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Dynamic Technical and Environmental Efficiency Performance of Large Gold 

Mines in Developing Countries 
 

Isaiah Hubert Magambo1, Johane Dikgang2, Dambala Gelo3 and Fiona Tregenna4 

 

Abstract  

This study used the by-production model specification to separate emission-generating 

technologies from ‘desirable outputs’ technology. It then employed the dynamic efficiency 

model, following the Dynamic Directional Input Distance Function specifications to compute 

the deterministic, dynamic environmental and technical efficiencies of large gold mines in 

developing countries. Using firm-level data from 2009 to 2018, the study found that on average, 

dynamic technical efficiency in these mines was 73%; the average dynamic technical efficiency 

was observed to have a decreasing trend, of 0.3% annually. The study also found that on 

average, dynamic environmental efficiency was 56%. However, the average dynamic 

environmental efficiency trend had a decrease of 0.6% annually. The poor performance and 

downward trends could be attributed partly to downward investment trends over time, and the 

increasing complexity of extracting gold deposits from low-grade ore, as well as to prices. They 

could also be the result either of poor institutional capacity, as far as environmental policies, 

regulations, and enforcement are concerned; or of supply-side structural rigidity – in particular, 

low-capacity, and unreliable energy supply, mostly from bad inputs such as coal and heavy 

fuels or both, which calls for the use of alternative energy sources.  
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1. Introduction  

Increasing mining activity in general, and particularly gold-mining activity, has attracted 

environmental concern globally, as gold mining is known to be high-polluting and resource-

intensive. The environmental costs are often externalised to a third party: the surrounding 

communities that host the mining operations. The environmental and social impact of gold 

mining is particularly acute in most countries with rich gold deposits (Conde, 2017; Oliveira, 

Camanho and Zanella, 2017; Shen, Muduli and Brave, 2015).  

In recent years there has been increasing public concern over perceived and actual 

environmental impacts such as climate change and health outcomes. In reaction to the 

repercussions of climate change there have been several global efforts, such as the signing of 

the Kyoto Agreement in 1997, followed by conferences in Copenhagen and Cancun (2010), 

Durban and Doha (2011), Warsaw (2013) and Paris (2015) that have placed increasing 

attention and emphasis on reduction of emissions to mitigate climate-change effects. In the 

same spirit, many countries have dedicated a portion of their resources to designing and 

implementing solutions that mitigate the effects of greenhouse gases (GHGs) to achieve 

sustainable development. Similarly, the global mining industry is adopting several measures to 

move towards a more sustainable framework (Rashidi and Saen, 2015; Shen, Muduli and 

Brave, 2015); there has been a multidisciplinary call to reconsider different mining approaches 

to ensure sustainability is achieved. 

The fundamental issues in sustainable mining involve assessing a finite and non-renewable 

resource, declining ore-grade complexities, and price trends; tailing storage facilities; and the 

type of mining operation being performed, especially open-cut mining. Similarly, resource-

intensity debate informs core sustainability issues regarding water, energy, chemical 

consumption, and pollutant emissions (Mudd, 2007). These issues can be compounded into 

three groups: social, economic and environmental. 

The environmental crisis has given rise to growing public demand for socially responsible and 

ecologically viable mining practices (Fonseca, McAllister and Fitzpatrick, 2014). Over the last 

two decades, mining and mineral exploration companies have adopted various environmental 

management practices in response to society’s pressure for better environmental protection 

(Nikolaou and Evangelinos, 2010). In advancing the idea of a sustainable mining industry, 

large mining corporations are responding with concerted efforts to publish sustainability 

reports based on the Global Reporting Initiative (GRI) framework; though the effectiveness of 

the framework has been contested by some scholars, on the grounds that it could mislead 

decision-makers who are concerned with sustainability, or prompt mining companies to 
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camouflage unsustainable practices (Fonseca, McAllister and Fitzpatrick, 2014). But the 

initiative has demonstrated that efforts are being made towards achieving the objective of 

sustainable mining. 

Measuring and monitoring sustainability performance and its determinants have been among 

proposed approaches to achieving sustainable mining. Thus, there have been several 

methodological advancements to empirically examine the performance of firms and industries. 

Several studies have attempted to empirically examine the technical, environmental, or eco-

efficiency performance of the gold-mining industry in developed countries (Shao, Yu, X and 

Feng, 2019; Oliveira, Camanho and Zanella, 2017; Hosseinzadeh, Smyth, Valadkhani and Le, 

2016; Koop and Tole, 2008; Kumah, 2006). While most have contributed substantially to static 

efficiency analysis, few studies have included environmental efficiency. Only a limited number 

of studies have employed dynamic efficiency analysis for either technical or environmental 

efficiency in gold mines. The static efficiency-based model ignores the difference between 

quasi-fixed and variable factors, as well as the explicit role of time, and how adjustment of the 

quasi-fixed factors to their observed long-run levels takes place.  

Dynamic analysis estimates the real changes in production and environmental efficiencies by 

considering production occurs in both periods (t and t+1); investment occurs in the first period 

(t), which account for adjustment costs and provides greater physical capacity in the second 

period (t+1). Thus, dynamic analysis incorporates the adjustment costs of quasi-fixed inputs 

into a model of a firm’s behaviour. The dynamic efficiency model integrates the static shadow 

cost approach and the dynamic duality model of intertemporal decision-making (Silva, Lansink 

and Stefanou, 2015).  

Moreover, previous studies have examined both technical and environmental efficiency in a 

single-equation-model setting. The single-equation model may be criticised when both 

undesirable and desirable outputs are outcomes of the production process, as the model treats 

the undesirable outcome as input; this act violates production theory. Therefore, this study used 

the two-equation model specification proposed by Fernandez, Koop and Steel (2002), which 

employs a separable distance function by means of which good output and bad output can be 

modelled separately. Specifically, the two-equation model follows the by-production model of 

Murty, Russell and Levkoff (2012) to model polluting technologies. 

In the context of the debate around mining and sustainable development, this paper contributes 

to the literature by using a two-equation (by-production) model specification to model polluting 

technologies, which separates emission-generating technologies from desirable-output 

technology. The study extends the current static analysis of environmental efficiency in large 
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gold mines in developing countries into dynamic analysis of environmental and technical 

efficiency, following dynamic directional input distance function computations, which 

incorporate the role of time and adjustment costs of quasi-fixed inputs into a model. 

The rest of the paper is structured as follows: Section 2 is a theoretical and empirical literature 

review of efficiency methodological dynamics. Section 3 presents the methodology used in the 

study as well as the data, which include descriptions of the variables used in the model and 

their measurements. Section 4 contains the estimations and empirical results, while Section 5 

concludes the paper by discussing the main findings and recommendations of this study and 

outlining future research opportunities. 

 

2. Literature review 

Many empirical studies have measured technical and environmental efficiency or eco-

efficiency (i.e., the combination of economic efficiency and environmental efficiency) in a 

static model; however, most of these studies have used the single-equation model specification, 

which in principle violates the fundamental assumptions of the production theory. In addition, 

the specification does not take into consideration the material balance assumption, which 

advocates that in a system or process, the material inputs must balance the material outputs. 

Such studies include Li, Chiu and Lu (2018); Song, Peng, Wang and Zhao (2018); Chen and 

Jia (2017); Oliveira et al., (2017); Godoy-Durán, Galdeano-Gómez, Pérez-Mesa and Piedra-

Muñoz (2017); Zhang, Zhou and Choi (2013); Barros, Managi, and Matousek (2012); Bravo-

Ureta, Solís, López, Maripani, Thiam and Rivas (2007); Färe et al., (2005); Lee et al., (2002); 

Hailu and Veeman (2001); Reinhard and Thijssen (2000); Reinhard et al., (1999); and Baumol 

and Oates (1988).  

The recent development of the two-equation model – which addresses the weakness of the 

single-equation model, as far as undesirable and desirable outputs are concerned – now has a 

new orientation, to specify emission-generating technology. Out of various specifications, the 

by-production model specification of Murty et al., (2012) has proved to be the best. The few 

empirical studies that have adopted this approach include Serra, Chambers and Lansink (2014), 

in a DEA setting, and Kumbhakar and Tsionas (2016), using a Stochastic Frontier (SF) 

approach. 

Many previous studies have been limited to static assessment, in which important differences 

in environmental performance have been identified among decision-making units (DMUs). 

The static approach prevents the identification of efficiency values linked to a specific trend of 

each DMU through time, or to random annual changes. This study thus extends static analysis 
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by including temporal variations in efficiency, using adjustment cost directional distance 

functions. 

The selection of a directional distance function specification, among others, has always been 

supported in the literature, for two reasons: first, it provides flexibility when choosing the 

direction of the projection of the observed production bundle on the frontier. This flexibility 

allows construction for non-radial measures, which are essential in constructing dynamic 

efficiency (Serra, Chambers and Lansink, 2014), as the dynamic efficiency measurement of 

input technical efficiency requires that variable inputs and investment in the quasi-fixed factors 

(i.e., the dynamic factors of production) are treated (though not in the same proportion) 

asymmetrically5. Second, the directional distance function provides the flexibility to 

incorporate technological constraints imposed externally (Serra, Chambers and Lansink, 2014). 

These technological constraints could originate from government restrictions and regulations 

that might limit the use of certain inputs (e.g., the government may restrict the quantity of 

agricultural chemicals or pesticides to below a level that would be harmful to the environment). 

The adjustment cost directional distance functions have primarily been used to generate 

measures of productive inefficiency and total factor productivity growth. The adjustment-cost 

model of the firm has been widely used in empirical work (e.g., Letterie et al., 2010; Letterie 

and Pfann, 2007; Nielsen and Schiantarelli, 2003; Luh and Stefanou, 1996; 1993). In addition, 

a few empirical works employ the adjustment cost directional input distance function, including 

Setiawan and Lansink (2018); Ang and Oude Lansink (2018); Tovar and Wall (2017); Kapelko, 

Lansink and Stefanou (2017); Kapelko and Lansink (2017); Kapelko et al., (2015); Silva, 

Lansink and Stefanou (2007, 2015); and Serra et al., (2011). Though several empirical studies 

have analysed dynamic efficiency, no empirical study has extended the by-production model 

from static environmental efficiency into dynamic analysis.  

The literature review reveals that extensions of the efficiency measures have mostly been 

focused on the modelling of polluting technology, for which the analyses were static; however, 

in this rapidly changing world, the extension of the literature to account for the effect of the 

time element in economic decision-making is imperative. Studies that estimate dynamic 

efficiency in developing countries are very limited; most previous studies on efficiency are 

based on a static model. Even though static models do not incorporate a time dimension or the 

role of adjustment costs for quasi-fixed inputs over the long run, they do not separate quasi-

 
5 Most firms optimise their long-term plan by reducing variable-input quantities and expanding investment in 
quasi-fixed inputs, as investment provides more physical capacity. 
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fixed inputs from variable inputs, which may result in underestimating the actual path of 

efficiency. To the best of our knowledge, no study has been performed in a developing country 

that has extended an environmental and technical efficiency analysis from the static to the 

dynamic. This study combines the best-practice specification for environmental and technical 

efficiency of Murty et al., (2012,2018) and the dynamic direction computation of Silva, 

Lansink and Stefanou (2015) to extend the static technical and environmental efficiency 

analysis of large gold-mining firms in developing countries into a dynamic analysis. 

 

3. Methodology 

The study uses a mixed methodological approach: the two-equation model is specified, which 

accounts for technical and environmental efficiency, following Murty et al., (2012); while the 

estimation of the model follows dynamic directional input distance function specifications, 

which incorporate the adjustment costs of quasi-fixed inputs into a model, thus explaining the 

role of time and how adjustment of the quasi-fixed factors to their observed long-run level takes 

place. 

Building on the two-equation (by-production) model of Murty et al., (2012) to separate two 

technologies, two overall efficiencies will be derived: production of good output, which 

provides technical efficiency; and production of bad output, which provides environmental 

efficiency. In its deterministic setting, the model was extended following the specification of 

Serra, Chamber and Lansink (2014), as follows: 

The by-production model advocates separability of the joint production technology; the joint 

technology 𝑇 is a combination of the sub-technologies 𝑇! and 𝑇": 

 𝑇 = 𝑇! ∩ 𝑇" (1) 

 𝑇! = {⟨𝑦# , 𝑦$ , 𝑥!, 𝑥"⟩|𝑓(𝑦# , 𝑥!, 𝑥") ≤ 0}  

 𝑇" = {⟨𝑦# , 𝑦$ , 𝑥!, 𝑥"⟩|𝑦$ ≥ 𝑞(𝑥")}  

Each firm uses conventional production inputs 𝑥! and bad/undesirable inputs 𝑥" to produce a 

desirable/marketed output 𝑦# and a bad/undesirable output 𝑦$, where: 

𝑥!= labour, capital 
𝑥"= fuel 
𝑦#= amount of gold produced 
𝑦$= amount of CO2 produced 

T1 represents the transformation process of the inputs into the desirable output; this provides 

the estimations for technical efficiency. T2 represents the generation process of the 

undesirable/bad output. This provides the estimates for environmental efficiency. 
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The separation of environmental and technical efficiency follows the static specification of 

Murty et al. (2012)6. To extend the models into a dynamic specification, this study used the 

Dynamic Directional Input Distance Function proposed by Silva, Lansink and Stefaneou 

(2015) to calculate technical and dynamic technical efficiency; the generic framework for 

Dynamic Directional Input Distance Function is as follows: 

 𝐷%444⃗ (𝑦, 𝑥, 𝐼, 𝑘; 𝑔& , 𝑔')= sup{𝛽: (𝑥 − 𝛽𝑔& , 𝐼 + 𝛽𝑔' 	) ∈ 𝑉(𝑦: 𝑘)}    (2)          

where 𝑉(𝑦: 𝑘) represents a technology, which can use the input 𝑥 to produce output 𝑦 given 

level of capital 𝑘. 𝑦 is the output vector, 𝑥 is the variable input vector; 𝑘 is capital (a quasi-

fixed input vector), I represents net investment (a quasi-fixed input) and 𝑔& , 𝑔' are direction 

distance vectors for the variable inputs and quasi-fixed inputs respectively.  

We can extend generic equation (2)Error! Reference source not found. to specify the 

dynamic technical efficiency (𝑇!) equation. Dynamic Directional Input Distance Function 

(period t) 

 𝐷(4444⃗ (𝑦#( , 𝑥!( , 𝐼( , 𝑘(; −𝑔&!, 𝑔' 	)= max
),+!

𝛽 (3) 

 s.t.   

 𝑦( 	≤ 𝜆𝑌(  

 𝑥!( − 𝛽𝑔&! 	≥ 𝜆𝑋!(  

 𝐼( − 𝛿𝑘( + 𝛽𝑔' 	≥ 𝜆(𝐼( − 𝛿𝑘()  

 𝑁1𝜆 = 1  

Dynamic Directional Input Distance Function (period t+1) 

 𝐷(,!44444444⃗ (𝑦#(,!, 𝑥!(,!, 𝐼(,!, 𝑘(,!; −𝑔&!, 𝑔' 	)= max
),+!

𝛽 (4) 

 s.t.   

 𝑦#(,! 	≤ 𝜆𝑌#(,!  

 𝑥!(,! − 𝛽𝑔&! 	≥ 𝜆𝑋(,!  

 𝐼(,! − 𝛿𝑘(,! + 𝛽𝑔' 	≥ 𝜆(𝐼(,! − 𝛿𝑘(,!)  

 𝑁1𝜆 = 1  

Dynamic Directional Input Distance Function (mixed period) period 2 given technology in 

period 1: 

 

 
6 In the literature of efficiency analysis, two main approaches always refer, namely parametric (Stochastic Frontier 
Analysis, or SFA) and non-parametric (Data Envelopment Analysis, or DEA). However, the two techniques 
seldom tell consistent stories, even when applied to the same dataset. Moreover, Fried, Lovell, Schmidt and 
Schmidt (2008) showed that consistency from the two approaches is entirely empirical, and depends on the nature 
of the data used. This study used the non-parametric technique.  



8 
 

 𝐷(,!44444444⃗ (𝑦#( , 𝑥!( , 𝐼( , 𝑘(; −𝑔&!, 𝑔' 	)= max
),+!

𝛽 (5) 

 s.t.   

 𝑦#( 	≤ 𝜆𝑌#(,!  

 𝑥!( − 𝛽𝑔&! 	≥ 𝜆𝑋(,!  

 𝐼( − 𝛿𝑘( + 𝛽𝑔' 	≥ 𝜆(𝐼(,! − 𝛿𝑘(,!)  

 𝑁1𝜆 = 1  

Dynamic Directional Input Distance Function (mixed period) period 1 given technology in 

period 2: 

 𝐷(4444⃗ (𝑦#(,!, 𝑥!(,!, 𝐼(,!, 𝑘(,!; −𝑔&!, 𝑔' 	)= max
),+!

𝛽 (6) 

 s.t   

 𝑦#(,! 	≤ 𝜆𝑌#(  

 𝑥!(,! − 𝛽𝑔&! 	≥ 𝜆𝑋!(  

 𝐼(,! − 𝛿𝑘(,! + 𝛽𝑔' 	≥ 𝜆(𝐼( − 𝛿𝑘()  

 𝑁1𝜆 = 1  

Equations 3 to 6 were employed to calculate dynamic technical efficiency (Dyn_Tech_eff); 

where 𝑦#(		and 𝑦#(,! are the amount of gold (the desirable output) produced in period t and 

t+1 respectively; 𝑥!( and 𝑥!(,! represent the vector of the variable inputs (non-polluting inputs) 

which are labour and energy, used in period t and t+1 respectively; the quasi-fixed input factors 

include capital (𝑘(,!) and net investment (𝐼(,!); 𝑔&!	and 𝑔' are direction distance vectors7 for 

the variable inputs and quasi-fixed inputs respectively; and 𝛿 is the depreciation rate, which 

was set at 20%. 

For dynamic environmental efficiency (Dyn_Env_eff), equation (4) can be used to extend T2 

equation (3) as follows. Dynamic Directional Input Distance Function (period t) 

 𝐷(4444⃗ (𝑦$( , 𝑥"( , 𝐼( , 𝑘(; −𝑔&", 𝑔' 	)= max
),+!

𝛽 (7) 

 s.t   

 𝑦$( 	≤ 𝜆𝑌$(  

 𝑥"( − 𝛽𝑔&" 	≥ 𝜆𝑋(  

 𝐼( − 𝛿𝑘( + 𝛽𝑔' 	≥ 𝜆(𝐼( − 𝛿𝑘()  

 𝑁1𝜆 = 1  

Dynamic Directional Input Distance Function (period t+1) 

 
7 The direction vector adopted in the empirical application is (𝑔"#, 𝑔$) = (𝑥#,𝐼) , i.e., the actual quantities of 
variable inputs and investments. 
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 𝐷(,!44444444⃗ (𝑦$(,!, 𝑥"(,!, 𝐼(,!, 𝑘(,!; −𝑔&", 𝑔' 	)= max
),+!

𝛽 (8) 

 s.t   
 𝑦$(,! 	≤ 𝜆𝑌$(,!  
 𝑥"(,! − 𝛽𝑔&" 	≥ 𝜆𝑋"(,!  
 𝐼(,! − 𝛿𝑘(,! + 𝛽𝑔' 	≥ 𝜆(𝐼(,! − 𝛿𝑘(,!)  
 𝑁1𝜆 = 1  

Dynamic Directional Input Distance Function (mixed period) period 2 given technology in 

period 1. In this equation, the first inequality constraint sign has been changed to accommodate 

the environmental definition, for which environmental efficiency requires that more investment 

should lead to fewer emissions of pollutants. 

 𝐷(,!44444444⃗ (𝑦$( , 𝑥"( , 𝐼( , 𝑘(; −𝑔&", 𝑔' 	)= max
),+!

𝛽 (9) 

 s.t   
 𝑦$( 	≥ 𝜆𝑌$(,!  
 𝑥"( − 𝛽𝑔&" 	≥ 𝜆𝑋"(,!  
 𝐼( − 𝛿𝑘( + 𝛽𝑔' 	≥ 𝜆(𝐼(,! − 𝛿𝑘(,!)  
 𝑁1𝜆 = 1  

Dynamic Directional Input Distance Function (mixed period) period 1 given technology in 

period 2: 

 𝐷(4444⃗ (𝑦$(,!, 𝑥"(,!, 𝐼(,!, 𝑘(,!; −𝑔&", 𝑔' 	)= max
),+!

𝛽 (10) 

 s.t   
 𝑦$(,! 	≥ 𝜆𝑌$(  
 𝑥"(,! − 𝛽𝑔&" 	≥ 𝜆𝑋(  
 𝐼(,! − 𝛿𝑘(,! + 𝛽𝑔' 	≥ 𝜆(𝐼( − 𝛿𝑘()  
 𝑁1𝜆 = 1  

Equations 3 to 6 were employed to calculate dynamic technical efficiency(Dyn_Env_eff), 

where 𝑦$(		and 𝑦$(,! are the amounts of CO2 (an undesirable output) produced in period t and 

t+1 respectively; 𝑥"( and 𝑥"(,! represent the vector of the variable inputs, which are fuel and 

gold output(𝑦#	), used in period t and t+1 respectively; the quasi-fixed input factors include 

capital (𝑘(,!) and net investment (𝐼(,!); 𝑔&"	and 𝑔' are direction distance vectors for the 

variable inputs and quasi-fixed inputs respectively; 𝛿 is the depreciation rate. Moreover, since 

the dynamic formula can accommodate two periods, the longer period was estimated step by 

step, repeatedly picking the subsequent year and making the previous year a base year. 
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4. Results 

4.1 Descriptive statistics  

The study used firm-level data on energy consumption, labour, capital, fuel and water 

consumption as input variables. The volume of gold produced is considered a desirable output, 

while CO2 is an undesirable or unintended output. The data were collected from two different 

mining reports: annual financial statements, and sustainability reports. (This information is in 

the public domain and is published voluntarily by companies on an annual basis.)  

From the annual financial statements, the following variables and their measurements were 

extracted: volume of gold produced in a year, which is measured in ounces (oz); capital spent 

in a year and net investment, measured in millions of US dollars (M$); and labour, which is 

measured as total number of employees in a particular mine. The variables captured from the 

sustainability reports include energy (meaning total energy used by a mine) measured in 

gigajoules (GJ); total carbon dioxide (CO2) emissions, measured as total kilotons (kt) of carbon 

dioxide emitted in a year; amount of water used in the production process, measured in cubic 

metres (m3); and fuel, measured as total fuels used by the mine in kilolitres (kl). In the few 

cases where coal was used, this study converted amounts of coal into fuel equivalents.  

The dataset comprises a sample of 34 large gold-mining companies (see Appendix Table 1, 

description of the mining firms used in the analysis), observed for 10 years (2009-2018). The 

choice of these firms was based on the availability of core information and firm-specific data 

on the variables required for the analysis.  

Table 1 below presents the descriptive analysis of the variables used in assessing the dynamic 

environmental and technical efficiency of the mining firms. It shows that the variables are 

normally distributed, as the standard deviation is relatively close to the mean for each, despite 

the large range between the minimum and maximum values of all the variables. The variation 

in range is because the operations of the mines are not homogenous, even though they all deal 

with gold mining. 

 

 

 

 

 

 



11 
 

Table 1: Descriptive statistics 

Variable Obs Mean Std. Dev. Min Max 

gold 340 185000 136000 3000 719000 

capital 340 199.273 354.616 21 2387.384 

investment 340 53.5 58.029 0.26 348.4 

labour 340 2763.344 1809.99 117 9020 

energy 340 1425.852 1432.674 128.908 9250 

CO2 340 333.082 420.554 12 2178.667 

fuel 340 7253.68 15081.33 66.095 88454 

Column 1 in Table 1 above shows the names of the variables; column 2 shows the number of 

observations; column 3 shows the mean value of the respective variables; column 4 presents 

the standard deviation; columns 5 and 6 show the range of each variable by presenting its 

minimum and maximum values. 

 

4.2 Estimation of Dynamic Technical Efficiency 

Equations 3 and 4 are used for static analysis, estimating technical efficiency in period 1 and 2 

respectively. The dynamic analysis was carried out in two stages. First, the computation of 

technical efficiency in period 1 relative to period 2 technology (Dyn_Tech_eff12), following 

the equation 5 specification. Second, the computation of technical inefficiency in period 2 

relative to period 1 technology (Dyn_Tech_eff21), as specified in equation 68. The results are 

presented in  

Table 2 below: 

Table 2: Average dynamic technical efficiency 

Year Dyn_Tech_eff12 Dyn_Env_eff21 
2010 0.742 0.702 
2011 0.714 0.763 
2012 0.717 0.742 
2013 0.761 0.713 
2014 0.807 0.696 
2015 0.766 0.745 
2016 0.744 0.737 
2017 0.676 0.746 
2018 0.711 0.682 
Total 0.738 0.725 

 
8 Equations 5 and 6 give the technical inefficiency score; to get the efficiency score, we use the 𝑒('()*++) algorithm 
(Battese & Coelli, 1988). 
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Table 2 show that on average, dynamic technical efficiency in period 1 relative to period 2 

technology (Dyn_Tech_eff12) was 74%, while the average dynamic technical efficiency in 

period 2 relative to period 1 technology (Dyn_Tech_eff21) was 73%. Of the two dynamic 

efficiencies (Dyn_Tech_eff12 and Dyn_Tech_eff21), Dyn_Tech_eff21 is of interest, since in 

dynamic efficiency it is logical to compare the current performance to the previous status quo. 

The figures show that dynamic technical performance is not high, or even satisfactory. The 

trend for average performance across firms over time is estimated using a random-effect panel 

regression, and the results are presented in Table 3 below:  

Table 3: Average trends of dynamic technical efficiency 

 (1) (2) 
VARIABLES Dyn_tech_eff12 Dyn_tech_eff12 
Year -0.00296***(0.000781) -0.00296***(0.000781) 
Constant 6.696***(1.573) 6.696***(1.573) 
Observations 306 306 
Number of DMU 34 34 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Table 3 above presents the findings of the panel regression of efficiency scores on the time 

variable. The regression results reveal that on average, both Dyn_tech_eff12 and 

Dyn_tech_eff21 were decreasing at 0.3% per annum, and both trends are significant at 95% 

level of confidence. The average trend of the Dyn_tech_eff12 and Dyn_tech_eff21 figures is 

depicted in Figure 1 below: 
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Figure 1: Average Dynamic Technical Efficiency Over Time 

Although the average trend for both Dyn_tech_eff12 and Dyn_tech_eff21 shows a similar 

decrease, the patterns are different; Dyn_tech_eff12 had its peak in 2013, while 

Dyn_tech_eff21reached its peak in 2014. These patterns could be partly attributed to the trend 

in net investment (among other reasons), presented in Figure 2 below: 

  
Figure 2: Trends in Net Investment 

The above figure shows the average net investment (Average Investment) trend, and the net 

investment trends for the 25th, 50th and 75th percentiles: investment p(25), investment p(50) 

and investment p(75) respectively. Generally, the net investment (adjustment costs) increases 
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between 2011 and 2013 could be attributed to the increase in the physical capacity in 2014 

(when Dyn_tech_eff21 reached its peak). Thereafter, the decreasing net investment from 2014 

can easily be associated with the decrease in Dyn_tech_eff21.  

 

4.3 Computation of dynamic environmental efficiency 

In computing dynamic environmental efficiency, equations 9 and 10 were employed. Equation 

9 was used to generate dynamic environmental inefficiency (the computation of environmental 

inefficiency in period 1 relative to period 2 technology), which was converted to dynamic 

environmental efficiency (Dyn_Env_eff12). Similarly, equation 10 was used to compute 

dynamic environmental inefficiency (the computation of technical efficiency in period 2 

relative to period 1 technology), and the inefficiency scores were converted to dynamic 

environmental efficiencies (Dyn_Env_eff21). The results for both cases are presented in Table 

4 below:  

Table 4: Average Dynamic Environmental Efficiency 

Year Dyn_Env_eff12 Dyn_Env_eff21 

2010 0.547 0.511 

2011 0.506 0.616 

2012 0.562 0.596 

2013 0.633 0.560 

2014 0.712 0.539 

2015 0.648 0.598 

2016 0.583 0.580 

2017 0.434 0.611 

2018 0.454 0.484 

Total 0.564 0.566 

Table 4 above shows that on average, the dynamic environmental efficiency in period 1 relative 

to technology in period 2 (Dyn_Env_eff12), and in period 2 relative to the technology in period 

1 (Dyn_Env_eff21), was around 56%. The average dynamic environmental performance for 

large gold mines in developing countries was low over the study period. The overall trend was 

estimated by running panel regression of efficiency scores on the time variable; the results are 

presented in Table 5 below: 
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Table 5: Average Trend Dynamic Environmental Efficiency 

 (1) (2) 
VARIABLES Dyn_env_eff12 Dyn_env_eff12 
Year -0.00634***(0.00143) -0.00883***(0.00184) 
Constant 13.42***(2.874) 18.34***(3.714) 
Observations 306 306 
Number of DMU 34 34 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Table 5 above reveals that even though dynamic environmental performance was low to start 

with, it shows a decreasing trend over time; on average, performance decreased by 0.6% for 

Dyn_env_eff12 and by 0.9% for Dyn_env_eff21. Both trends were significant, at the 5% level 

of significance. However, the pattern for dynamic environmental performance changed over 

time. The patterns are presented in Figure 3 below: 

 
Figure 3: Average Dynamic Environmental Efficiency Over Time 

Figure 3 above shows that in the large mining companies, dynamic environmental efficiency 

had a similar pattern to dynamic technical efficiency, but at a lower average. This suggests that 

there is a strong possibility that net investment is directed at high-tech solutions, which record 

high performance in terms of both converting low inputs to high output, and low consumption 

of bad inputs, which translates to low quantities of bad output; in other words, high 

environmental performance. Thus, dynamic analysis draws the attention of the operators and 

regulators towards how they should manage and enforce compliance on dynamic input factors 
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such as net investment, as these factors have great impact on both technical and environmental 

performance. 

 

5. Conclusion 

Dynamic technical and environmental efficiencies were measured in this study, in terms of the 

two-equation model specification for the polluting technology, which separates desirable and 

undesirable outputs. The computations were based on dynamic (adjustment cost) directional 

input distance functions for the technologies used. The key findings of the study are as follows: 

The dynamic technical efficiency results show that on average, dynamic technical efficiency 

in period 2 relative to period 1 technology was 73%. Although this performance is satisfactorily 

high, the industry has experienced a significant (at 5% level of significance) decreasing trend 

in overall average dynamic technical efficiency of 0.3% per annum. This decreasing trend 

could be attributed to net investment trends: net investments increased between 2011 and 2013, 

which led to high physical capacity in subsequent years (2012-2014); thereafter, net investment 

showed a decreasing trend, which also affected performance. The decrease in performance 

could also be attributed to the reported (World Gold Council, 2018) increasing complexity of 

accessing low-grade gold deposits. Prices were also low, which implies low output with high 

inputs and low economic margins, which leaves little room for high net investment. 

The dynamic environmental efficiency results revealed that on average, dynamic 

environmental efficiency in period 2 relative to period 1 technology was 56%. Over the study 

period, dynamic environmental performance was indeed low. Correspondingly, it showed a 

decreasing overall trend of 0.6% annually. The reasons for this low performance and decreasing 

trend could be attributed partly to low investment trends. They could also be as a result either 

of poor institutional capacity as far as environmental policies, regulations and enforcement are 

concerned, or of supply-side structural rigidity – in particular, low and unreliable energy 

supply, which calls for the use of alternative energy sources, mostly from bad inputs such as 

coal or heavy fuels or both.  

Given the findings above, this study recommends that mining firms devote their attention to 

their dynamic inputs, such as net investment. Firms should constantly adjust their investment 

– especially in technology, which will lead to high technical performance (even when mining 

low-grade deposits) and high environmental efficiency. Moreover, the regulators should give 

the mines incentives to invest more in advanced technology (especially those with low bad 

inputs), and in sustainable and reliable energy sources, over time. Mines should also strengthen 
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their institutional capacity to constantly review the rules and regulations and to monitor their 

environmental compliance.  

This study was bound by the availability of data. We acknowledge the fact that in developing 

countries, there are many large gold mines; nevertheless, most mines either do not report all 

the relevant data, or the annual reports are structured as combined (aggregate) data for all the 

mines in the company. Such reports were not considered, as this analysis was performed at the 

firm (mine) level; consequently, fewer mines were analysed. We also acknowledge that mining 

operations produce several pollutants, including the nitrogen oxides; due to data availability, 

this study was limited to analysing the production of carbon dioxide (CO2) only.  

To extend the study, we suggest investigating two areas: firstly, quantifying the determinants 

of dynamic technical and environmental efficiency; and secondly, extending the dynamic 

(adjustment cost input directional distance function) environmental efficiency approach into a 

stochastic frontier analysis (SFA) framework. 
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Appendix 
 

Appendix Table 1: Description of the mining firms used in the analysis 
S/No. Name of mine Country Region 

1 Buzwagi Tanzania East Africa 

2 Bulyanhulu Tanzania East Africa 

3 North Mara Tanzania East Africa 

4 Geita gold mine Tanzania East Africa 

5 Tshepong operations South Africa South Africa 

6 Phakisa South Africa South Africa 

7 Bambanani South Africa South Africa 

8 Target 1 South Africa South Africa 

9 Doornkop South Africa South Africa 

10 Joel South Africa South Africa 

11 Kusasalethu South Africa South Africa 

12 Masimong South Africa South Africa 

13 Unisel South Africa South Africa 

14 Kalgold South Africa South Africa 

15 Phoenix South Africa South Africa 

16 Hidden Valley South Africa South Africa 

17 Surface dumps South Africa South Africa 

18 South Deep South Africa South Africa 

19 Mine Waste Solutions South Africa South Africa 

20 Mponeng South Africa South Africa 

21 TauTona South Africa South Africa 

22 Kopanang South Africa South Africa 

23 Moab Khotsong South Africa South Africa 

24 Sadiola Mali West Africa 

25 Morila Mali West Africa 

26 Siguiri Guinea West Africa 

27 Damang Ghana West Africa 

28 Tarkwa Ghana West Africa 

29 Iduapriem Ghana West Africa 

30 Obuasi Ghana West Africa 

31 Serra Grande Brazil Latin America 

32 AGA Mineração Brazil Latin America 

33 Cerro Corona Argentina Latin America 

34 Cerro Vanguardia Argentina Latin America 

 


