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1 Introduction

The COVID-19 pandemic posed difficult challenges to many colleges and universities. How to deliver instruction

while maintaining social distancing and other safety measures essential to slowing the spread of infection was of

primary concern. In March of 2020, many colleges pivoted to online instruction to finish the semester1 and continued

with online learning during the next academic year. However, the following fall semester was a challenge for many

college administrators who had to choose between in-person, online, or hybrid alternatives in the face of uncertainty

from the virus. Colleges that reopened either offered students the decision to attend in-person classes, watch live

lectures online, or a hybrid of the two. As the Fall 2020 semester progressed, spiking infections caused some colleges

to teach completely online. Thus, self-selection of students, instructors, and (in many cases) entire institutions into

online versus in-person classrooms makes studying the causal effects of online learning during the pandemic difficult.

In this paper, we conduct a randomized controlled trial at the United States Military Academy at West Point

in a required Principles of Economics course to estimate differences in student outcomes between online and

in-person instruction. In a non-COVID environment, West Point students (along with their peers at the Air Force and

Naval Academies) have little control over their academic schedules and peer networks. West Point also randomly

assigns students to academic instructors (Carrell, Page and West, 2010; Carrell and West, 2010; Mansour et al.,

Forthcoming), the semester they take a general education course (Patterson, Pope and Feudo, 2019), class hours

(Carrell, Maghakian and West, 2011; Haggag et al., 2019), roommates (Jones and Kofoed, 2020), social networks

called companies (Lyle, 2007, 2009; Brady, Insler and Rahman, 2017), final exam periods, and military mentors

(Kofoed and mcGovney, 2019).

We randomized 550 students across 12 instructors in 38 class sections. In our experiment, the syllabus,

graded events, homework assignments, and exams2 were identical for online and in-person classes. We also offered

both online and in-person class sections for each class-hour the course was available and we randomly assigned

students within the hour into each modality.3 In this study, we find that online education lowered a student’s final

grade by 0.215 standard deviations, a statistically significant result driven by the students with below median

academic ability.

Online education has been controversial since its inception. Over the last few decades, many technologists

have predicted that online education would disrupt traditional markets and education delivery (Christensen and

Eyring, 2011; Crow and Dabars, 2015). Proponents argue that universities can use online classes to expand their

student base beyond geographic locations, lower costs of instruction, and increase access for non-traditional students.

1Mangrum and Niekamp (2020) leverage the timing of Spring Break travel to show that the suspension of in-person instruction was effective for

slowing the spread of COVID-19 infection among college students and the local areas surrounding college campuses.
2There were two versions of the exam, one for each day the exam was offered. We included class-day fixed effects to account for this difference.
3Offering the exam online for both modalities would also ensure that if students participated in academic dishonesty (as documented by Bilen

and Matros (2021). In our setting there was equal opportunity for this behavior across treatment and control.
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For example, Deming et al. (2015) show that colleges and universities decrease tuition rates as they increase their

online course offerings, with the largest tuition declines seen at public and for-profit institutions. Cowen and Tabarrok

(2014) use an industrial organization framework to argue that online education can reduce the costs of education by

spreading out the fixed cost of labor intensive instruction over a greater student body. Deming, Lovenheim and

Patterson (2020) show that online higher education does compete against traditional ”brick and mortar” institutions

by reducing enrollments at traditional colleges and inducing these colleges to increase per student spending.

While online instruction seems to offer colleges a cost-saving mechanism, the educational benefits are not as

clear. The main difficulty of calculating the effect of online courses is selection bias from students self-sorting into

modality of instruction; students who enroll in online courses tend to be older, more likely to work during the

semester, and live farther away from campus (Coates et al., 2004; Dutton, Dutton and Perry, 2002). Since different

types of students sort into online courses, any estimated gap between the two modalities would be biased, rendering it

unclear if online courses are as effective as in-person instruction. Coates et al. (2004) use a two-step estimator to

show that failure to address this bias causes outcomes to look similar and may explain null effects in previous

descriptive work (Russell, 1999).

There have been a few randomized control trials that measure the effect of online instruction including

Figlio, Rush and Yin (2013), Joyce et al. (2015), and Alpert, Couch and Harmon (2016). These experiments were

limited to one instructor in one course where researchers recruited students to participate using grade incentives. The

results in each study were mixed, finding that online education either reduced student grades early in the semester

(Joyce et al., 2015), in-person only courses boosted grades for some students (i.e. male, Hispanic, or low-acheiving

students) (Figlio, Rush and Yin, 2013), or that strictly online classes hurt students compared to peers in a “hybrid”

format (Alpert, Couch and Harmon, 2016). Cacault et al. (Forthcoming) conduct an experiment at a Swiss university

that cover multiple instructors in multiple courses where they randomly assign access to video lectures for some

weeks during the semester and remove access for other weeks. They find that access to streamed lectures increases

grades for high ability students, but decreases outcomes for less able students. They also find that streaming

decreases the incentive to attend in-person lectures.

Using an instrumental variables approach as opposed to a randomized control trial, Bettinger et al. (2017)

use data from more than two million students at a large for-profit university that offered both traditional and in-person

classes. The authors calculate the distance from a student’s residence to the nearest “brick and mortar” campus as an

instrument to address endogeneity of student sorting. The authors find that students who took similar online classes

earned lower course grades and were less likely to graduate.

Finally, there is an expanding literature regarding technology in the classroom (even if technology does not

subsume the entire class experience). Carter, Greenberg and Walker (2017) conduct a randomized control trial at

West Point where instructors either required students to use a laptop for note taking, permitted tablets that students
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laid face-up on their desks, or banned laptops completely. The authors find a negative effect in both treatment arms.

Setren et al. (Forthcoming) used a similar experiment regarding a flipped classroom environment to show that

mathematics students in the flipped classroom4 had modest, short term gains. However, these gains were among

white, male, and high ability students, thus increasing inequality. Patterson and Patterson (2017) use a natural

experiment where some students were required to bring their laptops on certain days at a liberal arts college. The

authors find that students saw their grades decline in classes taught on the same day as a class that required laptops.

Our paper hopes to add to the literature in a number of ways. First, our randomized control trial does not

depend on volunteers since Principles of Economics is a required course, eliminating the concern about selection bias

into the experiment. Also, West Point randomizes the semester5 in which a student takes any of their required classes,

meaning there is no self-selection into or out of this economics course in a particular semester. Next, we randomized

students across twelve instructors with each instructor teaching a balanced slate of online and in-person class

sections. This feature allows us to control for instructor attributes like experience, and comfort with either teaching

modality. Finally, since this paper uses a randomized control trial setting, we do not rely on more strict identification

assumptions like those in an instrumental variables design.

The rest of this paper proceeds as follows: Section II describes the institutional setting, Section III describes

the random assignment and the experimental setting, Section IV describes the econometric models, Section V

discusses the results, Section VI considers policy implications and limitations, and Section VII concludes.

2 Institutional Details

The United States Military Academy at West Point, New York is a highly selective, public liberal arts college and the

nation’s oldest military academy. West Point’s primary mission is to educate future officers who go on to serve in the

United States Army. Students accepted at West Point undergo a highly selective process6 and come from all 50 states

and several US territories and foreign militaries. To gain acceptance to West Point, an applicant must secure a

nomination from her member of congress or senator, pass a physical fitness exam, and show leadership potential.

There is no tuition at West Point and students receive free housing, room, board, and a stipend for book and living

expenses. The 47-month experience between reception day and graduation comprises of military and leadership

training, academic rigor, and physical challenges. Students graduate West Point with a Bachelors in Science degree,

but can major in a number of topics as diverse as English, management, mechanical engineering or economics.

In addition to academic coursework, students take classes in military science and physical education. West

4A flipped classroom is where the students watch a video cover class materials in advance and then ask questions or discuss material in class
5Patterson, Pope and Feudo (2019) use this random assignment of course order across semester to show that cadets are more likely to select a

major in a course that they take first.
6The median SAT math score is a 650 which is similar to state flagship institutions or selective liberal arts colleges such as Williams College,

Virginia Polytechnic Institute, University of Michigan, or Davidson College.
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Point also requires each student to either be an NCAA recruited athlete or compete in intramural sports. students also

receive feedback on their leadership and interpersonal skills. West Point determines class rank by a weighted average

of performance in academic, military, and physical domains. In exchange for four years of funded college education,

students agree to serve as active duty commissioned officers in the United States Army for five years and three years

on reserve status, beginning at the rank of second lieutenant. West Point graduates serve in various occupational

branches within the Army such as quartermaster, infantry, or armor, and their choice of major does not influence jobs

available to them; which is generally determined by class rank.

While the flexibility in class load, sequence, and professor, is generally greater for students at other colleges,

the remote versus online struggle struck colleges across the world at the outset of COVID. Students at West Point

maintained little control over their academic schedules, were still required to complete twenty-four required ”core

courses” including economics, and continued their mandatory attendance at every class period.7 These courses are

similar to general education classes at civilian colleges and are largely completed in their first two years of the

four-year timeline. While these conditions may differ from other colleges, required responses to COVID-19 by West

Point leadership (i.e. 50 percent classroom capacities, pivoting courses online, testing and social distancing

measures) are similar to what other college administrators faced.

3 Data and Summary Statistics

The data from this experiment come from three sources. The first source is class grades throughout the Fall 2020

semester. West Point requires that each course have a unified curriculum with the same graded events across

instructors and class sections. Instructors report all grades for each assignment into a central system. We used these

grades to show how online education affected multiple types of academic performance including daily homework,

problem sets, midterms, and a final exam.

We also received data from the Office of the Dean8 regarding student demographics and pre-West Point

academic achievement. We combined these data to help ensure the internal validity to our experiment and to test for

heterogeneous treatment effects. Finally, we administered a post-course survey to the students. This survey was

voluntary and students received extra credit for completion. Their responses were only seen by the researchers and

the students did provide their identification number so we could link responses to the other two data sets.

Table 1 shows summary statistics for student demographics. First, we standardized all scores of graded

events (including the final grade) such that grades have a mean zero and standard deviation of one. Demographically,

7This Principles of Economics class consists of concepts from introductory microeconomics, macroeconomics, and personal finance, with all

instructors using Principles of Economics, 8th edition by Mankiw (2017)
8The Dean of the Academic Board at West Point is a one-star general and serves as the chief academic officer at the Academy. This position is

similar to a Provost
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our sample is representative of the West Point student body, with 23 percent of our sample female, 14 percent black,

3.3 percent Hispanic, and 5.6 percent Asian.

One of the key pillars of a student’s education is physical training and West Point recruits heavily for

intercollegiate and club sports; thus, 29 percent of our sample are NCAA athletes. Each student must either

participate in an intercollegiate, club, or intramural team. West Point also hosts the United States Military Academy

Preparatory School (USMAPS) that offers community college like courses for prospective students who may need

some additional academic development. These students then have the opportunity to re-apply to the Academy after

one year of study. 14.2 percent of students in our sample were prep school graduates. Finally, West Point offers a

program for enlisted soldiers with only a high school diploma who are younger than twenty-four and still single, the

opportunity to attend West Point, earn a bachelors degree, and commission as an officer. Of the students in our

sample, 16.9 percent were prior enlisted.

Finally, it is helpful to understand the academic ability of students before coming to West Point. West Point

draws a geographically diverse student body because each member of Congress or Senator can only nominate a fixed

number of constituents to the military academies. To compare students from across the country, West Point derived

an index called the College Entrance Examination Rank (or CEER score). The CEER score is a composite of the

SAT, ACT, and high school GPA and has a maximum score of 800.9 The average CEER score in our sample is a 623.

4 Experimental Setting and Random Assignment

Like many colleges and universities during the COVID-19 pandemic, West Point limited classroom capacity to

incorporate social distancing measures. However, unlike other institutions, West Point still needed to carry out its

unique mission to provide physical and military training; thus students returned to campus for the Fall 2020 semester.

In addition to the students, around one half of the faculty are military faculty members who West Point selects from

the regular Army, attend graduate school, and then teach at the Academy for two to three years. These officers

generally teach the required introductory classes and are vital for student mentorship (Carrell, Page and West, 2010;

Jones and Kofoed, 2020; Mansour et al., Forthcoming).West Point’s faculty also include permanent military and

civilian professors with Ph.Ds who do teach in the introductory courses but focus their efforts on upper division

courses.

Generally, West Point students have little control over their daily academic schedules. This policy did not

change during the COVID-19 pandemic. We received permission to use this already existing random assignment to

assign students to either an in-person or online class section. In addition, to allow for in-person instruction, each

9Hanser and Oguz (2015) show that the CEER score is actually highly predictive of a prospective cadet’s probability of graduation, academic

success, but not necessarily early promotion as an Army officer.
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instructor agreed to teach half of their four section teaching load10 online and half in-person. This agreement allowed

for two enhancements to our experimental setting. First, it prevented our faculty from teaching eight class sections

while allowing them to provide some in-person instruction. Second, it created counterfactual classrooms where one

could see a given instructor teach both in-person and online.11 This setting allows us to control for instructor talent,

experience, grading acumen, and familiarity with the course material. We can thus control for instructor intangibles

and isolate the treatment effect of being in an online course by including instructor fixed effects.

Given the classroom constraints, each in-person and online class allowed for twelve and eighteen students

respectively. Thus of our sample of 551 students, 337 were included in an online section while 214 were in a

in-person section. Most class hours were balanced with respect to the number of online or in-person sections with the

exception of the early morning (7:55AM) class hour which offered more in-person than online sections. However, for

every class hour that the economics department offered the introductory course, both teaching modalities were

present and the the Academy randomly assigned students between the formats. In total, we randomly assigned 551

students across twelve instructors for a total of thirty-six classrooms.

In addition to the overall summary statistics described in the previous section, Table 1 also compares

students assigned to online or in-person class sections. Column (2) shows means and standard deviations for

demographic characteristics for students in online sections, Column (3) shows similar summary statistics for students

in in-person sections and Column (4) shows differences and whether they are statistically significant. The first row

shows standardized final grades defined as total points earned over a 1,000 possible. We find that students in online

class sections earned a grade 0.234 standard deviations lower than those in in-person classes (round 1.638 percentage

points) or around a half of a +/- grade. This result is statistically significant in a differences in means test. Given our

randomization, this effect is potentially causal, but we will test for robustness by adding a host of fixed effects and

exogenous controls.

The remaining rows show balance across student demographics. We show that online and in-person classes

are balanced by gender and race. Differences between teaching modalities are small (around one percentage point for

female, Hispanic, and Asian and one tenth of one percent for black) and statistically insignificant. Regarding other

student characteristics, we find that NCAA athletes are six percentage points more likely to be assigned an in-person

section because they are assigned early morning classes to afford training in the afternoon and there were more

in-person sections than online sections in the early morning hours. This difference, however, is not statistically

significant. We find that former prep school students are 0.002 percentage points more likely to be in an online class,

prior enlisted students are 2.2 percentage points more likely to be in an in-person class, and the average CEER score

is 1.861 points (from a mean of 622) more in online classes.

10Four instructors taught only two sections, one online and one in-person. Two instructors taught three sections with two online and one in-person.
11There were two faculty members, however, that either taught all of their classes online or all in-person. We dropped students enrolled in these

classes from our experiment for a cleaner estimate. However, our results are robust when we include these students in the sample.
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Next, we show covariate balance and test the efficacy of the experiment by regressing whether a student was

in an online class on a number of covariates, instructor fixed effects, class day fixed effects, and time of day fixed

effects. Table 2 shows the results from these regression estimates. First, we separately regress assignment to an

online section on each of our covariates. Columns (1) though (7) show results for female, black, Hispanic, Asian,

NCAA athlete, having attended the prep school, and being prior enlisted. All of these coefficients are small and

statistically insignificant; evidence that students were randomly assigned to an online section. We also show

F-statistics and their corresponding p-values to test and find no indication of statistically significant imbalance.

In Column (8), we jointly regress being in an online class section on all of our covariates. We find that

NCAA athletes were less likely to be in an online class section; a result that is marginally statistically significant.

Thus, we add time of day fixed effects to show that within a class hour, West Point did randomly assign students to

either online or in-person. However, the F-stat p-value for this specification is only 0.512. Column (9) shows results

for the same regression but adding instructor fixed effects and finds that prep-school students were more likely to get

an online section and prior enlisted students were less likely to be in an online section; however these results are only

marginally significant with an F-stat p-value of 0.552. Column (10) adds class day fixed effects to the model with

NCAA athlete and prior enlisted being marginally statistically significant with an F-stat p-value of 0.499. Finally

Column (11) includes all covariates and adds time of day fixed effects. It appears that conditional on time of day, all

of our covariates balance with an F-stat p-value of 0.578.

5 Empirical Approach

Given the random assignment of students to either a class section taught online or in-person, the econometric model

is straight-forward. To estimate the causal effect of taking a principles of economics class online instead of in-person,

we estimate the following regression model:

yi jdt = β0 +β1onlinei jdt + γ j +ξd +φt +Xi jdt + εi jdt (1)

where yi jdt is the score that student i earns on a graded event (midterm, homework, final exam, final grade) from

instructor j in a class taught on day d at class time t. β1 is a parameter that estimates the causal effect of taking the

class online as opposed to in-person. We include γ j or instructor fixed effects. These instructor fixed effects will

control for instructor attributes that are invariant across teaching modalities including teaching experience, familiarity

with the material, or personality. Given West Point’s alternating Day-1 or Day-2 class schedules, we include class-day

fixed effects (ξd) to control for different exam versions and instructor “learning by doing.” Next, we include time of

day fixed effects (φt ) to control for differences in NCAA athlete class time assignment and any student performance
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differentials attributed to when they take the class. Finally, we include a vector (Xi jdt ) of exogenous controls and

student demographics such as gender, race, NCAA athlete, prior military service, and preparatory school graduate.

Our paper is unique in that instructors taught half of their sections online and the other half in-person. This

assignment allowed similar students to see a given instructor in both modalities. Thus the instructor fixed effects

simulate an experiment where a hypothetically identical student would learn from an instructor in-person and then

compare that student to a counterfactual who only saw the instructor online. Since the curriculum is uniform and

graded events are identical in content and delivery, the only difference in the experiment would be the mode of

instruction. One exception is that instructors used different exam versions across class days, requiring us to adjust our

estimates using day fixed effects. One limitation to this method is that instructors could have either taught differently

in an online environment or were more uncomfortable online than they were in-person. Thus the treatment effect

could be capturing both changes in instruction inherent in an online environment and differences in instructor

practices between the modalities. While our experiment cannot disentangle these two effects, it is representative of

the experiences of many instructors across higher education during the pandemic.

For inference, we would normally adjust our standard errors for correlation between students in a given

classroom by clustering at the classroom level. However, we find that the clustered standard errors are smaller than

the robust standard errors; a sign of small cluster problem. To address this concern, we follow the findings of

Cameron, Gelbach and Miller (2008) and estimate wild bootstrapped standard errors along with robust standard

errors. We report p-values for inference with both the robust standard errors and wild bootstrapping in each of our

results tables for the treatment effect of being in an online course. For transparency, Table A1 includes our main

result table using classroom level clustered standard errors.

6 Results

6.1 Main Results

Table 3 presents the main results. In Column (1), we show that online instruction reduced a students final grade by

0.236 standard deviations or around 1.650 percentage points (out of 100). This result corresponds to about one half of

a +/- grade. Next to control for differences in instructor talent, attentiveness, or experience, we add instructor fixed

effects to our model. This addition reduces the estimated treatment effect to -0.220 standard deviations; a slight

decrease in magnitude.

In the next columns, we add additional fixed effects to control for each level of random assignment. West

Point generally randomly assigns students to both the day and hour that they will attend a specific class. First, we add

a class day fixed effect which controls for the day of the week and the version of an exam that a student took. This
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fixed effect is also helpful because most of the instructors are new military faculty who usually teach two sections on

one day and two the next day. These fixed effects control for any “learning by doing” for a specific lesson. This

specification shows an increased learning gap of 0.223 standard deviations. Next, we control for a class time of day

fixed effect that controls for any imbalance across class hour such as West Point’s preference to assign NCAA

athletes a morning class. This specification decreases the learning gap by 0.005 standard deviations to 0.218 standard

deviations or 1.526 percentage points or around a half of a +/- grade. Finally, we add a host of exogenous controls

including whether a student is female, black, Hispanic, Asian, an NCAA athlete, attended the U.S. Military Academy

Preparatory School, or was previously enlisted in the U.S. Army. This specification, included in Column (5), shows a

learning gap of 0.215 standard deviations or 1.505 percentage points.

These results show gaps in learning and academic achievement between online and in-person instruction and

are robust to the addition of instructor fixed effects, class day fixed effects, time of day fixed effects, and exogenous

controls. This robustness shows the effectiveness of our experiment and the corresponding balance across class

sections and instruction modality. These results are substantial and in line with other research that examines the

effects of technology in the classroom in an experimental setting (such as Carter, Greenberg and Walker (2017) and

Figlio, Rush and Yin (2013)).

6.2 Results By Graded Events

We next examine results for each type of graded event. These results are helpful because they can help us understand

that the type of assignments may be more conducive for online learning and can give us a sense of whether students

adapt to the online learning environment and improve their grades. Figure 1 visually shows the effect of online

learning for each type of graded event: problem sets, daily homework, all exams, and for each exam individually. We

display each point estimate along with its corresponding ninety-five percent confidence interval.

Table 4 shows point estimates and standard errors for each regression result with a different type of graded

event as an outcome. Column (2) shows the combined scores from six problem sets. These problem sets tested a

student’s knowledge at the end of each block of the curriculum. Students were free to work with each other and use

resources such as the textbook, but they had to turn in their own work and report which classmates they asked for

help. We find that students in online classroom scored 0.106 standard deviations lower than their peers in in-person

classes. Column (3) shows results for daily homework assignments. These assignments were different from problem

sets since students completed them using multiple attempts with hints and suggestions. The daily homework was

worth five points a day and is usually viewed as a measure of student engagement and persistence as instructors

graded them for completion as opposed to accuracy. The learning software grades homework automatically so there

is no instructor discretion. We find that online instruction lowered a students homework grade by 0.211 standard

9



deviations; a result similar to the overall course grade.

Next, we examine the effects for exams. During the course, instructors distributed exams via online learning

software regardless of teaching modality. Exams were identical and all students took exams online in their dorm

room. There were also two versions of the final exam. However, students do not take the final exam with their

classmates and instead West Point randomly assigns exam days and times with no regard to instructor or teaching

modality. All students took the final online in the instructional software provided by the textbook publisher. For the

final exam, we added exam version fixed effects.

In columns (5) through (8), we find negative and statistically significant effects in performance (with the

third midterm and the final as exceptions) on these higher-stakes exams while the gap between online and in-person

classes narrows over time. While the confidence intervals for individual exams do overlap with each other, the point

estimates suggest an upward trend in learning for online students. This result still shows a gap in learning from online

instruction, but that gap may lessen once students gain experience with the online framework, develop new study

habits, or perhaps seek help from students in an in-person course. However, the grade reduction on these high-stake

exams were large enough to significantly reduce a student’s final grade.

6.3 Results by Academic Ability

6.3.1 Sub-sample Analysis by Prior Academic Ability

Next, we consider how the online environment differently affected students of varying academic ability. We estimate

the same empirical model but with different sub-samples based on a student’s CEER score. In our sample, the median

CEER score was a 630 out of 800 and the 25th percentile was a 568. We estimate our model for cadets below the

25th, 50th, and then above the 50 percentile to understand which part of the academic distribution may be driving our

results.

Table 5 displays the results for our effect by CEER score. We use both subsample analysis and

specifications with an interaction of the main effect with whether a student lies within a given CEER quantile to

estimates differences between groups. Column (2) shows that learning gaps are greater for those students whose high

school academic preparation was in the bottom quarter of the distribution. Here, we find that being in an online class

section reduced their final grades by 0.267 standard deviations, translating to around 1.869 percentage points of the

student’s final grade. This result has large implications for a student’s GPA; particularly at West Point where a

student’s occupation and first posting within the Army is generally determined by their GPA. Next, in Column (3), we

interact whether a student is in the bottom quartile of the CEER distribution with the indicator for whether a student

took the class online. The interaction term has a coefficient of -0.232, but is not statistically significant because of our

small sample size. Column (4) shows a similar result for students whose CEER score was in the bottom half of the
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distribution. Here, we find that online learning reduced a student’s final grade by 0.269 standard deviation. Column

(5) also shows that the coefficient associated with interaction term is -0.203. This result shows that the lower half of

the academic distribution is less than the upper half but not statistically significant.

Finally, in Column (6), we find, however, that among students whose CEER scores were in the top half of

the distribution, there is a smaller and statistically insignificant effect of online learning. We estimate that, for these

students, online instruction reduced their final grades by 0.149 standard deviations or about 1.043 percentage points;

an effect that is indistinguishable from zero. In Column (7), we interact whether a student is in the top half of the

CEER distribution with whether the class was taught online. The interaction term is positive, but statistically

insignificant. These results imply that the pivot to online education may have had larger effects for academically

at-risk students. However, these findings must be weighed against the threat of infection from COVID-19 and the

possibility of transmission to areas and vulnerable populations around a college campus. To ensure that these

students were not harmed grade-wise and career-wise, we adjusted the grades of those students who were assigned an

online class section upwards according to these point estimates.

6.3.2 Analysis by Grade Distribution

Next, we consider how online education affected students based on their performance in the course. We first present

these results visually in Figure 2. In this figure, we plot a cumulative distribution function (CDF) by whether a

student was in an online or in-person class section. In the figure, the dotted line represents online class sections while

the solid line represents in-person sections. We find that at every point on the distribution (except a few points on the

very bottom), the in-person sections dominate the online sections. In the graph, the mass of the online distribution is

located below the mass on the in-person grades. We find that the gap is the greatest at the bottom half of the grade

distribution and closes at the top.

Next, we estimate a quantile regression to show differences in the effect by final grade. We estimate

specifications for the 10th, 25th, 50th, 75, and 90th quantiles. Table 6 displays these results. Column (1) is the overall

effect for comparison. Column (2) finds that online students in the bottom 10th percentile received grades that were

0.090 standard deviations less than similar in-person students. However, Columns (3) and (4) show that for students

at the 25th and 50th percentile, online coursework reduced their final grades by 0.225 and 0.351 standard deviations

respectively; results that are statistically significant. As we move up the final grade distribution, the achievement gap

between online and in-person coursework beings to close. Columns (5) and (6) show achievement gaps of 0.115 and

0.194 standard deviations; results that are either statistically insignificant or marginally significant depending on

specification.
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6.4 Heterogeneous Effects by Student Demographics

Next, we consider how online learning affects various demographic groups differently. One advantage of West Point

data is the rich demographic information available on students. We chose a number of sub samples that allow us to

understand the differences among students and confirm previous findings about at-risk students. Table 7 displays the

results for each demographic sub-sample. First, we test differences across student gender and display these findings

in Columns (2) and (3). We find that online instruction is more detrimental to male students than female students. We

find that female students who are in an online class earn a grade that is 0.051 standard deviations lower than female

students in an in-person section; a result that is statistically insignificant. For males, we find that online instruction

reduced their grades by 0.266 standard deviations or 1.862 percentage points, a statistically significant result.

Next, we examine our results by race. Columns (4) and (5) show results for black and white cadets. We find

a slight increase of 0.005 standard deviations for black students in remote sections, a result that is statistically

insignificant. However, we do find that online classes reduced white students’ final grades by 0.277 standard

deviations or 1.939 percentage points. This difference in results could be that we are under-powered regarding black

students since there are only 80 in our sample.

The next demographic characteristics are somewhat unique to West Point but may shed some additional

insights on our results; particularly the evidence that our result is a product of lower academic ability. First is whether

a student is an NCAA athlete. Given some slight covariate balance discussed early, we want to ensure that NCAA

athletes do not drive our results. Column (7) shows the results for NCAA athletes where we estimate this reduction as

0.226 standard deviations, a result that is very similar to our main result . When we only consider non-NCAA

athletes in Column (8), we estimate a similar effect of 0.212 standard deviations. These results are statistically

insignificant from each other and the baseline results; thus, allaying the concerns about covariate imbalance.

Finally, we consider students who previously enlisted in the Army (and thus postponed enrolling in college

for up to five years) and those who first attended the preparatory school (equivalent to a year of community college).

Column (9) displays the results for prior enlisted students. We find that online instruction reduced their final grades

by 0.448 or 3.316 percentage points. Column (10) shows that online instruction reduced final grades for preparatory

school attendees by 0.378 standard deviations (or around 2.646 percentage points) or roughly an entire +/-. Since

both of these groups are among those that are the most academically “at-risk”, this result provides further evidence

that online instruction has a larger effect on lower ability students.
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7 Mechanisms

7.1 Mechanisms-Faculty Experience

Next, we explore potential mechanisms that could help to explain our result. First, we examine whether faculty

teaching experience played a role in determining online class outcomes. The West Point faculty model is unique in

that approximately half the of instructors are rotating, active-duty military faculty who temporarily leave the

operational Army, attend graduate school (usually earning a terminal Master’s degree such as an MBA/MPA; though

a PhD is possible), and teach at West Point for three years before returning to the operational Army12 One possible

concern is that instructor experience could be correlated with better outcomes in an online environment. One concern

is that faculty experience could explain our results as opposed to the online environment. To address this concern, we

estimate our regression model with students taught by first-year and experienced faculty separately. To see if these

treatment effects are statistically different from each other, we estimate a model that interacts the indicator variable

for being in an online class with whether a first-year faculty member was the instructor.

Table 8 displays the results for instructor experience. Column (1) shows the results for new instructors only.

We find that students taught in online courses by first-year instructors received a grade that was 0.256 standard

deviations lower than those students in in-person classes; a result that is statistically significant. Column (2) shows a

similar albeit less precise estimate of 0.249 standard deviations for being in an online class. Column (3) shows the

interaction between being assigned both an online class and a new faculty member and finds that the difference

between new and experienced faculty members is not statistically significant. Thus we find that the grade penalty for

being in the online environment is similar across faculty experience.

7.2 Mechanisms-Post-Course Survey

Finally, we distributed a post-course survey to better understand whether student study habits and their perceptions

about the instructor and their peers changed in the online environment. This survey was not mandatory, but

instructors did give their students bonus points for completion. 402 students completed the evaluation for a response

rate of 72.95 percent. There was also coverage for all class sections and instructors. Of those students who

completed, 60.45 percent were online compared to 61.16 percent in the full sample. Regarding the observable

characteristics, survey respondents were slightly more female (25.37 vs 22.88 percent) and less black (12.19 vs 14.41

percent), but otherwise balanced against the whole sample. Thus while we do not have perfect compliance, the

sub-sample should be representative of the whole.

Table 9 shows the effects of online instruction on a host of outcomes that we hope to help explain why

12Only one tenured/tenure track faculty member with a Ph.D. participated in our experience. All other instructors were rotating, military faculty.
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student performance decreased. First, we ask students for an estimated number of minutes that they needed to prepare

for each class meeting. Column (1) shows that students in online classes reported studying 2.352 more minutes per

day; a result that is statistically insignificant. However, it is interesting that students spent slightly more time studying

for a still lower grade.

Next, we asked students to rank their ability to concentrate in class. Students could respond with a “1” for

not able to concentrate at all up to a ”5” if they were perfectly able to concentrate. The average student responded

with a “3.515” with a standard deviation of 0.951. We estimate both an OLS regression and an ordered probit to

estimate the effect of online instruction on concentration. Columns (2) and (3) show that online instruction lowered

student perception of being able to concentrate by 0.557 and 0.692 in the OLS and ordered probit respectively. These

results are roughly three-fourths of a standard deviation decline that is statistically significant.

On our survey, we also explore how online instruction affected the student-instructor relationship. We asked

students to rank from 1 to 5 regarding how connected they felt to their instructor. On average, students ranked how

connected they felt to their instructors as “3.798” with a standard deviation of 0.831. Columns (4) and (5) show

results for these estimates. We find that students rated their connection with instructors lower by 0.342 and 0.500

(OLS and ordered probit respectively) on the five points scale. This result translates to around two-thirds of a

standard deviation and statistically significant.

We then ask students whether they felt that their instructor cared about them. Again, students could respond

with a “1” if they felt that their instructor did not care about them at all up to a “5” if they strongly felt that their

instructor cared about them. The average student response was a “4.2” with a standard deviation of 0.784. Columns

(4) and (5) show these results for both OLS and ordered probit. We find that being in an online class reduced whether

a student felt that their instructor cared about them. We find that student’s perception about their instructors caring

about them declines by 0.126 or 0.200 points using the OLS or ordered probit respectively; a result that is marginally

insignificant. This result amounts to a decrease of about a quarter of a standard deviation.

Finally, we asked students to rank their connection to their peers with a similar scale as before. The average

student response was a 2.699 with a standard deviation of 1.039 Columns (6) and (7) show the results for the OLS and

ordered probit models respectively. We find that the online environment reduced how connected a student felt towards

their peers by 0.500 or 0.534 points, or a decrease of roughly a half a standard deviation or 3.5 percentage points.13

Results from the post-course survey are interesting because the instructor fixed effects are controlling for

instructor attributes, teaching styles, and personalities while comparing student perception and connectivity across

teaching modalities. These results show that one cost of online education during the pandemic was student

satisfaction, concentration, and a number of the intangible benefits that a professor provides in an in-person class.

13Hardt, Nagler and Rincke (2020) show that randomized peer tutoring was helpful during the COVID-19 pandemic. This type of intentional

peer support networks could be helpful to overcome the negative peer connectivity effects in this paper.
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Many researchers have shown that instructor quality, characteristics, and intensity of interaction are important for

student success, particularly for lower income and minority students (Vlieger, Jacob and Stange, 2020; Figlio and

Schapiro, 2021; Fairlie, Hoffmann and Oreopoulos, 2014; Bettinger and Long, 2005; Carrell and West, 2010). We

find that online instruction during the COVID-19 pandemic may have disrupted these peer and instructor interactions.

8 Conclusion

The global pandemic caused wide-spread disruption on all levels of education. The pivot from in-person to online

instruction was unplanned and forced students and instructors into an uncertain, online environment. This change

disrupted both K-12 and university education, increased educational inequality (Bacher-Hicks, Goodman and

Mulhern, 2021), caused political pressure to re-open (Collier et al., 2021), and displaced parental labor supply

(especially among working mothers) (Zamarro and Prados, 2021). However, randomized control trials that can

estimate differences in student learning between the two modalities causally are rare. West Point’s unique

institutional mission and make-up allowed us the opportunity to randomize students into either an online or in-person

teaching environment. In our experimental setting, West Point’s registrar randomly assigned students into class

sections and our faculty agreed to split their teaching loads between the two modalities. This feature allowed us to

compare students with the same instructor in a course with uniform lesson plans, graded events, and exams; the only

difference being whether a class is online or in-person. This setting is advantageous because we did not rely on

volunteers or an instrumental variable, and our results are not specific to a single instructor.

We find that online learning reduced final grades by a half +/- grade; a result that increases for lower ability

students. We also find evidence that the result is concentrated among students who are the most academically at-risk.

We use questions from a post-course survey to show that online students experienced reduced concentration. We also

find that students felt less connected to their instructors and peers and claimed that their instructors cared less about

them. These estimates show the limitations of online learning; especially with the little time to prepare and adjust

teaching styles and pedagogy. From an ethical perspective, we should note that while it is Academy-wide policy to

randomly assign students to classes, we did adjust the final grade of students in online sections according to our

findings and prioritized lower CEER score students for in-person classes during Spring Semester 2021.

There are some limitations in our West Point setting. First, our student and instructor sample may not be

representative of the universe of higher education. West Point students tend to have higher SAT/ACT scores, do not

need to worry about employment, and have free room and board. The pivot to online education (and the accompanied

recession caused by the pandemic) may have increased college student unemployment and student financial need

(Gurantz and Wiegla, Forthcoming; Clelan and Kofoed, 2017). These extra stressors and insecurities may have

caused students to not complete courses or not return for the next semester. Also, West Point requires students to
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attend classes regardless of instructional modality and instructors report attendance to commanding officers that

ensure compliance. Finally, while there were some outbreaks of COVID-19, West Point’s closed campus

environment, close medical attention and quarantining limited infection, and campus did not close part-way during

the semester. While these factors may cause a West Point student’s experience to differ from the average college

student, we argue that our findings may serve as a helpful lower bound of the negative impact of online instruction.

Our results may indicate that other college students, particularly those from disadvantaged backgrounds, may have

done worse.

Our results indicate that there are limitations to the effectiveness of online education, especially during a

global pandemic. Like many college instructors, those at West Point had little time to prepare lessons and develop

pedagogy to more effectively teach online. Our findings are agnostic to whether those teaching styles could mitigate

the learning loss that we observe. However, college administrators and higher education policymakers should

cautiously consider whether increased online offerings are actually in a student’s best interest and the most effective

way to deliver a quality college education.
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Table 1: Summary Statistics Comparing Full Sample, Online, and Face to Face Classrooms

(1) (2) (3) (4)

Full Sample Online Face to Face Difference

mean/sd mean/sd mean/sd b/se

Final Grade (std.) 0.000 -0.092 0.144 0.236∗∗∗

(1.000) (1.003) (0.980) [0.087]

Final Grade (%) 83.367 82.726 84.376 1.650∗∗∗

(6.998) (7.018) (6.860) [0.608]

Online 0.612 1.000 0.000

(0.488) (0.000) (0.000)

Female 0.230 0.226 0.238 0.013

(0.422) (0.419) (0.427) [0.037]

Black 0.140 0.139 0.140 0.001

(0.347) (0.347) (0.348) [0.030]

Hispanic 0.033 0.027 0.042 0.015

(0.178) (0.161) (0.201) [0.016]

Asian 0.056 0.050 0.065 0.015

(0.231) (0.219) (0.248) [0.020]

NCAA Athlete 0.290 0.267 0.327 0.060

(0.454) (0.443) (0.470) [0.040]

Prep School 0.142 0.142 0.140 -0.002

(0.349) (0.350) (0.348) [0.031]

Prior Enlisted 0.169 0.160 0.182 0.022

(0.375) (0.367) (0.387) [0.033]

CEER Score 623.806 623.083 624.944 1.861

(73.377) (70.981) (77.155) [6.419]

Observations 551 337 214 551

This tables shows differences in standardized course grades and covariate

balance across treatment and control groups. Means are in first row with

standard deviations in parentheses. The last column shows covariate balance

across treatment and control with standard errors below in brackets. Statis-

tical significance levels are as follows: * for p¡0.10, ** for p¡0.05, and ***

for p¡0.01. We also include a cadet’s CEER score as a measure of academic

ability. CEER Score is an index combining measures of academic potential

such as high school GPA, high school class rank, SAT score, and ACT score.
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Table 3: Main Effects for Online Instruction

(1) (2) (3) (4) (5)

Final Grade Final Grade Final Grade Final Grade Final Grade

Online -0.236∗∗∗ -0.220∗∗ -0.223∗∗∗ -0.218∗∗ -0.215∗∗

(0.086) (0.087) (0.086) (0.089) (0.084)

Instructor FE No Yes Yes Yes Yes

Class Day FEs No No Yes Yes Yes

Time of Day FEs No No No Yes Yes

Exog. Controls No No No No Yes

Observations 551 551 551 551 551

R2 0.013 0.026 0.026 0.034 0.173

Robust SEs p-values 0.007 0.011 0.010 0.014 0.011

Wild Bootstrapped SEs p-values 0.007 0.010 0.009 0.012 0.013

Robust Standard errors in Parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

This table shows the main result for the effect of online learning on college student academic achievement.

Instructor FE indicate instructor fixed effects. Exogenous controls include whether a cadet is female, black,

Hispanic, Asian, an NCAA athlete, attended the U.S. Military Academy Preparatory School, and was prior

enlisted. We also add instructor fixed effects, class day fixed effects, and time of day fixed effects to control

for the level of random assignment.
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Figure 1: Effects of Online Instruction on Each Graded Event

This figure shows the result for the effect of online learning on college student academic achievement

for each graded event. Each point estimate represents a coefficient estimate for a regression that contains

instructor fixed effects, class day fixed effects, and exogenous controls. Exogenous controls include whether

a cadet is female, black, Hispanic, Asian, an NCAA athlete, attended the U.S. Military Academy Preparatory

School, and was prior enlisted. Confidence levels come from robust standard errors.
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Table 6: Quantile Regression for Final Course Grade

(1) (2) (3) (4) (5) (6)

Final Grade

Overall Q.10 Q.25 Q.50 Q.75 Q.90

Online -0.215∗∗ -0.090 -0.226∗∗ -0.351∗∗∗ -0.115 -0.194∗

(0.084) (0.173) (0.111) (0.119) (0.091) (0.112)

Instructor FE Yes Yes Yes Yes Yes Yes

Class Day FEs Yes Yes Yes Yes Yes Yes

Time of Day FEs Yes Yes Yes Yes Yes Yes

Exog. Controls Yes Yes Yes Yes Yes Yes

Observations 551 551 551 551 551 551

R2 0.173 0.126 0.127 0.130 0.103 0.098

Robust SEs p-values 0.011 0.603 0.042 0.003 0.209 0.084

Wild Bootstrapped SEs p-values 0.013 0.009 0.016 0.018 0.014 0.009

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

This table shows the result for the effect of online learning on college student academic achievement

across the distribution of final exam grades. We estimate a quartile regression for the 10th, 25th, 50th,

75th, and 90th percentiles. Exogenous controls include whether a student is female, black, Hispanic,

Asian, an NCAA athlete, attended the U.S. Military Academy Preparatory School, and was prior

enlisted. We also add instructor fixed effects, class day fixed effects, and time of day fixed effects to

control for the level of random assignment.
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Figure 2: Cumulative Distributive Function for Final Course Grade by Teaching Modality

This figure shows cumulative distribution functions for a student’s final course grade by teaching

modality. The solid line represents grades from an in-person class section while the dotted line rep-

resents online class sections. The figure shows that the bulk of the online mass is among lower final

grades and the in-person distribution dominates at all levels.
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Table 8: Effects of Online Instruction by Faculty Experience

(1) (2) (3) (4)

Final Grade

Overall New Instructor Experienced Instructor Interact-New Instructor

Online -0.215∗∗ -0.256∗∗ -0.249 -0.129

(0.084) (0.118) (0.181) (0.137)

New Instructor 0.132

(0.264)

Online × New Instructor -0.143

(0.179)

Instructor FE Yes Yes Yes Yes

Class Day FEs Yes Yes Yes Yes

Time of Day FEs Yes Yes Yes Yes

Exog. Controls Yes Yes Yes Yes

Observations 551 310 241 551

R2 0.173 0.170 0.204 0.174

Robust SEs p-values 0.011 0.031 0.169 0.348

Wild Bootstrapped SEs p-values 0.013 0.024 0.185 0.371

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

This table shows the result for the effect of online learning on college student academic achievement by instructor

experience. “New Instructor” is an instructor in their first year while “Experienced Instructor” is one who is beyond

their first year. Instructor FE indicate instructor fixed effects. Exogenous controls include whether a student is female,

black, Hispanic, Asian, an NCAA athlete, attended the U.S. Military Academy Preparatory School, and was prior

enlisted. We also add instructor fixed effects, class day fixed effects, and time of day fixed effects to control for the

level of random assignment.
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Table A1: Main Effects for Online Instruction-Clustered Standard Errors

(1) (2) (3) (4) (5)

Final Grade Final Grade Final Grade Final Grade Final Grade

Online -0.236∗∗∗ -0.220∗∗∗ -0.223∗∗∗ -0.218∗∗∗ -0.215∗∗∗

(0.072) (0.063) (0.063) (0.055) (0.050)

Instructor FE No Yes Yes Yes Yes

Class Day FEs No No Yes Yes Yes

Time of Day FEs No No No Yes Yes

Exog. Controls No No No No Yes

Observations 551 551 551 551 551

R2 0.013 0.026 0.026 0.034 0.173

Class Section Level Clustered Standard errors in Parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

This table shows the main result for the effect of online learning on college student aca-

demic achievement. Instructor FE indicate instructor fixed effects. Exogenous controls in-

clude whether a student is female, black, Hispanic, Asian, an NCAA athlete, attended the U.S.

Military Academy Preparatory School, and was prior enlisted. We also add instructor fixed

effects, class day fixed effects, and time of day fixed effects to control for the level of random

assignment.
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