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Abstract

This paper aimed to analyse Senegalese farmers’ technical efficiency in the con-
text of climate variability and spatial heterogeneity. To achieve this, firstly us-
ing simulated data, we evaluated the newly developed spatial stochastic frontier
estimation technique based on skew-normal distributions. Secondly, using cross-
sectional survey data we conducted an empirical analysis for 4423 Senegalese
farm households. Simulation results show that the estimation approach used is
appropriate and produces consistent results with large sample sizes, although
it might suffer from a "starting values" problem. Empirical findings reveal that
agricultural production in Senegal mostly depends on the allocated area and it
is highly affected by climatic factors such as rainfall and temperature. Moreover,
within a radius of 4 km the technical efficiency of farms appears to be signifi-
cantly affected by unobserved spatial features. Furthermore, this farm technical
efficiency can on average be increased by 20%, when accounting for spatial het-
erogeneity.

Keywords: Climate variability, Farm efficiency, Spatial heterogeneity, Senegal.
JEL classification: Q54, C21, D24.



1 Introduction

In Senegal, agriculture remains an important sector of the economy, and it accounts

for approximately 32% of the country’s total employment, more than 16% of the na-

tional GDP (World Bank, 2019) and 21%1 of total exports (Republique du Senegal,

2018). However, the sector is challenged by many factors, and among those, climate

variability. Senegalese agriculture is mostly rain-fed and less than 1% of agricul-

tural land is under irrigation. The sector is therefore highly vulnerable to rainfall

variability (D’Alessandro et al., 2015). During the period 1941-2000, rainfall in the

country has been characterized by a great annual irregularity and the shortening of

the duration of the rainy season. Also, from year to year, the amount of precipi-

tation substantially varies both temporally and spatially (Ba, 2006). According to

Jalloh et al. (2013), the country will experience in the coming decades an increase

in rainfall variability and droughts due to climate change, especially in the eastern

part. The impacts of such erratic weather and climate shifts in Senegal will lead to

productivity losses in the agricultural sector (Jalloh et al., 2013). Moreover, such

climate conditions also pose serious challenges for the cereals production sub-sector,

which constitutes primary sources of food for rural populations. According to Jalloh

et al. (2013) changing climate conditions combined with population growth, could

lead to a 30% reduction in per capita cereals production by 2025.

The presence of erratic weather and climate conditions implies that Senegalese

farmers would have to integrate not only conventional production factors but also

climatic risks factors (such as precipitation, temperature, etc.) into their production

systems. For instance, the study of Ba (2006) has shown that close droughts due

to climate change has led to a transformation of not only some productions systems

but also the decline or disappearance of some crops. Globally, climate change and its

impact on agricultural productivity have gained increased attention during recent

decades among research communities (e.g. Hughes et al. (2011); Lachaud et al.

(2017)). As observed by Mulwa and Kabubo-Mariara (2017), despite the increasing

number of climate change and variability studies and efficiency studies, there is a

lack of literature linking climate change and variability to farm-level efficiency in

Africa. Notable exceptions are the papers of Sherlund et al. (2002) in Cote d’Ivoire,

Mulwa and Kabubo-Mariara (2017) in Kenya and Oyekale (2012) in Nigeria. This

study, therefore aims to analyse agricultural technical efficiency in climate variability

conditions in the Senegalese context, and it contributes to the literature in several

1Calculation is based on values of exportation figures in Republique du Senegal (2018) and
includes exports of fishes products, groundnut products, cotton and cotton fabrics.
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ways.

First, few studies have analysed the farm efficiencies of Senegalese agriculture.

Furthermore, previous studies have focused on groundnut farming (Thiam and Bravo-

Ureta, 2003), rice sub-sector (Diagne et al., 2013; Ngom et al., 2016; Seck, 2017),

vegetable sub-sector (Dedehouanou, 2014), or some selected crops (Okuyama et al.,

2017). Our analysis wants to take the agricultural sector as a whole. Moreover,

although several studies have shown the significant effect that climatic factors can

have on farmers technical efficiencies, none of these previous studies has really inte-

grated them into their modelling. We, therefore, incorporated in our designated SFA

models climatic factors namely rainfall, temperature, and their anomalies. Further-

more, to take into account spatiality and understand how its unobserved features

affect generally farm production and technical efficiency, we took advantage of a new

approach developed in spatial econometrics and apply it to the Senegalese context.

Finally, we extended de Graaff (2020) simulation works in the spatial stochastic

frontier field, primarily by conducting simulations for the spatial lag models, and

secondly by generating and varying (via spatial correlation coefficients) the spatial

weight matrices used in the simulation analysis.

Simulation results confirm that the estimation method designed by de Graaff

(2020) based on the skew-normal distribution of errors in the stochastic production

frontier is appropriate and can lead to consistent estimates. Although the Maximum

Likelihood estimation procedure is sensitive to the starting values, notably the sign of

inefficiency dispersion coefficient. Empirical results revealed that farmers technical

efficiency in Senegal is affected by both climatic features and spatiality. These results

have important policy implications when designing adaptation strategies to climate

change.

The paper is divided into six sections, including this introduction. The second

section presents a brief literature on spatial stochastic frontier models. The third

section describes the approach used and the estimation technique. Section 4 presents

the simulation results, while section 5 presents and discusses the empirical results.

Finally, section 6 presents the conclusions and explores some policy implications.

2 Literature on spatial stochastic frontier

Recently, in the field of productivity and efficiency analysis, analysts have tried to

incorporate spatial interactions into frontier models, resulting in some novel spatial
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frontier models. Based on this literature and assuming some spatial interactions

between decision-making units, one could distinguish four main types of models de-

signed to introduce spatial interactions into the stochastic frontier approach. These

models are (i) the spatial auto-regressive stochastic frontier (SAR), (ii) the spa-

tial lag on the exogenous variable stochastic frontier (SLX), (iii) the spatial error

stochastic frontier (SEM) and (iv) the spatial inefficiency stochastic frontier (SIM).

The SAR model integrates the spatial dependence into the dependent variable,

rendering this latter auto-regressive. It has been widely used by modellers in many

fields and contexts. Regarding the efficiency analysis field, although few studies are

known, this specification is the one of most interest to researchers. Barrios and

Lavado (2010) used the SAR-type stochastic frontier model accounting for spatial

externalities. They applied it to data sets from the Philippines to demonstrate the

importance of spatial components, and to derive unbiased estimations of technical

efficiency. To evaluate the impact of programs that aim to improve the productivity

of firms, this SAR-type model was also used by Affuso (2010) in Tanzania to analyse

the efficiencies of matched subsamples of treated and non-treated farmers. Using

this spatial autoregressive model, Glass et al. (2013) extended the decomposition of

the standard factor productivity growth to incorporate direct and indirect impacts of

units, introducing at the same time the concept of efficiency spillovers. The authors

applied their specification to a panel data of 40 European countries from 1995 to

2008. Glass et al. (2014) applied the same approach in a cost frontier model to

highlight the importance of efficiency spillovers in the U.S. manufacturing sector.

Han et al. (2016) by allowing endogenous interaction effects in the frontier model,

used data from 21 OECD countries from 1960 to 2001, to derive the spillover effects

of public capital stock. Similarly, Ramajo and Hewings (2018) used a SAR model

of stochastic frontier approach to estimate the technical efficiency of 120 European

Union regions over the period 1995-2007. Their study revealed a strong geographic

pattern of regional efficiency showing productivity convergence of European regions

during the same period.

The spatial lag of exogenous variable, like the spatial lag model of X (SLX)

defined by LeSage and Pace (2009), characterize a link between an output of a par-

ticular decision-making unit and the inputs of its neighbours. This model intends

to explain the spatial influence of neighbours’ input values (or the indirect flow of

resources) on a given unit’s output. In the context of efficiency analysis, Adetutu

et al. (2015) applied such a model to account for local spatial dependence and to

shift the production frontier. The spatial error stochastic frontier is similar to the

spatial error model of LeSage and Pace (2009) and unlike the previous models, it is
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designed to bring out the spatial heterogeneity between production units. Druska

and Horrace (2004) used such specification, by including spatial auto-regressive dis-

turbances into the classical SFA. Using generalized moments method on a panel

data, they estimated time-invariant inefficiencies and concluded to the existence of

spatial correlations into data and this latter affects the magnitude and variability of

the production function and the estimated technical efficiencies.

The spatial inefficiency stochastic frontier model is an auto-regressive specifica-

tion concerning the inefficiency error term of the composite error. This specification

illustrates the spatial correlation between the levels of efficiency of neighbouring

units. To account for the possible unknown geographical variation of the outputs

of farms in Brazil, Schmidt et al. (2009) included in their model, a latent spatial

structure in the inefficiency error term. Their findings showed that standards mod-

els induce significantly different inefficiencies across units. Tonini and Pede (2011)

also incorporated spatial dependency in the inefficiency term to measure total factor

productivity of European agriculture from 1993 – 2006 in 29 countries. They found

that not allowing for spatial dependency underestimates the cumulated technical

inefficiency changes. Areal et al. (2012) used such specification in a Bayesian setting

to show spatial dependence in technical efficiency in a panel data of dairy farms in

England and Wales. More recently Pede et al. (2018) and Skevas (2020) followed

the approach of Areal et al. (2012) and applied it respectively to irrigated and rain-

fed agroecosystem rice farming in the Philippines and to Dutch dairy farms. Fusco

and Vidoli (2013) applied the same model to a cross-sectional data of wine indus-

tries in Italy and demonstrated the uniform and strong spatial dependence between

neighbouring units. Tsionas and Michaelides (2016) also used this same stochastic

frontier model with the decomposition of inefficiency into an idiosyncratic and a spa-

tial spillover component. They applied their method to a production data of Italian

regions over the period 1970 - 1993. Carvalho (2018) proposed a spatial Bayesian

random effects stochastic frontier model that allows for unobserved heterogeneity

and spillovers between firms’ efficiencies. de Graaff (2020) estimated the SIM model

after assuming a skew-normal distribution for the composite error term.

From these four main models, several combinations could be made to form dif-

ferent types of spatial stochastic frontiers. Pavlyuk (2013), for instance, developed a

full model with all types of spatial interaction. However, its estimation is challeng-

ing due to identification and computation issues. After some restrictions on spatial

parameters, Pavlyuk (2011, 2013) used data sets of the regional tourism markets

in the Baltic States and the European airports to demonstrate significant spatial

dependencies. Orea and Álvarez (2019) developed a stochastic frontier model that
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allows for cross-sectional spatial correlation in both the noise and inefficiency terms,

and that can be estimated by maximum likelihood and non-linear least squares.

Glass et al. (2016) considered a spatial Durbin stochastic frontier model which com-

bines the SAR and SLX specifications. They applied it respectively to European

countries and demonstrated the asymmetry between efficiency spillovers to and from

European countries.

3 Spatial stochastic production frontier approach

3.1 The model

From the seminal works of Aigner et al. (1977) and Meeusen and van Den Broeck

(1977), the standard stochastic production frontier is defined as:

yi = f (Xi, β) exp (vi − ui) , (1)

where yi is the observed output of the farm unit i (i = 1, 2, . . . .., N) , Xi is a vector

of inputs, f (Xi, β) is the production function, with β as the parameters to be esti-

mated; vi is a two-sided stochastic term that accounts for statistical noise, ui is a

non-negative stochastic term representing farm inefficiency. In this model, the possi-

ble production yi, is bounded above by the stochastic quantity f (Xi, β) exp (vi) that

consists of a deterministic part f (Xi, β) common to all farms and a farm-specific

part exp (vi) that captures the effect of random shocks. Errors vi are assumed to

be independently and identically distributed as a normal distribution N+(0, σ2
v), in-

dependent of ui, which are assumed to be non-negative with either a half-normal

distribution (Aigner et al., 1977), a truncated normal distribution (Stevenson, 1980),

an exponential distribution (Meeusen and van Den Broeck, 1977) or a gamma dis-

tribution (Greene, 1990). Assuming a Cobb–Douglas production function for the

output production yi, a logarithmic specification of the function 1 gives in vector

notation:

ln (y) = ln (X) + v − u. (2)

Following previous literature, spatial interactions can be incorporated into this stan-

dard SFA in two main ways, through the dependent variable resulting in the so-called

spatial auto-regressive stochastic frontier model (SAR-SFA), and through the errors

giving the spatial error stochastic frontier model (SEM-SFA). The SAR-SFA model
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can be written as:

ln (y) = ρW ln (y) + ln (X) β + v − u, (3)

where ρ is the spatial lag parameter and W is the spatial weight matrix, and y, X,

β, v, and u are as defined previously. Furthermore, the SEM-SFA can be specified

as:

ln (y) = ln (X) β + ε, with ε = v − u = λWε+ ε̃, (4)

where λ is the spatial error lag parameter, and W , y, X, β, v, and u are as defined

previously.

3.2 Estimation of parameters

To estimate parameters of the standard SFA with the maximum likelihood technique,

one usually assumes that v follows a normal distribution (v ∼ N (0, σ2
v)) and u a half-

normal distribution (u ∼ N+ (0, σ2
u)). Therefore, the marginal density function of ε

is given by:

f (ε) =
2

σ
φ
( ε
σ

)
Φ
(
−εγ
σ

)
, (5)

where σ2 = σ2
u + σ2

v , γ = σu
σv

, Φ(.) is the standard normal cumulative distribution

function, and φ(.) is the standard normal probability density functions. From equa-

tion 5 the log likelihood function for N farms as proposed by (Aigner et al., 1977)

is:

lnL = −N
2

ln

(
πσ2

2

)
+
∑

i

lnΦ
(
−εγ
σ

)
− 1

2σ2

∑

i

ε2. (6)

Once the error in the designed stochastic frontier exhibits a more complex structure,

estimations of the parameters become cumbersome. Therefore, for the estimation

of the spatial models, we adopted a skew-normal distribution approach proposed by

de Graaff (2020) which enables us to straightforward estimate models 3 and 4 using

the maximum likelihood technique. In the skew-normal approach, the composite

error ε can be rewritten as a sum of a normal and a truncated normal distributions

(de Graaff, 2020) which gives:

ε = δ | µ | +
√

1− δ2ν, (7)

where µ and ν are independent variables N(0, 1) and δ ∈ (−1, 1). The stochastic

variable ε is generated by means of convolution, however ε can also be obtained by

conditioning:

ε = (ν | µ > 0) , (8)
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where (µ, ν) follows a bivariate normal distribution with δ as a correlation coefficient.

It can be shown that both equations 7 and 8 lead to the same skew-normal density

function:

εZ ∼ SN (α) = 2φ (x)Φ (αx) , (9)

where α is the skewness parameter that determines the shape of the density func-

tion2. As shown by de Graaff (2020), if ε ∼ SN (α) and ln (y) = ln (X) β, then the

affine transformation of ln (y) ∼ SN (ln (X) β, σ2, α) can be expressed as:

ε ∼ 2φ
(
ln (y)− ln (X) β;σ2

)
Φ (α (ln (y)− ln (X) β)) . (10)

In this case, ln (X) β, σ2, and α could be defined as a location parameter, a scale

parameter and a skewness parameter respectively. The relation between equations

2 and 10 can be defined by stating ln (y)− ln (X) β = π (v | u > 0) = ε, where

ε =

[
µ

ν

]
∼ N (0,Ω∗) , Ω∗ =

[
1 δ

′

δ
′
σ2

]
, (11)

and where α = δ2
√

1− δ2, δ = σu, and
√

1− δ2σε = σv. The latter equality denotes

the intrinsic relation between u and v which is implicit in specification 2. It impor-

tant to note that specification 2 only holds when δ < 0. From density equation 10,

the log likelihood for N observations can be specified as (de Graaff, 2020):

lnL = −N
2

lnπ − N

2
ln
(
σ2
)
− 1

2
ε
′
ε+

∑

i

ln (2Φ (αεi)) , (12)

where εi is the ith observation of the vector ε. As argued by de Graaff (2020), a

skew-normal distribution allows the use of a single error term instead of a com-

posite one. This process has several advantages when working with multivariate

distributions, and the interpretation of the parameters seems as well more intuitive

(using scale, location, and skewness parameters). However, a disadvantage is the

need to use a re-parametrization of the parameters in order to estimate them prop-

erly. The log likelihood function specified in equation 12 can be straightforwardly

adapted to the spatial lag stochastic frontier and spatial error stochastic frontier

model (de Graaff, 2020). The log likelihood for the spatial lag stochastic frontier for

2See de Graaff (2020); Azzalini (1985, 2005); Azzalini and Valle (1996); Azzalini and Capi-
tanio (1999); Arellano-Valle and Azzalini (2006) and Arellano-Valle and Azzalini (2008) for more
literature on the skew-normal distributions.
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N units is expressed as:

lnL = −N
2

lnπ − N

2
ln
(
σ2
)

+ ln | I − ρW | −1

2
ε
′
ε+

∑

i

ln (2Φ (αεi)) , (13)

where ε = 1
σ

[ln (y)− ln (X) β] and I the identity matrix. The log likelihood for a

stochastic frontier model with spatial dependence in the error term can be defined

as:

lnL = −N
2

lnπ − N

2
ln
(
σ2
)

+ ln | I − λW | 1

2
ε
′
ε+

∑

i

ln (2Φ (αεi)) , (14)

where ε = 1
σ

[I − λW ] [ln (y)− ln (X) β], and I, N , and w are defined as previously.

3.3 Measurement of technical efficiency

After estimating the likelihood functions in equations 13 and 14, the obtained pa-

rameters ε̂, δ̂ using α̂ and σ̂ can therefore be used to draw simulations from u | ε
and derive the expectation for each farm. Following de Graaff (2020), we will use

the generic formula for u | ε defined by Domınguez-Molina et al. (2003) as a normal

distribution with mean and variance equal to:

Mean =
1

δ2

σ2 + 1

δ

σ2
ε, Variance =

1
δ2

σ2 + 1
.

4 Monte Carlo simulation

4.1 Simulation procedure

Following a similar approach as de Graaff (2020), we set up a simulation procedure

with a base cross-section data generating process defined as:

Y = 1 + ln (A) + ε,

where ε = δ | u | +
√

1− δ2v

and ln(A) ∼ U (5, 14)

u ∼ N (0, 0.3)

v ∼ N (0, 0.3) .

(15)

Here, v and u are drawn using a normal distribution, the production input is drawn

using a uniform distribution with associated coefficient β1 equals to 1, and the
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constant term (denoted β0 ) is also set to 1. From this base specification we ran-

domly generated data sets by considering alternative scenarios (see table 1). The

experiments were then performed by varying the number of observations N (250

and 1000), and the values of the coefficient of correlation δ (-0.2, -0.5, and -0.8).

However, contrary to de Graaff (2020) we also vary the values of the spatial depen-

dence coefficients λ and ρ (0.2, 0.5, and 0.8), by considering a randomly generated

spatial weight matrix of the type, inverse geographic distance, using latitudes and

longitudes drawn from a uniform distribution (U (0, 20)). Note that the weights

matrices are all row-standardized, and their diagonals set to 0. For each scenario,

1,000 replications are made.

Table 1: Monte Carlo simulation scenarios

Variables Description
Base

scenario
Alternative
scenarios

N Number of observations 250 1000
λ , ρ Spatial correlation 0.2 0.5, 0.8
δ Inefficiency coefficient -0.2 -0.5, -0.8

For each generated data, we estimate the values of parameters β0 (constant term),

β1, σ, α, δ, the likelihood value, the mean technical efficiency. We also compute the

true values of α using the estimated δ, the true likelihood value, and the true mean

technical efficiency. This process is replicated 1,000 times for all the scenarios defined

in Table 1. For each scenario, we compute the mean value and its standard deviation.

We also calculate the bias and root mean squared error (RMSE) for all estimated

values using the following formula:

Biask =
1

1000

1000∑

r=1

(Ekr − Tkr) , RMSEk =

√√√√ 1

1000

1000∑

r=1

(Ekr − Tkr)2,

where Biask is the bias in scenario k, RMSEk is the root mean squared error in

scenario k, Ekr is the estimated value in replication r of scenario k, and Tkr is the

true value in replication r of scenario k. Moreover, for a better analysis, we also

plot for each scenario box-plots for estimated parameters, which better exhibit the

distribution of the parameters (medians, ranges, biases with the true data generating

process values).
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4.2 Simulation results

Tables 6, 7, and 8 present the simulation results for different setups of λ (0.2, 0.5,

0.8) respectively (case of spatial error SFA). Furthermore, figures 5, 6, and 7 in

appendix show the distributions of parameters β0, β1, δ, σ and λ. These results

exhibits some patterns. Estimated coefficients β0 and β1 shows relatively very low

biases and RSME for all scenarios. For instance, the biases for β1 are close to 0.

Also, β0 and β1 distributions show that they converge to their true values when the

sample size is high. For parameter λ, with low true values, biases and standard

deviations are high. Parameter σ exhibits low biases whether N=250 or N=1000,

and when values of δ are -0.2 or -0.5. Biases seems to increase with the increase

(absolute term) of values of δ. In some cases, estimated values of σ are totally out of

their range as shown by figure 5 for δ=0.8. Regarding parameter δ, biases diminishes

with the increase in sample size in all scenarios. However, box-plots show relatively

skewed distributions for δ with wide range in most scenarios (when δ=-0.2, -0.5),

denoting the difficult precision in the estimation of this parameter when the sample

size is small and the absolute value of true δ is low. As α and δ are related, the

same pattern is observed for α. In conclusion, as also observed by de Graaff (2020),

values of the estimated parameters converge to their true values when the sample

size becomes larger (as shown by the box-plots, a wider range in the distribution of

estimated values is globally observed when N=250, compared to N=1000).

Tables 9, 10, and 11 reports respectively the simulation results for the different

setups of ρ (0.2, 0.5, 0.8) (case of spatial auto-regressive SFA), and figures 8, 9,

and 10 in the appendix plot in this specific case the distributions of parameters β0,

β1, δ, σ and ρ respectively. One can observe that parameter β0 shows high biases

and RMSE in most scenarios, especially when true ρ = 0.8. But the estimated

coefficient β1 shows very low biases and RMSE in all scenarios. In the case of

estimated parameter α, the RMSE are high for all scenarios. In addition, the biases

are high when δ = −0.2. Similar pattern can be observed for the estimated values

of δ.

These simulation works show that the suggested estimation technique can pro-

vide consistent results, mostly in the case of the spatial error stochastic frontier

model. However, it is worth noting that for the efficiency parameter, it seems im-

portant to use a starting value with a negative sign which is the expected sign of the

coefficient. Indeed, during simulations, we observed that when the starting value

of the inefficiency parameter δ has a positive value, the estimated coefficient gives

values close to zero. We conducted several simulation rounds and observed similar
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results, however, we did not report the results here. This is the only issue that we

observed in the simulation, and even when using the positive starting values, this

did not affect the estimation of other coefficients. We believe this problem might be

related to the re-parametrization in the equations: centered versus non-centered pa-

rameterizations, which has been widely discussed in literature3. The starting values

used for the simulation work and empirical analysis are defined following principles

of stochastic frontier analysis and they are presented in table 2.

Table 2: Starting values for maximum likelihood estimation
Estimated models

Parameters SFA SAR-SFA SEM-SFA
β0 βOLS0 βSAR0 βSEM0

β1 βOLS1 βSAR1 βSEM1

σ σOLS σSAR σSEM
λ λSEM λSEM

ρ ρSEM ρSEM

δ −σOLS
√

1− π/2 −σSAR
√

1− π/2 −σSEM
√

1− π/2

5 Empirical application

5.1 Model specification

This section describes the specifications of the production frontiers and of the weight

matrices used. We specify a base production function (model 1), using a Cobb-

Douglas functional form between the output and the inputs used4. Therefore the

estimated parameters of the conventional inputs can be interpreted as partial elas-

ticities of production. From this base model, we specified three variant models: in

the first variant (model 2), we incorporated climate variables directly into the non-

stochastic component of the production function. Meanwhile in the second variant

(model 3), in addition to the climate variables, we included some other environmen-

tal variables. Our general model is therefore specified as follows:

ln (yi) = θ0 +
k∑

i=1

θkln (xik) +
l∑

i=1

γlDil +
m∑

i=1

∆mZim + εi (16)

3The re-parametrization problem has been mentioned to us via e-mails by de Graaff (2020)
himself, however, we did not find any solution to address it in the present work.

4The Cobb-Douglas functional has convenient properties. As argued by O’Donnell (2016), it
generally satisfies non-negativity and monotony, unlike Translog, a commonly used alternative.
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where yi represents the output of the ith farmer, xik denote vectors of the production

inputs k; Dil represent climatic variable l; Zim represent other non-stochastic envi-

ronmental variables m; θ0, θk, γl, and ∆m are parameters to be estimated and εi is

the error term. The output here is the household total crop production. The three

inputs are land, labour and operating costs. The climatic variables are rainfall,

temperature, rainfall and temperature anomalies. The other non-stochastic envi-

ronmental variables include the components of soil, the farmer education, the use of

improved seeds, and membership in farmers organizations. In this empirical analysis,

we estimated this model using a step-wise approach. First, we assumed no spatial

interaction and estimated the model as a linear model (OLS). Secondly, after test-

ing for the presence of spatial dependence in the production function (we discussed

this later), we incorporated spatial interaction via the spatial weight matrix W and

estimated linear spatial models (Spatial lag and Spatial error). The spatial lag is

of the form ln (yi) = ρW ln (yi) θ0 +
∑k

i=1 θkln (xik) +
∑l

i=1 γlDil +
∑m

i=1 ∆mZim + εi

and the spatial error is of the form:ln (yi) = θ0 +
∑k

i=1 θkln (xik) +
∑l

i=1 γlDil +∑m
i=1 ∆mZim + εi, with εi = λWεi + ε̃i, with ρ and λ as parameters to be esti-

mated. Finally, assuming that ε follows a skew-normal distribution, we estimated

a standard SFA and then spatial frontier models (spatial SFA lag and Spatial SFA

error), to derive farmers technical efficiency scores robust to the presence of spatial

dependence. The performances of the estimated models are compared to select the

”best” fitting model based on various tests.

Prior to estimating the spatial models, we specify the weight matrix for the Sene-

galese agricultural sector. The spatial weight matrix W is a symmetric matrix, where

its elements wij express proximity of a household i with a household j. In common

practice, to enable an interpretation of model coefficients, W is row standardized so

that the sum of the row elements equals to one. In addition, the diagonal elements

wii are set to zero, in order to prevent the effect of the ith household from directly

predicting itself. Many specifications of weight matrices have been used in the lit-

erature, and specifying the weight matrix is arbitrary. However, prior knowledge of

the study population and economic theory can help to guide in the specification of

these matrices. Following Areal et al. (2012) and Pede et al. (2018), we specify a

spatial weight matrix of a power form with: wij = exp
(
−d2

ij/s
2
)
, where dij is the

euclidean distance between households i and j, s is the cut-off distance. We choose

a cut-off distance of 4 km based on a previous study in this thesis. It is assumed

therefore that beyond this cut-off distance there is no spatial effect.

Moreover, before implementing the spatial models, we checked for spatial inter-

action by computing the Moran index using the dependent variable and the residuals
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of the OLS of each model5. Using the same variables, we plotted Moran scatter plots

to visually show the spatial interaction. Furthermore, we conducted a series of tests

including the standard Lagrange multiplier (LM)(Anselin, 1988) test and its robust

counterparts (Anselin et al., 1996)6.

5.2 Data source and variables

The data used for the empirical analysis was derived from a survey conducted in

Senegal, which randomly sampled 4480 households that mainly produce rainfed ce-

reals. The survey was implemented under the Agricultural Policy Support Project

(Projet d’Appui aux Politiques Agricoles, PAPA)7, which is an initiative of the

Government of Senegal funded by USAID-Senegal as part of the ”Feed The Future”

initiative, and implemented for a period of 3 years (2015 - 2018) by the Senegalese

Ministry of Agriculture and Rural Facilities with technical support from the Interna-

tional Food Policy Research Institute (IFPRI). The data, which covers the main agri-

cultural season of 2016/2017, contains information on crop production and different

inputs used. After the data cleaning and removing observations with no information

on crop production, the final sample comprises of 4245 households located in all six

Senegalese agro-ecological zones. Climate data were retrieved, using the surveyed

households location coordinates, from publicly available databases of the Climate

Hazards Center of the University of California (https://www.chc.ucsb.edu/data).

The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)8

for the period 1981-2016 was used for rainfall variables, and the monthly Climate

Hazards Group InfraRed Temperature with Station (CHIRTSmax)9 for the period

5Moran’s I statistic for outcome is computed as: I = (
∑

i

∑
j wij(Yi−Ȳ )(Yj−Ȳ ))/(

∑
i(Yi−Ȳ )2),

where wij is the spatial weight between households i and j; Yi is the outcome of household i; and
Ȳ is the mean of the outcome. The range of Moran’s I is (−1, 1), with 1 indicating perfect spatial
similarity (or positive spatial correlation), 0 indicating no spatial correlation, and -1 indicating
perfect dispersion (or negative correlation). If we observe a significant spatial autocorrelation
based on Moran’s I statistic, spatial regressions models should be used to correct for the spatial
autocorrelation errors.

6The standard two LM tests are: LMerror = [e′We/(e′e/N)]2/[tr(W 2 + W ′W )] and LMlag =
[e′Wy/(e′e/N)]2/D. Robust LM tests are defined as: RLMerror = [e′We/(e′e/N)]2/[tr(W 2 +
W ′W )] and RLMlag = [e′Wy/(e′e/N)]2/D, where e denotes the estimated residual from the non-
spatial model; N is the number of farmers; and W are defined as previously.

7Official website of the project is http://www.papa.gouv.sn/.
8CHIRPS data is a 35+ years quasi-global rainfall data set. Spanning 50°S-50°N (and all

longitudes) and ranging from 1981 to near-present, CHIRPS incorporates the in-house climatology
data CHPclim, 0.05° resolution satellite imagery, and in-situ station data to create gridded rainfall
time series for trend analysis and seasonal drought monitoring (Funk et al., 2015).

9CHIRTSmax is a global 2-m maximum temperature (Tmax) product that directly combines
satellite and station-based estimates of Tmax to produce routinely updated data to support the
monitoring of temperature extremes. The CHIRTSmax development process integrated a long-
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1983-2016 was used for temperature variables. Table 3 presents the definition and

summary statistics of the variables used in the analysis.

Table 3: Description of variables

Variables Description and measurement Mean SD Max Min
Production Total crop production (1000 FCFA) 467.684 764.653 14375 0.180
Land Total area of land cultivated (Ha) 4.411 4.527 50.000 0.001
Family labor Total family labor (Adult equivalent) 3.228 2.258 20.100 0.150
Operating costs Total Operating costs (1000 FCFA) 55.970 118.610 3418.500 1.500
Rainfall Annual rainfall (m) 0.672 0.292 1.484 0.187

Temperature
Average maximum
temperature (Celsius degree)

35.942 1.314 38.43 30.90

Rainfall anomaly Rainfall anomaly 1981-2015 0.033 0.050 0.170 -0.186
Temperature
anomaly

Average maximum temperature
Anomaly 1983-2015

0.020 0.006 0.038 0.008

Clay Percentage of clay (%) 19.97 7.235 40.00 3.00
Silt Percentage of silt (%) 13.47 5.735 31.00 2.00
Improved seed Use of improved seed (1=yes, 0=no) 0.259 0.4380 1 0
Education Formal education (1=yes, 0=no) 0.370 0.483 1 0

FBO Membership
Membership in Farmer Based
Organization (1=yes, 0=no)

0.088 0.283 1 0

N Number of Observations 4423 4423 4423 4423
SD: Standard Deviation

The dependent variable used in the models is the total crop production, which is

expressed in Franc CFA10, and it includes all farm crop production outputs valued

at the market prices. Farmers produce 32 crops which include major crops, namely

cereals (rice, maize, sorghum, millet), groundnut, and cotton. The first input is

the land, which is the sum of all land area dedicated to crop production during the

2016/2017 growing season. Variable labour, the second input, is the quantity of

total labour (in adult equivalent). The total of operating costs in FCFA, which is

the last input, includes the costs of seeds, fertilizers, non-family labour, and other

costs such as transport, maintenance, etc. Climate variables include rainfall, rainfall

anomaly, temperature and temperature anomaly. Based on study of Ba (2006), the

climate in Senegal is made up of two seasons: the rainy season which lasts two to

four months (exceptionally five months) depending on the region and the very long

dry season. Also, these two seasons are more complex to define because they are

difficult to delineate in time and space. The spatial and temporal features of the rain

are very variable from one region to another (Ba, 2006). The spatial features of the

term climatology with satellite information and available station data. The result is a monthly
estimate of the daily maximum temperature for the 1983-2016 time period (Funk et al., 2019).

10Local currency, 1 FCFA = 0,0017 USD as at 8 May 2020.
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Senegalese climate justify once again the spatial approach used in this paper. We,

therefore, consider rainfall as the annual precipitation received by each household.

Temperature is the yearly average maximum temperature of the household location

expressed in degree Celsius. We also computed the anomalies of temperature and

rainfall. We follow Lachaud et al. (2017) and computed anomalies as the deviation

of the 2016 annual rainfall and temperature observation from the long-term mean

(1981–2015 for rainfall and 1983-2015 for temperature)11. As argued by Lachaud

et al. (2017) and Barrios et al. (2010), there are some advantages associated with

the use of anomalies. First, factors like the station location and elevation are less

critical, and agricultural decisions are based on expected weather behaviour, there-

fore production might be affected by any weather deviation from the expectations.

In the sample, the mean monthly maximum temperature is about 36 degrees Cel-

sius, while the mean annual rainfall received by a household in the year 2016 is

672 mm. The long-term average annual rainfall over the period 1981-2015 is 651

mm and the long-term average maximum temperature over the period 1983-2015

is 35 degree Celsius. The other variables included in the models that can produce

cross-sectional variation in the production frontier between farmers are their educa-

tion, use of improved seeds, percentages of clay and silt in soils, and membership in

farmers organizations.

5.3 Empirical results

Diagnostics for spatial interdependence

Table 4 reports the results of the diagnostic tests for spatial interaction. It shows

that the Moran’s I statistics are all positive and highly significant (p < 0.01). For

instance, the Moran I using the residuals are 0.377, 0.328, and 0.310 for models 1,

2 and 3 respectively, indicating that there is a strong positive spatial correlation

between farmers crop production, as well as a strong spatial dependence. Farmers

with relatively high production seem to live close to other farmers with high produc-

tion, and farmers with relatively low production tend to live near farmers with low

production. These results are corroborated by the Moran plots (Figures 3 and 4 in

the appendix), which show how observations outcomes are strongly and positively

correlated to their neighbours’ outcomes (one can observe the clustering of values

in the upper right quadrant and lower left quadrant, suggesting the positive spatial

autocorrelation). These results suggest that spatial correlation should be considered

11Anomaly = (current year value - long term mean) / long term mean
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in our analysis. After estimating the OLS, we computed the standard Lagrange

Multiplier tests (Anselin, 1988) and their robust counterparts (Anselin et al., 1996).

The null hypotheses were mostly rejected at p < 0.01, indicating that spatial in-

teraction should be incorporated into our models. At this step, tests results are

non-conclusive. However, when comparing tests statistics, the results are mostly

in favour of the spatial error models. The test statistics of the error models are

much higher than that of the lag models, we therefore continue the analysis with

the spatial error models.

Table 4: Moran Index and Lagrange Multiplier tests

Model 1 Model 2 Model 3
Moran I Statistic (outcome) 0.418∗∗∗

Moran I Statistic (residuals) 0.377∗∗∗ 0.328∗∗∗ 0.299∗∗∗

Standard LM Error 2049.7∗∗∗ 1550.6∗∗∗ 1285.8∗∗∗

Robust LM Error 1374.4∗∗∗ 1036.3∗∗∗ 735.57∗∗∗

Standard LM Lag 716.72∗∗∗ 536.69∗∗∗ 550.7∗∗∗

Robust LM Lag 41.426∗∗∗ 22.414∗∗∗ 0.494
Notes: ∗∗∗p < 0.01. LM: Lagrange Multiplier

Production frontier

Tables 12, 13, and 14 present the results of estimated models 1, 2, and 3 respectively,

with different estimation techniques. At this stage of the analysis, the preferred

models are the spatial error models for the base model (SEM 1) as well as for

the variants (SEM 2 and SEM 3). We still need to decide between theses linear

spatial error models (SEM 1, SEM 2, and SEM 3) and the spatial SFA error models

(SEM-SFA 1, SEM-SFA 2, and SEM-SFA 3) which are spatial frontier analysis.

Based on the likelihood ratio tests (LR), the spatial SFA error specifications are

preferred. The results of the LR tests comparing the various models are presented

in table 5. Furthermore, based on the same likelihood ratio test, the preferred

spatial SFA error model is the one which includes climatic and other variables (SEM-

SFA 3). This model suggests that including climatic variables and other variables

bring additional information to the model. We, therefore, continue the discussion

with this model. The maximum likelihood estimates of the SEM-SFA 3, which

includes climatic and other variables is reported in column (6) of table 14. Results
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show as expected12 that the model produces statistical significant (at 1% level)

and positive partial production elasticities. These results suggest that in Senegal,

land and labour are the inputs that make the highest contribution to agricultural

production. Land contribution to agricultural production is about 86% while labour,

which is mainly made of the family labour, contributes about 9%. Similar results

have also been reported in other parts of the developing world, for instance in Latin

America and Caribbean by Lachaud et al. (2017). Meanwhile, the total operating

costs which includes the values of fertilizers, seeds, hired labour and other cost such

as transport and maintenance only plays a minor role in the farm crop production,

with a contribution of about 2%. When comparing these results with the estimates

of other models (OLS 1, OLS 2, OLS 3, SFA 1, SFA 2, SFA 3, SEM-SFA 1, etc.), one

can observe similar patterns: statistical significant and positive partial production

elasticities, with a slight difference in magnitudes. Neither the standard frontier

analysis nor the incorporation of spatial interaction changed the results of the frontier

estimates, although the likelihood value improves significantly in the spatial models.

Table 5: Likelihood ratios tests

SEM 2 SEM 3 SEM-SFA 1 SEM-SFA 2 SEM-SFA 3
SEM 1 88.393∗∗∗ 152.177∗∗∗ 3074.76∗∗∗

SEM 2 63.783∗∗∗ 3068.269∗∗∗

SEM 3 3072.986∗∗∗

SEM-SFA 1 81.90∗∗∗ 150.40∗∗∗

SEM-SFA 2 68.50∗∗∗

Notes: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

Climatic and spatial effects

Climatic variables exhibit statistically significant coefficients with the exception of

average maximum temperature. The rainfall parameter is positive, and as expected

higher precipitation is beneficial for farm crop production. The variables represent-

ing rainfall and temperature anomalies are both negative (-3.193 and -16.967) and

significant at 1% level. These results would mean that the deviation of 2016 annual

rainfall and temperature from the long-term trend has negatively affected farm crop

production.

The spatial error parameter λ (with value of 0.525) of the preferred model is

12Satisfaction of regularity conditions from production economic theory, i.e., partial output elas-
ticities should be non-negative and less than 1(Lachaud et al., 2017).
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positive and statistically different from zero. In comparison, across all alternative

models, this parameter ranges from 0.523 and 0.588, and its values are statistically

significant. At the same time, the spatial lag parameter ρ, though smaller than λ,

also exhibits positive and statistically significant values (range from 0.310 to 0.346).

The results suggest the presence of a high spatiality arising from unobservable spatial

factors in the agricultural production sector of Senegal. This implies that computing

technical efficiency scores using non-spatial production frontiers would have led to

biased estimates.

The standard deviation of the error term (σ) for the preferred model is 0.843

and significant at 1% level. This value is very close in terms of magnitude to the

estimated ones in all alternative models, which are also significant. The highest σ

can be observed for the standard SFA in specification 1 (SFA 1) and the lowest for

the spatial lag SFA in specification 2 (SAR-SFA 2). The dispersion parameter for

the inefficiency (α) of the preferred model is negative and statistically significant.

This result suggests that most of the farmers are producing below the production

frontier. However, it easy to notice that this parameter is not always statistically

significant in the alternative specifications, and its magnitude also varies signifi-

cantly. For instance, in the base model, the value of this parameter α is statistically

significant for the standard SFA (SFA 1) but in absolute terms, lower than that of

the spatial error SFA (SEM-SFA 1). In specifications 2 and 3, the same pattern is

observed, however, the magnitude of the α parameter is much lower than that of

the spatial error SFA (SEM-SFA 1, 2, and 3). One explanation is that, first the

difference in absolute terms in the inefficiency parameter could be due to the effect

of climatic variables which may have acted as a ”corrective” factor, hence suggesting

that not incorporating the climatic variables would simply lead to missing variable

bias. Secondly, these differences are due to the existence of spatial features in farm

production. Once again, not having included them in our models would have led

to biased estimates. When comparing the ”instability” of the α parameter to the

”stability” of the σ parameter, one can conclude that climate variability and spatial

features are very important factors determining the inefficiency of farm households in

Senegal. The results also reveal that components of soils (clay, silt), use of improved

seed, formal education of household head and membership in farmer organizations

are important factors in improving farm production.
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Technical Efficiency

Figures 1 shows the kernel distributions of technical efficiency estimates for all model

specifications (both non-spatial and spatial models). The average value of technical

efficiency scores for the preferred model is 0.792. This result suggests that there is

still a room to improve farm efficiency by at least 20%. The mean efficiency esti-

mated for all specifications varies between 0.752 and 0.792. The magnitudes of the

means of efficiency scores seem consistent through estimations methods and models.

However, their distributions do not follow the same patterns. The distribution of

the efficiency scores of the spatial SFA error in all specifications have a more flat-

tened shape and is very distinct from the other models. This can be a consequence

of the high absolute value of α observed previously. Moreover, we calculated the

percentage difference between the average technical efficiency for non-spatial SFA

models and for the different models that account for spatial dependence. Results

show that accounting for spatial dependence in the analysis leads to slight increases

in the estimates of technical efficiency in all cases. For instance, in specifications

3, the increase of technical efficiency is only about 4% in comparison to estimate

of a non-spatial SFA. This result would indicate that the effects of incorporating

spatial dependence in the analysis is more observable through the distribution of

farm technical efficiency scores (shown by the flattened curve), and suggesting that

some households might have a certain level of technical efficiency mostly because of

their geographic location. Therefore, we mapped the individual change in technical

efficiency scores to explore any specificity of the Senegalese regions, and found that

there are no peculiarities between localities in terms of efficiency change. Farmers

who have high changes in efficiency could be found in any part of the country. Figure

2 mapped first the change in technical efficiency due to spatial heterogeneity (change

between models SEM-SFA 3 and SFA 3) and secondly the change in efficiency due

to spatial heterogeneity and climatic variability (change between models SEM-SFA

3 and SFA 1). These results might suggest that climate variability is persistent

and affects Senegalese farmers efficiency irrespective of where they are located, and

they should use adequate farming techniques and technologies in order to have an

appropriate level of productivity. Finally, we conducted the same analysis using

this time the translog functional form and the results are presented in tables 15, 16,

and 17 and figure 11 in the appendix. Results show that the obtained estimates

of parameters α, σ, and ρ and the kernel distributions of technical efficiencies are

similar to those of the Cobb-Douglas functional form.
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6 Conclusion

The main objective of this paper was to combine spatial econometrics techniques

and a stochastic frontier approach, to analyse the effects of spatial dependence

and climate variability on farmers’ technical inefficiency. The paper contributes

to the growing literature of efficiency analysis and to the existing knowledge of the

Senegalese agricultural sector by incorporating spatial features in the production

functions. For this purpose, we use a recently designed estimation technique for

cross-sectional data in spatial econometrics, to conduct simulations and empirical

analyses.

Simulation results show that the maximum likelihood technique estimation sug-

gested by de Graaff (2020) and based on the skew-normal distribution of errors in

the stochastic production frontier provides consistent results. However, it is worth

noting that for the efficiency parameter, it seems important to use a stating value

with a negative sign which is the expected sign of the coefficient. Empirical results

reveal that Senegalese agriculture is more dependent on land area and dedicated

labour. Moreover, results show that farms efficiency is highly affected by both cli-

matic features and spatial heterogeneity, and not accounting for them might lead to

biased results for the efficiency distribution. Particularly, we found that rainfall and

temperature anomalies negatively affect the production frontier, and farm technical

efficiency on average increases when estimations control for spatial heterogeneity and

climate variability. Also, we did not find conclusive evidence that could have led to

the choice of spatial dependence modelling in the form of a spatial autoregressive-

type. Furthermore, findings also reveal that the changes in technical efficiency score

could be observed in any part of the country, implying that the effects of climate

variability and unobserved spatial features are not specific to any particular region,

but common in the entire country.

In terms of policy implications, these results imply that farmers need to adapt

to climatic effects by using appropriate and very localized technologies or farming

practices that take into account the specific characteristics of their locations. Policy-

makers should encourage the design and dissemination of agricultural technologies

that are very adaptable to specific conditions of farmers. We also observed that

membership in farmer organizations as a measure of social capital improves the pro-

duction frontier. Farmers organizations and other social groups could complement

the efforts of extension services, and be a good entry point of introducing climate

adaptation and other farming techniques.
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From a research perspective, future studies should pursue the simulations work

and investigate more the empirical performances of the skew-normal approach. Such

studies should explore the problem of starting values that we have encountered, and

the ”centered versus non-centered parameterizations” issues. These studies are also

encouraged to apply the approach to a broad range of sectors (besides agriculture)

in developing countries where most studies are needed and where spatiality is mostly

neglected in the analysis.

21



Table 6: Simulation results for λ = 0.2

N Parameters
δ = −0.2 δ = −0.5 δ = −0.8

True Mean SD Bias RMSE True Mean SD Bias RMSE True Mean SD Bias RMSE

250

β0 1.000 1.029 0.137 0.029 0.140 1.000 0.946 0.132 -0.054 0.142 1.000 0.917 0.120 -0.083 0.146
β1 1.000 1.000 0.007 0.000 0.007 1.000 1.000 0.007 0.000 0.007 1.000 1.000 0.006 0.000 0.006
σ 0.306 0.319 0.037 0.013 0.039 0.346 0.301 0.039 -0.045 0.059 0.500 0.287 0.040 -0.213 0.217
α -0.204 -0.444 0.514 -0.240 0.567 -0.577 -0.523 0.558 0.054 0.560 -1.333 -1.158 0.739 0.175 0.759
δ -0.200 -0.312 0.326 -0.112 0.344 -0.500 -0.355 0.335 0.145 0.365 -0.800 -0.635 0.338 0.165 0.376
λ 0.200 -0.251 1.248 -0.451 1.327 0.200 -0.259 1.365 -0.459 1.440 0.200 -0.241 1.336 -0.441 1.407

TE 0.871 0.838 0.061 -0.033 0.071 0.869 0.854 0.059 -0.015 0.065 0.782 0.896 0.074 0.114 0.138
LL 36.349 38.807 11.614 2.457 2.952 49.740 57.270 11.613 7.530 8.244 44.363 102.191 11.595 57.828 58.386

1000

β0 1.000 1.026 0.104 0.026 0.107 1.000 0.959 0.109 -0.041 0.116 1.000 0.974 0.107 -0.026 0.111
β1 1.000 1.000 0.004 0.000 0.004 1.000 1.000 0.003 0.000 0.003 1.000 1.000 0.003 0.000 0.003
σ 0.306 0.313 0.024 0.007 0.025 0.346 0.298 0.025 -0.048 0.054 0.500 0.296 0.019 -0.204 0.204
α -0.204 -0.356 0.360 -0.152 0.390 -0.577 -0.487 0.391 0.090 0.401 -1.333 -1.291 0.336 0.042 0.339
δ -0.200 -0.287 0.265 -0.087 0.279 -0.500 -0.380 0.275 0.120 0.300 -0.800 -0.768 0.154 0.032 0.158
λ 0.200 -0.029 0.903 -0.229 0.931 0.200 0.004 0.799 -0.196 0.822 0.200 0.041 0.752 -0.159 0.768

TE 0.871 0.849 0.049 -0.022 0.055 0.869 0.871 0.045 0.002 0.047 0.782 0.914 0.048 0.132 0.140
LL 145.069 147.823 22.293 2.754 3.287 199.056 221.970 22.462 22.914 23.669 177.702 401.685 23.275 223.983 224.536

Notes: TE and LL represent respectively technical efficiency and log likelihood value
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Table 7: Simulation results for λ = 0.5

N Parameters
δ = −0.2 δ = −0.5 δ = −0.8

True Mean SD Bias RMSE True Mean SD Bias RMSE True Mean SD Bias RMSE

250

β0 1.000 1.022 0.179 0.022 0.180 1.000 0.874 0.169 -0.126 0.211 1.000 0.784 0.164 -0.216 0.271
β1 1.000 1.000 0.007 0.000 0.007 1.000 1.000 0.007 0.000 0.007 1.000 1.000 0.006 0.000 0.006
σ 0.306 0.319 0.037 0.012 0.039 0.346 0.299 0.039 -0.047 0.061 0.500 0.279 0.044 -0.221 0.225
α -0.204 -0.429 0.515 -0.224 0.561 -0.577 -0.475 0.556 0.103 0.565 -1.333 -0.998 0.813 0.336 0.879
δ -0.200 -0.300 0.325 -0.100 0.340 -0.500 -0.320 0.337 0.180 0.382 -0.800 -0.541 0.386 0.259 0.464
λ 0.500 0.399 0.841 -0.101 0.847 0.500 0.400 0.871 -0.100 0.876 0.500 0.377 1.099 -0.123 1.105

TE 0.871 0.834 0.061 -0.037 0.073 0.869 0.842 0.061 -0.027 0.070 0.782 0.874 0.074 0.092 0.120
LL 35.913 38.455 11.619 2.542 3.049 49.303 56.897 11.607 7.594 8.308 43.926 101.683 11.609 57.756 58.319

1000

β0 1.000 1.023 0.146 0.023 0.148 1.000 0.916 0.158 -0.084 0.179 1.000 0.909 0.175 -0.091 0.197
β1 1.000 1.000 0.004 0.000 0.004 1.000 1.000 0.003 0.000 0.003 1.000 1.000 0.003 0.000 0.003
σ 0.306 0.313 0.024 0.007 0.025 0.346 0.299 0.025 -0.048 0.054 0.500 0.295 0.021 -0.205 0.206
α -0.204 -0.354 0.364 -0.150 0.393 -0.577 -0.490 0.392 0.087 0.401 -1.333 -1.266 0.380 0.068 0.385
δ -0.200 -0.286 0.269 -0.086 0.283 -0.500 -0.382 0.277 0.118 0.301 -0.800 -0.752 0.188 0.048 0.194
λ 0.500 0.567 0.720 0.067 0.723 0.500 0.587 0.692 0.087 0.697 0.500 0.612 0.681 0.112 0.689

TE 0.871 0.845 0.052 -0.025 0.059 0.869 0.868 0.048 -0.000 0.050 0.782 0.909 0.051 0.126 0.137
LL 144.531 147.350 22.290 2.818 3.351 198.519 221.493 22.469 22.974 23.732 177.164 401.120 23.289 223.956 224.510

Notes: TE and LL represent respectively technical efficiency and log likelihood value
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Table 8: Simulation results for λ = 0.8

N Parameters
δ = −0.2 δ = −0.5 δ = −0.8

True Mean SD Bias RMSE True Mean SD Bias RMSE True Mean SD Bias RMSE

250

β0 1.000 0.914 0.252 -0.086 0.266 1.000 0.538 0.246 -0.462 0.523 1.000 0.181 0.210 -0.819 0.845
β1 1.000 1.000 0.007 0.000 0.007 1.000 1.000 0.007 0.000 0.007 1.000 1.000 0.006 0.000 0.006
σ 0.306 0.317 0.037 0.011 0.039 0.346 0.295 0.039 -0.051 0.064 0.500 0.263 0.045 -0.237 0.241
α -0.204 -0.384 0.516 -0.180 0.547 -0.577 -0.379 0.551 0.199 0.586 -1.333 -0.682 0.820 0.651 1.047
δ -0.200 -0.270 0.327 -0.070 0.334 -0.500 -0.255 0.335 0.245 0.415 -0.800 -0.365 0.401 0.435 0.592
λ 0.800 0.982 0.757 0.182 0.778 0.800 0.987 0.760 0.187 0.782 0.800 0.993 0.789 0.193 0.812

TE 0.871 0.830 0.076 -0.041 0.087 0.869 0.829 0.081 -0.040 0.092 0.782 0.839 0.074 0.057 0.096
LL 34.765 37.640 11.635 2.875 3.386 48.156 56.053 11.611 7.897 8.603 42.779 100.466 11.660 57.687 58.259

1000

β0 1.000 0.935 0.219 -0.065 0.229 1.000 0.637 0.247 -0.363 0.439 1.000 0.470 0.299 -0.530 0.608
β1 1.000 1.000 0.004 0.000 0.004 1.000 1.000 0.003 0.000 0.003 1.000 1.000 0.003 0.000 0.003
σ 0.306 0.313 0.024 0.007 0.025 0.346 0.299 0.025 -0.048 0.054 0.500 0.293 0.025 -0.207 0.209
α -0.204 -0.350 0.363 -0.146 0.391 -0.577 -0.486 0.391 0.091 0.401 -1.333 -1.214 0.455 0.120 0.470
δ -0.200 -0.283 0.269 -0.083 0.281 -0.500 -0.379 0.276 0.121 0.301 -0.800 -0.719 0.237 0.081 0.251
λ 0.800 1.158 0.674 0.358 0.763 0.800 1.173 0.666 0.373 0.763 0.800 1.194 0.672 0.394 0.778

TE 0.871 0.850 0.064 -0.020 0.068 0.869 0.878 0.061 0.009 0.064 0.782 0.918 0.060 0.136 0.149
LL 143.191 146.310 22.293 3.118 3.646 197.179 220.444 22.467 23.265 24.018 175.824 399.923 23.275 224.098 224.652

Notes: TE and LL represent respectively technical efficiency and log likelihood
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Table 9: Simulation results for ρ = 0.2

N Parameters
δ = −0.2 δ = −0.5 δ = −0.8

True Mean SD Bias RMSE True Mean SD Bias RMSE True Mean SD Bias RMSE

250

β0 1.000 1.161 1.011 0.161 1.023 1.000 1.089 0.935 0.089 0.938 1.000 1.069 0.760 0.069 0.763
β1 1.000 1.000 0.007 0.000 0.007 1.000 1.000 0.007 0.000 0.007 1.000 1.000 0.006 0.000 0.006
σ 0.306 0.320 0.037 0.014 0.040 0.346 0.303 0.038 -0.043 0.058 0.500 0.293 0.036 -0.207 0.210
α -0.204 -0.465 0.510 -0.261 0.572 -0.577 -0.557 0.559 0.020 0.559 -1.333 -1.300 0.613 0.034 0.614
δ -0.200 -0.329 0.320 -0.129 0.344 -0.500 -0.378 0.335 0.122 0.357 -0.800 -0.718 0.240 0.082 0.254
ρ 0.200 0.191 0.076 -0.009 0.077 0.200 0.192 0.071 -0.008 0.071 0.200 0.193 0.058 -0.007 0.059

TE 0.871 0.845 0.054 -0.026 0.061 0.869 0.855 0.057 -0.014 0.062 0.782 0.911 0.032 0.128 0.134
LL 36.349 38.799 11.596 2.449 2.928 49.740 57.276 11.600 7.536 8.243 44.363 102.302 11.605 57.939 58.497

1000

β0 1.000 1.100 0.855 0.100 0.860 1.000 1.033 0.789 0.033 0.789 1.000 1.020 0.638 0.020 0.638
β1 1.000 1.000 0.004 0.000 0.004 1.000 1.000 0.003 0.000 0.003 1.000 1.000 0.003 0.000 0.003
σ 0.306 0.313 0.024 0.007 0.025 0.346 0.300 0.025 -0.047 0.053 0.500 0.297 0.018 -0.203 0.204
α -0.204 -0.369 0.352 -0.165 0.388 -0.577 -0.517 0.374 0.061 0.378 -1.333 -1.248 0.496 0.085 0.503
δ -0.200 -0.300 0.257 -0.100 0.276 -0.500 -0.406 0.260 0.094 0.277 -0.800 -0.739 0.270 0.061 0.276
ρ 0.200 0.195 0.065 -0.005 0.065 0.200 0.196 0.060 -0.004 0.060 0.200 0.198 0.050 -0.002 0.050

TE 0.871 0.855 0.047 -0.145 0.153 0.869 0.875 0.045 -0.125 0.133 0.782 0.897 0.123 -0.103 0.161
LL 145.069 147.837 22.331 2.767 3.335 199.056 221.995 22.530 22.939 23.715 177.702 401.779 23.247 224.077 224.626

Notes: TE and LL represent respectively technical efficiency and log likelihood value
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Table 10: Simulation results for ρ = 0.5

N Parameters
δ = −0.2 δ = −0.5 δ = −0.8

True Mean SD Bias RMSE True Mean SD Bias RMSE True Mean SD Bias RMSE

250

β0 1.000 1.292 1.504 0.292 1.531 1.000 1.207 1.392 0.207 1.407 1.000 1.160 1.137 0.160 1.147
β1 1.000 1.000 0.007 0.000 0.007 1.000 1.000 0.007 0.000 0.007 1.000 1.000 0.006 0.000 0.006
σ 0.306 0.319 0.037 0.012 0.039 0.346 0.303 0.039 -0.044 0.058 0.500 0.293 0.036 -0.207 0.210
α -0.204 -0.436 0.518 -0.231 0.567 -0.577 -0.543 0.564 0.035 0.565 -1.333 -1.305 0.605 0.029 0.605
δ -0.200 -0.304 0.323 -0.104 0.339 -0.500 -0.366 0.338 0.134 0.363 -0.800 -0.723 0.230 0.077 0.243
ρ 0.500 0.488 0.071 -0.012 0.072 0.500 0.489 0.066 -0.011 0.067 0.500 0.491 0.055 -0.009 0.055

TE 0.871 0.839 0.053 -0.032 0.063 0.869 0.853 0.055 -0.016 0.062 0.782 0.912 0.030 0.129 0.134
LL 35.913 38.361 11.598 2.449 2.930 49.303 56.840 11.604 7.537 8.245 43.926 101.869 11.609 57.943 58.500

1000

β0 1.000 1.175 1.288 0.175 1.299 1.000 1.096 1.189 0.096 1.193 1.000 1.065 0.966 0.065 0.968
β1 1.000 1.000 0.004 0.000 0.004 1.000 1.000 0.003 0.000 0.003 1.000 1.000 0.003 0.000 0.003
σ 0.306 0.311 0.024 0.005 0.024 0.346 0.298 0.025 -0.049 0.055 0.500 0.298 0.016 -0.202 0.203
α -0.204 -0.308 0.371 -0.104 0.385 -0.577 -0.473 0.395 0.104 0.409 -1.333 -1.328 0.242 0.006 0.242
δ -0.200 -0.245 0.275 -0.045 0.279 -0.500 -0.368 0.278 0.132 0.307 -0.800 -0.789 0.062 0.011 0.063
ρ 0.500 0.492 0.061 -0.008 0.062 0.500 0.494 0.057 -0.006 0.057 0.500 0.497 0.047 -0.003 0.047

TE 0.871 0.831 0.059 -0.039 0.072 0.869 0.868 0.047 -0.001 0.049 0.782 0.919 0.007 0.137 0.137
LL 144.531 147.283 22.335 2.752 3.321 198.519 221.447 22.526 22.929 23.704 177.164 401.281 23.255 224.117 224.666

Notes: TE and LL represent respectively technical efficiency and log likelihood value
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Table 11: Simulation results for ρ = 0.8

N Parameters
δ = −0.2 δ = −0.5 δ = −0.8

True Mean SD Bias RMSE True Mean SD Bias RMSE True Mean SD Bias RMSE

250

β0 1.000 2.225 3.250 1.225 3.472 1.000 2.026 3.032 1.026 3.200 1.000 1.751 2.513 0.751 2.622
β1 1.000 1.000 0.007 0.000 0.007 1.000 1.000 0.007 0.000 0.007 1.000 1.000 0.006 0.000 0.006
σ 0.306 0.319 0.037 0.013 0.039 0.346 0.303 0.039 -0.044 0.058 0.500 0.293 0.036 -0.207 0.210
α -0.204 -0.437 0.518 -0.233 0.568 -0.577 -0.541 0.564 0.037 0.565 -1.333 -1.305 0.604 0.029 0.605
δ -0.200 -0.305 0.324 -0.105 0.341 -0.500 -0.365 0.337 0.135 0.363 -0.800 -0.723 0.229 0.077 0.242
ρ 0.800 0.777 0.062 -0.023 0.066 0.800 0.780 0.058 -0.020 0.062 0.800 0.785 0.049 -0.015 0.051

TE 0.871 0.839 0.054 -0.032 0.064 0.869 0.853 0.056 -0.016 0.062 0.782 0.912 0.029 0.130 0.134
LL 34.765 37.224 11.603 2.458 2.945 48.156 55.702 11.610 7.546 8.257 42.779 100.732 11.618 57.953 58.511

1000

β0 1.000 1.827 2.843 0.827 2.959 1.000 1.645 2.640 0.645 2.716 1.000 1.430 2.178 0.430 2.220
β1 1.000 1.000 0.004 0.000 0.004 1.000 1.000 0.003 0.000 0.003 1.000 1.000 0.003 0.000 0.003
σ 0.306 0.311 0.024 0.005 0.025 0.346 0.298 0.025 -0.049 0.055 0.500 0.298 0.016 -0.202 0.203
α -0.204 -0.293 0.383 -0.089 0.393 -0.577 -0.460 0.406 0.117 0.423 -1.333 -1.328 0.242 0.005 0.242
δ -0.200 -0.229 0.286 -0.029 0.287 -0.500 -0.356 0.289 0.144 0.323 -0.800 -0.789 0.063 0.011 0.064
ρ 0.800 0.784 0.054 -0.016 0.056 0.800 0.787 0.051 -0.013 0.052 0.800 0.792 0.042 -0.008 0.043

TE 0.871 0.818 0.064 -0.052 0.083 0.869 0.856 0.061 -0.012 0.065 0.782 0.919 0.007 0.136 0.137
LL 143.191 145.948 22.321 2.757 3.323 197.179 220.101 22.528 22.923 23.698 175.824 399.936 23.256 224.112 224.661

Notes: TE and LL represent respectively technical efficiency and log likelihood value
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Table 12: Production frontier estimates, model without climatic and other environmental variables (Model 1)

OLS 1 SAR 1 SEM 1 SFA 1 SAR-SFA 1 SEM-SFA 1
(1) (2) (3) (4) (5) (6)

Constant 11.268 (0.029)∗∗∗ 7.151 (0.170)∗∗∗ 11.244 (0.037)∗∗∗ 11.720 (0.093)∗∗∗ 7.486 (0.238)∗∗∗ 12.287 (0.124)∗∗∗

Land 0.772 (0.012)∗∗∗ 0.627 (0.014)∗∗∗ 0.853 (0.014)∗∗∗ 0.765 (0.013)∗∗∗ 0.624 (0.014)∗∗∗ 0.848 (0.015)∗∗∗

Family labor 0.073 (0.018)∗∗∗ 0.108 (0.017)∗∗∗ 0.095 (0.017)∗∗∗ 0.073 (0.018)∗∗∗ 0.108 (0.017)∗∗∗ 0.096 (0.017)∗∗∗

Operating costs 0.032 (0.003)∗∗∗ 0.027 (0.003)∗∗∗ 0.022 (0.003)∗∗∗ 0.033 (0.003)∗∗∗ 0.028 (0.003)∗∗∗ 0.023 (0.003)∗∗∗

ρ 0.346 (0.014)∗∗∗ 0.345 (0.014)∗∗∗

λ 0.587 (0.014)∗∗∗ 0.588 (0.014)∗∗∗

σ 0.989 (0.043)∗∗∗ 0.883 (0.056)∗∗∗ 0.855 (0.026)∗∗∗

α −0.700 (0.163)∗∗∗ −0.529 (0.261)∗∗ −0.812 (0.109)∗∗∗

Mean Efficiency 0.784 (0.154) 0.777 (0.122) 0.791 (0.174)
Log Likelihood -5708.521 -5442.834 -5110.123 -4174.473 -3909.837 -3572.743
N 4423 4423 4423 4423 4423 4423
Notes: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Standard errors are in parentheses
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Table 13: Production frontier estimates, model with climatic variables (Model 2)

OLS 2 SAR 2 SEM 2 SFA 2 SAR-SFA 2 SEM-SFA 2
(1) (2) (3) (4) (5) (6)

Constant 10.512 (0.428)∗∗∗ 7.806 (0.428)∗∗∗ 10.822 (0.796)∗∗∗ 10.531 (0.428)∗∗∗ 7.816 (0.301)∗∗∗ 11.928 (0.458)∗∗∗

Land 0.803 (0.013)∗∗∗ 0.679 (0.015)∗∗∗ 0.860 (0.014)∗∗∗ 0.803 (0.013)∗∗∗ 0.679 (0.013)∗∗∗ 0.858 (0.015)∗∗∗

Family labor 0.052 (0.018)∗∗∗ 0.082 (0.017)∗∗∗ 0.087 (0.017)∗∗∗ 0.052 (0.018)∗∗∗ 0.082 (0.017)∗∗∗ 0.088 (0.017)∗∗∗

Operating costs 0.033 (0.003)∗∗∗ 0.028 (0.003)∗∗∗ 0.023 (0.003)∗∗∗ 0.033 (0.003)∗∗∗ 0.028 (0.003)∗∗∗ 0.023 (0.003)∗∗∗

Rainfall 0.824 (0.060)∗∗∗ 0.652 (0.057)∗∗∗ 0.801 (0.112)∗∗∗ 0.825 (0.045)∗∗∗ 0.652 (0.047)∗∗∗ 0.766 (0.089)∗∗∗

Temperature 0.020 (0.011)∗ −0.009 (0.011) 0.010 (0.021) 0.020 (0.009)∗∗ −0.009 (0.008) 0.002 (0.012)
Rainfall Anomaly −3.483 (0.262)∗∗∗ −2.525 (0.252)∗∗∗ −3.354 (0.478)∗∗∗ −3.482 (0.320)∗∗∗ −2.525 (0.151)∗∗∗ −3.313 (0.424)∗∗∗

Temperature Anomaly −20.649 (3.199)∗∗∗ −14.041 (3.037)∗∗∗ −18.113 (5.987)∗∗∗ −20.664 (0.176)∗∗∗ −14.044 (0.909)∗∗∗ −17.919 (0.615)∗∗∗

ρ 0.310 (0.014)∗∗∗ 0.310 (0.014)∗∗∗

λ 0.547 (0.015)∗∗∗ 0.550 (0.015)∗∗∗

σ 0.846 (0.011)∗∗∗ 0.800 (0.009)∗∗∗ 0.821 (0.030)∗∗∗

α −0.026 (0.431) −0.015 (0.464) −0.668 (0.135)∗∗∗

Mean Efficiency 0.754 (0.091) 0.752 (0.091) 0.789 (0.166)
Log Likelihood -5536.755 -5328.830 -5065.926 -4003.861 -3795.935 -3531.792
N. 4423 4423 4423 4423 4423 4423
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Standard errors are in parentheses
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Table 14: Production frontier estimates, model with climatic and other environmental variables (Model 3)

OLS 3 SAR 3 SEM 3 SFA 3 SAR-SFA 3 SEM-SFA 3
(1) (2) (3) (4) (5) (6)

Constant 10.314 (0.422)∗∗∗ 7.598 (0.419)∗∗∗ 10.449 (0.757)∗∗∗ 10.322 (1.227)∗∗∗ 7.895 (0.298)∗∗∗ 11.737 (0.282)∗∗∗

Land 0.851 (0.013)∗∗∗ 0.731 (0.015)∗∗∗ 0.867 (0.014)∗∗∗ 0.851 (0.013)∗∗∗ 0.730 (0.015)∗∗∗ 0.863 (0.014)∗∗∗

Family labor 0.051 (0.018)∗∗∗ 0.080 (0.017)∗∗∗ 0.087 (0.017)∗∗∗ 0.051 (0.018)∗∗∗ 0.080 (0.017)∗∗∗ 0.087 (0.017)∗∗∗

Operating costs 0.024 (0.003)∗∗∗ 0.019 (0.003)∗∗∗ 0.018 (0.003)∗∗∗ 0.024 (0.003)∗∗∗ 0.019 (0.003)∗∗∗ 0.019 (0.003)∗∗∗

Rainfall 0.173 (0.084)∗∗ −0.007 (0.080) 0.273 (0.144)∗ 0.173 (0.063)∗∗∗ −0.015 (0.062) 0.198 (0.109)∗

Temperature 0.013 (0.011) −0.016 (0.011) 0.011 (0.020) 0.013 (0.013) −0.017 (0.008)∗∗ −0.000 (0.008)
Rainfall Anomaly −3.389 (0.260)∗∗∗ −2.501 (0.249)∗∗∗ −3.321 (0.456)∗∗∗ −3.390 (0.201)∗∗∗ −2.491 (0.207)∗∗∗ −3.249 (0.360)∗∗∗

Temperature Anomaly −6.465 (3.423)∗ −1.104 (3.236) −7.897 (6.033) −6.460 (0.405)∗∗∗ −1.047 (0.439)∗∗ −7.088 (0.081)∗∗∗

Clay soil 0.016 (0.004)∗∗∗ 0.023 (0.003)∗∗∗ 0.013 (0.005)∗∗∗ 0.016 (0.004)∗∗∗ 0.023 (0.004)∗∗∗ 0.014 (0.005)∗∗∗

Silt soil 0.016 (0.004)∗∗∗ 0.009 (0.004)∗∗ 0.013 (0.006)∗∗ 0.016 (0.004)∗∗∗ 0.009 (0.004)∗∗ 0.014 (0.006)∗∗

Improved seed 0.107 (0.031)∗∗∗ 0.099 (0.030)∗∗∗ 0.109 (0.030)∗∗∗ 0.107 (0.032)∗∗∗ 0.100 (0.030)∗∗∗ 0.114 (0.030)∗∗∗

Education 0.060 (0.027)∗∗ 0.051 (0.025)∗∗ 0.066 (0.025)∗∗∗ 0.060 (0.027)∗∗ 0.051 (0.025)∗∗ 0.068 (0.026)∗∗∗

FBO Membership 0.324 (0.047)∗∗∗ 0.259 (0.044)∗∗∗ 0.145 (0.045)∗∗∗ 0.324 (0.047)∗∗∗ 0.260 (0.044)∗∗∗ 0.148 (0.045)∗∗∗

ρ 0.310 (0.014)∗∗∗ 0.310 (0.014)∗∗∗

λ 0.523 (0.016)∗∗∗ 0.525 (0.016)∗∗∗

σ 0.827 (0.013)∗∗∗ 0.822 (0.069)∗∗∗ 0.843 (0.025)∗∗∗

α −0.013 (1.433) −0.425 (0.388) −0.788 (0.106)∗∗∗

Mean Efficiency 0.752 (0.089) 0.782 (0.139) 0.792 (0.172)
Log Likelihood -5436.144 -5222.687 -5034.034 -3903.249 -3689.896 -3497.542
N. 4423 4423 4423 4423 4423 4423
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Standard errors are in parentheses
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Figure 1: Kernel distributions of technical efficiency scores for models 1, 2 and 3
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Due to spatial heterogeneity

Efficiency change in %

[−41,−25)
[−25,−5)
[−5,5)
[5,25)
[25,33]
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Figure 2: Percentage change in individual efficiency scores
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Figure 3: Moran plots using dependent variable
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Figure 4: Moran plots using OLS residuals
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Figure 5: Box plots of β0, β1, δ, σ and λ for true λ=0.2
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Figure 6: Box plots of β0, β1, δ, σ and λ for true λ=0.5
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Figure 7: Box plots of β0, β1, δ, σ and λ for true λ=0.8
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Figure 8: Box plots of β0, β1, δ, σ and ρ for true ρ=0.2
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Figure 9: Box plots of β0, β1, δ, σ and ρ for true ρ=0.5
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Figure 10: Box plots of β0, β1, δ, σ and ρ for true ρ=0.8
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Table 15: Translog production frontier estimates, model without climatic and other environmental variables (Model 1)

OLS SAR SEM SFA SAR-SFA SEM-SFA
Constant 11.335 (0.040)∗∗∗ 7.435 (0.171)∗∗∗ 11.313 (0.044)∗∗∗ 11.918 (0.059)∗∗∗ 7.934 (0.202)∗∗∗ 11.313 (0.479)∗∗∗

Land 0.774 (0.027)∗∗∗ 0.626 (0.027)∗∗∗ 0.786 (0.026)∗∗∗ 0.767 (0.027)∗∗∗ 0.623 (0.026)∗∗∗ 0.786 (0.026)∗∗∗

Family labor −0.024 (0.039) 0.002 (0.037) 0.008 (0.034) −0.031 (0.039) −0.003 (0.037) 0.008 (0.035)
Operating costs −0.167 (0.014)∗∗∗ −0.146 (0.013)∗∗∗ −0.105 (0.012)∗∗∗ −0.170 (0.014)∗∗∗ −0.148 (0.013)∗∗∗ −0.105 (0.013)∗∗∗

Land x Land −0.040 (0.010)∗∗∗ −0.044 (0.009)∗∗∗ −0.015 (0.009) −0.043 (0.010)∗∗∗ −0.044 (0.009)∗∗∗ −0.015 (0.009)
Family labor x Family labor 0.110 (0.034)∗∗∗ 0.131 (0.031)∗∗∗ 0.101 (0.029)∗∗∗ 0.111 (0.033)∗∗∗ 0.131 (0.031)∗∗∗ 0.101 (0.029)∗∗∗

Operating costs x Operating costs 0.040 (0.002)∗∗∗ 0.035 (0.002)∗∗∗ 0.025 (0.002)∗∗∗ 0.041 (0.002)∗∗∗ 0.035 (0.002)∗∗∗ 0.025 (0.002)∗∗∗

Land x Family labor 0.068 (0.016)∗∗∗ 0.054 (0.015)∗∗∗ 0.042 (0.014)∗∗∗ 0.070 (0.016)∗∗∗ 0.055 (0.015)∗∗∗ 0.042 (0.014)∗∗∗

Land x Operating costs −0.018 (0.003)∗∗∗ −0.013 (0.003)∗∗∗ −0.005 (0.003)∗ −0.019 (0.003)∗∗∗ −0.014 (0.003)∗∗∗ −0.005 (0.003)∗

Family labor x Operating costs −0.006 (0.004) −0.005 (0.004) −0.004 (0.003) −0.005 (0.004) −0.004 (0.004) −0.004 (0.003)
ρ 0.328 (0.014)∗∗∗ 0.325 (0.015)∗∗∗

λ 0.570 (0.014)∗∗∗ 0.570 (0.014)∗∗∗

σ 1.029 (0.028)∗∗∗ 0.919 (0.030)∗∗∗ 0.729 (0.008)∗∗∗

α −1.007 (0.104)∗∗∗ −0.807 (0.120)∗∗∗ −0.000 (0.355)
Mean Efficiency 0.788 (0.167) 0.790 (0.167) 0.748 (0.088)
Log Likelihood -5553.057 -5306.002 -5037.265 -4010.806 -3769.499 -3504.370
Num. obs. 4423 4423 4423 4423 4423 4423
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Standard errors are in parentheses
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Table 16: Translog production frontier estimates, model with climatic variables (Model 2)

OLS SAR SEM SFA SAR-SFA SEM-SFA
Constant 10.485 (0.417)∗∗∗ 7.938 (0.418)∗∗∗ 10.757 (0.755)∗∗∗ 10.512 (0.350)∗∗∗ 7.948 11.978 (0.188)∗∗∗

Land 0.821 (0.027)∗∗∗ 0.692 (0.027)∗∗∗ 0.802 (0.026)∗∗∗ 0.821 (0.027)∗∗∗ 0.692 (0.026)∗∗∗ 0.799 (0.026)∗∗∗

Family labor −0.011 (0.038) −0.002 (0.036) 0.006 (0.034) −0.011 (0.038) −0.002 (0.036) 0.005 (0.034)
Operating costs −0.153 (0.013)∗∗∗ −0.140 (0.013)∗∗∗ −0.104 (0.012)∗∗∗ −0.153 (0.013)∗∗∗ −0.140 (0.013)∗∗∗ −0.106 (0.012)∗∗∗

Land x Land −0.030 (0.009)∗∗∗ −0.034 (0.009)∗∗∗ −0.013 (0.009) −0.030 (0.009)∗∗∗ −0.034 (0.009)∗∗∗ −0.014 (0.009)
Family labor x Family labor 0.084 (0.032)∗∗∗ 0.111 (0.031)∗∗∗ 0.096 (0.029)∗∗∗ 0.085 (0.032)∗∗∗ 0.111 (0.030)∗∗∗ 0.097 (0.029)∗∗∗

Operating costs x Operating costs 0.039 (0.002)∗∗∗ 0.034 (0.002)∗∗∗ 0.025 (0.002)∗∗∗ 0.039 (0.002)∗∗∗ 0.034 (0.002)∗∗∗ 0.026 (0.002)∗∗∗

Land x Family labor 0.065 (0.015)∗∗∗ 0.054 (0.015)∗∗∗ 0.043 (0.014)∗∗∗ 0.065 (0.015)∗∗∗ 0.054 (0.015)∗∗∗ 0.043 (0.014)∗∗∗

Land x Operating costs −0.019 (0.003)∗∗∗ −0.015 (0.003)∗∗∗ −0.006 (0.003)∗∗ −0.019 (0.003)∗∗∗ −0.015 (0.003)∗∗∗ −0.006 (0.003)∗∗

Family labor x Operating costs −0.008 (0.004)∗∗ −0.006 (0.003)∗ −0.004 (0.003) −0.008 (0.004)∗∗ −0.006 (0.003)∗ −0.004 (0.003)
Rainfall 0.851 (0.058)∗∗∗ 0.677 (0.056)∗∗∗ 0.809 (0.106)∗∗∗ 0.852 (0.048)∗∗∗ 0.677 (0.042)∗∗∗ 0.761 (0.080)∗∗∗

Temperature 0.020 (0.011)∗ −0.007 (0.010) 0.012 (0.020) 0.020 (0.010)∗∗ −0.007 (0.007) 0.003 (0.006)
Rainfall Anomaly −2.938 (0.256)∗∗∗ −2.083 (0.247)∗∗∗ −2.983 (0.455)∗∗∗ −2.937 (0.290)∗∗∗ −2.082 −2.930 (0.200)∗∗∗

Temperature Anomaly −19.511 (3.124)∗∗∗ −13.217 (2.978)∗∗∗ −17.773 (5.682)∗∗∗ −19.572 (0.853)∗∗∗ −13.223 (0.279)∗∗∗ −17.238
ρ 0.293 (0.014)∗∗∗ 0.293 (0.014)∗∗∗

λ 0.527 (0.015)∗∗∗ 0.530 (0.016)∗∗∗

σ 0.818 (0.012)∗∗∗ 0.777 (0.009)∗∗∗ 0.828 (0.025)∗∗∗

α −0.036 (0.459) −0.017 (0.451) −0.755 (0.110)∗∗∗

Mean Efficiency 0.755 (0.092) 0.752 (0.090) 0.791 (0.173)
Log Likelihood -5388.054 -5194.900 -4992.608 -3855.159 -3662.006 -3456.784
Num. obs. 4423 4423 4423 4423 4423 4423
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Standard errors are in parentheses
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Table 17: Translog production frontier estimates, model with climatic and other environmental variables (Model 3)

OLS SAR SEM SFA SAR-SFA SEM-SFA
Constant 10.337 (0.414)∗∗∗ 7.757 (0.412)∗∗∗ 10.435 (0.725)∗∗∗ 10.940 (0.294)∗∗∗ 8.263 (0.272)∗∗∗ 11.780 (0.402)∗∗∗

Land 0.850 (0.027)∗∗∗ 0.726 (0.026)∗∗∗ 0.810 (0.026)∗∗∗ 0.848 (0.027)∗∗∗ 0.724 (0.026)∗∗∗ 0.807 (0.026)∗∗∗

Family labor −0.004 (0.038) 0.006 (0.036) 0.009 (0.034) −0.007 (0.038) 0.003 (0.036) 0.007 (0.034)
Operating costs −0.145 (0.013)∗∗∗ −0.131 (0.013)∗∗∗ −0.105 (0.012)∗∗∗ −0.146 (0.013)∗∗∗ −0.132 (0.013)∗∗∗ −0.107 (0.012)∗∗∗

Land x Land −0.025 (0.009)∗∗∗ −0.029 (0.009)∗∗∗ −0.013 (0.009) −0.025 (0.009)∗∗∗ −0.029 (0.009)∗∗∗ −0.014 (0.009)
Family labor x Family labor 0.080 (0.032)∗∗ 0.106 (0.030)∗∗∗ 0.094 (0.029)∗∗∗ 0.082 (0.032)∗∗ 0.107 (0.030)∗∗∗ 0.095 (0.029)∗∗∗

Operating costs x Operating costs 0.035 (0.002)∗∗∗ 0.031 (0.002)∗∗∗ 0.025 (0.002)∗∗∗ 0.035 (0.002)∗∗∗ 0.031 (0.002)∗∗∗ 0.025 (0.002)∗∗∗

Land x Family labor 0.055 (0.015)∗∗∗ 0.044 (0.014)∗∗∗ 0.041 (0.014)∗∗∗ 0.055 (0.015)∗∗∗ 0.044 (0.014)∗∗∗ 0.041 (0.014)∗∗∗

Land x Operating costs −0.016 (0.003)∗∗∗ −0.012 (0.003)∗∗∗ −0.005 (0.003)∗∗ −0.016 (0.003)∗∗∗ −0.012 (0.003)∗∗∗ −0.006 (0.003)∗∗

Family labor x Operating costs −0.007 (0.004)∗∗ −0.006 (0.003)∗ −0.004 (0.003) −0.007 (0.004)∗ −0.005 (0.003) −0.004 (0.003)
Rainfall 0.295 (0.083)∗∗∗ 0.101 (0.079) 0.335 (0.138)∗∗ 0.261 (0.063)∗∗∗ 0.076 (0.062) 0.253 (0.107)∗∗

Temperature 0.014 (0.011) −0.014 (0.010) 0.013 (0.019) 0.009 (0.008) −0.017 (0.008)∗∗ 0.000 (0.011)
Rainfall Anomaly −2.946 (0.255)∗∗∗ −2.142 (0.245)∗∗∗ −2.968 (0.438)∗∗∗ −2.905 (0.229)∗∗∗ −2.110 (0.317)∗∗∗ −2.889 (0.274)∗∗∗

Temperature Anomaly −7.383 (3.352)∗∗ −2.032 (3.181) −8.240 (5.785) −7.082 (0.339)∗∗∗ −1.753 (0.277)∗∗∗ −7.221
Clay soil 0.012 (0.004)∗∗∗ 0.019 (0.003)∗∗∗ 0.011 (0.005)∗∗ 0.013 (0.004)∗∗∗ 0.019 (0.003)∗∗∗ 0.011 (0.005)∗∗

Silt soil 0.015 (0.004)∗∗∗ 0.009 (0.004)∗∗ 0.013 (0.006)∗∗ 0.015 (0.004)∗∗∗ 0.009 (0.004)∗∗ 0.014 (0.006)∗∗

Improved seed 0.122 (0.031)∗∗∗ 0.111 (0.029)∗∗∗ 0.117 (0.029)∗∗∗ 0.125 (0.031)∗∗∗ 0.115 (0.029)∗∗∗ 0.122 (0.029)∗∗∗

Education 0.051 (0.026)∗ 0.042 (0.025)∗ 0.058 (0.025)∗∗ 0.051 (0.026)∗∗ 0.043 (0.024)∗ 0.060 (0.025)∗∗

FBO Membership 0.224 (0.046)∗∗∗ 0.177 (0.043)∗∗∗ 0.120 (0.045)∗∗∗ 0.225 (0.046)∗∗∗ 0.178 (0.044)∗∗∗ 0.121 (0.045)∗∗∗

ρ 0.296 (0.014)∗∗∗ 0.296 (0.014)∗∗∗

λ 0.507 (0.016)∗∗∗ 0.508 (0.016)∗∗∗

σ 0.906 (0.032)∗∗∗ 0.850 (0.032)∗∗∗ 0.842 (0.023)∗∗∗

α −0.703 (0.133)∗∗∗ −0.661 (0.140)∗∗∗ −0.840 (0.099)∗∗∗

Mean Efficiency 0.788 (0.160) 0.788 (0.162) 0.794 (0.176)
Log Likelihood -5316.782 -5116.775 -4963.964 -3782.425 -3582.761 -3425.641
Num. obs. 4423 4423 4423 4423 4423 4423
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Standard errors are in parentheses
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Figure 11: Kernel distributions of technical efficiency scores for models 1, 2 and 3
with Translog
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# Packages
library(igraph)
library(spdep)
library(maxLik)
library(GMCM)

# Simulations functions
simul_spsfa <- function ( repetitions = NULL, seed = NULL,

nobs = NULL, Wmatr = NULL,
swdim = NULL, swneig = NULL, swp = NULL,
geolat = NULL, geolon = NULL,
minX = NULL, maxX = NULL, dgp = NULL, bcoef = NULL,
fake_rho = NULL, fake_lambda = NULL,
fake_sdv = NULL, fake_sdu = NULL, fake_delta = NULL,
approach = NULL, estim = NULL, efficiency = NULL,
method = NULL, control=NULL) {

# Set the seed
set.seed ( seed )

# Matrices to simulations results

Nobs <<- matrix ( NA, nrow = repetitions, ncol=1)
Wmatrice <<- matrix ( NA, nrow = repetitions, ncol = 1)
minXvar <<- matrix ( NA, nrow = repetitions, ncol = 1)
maxXvar <<- matrix ( NA, nrow = repetitions, ncol = 1)
dataGP <<- matrix ( NA, nrow = repetitions, ncol = 1)
rho_true <<- matrix ( NA, nrow = repetitions, ncol = 1)
lambda_true <<- matrix ( NA, nrow = repetitions, ncol = 1)
splag_true <<- matrix ( NA, nrow = repetitions, ncol = 1)

beta_true <<- matrix ( NA, nrow = repetitions, ncol = 2)
sdv_true <<- matrix ( NA, nrow = repetitions, ncol = 1)
sdu_true <<- matrix ( NA, nrow = repetitions, ncol = 1)
alpha_true <<- matrix ( NA, nrow = repetitions, ncol = 1)
sigma_true <<- matrix ( NA, nrow = repetitions, ncol = 1)
delta_true <<- matrix ( NA, nrow = repetitions, ncol = 1)
ditribution <<- matrix ( NA, nrow = repetitions, ncol = 1)
estimation <<- matrix ( NA, nrow = repetitions, ncol = 1)
U_true <<- matrix ( NA, nrow = repetitions, ncol = nobs)
mTE_true <<- matrix ( NA, nrow = repetitions, ncol = 1)
Loglik_true <<- matrix ( NA, nrow = repetitions, ncol = 1)

beta_est <<- matrix ( NA, nrow = repetitions, ncol = 2)
alpha_est <<- matrix ( NA, nrow = repetitions, ncol = 1)
sigma_est <<- matrix ( NA, nrow = repetitions, ncol = 1)
delta_est <<- matrix ( NA, nrow = repetitions, ncol = 1)
splag_est <<- matrix ( NA, nrow = repetitions, ncol = 1)
U_est <<- matrix ( NA, nrow = repetitions, ncol = nobs)
mTE_est <<- matrix ( NA, nrow = repetitions, ncol = 1)
Loglik_est <<- matrix ( NA, nrow = repetitions, ncol = 1)

timespent <<- matrix ( NA, nrow = repetitions, ncol = 1)
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# Data generating process function
func_dgp_est <- function ( repetitions = NULL, seed = NULL,

nobs = NULL, Wmatr = NULL,
swdim = NULL, swneig = NULL, swp = NULL,
geolat = NULL, geolon = NULL,
minX = NULL, maxX = NULL, dgp = NULL, bcoef = NULL,
fake_rho = NULL, fake_lambda = NULL,
fake_sdv = NULL, fake_sdu = NULL, fake_delta = NULL,
approach = NULL, estim = NULL, efficiency = NULL,
method = NULL, control=NULL) {

rm ( list=ls () )

if (Wmatr == "sw"){ # Small World graph weight matrix
Wmat <- sample_smallworld ( dim = swdim, size = nobs,

nei = swneig, p = swp)
Wmatw <- as.matrix ( as_adjacency_matrix ( Wmat, type = "both") )

} else { # Geographic distance weight matrix
Dgeo <- data.frame (lat = runif(nobs, 0, geolat),

lon = runif ( nobs, 0, geolon))
Dmat <- dist ( cbind ( Dgeo$lon, Dgeo$lat ),

method = 'euclidean', upper=TRUE )
Wmatw <- ( as.matrix ( (1 / Dmat), upper=TRUE, diag = TRUE ) )
Wmatw[!is.finite(Wmatw)] <- 0
diag ( Wmatw ) <- 0

}
# Row standardized
Wmatws <- apply ( Wmatw, 2 , function(x) x/rowSums(Wmatw))
Wmatlw <- mat2listw (Wmatw, style="W")

# Inverse of matrix (I-rho*W)
I_rhow <- invIrW ( Wmatws, fake_rho, method = "solve", feasible = NULL)
I_lambdaw <- invIrW ( Wmatws, fake_lambda, method = "solve", feasible = NULL)

# Creation of variables
# Data is constant plus a uniform covariate
X <- cbind ( c (1), runif ( nobs, minX, maxX ) )

# Inefficiency term, # u ~ Normal(0, 0.3)
u <- rnorm (nobs, mean=0, sd = fake_sdu )

# Noise # normal idiosyncratic error term
v <- rnorm (nobs, mean=0, sd = fake_sdv)

# True values
fake_alpha <- ( fake_delta / (sqrt( 1 - fake_delta^2 )) )
fake_sigma <- fake_sdv / (sqrt( 1 - fake_delta^2 ) )

if ((dgp == "sem")||( dgp == "sde")){
fake_splag <- fake_lambda

} else { fake_splag <- fake_rho }
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if (approach == "halfn") { # normal - half-normal approach
e <- v - abs(u)
} else { # skew-normal approach
e <- fake_delta * abs(u) + sqrt ( 1 - fake_delta^2 ) * v }

# Dependent variable
if ( dgp == "linear") { # No spatial

y <- X%*%bcoef + e

} else if ( dgp == "sar" ) { # SAR: y = rho*W*y + Xbeta + e
y <- I_rhow %*% ( X%*%bcoef + e )
I <- diag(nobs)
fake_Bmat <- I - fake_splag*Wmatws
fake_detBmat <- determinant(fake_Bmat, logarithm = TRUE)$modulus
fake_epsilon <- (1/fake_sigma)*(fake_Bmat%*%y - X%*%bcoef)

fake_Loglik <- - (nobs / 2) * log (pi) -
(nobs/2) * log( fake_sigma^2 ) +
fake_detBmat - (1/2) * (t ( fake_epsilon) %*% fake_epsilon ) +
sum ( log ( 2*pnorm ( fake_alpha * fake_epsilon ) ) )

} else if ( dgp == "sdb" ) { # SDB: y = rho*W*y + X*beta + W*X*theta + e
y <- I_rhow %*% ( X[,1] * bcoef[1] + X[,2] * (bcoef[2]/2) +

Wmatws %*% X[,2] * (bcoef[2]/2) + e )

} else if ( dgp == "sem" ) { # SEM: y = X*beta + [I-W*lambda]^(-1)*e
y <- X%*%bcoef + I_lambdaw %*% e
I <- diag(nobs)
fake_Bmat <- I - fake_splag*Wmatws

fake_epsilon <- (1/fake_sigma)*fake_Bmat %*% (y - X%*%bcoef)
fake_detBmat <- determinant(fake_Bmat, logarithm = TRUE)$modulus

fake_Loglik <- (-1)*( nobs/2 )*log ( pi ) -
(nobs/2)*log ( fake_sigma^2 ) +
fake_detBmat - ( 1/2 ) * t ( fake_epsilon ) %*% fake_epsilon +
sum ( log ( 2 * pnorm ( fake_alpha * fake_epsilon ) ) )

} else { # dgp == "sde" # SDE: y = X*beta+W*X*teta+[I-W*lambda]^(-1)*e
y <- X[,1] * bcoef[1] + X[,2] * (bcoef[2]/2) +

Wmatws %*% X[,2] * (bcoef[2]/2) + I_lambdaw %*% e
}

#Estimating specific inefficiency

if (dgp == "sem") {
fake_residuals <- ( 1 / fake_sigma ) * fake_Bmat %*% ( y - X %*% bcoef )

} else if ( dgp == "sar" ) {
fake_residuals <- ( 1 / fake_sigma ) * (fake_Bmat %*% y - X %*% bcoef )

} else {
fake_residuals <- ( 1 / fake_sigma ) * (y - X %*% bcoef )

}

49



fake_means_u <- ( 1 / ( ( fake_delta^2 / fake_sigma^2 ) + 1 ) ) * (
fake_delta / fake_sigma^2 ) * fake_residuals

fake_var_u <- (1) / ( (fake_delta^2 / fake_sigma^2 ) + 1)
fake_U <- dnorm(fake_residuals, mean = fake_means_u, sd = fake_var_u )
fake_mTE <- mean ( exp ( -fake_U ) )

start.time <<- Sys.time()

#Estimations
if ( estim == "skewn_sem") {

#SEM, log likelihood function (deGraaf, 2019)

SpatialFrontierErrorFun <- function(pars, X, Y, W){
p <- length(pars)
lambda <- pars[p]
alpha <- pars[(p-1)]
sigma <- pars[(p-2)]
beta <- pars[(1:(p-3))]

sigma <- sqrt(sigma^2)
lambda <- 2*(exp(lambda)/(1+exp(lambda)))-1
nObs <- dim(X)[1]
B <- (diag(nObs) - lambda * W)
Xb <- X%*%beta
alpha <- -sqrt(alpha^2)
delta <- alpha/(sqrt(1+alpha^2))
z <- (1/sigma)*(B%*%(Y - Xb))
term1 <- -(nObs/2)*log(pi) -(nObs/2)*log(sigma^2) + log(det(B)) -

(1/2)*(t(z)%*%z)
term2 <- colSums(log(2*pnorm(alpha*z)))

return(term1 + term2)
}

# Starting values (spdep package)
q <- dim(X)[2]
erlag <- errorsarlm (y ~ X[,2] , listw = Wmatlw)
beta0 <- erlag$coefficients[1:(q)]
delta0 <- -sqrt(erlag$s2*(1-2/pi))
alpha0 <- delta0/(sqrt(1 - delta0^2))
sigma0 <- sqrt(erlag$s2)
splag0 <- erlag$lambda[1]
startv <- as.vector (c(beta0, sigma0, alpha0, splag0))
estim_max <- maxLik ( SpatialFrontierErrorFun,

X=X, Y=y, W=Wmatws,
start = startv,
method = method, control= control)

} else if ( estim == "skewn_sar") {
#SAR, log likelihood function (deGraaf, 2019)

SpatialFrontierLagFun <- function(pars, Y, X, W){
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p <- length(pars)
rho <- pars[p]
alpha <- pars[(p-1)]
sigma <- pars[(p-2)]
beta <- pars[(1:(p-3))]
sigma <- sqrt(sigma^2)
nObs <- length(Y)
A <- (diag(nObs) - rho * W)
Xb <- X%*%beta
alpha <- -sqrt(alpha^2)
delta <- alpha/(sqrt(1+alpha^2))
z <- (1/sigma)*(A%*%Y - Xb)

term1 <- -(nObs/2)*log(pi) -(nObs/2)*log(sigma^2) +
log(det(A)) - (1/2)*(t(z)%*%z)

term2 <- colSums(log(2*pnorm(alpha*z)))

return(term1 + term2)
}

## Spatial SAR Degraaf
q <- dim(X)[2]
sp_lag_a <- lagsarlm (y ~ X[,2], listw = Wmatlw)
beta0 <- sp_lag_a$coefficients[1:(q)]
delta0 <- -sqrt(sp_lag_a$s2*(1-2/pi))
alpha0 <- delta0/(sqrt(1 - delta0^2))
sigma0 <- sqrt(sp_lag_a$s2)
rho0 <- sp_lag_a$rho[1]
startv <- c(beta0, sigma0, alpha0, rho0)
estim_max <- maxLik ( SpatialFrontierLagFun,

X=X, Y=y, W=Wmatws,
start = startv,
method = method, control= control)

} else {
estim_max <- NA }

beta_hat <- estim_max$estimate[1:q]
sigma_hat <- estim_max$estimate[q+1]
alpha_hat <- estim_max$estimate[q+2]
splag_hat <- estim_max$estimate[q+3]
Loglik_hat <- estim_max$maximum

# Estimating specific inefficiency

delta_hat <- alpha_hat / ( sqrt (1 + alpha_hat^2 ) )
I <- diag ( nobs )
Bmat_hat <- I - splag_hat*Wmatws

if (estim == "skewn_sem") {
residuals <- ( 1 / sigma_hat ) * Bmat_hat %*% ( y - X %*% beta_hat )

} else if ( estim == "skewn_sar" ) {
residuals <- ( 1 / sigma_hat ) * (Bmat_hat %*% y - X %*% beta_hat )
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} else {
residuals <- ( 1 / sigma_hat ) * (y - X %*% beta_hat )

}

means_u <- ( 1 / ( ( delta_hat^2 / sigma_hat^2 ) + 1 ) ) * (
delta_hat / sigma_hat^2 ) * residuals

var_u <- (1) / ( (delta_hat^2 / sigma_hat^2 ) + 1)
U_hat <- dnorm(residuals, mean = means_u, sd = var_u )
mTE_hat <- mean ( exp ( -U_hat ) )

# Return of results
return ( list (nobs=nobs, Wmatr=Wmatr,

minX=minX, maxX=maxX, dgp=dgp,
fake_rho=fake_rho, fake_lambda=fake_lambda,
fake_splag=fake_splag, bcoef=bcoef,
fake_sdv=fake_sdv, fake_sdu=fake_sdu,
fake_sigma = fake_sigma,
fake_delta = fake_delta, fake_alpha = fake_alpha,
fake_Loglik = fake_Loglik,
fake_U = fake_U, fake_mTE = fake_mTE,
Loglik_hat= Loglik_hat,
approach=approach, estim=estim,
beta_hat=beta_hat, alpha_hat=alpha_hat,
sigma_hat=sigma_hat,
splag_hat=splag_hat, delta_hat=delta_hat,
Bmat_hat=Bmat_hat, residuals=residuals,
means_u=means_u,
var_u=var_u, U_hat=U_hat, mTE_hat=mTE_hat ) )

}

for (k in 1:repetitions){

# Run the function
Results <- func_dgp_est ( repetitions = NULL, seed = NULL,

nobs = NULL, Wmatr = NULL,
swdim = NULL, swneig = NULL, swp = NULL,
geolat = NULL, geolon = NULL,
minX = NULL, maxX = NULL, dgp = NULL, bcoef = NULL,
fake_rho = NULL, fake_lambda = NULL,
fake_sdv = NULL, fake_sdu = NULL, fake_delta = NULL,
approach = NULL, estim = NULL, efficiency = NULL,
method = NULL, control=NULL)

# Results
Nobs[k] <<- (Results$nobs)
Wmatrice[k] <<- (Results$Wmat)
minXvar[k] <<- (Results$minX)
maxXvar[k] <<- (Results$maxX)
dataGP[k] <<- (Results$dgp)
rho_true[k] <<- (Results$fake_rho)
lambda_true[k] <<- (Results$fake_lambda)
splag_true[k] <<- (Results$fake_splag)
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beta_true[k,] <<- (Results$bcoef)
sdv_true[k] <<- (Results$fake_sdv)
sdu_true[k] <<- (Results$fake_sdu)
alpha_true[k] <<- (Results$fake_alpha)
sigma_true[k] <<- (Results$fake_sigma)
delta_true[k] <<- (Results$fake_delta)
Loglik_true[k] <<- (Results$fake_Loglik)
U_true[k,] <<- (Results$fake_U)
mTE_true[k] <<- (Results$fake_mTE)

ditribution[k] <<- (Results$approach)
estimation[k] <<- (Results$estim)

beta_est[k,] <<- (Results$beta_hat)
alpha_est[k] <<- (Results$alpha_hat)
sigma_est[k] <<- (Results$sigma_hat)
splag_est[k] <<- (Results$splag_hat)
delta_est[k] <<- (Results$delta_hat)
U_est[k,] <<- (Results$U_hat)
mTE_est[k] <<- (Results$mTE_hat)
Loglik_est[k] <<- (Results$Loglik_hat)

end.time <- Sys.time()
time.taken <- difftime (end.time, start.time, units = "secs")
timespent[k] <<- time.taken
print (sprintf ("Simulation %s of %s. Processing took %f seconds.",

k, repetitions, time.taken ) )

}

simul_results <- list ( Nobs = Nobs, Wmatrice = Wmatrice,
minXvar = minXvar, maxXvar = maxXvar,
dataGP = dataGP, rho_true = rho_true,
lambda_true = lambda_true, splag_true = splag_true,
beta_true = beta_true, sdv_true = sdv_true,
sigma_true = sigma_true,
sdu_true = sdu_true, alpha_true=alpha_true,
delta_true = delta_true, Loglik_true = Loglik_true,
U_true = U_true, mTE_true = mTE_true,
Loglik_est = Loglik_est,
ditribution = ditribution,
estimation = estimation, beta_est = beta_est,
alpha_est = alpha_est, sigma_est = sigma_est,
splag_est = splag_est, delta_est = delta_est,
U_est = U_est, mTE_est = mTE_est,
Loglik_est = Loglik_est, repetitions = repetitions,
timespent = timespent )

return ( simul_results )
#saveRDS (simul_results, "simul_results.rds" )

}
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restable_fun <- function (replications=NULL ) {

# True values
NobsF <- replications$Nobs[1]
WmatriceF <- replications$Wmatrice[1]
dataGPF <- dataGP[1]
beta_trueF <- replications$beta_true[1,]
rho_trueF <- replications$rho_true[1]
lambda_trueF <- replications$lambda_true[1]
sigma_trueF <- replications$sigma_true[1]
alpha_trueF <- replications$alpha_true[1]
delta_trueF <- replications$delta_true[1]
ditributionF <- replications$ditribution[1]
estimationF <- replications$estimation[1]
mTE_true_F <- colMeans ( replications$mTE_true)
Loglik_trueF <- colMeans (replications$Loglik_true)

# Means of parameters
beta_mean <<- colMeans ( replications$beta_est )
alpha_mean <<- colMeans ( replications$alpha_est )
sigma_mean <<- colMeans ( replications$sigma_est )
splag_mean <<- colMeans ( replications$splag_est )
delta_mean <<- colMeans ( replications$delta_est )
mTE_est_mean <<- colMeans ( replications$mTE_est )
Loglik_est_mean <<- colMeans (replications$Loglik_est)

# standard deviations of parameters
beta_sd <- GMCM:::colSds(replications$beta_est )
alpha_sd <<- sd ( replications$alpha_est )
sigma_sd <<- sd ( replications$sigma_est )
splag_sd <<- sd ( replications$splag_est )
delta_sd <<- sd ( replications$delta_est )
mTE_est_sd <<- sd ( replications$mTE_est )
Loglik_est_sd <<- sd (replications$Loglik_est)

beta_dif <<- replications$beta_est - replications$beta_true
alpha_dif <<- replications$alpha_est - replications$alpha_true
sigma_dif <<- replications$sigma_est - replications$sigma_true
splag_dif <<- replications$splag_est - replications$splag_true
delta_dif <<- replications$delta_est - replications$delta_true
U_dif <<- replications$U_est - replications$U_true
mTE_dif <<- replications$mTE_est - replications$mTE_true
Loglik_dif <<- replications$Loglik_est - replications$Loglik_true

# Biaises
biais <- function (nrepliq, pardif ) {

( 1 / nrepliq ) * sum ( pardif ) }

# Root Mean square error mse
rmse <- function (nrepliq, pardif ) {

sqrt ( ( 1 / nrepliq ) * sum ( ( pardif )^2 )) }
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beta_biais <- c(biais ( replications$repetitions, beta_dif[,1]),
biais ( replications$repetitions, beta_dif[,2]))

alpha_biais <- biais ( replications$repetitions, alpha_dif)
sigma_biais <- biais ( replications$repetitions, sigma_dif)
splag_biais <- biais ( replications$repetitions, splag_dif)
delta_biais <- biais ( replications$repetitions, delta_dif)
Loglik_biais <- biais ( replications$repetitions, Loglik_dif)
mTE_biais <- biais ( replications$repetitions, mTE_dif)

beta_rmse <- c(rmse ( replications$repetitions, beta_dif[,1]),
rmse ( replications$repetitions, beta_dif[,2]))

alpha_rmse <- rmse ( replications$repetitions, alpha_dif)
sigma_rmse <- rmse ( replications$repetitions, sigma_dif)
splag_rmse <- rmse ( replications$repetitions, splag_dif)
delta_rmse <- rmse ( replications$repetitions, delta_dif)
Loglik_rmse <- rmse ( replications$repetitions, Loglik_dif)
mTE_rmse <- rmse ( replications$repetitions, mTE_dif)

Infos <- c(ditributionF, estimationF,
dataGPF, WmatriceF, NobsF)

names(Infos) <- c("ditribution", "estimation",
"dataGP", "Wmatrice", "Nobs")

pars_true <- c ( beta_trueF, sigma_trueF, alpha_trueF,
delta_trueF, lambda_trueF,
mTE_true_F, Loglik_trueF)

pars_est_mean <- c ( beta_mean, sigma_mean, alpha_mean,
delta_mean, splag_mean,
mTE_est_mean, Loglik_est_mean)

pars_est_sd <- c ( beta_sd, sigma_sd, alpha_sd,
delta_sd, splag_sd,
mTE_est_sd, Loglik_est_sd)

pars_biais <- c ( beta_biais, sigma_biais, alpha_biais,
delta_biais, splag_biais,
mTE_biais, Loglik_biais)

pars_rmse <- c ( beta_rmse, sigma_rmse, alpha_rmse,
delta_rmse, splag_rmse,
mTE_rmse, Loglik_rmse)

result_table <- matrix ( c ( pars_true, pars_est_mean, pars_est_sd,
pars_biais, pars_rmse), ncol=5)

result_table <- round (result_table, 3)
colnames (result_table) <- c('True', 'Estimates M', 'Estimates SD',

"Bias", "RMSE")
rownames(result_table) <- c("beta_1", "beta_2", "sigma", "alpha",

"delta", "splag",
"TE", "Loglik")

all_result <- list (replications = replications,
result_table = result_table,
Infos = Infos)

return(all_result)
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}

applysim <- function(param, simul_spsfa, restable_fun) {

repetitions <- param$repetitions
seed <- param$seed
nobs <- param$nobs
Wmatr <- param$Wmatr
swdim <- param$swdim
swneig <- param$swneig
swp <- param$swp
geolat <- param$geolat
geolon <- param$geolon
minX <- param$minX
maxX <- param$maxX
dgp <- param$dgp
bcoef <- param$bcoef
fake_rho <- param$fake_rho
fake_lambda <- param$fake_lambda
fake_sdv <- param$fake_sdv
fake_sdu <- param$fake_sdu
fake_delta <- param$fake_delta
approach <- param$approach
estim <- param$estim
efficiency <- param$efficiency
method <- param$method
control <- param$control

rep_result <- simul_spsfa ( repetitions = repetitions, seed = seed,
nobs = nobs, Wmatr = Wmatr,
swdim = swdim, swneig = swneig, swp =swp,
geolat = geolat, geolon = geolon,
minX = minX, maxX = maxX, dgp = dgp,
bcoef = bcoef,
fake_rho = fake_rho, fake_lambda = fake_lambda,
fake_sdv = fake_sdv, fake_sdu = fake_sdu,
fake_delta = fake_delta,
approach = approach, estim = estim,
efficiency = efficiency,
method = method, control=control)

finalres <- restable_fun (replications=rep_result)
return(finalres)

}
# Running the simulations

# Parameters setting
param_base <- list( repetitions = 10, seed = 2000,

swdim = 1, swneig = 6, swp =0.1,
geolat = 20, geolon = 20,
minX = 5, maxX = 14,
bcoef = c(1, 1),
fake_sdv = 0.3, fake_sdu = 0.3,
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efficiency = NULL,
method = "BFGS", control=NULL)

# Parameters for nobs=250, Wmatr = "geo", dgp = "sem", ...
param_250_geo_02_sem_08 <- c(param_base,

list(nobs = 250, Wmatr = "geo", dgp = "sem",
fake_rho = 0.2, fake_lambda = 0.2,
fake_delta = -0.8,
approach = "skewn", estim = "skewn_sem",
name="resim_250_geo_02_sem_08"))

# Simulations for repetitions=10, nobs=250, Wmatr = "geo", dgp = "sem", ....
resim_250_geo_05_sem_08 <- applysim (param = param_250_geo_02_sem_08,

simul_spsfa = simul_spsfa,
restable_fun = restable_fun)

## [1] "Simulation 1 of 10. Processing took 2.392616 seconds."
## [1] "Simulation 2 of 10. Processing took 3.653912 seconds."
## [1] "Simulation 3 of 10. Processing took 1.799989 seconds."
## [1] "Simulation 4 of 10. Processing took 2.280699 seconds."
## [1] "Simulation 5 of 10. Processing took 1.758994 seconds."
## [1] "Simulation 6 of 10. Processing took 1.799990 seconds."
## [1] "Simulation 7 of 10. Processing took 2.116800 seconds."
## [1] "Simulation 8 of 10. Processing took 1.772988 seconds."
## [1] "Simulation 9 of 10. Processing took 1.804969 seconds."
## [1] "Simulation 10 of 10. Processing took 1.976870 seconds."
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