we provide estimates for alternative time-window specifications

in the robustness analysis. We also robustify our assumption, that the treatment effect on

PM concentrations levels off one year after implementation. Our results are almost identical

if we exclude all already-treated from the control group to allow for persistent dynamics (see

Figure A.1).
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C.2 Event-Study Specification

We estimate event-study specifications of our stacked DID model. The first stage becomes

Pctj =
∑

υ

θυ(Treatedcj ×Dυ
tj) +

∑

τ

δτDτ
tj + λjDcj +W ′

ctjρ+X ′

ct̄jπt + γc + ηst + ωctj (C.1)

with υ = ⌊
τ

4
⌋

The parameter of interest is θυ. It captures the marginal effect of LEZs on the mean PM10

concentration in year υ prior or post to treatment. We set θ0 = 0 so that the year prior to LEZ

implementation is the reference category. The event-study figures presented in this paper plot

the θυ estimates in event time. The main difference between the standard two-way fixed effect

event study and our dynamic estimator in Equation (C.1) is that we eliminate time-invariant

unobservables both within and between LEZ implementation waves by including Dcj as well

as wave-specific event-time trends that do not appear in calendar time by includingDτ
tj .

We also estimate an event study specification that explores the treatment effect dynamics for

the long-run health outcomes. Replacing the dependent variable in Equation (C.1) with Hctj

results in a reduced-form event study model. This specification allows us to examine how

LEZs affect long-run health depending on a child’s age at the time of exposure. Because the

year prior to LEZ implementation is the reference category, we essentially test for differential

effects of exposure relative to exposure at age one and older.

D Data

D.1 Control Variables

The following table gives an overview of the county-specific control variables used in the

estimations. We observe cohorts over a five-year period and we include weather controls for

all of these years. The 2007 values of socio-economic demographic controls are categorized

in terciles and interacted with year-quarter dummies in the regressions.
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Variable Definition Source

Weather Controls

Precipitation Sum of the precipitation height in mm DWD

Sunshine Total sunshine duration in hours DWD

Temperature Mean, minimum and maximum temperature, DWD

12 separate terms that count the number of days with

temperatures above 0, 5, 10, 15, 20, 25, 29, 30, 31, 32, 33 and

34 degree Celsius

Wind Average windspeed 10 m above ground in m/s DWD

Relative humidity Relative humidity at 2 m above ground in % DWD

Pressure Mean vapor pressure in hpa DWD

Socio-economic Demographic Controls

Average age Average age of the county population BBSR

Population density Residents per km2 BBSR

Migration in People moving out of county per 1,000 inhabitants BBSR

Migration out People moving into county per 1,000 inhabitants BBSR

Moving AOK children Share of AOK-insured children moving out of county WIdO

Women share Female to male population ratio BBSR

Share of foreigners Percentage of people without German citizen-ship BBSR

Women share in foreigners Share of female foreigners among foreigners BBSR

Employment Employees subject to social insurance contributions per 100 in-

habitants of working age

BBSR

Gross Value Added (GVA) Total gross value added in 1,000 Euro per employed person BBSR

GVA share in primary sector Share of gross value added in the primary sector in % BBSR

GVA share in tertiary sector Share of gross value added in the tertiary sector in % BBSR

Household income Average household income in Euro per inhabitant BBSR

Housing transfers Number of households receiving housing benefits, per 1,000

households

BBSR

Education Share of students graduating with higher education entrance

qualification

BBSR

Marriages Marriages per 1,000 inhabitants 18 years and older BBSR

Share of young mothers Births of mothers in the age group 15 to under 20 years per

1,000 women in the age group

BBSR

Share of older mothers Births of mothers 40 years and older per 1,000 women aged 40

to under 45

BBSR
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D.2 Aggregating the Pollution Data

We aggregate the pollution data by averaging the daily PM10 readings of all measuring

stations in a county and quarter. We weight each observation by the number of station

readings in that period (c.p. Chay and Greenstone 2003a, Isen et al. 2017).

In the few counties in our sample without measuring stations, we interpolate pollution expo-

sure from surrounding stations using Inverse Distance Weighting (IDW). Following Karlsson

and Ziebarth (2018), we consider all stations within a 60 km (37.5 miles) radius of the

county’s centroid. We then calculate the weighted average using both the number of station

measurements and the inverse distance of the monitors to the centroid as weights.

To avoid fluctuations in pollution levels linked to stations not being active regularly, we gen-

erate the quarterly averages including only stations with at least 60 measurements. Moreover,

to avoid bias from interpolating pollution levels from treated to nearby untreated counties,

we only use stations outside of LEZ counties for the interpolation. We show that our results

are robust when we do not interpolate the pollution data and include only counties with own

measuring stations in the sample in Table A.10.

D.3 AOK Data

While the AOK population is representative of a large proportion of the publicly insured

across Germany, it is not fully representative. Different studies demonstrate that the pro-

portion insured with AOK is slightly higher in the southeastern states than in the northwest

and that the insured persons exhibit a lower socioeconomic status than the population of

all publicly insured people on average (Jaunzeme et al. 2013, Hoffmann and Koller 2015).

On the other hand, per capita expenditures on medical treatments and prescribed pharma-

ceuticals exhibit a comparable magnitude across insurance funds. Table D.1 presents some

of the differences between the AOK-population and the total publicly insured population.

While we cannot rule out that an extension of our findings beyond the studied population is

biased, AOK data comprise a well-balanced sample of people from all subgroups (Jaunzeme

et al. 2013) and constitute the best available base for identifying effects generalizable to a

vast majority of the German population.
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Table D.1: Differences Between the AOK-Population and the Total Publicly Isured Popula-
tion

AOK population Total publicly

insured population

(1) (2)

Proportion by population characteristics

Low socioeconomic status 35.8% 21.9%

Medium socioeconomic status 57.5% 62.6%

High socioeconomic status 6.6% 15.5%

With migrant background 22.9% 14.3%

Active smokers 34.7% 30.9%

Obese people 19.9% 16.6%

Moderate/bad self-assessed health condition 37.1% 30.7%

Diagnosed with a cardiovascular disease 39.9% 38.1%

Medical expenditures per person

Hospital treatments 1,122€ 1,001€

Pharmaceuticals and medical aids 537€ 518€

Doctoral examinations 551€ 539€

The table reports summary statistics on the AOK population and the total publicly insured population. The statistics
on the population characteristics are from the analysis of Hoffmann and Koller 2015 and are standardized with regard
to the age and gender of the overall population. The statistics on the medical expenditures per insured person are
provided by AOK (AOK 2018).

D.4 Prescription Data

The identification process of pharmaceutical substances that are relevant in the therapy of

respiratory diseases and asthma specifically is as follows:

i) Pharmaceuticals for Respiratory Diseases

We use a publication akin to the Red Book called “Gelbe Liste” by the ISO 9001:2015 certified

Medizinische Medien Informations GmbH, which serves as a source of information for medical

and pharmaceutical professionals. For more than 120,000 drugs, it links ATC-code classified

pharmaceutical substances to ICD-10-code classified clinical diagnoses. By linking ATC to

ICD codes, we can determine for which diseases different pharmaceutical substances are

commonly prescribed. From the registered information we draw 6,479 unique links, of which

we select only those related to respiratory diseases (150 substances). While this approach

is comprehensive, it suffers from the drawback that it may also cover substances generically

administered for a broad variety of diseases.
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ii) Pharmaceuticals for Asthma

Additionally, we define a smaller list of pharmaceuticals that are closely tied to asthma. To

this end, we consult annually updated lists of the substances prescribed most often for asthma

in a given year, that is substances in the ATC category R03. The lists are prepared by IGES

institute for the years 2006 to 2017.38 In our analysis, we consider only prescriptions of the

20 most often prescribed substances in the year the prescription is issued. Note, that the

top 20 substances cover almost the entire market of substances prescribed for asthma and

COPD, however, they may not include substances prescribed in rare cases. The pharma-

ceuticals identified according to this procedure represent a strict subset of those compiled in

approach i).

The prescription costs are adjusted to allow for intertemporal comparisons as if the average

cost per prescription had not changed. In other words, we take both inflation but also

ATC-specific market price changes, such as expiring patents, into account. To this end, we

calculate ATC-specific price indices normalized to the fourth quarter of 2017 using available

prescription data for all children in Germany. Based on the generated price indices we adjust

the prescription costs observed in our sample to real values, before aggregating them to the

cohort level.

E Unconditional Quantile Regression

We estimate an unconditional quantile regression (Firpo et al. 2009) to flexibly estimate LEZ

treatment effects across the unconditional distribution of our health outcomes. The approach

is based on the use of the re-centered influence function (RIF) defined in Equation (E.1). It is

the sum of the influence function (IF) and the θth quantile of the unconditional distribution of

the health variableH denoted as qθ. The IF indicates the marginal influence of an observation

Hi on the quantile qθ. It is determined by fH , the empirical density function evaluated at

qθ, and by the indicator 1(h ≤ qθ) which is equal to 1 if Hi is below or equal to qθ. Thus, an

observation’s influence is negative if its health status lies below and positive if it lies above

the health status at the θth quantile.

RIF (Hi, qθ) = qθ + IF (Hi, qθ) = qθ +
θ − ✶(Hi ≤ qθ)

fH(qθ)
(E.1)

38More information on the underlying data and aggregation methodologies are provided on the IGES website
and in the latest published report Häussler and Höer (2016).
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The expected value of the RIF equals the quantile of the unconditional distribution.39 By

the law of iterated expectations and integration over the conditional mean, the unconditional

quantile qθ can be expressed as

qθ = E[RIF (Hi, qθ)] = E[E[RIF (Hi, qθ)|Xi]] =

∫
E[RIF (Hi, qθ)|Xi]dFX (E.2)

where X is the vector of covariates and FX is the marginal distribution function of X. To

obtain the marginal treatment effects on the unconditional quantile qθ, we take the sample

quantile q̂θ and retrieve the density f̂H using a gaussian kernel method.40 To obtain R̂IF ,

we substitute both into Equation (E.1). Secondly, we apply RIF-OLS regression to obtain

the coefficients representing the marginal ceteris paribus effect of an infinitesimal shift in the

distribution of the covariates X on the unconditional θth quantile of H:

β̂θ = (
N∑

i=1

X ′

iXi)
−1

N∑

i=1

X ′

iR̂IF (Hi, q̂θ) (E.3)

The identifying assumption is that in the absence of treatment, the change in the health

outcome at each quantile would have been the same in the treatment and the control group.

Because endogenous regressors cannot be addressed by the conventional unconditional quan-

tile regression framework, and because estimation times are prohibitively long when using a

stacked design, we limit our quantile regression analysis to reduced form estimations using

a standard DID design knowing that some caveats may apply. For example, Section 5.5

shows that a standard-two-way DID estimator leads to results slightly smaller in magnitude

compared to our stacked DID estimator. We regard our unconditional quantile estimates as

suggestive evidence that children who suffer worst from respiratory diseases may benefit the

most from LEZs. Table A.3 in the Appendix features all coefficients and standard errors

which are bootstrapped using 1,000 repetitions and clustered at the county level.

F Comparison to the Literature

To provide context for the magnitude of our findings, we compare our estimates to related

epidemiological and economic research that focuses on asthma.

39E[RIF (Hi, qθ)] = E[qθ] +
θ−E[✶(Hi≤qθ)]

fH (qθ)
= qθ +

θ−θ
fH (qθ)

= qθ
40f̂H(q̂θ) =

1
N·bH

·

∑N
i=1 KH(Hi−q̂θ

bH
), where KH is the kernel function and bH is a positive scalar bandwidth.
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In a meta-study, Khreis et al. (2017) summarize the available epidemiological research on

the impact of early life exposure to air pollution on the prevalence of asthma in children.

Overall, the research suggests odds ratios of 1.025 for associations between PM10 and asthma

at any age. Taking the odds ratio as an approximation of relative risk, we can compare

the magnitude of our estimates for the share of sufferers to these results. Our estimate for

asthma in column (7) in Table 4 implies a risk ratio of 1.045 at the mean, which is outside

the meta-study’s 95% confidence interval for studies that consider children from age three to

young adults up to age 21. However, odds ratios from analyses limited to the ages three to

six come very close to our estimates (Clark et al. (2010): 1.068, Deng et al. (2016): 1.048,

Liu et al. (2016): 1.029).

Bharadwaj et al. (2016) estimate the lasting effect of exposure to the 1952 Great Smog of

London on asthma development. In principle, our research designs are similar as the authors

compare children born just before and just after air quality changes. However, our estimates

are based on a slight improvement in air quality that by no means is comparable to the

variation induced by the extreme impact of the “killer fog” which at least doubled childhood

asthma rates.

Economic studies focus on contemporaneous improvements in child health. Using the case of

the Stockholm congestion charge, Simeonova et al. (2019) show that persistently lower PM10

exposure reduces asthma-related hospital admissions of children below six years of age with

an implied elasticity of 3.7. The elasticities we estimate for asthma drug prescriptions (1.8),

expenditures (2.1), and the share of sufferers (1.2) are smaller.41 This difference could be

attributed to the fact that Simeonova et al. (2019) examine contemporaneous benefits of

persistently improved air quality over a longer time period, while we study longer run health

benefits from exposure to cleaner air in a single year.

Other economic studies consider short-run variations in air pollution exposure, but mainly

focus on PM2.5.
42 Alexander and Schwandt (2019) study the impact of emissions cheating

by car manufacturers on PM2.5 and child health outcomes. Their estimates imply that a

one µg/m3 increase in PM2.5 increases asthma related hospital admissions of children aged

four and younger by 0.42 per 1, 000. Evaluated at the reported means, the elasticity is 3.01.

41The calculations are based on the IV estimates for asthma in columns (2) and (4) of Table 3 and in column
(7) of Table 4, respectively. These point estimates are then multiplied with the mean PM10 exposure and
divided by the mean of the outcome to obtain elasticities.

42Beatty and Shimshack (2014) is a notable exemption. Based on data from young children in England, they
relate respiratory treatments for children to monthly PM10 exposure. The estimated coefficient on PM10 is,
however, statistically insignificant but would imply an elasticity of only 0.1.
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Barwick et al. (2018) study changes in health-related consumption in China for PM2.5 using

data on bank card transactions. They estimate that a 10 µg/m3 decrease in PM2.5 reduces

health spending in children’s hospitals by 1.13%, implying an elasticity of 0.06.
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