
Rowe, Francisco (Ed.); Maier, Gunther (Ed.); Arribas-Bel, Daniel (Ed.); Rey, Sergio J.
(Ed.)

Periodical Part

Special Issue: The potential of notebooks for scientific
publication: Reproducibility, and dissemination

REGION

Provided in Cooperation with:
European Regional Science Association (ERSA)

Suggested Citation: Rowe, Francisco (Ed.); Maier, Gunther (Ed.); Arribas-Bel, Daniel (Ed.); Rey, Sergio J.
(Ed.) (2020) : Special Issue: The potential of notebooks for scientific publication: Reproducibility, and
dissemination, REGION, ISSN 2409-5370, European Regional Science Association (ERSA), Louvain-la-
Neuve, Vol. 7, Iss. 3,
https://openjournals.wu.ac.at/ojs/index.php/region/issue/view/24

This Version is available at:
https://hdl.handle.net/10419/235824

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by-nc/4.0

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://openjournals.wu.ac.at/ojs/index.php/region/issue/view/24%0A
https://hdl.handle.net/10419/235824
https://creativecommons.org/licenses/by-nc/4.0
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Volume 7, Number 3, 2020

The Potential of Notebooks for Scientific Publication:
Reproducibility and Dissemination

Special Issue edited by Francisco Rowe, Gunther Maier, Daniel
Arribas-Bel and Sergio J. Rey

Table of Contents

Editorial

The Potential of Notebooks for Scientific Publication: Reproducibility and Dissemination
Francisco Rowe, Gunther Maier, Daniel Arribas-Bel, Sergio J. Rey

Articles

Urban Street Network Analysis in a Computational Notebook
Geoff Boeing

Random Parameters and Spatial Heterogeneity using Rchoice in R
Mauricio Sarrias

REAT: A Regional Economic Analysis Toolbox for R
Thomas Wieland

Demonstrating the utility of machine learning innovations in address matching to spatial
socio-economic applications
Sam Comber

A reproducible notebook to acquire, process and analyse satellite imagery: Exploring
long-term urban changes
Meixu Chen, Dominik Fahrner, Daniel Arribas-Bel, Francisco Rowe

Exploring long-term youth unemployment in Europe using sequence analysis: A
reproducible notebook approach

Nikos Patias

Teaching on Jupyter – Using notebooks to accelerate learning and curriculum
development

Jonathan Reades

https://doi.org/10.18335/region.v7i1.282
https://doi.org/10.18335/region.v7i1.282
https://doi.org/10.18335/region.v6i3.277
https://doi.org/10.18335/region.v6i3.277
https://doi.org/10.18335/region.v7i2.295
https://doi.org/10.18335/region.v7i2.295
https://doi.org/10.18335/region.v6i3.276
https://doi.org/10.18335/region.v6i3.276
https://doi.org/10.18335/region.v6i3.267
https://doi.org/10.18335/region.v7i1.279
https://doi.org/10.18335/region.v6i3.278
https://doi.org/10.18335/region.v7i3.357

This special issue on “The Potential of Notebooks for Scientific Publication,
Reproducibility and Dissemination” is edited by Francisco Rowe (University
of Liverpool, Liverpool, UK), Gunther Maier (Modul University, Vienna, Aus-
tria), Daniel Arribas-Bel (University of Liverpool, Liverpool, UK), Sergio J.
Rey (University of California, Riverside CA, USA). With the exception of the
editorial, all contributions to this special issue have already been published in
earlier issues of REGION, for the sake of immediate exposure of the content.

• Urban Street Network Analysis in a Computational Notebookby Geoff Boe-
ing was originally published in vol. 6, no. 3, 39–51.

• Random Parameters and Spatial Heterogeneity using Rchoice in R by
Mauricio Sarrias was originally published in vol. 7, no. 1, 1–19.

• REAT: A Regional Economic Analysis Toolbox for R by Thomas Wieland
was originally published in vol. 6, no. 3, R1–R57.

• Demonstrating the utility of machine learning innovations in address match-
ing to spatial socio-economic applications by Sam Comber was originally
published in vol. 6, no. 3, 17–37.

• A reproducible notebook to acquire, process and analyse satellite imagery:
Exploring long-term urban changes by Meixu Chen, Dominik Fahrner,
Daniel Arribas-Bel and Francisco Rowe was originally published in vol. 7,
no. 2, R15–R46.

• Exploring long-term youth unemployment in Europe using sequence anal-
ysis: A reproducible notebook approach by Nikos Patias was originally
published in vol. 6, no. 3, 53–69.

• Teaching on Jupyter – Using notebooks to accelerate learning and curricu-
lum development by Jonathan Reades was originally published in vol. 7,
no. 1, 21–34.

c© 2020 by the authors. Licensee: REGION – The Journal of ERSA, European
Regional Science Association, Louvain-la-Neuve, Belgium. This article is distri-

buted under the terms and conditions of the Creative Commons Attribution, Non-Commercial
(CC BY NC) license (http://creativecommons.org/licenses/by-nc/4.0/).

http://creativecommons.org/licenses/by-nc/4.0/

Editorials

Volume 7, Number 3, 2020, E1–E5 journal homepage: region.ersa.org
DOI: 10.18335/region.v7i3.357

The Potential of Notebooks for Scientific Publication:
Reproducibility, and Dissemination

Francisco Rowe1, Gunther Maier2, Daniel Arribas-Bel1 and Sergio J. Rey3

1 University of Liverpool, Liverpool, UK
2 Modul University, Vienna, Austria
3 University of California, Riverside CA, USA

Received: 25 December 2020/Accepted: 25 December 2020

1 Background

Recent developments and discussions concerning the SARS-Cov-2 virus and the devel-
opment of a vaccine illustrate once again the necessity to assume “that scientific claims
are supported by solid evidence” (Branco et al. 2017). In recent years, however, we see
increasing evidence that casts doubts on this assumption (e.g. Fanelli 2009, Ioannidis 2011,
Prinz et al. 2011, Begley, Ellis 2012, Fokkens et al. 2013, Open Science Collaboration
2015). “As a result, there is an increasingly urgent call for validation and verification of
published research results, both within the academic community and the public at large
(e.g. Naik 2011, Zimmer 2012, Begley 2012, Editorial 2013a,b, Branco 2012)” (Branco
et al. 2017, p. 1). This is particularly important at a time when the scale and complexity
of scientific studies grow, and replicability and reproducibility of scientific research has
gained salience (Peng 2011).

Recent developments in software and web browser technology may help in solving this
problem. They have enabled exciting and fast-moving developments in many areas of
research, among them tools that can help validate and verify research as well as stimulate
knowledge transfer among researchers. Computational notebooks, particularly Jupyter
Notebooks, represent a major advance for scientific research. A Jupyter Notebook is an
open-source web application which enables creating and sharing documents containing
live code, equations, visualisations and narrative text (Jupyter Project 2019). A Jupyter
notebook comprises a series of ‘cells’ containing executable code, or markdown, along with
the popular HTML markup language for prose descriptions and LaTeX for mathematical
equation write up. Jupyter Notebooks have enabled a new type of programming which
emphasises a prose-first approach where exposition with human-friendly narrative is
threaded with code blocks. The Jupyter Notebook was originally developed by Fernando
Perez and Brian Granger in the Python programme language in 2011 and known as
IPython Notebooks. In 2013, the technology was expanded to allow for additional
programming languages and renamed ‘Jupyter’1.

The interactive and narrative nature of computational notebooks provide unique
opportunities for sharing computational results, enabling reproducibility and publishing
scientific research. Traditionally, code, data, results, and their exposition are stored in
separate files, which is a source of disconnect and easy misalignment. Computational

1‘Jupyter’ is an acronym for Julia, Python and R, three of the main modern languages for scientific
computing.

E1

E2 F. Rowe, G. Maier, D. Arribas-Bel, S. Rey

notebooks allow conducting analyses and integrating code, results and descriptive text
into a single ‘computational narrative’ to be shared, read and executed by others (Pérez,
Granger 2015, Kluyver et al. 2016). Attracted by the ability to combine executable code
and descriptive text in a single document, an increasingly large community of researchers
have adopted computational notebooks to document, publish and share their research via
personal websites and GitHub (Parente 2019).

Yet publishers have not embraced this technology. We believe that there are great
benefits for the scientific community and general public from publishing computational
notebooks. The publication of computational notebooks, along with articles, enables
reproducibility and replicability of data analysis and methods. Computational notebooks
offer a valuable vehicle for teaching and demonstration of analytical tools. They can
also augment the impact of research beyond its primary objectives by extending original
analysis and by reaching non-academic communities (Arribas-Bel et al. 2020). The
interactivity of notebooks can engage policy makers and the general public in ways that
standard academic journal publications cannot. Notebooks can be used to engage policy,
discipline-specific or local knowledge experts in the research process. In doing so, data
and outcomes channeled through notebooks can enable the identification of new relevant
patterns or uses that may have not been reported or explicitly discussed in the original
publication.

In view of these potentials, REGION officially announced a new form of publication,
computational notebooks, in 2019. In order to demonstrate the value of computational
notebooks in regional research and to stimulate this means of publication, we organized this
special issue. REGION will continue to accept submissions in computational notebooks
(.ipynb and .Rmd files). When accepted, computational notebooks are published in
three formats: R or Python notebook file extensions, HTML and pdf. Unlike the pdf
format, R or Python notebook file and HTML file extensions will provide an interactive
version of the code which can be fully reproduced. REGION encourages authors to
make submissions in these formats. Two publication options are available publishing
computation notebooks: (1) as a companion to a research article, or (2) as standalone
piece in the Resource section. By publishing computational notebooks, REGION seeks
to encourage appropriate recognition of the work dedicated to this form of document.
Normally the use of computer code published on personal websites or GitHub does not
receive appropriate recognition by the way of citation given unfamiliarity with this form
of publication or lack of a referenceable identifier. In REGION, computational notebooks
are published as regular papers, receive a digital object identifier (DOI), and hence will
be referenceable and citable.

2 The Issue

This Special Issue aims to introduce the publication of computational notebooks in
REGION. Seven articles make up this Special Issue and illustrate some of the the key
benefits of computational notebooks.

The first three articles use notebooks to introduce advanced urban planning and
statistical methods available through open software. Boeing (2019) illustrates the poten-
tial of computational notebooks in urban analytics and planning introducing ‘OSMnx’.
‘OSMnx’ is a Python package for working with OpenStreetMap data and modelling,
analysing and visualising street networks anywhere in the world. The notebook shows
how to download and model street networks, compute network indicators, visualise street
centrality, calculate routes, and work with other spatial data, including building footprints
and points of interest.

Sarrias (2020) uses a computational notebook to introduce a R package called ‘Rchoice’.
Rchoice offers a statistical modelling framework to estimate spatial heterogeneity by
estimating locally varying coefficients offering different latent structures in a discrete
choice setting. Wieland (2019) introduces the R package ‘REAT’, a Regional Economic
Analysis Toolbox for R, and extensively illustrates its capabilities with regional economic
data for Germany. Together the computational notebooks by Boeing, Sarrias, and Wieland
illustrate how methods can be introduced to new users and help researchers reach broader

REGION : Volume 7, Number 3, 2020

F. Rowe, G. Maier, D. Arribas-Bel, S. Rey E3

audiences interested in learning from, adapting, and remixing their work.
The following two articles use computational notebooks to introduce the application of

novel methods and data. Comber (2019) illustrates the use of machine learning to conduct
address matching. Data often lack of unique identifiers to enable one-to-one address
matching. Deterministic matching based hand-crafted rules that classify address matches
and non-matches based on specialist domain knowledge are typically applied. Machine
learning approaches can provide a faster and automatable way to match addresses with
little human intervention. The notebook offers an end-to-end pipeline to conduct address
match using machine learning.

Chen et al. (2020) contributes a computational notebook to acquire, process and
analyse satellite imagery. While satellite imagery is often used to study and monitor
changes in natural environments and the Earth surface, it has remained underutilised
in Regional Science to study cities despite the open availability and extensive temporal
coverage of data sets, like Landsat enabling monitoring long-term changes for a period
of up to 46 years. The notebook offers a tool to demonstrate how to batch-download
high-resolution satellite imagery; and enable the extraction, analysis and visualisation of
features of the built environment to capture long-term urban changes.

Patias (2019) contributes a notebook illustrating its interactivity potential as an
engaging resource for end users and researchers through a regional analysis of youth
unemployment in Europe. Interactive maps and figures enable readers to explore the
data in greater detail by dragging, brushing and zooming. The notebook also offers an
end-to-end workflow from reading raw data via API, through the data processing, to the
final publication outputs. The notebook demonstrates the existence of systematic pattern
of youth unemployment across Europe. Four distinctive groups of regions are identified:
‘stable low youth unemployment’; ‘stable moderate youth unemployment’, ‘increasingly
high youth unemployment’, and ‘stable high youth unemployment’.

The final article by Reades (2020) illustrates the use of computational notebooks
to support teaching delivery and enhance student learning. Specifically, the notebook
argues that given the proliferation of large and complex spatial data, there is a need
not only for quantitative skills, but also for computational skills. The notebook also
shows how computational notebooks can assist in developing and delivering a suite of
geo-computational modules to enhance data science and analytics skills.

Together, the articles in the Special Issue demonstrate how notebooks can be used
to introduce the operation of open software and application of novel methods, enhance
student learning, increase interactivity and exploration of research outputs, and how to
produce replicable, reproducible and transparent research. We encourage submissions to
this new form of publication. We believe that computational notebooks offer an exciting
new platform adhering to REGION’s principles of open, reproducible and transparent
science, and anticipate a change in the future of academic publishing in this direction.

Acknowledgments

Sergio J. Rey acknowledges the support of NSF-SES 1831615.

REGION : Volume 7, Number 3, 2020

E4 F. Rowe, G. Maier, D. Arribas-Bel, S. Rey

References

Arribas-Bel D, Green M, Rowe F, Singleton A (2020) Open data products – A framework
for creating valuable analysis ready data. Journal of Geographical Systems. in review

Begley CG, Ellis LM (2012) Drug development: Raise standards for preclinical cancer
research. Nature 483: 531–533. CrossRef.

Begley S (2012) In cancer science, many “discoveries” don’t hold up. Reuters.
http://www.reuters.com/article/us-science-cancer-idUSBRE82R12P20120328

Boeing G (2019) Urban street network analysis in a computational notebook. REGION 6:
39–51. CrossRef.

Branco A (2012) Reliability and meta-reliability of language resources: Ready to initiate
the integrity debate? The 12th workshop on treebanks and linguistic theories (tlt12)

Branco A, Bretonnel Cohen K, Vossen P, Ide N, Calzolari N (2017) Replicability and
reproducibility of research results for human language technology: Introducing an LRE
special section. Language Resources & Evaluation 51: 1–5. CrossRef.

Chen M, Fahrner D, Arribas-Bel D, Rowe F (2020) A reproducible notebook to acquire,
process and analyse satellite imagery: Exploring long-term urban changes. REGION 7:
15–46. CrossRef.

Comber S (2019) Demonstrating the utility of machine learning innovations in address
matching to spatial socio-economic applications. REGION 6: 17–37. CrossRef.

Editorial (2013a) Announcement: Reducing our irreproducibility. Nature News Nature

Editorial (2013b) Unreliable research: Trouble at the lab. The Economist. http://-
www.economist.com/news/briefing/21588057-scientists-think-science-self-correcting-
alarming-degree-it-not-trouble

Fanelli D (2009) How many scientists fabricate and falsify research? A systematic review
and metaanalysis of survey data. PloS ONE 4: e5738. CrossRef.

Fokkens A, van Erp M, Postma M, Pedersen T, Vossen P, Freire N (2013) Offspring from
reproduction problems: What replication failure teaches us. Proceedings of the 51st
annual meeting of the association for computational linguistics 1: 1691–1701

Ioannidis JP (2011) An epidemic of false claims. Scientific American 304: 16–16. CrossRef.

Jupyter Project (2019) Jupyer notebooks. Available at: https://jupyter.org (accessed: 1
September 2019)

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K,
Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C, Jupyter
Development Team (2016) Jupyter notebooks – A publishing format for reproducible
computational workflows. In: Loizides F, Schmidt B (eds), Positioning and Power
in Academic Publishing: Players, Agents and Agendas. IOS-Press, Amsterdam, The
Netherlands, 87–90. CrossRef.

Koster S, Rowe F (2019) Fueling research transparency: Computational notebooks and
the discussion section. REGION 6: 1–2. CrossRef.

Naik G (2011) Scientists’ elusive goal: Reproducing study results. Wall Street Journal,
December 2 2011, a1

Open Science Collaboration (2015) PSYCHOLOGY. Estimating the reproducibility of
psychological science. Science 349: 943–950. CrossRef.

Parente P (2019) Estimate of public Jupyter notebooks on GitHub. Github, available at:
https://github.com/parente/nbestimate (accessed: 5 September 2019)

REGION : Volume 7, Number 3, 2020

https://github.com/parente/nbestimate
https://doi.org/10.1126/science.aac4716
https://doi.org/10.18335/region.v6i3.309
https://doi.org/10.3233/978-1-61499-649-1-87
https://jupyter.org
https://doi.org/10.1038/scientificamerican0611-16
https://doi.org/10.1037/e648372011-008
http://www.economist.com/news/briefing/21588057-scientists-think-science-self-correcting-alarming-degree-it-not-trouble
http://www.economist.com/news/briefing/21588057-scientists-think-science-self-correcting-alarming-degree-it-not-trouble
http://www.economist.com/news/briefing/21588057-scientists-think-science-self-correcting-alarming-degree-it-not-trouble
https://doi.org/10.18335/region.v6i3.276
https://doi.org/10.18335/region.v7i2.295
https://doi.org/10.1007/s10579-017-9380-0
https://doi.org/10.18335/region.v6i3.278
http://www.reuters.com/article/us-science-cancer-idUSBRE82R12P20120328
https://doi.org/10.1038/483531a

F. Rowe, G. Maier, D. Arribas-Bel, S. Rey E5

Patias N (2019) Exploring long-term youth unemployment in Europe using sequence
analysis: A reproducible notebook approach. REGION 6: 53–69. CrossRef.

Peng R (2011) Reproducible research in computational science. Science 334: 1226–1228.
CrossRef.

Pérez F, Granger B (2015) Computational narratives as the engine of collaborative
data science. Blog. available at: https://blog.jupyter.org/project-jupyter-computatio-
nalnarratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58 (accessed: 10
September 2019)

Prinz F, Schlange T, Asadullah K (2011) Believe it or not: How much can we rely on
published data on potential drug targets? Nature Reviews Drug Discovery 10: 712–712.
CrossRef.

Reades J (2020) Teaching on Jupyter – Using notebooks to accelerate learning and
curriculum development. REGION 7: 21–34. CrossRef.

Sarrias M (2020) Random parameters and spatial heterogeneity using Rchoice in R.
REGION 7: 1–19. CrossRef.

Wieland T (2019) REAT: A regional economic analysis toolbox for R. REGION 6:
R1–R57. CrossRef.

Zimmer C (2012) A sharp rise in retractions prompts calls for reform. The New York Times
16. http://www.nytimes.com/2012/04/17/science/rise-in-scientific-journal-retractions-
prompts-calls-forreform.html

c© 2020 by the authors. Licensee: REGION – The Journal of ERSA, European
Regional Science Association, Louvain-la-Neuve, Belgium. This article is distri-

buted under the terms and conditions of the Creative Commons Attribution, Non-Commercial
(CC BY NC) license (http://creativecommons.org/licenses/by-nc/4.0/).

REGION : Volume 7, Number 3, 2020

http://creativecommons.org/licenses/by-nc/4.0/
http://www.nytimes.com/2012/04/17/science/rise-in-scientific-journal-retractions-prompts-calls-forreform.html
http://www.nytimes.com/2012/04/17/science/rise-in-scientific-journal-retractions-prompts-calls-forreform.html
https://doi.org/10.18335/region.v6i3.267
https://doi.org/10.18335/region.v7i1.279
https://doi.org/10.18335/region.v7i1.282
https://doi.org/10.1038/nrd3439-c1
https://blog.jupyter.org/project-jupyter-computationalnarratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://blog.jupyter.org/project-jupyter-computationalnarratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://doi.org/10.1126/science.1213847
https://doi.org/10.18335/region.v6i3.277

Articles

Volume 6, Number 3, 2019, 39–51 journal homepage: region.ersa.org
DOI: 10.18335/region.v6i3.278

Urban Street Network Analysis in a Computational
Notebook∗

Geoff Boeing1

1 University of Southern California, Los Angeles, USA

Received: 21 September 2019/Accepted: 20 December 2019

Abstract. Computational notebooks offer researchers, practitioners, students, and
educators the ability to interactively conduct analytics and disseminate reproducible
workflows that weave together code, visuals, and narratives. This article explores the
potential of computational notebooks in urban analytics and planning, demonstrating
their utility through a case study of OSMnx and its tutorials repository. OSMnx is a
Python package for working with OpenStreetMap data and modeling, analyzing, and
visualizing street networks anywhere in the world. Its official demos and tutorials are
distributed as open-source Jupyter notebooks on GitHub. This article showcases this
resource by documenting the repository and demonstrating OSMnx interactively through
a synoptic tutorial adapted from the repository. It illustrates how to download urban data
and model street networks for various study sites, compute network indicators, visualize
street centrality, calculate routes, and work with other spatial data such as building
footprints and points of interest. Computational notebooks help introduce methods to new
users and help researchers reach broader audiences interested in learning from, adapting,
and remixing their work. Due to their utility and versatility, the ongoing adoption
of computational notebooks in urban planning, analytics, and related geocomputation
disciplines should continue into the future.

Key words: Computational Notebook, Jupyter, OpenStreetMap, OSMnx, Python,
Street Network, Urban Planning

1 Introduction

A traditional academic and professional divide has long existed between code creators
and code users. The former would develop software tools and workflows for professional
or research applications, which the latter would then use to conduct analyses or answer
scientific questions. Today, however, these boundary lines increasingly blur as computation
percolates throughout both the natural and social sciences. As quantitatively-oriented
academics gradually shift away from monolithic, closed-source data analysis software
systems like SPSS and ArcGIS, they increasingly embrace coding languages like R and
Python to script and document their research workflows (Padgham et al. 2019). Developing
shareable, reproducible, and recomputable scripts in R or Python to acquire, transform,
describe, visualize, and model data, these researchers act as both code creators and code
users.

∗This paper is available as computational notebook on the REGION webpage.

39

40 G. Boeing

An important trend in this methodological trajectory has been the widespread adoption
of the computational notebook. A computational notebook is a computer file that replaces
the traditional lab notebook and intersperses plain-language narrative, hyperlinks, and
images with snippets of code in the paradigm of literate programming (Knuth 1992).
These notebooks are easily distributed and integrate well with version control systems
like Git because they are simply structured text files. They have pedagogical value in
introducing students to computational thinking and coding techniques while thoroughly
explaining each new programming language facet as it is introduced. They also offer
research value in documenting data, questions, hypotheses, procedures, experiments, and
results in detail alongside each’s attendant computations (Pérez, Granger 2007, Kluyver
et al. 2016).

Computational notebooks thus open up the world of analytics to a wider audience
than was possible in the past. This particularly impacts disciplines that encompass
diverse methodologies and skillsets. For example, urban planning, like many academic
domains related or adjacent to regional science, comprises a broad set of scholars, students,
and working professionals with a wide range of computational aptitude. Some urban
planners focus on policymaking within the political constraints of city hall. Others
employ qualitative methods to work in and with vulnerable communities. Others develop
simulation models to forecast urbanization patterns and infrastructure needs. Others
intermingle these, and many more, different approaches to understanding and shaping
the city. Yet all urban planners benefit from basic quantitative literacy and an ability to
reason critically with data. This scholarly and professional imperative aligns with the
growing importance of computational thinking in the urban context and parallel trends in
geocomputation (Harris et al. 2017), geographic data science (Kang et al. 2019, Poorthuis,
Zook 2019, Singleton, Arribas-Bel 2019), and the open-source/open-science movements
(Rey 2019).

Urban planning and its related disciplines benefit accordingly from the growing adop-
tion of computational notebooks in pedagogy, research, and practice. Computation is
increasingly central to the field and its practitioners benefit from open and reproducible
approaches to analyzing urban data and predicting city futures (Kedron et al. 2019, Kon-
tokosta 2018, Batty 2019). In the Python universe, for example, numerous new tools now
exist to support urban analytics and planning processes, including data wrangling/analysis
(pandas), visualization (matplotlib), geospatial wrangling/analysis (geopandas), spatial
data science and econometrics (pySAL), mapping (cartopy), web mapping (folium), net-
work analysis (NetworkX), land use modeling/simulation (UrbanSim), activity-based
travel modeling (ActivitySim), and computational notebooks themselves (Jupyter).

Another Python tool useful for urban planning research and practice – and the primary
focus of this article – is OSMnx, a package for street network analysis (Boeing 2017).
OSMnx allows users to download spatial data (including street networks, other networked
infrastructure, building footprints, and points of interest) from OpenStreetMap then
model, analyze, and visualize them. To introduce new users to its functionality and
capabilities, OSMnx’s official demos and tutorials are developed and maintained in Jupyter
notebook format. This repository in turn offers a compelling case study of the potential
of computational notebooks to document and disseminate geospatial software tools.

This article introduces OSMnx as a computational tool for urban street network
analysis by way of these computational notebooks. It describes their repository and
highlights examples from them, inline here, to illustrate the use and value of compu-
tational notebooks. To do so, it demonstrates how to interactively execute the code
in this article itself by using Docker to run a containerized computational environment
including Jupyter Lab as an interactive web-based interface. The article is organized as
follows. First, it presents the repository containing OSMnx’s demo and tutorial notebooks.
Then it describes how to run OSMnx’s computational environment via Docker. Next
it demonstrates the use of OSMnx interactively in the article itself through a synoptic
tutorial adapted from this repository. Finally, it concludes by discussing the prospects of
notebooks for facilitating the adoption of computational workflows in urban analytics
and planning.

REGION : Volume 6, Number 3, 2019

G. Boeing 41

2 The OSMnx Examples Repository

OSMnx’s official demos, tutorials, and examples are in Jupyter notebook format in
a GitHub repository. The repository’s root contains a license file, a readme file, an
environment definition file, repository contributing guidelines, and a notebooks folder.
Within that folder, the repository contains 19 thematically organized Jupyter notebook
files that collectively provide a short self-directed tutorial-style course in using OSMnx.
The following notebooks are included there:

1. An introductory survey of features
2. A more comprehensive overview of OSMnx’s basic functionality
3. Using OSMnx to produce shapefiles
4. Modeling and visualizing street networks in different places at different scales
5. Using OSMnx’s network topology cleaning and simplification features
6. Saving and loading data to/from disk with OSMnx
7. Conducting street network analyses with OSMnx and its NetworkX dependency
8. Visualizing street networks and study sites
9. Working with dual graphs of street networks

10. Producing figure-ground diagrams for urban form analysis
11. Working with building footprints
12. Interactive web mapping of street networks and routes
13. Attaching elevations to the network and calculating street grades
14. Working with isolines and isochrones
15. Cleaning complex street intersections
16. Calculating street bearings
17. Working with other types of spatial infrastructure
18. Visualizing street network orientation with polar histograms
19. Interfacing between OSMnx and igraph for fast algorithm implementations in the C

language

This resource is useful for introducing users to the OSMnx software package, demon-
strating how to download, model, analyze, and visualize street networks in Python, and
illustrating several basic and intermediate spatial network analyses. To run the code
examples in this resource repository, one must have access to a Python installation with
the code dependencies installed, including Jupyter itself for running the notebook files.
Two primary options exist for installing this computational environment. The first is
installing Python locally, then configuring it and installing all the necessary packages and
dependencies. This can be time-consuming and requires some prior experience beyond
the scope of this article. The second, and easier, option is to simply run everything in a
pre-built Docker container. This latter option is detailed in the following section.

3 The Computational Environment

The OSMnx project’s reference Docker image contains a stable, consistent computational
environment for running OSMnx on any computer. Docker is a virtualization tool that
allows complex software stacks to be delivered as self-contained packages called images,
allowing users to run software without having to compile or install a complex chain of
dependencies. Instead, users install Docker on their computer then tell it to run a certain
image as an instance called a container.

This article can be read in its static form (i.e., HTML or PDF) or it can be executed
interactively (i.e., via its .ipynb Jupyter notebook file). For interactive execution, install
Docker and run the official OSMnx container as follows. First, download and install
Docker Desktop. Once it is installed and running on your computer, open Docker’s
settings/preferences and ensure that your local drives are shared with Docker so the
container has access to the notebook file. Then run the OSMnx Docker container (which
contains a Python installation and all the packages needed to run OSMnx, including
Jupyter Lab) by following the platform-specific instructions below.

If you are on Windows open a command prompt, change directory to the location of
this notebook file then run:

REGION : Volume 6, Number 3, 2019

https://github.com/gboeing/osmnx-examples
https://www.docker.com/products/docker-desktop
https://hub.docker.com/r/gboeing/osmnx

42 G. Boeing

docker run --rm -it -p 8888:8888 -v "\%cd\%":/home/jovyan/work gboeing/osmnx:v10

If you are on Mac/Linux open a terminal window, change directory to the location of
this notebook file then run:

docker run --rm -it -p 8888:8888 -v "$PWD":/home/jovyan/work gboeing/osmnx:v10

Once the container is running per these instructions, open your computer’s web
browser and visit http://localhost:8888 to access Jupyter Lab and open this article’s
notebook file.

4 Street Network Analysis with OSMnx

Here we showcase the resource repository inline to demonstrate potential applications. In
particular, we highlight specific material from its notebooks (enumerated above), adapting
their code into this interactive article to introduce OSMnx and illustrate some of the
capabilities of a computational notebook.

First we import the necessary Python modules:

[1]: import matplotlib.cm as cm

import matplotlib.colors as colors

import networkx as nx

from IPython.display import Image

from pprint import pprint

matplotlib is a package for data visualization and plotting. NetworkX is a package
for generic network analysis. IPython provides interactive computing and underpins our
Python-language Jupyter environment (Pérez, Granger 2007). pprint allows us to “pretty
print” Python data structures to make them easier to read inline.

Next we import OSMnx itself, configure it, and display its version number:

[2]: import osmnx as ox

ox.config(log_console=True, use_cache=True)

ox.__version__

[2]: ‘0.10’

The configuration step tells OSMnx to log its actions to the terminal window and to
use a cache. This cache saves a local copy of any data downloaded by OSMnx to prevent
re-downloading the same data each time the code is run.

Next we use OSMnx to download the street network of Piedmont, California, construct
a graph model of it (via NetworkX), then plot the network with the plot_graph function
(which uses matplotlib under the hood):

[3]: # create a graph of Piedmont’s drivable street network then plot it

G = ox.graph_from_place('Piedmont, California, USA', network_type='drive')
fig, ax = ox.plot_graph(G)

[3]: For the output see Figure 1

In the resulting Figure 1, the network’s intersections and dead-ends (i.e., graph nodes)
appear as light blue circles and its street segments (i.e., graph edges) appear as gray
lines. This is the street network within the municipal boundaries of the city of Piedmont,
California. We select this study site for pedagogical purposes as it is a relatively small,
self-contained municipality and lends itself to convenient visualization and indicator
calculation here. Note that we specified network_type=‘drive’ so this is specifically
the drivable network in the city. OSMnx can also automatically download and model
walkable and bikeable street networks by changing this argument.

4.1 Calculating Network Indicators

Now that we have a model of the network, we can calculate some statistics and indicators.
First, what area does our network cover in square meters? To calculate this, we project
the graph, convert its projected nodes to a geopandas GeoDataFrame, then calculate the
area of the convex hull of this set of node points in the Euclidean plane:

REGION : Volume 6, Number 3, 2019

http://localhost:8888

G. Boeing 43

Figure 1: Output from codebox 3

[4]: # project graph then calculate its nodes’ convex hull area

G_proj = ox.project_graph(G)

nodes_proj = ox.graph_to_gdfs(G_proj, edges=False)

graph_area_m = nodes_proj.unary_union.convex_hull.area

graph_area_m

[4]: 4224782.349449131

Thus, this network covers approximately 4.2 square kilometers. When projecting
graphs, OSMnx by default uses the Universal Transverse Mercator (UTM) coordinate
system and automatically determines the UTM zone for projection based on the network’s
centroid. Other coordinate reference systems can be defined by the user to customize this
projection behavior.

Next, we compute and inspect some basic stats about the network:

[5]: # calculate and print basic network stats

stats = ox.basic_stats(G_proj, area=graph_area_m, clean_intersects=True,

circuity_dist='euclidean')
pprint(stats)

[5]: {‘circuity_avg’: 1.11354525174028,

‘clean_intersection_count’: 271,

‘clean_intersection_density_km’: 64.1453162753664,

‘edge_density_km’: 26951.828421373437,

‘edge_length_avg’: 121.39190724946685,

‘edge_length_total’: 113865.60899999991,

‘intersection_count’: 312,

‘intersection_density_km’: 73.84995822108604,

‘k_avg’: 5.421965317919075,

‘m’: 938,

‘n’: 346,

‘node_density_km’: 81.89771007851208,

‘self_loop_proportion’: 0.006396588486140725,

‘street_density_km’: 14061.652905680734,

‘street_length_avg’: 121.23963877551029,

‘street_length_total’: 59407.42300000004,

‘street_segments_count’: 490,

‘streets_per_node_avg’: 2.953757225433526,

‘streets_per_node_counts’: {0: 0, 1: 34, 2: 0, 3: 263, 4: 47, 5: 1, 6: 1},

‘streets_per_node_proportion’: {0: 0.0,

1: 0.09826589595375723,

2: 0.0,

3: 0.7601156069364162,

4: 0.13583815028901733,

5: 0.002890173410404624,

6: 0.002890173410404624}}

For example, we can see that this network has 346 nodes (n) and 938 edges (m). The

REGION : Volume 6, Number 3, 2019

44 G. Boeing

streets in this network are 11% more circuitous (circuity avg) than straight-line would be.
The average street segment length is 121 meters (street length avg). We can inspect more
stats, primarily topological in nature, with the extended_stats function. As the results
of many of these indicators are verbose (i.e., calculated at the node-level), we print only
the indicators’ names here:

[6]: # calculate and print extended network stats

more_stats = ox.extended_stats(G, ecc=True, bc=True, cc=True)

for key in sorted(more_stats.keys()):

print(key)

[6]: avg_neighbor_degree

avg_neighbor_degree_avg

avg_weighted_neighbor_degree

avg_weighted_neighbor_degree_avg

betweenness_centrality

betweenness_centrality_avg

center

closeness_centrality

closeness_centrality_avg

clustering_coefficient

clustering_coefficient_avg

clustering_coefficient_weighted

clustering_coefficient_weighted_avg

degree_centrality

degree_centrality_avg

diameter

eccentricity

pagerank

pagerank_max

pagerank_max_node

pagerank_min

pagerank_min_node

periphery

radius

The average neighborhood degree indicators refer to the mean degree of nodes in the
neighborhood of each node. The centrality indicators (betweenness, closeness, degree,
and PageRank) identify how “central” or important each node is to the network in terms
of its topological structure. The clustering coefficient indicators represent the extent to
which a node’s neighborhood forms a complete graph. The extended stats also include
the network’s eccentricity (the maximum distance from each node to all other nodes),
diameter (maximum eccentricity in the network), radius (minimum eccentricity in the
network), center (set of all nodes whose eccentricity equals the radius), and periphery
(set of all nodes whose eccentricity equals the diameter). Additional information about
the various indicators is available online in OSMnx’s documentation.

Now that we have modeled the street network and computed various indictors of its
geometry and topology, we can finally save our graph to disk as an ESRI shapefile or
a GraphML file (an open-source format for graph serialization), allowing easy re-use in
other GIS or network analysis software:

[7]: # save the network model to disk as a shapefile and graphml

ox.save_graph_shapefile(G, filename='mynetwork_shapefile')
ox.save_graphml(G, filename='mynetwork.graphml')

4.2 Visualizing Street Centrality

OSMnx is built on top of NetworkX, a powerful network analysis package developed at
Los Alamos National Laboratory (Hagberg et al. 2008). We can use it to calculate and
visualize the closeness centrality of different streets in the network. Closeness centrality
measures how central a node or edge is in a network and is defined as the reciprocal of
the sum of the distance-weighted shortest paths between the node/edge and every other
node/edge in the network.

First, we convert our graph to its line graph (sometimes called the dual graph; see
Porta et al. 2006) which inverts its topological definitions such that streets become nodes

REGION : Volume 6, Number 3, 2019

https://osmnx.readthedocs.io/en/stable/osmnx.html#module-osmnx.stats

G. Boeing 45

Figure 2: Output from codebox 9

and intersections become edges. Then we calculate the closeness centrality of each node
(i.e., street in the line graph):

[8]: # calculate node closeness centrality of the line graph

edge_centrality = nx.closeness_centrality(nx.line_graph(G))

Now that we have calculated the centrality of each street in the network, we visualize
it with matplotlib via OSMnx’s plot_graph function, using the inferno color map to
represent the most-central streets in bright yellow and the least-central streets in dark
purple (see Figure 2):

[9]: # make a list of graph edge centrality values

ev = [edge_centrality[edge (0,)] for edge in G.edges()]

create a color scale converted to list of colors for graph edges

norm = colors.Normalize(vmin=min(ev)*0.8, vmax=max(ev))

cmap = cm.ScalarMappable(norm=norm, cmap=cm.inferno)

ec = [cmap.to_rgba(cl) for cl in ev]

color the edges in the original graph by closeness centrality in line graph

fig, ax = ox.plot_graph(G, bgcolor='black', axis_off=True, node_size=0,

edge_color=ec, edge_linewidth=2, edge_alpha=1)

[9]: For the output see Figure 2

4.3 Network Routing

OSMnx allows researchers and practitioners to calculate routes and simulate trips along
the network using various shortest-path algorithms, such as that by Dijkstra (1959). We
demonstrate this here. First we use OSMnx to find the network nodes nearest to two
latitude-longitude points:

[10]: # find the network nodes nearest to two points

orig_node = ox.get_nearest_node(G, (37.825956, -122.242278))

dest_node = ox.get_nearest_node(G, (37.817180, -122.218078))

Next we compute the shortest path between these origin and destination nodes using
Dijkstra’s algorithm weighted by length (i.e., geometric distance along the street network).
Then we use OSMnx to plot this route along the network:

[11]: # calculate the shortest path between these nodes then plot it

route = nx.shortest_path(G, orig_node, dest_node, weight='length',
method='dijkstra')

fig, ax = ox.plot_graph_route(G, route, node_size=0)

[11]: For the output see Figure 3

Finally, we can calculate some statistics of our route, including its total length, in
meters:

REGION : Volume 6, Number 3, 2019

46 G. Boeing

Figure 3: Output from codebox 11

[12]: # what is the network distance of this route?

net_dist = nx.shortest_path_length(G, orig_node, dest_node, weight='length',
method='dijkstra')

net_dist

[12]: 3284.0989999999997

Thus, this trip would travel approximately 3.3 kilometers along the network. We can
also calculate the straight-line distance between these two network nodes as-the-crow-flies,
using OSMnx’s vectorized great-circle calculator:

[13]: # what is the straight-line distance from origin to destination?

sl_dist = ox.great_circle_vec(G.node[orig_node]['y'], G.node[orig_node]['x'],
G.node[dest_node]['y'], G.node[dest_node]['x'])

sl_dist

[13]: 2340.8766018171827

Comparing these two distance values, we can compute an indicator of trip circuity: that
is, how much greater the network-constrained distance is between two nodes compared
to the straight-line distance between them. In this case, we can see that the network
distance is approximately 40% longer than the straight-line distance:

[14]: # how much longer is the network distance than the straight-line?

net_dist / sl_dist

[14]: 1.4029355487814306

4.4 Downloading/Modeling Networks in Other Ways

So far, we have modeled and analyzed the street network of Piedmont, California. However,
we are not constrained to study sites in the United States. OpenStreetMap is a global
mapping project and OSMnx can model networks anywhere in the world, such as Modena,
Italy:

[15]: # create a graph of Modena’s drivable street network then plot it

G = ox.graph_from_place('Modena, Italy', retain_all=True)

fig, ax = ox.plot_graph(G, fig_height=8, node_size=0, edge_linewidth=0.5)

[15]: For the output see Figure 4

We have seen how to download street network data and turn it into a graph-based
model using OSMnx’s graph_from_place function. This function geocodes the place
name using OpenStreetMap’s Nominatim web service, identifies its bounding polygon,
then downloads all the network data within this polygon from OpenStreetMap’s Overpass
API. This workflow easily handles well-defined place names. However, OSMnx offers
additional functionality to download and model networks for other study sites as well.

For example, if OpenStreetMap does not have a bounding polygon for a specific study
site, we can acquire its street network anyway by passing a polygon directly into the

REGION : Volume 6, Number 3, 2019

G. Boeing 47

Figure 4: Output from codebox 15

graph_from_polygon function. Or we can pass in latitude-longitude coordinates and a
distance into the graph_from_point function as demonstrated here, where we visualize
the network within a bounding box around the University of California, Berkeley’s Wurster
Hall:

[16]: # create a graph around UC Berkeley then plot it

wurster_hall = (37.870605, -122.254830)

one_mile = 1609 #one mile in meters

G = ox.graph_from_point(wurster_hall, distance=one_mile, network_type='drive')
fig, ax = ox.plot_graph(G, node_size=0)

[16]: For the output see Figure 5

OSMnx also accepts place queries as unambiguous Python dictionaries to help the
geocoder find a specific matching study site when several names might approximately
overlap. In this example, we download the street network of San Francisco, California by
defining the query with such a dictionary:

[17]: # create a graph of San Francisco’s drivable street network then plot it

place = {'city' : 'San Francisco',
'state' : 'California',
'country': 'USA'}

G = ox.graph_from_place(place, network_type='drive')

4.5 Downloading Other Infrastructure Types

All of the preceding examples have focused on urban and suburban street networks.
However, OSMnx can also download and model other networked infrastructure types by
passing in custom queries via the infrastructure argument. Such networked infrastruc-
ture could include power lines, the canal systems of Venice or Amsterdam, or the New
York City subway’s rail infrastructure as illustrated in this example:

[18]: # create a graph of NYC’s subway rail infrastructure then plot it

G = ox.graph_from_place('New York City, New York, USA',
retain_all=False, truncate_by_edge=True, simplify=True,

network_type='none', infrastructure='way["railway"~"subway"]')

fig, ax = ox.plot_graph(G, node_size=0)

[18]: For the output see Figure 6

REGION : Volume 6, Number 3, 2019

48 G. Boeing

Figure 5: Output from codebox 16

Note that the preceding code snippet modeled subway rail infrastructure which thus
includes crossovers, sidings, spurs, yards, and the like. For a station-based train network
model, the analyst would be best-served downloading and modeling a station adjacency
matrix.

Beyond networked infrastructure, OSMnx can also work with OpenStreetMap building
footprint and points of interest data. For example, we can download and visualize the
building footprints near New York’s Empire State Building:

[19]: # download and visualize the building footprints around the empire state bldg

point = (40.748482, -73.985402) #empire state bldg coordinates

dist = 812 #meters

gdf = ox.footprints_from_point(point=point, distance=dist)

gdf_proj = ox.project_gdf(gdf)

bbox_proj = ox.bbox_from_point(point=point, distance=dist, project_utm=True)

fig, ax = ox.plot_footprints(gdf_proj, bbox=bbox_proj, bgcolor='#333333',
color='w', figsize=(6,6))

[19]: For the output see Figure 7

Finally, we can download and inspect the amenities matching the tag “restaurants”
near the Empire State Building and then display the five most common cuisine types

[20]: # download restaurants near the empire state bldg then display them

gdf = ox.pois_from_point(point=point, distance=dist, amenities=['restaurant'])
gdf[['name', 'cuisine']].dropna().head()

[20]: name cuisine

357620442 Dolcino Trattoria Toscana italian

419359995 Little Alley chinese

419367625 Ramen Takumi japanese;ramen

561042187 Les Halles french

663104998 Tick Tock Diner diner

[21]: # show the five most common cuisine types among these restaurants

gdf['cuisine'].value_counts().head()

[21]: indian 22

korean 15

italian 14

japanese 13

pizza 9

Name: cuisine, dtype: int64

REGION : Volume 6, Number 3, 2019

G. Boeing 49

Figure 6: Output from codebox 18

Figure 7: Output from codebox 19

5 Conclusion

This article argued that computational notebooks underpin an important emerging pillar
in urban analytics and planning research, pedagogy, and practice. To demonstrate
this, it presented the official repository of computational notebooks that the OSMnx
project uses for tutorials, demos, and guides. It illustrated the use of these notebooks by
highlighting specific examples from them, inline and interactively within this article, as
an introduction to this modeling and analysis software. OSMnx itself is a Python package
for downloading, modeling, analyzing, and visualizing data from OpenStreetMap. It lets
users analyze networked infrastructure like street networks as well as building footprints,
points of interest, elevation data, and more. This article demonstrated how computational
notebooks can provide a tutorial-style introduction to scientific software such as this.

The OSMnx project uses computational notebooks because they offer several advan-
tages. First, they empower scientific reproducibility, replication, sharing, and remixing.
Second, they allow researchers to intermingle data analyses with visualizations and narra-
tives to ask and answer research questions. Third, they offer “follow-along” guides for
introducing software and methods to new users, such as in this repository for OSMnx or
even in the university classroom. Finally, they help researchers reach a wider community

REGION : Volume 6, Number 3, 2019

50 G. Boeing

of interest by making their methodologies and analyses more legible to a broad audience
potentially interested in adapting and remixing their work. For these reasons and more,
we expect to see growing adoption of computational notebooks in the urban planning
discipline and related analytics fields.

References

Batty M (2019) Urban analytics defined. Environment and Planning B: Urban Analytics
and City Science 46[3]: 403–405. CrossRef.

Boeing G (2017) Osmnx: New methods for acquiring, constructing, analyzing, and
visualizing complex street networks. Computers, Environment and Urban Systems 65:
126–139. CrossRef.

Dijkstra E (1959) A note on two problems in connexion with graphs. Numerische
Mathematik 1[1]: 269–271. CrossRef.

Hagberg A, Schult D, Swart P (2008) Exploring network structure, dynamics, and function
using networkx. In: Varoquaux G, Vaught T, Millman J (eds), Proceedings of the 7th
Python in Science Conference. SciPy, Pasadena, CA, 11–16

Harris R, O’Sullivan D, Gahegan M, Charlton M, Comber L, Longley P, Brunsdon C,
Malleson N, Heppenstall A, Singleton A, Arribas-Bel D, Evans A (2017) More bark
than bytes? reflections on 21+ years of geocomputation. Environment and Planning B:
Urban Analytics and City Science 44[4]: 598–617. CrossRef.

Kang W, Oshan T, Wolf L, Boeing G, Frias-Martinez V, Gao S, Poorthuis A, Xu W
(2019) A roundtable discussion: Defining urban data science. Environment and Planning
B: Urban Analytics and City Science 46[9]: 1756–1768. CrossRef.

Kedron P, Frazier A, Trgovac A, Nelson T, Fotheringham A (2019) Reproducibility and
replicability in geographical analysis. Geographical Analysis. CrossRef.

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Jupyter
Development Team (2016) Jupyter notebooks: A publishing format for reproducible
computational workflows. In: Loizides F, Schmidt B (eds), Positioning and Power
in Academic Publishing: Players, Agents and Agendas. IOS Press, Amsterdam, The
Netherlands, 87–90. CrossRef.

Knuth D (1992) Literate Programming. Center for the Study of Language and Information,
Stanford, CA

Kontokosta C (2018) Urban informatics in the science and practice of planning. Journal
of Planning Education and Research. CrossRef.

Padgham M, Boeing G, Cooley D, Tierney N, Sumner M, Phan T, Beare R (2019) An
introduction to software tools, data, and services for geospatial analysis of stroke
services. Frontiers in Neurology 10[743]. CrossRef.

Pérez F, Granger B (2007) Ipython: A system for interactive scientific computing.
Computing in Science & Engineering 9[3]: 21–29. CrossRef.

Poorthuis A, Zook M (2019) Being smarter about space: Drawing lessons from spatial
science. Annals of the American Association of Geographers. CrossRef.

Porta S, Crucitti P, Latora V (2006) The network analysis of urban streets: A dual
approach. Physica A: Statistical Mechanics and Its Applications 369[2]: 853–866.
CrossRef.

Rey S (2019) Pysal: The first 10 years. Spatial Economic Analysis 14[3]: 273–282.
CrossRef.

Singleton A, Arribas-Bel D (2019) Geographic data science. Geographical Analysis.
CrossRef.

REGION : Volume 6, Number 3, 2019

https://doi.org/10.1177/2399808319839494
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1007/BF01386390
https://doi.org/10.1177/2399808317710132
https://doi.org/10.1177/2399808319882826
https://doi.org/10.1111/gean.12221
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1177/0739456X18793716
https://doi.org/10.3389/fneur.2019.00743
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1080/24694452.2019.1674630
https://doi.org/10.1016/j.physa.2005.12.063
https://doi.org/10.1080/17421772.2019.1593495
https://doi.org/10.1111/gean.12194

G. Boeing 51

A Appendix

The interested reader may consult the following web sites for more information and
resources as discussed in the article:

• OSMnx examples repository: https://github.com/gboeing/osmnx-examples

• OSMnx documentation: https://osmnx.readthedocs.io/

• Docker Desktop is available at: https://www.docker.com/products/docker-desktop

• The OSMnx Docker image is available at: https://hub.docker.com/r/gboeing/osmnx

© 2019 by the authors. Licensee: REGION – The Journal of ERSA, European
Regional Science Association, Louvain-la-Neuve, Belgium. This article is distri-

buted under the terms and conditions of the Creative Commons Attribution, Non-Commercial
(CC BY NC) license (http://creativecommons.org/licenses/by-nc/4.0/).

REGION : Volume 6, Number 3, 2019

https://github.com/gboeing/osmnx-examples
https://osmnx.readthedocs.io/
https://www.docker.com/products/docker-desktop
https://hub.docker.com/r/gboeing/osmnx
http://creativecommons.org/licenses/by-nc/4.0/

Volume 7, Number 1, 2020, 1–19 journal homepage: region.ersa.org
DOI: 10.18335/region.v7i1.279

Random Parameters and Spatial Heterogeneity using
Rchoice package in R

Mauricio Sarrias1

1 Universidad Católica del Norte, Antofagasta, Chile

Received: 17 September 2019/Accepted: 4 February 2020

Abstract. This document provides a brief introduction to models with spatial hetero-
geneity using a random parameter approach. Specifically, this paper shows how this
modelling strategy can be used to capture and model spatial heterogeneity and locally
varying coefficients for different latent structure. To show the main advantages of this
modeling strategy, the Rchoice package (Sarrias 2016) in R is used. The examples will be
focused on the ordered probit model with spatially varying coefficients using self-assessed
health status as the dependent variable.

1 Introduction

Regional scientists, as well as many social researchers concerned on spatial relationships,
analyze how the reciprocal geographical interaction of social agents generates spatial
autocorrelation, affecting the bias and efficiency of standard econometric estimators.
After Anselin (1988), a large number of papers dealt with the spatial autocorrelation
using spatial versions of standard linear regression models, namely Spatial Autoregresive
Regression (SAR) or Spatial Error Model (SEM) and even recent contributions extend the
analysis toward Spatial Panel Data (Kelejian, Prucha 1998, 1999, Elhorst 2014). However,
spatial interaction also is manifested through spatially varying coefficients referred to
as: “structural instability over space, in the form of different response functions or
systematically varying parameters” (Anselin 1988). In spite of the relevance of the
concept, the evolution and development of econometric models that attempt to capture
and model spatial heterogeneity has not been as euphoric as those focused on the spatial
autocorrelation. The few attempts to capture this heterogeneity can be summarized by
the spatial expansion method (SEM) (Casetti 1972), Geographically Weighted Regression
(GWR) (Brunsdon et al. 1998) or assuming that the local relationship varies randomly
over geographical space, a method also known as the Random Coefficient Model (RCM)
(Swamy 1971). Each one of these methods enable estimation of model parameters locally,
or they allow model parameter to vary as a function of location1.

The three methods presented above share an important limitation: they require
aggregating the variables at the location level. Therefore, we are prevented from using
data at the individual level and capturing the spatial heterogeneity, simultaneously. This
raises concerns about the misleading conclusions that can be derived at the individual
level by using aggregate variables known as the ecological fallacy problem (Robinson
1950). A potential solution for this constraint is provided by multilevel modeling2. This

1For further review see for example Fotheringham, Brunsdon (1999).
2For other quantitative methods that avoid the ecological fallacy problem see Withers (2001).

1

2 M. Sarrias

approach separates the effect of personal and place characteristics to investigate the
extent and nature of spatial variation in individual outcome measures (Goldstein 1987).
The main drawback of multilevel modeling is that usually the random coefficients are
assumed to be normally distributed. This makes the estimation process easier, but creates
other problems. For example, this assumption implies that some locations might have
positive or negative coefficients, whether or not this is true. In practice, this implies
that occasionally researchers find sign reversals that are counterintuitive and difficult to
explain. Furthermore, the domain of the normal distribution is (−∞,+∞), which results
in unreliable extreme coefficients and high coefficient variability. Those problems have
also been found when applying the GWR approach (Jetz et al. 2005)3.

This study focusses on models with spatially varying coefficients using simulation as
in Sarrias (2019) and Train (2009). This modeling strategy is intended to complement
the existing approaches by using variables at the micro level – overcoming the problem
associated with spatial aggregation – and by adding flexibility and realism to the potential
domain of the coefficient on the geographical space. Spatial heterogeneity is modelled by
allowing the parameters associated with each observed variable to vary “randomly” across
space according to some distribution g(·). However, it is not known how the parameters
vary across space. All that is known is that they vary locally with population probability
density function (pdf) g(·), which is assumed to be well behaved and continuous.

To show the main advantages of this modeling strategy, the Rchoice package (Sarrias
2016) in R is used. The examples will be focused on the ordered probit model with
spatially varying coefficients using self-assessed health status as the dependent variable.

The remainder of this paper is organized as follows. Section 2 discusses the modelling
approach for incorpo-rating continuous spatial heterogeneity using a random parameter
approach. The main R packages needed for the examples are described in Section 3.
The example using Rchoice package in R is presented in Section 4. Finally, Section 5
concludes.

2 Modelling approach

2.1 Continuous spatial heterogeneity

Consider the following structural model:

y∗ci = xxx′ciβββc + εci c = 1, . . . , C; i = 1, . . . , nc (1)

βββc ∼ g(βββc)

where y∗ci is a latent (unobserved) process for individual i in geographical area c (e.g,
region, city, country, census track) that we are trying to explain; xxxci is a K × 1 vector of
individual and regional variables; and εi is the error term4. It is assumed that the vector
(yci,xxx

′
ci,βββ

′
c)
′ is independently and identically distributed. The conditional probability

density function of the latent process, f∗(yic|xxxci, εεεc), is determined once the nature of the
observed yci and the population pdf of εi is known. For example, if the observed yci is
binary and εi is normal distributed, we obtain the traditional probit model. But if εi is
distributed as logistic, then we obtain the binary logit model. Due to space restrictions,
the applied example in this study will focus on the ordered model.

The key element in the structural model is βββc. The notation implies that coefficients
are associated with region c, representing those region-specific partial correlations on the
latent dependent variable. Thus, all individuals located in the same region have the same
coefficient, but there exists inter-spatial heterogeneity, i.e., the coefficients vary across
regions but not within the region.

3There are some interesting extensions that have been recently developed. For example, Dong et al.
(2015) extend the traditional multilevel models to incorporate spatial interaction effects at different level
units. Dong et al. (2018) extend the GWR for ordinal categorical responses. Bayesian spatially varying
coefficient models have been also suggested by Finley (2011) and Gelfand et al. (2003).

4Throughout this work I will use location unit, region, or geographical area interchangeably to refer
to the subindex c.

REGION : Volume 7, Number 1, 2020

M. Sarrias 3

However, we do not know how these parameters vary across regions. All we know is
that they vary locally with population pdf g(βββc). Once g(βββc) is specified, we might have
a fully parametric or a semi-parametric spatially random parameter model.

2.2 Choosing the distribution

Continuous spatial heterogeneity is introduced by assuming that the parameters vary
“randomly” across regions according to some pre-specified “continuous” distribution. The
pdf of the spatially random coefficients in the population is g(βββc|θθθ), where θθθ represents,
for example, the mean and variance of βββc. The goal for the researcher is to estimate θθθ.

The distribution of the spatially random parameters can in principle take any shape.
The researcher has to choose a priori the distribution according to his beliefs of the
domain and boundedness of the coefficients.

Therefore, some prior theoretical knowledge of the spatial structure being modeled
may lead to a more appropriate choice of the distribution. Below, some continuous
distributions and their implications are discussed.

Normal Distribution: The normal distribution is by far the most widely used distri-
bution for the spatially random parameters. The density of the normal parameter
has mean β and standard deviation σβ , so that θθθ = (β, σβ)′. Thus, the coefficient
for each region can be written as βc = β + σβηc, where ηc ∼ N(0, 1). An important
feature of the normal density is its unboundedness. This implies that every real
number has a positive probability of being drawn. Thus, specifying a given coefficient
to follow a normal distribution is equivalent to making the a priori assumption that
there is a proportion of regions with positive coefficients and another proportion
with negative ones. As an illustration, consider a normally distributed coefficient
with population parameters β = 0.5 and σβ = 1. The proportion of regions with
positive coefficients is approximately Φ(β/σβ) · 100 ≈ 70%. This last fact makes
this distribution quite suitable when the researcher assumes that the effect of xk on
y∗ can have both signs depending in the local context of each region. For example,
there exists an extensive literature that uses the city population as a proxy for
urbanization economies (see for example Duranton, Puga 2004). However, in some
regions, a large population may suggest agglomeration economies, while in others,
it may suggest congestion effects (Ali et al. 2007). In other words, βc for the
population density can take positive or negative values across space. The normal
distribution can be also used as an initial exploratory analysis to determine the
domain of a coefficient. For example, if the estimated parameters are β̂ = 2 and
σ̂β = 1, this implies that approximately Φ(β̂/σ̂β) · 100 ≈ 98% of the regions in the
sample have a positive coefficient. Therefore, the researcher may be more inclined
to choose a distribution with just a positive real domain. One major disadvantage
of the normal distribution is that it has infinite tails, which might result in some
regions having implausible extreme coefficient values.

Triangular Distribution: This is a continuous probability distribution with probability
density function shaped like a triangle. The advantage of this distribution is that
it has a definite upper and lower limit, so its tails are shorter than the normal
distribution and we avoid extreme coefficients that may result for some regions.
The density of a triangular distribution with mean β and spread sβ is zero beyond
the range (β − sβ , β + sβ), rises linearly from β − sβ to β, and drops linearly to
β + sβ . The parameters θθθ = (β, sβ)′ are estimated.

Uniform Distribution: In this case the parameter for each location is equally likely
to take on any value in some interval. Suppose that the spread of the uniform
distribution is sβ , such that the parameter is uniformly distributed from β − sβ
to β + sβ . Then the parameter can be constructed as βc = β + sβ(2uc − 1) where
uc ∼ U [0, 1] and the parameters θθθ = (β, sβ) are estimated. The new random draw
(2uc − 1) is distributed as U [−1,+1], therefore multiplying by sβ gives a uniformly
distributed parameter ± s (Train 2009, Hensher, Greene 2003). The standard
deviation of the uniform distribution can be derived from the spread by dividing sβ

REGION : Volume 7, Number 1, 2020

4 M. Sarrias

by
√

3. Note also that the uniform distribution with a [0, 1] bound is very suitable
when there exists spatial heterogeneity in a dummy variable. For this case the
restriction is β = sβ = 1/2.

The normal, triangular and uniform distributions permit positive and negative coeffi-
cients. However, as I discussed above, the coefficient may present spatial heterogeneity
but only in the positive or negative domain. For example, we may be confident that the
coefficient for xk is positive for all regions, but still there may exist spatial heterogeneity
around the mean. Some widely used distributions with domain in the positive numbers
are the log-normal, truncated normal, and Johnson Sb distribution5.

Log-normal Distribution: The support of the log-normal distribution is (0,∞). For-
mally, the coefficient for each region is specified as βc = exp(β + σβηc) where
ηc ∼ N(0, 1). The parameters β and σβ , which represent the mean and standard
deviation of log(βc), are estimated. The median, mean, and standard deviation

of βc are exp(βc), exp(βc + σ2
β/2) and mean ×

√
exp(σ2

β)− 1, respectively (Revelt,

Train 1998, Train 2009). The main drawback of the log-normal distribution is that
it has a very long right-hand tail. This means that we might find regions with
unreasonable extreme positive coefficients.

Truncated Normal Distribution: The domain of this distribution is (0,∞) if the
normal distribution is truncated below at zero. The parameter for each region is
created as βc = max(0, β + σβηc) where ηc ∼ N(0, 1) with the share below zero
massed at zero equal to Φ(−β/σβ). A normal distribution truncated at 0 can be
useful when the researcher has a priori belief that for some regions the marginal
latent effect of the variable is null. The parameters θθθ = (β, σβ) are estimated.

Johnson Sb Distribution: The Sb distribution gives coefficients between 0 and 1, which
is also very suitable for dummy variables. The parameter for region c is computed as

βc =
exp(β+σβηc)

1+exp(β+σβηc)
where ηc ∼ N(0, 1) and the parameters β and σβ are estimated.

The mean, variance, and shape are determined by the mean and variance of β+σβηc
which is a normal distributed parameter. If the analyst needs the coefficient to be
between 0 and k, then the variable can be multiplied by k. The logic behind this is
the following. Since βc × xic ranges between [0, 1], then βc × k × xic is the same
as k[0, 1] = [0, k]. The advantage of the Johnson Sb is that it can be shaped like
log-normal distribution, but with thinner tails below the bound.

For any distribution, all the information about the unobserved spatial heterogeneity
is captured by the spread or standard deviation parameter. For example, a significant
standard deviation would reveal a spatially non-stationary relationship, and the higher
the standard deviation the higher the unobserved spatial heterogeneity in the parameters.
Finally, it is worth noting that if only the constant is assumed to be random, then the
model is reduced to the random effect model also known as the spatially constant random
parameter in the multilevel context (Jones 1991). If nc = 1 for all C, then the model is
reduced to the RCM.

2.3 Correlated spatially random parameters and observed variations around the mean

The random parameters can be generalized to include correlation across the parameters.
For example, we may be interested in whether regions with greater (lower) β1 have also
greater (lower) values for β2. If it is true, we would say that both effects are positively
correlated within regions. Furthermore, it is likely that the association between y∗ci
and xci is modified by unmeasured regional effects or region-specific unobserved factors.
Therefore, by allowing the constant and the slope parameter to be correlated we might
be able to identify whether those unobserved factors and the effect of xci are positively
or negatively associated.

5If some coefficient is expected a priori to be negative for all the regions, one might create the negative
of the variable and then include this new variable in the estimation. This “trick” allows the coefficient to
be negative without imposing a sign change in the estimation procedure (Train 2009).

REGION : Volume 7, Number 1, 2020

M. Sarrias 5

As an illustration of the usefulness of the correlated parameters, Wheeler, Tiefelsdorf
(2005) raise the awareness of the potential dependencies (correlation) among the local
regression coefficients associated with different exogenous variables in the GWR context.
They use a GWR approach to explain the white male bladder cancer mortality rates in
the 508 States Economic Areas of the United States. Using the population density and
smoking as covariates, they find that those regions with high smoking parameter also have
a low population density parameter. As they state, the important question is whether
this negative correlation is real or an artifact of the statistical method. By allowing the
parameters to be explicitly correlated, we are able to test whether the correlation among
the parameters is in fact significant6.

For simplicity of the notation, consider that the coefficients are distributed across
space following a multivariate normal distribution, βββc ∼ MVN(βββ,ΣΣΣ). In this case, the
coefficient can be written as:

βββc = βββ +LLLηηηc,

where ηηηc ∼ N(000, III), and LLL is the lower-triangular Cholesky factor of ΣΣΣ such that
LLLLLL′ = var(βββc) = ΣΣΣ. When the off-diagonal elements of LLL are zero, the parameters
are independently normal distributed. If we assume that the model has only one covariate
and the constant, then the extended form of the spatially random coefficient vector is

(
αc
βc

)
=

(
α
β

)
+

(
σαα 0
σβα σββ

)(
ηcα
ηcβ

)
βββc = βββ +LLLηηηc,

where:

LLLLLL′ =

(
σαα 0
σβα σββ

)(
σαα σβα

0 σββ

)
=

(
σ2
αα σαασβα

σβασαα σ2
βα + σ2

ββ

)
= ΣΣΣ

If we need correlated parameters with positive domain, we might create a log-normal
distributed parameter. For instance, if we need βc to be log-normal distributed, then we
can transform it in the following way:

βc = exp(β + σβαηcα + σββηcβ)

Observed spatial heterogeneity – or deterministic spatial heterogeneity – can be
also accommodated in the random parameters by including region-specific covariates.
Specifically, the vector of random coefficient is:

βββc = βββ + πππzzzc +LLLηηηc (2)

where zzzc is a set of M characteristics of region c that influences the mean of the spatial
random coefficients, and ΠΠΠ is a K ×M matrix of additional parameters. The conditional
mean becomes E(βββc|zzzc) = βββ + ΠΠΠzzzc. The main drawback of this modeling strategy – and
any type of spatial heterogeneity in the form of unobserved spatial heterogeneity – is that
it assumes that the coefficients are drawn from some univariate or multivariate distribution
and no attention is paid to the location of the regions (Fotheringham, Brunsdon 1999).
However, the previous model can be very useful to consider regions’ location explicitly
in the random parameters if zzzc includes any function of the geographical coordinates
(uuuc, vvvc). Thus, if zzzc = h(uuuc, vvvc), where h() is any function, and ηηηc = 000, then the model
collapses into the Casetti’s spatial expansion method.

6Those readers interested in modelling both spatial dependence and spatial heterogeneity are referred
to Dong et al. (2016). They develop a spatial random slope multilevel modeling approach to account for
the within-group dependence among individuals in the same area and the spatial dependence between
areas simultaneously.

REGION : Volume 7, Number 1, 2020

6 M. Sarrias

2.4 Estimation

Let yyyc = {yi1, yi2, . . . , yin} be the sequence of choices for all individuals in region c,
where nc is the total number of individuals in that region. Assuming that individuals
are independent across regions, the joint probability density function, given βββc, can be
written as

Pr(yyyc|XXXc,βββc) =

nc∑
i=1

f∗(yic|xxxic,βββc), (3)

because, conditional on βββc, the observations are independent. Since βββc is common for
individuals living in the region c, within each region individuals are not independent.
Thus, the unconditional pdf of yyyc given XXXc will be the weighted average of the conditional
probability evaluated over all possible values of βββ, which depends on the parameters of
the distribution of βββc:

Pc(θθθ) = f(yyyc|XXXc, θθθ) =

∫
βββc

[
Nc∏
i=1

f∗(yic|xxxic,βββc, θθθ)

]
g(βββc)dβββc, (4)

The unconditional probability has no closed form solution, therefore the log-likelihood
function is difficult to compute. However, we can simulate this probability and use
the simulated maximum likelihood in order to estimate θθθ (Gourieroux, Monfort 1997,
Hajivassiliou, Ruud 1986, Stern 1997, Train 2009)7. In particular, Pc(θθθ) is approximated
by a summation over randomly chosen values of βββc. For a given value of the parameters
θθθ, a value of βββc is drawn from its distribution. Using this draw of βββc, Pc(θθθ) is calculated.
This process is repeated for many draws, and the average over the draws is the simulated
probability. Formally, the simulated probability for region c is

P̃c(θθθ) =
1

R

R∑
r=1

Nc∏
i=1

P̃icr(θθθ) (5)

where P̃icr is the probability for individual i in region c evaluated at the rth draw of βββc,
and R is the total number of draws. Then, the simulated log-likelihood function is:

logLs =

C∑
c=1

log

[
1

R

R∑
r=1

Nc∏
i=1

P̃icr(θθθ)

]
(6)

Lee (1992), Gourieroux, Monfort (1991) and Hajivassiliou, Ruud (1986) derive the
asymptotic distribution of the simulated maximum likelihood (SML) estimator based
on smooth probability simulators with the number of draws increasing with sample size.
Under regularity conditions, the estimator is consistent and asymptotically normal. When
the number of draws, R, rises faster than the square root of the number of observations,
the estimator is asymptotically equivalent to the maximum likelihood estimator. It is
worth noting that, even though the simulated probability is an unbiased estimate of the
true probability, the log of the simulated probability with fixed number of repetitions
is not an unbiased estimate of the log of the true probability. This bias in the SML
decreases as the number of draws increases (see for example Gourieroux, Monfort 1997,
Revelt, Train 1998).

One main limitation of these modeling strategies is that the performance of the
maximum likelihood estimators may not be accurate or satisfactory when the number of
individuals per region is large. The problem is that the log-likelihood function involves
the integration or summation over a term involving the product of the probabilities
for all the individuals in each location c. Borjas, Sueyoshi (1994) were the first in
noticing this problem in the context of the probit model with random effects and using
Gauss quadrature. Lee (2000) also gives more insights about this problem. For example,

7Other methods can be used in order to approximate the integrals. For example, Gauss-Hermite
quadrature procedure is another numerical method widely used. However, it has been documented that
for models with more than 3 random parameters SML performs better. Bayesian estimation is also
suitable for continuous spatial heterogeneity. See for example Hashiguchi, Tanaka (2014).

REGION : Volume 7, Number 1, 2020

M. Sarrias 7

assuming a sample of 500 individuals per group – or regions in our case – with a likelihood
contribution of 0.5 per observation, Borjas, Sueyoshi (1994) show that the value of the
integrand can be as small as exp(500× ln(0.5)) ≈ exp(−346.6), which is below the existing
absolute value for a computer. A consequence of this might be larger standard errors,
explosive estimates and/or a singular Hessian. In the worst scenario, the computation
will overflow, that is, it will exceed the computer’s capacity to compute the value and the
maximization procedure will stop. This issue should be borne in mind when applying
these methods8.

3 Packages and dependencies

The main R packages used in the examples are the following:

Rchoice: This is the main package to estimate Binary, Poisson, and Ordered Models
with Random parameters.

foreign: This package is used to read data in different formats (Stata, SPSS, etc).

car: This package will allow us to perform linear hypotheses.

lmtest: This package has generic functions that allow to perform likelihood ratio tests
for nested models.

All these packages can be installed using the install.packages() function.

4 Application using Rchoice in R: Self-assessed health status

4.1 Ordered Probit model with spatially homogeneous parameters

Suppose we are interested in the determinants of individuals’ subjective evaluation of
health. We assume that the health status of individual i in municipality c, hic, follows
an underlying continuous but latent health process h∗ic based on a linear combination of
individual and municipal covariates given by:

h∗ic = xxx′icβββ + εic (7)

where xxxic is a vector of individual and municipal characteristics; εic ∼ N(0, σ) is the
error term, but since the scale of h∗ic is not identified, we normalized σ = 1. Note that
this model assumes that the partial correlation between the latent health status and the
covariates follows a spatially stationary process.

As typical in ordered models, we do not observe h∗ci, but we instead observe the
self-assessed health status (SAH) for each individual, hic, which ranges between 1 (very
bad health) and 5 (very good health) in our sample. The link between hic and h∗ic is the
following:

hic =

1 if κ0 < h∗ic < κ1
2 if κ1 < h∗ic < κ2
...
5 if κ4 < h∗ic < κ5

where it is assumed that κ0 = −∞ and κ5 =∞ to cover the entire real line. Since having
a constant is useful in our model to accommodate random effects, we set x1ic ≡ 1 for all
i = 1, . . . , N . Therefore, for identification we set κ1 ≡ 0.

To estimate an ordered probit model with spatially homogeneous coefficients, we will
use the Rchoice package which is loaded using the library() function:

[1]: > # Load package

> library("Rchoice")

8For other estimation methods, such as Bayesian estimation of multi-level models, see for example
Bürkner (2018).

REGION : Volume 7, Number 1, 2020

8 M. Sarrias

Now, we load the dataset sah.chile. This dataset comes from the 2013 National
Socioeconomic Characteri-zation Survey (CASEN) from Chile. CASEN is a national,
population-based survey which is representative at the municipal level and is carried out
by the Ministry of Planning (MIDEPLAN) to describe the socioeconomic situation as
well as the impact of social programs on the living conditions of the Chilean Population9.

In the following lines, the dataset in Stata format is downloaded. Then, the SAH
variable (dependent variable) is recoded into 5 categories:

[2]: > # Load data set and recode SAH variable

> library("foreign") # package to load datasets

> library("car") # package with recode function

> data <- read.dta("https://msarrias.weebly.com/uploads/3/7/7/8/37783629/sah.chile.dta")

> data$sah2 <- recode(data$shealth, "1= 1; 2 = 2; 3 = 3; 5:6 = 4; 7 = 5")

The vector xxxic includes the following controls at the individual level:

linch: log of household income.

agen: age in years / 10.

hsizen: household size / 10.

edun: years of schooling / 10.

male: =1 for men.

dcivil1: =1 if the individual is married.

dlstatus2: =1 if the individual is unemployed.

Some continuous variables are divided by 10 to improve convergence speed of the SML
process and avoid singularities in the Hessian matrix.

In addition, a set of dummy variables indicating the self-perception of pollution and
environmental problems is used. The dummy variables are obtained from the response to
the question: “What problems related to pollution and environmental degradation do you
identify in your neighbourhood or location”. Based on the answer, dummy variables were
created for the following problems:

noise: noise pollution.

airpol: air pollution.

watpol: water pollution.

vispol: visual pollution.

waspol: garbage (rubbish) in the neighborhood.

The variables at the municipality level are:

lmdinc: log of median income (proxy for development).

lpop: log of population (size effect).

The following command lines show how to estimate the traditional ordered probit
model. For other models such as the Binary (Logit and Probit) and Poisson model see
Sarrias (2016)Sarrias (2016).

[3]: > # Ordered probit model

> oprobit <- Rchoice(sah2 ~ linch + agen + hsizen + edun + male +

+ dcivil1 + dlstatus2 +

+ noise + airpol + watpol + vispol + waspol +

+ lmdinc + lpop,

+ family = ordinal("probit"),

+ data = data)

> summary(oprobit)

9Chile has 346 municipalities of which 324 are representative in CASEN 2013.

REGION : Volume 7, Number 1, 2020

M. Sarrias 9

[3]: ##

Model: ordinal

Model estimated on: Tue Jan 07 10:31:58 2020

##

Call:

Rchoice(formula = sah2 ~ linch + agen + hsizen + edun + male +

dcivil1 + dlstatus2 + noise + airpol + watpol + vispol +

waspol + lmdinc + lpop, data = data, family = ordinal("probit"),

method = "bfgs")

##

##

Frequencies of categories:

y

1 2 3 4 5

0.01087 0.01359 0.02897 0.64523 0.30133

The estimation took: 0h:0m:5s

##

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

kappa.1 0.341698 0.022434 15.231 < 2e-16 ***

kappa.2 0.720961 0.027012 26.690 < 2e-16 ***

kappa.3 3.015915 0.031564 95.548 < 2e-16 ***

constant -0.290407 0.481404 -0.603 0.546342

linch 0.132595 0.014377 9.223 < 2e-16 ***

agen -0.212654 0.008214 -25.889 < 2e-16 ***

hsizen 0.242645 0.060359 4.020 5.82e-05 ***

edun 0.211808 0.028537 7.422 1.15e-13 ***

male 0.154095 0.019058 8.086 6.66e-16 ***

dcivil1 -0.028142 0.021246 -1.325 0.185316

dlstatus2 -0.093728 0.046169 -2.030 0.042347 *

noise -0.139891 0.026745 -5.231 1.69e-07 ***

airpol -0.084563 0.026219 -3.225 0.001259 **

watpol -0.120485 0.037756 -3.191 0.001417 **

vispol -0.069064 0.060747 -1.137 0.255573

waspol -0.041040 0.027421 -1.497 0.134482

lmdinc 0.147852 0.043400 3.407 0.000658 ***

lpop -0.016493 0.009016 -1.829 0.067359 .

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

Optimization of log-likelihood by BFGS maximization

Log Likelihood: -13020

Number of observations: 16188

Number of iterations: 190

Exit of MLE: successful convergence

The argument family = ordinal("probit") indicates that an ordered probit model
will be estimated. If the user wants an ordered logit model the argument should be
family = ordinal("logit"). For other models, see help(Rchoice).

The results show that household income and education increase the probability of
reporting better health status, whereas age decreases it. Men are more likely to report
better health than women and being unemployed is detrimental for health. At the
neighborhood level, noise, air, and water pollution reduce health perception and vispol
and waspol apparently do not matter for health. The coefficient for the logarithm of
population for each municipality, which is intended to capture agglomeration effects, is
negative but weakly significant, whereas the level of development is positively correlated
with individuals’ health evaluation.

4.2 Ordered Probit models with spatial random coefficients

The standard ordered probit model does not allow for spatial heterogeneity in the coeffi-
cients. In this section, we estimate an Ordered Probit with Spatial Random Parameters
(OPSRP) model. To reduce excessive computing time, we will only assume that the
variables at the level of municipalities and neighborhood vary across space.

The first and more difficult task is to choose the distribution for each of them. As
explained by Hensher, Greene (2003), distributions are essentially arbitrary approximations
to the real behavioral profile. The researcher chooses a specific distribution because he has

REGION : Volume 7, Number 1, 2020

10 M. Sarrias

a sense that the “empirical truth” is somewhere in their domain. The most widely used
distribution in the empirical literature is the normal distribution due to its properties. If
unobserved spatial heterogeneity is viewed as the sum of small random influences, then
the central limit theorem can be invoked to justify the normality assumption Greene,
Hensher (2010). Moreover, the normal distribution is unbounded, and therefore every
real number has a positive probability of being drawn. Thus, specifying a given coefficient
to follow a normal distribution is equivalent to making a priori assumption that both
positive and negative coefficients exits across space (Sarrias 2019).

This last property is very appealing in our case, since theoretically we might observe
municipalities with positive and negative sign for the population coefficient. For instance,
municipalities with a positive coefficient might be characterized for having positive urban
externalities that outweigh the negative ones. In those municipalities, inhabitants, on
average, enjoy better health through local positive urban externalities. If the coefficient
is negative, the opposite might be expected.

A OPSRP model with normally distributed parameters is estimated as follows:

[4]: > # Spatial random parameter model

> ran_1 <- Rchoice(sah2 ~ linch + agen + hsizen + edun + male + dcivil1 + dlstatus2 +

+ noise + airpol + watpol + vispol + waspol +

+ lmdinc + lpop,

+ family = ordinal(’probit’),

+ data = data,

+ ranp = c(noise = "n", airpol = "n", watpol = "n", vispol = "n",

+ waspol = "n", lmdinc = "n", lpop = "n"),

+ panel = TRUE,

+ index = "idc",

+ R=30,

+ method = "bfgs")

> summary(ran_1)

[4]: ##

Model: ordinal

Model estimated on: Tue Dec 31 09:11:29 2019

##

Call:

Rchoice(formula = sah2 ~ linch + agen + hsizen + edun + male +

dcivil1 + dlstatus2 + noise + airpol + watpol + vispol +

waspol + lmdinc + lpop, data = data, family = ordinal("probit"),

ranp = c(noise = "n", airpol = "n", watpol = "n", vispol = "n",

waspol = "n", lmdinc = "n", lpop = "n"), R = 30, panel = TRUE,

index = "idc", method = "bfgs", iterlim = 2000)

##

##

Frequencies of categories:

y

1 2 3 4 5

0.01087 0.01359 0.02897 0.64523 0.30133

The estimation took: 0h:9m:48s

##

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

kappa.1 0.3417117 0.0162495 21.029 < 2e-16 ***

kappa.2 0.7209893 0.0209411 34.429 < 2e-16 ***

kappa.3 3.0170292 0.0268859 112.216 < 2e-16 ***

constant -0.2905344 0.4958543 -0.586 0.557925

linch 0.1310569 0.0143865 9.110 < 2e-16 ***

agen -0.2132221 0.0082107 -25.969 < 2e-16 ***

hsizen 0.2425766 0.0604009 4.016 5.92e-05 ***

edun 0.2116421 0.0285525 7.412 1.24e-13 ***

male 0.1540426 0.0190620 8.081 6.66e-16 ***

dcivil1 -0.0281834 0.0212486 -1.326 0.184717

dlstatus2 -0.0937187 0.0462089 -2.028 0.042545 *

mean.noise -0.1399619 0.0269286 -5.198 2.02e-07 ***

mean.airpol -0.0845976 0.0264687 -3.196 0.001393 **

mean.watpol -0.1205199 0.0379779 -3.173 0.001507 **

mean.vispol -0.0690556 0.0611251 -1.130 0.258585

mean.waspol -0.0410117 0.0276460 -1.483 0.137953

mean.lmdinc 0.1463353 0.0445929 3.282 0.001032 **

mean.lpop -0.0180293 0.0091612 -1.968 0.049067 *

REGION : Volume 7, Number 1, 2020

M. Sarrias 11

sd.noise 0.0986997 0.0261224 3.778 0.000158 ***

sd.airpol 0.0986787 0.0254373 3.879 0.000105 ***

sd.watpol 0.0994208 0.0398379 2.496 0.012573 *

sd.vispol 0.0998332 0.0688382 1.450 0.146987

sd.waspol 0.0988309 0.0273009 3.620 0.000295 ***

sd.lmdinc 0.0050337 0.0008714 5.776 7.64e-09 ***

sd.lpop 0.0012177 0.0011066 1.100 0.271156

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

Optimization of log-likelihood by BFGS maximization

Log Likelihood: -11320

Number of observations: 16188

Number of iterations: 391

Exit of MLE: successful convergence

Simulation based on 30 Halton draws

The argument ranp indicates which variables are random in the formula and their
distributions. In this example, all the random variables are assumed to be normally
distributed using "n". The remaining distribution discussed in Section 2.2 can be used
using the following shorthands:

• Triangular = "t",

• Uniform = "u",

• Truncated normal = "cn",

• Log-normal = "ln",

• Johnson’s Sb = = "sb".

The number of draws for the simulation of the probability is set using the argument R.
To keep the estimation time manageable, we use 30 draws for each individual. However,
consistency of the SML requires a higher number of draws (see for example Train 2009).

The argument index is a string indicating the id for the municipalities in the data,
whereas panel=TRUE allows for the spatial structure of the sample.

The previous model assumes that the coefficients has the following form:

βk = β̄k + σkvir

where vir ∼ N(01). Thus, the coefficients with the mean. and sd. prefix represent the

estimated mean, ˆ̄β, and standard deviation, σ̂, for variable k, respectively. If σk = 0,
then there is no evidence of systematical variation for regression coefficient over space.
The output shows that there is evidence of spatial heterogeneity for most of the variables,
except for vispol and lpop.

To test the joint hypothesis of coefficient homogeneity across space we can perform a
Likelihood Ratio test using lrtest function from lmtest package.

[5]: > # Testing spatial heterogeneity

> library("lmtest")

> lrtest(oprobit, ran_1)

[5]: ## Likelihood ratio test

##

Model 1: sah2 ~ linch + agen + hsizen + edun + male + dcivil1 + dlstatus2 +

noise + airpol + watpol + vispol + waspol + lmdinc + lpop

Model 2: sah2 ~ linch + agen + hsizen + edun + male + dcivil1 + dlstatus2 +

noise + airpol + watpol + vispol + waspol + lmdinc + lpop

#Df LogLik Df Chisq Pr(>Chisq)

1 18 -13018

2 25 -11318 7 3400.6 < 2.2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The test rejects the null hypothesis providing empirical evidence of spatial heterogeneity
for those variables.

REGION : Volume 7, Number 1, 2020

12 M. Sarrias

Since the parameters are allowed to vary across space following a normal distribution,
we can also compute the proportion of municipalities with positive coefficients using

Φ(ˆ̄β/σ̂). For example, for noise and lmdinc the results are:

[6]: > # Computing proportions

> pnorm(coef(ran_1)["mean.noise"] / coef(ran_1)["sd.noise"])

[6]: ## mean.noise

0.07808686

[7]: > pnorm(coef(ran_1)["mean.lmdinc"] / coef(ran_1)["sd.lmdinc"])

[7]: ## mean.lmdinc

1

Thus, we can say that for 100% of the municipalities development is positively
correlated with individuals’ health, whereas for around 8% of the municipalities, higher
noise pollution increases health. This last result can be true or an artifact of the normality
assumption.

4.3 Correlated parameters

The previous model specifies the coefficients to be independently distributed, while one
would expect correlation. To show this, the model ran_1 we will be estimated but
assuming that the spatially random coefficients are correlated adding the argument
correlation = TRUE:

[8]: > # Spatially random parameters with correlated coefficients

> ran_2 <- Rchoice(sah2 ~ linch + agen + hsizen + edun + male + dcivil1 +

+ dlstatus2 + noise + airpol + watpol + vispol + waspol +

+ lmdinc + lpop,

+ family = ordinal("probit"),

+ data = data,

+ ranp = c(noise = "n", airpol = "n", watpol = "n", vispol = "n",

+ waspol = "n", lmdinc = "n", lpop = "n"),

+ panel = TRUE,

+ index = "idc",

+ R=30,

+ method = "bfgs",

+ correlation = TRUE)

> summary(ran_2)

[8]: ##

Model: ordinal

Model estimated on: Tue Dec 31 09:21:06 2019

##

Call:

Rchoice(formula = sah2 ~ linch + agen + hsizen + edun + male +

dcivil1 + dlstatus2 + noise + airpol + watpol + vispol +

waspol + lmdinc + lpop, data = data, family = ordinal("probit"),

ranp = c(noise = "n", airpol = "n", watpol = "n", vispol = "n",

waspol = "n", lmdinc = "n", lpop = "n"), R = 30, correlation = TRUE,

panel = TRUE, index = "idc", method = "bfgs", iterlim = 2000)

##

##

Frequencies of categories:

y

1 2 3 4 5

0.01087 0.01359 0.02897 0.64523 0.30133

The estimation took: 0h:9m:36s

##

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

kappa.1 0.3412626 0.0180952 18.859 < 2e-16 ***

kappa.2 0.7195420 0.0226625 31.750 < 2e-16 ***

kappa.3 3.4970489 0.0294076 118.917 < 2e-16 ***

constant -0.2901421 0.5322664 -0.545 0.585680

linch 0.1457106 0.0149581 9.741 < 2e-16 ***

agen -0.2696671 0.0086621 -31.132 < 2e-16 ***

hsizen 0.2440816 0.0629962 3.875 0.000107 ***

edun 0.2202293 0.0300012 7.341 2.12e-13 ***

REGION : Volume 7, Number 1, 2020

M. Sarrias 13

male 0.1579018 0.0199386 7.919 2.44e-15 ***

dcivil1 -0.0361313 0.0222373 -1.625 0.104204

dlstatus2 -0.0930049 0.0482324 -1.928 0.053822 .

mean.noise -0.1446350 0.0281478 -5.138 2.77e-07 ***

mean.airpol -0.0855360 0.0275906 -3.100 0.001934 **

mean.watpol -0.1204861 0.0399076 -3.019 0.002535 **

mean.vispol -0.0689847 0.0636902 -1.083 0.278751

mean.waspol -0.0371335 0.0288215 -1.288 0.197609

mean.lmdinc 0.1607965 0.0478379 3.361 0.000776 ***

mean.lpop 0.0069806 0.0101792 0.686 0.492860

sd.noise.noise 0.0050271 0.0333140 0.151 0.880055

sd.noise.airpol 0.0058448 0.0324393 0.180 0.857013

sd.noise.watpol 0.0539982 0.0478928 1.127 0.259539

sd.noise.vispol 0.0739318 0.0776348 0.952 0.340943

sd.noise.waspol 0.0182864 0.0331744 0.551 0.581483

sd.noise.lmdinc 0.0618425 0.0086254 7.170 7.51e-13 ***

sd.noise.lpop -0.0813180 0.0105174 -7.732 1.07e-14 ***

sd.airpol.airpol 0.0160025 0.0319875 0.500 0.616881

sd.airpol.watpol 0.0559519 0.0459907 1.217 0.223760

sd.airpol.vispol 0.0816862 0.0775592 1.053 0.292245

sd.airpol.waspol 0.0208368 0.0330971 0.630 0.528979

sd.airpol.lmdinc 0.0434195 0.0084910 5.114 3.16e-07 ***

sd.airpol.lpop -0.0588680 0.0102640 -5.735 9.73e-09 ***

sd.watpol.watpol 0.0628180 0.0456531 1.376 0.168826

sd.watpol.vispol 0.0818528 0.0779919 1.050 0.293946

sd.watpol.waspol 0.0233655 0.0330245 0.708 0.479244

sd.watpol.lmdinc 0.0408594 0.0085428 4.783 1.73e-06 ***

sd.watpol.lpop -0.0505877 0.0103099 -4.907 9.26e-07 ***

sd.vispol.vispol 0.0850337 0.0779709 1.091 0.275457

sd.vispol.waspol 0.0187284 0.0330837 0.566 0.571331

sd.vispol.lmdinc 0.0471032 0.0083197 5.662 1.50e-08 ***

sd.vispol.lpop -0.0644627 0.0100842 -6.392 1.63e-10 ***

sd.waspol.waspol 0.0224287 0.0329135 0.681 0.495591

sd.waspol.lmdinc 0.0491523 0.0082301 5.972 2.34e-09 ***

sd.waspol.lpop -0.0642418 0.0099655 -6.446 1.15e-10 ***

sd.lmdinc.lmdinc 0.0353881 0.0082862 4.271 1.95e-05 ***

sd.lmdinc.lpop -0.0450126 0.0099427 -4.527 5.98e-06 ***

sd.lpop.lpop 0.0002568 0.0011373 0.226 0.821375

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

Optimization of log-likelihood by BFGS maximization

Log Likelihood: -11210

Number of observations: 16188

Number of iterations: 315

Exit of MLE: successful convergence

Simulation based on 30 Halton draws

It is important to note that the output prints the elements of the lower-triangular
Cholesky factor LLL. The variance-covariance matrix, ΣΣΣ, can be extracted using the vcov

function in the following way:

[9]: > # Obtain Sigma

> vcov(ran_2, what = "ranp", type = "cov", se = TRUE)

[9]: ##

Elements of the variance-covariance matrix

##

Estimate Std. Error z-value Pr(>|z|)

v.noise.noise 2.5271e-05 3.3494e-04 0.0754 0.93986

v.noise.airpol 2.9382e-05 2.3810e-04 0.1234 0.90179

v.noise.watpol 2.7145e-04 1.7934e-03 0.1514 0.87969

v.noise.vispol 3.7166e-04 2.4696e-03 0.1505 0.88037

v.noise.waspol 9.1927e-05 6.3478e-04 0.1448 0.88486

v.noise.lmdinc 3.1089e-04 2.0673e-03 0.1504 0.88046

v.noise.lpop -4.0879e-04 2.7200e-03 -0.1503 0.88053

v.airpol.airpol 2.9024e-04 1.0858e-03 0.2673 0.78923

v.airpol.watpol 1.2110e-03 2.4984e-03 0.4847 0.62788

v.airpol.vispol 1.7393e-03 3.7015e-03 0.4699 0.63843

v.airpol.waspol 4.4032e-04 1.0616e-03 0.4148 0.67829

v.airpol.lmdinc 1.0563e-03 2.4234e-03 0.4359 0.66293

v.airpol.lpop -1.4173e-03 3.2248e-03 -0.4395 0.66029

REGION : Volume 7, Number 1, 2020

14 M. Sarrias

v.watpol.watpol 9.9925e-03 9.2513e-03 1.0801 0.28009

v.watpol.vispol 1.3705e-02 9.7826e-03 1.4009 0.16124

v.watpol.waspol 3.6211e-03 3.6712e-03 0.9863 0.32397

v.watpol.lmdinc 8.3355e-03 4.0026e-03 2.0825 0.03730 *

v.watpol.lpop -1.0863e-02 5.2619e-03 -2.0644 0.03898 *

v.vispol.vispol 2.6069e-02 2.4122e-02 1.0807 0.27982

v.vispol.waspol 6.5591e-03 5.8208e-03 1.1268 0.25981

v.vispol.lmdinc 1.5469e-02 7.5381e-03 2.0521 0.04016 *

v.vispol.lpop -2.0443e-02 9.9442e-03 -2.0558 0.03981 *

v.waspol.waspol 2.1683e-03 2.9746e-03 0.7289 0.46604

v.waspol.lmdinc 4.9749e-03 3.5556e-03 1.3992 0.16176

v.waspol.lpop -6.5438e-03 4.7027e-03 -1.3915 0.16407

v.lmdinc.lmdinc 1.3266e-02 1.8869e-03 7.0309 2.052e-12 ***

v.lmdinc.lpop -1.7439e-02 2.3778e-03 -7.3341 2.232e-13 ***

v.lpop.lpop 2.2946e-02 3.0048e-03 7.6365 2.243e-14 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The estimated coefficients represent the variance and covariance of the randomly dis-
tributed parameters. Their standard errors are estimated using the Delta Method. To
obtain the standard deviations for the random parameters, one might use the following
code:

[10]: > # Obtain standard deviations

> vcov(ran_2, what = "ranp", type = "sd", se = TRUE)

[10]: ##

Standard deviations of the random parameters

##

Estimate Std. Error z-value Pr(>|z|)

noise 0.0050271 0.0333140 0.1509 0.88006

airpol 0.0170365 0.0318660 0.5346 0.59291

watpol 0.0999627 0.0462737 2.1602 0.03075 *

vispol 0.1614594 0.0746999 2.1614 0.03066 *

waspol 0.0465651 0.0319403 1.4579 0.14487

lmdinc 0.1151790 0.0081909 14.0617 < 2e-16 ***

lpop 0.1514789 0.0099181 15.2730 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Finally, the correlation matrix for the estimated coefficients is:

[11]: > # Obtain correlation matrix of estimated coefficients

> vcov(ran_2, what = "ranp", type = "cor")

[11]: ## noise airpol watpol vispol waspol lmdinc

noise 1.0000000 0.3430771 0.5401842 0.4578971 0.3927053 0.5369247

airpol 0.3430771 1.0000000 0.7110814 0.6323119 0.5550469 0.5383007

watpol 0.5401842 0.7110814 1.0000000 0.8491072 0.7779253 0.7239690

vispol 0.4578971 0.6323119 0.8491072 1.0000000 0.8724090 0.8317965

waspol 0.3927053 0.5550469 0.7779253 0.8724090 1.0000000 0.9275751

lmdinc 0.5369247 0.5383007 0.7239690 0.8317965 0.9275751 1.0000000

lpop -0.5368276 -0.5492089 -0.7173734 -0.8358492 -0.9277189 -0.9995225

lpop

noise -0.5368276

airpol -0.5492089

watpol -0.7173734

vispol -0.8358492

waspol -0.9277189

lmdinc -0.9995225

lpop 1.0000000

The results show, for example, that noise pollution is positively correlated with other
forms of pollution. Therefore, in those municipalities where noise pollution is detrimental
to health, so are the other forms of pollution. It is also important to note that the
municipalities where noise has a negative effect are also municipalities where lower
development and higher population impact negatively the self-perception of health status.

REGION : Volume 7, Number 1, 2020

M. Sarrias 15

4.4 Region-specific coefficients

In the applied literature it is very common to map the region-specific estimates to display
the spatial heterogeneity for certain coefficients. This cannot be done using just the
distribution of the parameters across regions, g(βββc|θθθ). The population distributions give
us just the average affect, βββ, and the spatial variation around this mean, σβββ , when in fact
we would like to know where each region’s βββc lies in g(βββc|θθθ). We might be able to find
the likely location of a given region on the heterogeneity distribution by moving from the
conditional to the unconditional distribution (Revelt, Train 2000, Brunsdon et al. 1999,
Sarrias 2019). Using Bayes’ theorem, we obtain:

f(βββc|yyyc,XXXc, θθθ) =
f(yyyc|XXXc,βββc)g(βββc|θθθ)

f(yyyc|XXXc, θθθ)
=

f(yyyc|XXXc,βββc)g(βββc|θθθ)∫
βββc
f(yyyc|XXXc,βββc)g(βββc|θθθ)dβββc

(8)

where f(βββc|yyyc,XXXc, θθθ) is the distribution of the regional parameters βββc conditional on the
sequence of choices of all the individuals in region c, whereas g(βββc|θθθ) is the unconditional
distribution. The conditional expectation of βββc is given by

β̄ββc = E [βββc|yyyc,XXXc, θθθ] =

∫
βββc
βββcf(yyyc|XXXc,βββc)g(βββc|θθθ)dβββc∫

βββc
f(yyyc|XXXc,βββc)g(βββc|θθθ)dβββc

(9)

This expectation gives us the conditional mean of the distribution of the spatially random
parameter. The simulator for this expectation is:

ˆ̄βββc = Ê
[
βββc|yyyc,XXXc, θ̂θθ

]
=

1
R

∑R
r=1 β̂ββcr

∏nc
i=1 f

∗(yci|xxxci, β̂ββcr)
1
R

∑R
r=1

∏nc
i=1 f

∗(yci|xxxci, β̂ββcr)
(10)

This estimator is the region-specific estimate, and can be computed in Rchoice using
effect.Rchoice function and plotted using the function plot. In the following lines
the municipality’s coefficient for all the random parameters is plotted using a kernel
approximation:

[12]: > # Plot municipality-specific coefficient

> par(mfrow = c(3, 3))

> plot(ran_2, par = "noise", type = "density", main = "Noise Pol.")

> plot(ran_2, par = "airpol", type = "density", main = "Air Pol.")

> plot(ran_2, par = "watpol", type = "density", main = "Water Pol.")

> plot(ran_2, par = "vispol", type = "density", main = "Visual Pol.")

> plot(ran_2, par = "waspol", type = "density", main = "Garbage Pol.")

> plot(ran_2, par = "lmdinc", type = "density", main = "Development")

> plot(ran_2, par = "lpop", type = "density", main = "Population")

[12]: Output reproduced in Figure 1

The red area under the kernel distribution illustrates the proportion of municipalities
with a positive conditional mean. The most relevant result is that size (lpop) seems to be
a positive externality for almost 50% of the municipalities, evidencing substantial spatial
heterogeneity. This important result is obscured by the traditional ordered probit model.

We might also plot the 95% confidence interval for the conditional means of airpol
and noise for the first 50 municipalities by typing:

[13]: > # Plot region-specific confidence intervals.

> par(mfrow = c(1, 2))

> plot(ran_2, par = "airpol", ind = TRUE, id = 1:50, ylab = "Municipalities")

> plot(ran_2, par = "noise", ind = TRUE, id = 1:50, ylab = "Municipalities")

[13]: Output reproduced in Figure 2

In terms of consistency of the regional-specific estimates, it is expected that ˆ̄βββc
p→ βββc as

nc →∞. That is, if we have more information about the choices made by the individuals
in each region, then we are in better position to identify where each region coefficient lies
on g(βββc) (see for example Train 2009, Revelt, Train 2000, Sarrias, Daziano 2018).

REGION : Volume 7, Number 1, 2020

16 M. Sarrias

Figure 1: Plot of municipality-specific coefficients

Figure 2: Plot of region-specific confidence intervals

5 Conclusion

This paper contributes to the literature of spatial econometric models that deal with
spatially non-stationary process by assuming unobserved heterogeneity. This modelling
approach has been widely used in discrete choice modeling, but it can also be implemented
to capture and model observed and unobserved spatial heterogeneity. One of the main
advantages of this modelling approach is that allows the analyst to include variables
at the individual level, which mitigate the ecological fallacy problem, and to add more
flexibility regarding the shape and boundedness of the coefficients.

Spatial heterogeneity is represented by some distribution g(βββc), which can take any
continuous shape, and the analyst must choose the distribution a priori. The choice of
the distribution may be guided by theoretical reasons regarding the domain and bound of
the coefficients. It also discussed some extensions that can be useful in order to take into
consideration the geographical location of the regions, as well as the spatial correlation
of the parameters. Although the unobserved spatial heterogeneity using continuous
distributions has very appealing features, the probability for each region does not have a
closed form solution. Therefore, we need to simulate this probability and estimate the
parameters using SML, which can be very costly in terms of computational time.

REGION : Volume 7, Number 1, 2020

M. Sarrias 17

This study also shows how the Rchoice package can be used to estimate this type of
models. To do so, we provide a simple example for ordered probit models, focusing on
how the determinants of individuals’ self-assessed health status might vary across space.

This work can be extended in different ways. First, one of the main concerns and
limitations of the model is that the estimation requires computing the product of the
probabilities for all individuals in a given region. Thus, if the number of individuals
is too high, the estimation method may run into numerical difficulties. To overcome
this problem some of the two methods proposed by Lee (2000) can be studied under
the spatial context. These methods alleviate the numerical problems by interchanging
the inner product with the outer summation. Another possible extension is to study
the behavior of the parameters with small and large samples using Bayesian and EM
algorithms. Finally, more empirical applications are needed in order to understand the
strengths and weaknesses for estimating models with locally varying coefficients using
unobserved heterogeneity.

References

Ali K, Partridge MD, Olfert MR (2007) Can geographically weighted regressions improve
regional analysis and policy making? International Regional Science Review 30[3]:
300–329. CrossRef.

Anselin L (1988) Spatial Econometrics: Methods and Models, Volume 4. Springer.
CrossRef.

Borjas GJ, Sueyoshi GT (1994) A two-stage estimator for probit models with structural
group effects. Journal of Econometrics 64[1]: 165–182. CrossRef.

Bürkner P (2018) Advanced bayesian multilevel modeling with the r package brms. R
Journal 10[1]. CrossRef.

Brunsdon C, Aitkin M, Fotheringham S, Charlton M (1999) A comparison of random
coefficient modelling and geographically weighted regression for spatially non-stationary
regression problems. Geographical and Environmental Modelling 3: 47–62

Brunsdon C, Fotheringham S, Charlton M (1998) Geographically weighted regression.
Journal of the Royal Statistical Society: Series D (the Statistician) 47[3]: 431–443.
CrossRef.

Casetti E (1972) Generating models by the expansion method: Applications to geograph-
ical research. Geographical Analysis 4[1]: 81–91. CrossRef.

Dong G, Harris R, Jones K, Yu J (2015) Multilevel modelling with spatial interaction
effects with application to an emerging land market in beijing, china. PloS One 10[6]:
e0130761. CrossRef.

Dong G, Ma J, Harris R, Pryce G (2016) Spatial random slope multilevel modeling
using multivariate conditional autoregressive models: A case study of subjective travel
satisfaction in beijing. Annals of the American Association of Geographers 106[1]:
19–35. CrossRef.

Dong G, Nakaya T, Brunsdon C (2018) Geographically weighted regression models for
ordinal categorical response variables: An application to geo-referenced life satisfaction
data. Computers, Environment and Urban Systems 70: 35–42. CrossRef.

Duranton G, Puga D (2004) Micro-foundations of urban agglomeration economies. In:
Henderson V, Thisse J (eds), Handbook of Regional and Urban Economics, Volume 4.
Elsevier, 2063–2117. CrossRef.

Elhorst JP (2014) Spatial Panel Data Models. Springer. CrossRef.

REGION : Volume 7, Number 1, 2020

https://doi.org/10.1177/0160017607301609
https://doi.org/10.1007/978-94-015-7799-1
https://doi.org/10.1016/0304-4076(94)90062-0
https://doi.org/10.32614/rj-2018-017
https://doi.org/10.1111/1467-9884.00145
https://doi.org/10.1111/j.1538-4632.1972.tb00458.x
https://doi.org/10.1371/journal.pone.0130761
https://doi.org/10.1080/00045608.2015.1094388
https://doi.org/10.1016/j.compenvurbsys.2018.01.012
https://doi.org/10.3386/w9931
https://doi.org/10.1007/978-3-642-03647-7_19

18 M. Sarrias

Finley AO (2011) Comparing spatially-varying coefficients models for analysis of ecological
data with non-stationary and anisotropic residual dependence. Methods in Ecology and
Evolution 2[2]: 143–154. CrossRef.

Fotheringham AS, Brunsdon C (1999) Local forms of spatial analysis. Geographical
Analysis 31[4]: 340–358. CrossRef.

Gelfand AE, Kim HJ, Sirmans CF, Banerjee S (2003) Spatial modeling with spatially
varying coefficient processes. Journal of the American Statistical Association 98[462]:
387–396. CrossRef.

Goldstein H (1987) Multilevel Models in Education and Social Research. Oxford University
Press

Gourieroux C, Monfort A (1991) Simulation based inference in models with heterogeneity.
Annales d’Economie et de Statistique 20-21: 69–107. CrossRef.

Gourieroux C, Monfort A (1997) Simulation-Based Econometric Methods. Oxford Univer-
sity Press. CrossRef.

Greene WH, Hensher DA (2010) Modeling Ordered Choices: A Primer. Cambridge
University Press. CrossRef.

Hajivassiliou VA, Ruud PA (1986) Classical estimation methods for ldv models using
simulation. In: Engle R, McFadden D (eds), Handbook of Econometrics, Volume 4.
Elsevier. CrossRef.

Hashiguchi Y, Tanaka K (2014) Agglomeration and firm-level productivity: A bayesian
spatial approach. Papers in Regional Science 94[S1]: S95–S114. CrossRef.

Hensher D, Greene WH (2003) The mixed logit model: The state of practice. Transporta-
tion 30[2]: 133–176. CrossRef.

Jetz W, Rahbek C, Lichstein JW (2005) Local and global approaches to spatial data
analysis in ecology. Global Ecology and Biogeography 14[1]: 97–98. CrossRef.

Jones K (1991) Specifying and estimating multi-level models for geographical research.
Transactions of the Institute of British Geographers 16: 148–159. CrossRef.

Kelejian HH, Prucha IR (1998) A generalized spatial two-stage least squares procedure
for estimating a spatial autoregressive model with autoregressive disturbances. The
Journal of Real Estate Finance and Economics 17[1]: 99–121

Kelejian HH, Prucha IR (1999) A generalized moments estimator for the autoregressive
parameter in a spatial model. International Economic Review 40[2]: 509–533. CrossRef.

Lee L (2000) A numerically stable quadrature procedure for the one-factor random-
component discrete choice model. Journal of Econometrics 95[1]: 117–129. CrossRef.

Lee LF (1992) On efficiency of methods of simulated moments and maximum simulated
likelihood estimation of discrete response models. Econometric Theory 8[4]: 518–552.
CrossRef.

Revelt D, Train K (1998) Mixed logit with repeated choices: Households’ choices of
appliance efficiency level. Review of Economics and Statistics 80[4]: 647–657. CrossRef.

Revelt D, Train K (2000) Customer-specific taste parameters and mixed logit: Households’
choice of electricity supplier. Working Paper. Department of Economics, UCB

Robinson WS (1950) Ecological correlations and the behavior of individuals. American
Sociological Review 15[3]: 351–357. CrossRef.

Sarrias M (2016) Discrete choice models with random parameters in R: The Rchoice
package. Journal of Statistical Software 74[10]: 1–31. CrossRef.

REGION : Volume 7, Number 1, 2020

https://doi.org/10.1111/j.2041-210x.2010.00060.x
https://doi.org/10.1111/j.1538-4632.1999.tb00989.x
https://doi.org/10.1198/016214503000170
https://doi.org/10.2307/20075807
https://doi.org/10.1093/0198774753.001.0001
https://doi.org/10.1017/cbo9780511845062
https://doi.org/10.1016/s1573-4412(05)80009-1
https://doi.org/10.1111/pirs.12147
https://doi.org/10.1023/a:1022558715350
https://doi.org/10.1111/j.1466-822x.2004.00129.x
https://doi.org/10.2307/622610
https://doi.org/10.1111/1468-2354.00027
https://doi.org/10.1016/s0304-4076(99)00032-9
https://doi.org/10.1017/s0266466600013207
https://doi.org/10.1162/003465398557735
https://doi.org/10.2307/2087176
https://doi.org/10.18637/jss.v074.i10

M. Sarrias 19

Sarrias M (2019) Do monetary subjective well-being evaluations vary across space? com-
paring continuous and discrete spatial heterogeneity. Spatial Economic Analysis 14[1]:
53–87. CrossRef.

Sarrias M, Daziano RA (2018) Individual-specific point and interval conditional estimates
of latent class logit parameters. Journal of Choice Modelling 27: 50–61. CrossRef.

Stern S (1997) Simulation-based estimation. Journal of Economic Literature 35[4]:
2006–2039

Swamy PAVB (1971) Statistical Inference in Random Coefficient Regression Models.
Springer Berlin. CrossRef.

Train K (2009) Discrete Choice Methods with Simulation. Cambridge University Press.
CrossRef.

Wheeler D, Tiefelsdorf M (2005) Multicollinearity and correlation among local regression
coefficients in geographically weighted regression. Journal of Geographical Systems 7[2]:
161–187. CrossRef.

Withers SD (2001) Quantitative methods: Advancement in ecological inference. Progress
in Human Geography 25[1]: 87–96. CrossRef.

c© 2020 by the authors. Licensee: REGION – The Journal of ERSA, European
Regional Science Association, Louvain-la-Neuve, Belgium. This article is distri-

buted under the terms and conditions of the Creative Commons Attribution, Non-Commercial
(CC BY NC) license (http://creativecommons.org/licenses/by-nc/4.0/).

REGION : Volume 7, Number 1, 2020

https://doi.org/10.1080/17421772.2018.1485968
https://doi.org/10.1016/j.jocm.2017.10.004
https://doi.org/10.1007/978-3-642-80653-7
https://doi.org/10.1017/cbo9780511753930
https://doi.org/10.1007/s10109-005-0155-6
https://doi.org/10.1191/030913201675310162
http://creativecommons.org/licenses/by-nc/4.0/

Volume 6, Number 3, 2019, R1–R57 journal homepage: region.ersa.org
DOI: 10.18335/region.v6i3.267

REAT: A Regional Economic Analysis Toolbox for R

Thomas Wieland1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany

Received: 7 June 2019/Accepted: 4 November 2019

Abstract. Methods of regional economic analysis are widely used in regional and urban
economics as well as in economic geography. This paper introduces the REAT (Regional
Economic Analysis Toolbox) package for the programming environment R, which pro-
vides a collection of mathematical regional analysis methods in a user-friendly way. The
focus is on the identification of regional inequality, beta and sigma convergence, measure-
ment of agglomerations, point-based measures of clustering and accessibility, as well as
regional growth. The theoretical basics of the applications are briefly introduced, while
the usage of the most important functions is presented and explained using real data.

1 Introduction

Methods of regional economic analysis (or regional analysis) are used frequently in theory-
based, empirical studies from regional and urban economics as well as (quantitative)
economic geography. These methods aim at analyzing some of the most important issues
in the mentioned research fields, including (but not limited to) the existence and evolution
of agglomerations, regional economic growth and regional disparities (Capello, Nijkamp,
2009; Dinc, 2015; Farhauer, Kröll, 2014; Schätzl, 2000). In any of the mentioned fields,
a growing amount of quantitative data has to be processed when using traditional or
novel methods and models of regional analysis. This paper introduces the package (add-
on) REAT (Regional Economic Analysis Toolbox) (Wieland, 2019) for the programming
environment R (R Core Team, 2018a). The package provides a collection of mathematical
regional analysis applications, designed in a relatively user-friendly way.

The main topics in the regional analysis context can be summarized as follows, show-
ing also the structure of the present paper with respect to the presented approaches and
their application in REAT:

1. Identifying regional inequality (or regional disparities) using indicators of concen-
tration and/or dispersion (Section 2)

2. Regional disparities over time leading to the concept of beta and sigma convergence
(Section 3)

3. Measuring agglomerations, which means the specialization of regions and the spatial
concentration of industries as well as more complex cluster indices (Section 4)

4. Point-based measures of clustering and accessibility (Section 5)

5. Regional growth, especially shift-share analysis (Section 6)

R1

R2 T. Wieland

Note that, in its original form, the open source software R is a command-line environment
including a lot of mathematical and statistical features. For the installation of R and its
packages as well as the basics of navigation and implemented statistical functions, see
the R documentations (R Core Team, 2018b). A good supplement for working with R is
RStudio (RStudio Team, 2016). The REAT package deals with several R data types: The
most functions require and calculate numeric vectors, but, in some cases, also objects
of type matrix, data frame and list, depending on the complexity of calculation. For
a quick introduction to the data types in R and their properties, see e.g. Kabacoff (2017).

2 Concentration, dispersion and regional disparities

2.1 Indicators of concentration and dispersion

Regional disparities are a frequent topic in economic geography and regional economics.
The spatial inequality with respect to e.g. regional output, income or employment is an
essential element of polarization theory (Myrdal, 1957) and ”New Economic Geography”
(Krugman, 1991; Fujita et al., 2001). Assessing regional disparities is possible using
concentration and dispersion indicators, which belong to the univariate and descriptive
analysis in statistics. Apart from regional economics, these measures are used in several
contexts, such as competition economics (market concentration of firms) or welfare eco-
nomics (income inequality). For a review of the most common indicators with respect
to regional inequality, see Portnov, Felsenstein (2010), for studies comparing different
indicators in the regional economic context using empirical data, see e.g. Gluschenko
(2018); Habánik et al. (2013); Huang, Leung (2009); Palan (2017); Petrakos, Psycharis
(2016).

Concentration is operationalized as the discrepancy between an empirical distribution
of a variable x (e.g. annual turnover, income, gross domestic product [GDP]) with n
observations or objects (e.g. competing firms, households, regions) and a (theoretical)
equal distribution or a reference distribution (e.g. population distribution). Dispersion
indicators aim at the deviation from the arithmetic mean of x, x̄. In this context, Portnov,
Felsenstein (2005, 2010) distinguish between measures of deprivation and variation.

Typical measures of regional disparities are the Gini coefficient, the Herfindahl-
Hirschman index and the coefficient of variation (Lessmann, 2005). The most popular
measure of concentration is the Gini coefficient (Gini, 1912) in combination with the
Lorenz curve (Lorenz, 1905). There are several calculation approaches for the Gini coef-
ficient, all producing the same result. The Lorenz curve is a graphical indicator, showing
the deviation of the empirical shares of the regarded variable x from a (theoretical) equal
distribution. Another well-known indicator is the Herfindahl-Hirschman index, which
was developed independently by Hirschman (1945) and Herfindahl (1950), both in the
context of competition economics. Several other concentration indicators are also applied
in the fields of regional economics with respect to regional disparities, such as the Hoover
coefficient (Hoover, 1936) and the Theil coefficient (Theil, 1967).

Except for the standard deviation, whose unit is equal to the unit of x, all common
indicators are dimensionless. Most of them (except for standard deviation and coeffi-
cient of variation) have a fixed value range, normally between zero (indicating complete
equality/dispersion) and one (indicating complete inequality/concentration).

Most of the common indicators are mathematically formulated in an unweighted and
in a weighted form, while, in the context of regional disparities, the latter is mostly
done using the regions’ proportion of the total (e.g. national) population (Doran, Jordan
2013; Lessmann 2014; Mussini 2017; Petrakos, Psycharis 2016; for a critical discussion of
weighting these coefficients, see Gluschenko 2018). In the literature, there are different
formulations where the weighted coefficients also include a weighted arithmetic mean.
Note that, in the case of the population-weighted Gini coefficient, a weighted arithmetic
mean is mandatory to keep the indicators’ value range.

Especially when dealing with GDP per capita as an indicator of regional economic
output, several recent studies use dispersion measures rather than concentration mea-
sures, especially the (weighted) coefficient of variation (e.g. Lessmann 2005, 2014, 2016;

REGION : Volume 6, Number 3, 2019

T. Wieland R3

Lessmann, Seidel 2017; Petrakos, Psycharis 2016). This dispersion indicator is a dimen-
sionless normalization of the standard deviation. Weighting the coefficient of variation
with population shares was introduced by Williamson (1965), which has led to calling
this coefficient the Williamson index. As regional incomes or outputs are not normally
distributed in most cases, resulting in biased arithmetic means used in the calculation of
dispersion measures, the regarded variable may be log-transformed, which means replac-
ing xi with log(xi) in the calculations.

Table 1 shows the common indicators, including their (population-)weighted and their
normalized form (if there exist any) and the corresponding value ranges. The formulae
are shown in a way that includes several ways of application. The regarded variable
is always named xi, while the (population) weighting is called wi. Some indicators,
such as the Hoover or the Coulter coefficient, require a variable representing a reference
distribution the shares of xi are compared to. This reference is not a weighting. However,
in many studies, the regional population is also used for the reference distribution. In
these cases, reference and weighting are the same data. The reference distribution may
also be equal to 1/n.

Several indicators are also used for the analysis of regional specialization or the spatial
concentration of industries, such as the Hoover coefficient or the Herfindahl-Hirschman
index or its inverse (1/HHI ; also known as the “equivalent number” in the competition
context). Other coefficients of concentration and specialization are discussed in Section
4. The last coefficient in Table 1, the mean square successive difference (von Neumann
et al., 1941) is a measure for time variability not originating from but also transferable
to regional economics.

2.2 Application in REAT

2.2.1 REAT functions for concentration and dispersion indicators

Table 2 shows the functions for concentration and dispersion measures implemented in
the REAT package. All functions require at least one argument, a numeric vector with
a length equal to n, containing the regarded variable x (e.g. income) with i observations
(e.g. regions), where i = 1, ..., n. This data may be a single vector or a column of a
data frame or matrix.

An optional weighting of the vector x can be done using the function argument
weighting which is also a numeric vector of length n. By default, the functions remove
missing (NA) values. The hoover() function always needs a reference distribution (see
the Hoover coefficient formula in Table 1), which is stated via the ref argument, also
requiring a numeric vector of length n. If no reference variable is stated (ref = NULL),
the reference is set to 1/n.

All functions (except for disp()) return the single value of the computed coefficient.
In the relevant cases (gini(), gini2(), herf() and cv()), a normalization of the coeffi-
cient is possible using the function argument coefnorm = TRUE, returning the normalized
coefficient instead of the raw coefficient. The function disp() is a wrapper for all men-
tioned functions, calculating all coefficients (except for the MSSD) at once for one vector
x or a set of variables/columns from a data frame or matrix.

Note that there are two functions for the Gini coefficient, gini() and gini2(), both
producing the same result in the unweighted case. The former function is designed
for income inequality, where the weighting option is designed for the calculation of the
Gini coefficient for groups (e.g. income classes), where the weighting represents the group
mean. The function gini2() is designed for the population-weighted analysis of regional
inequality.

2.2.2 Application example: Small-scale regional disparities in health care provision

Regional inequality with respect to health care providers is a topic of high societal signif-
icance. In Germany, the health care planning system (Kassenärztliche Bedarfsplanung)
attempts to flatten the disparities of local health care provision (Kassenärztliche Bun-
desvereinigung, 2013). Here, we analyze small-scale regional disparities in health care

REGION : Volume 6, Number 3, 2019

R4 T. Wieland

Table 1: Indicators of concentration and dispersion for analyzing regional disparities

Indicator Unweighted Weighted Normalized

Gini G = 1
2n2x̄

∑n

i=1

∑n

j=1
|xi − xj | Gw = 1

2x̄w

∑n

i=1

∑n

j=1
wiwj |xi − xj | G∗ = n

n−1G

0 ≤ G ≤ 1− 1
n 0 ≤ G ≤ 1− 1

n 0 ≤ G∗ ≤ 1

HHI HHI =
∑n

i=1
(

xi∑n

i=1
xi

)2 HHI∗ =
HHI− 1

n

1− 1
n

1
n ≤ HHI ≤ 1 0 ≤ HHI∗ ≤ 1

Hoover HC = HCw =

1
2 [
∑n

i=1
| xi∑n

i=1
xi

− ri∑n

i=1
ri

|] 1
2 [
∑n

i=1
wi|

xi∑n

i=1
xi

− ri∑n

i=1
ri

|]

0 ≤ HC ≤ 1 0 ≤ HC ≤ 1

Theil TC = 1
n

∑n

i=1
ln(x̄xi

) TCw = 1
n

∑n

i=1
wi ln(x̄xi

)

0 ≤ TC ≤ 1 0 ≤ TCw ≤ 1

Coulter CC =√
1
2 [
∑n

i=1
wi(

xi∑n

i=1
xi

− ri∑n

i=1
ri

)2]

0 ≤ CC ≤ 1

Atkinson AI = 1− [1
n

∑n

i=1
x1−ε
i

]
1

1−ε

0 ≤ AI ≤ 1

Dalton δ =
log(1

n

∑n

i=1
xi)

log(n
√

πn
i=1

xi)

0 ≤ δ ≤ ∞

SD s =
√

1
n

∑n

i=1
(xi − x̄)2 sw =

√
1
n

∑n

i=1
wi(xi − x̄)2 see CV

0 ≤ s ≤ ∞ 0 ≤ s ≤ ∞

CV v = 1
¯|x|

√
1
n

∑n

i=1
(xi − x̄)2 see Williamson v∗ = v√

n

0 ≤ v ≤ ∞ 0 ≤ v∗ ≤ 1

Williamson WI = 1
¯|x|

√
1
n

∑n

i=1
wi(xi − x̄)2

0 ≤ v ≤ ∞

MSSD MSSD =

∑T−1

t=1
(xt+1−xt)

2

T−1

Notes: xi is the i-th observation of the regarded variable x (e.g. GDP [per capita] in region i), xj is the
value of the same variable with respect to object j, ri is the i-th observation of a reference variable (e.g.

population), n is the number of objects (e.g. regions), x̄ is the arithmetic mean of x: x̄ = 1
n

∑n

i=1
xi, x̄

w is the

weighted arithmetic mean of x: x̄w = 1
n

∑n

i=1
wixi, wi and wj are the population weightings: Pi/

∑n

i=1
Pi

and Pj/
∑n

j=1
Pj , where Pi and Pj are the population sizes of regions i and j, respectively, ε is an inequality

aversion parameter (0 < ε < ∞) for the Atkinson index, t is a given time period and T is the number all
regarded time periods.
Compiled from: Charles-Coll (2011); Cracau, Durán Lima (2016); Damgaard, Weiner (2000); Gluschenko

(2018); Heinemann (2008); Kohn, Öztürk (2013); Portnov, Felsenstein (2005, 2010); Taylor, Cihon (2004);
Schätzl (2000); Störmann (2009)

provision in two neighboring German counties (Göttingen and Northeim) using the data
on medical practices and local population from Wieland, Dittrich (2016). The data is
stored in the datasets GoettingenHealth1 and GoettingenHealth2, both included as
example datasets in the REAT package. The study area is segmented into 420 districts,
representing either city districts of larger cities or villages and hamlets.

The dataset GoettingenHealth2 contains these 420 regions with an individual ID

REGION : Volume 6, Number 3, 2019

T. Wieland R5

Table 2: REAT functions for concentration and dispersion indicators

Indicator REAT function Mandatory arguments Optional arguments Output

Gini/ gini() vector x weighting vector, value: G or G∗

Lorenz remove NAs, or Gw,
Lorenz curve, optional: plot (LC)
normalization

gini2() vector x weighting vector Pi, value: G or G∗

remove NAs, or Gw,
normalization

lorenz() vector x weighting vector, plot LC,
remove NAs, value: G or Gw

and/or G∗

HHI herf() vector x remove NAs, value: HHI or
normalization HHI ∗ or NHHI

Hoover hoover() vector x weighting vector Pi, value: HC or HCw

reference vector ri remove NAs

Theil theil() vector x weighting vector Pi, value: TC or TCw

remove NAs

Coulter coulter() vector x weighting vector Pi, value: CC
remove NAs

Atkinson atkinson() vector x remove NAs, value: AI
epsilon

Dalton dalton() vector x remove NAs value: δ

SD sd2() vector x weighting vector, value: s or sW

remove NAs,
treating as sample

CV cv() vector x weighting vector, value: v or vW

remove NAs, or v∗

normalization,
treating as sample

Williamson williamson() vector x, remove NAs value: WI
weighting
vector Pi

MSSD mssd() vector x remove NAs value: MSSD

All indicators disp() vector x weighting vector Pi, matrix with 13
or vectors x1, x2, ... remove NAs (no weighting)

from dataframe or 19 indicators
(incl. weighted)

Source: own compilation.

(column district) and geographic coordinates (columns lat and lon, respectively)
and the number of general practitioners, psychotherapists and pharmacies located there
(columns phys_gen, psych and pharm, respectively) as well as the local population (col-
umn pop). First, we load the dataset:

data(GoettingenHealth2)

Now, we investigate how the health care providers are dispersed over the whole area.
In the first step, we calculate the Gini coefficient for the concentration of general practi-
tioners using the REAT function gini():

gini (GoettingenHealth2$phys_gen)

[1] 0.8386269

The empirical Gini coefficient is equal to 0.839, indicating a relatively strong concen-
tration. If we want to calculate the normalized (unbiased) indicator instead, we use the
same function with the optional argument coefnorm = TRUE:

REGION : Volume 6, Number 3, 2019

R6 T. Wieland

gini (GoettingenHealth2$phys_gen, coefnorm = TRUE)

[1] 0.8406284

In the same way, we calculate e.g. the Herfindahl-Hirschman index, non-normalized
and normalized:

herf (GoettingenHealth2$phys_gen)

[1] 0.01528053

herf (GoettingenHealth2$phys_gen, coefnorm = TRUE)

[1] 0.01293036

Remember that the minimum of HHI is 1/n (here: 1/420 ≈ 0.00238) and the mini-
mum of HHI ∗ is equal to zero.

If we want to inspect the concentration graphically, we could use the Lorenz curve,
which can be plotted using either the functions gini() or lorenz(). Here, we use
gini(), tell the function to plot the curve (lc = TRUE), and include several graphical
parameters (such as lc.col for the color of the Lorenz curve or lcx and lcy for the
x/y axes labels). As we want to compare the population distribution to the location
distribution, we start by plotting the Lorenz curve for the local population:

gini(GoettingenHealth2$pop, lc = TRUE, lsize = 1, le.col = "black",

lc.col = "orange", lcx = "Shares of districts", lcy = "Shares of

providers", lctitle = "Spatial concentration of health care

providers", lcg = TRUE, lcgn = TRUE, lcg.caption =

"Population 2016:", lcg.lab.x = 0, lcg.lab.y = 1)

Gini coefficient and Lorenz curve for the no. of inhabitants

[1] 0.5840336

Now, we overlay the Lorenz curves of general practitioners and psychotherapists,
which means adding two more curves (function argument add.lc = TRUE):

gini(GoettingenHealth2$phys_gen, lc = TRUE, lsize = 1, add.lc = TRUE,

lc.col = "red", lcg = TRUE, lcgn = TRUE, lcg.caption =

"Physicians 2016:", lcg.lab.x = 0, lcg.lab.y = 0.85)

Adding Gini coefficient and Lorenz curve for the general practitioners

[1] 0.8386269

gini(GoettingenHealth2$psych, lsize = 1, lc = TRUE, add.lc = TRUE,

lc.col = "blue", lcg = TRUE, lcgn = TRUE, lcg.caption =

"Psychotherapists 2016:", lcg.lab.x = 0, lcg.lab.y = 0.7)

Adding Gini coefficient and Lorenz curve for psychotherapists

[1] 0.9329298

Our commands result in the output of Figure 1, showing three Lorenz curves (pop-
ulation, general practitioners and psychotherapists) and the line of equality (diagonal).
All three empirical distributions differ from an equal distribution. In about 72% of the
regions, representing about 23% of the whole population (orange curve; G ≈ 0.584), no
general practitioner is located (red curve; G ≈ 0.839). But the psychotherapists are
more concentrated, as they are located only in about 13% of all districts (blue curve;
G ≈ 0.933). As we can see, the physicians are more concentrated than the inhabitants
but the psychotherapists are more concentrated than the physicians.

Now, we calculate all mentionened concentration and dispersion coefficients at once for
all three types of providers using the function disp(), including a population weighting:

disp(GoettingenHealth2[c(5,6,7)], weighting = GoettingenHealth2$pop)

column 5 = general practitioners, column 6 = psychotherapists,

column 7 = pharmacies, column "pop" = local population

REGION : Volume 6, Number 3, 2019

T. Wieland R7

Figure 1: Lorenz curves for the spatial concentration of health care providers

Our output is:

Concentration and dispersion measures

Note: w = weighted, n = normalized, eq = equivalent number

phys_gen psych pharm

Gini 0.838626907 0.932929782 0.891547619

Gini n 0.840628403 0.935156345 0.893675418

Gini w 0.629454516 0.770895945 0.705628058

Gini w n 0.630956794 0.772735792 0.707312135

HHI 0.015280527 0.038494685 0.024166667

HHI n 0.012930361 0.036199923 0.021837709

HHI eq 65.442769020 25.977611940 41.379310345

Hoover 0.721428571 0.883333333 0.838095238

Hoover w 0.001852337 0.003130602 0.003418787

Theil NA NA NA

Theil w NA NA NA

Coulter 0.049850824 0.123305927 0.065569205

Atkinson 0.761164110 0.900755425 0.854223763

Dalton NA NA NA

SD 1.714506606 1.095496987 0.865286915

SD w 4.010246439 1.847716870 2.401476794

CV 2.330397328 3.899226565 3.028504203

CV n 0.113847359 0.190489683 0.147952112

Williamson 1.429449565 1.965446423 1.709288672

We conclude that any concentration/dispersion measure is the highest for psychother-
apists and the lowest for the general practitioners, while the values for pharmacies lie
between them. The regional disparities with respect to pharmacies are higher than those
with respect to general practitioners, while the most unequal distribution is that of psy-
chotherapists. In other words: The pharmacies are more spatially concentrated than the
general practitioners and the psychotherapists are the most concentrated health locations
here.

In most cases, population weighting reduces the coefficient values. That is, because
districts with a large (small) population have a high (low) impact on the resulting co-
efficient and the districts without health service providers are also small districts. Fur-
thermore, as the regarded variables contain zero values (which means no health service
locations), the Theil coefficient (including the term ln(x̄/xi)) and the Dalton coefficient
(including the n-th root) cannot be computed, resulting in an output of NA.

REGION : Volume 6, Number 3, 2019

R8 T. Wieland

The visible output of any function presented above can be saved in a new R object:

gini_phys <- gini (GoettingenHealth2$phys_gen)

save as gini_phys (numeric vector of length = 1)

We can simply access our result:

gini_phys

[1] 0.8386269

The function disp() returns a matrix with 13 rows (when only unweighted coeffi-
cients are computed) or 19 rows (in the case of additional weighted coefficients) and one
column for each regarded variable:

disp_Goettingen <- disp(GoettingenHealth2[c(5,6,7)],

weighting = GoettingenHealth2$pop)

save as disp_Goettingen (matrix)

We call our results:

disp_Goettingen

phys_gen psych pharm

Gini 0.83862691 0.93292978 0.89154762

Gini n 0.84062840 0.93515634 0.89367542

...

3 Regional convergence

3.1 The concept of beta and sigma convergence

Regional convergence is derived from (regional) growth theory (for an extensive survey,
see Barro, Sala-i Martin 2004) and means the decline of regional disparities over time.
The neoclassical growth model states that a region’s economic output (e.g. GDP per
capita) depends on its stock of factors of production, capital and labor (aggregate pro-
duction function), on condition of constant returns to scale and diminishing marginal
product of the factor inputs. As a consequence, regions with a high (low) initial level
of factor input grow slower (faster) than “poor” (“rich”) regions, what is called beta
convergence. It is assumed that all regions converge to the same regional output level
(steady-state). Sigma convergence means the decline of regional inequality with respect
to regional output over time itself (Allington, McCombie, 2007; Capello, Nijkamp, 2009).

Both types of convergence can be tested empirically, as presented in Table 3. When
testing for beta convergence, the natural logarithms of output growth over T time periods
in i regions is regressed against the natural logarithms of the initial output values at time
t. The original convergence formula was presented by Barro, Sala-i Martin (2004) using
a nonlinear least squares (NLS) estimation approach. But in many cases, a linear trans-
formation is used which allows for ordinary least squares (OLS) estimation (Allington,
McCombie, 2007; Dapena et al., 2016; Schmidt, 1997; Young et al., 2008). The outcome
variable of the convergence equation can be the regional growth between two years (e.g.
Young et al. 2008) or the average growth rate per year (e.g. Goecke, Hüther 2016; Puente
2017; Weddige-Haaf, Kool 2017). Significance tests are carried out with t-tests for the
regression coefficients and, in the OLS case, the F -test for the significance of R2.

The estimated parameter of interest is the slope of the model, here denoted β (that is
why the modeled process is called beta convergence): If β < 0 and statistically significant,
there is absolute beta convergence. If additional variables (conditional variables) are in-
cluded into the convergence equation, we have a test for conditional beta convergence.
A further interpretation of the β coefficient is possible using the speed of convergence, λ,
and H, the so-called half-life, which means the time (measured in the regarded time peri-
ods) to reduce the regional disparities by one half (Allington, McCombie, 2007; Schmidt,
1997).

Sigma convergence (which is named after the Greek letter for the standard deviation,
σ) can be tested in two ways depending on the number of time periods: The regional

REGION : Volume 6, Number 3, 2019

T. Wieland R9

Table 3: Beta and sigma convergence

Type of convergence Two time periods More than two time periods

Beta convergence absolute

and estimation type NLS NLS

1
T

ln(
Yi,t2
Yi,t1

) = 1
T

∑T

t=1
ln(

Yi,t+1

Yi,t
) =

α− [
(1−e−βT)

T
] ln(Yi,t1) + ε α− [

(1−e−βT)
T

] ln(Yi,t1) + ε

OLS OLS

1
T

ln(
Yi,t2
Yi,t1

) = 1
T

∑T

t=1
ln(

Yi,t+1

Yi,t
) =

α+ β ln(Yi,t1) + ε α+ β ln(Yi,t1) + ε

conditional

NLS NLS

1
T

ln(
Yi,t2
Yi,t1

) = 1
T

∑T

t=1
ln(

Yi,t+1

Yi,t
) =

α− [
(1−e−βT)

T
] ln(Yi,t1) + θXi + ε α− [

(1−e−βT)
T

] ln(Yi,t1) + θXi + ε

OLS OLS

1
T

ln(
Yi,t2
Yi,t1

) = 1
T

∑T

t=1
ln(

Yi,t+1

Yi,t
) =

α+ β ln(Yi,t1) + θXi + ε α+ β ln(Yi,t1) + θXi + ε

β < 0 β < 0

Convergence speed: λ =
− ln(1+β)

T

Half-life: H =
ln(2)
λ

Sigma convergence σt =
√

1
n

∑n

i=1
(Yi,t − Ȳt)2 or

cvt = σt
|Ȳt|

σt1
σt2

> 1 or σ = a+ bt+ ε or

cvt1
cvt2

> 1 cv = a+ bt+ ε

Test statistic:
σ2
t1

σ2
t2

b < 0

Notes: Yi,t is the regional output (e.g. GDP per capita) of region i at time t, Ȳt is the arithmetic mean
of Yi,t for all regions at time t, T is the number of regarded time periods (e.g. years), Xi is a set of
other variables (conditions), σt is the standard deviation of the regional output of all regions, cvt is the
corresponding coefficient of variation, α, β, θ, a and b are estimated coefficients, ε is an error term and
n is the number of regions.
Compiled from: Allington, McCombie (2007); Barro, Sala-i Martin (2004); Furceri (2005); Schmidt
(1997)

inequality between all regions at time t is measured using the standard deviation, σt, or
the coefficient of variation, cvt, for the GDP per capita in its original or natural-logged
form. If only two years are regarded, the quotient of both parameters is computed. If
e.g. σt1 > σt2, the regional inequality has declined from t1 to t2. A significance test can
be applied with a simple ANOVA (analysis of variance), where the test statistic is the
quotient of the underlying variances (σ2) (Furceri, 2005; Schmidt, 1997; Young et al.,
2008). Within a time series, the dispersion parameter is regressed (and plotted) against
time. If the slope coefficient of time is negative, there is sigma convergence (Goecke,
Hüther, 2016; Huang, Leung, 2009; Schmidt, 1997).

3.2 Application in REAT

3.2.1 REAT functions for beta and sigma convergence

Table 4 shows the functions for beta and sigma convergence as implemented in REAT.
The analysis of beta convergence is provided by the functions betaconv.ols() and
betaconv.nls() for OLS and NLS estimation, respectively. Speed of convergence and

REGION : Volume 6, Number 3, 2019

R10 T. Wieland

Table 4: REAT functions for beta and sigma convergence

Convergence REAT function Mandatory arguments Optional arguments Output

Beta betaconv.ols() vectors Yi,t1 and Conditions, visible: model
convergence Yi,t2, ..., Yi,T , scatterplot estimates, invisible:

t1 and tT list with model
estimates and

regression data,
optional: plot

betaconv.nls() vectors Yi,t1 and Conditions, visible: model
Yi,t2, ..., Yi,T , scatterplot estimates, invisible:
t1 and tT list with model

estimates and
regression data,
optional: plot

betaconv.speed() values β matrix with
and T λ and H

Sigma sigmaconv() vectors Yi,t1 and Sigma measure, visible: estimates,
convergence (when T = 2) Yi,t2, t1 and tT log, weighting, invisible: matrix

normalization with estimates

sigmaconv.t() vectors Yi,t1 and Sigma measure, visible: model
(when T > 2) Yi,t2, ..., Yi,T , log, weighting, estimates, invisible:

t1 and tT normalization, matrix with
line plot model estimates,

optional: plot

All at once:
Beta and rca() vectors Yi,t1 and Beta estimation, visible: model
sigma Yi,t2, ..., Yi,T , conditions, estimates, invisible:
convergence t1 and tT scatterplot, list with model

sigma measure, estimates and
log, weighting, regression data,

line plot optional: plot

Source: own compilation.

half-life can be computed with the function betaconv.speed(). The ratio test of sigma
convergence for two time periods can be done using the function sigmaconv(), while
a trend regression over time is implemented into the function sigmaconv.t(). Both
convergence types can be analyzed at once with the function rca(), which is a wrapper
for all functions mentioned above.

The functions require (at least) two numeric vectors, containing the regarded vari-
able Y (e.g. GDP per capita) for at least two different time periods, e.g. from the same
data frame. Also the start and end time periods (t1 and tT) have to be stated. Op-
tionally, a graphical output can be generated (scatterplot for beta convergence, line plot
for sigma convergence with respect to longitudinal data). Furthermore, when analyzing
sigma convergence, the user can choose whether Y should be log-transformed or not
and/or which sigma measure is computed (variance, standard deviation or coefficient of
variation; weighted or non-weighted).

Note that, unlike the functions for regional inequality indicators (Section 2), the REAT
functions for regional convergence distinguish between a visible and an invisible output.
The latter can be saved as a new R object. While the visible output shows the main
results, the invisible output goes beyond that: betaconv.ols(), betaconv.nls() and
rca() return a list, which is the most flexible data type in R, because it consists of a
non-predetermined number of different data objects. Apart from the model results, e.g.
the (transformed) regression data is returned in this invisible output.

3.2.2 Application example: Beta and sigma convergence in Germany on the county level

In this example, we look at regional convergence in Germany. The REAT package includes
the example dataset G.counties.gdp with the GDP (gross domestic product), the pop-
ulation and the GDP per capita for the 402 counties (“Kreise”) in Germany 1992 to 2014

REGION : Volume 6, Number 3, 2019

T. Wieland R11

(complete data only for 2000-2014). First, we load the dataset:

data (G.counties.gdp)

In our case, we prevent scientific notation of numbers in R and set a limit of 4 digits:

options(scipen = 100, digits = 4)

We need the columns named gdppcxxxx, containing the GDP per capita for each
year, e.g. G.counties.gdp$gdppc2010 contains the GDP per capita for 2010. In the
first step, we test absolute beta convergence comparing the years 2010 and 2014 with
OLS estimation using the function betaconv.ols():.

betaconv.ols (G.counties.gdp$gdppc2010, 2010, G.counties.gdp$gdppc2014,

2014, print.results = TRUE)

Two years, no conditions (Absolute beta convergence)

The output is:

Absolute Beta Convergence

Model coefficients (Estimation method: OLS)

Estimate Std. Error t value Pr (>|t|)

Alpha 0.104159 0.018934 5.501 0.00000006743

Beta -0.007373 0.001848 -3.990 0.00007867475

Lambda 0.001850 NA NA NA

Halflife 374.640507 NA NA NA

Model summary

Estimate F value df 1 df 2 Pr (>F)

R-Squared 0.03827 15.92 1 400 0.00007867

We see that both regression coefficients, α and β, are statistically significant (t ≈ 5.50
and −3.99, respectively, both p < 0.001) and the linear regression model is significant
as a whole (F ≈ 15.92, p < 0.001). The negative sign of β shows that, on average, the
higher the initial GDP per capita, the lower its growth, which indicates absolute beta
convergence. However, the convergence process is very slow: The speed of convergence,
represented by λ, shows a harmonization by 0.185% per year. This implies that the
output gap will be reduced by 50% in approximately 375 years.

Now we check sigma convergence for the same time using the function sigmaconv().
We choose the coefficient of variation as measure, while using the GDP per capita values
in their original form:

sigmaconv (G.counties.gdp$gdppc2010, 2010, G.counties.gdp$gdppc2014,

2014, sigma.measure = "cv", print.results = TRUE)

Using the coefficient of variation

The output is:

Sigma convergence for two periods (ANOVA)

Estimate F value df1 df2 Pr (>F)

CV 2010 0.03416 NA NA NA NA

CV 2014 0.03316 NA NA NA NA

Quotient 1.03004 1.038 401 401 0.7117

The coefficient of variation is a little smaller in 2014, which means the spatial in-
equality declined between 2010 and 2014. The quotient of the variances is slightly above
one (F = σ2

2010/σ
2
2014 ≈ 1.04), but not statistically significant (p ≈ 0.71).

When analyzing regional convergence with REAT, it is preferable (and more conve-
nient) to use the wrapper function rca(). Instead of repeating the results above, we
test for (absolute) beta and sigma convergence between 2000 and 2014. The analysis of
sigma convergence uses trend regression (function argument sigma.type = "trend") for
the coefficient of variation (sigma.measure = "cv"). We also want plots for both con-
vergence types (beta.plot = TRUE and sigma.plot = TRUE, respectively) with specific
axis labels (e.g. beta.plotX = "Ln (initial GDP p.c.)"). Our code is:

REGION : Volume 6, Number 3, 2019

R12 T. Wieland

rca (G.counties.gdp$gdppc2000, 2000, G.counties.gdp[55:68], 2014,

conditions = NULL, sigma.type = "trend", sigma.measure = "cv",

beta.plot = TRUE, beta.plotLine = TRUE, beta.plotX =

"Ln (initial GDP p.c.)", beta.plotY = "Ln (av. growth GDP p.c.)",

beta.plotTitle = "Beta convergence of German counties 2000-2014",

sigma.plot = TRUE, sigma.plotY = "cv of ln (GDP p.c.)",

sigma.plotTitle = "Sigma convergence of German counties 2000-2014")

14 years: 2000 (column 55) to 2014 (column 68)

no conditions (Absolute beta convergence)

with plots for both beta and sigma convergence

This results in the following output:

Regional Beta and Sigma Convergence

Absolute Beta Convergence

Model coefficients (Estimation method: OLS)

Estimate Std. Error t value Pr (>|t|)

Alpha 0.0954564 0.0099087 9.634 0.00000000000000000006845

Beta -0.0071323 0.0009885 -7.215 0.00000000000271925822550

Lambda 0.0005113 NA NA NA

Halflife 1355.7282963 NA NA NA

Model summary

Estimate F value df 1 df 2 Pr (>F)

R-Squared 0.1152 52.06 1 400 0.000000000002719

Sigma convergence (Trend regression)

Estimate Std. Error t value Pr(>|t|)

Intercept 0.5523659 0.03084855 17.91 0.0000000001526

Time -0.0002579 0.00001537 -16.78 0.0000000003446

Model summary

Estimate F value df 1 df 2 Pr (>F)

R-Squared 0.9558 281.4 1 13 0.0000000003446

This function also produces the plots in Figures 2a and 2b, both showing a declining
curve, which is a first indication of both beta and sigma convergence. The beta conver-
gence model is statistically significant (F ≈ 52.06, p < 0.001), as well as the coefficients α
(t ≈ 9.63, p < 0.001) and β (t ≈ −7.21, p < 0.001). Again, we find evidence for absolute
beta convergence because of a negative slope (β ≈ −0.007). The trend regression model
for sigma convergence is significant (F ≈ 281.4, p < 0.001). The slope is significant
and negative (b ≈ −0.00026, t ≈ 17.91, p < 0.001), which indicates sigma convergence.
However, both types of convergence can be regarded as very slow processes: The half-life
value shows that, resulting from the beta convergence model, the regional disparities in
GDP per capita will be halved in approximately 1,356 years. When looking at the trend
regression, we see that the coefficient of variation declines only by 0.00026 per year. An-
other aspect is that we only regarded absolute beta convergence, ignoring other spatial
effects or the impact of regional policy. The latter is also not considered in neoclassical
regional growth theory.

Remembering German reunification, we want to test if there are average growth differ-
ences between West Germany and East Germany (former German Democratic Republic),
which leads to conditional beta convergence. The dataset G.regions.emp contains the
column regional, where the counties are attributed either to West or East Germany,
expressed as character string ("West" or "East"). We need to include our condition
into the convergence equation. Thus, we use the REAT function to.dummy() to create
dummy variables (1/0) out of (nominal scaled) variables, and add the indicator for West
Germany (1, otherwise 0) to our data:

regionaldummies <- to.dummy(G.counties.gdp$regional)

Creating dummy variables for West/East

regionaldummies[,1] = East (1/0), regionaldummies[,2] = West (1/0)

G.counties.gdp$West <- regionaldummies[,2]

Adding the dummy variable for West

REGION : Volume 6, Number 3, 2019

T. Wieland R13

(a) Absolute beta convergence (b) Sigma convergence

Figure 2: Regional convergence in Germany 2000-2014 (n = 402 counties)

Now, we test for conditional beta and sigma convergence, including the condition
“West”, again using the rca() function, but without plots and using the standard devi-
ation (default setting) instead of the cv for sigma convergence. This time, we save the
results in an object:

converg_results <- rca (G.counties.gdp$gdppc2000, 2000,

G.counties.gdp[55:68], 2014, conditions = G.counties.gdp[c(70)],

sigma.type = "trend")

condition variable "West" in column 70

Store results in "converg_results"

The output is:

Regional Beta and Sigma Convergence

Absolute Beta Convergence

Model coefficients (Estimation method: OLS)

Estimate Std. Error t value Pr (>|t|)

Alpha 0.0954564 0.0099087 9.634 0.00000000000000000006845

Beta -0.0071323 0.0009885 -7.215 0.00000000000271925822550

Lambda 0.0005113 NA NA NA

Halflife 1355.7282963 NA NA NA

Model summary

Estimate F value df 1 df 2 Pr (>F)

R-Squared 0.1152 52.06 1 400 0.000000000002719

Conditional Beta Convergence

Model coefficients (Estimation method: OLS)

Estimate Std. Error t value Pr (>|t|)

Alpha 0.0754412 0.0102354 7.371 0.0000000000009872

Beta -0.0047020 0.0010517 -4.471 0.0000101720129094

West -0.0053559 0.0009745 -5.496 0.0000000693910790

Lambda 0.0003366 NA NA NA

Halflife 2058.9555949 NA NA NA

Model summary

Estimate F value df 1 df 2 Pr (>F)

R-Squared 0.1774 43.04 2 399 0.00000000000000001192

Sigma convergence (Trend regression)

Estimate Std. Error t value Pr(>|t|)

Intercept 3.895236 0.3267817 11.92 0.00000002264

Time -0.001764 0.0001628 -10.84 0.00000007041

Model summary

Estimate F value df 1 df 2 Pr (>F)

R-Squared 0.9003 117.4 1 13 0.00000007041

REGION : Volume 6, Number 3, 2019

R14 T. Wieland

In the rca() output, we can compare the results of absolute and conditional beta
convergence. In the conditional model, the explained variance increases from R2 ≈ 0.12
to R2 ≈ 0.18, which indicates an increased explanatory power of the model due to the
added condition variable. Both models are statistically significant, also the β values are
negative and significant (p < 0.001 in both cases). The condition “West” is significant
(t ≈ −5.50, p < 0.001) and negative, which means that, on average, the GDP per capita
in West German counties grew slower than in East Germany. These results seem to
support the convergence hypothesis from growth theory, but one should not forget that
e.g. political aspects (such as the German and/or EU regional policy) are not considered
in this simple analysis.

As we have saved the invisible function output, we can access specific parts of our
analysis, such as the regression data for the absolute convergence model:

converg_results$betaconv$regdata

All results in list converg_results

converg_results contains list betaconv (beta convergence results)

betaconv contains data frame regdata (regression data)

ln_initial ln_growth

1 11.002 0.01997436

2 10.552 0.02980133

3 10.283 0.01794207

4 10.090 0.01763444

5 10.287 0.02361006

...

If we want to look at the single sigma values, we can address them via:

converg_results$sigmaconv$sigma.trend

All results in list converg_results

converg_results contains list sigmaconv (sigma convergence results)

sigmaconv contains data frame sigma.trend (sigma values)

years sigma.years

gdp1 2000 0.3646

gdppc2001 2001 0.3662

gdppc2002 2002 0.3618

gdppc2003 2003 0.3606

gdppc2004 2004 0.3592

...

4 Specialization of regions and spatial concentration of industries

4.1 Indicators of regional specialization and industry concentration

Specialization of regions or countries and the spatial concentration of industries or firms
are phenomena linked to several research fields in regional economics and economic ge-
ography: Specialization is a key point in traditional theories of international trade with
respect to comparative advantages (Ricardo, 1821) as well as in the generation of the
“New Trade Theory” (introduced by Krugman 1979). Spatial clustering of firms or in-
dustries due to agglomeration economies is a perennial issue in all spatial economic fields.
It especially reemerged in the context of the “New Economic Geography” (e.g. Krugman
1991; Fujita et al. 2001) as well as through the work of Porter (1990) regarding clusters.
The common indicators are broadly discussed in Farhauer, Kröll (2014) or Nakamura,
Morrison Paul (2009). For studies comparing some different indicators, see e.g. Goschin
et al. (2009); Moga, Constantin (2011); Palan (2017).

When looking at the family of indicators of regional specialization and industry con-
centration, we have to distinguish between indicators for aggregate data, such as regional
employment data, and those requiring individual firm data. The first group, compiled in
Table 5, can be differentiated into indicators of specialization and indicators of spatial
concentration. As both types of agglomeration are closely linked to each other, so are the

REGION : Volume 6, Number 3, 2019

T. Wieland R15

Table 5: Coefficients of regional specialization and industry concentration

Indicator Specialization of region j Spatial concentration of industry i

Hoover/Balassa LQij =
eij/ei
ej/e

≡MRCAij =
eij/ej
ei/e

LQj = 1
I

∑I

i=1
LQij LQi = 1

J

∑J

j=1
LQij

Extensions:

O’Donoghue-Gleave SLQij =
LQij−LQi
sd(LQi)

Tian SLLQij =
log(LQij)−log(LQi)

sd(log(LQi))

Hoen-Oosterhaven ARCAij =
eij
ej
− ei

e

Hoover Hj = 1
2

[
∑I

i=1
| eij
ej
− ei

e
|] Hi = 1

2
[
∑J

j=1
| eij
ei
− ej

e
|]

0 ≤ Hj ≤ 1 0 ≤ Hi ≤ 1

Gini Gj = 2
I2R̄

∑I

i=1
λi(Ri − R̄) Gi = 2

J2C̄

∑J

j=1
λj(Cj − C̄)

0 ≤ Gj ≤ 1 0 ≤ Gi ≤ 1

where: Ri =
eij/ej
ei/e

, where: Cj =
eij/ei
ej/e

,

R̄ = 1
I

∑I

i=1
Ri and C̄ = 1

J

∑J

j=1
Cj and

λi = 1, ..., I (λi < λi+1) λj = 1, ..., J (λj < λj+1)

Krugman Kjl =
∑I

i=1
|ssij − s

s
il| Kiu =

∑J

j=1
|scij − s

c
uj |

(J = 2, I = 2) 0 ≤ Kjl ≤ 2 0 ≤ Kiu ≤ 2

where: ssij =
eij
ej

and ssil =
eil
el

where: scij =
eij
ei

and scuj =
euj
ei

Extensions:

Midelfart et al., Kj =
∑I

i=1
|ssij − s̄

s
il| Ki =

∑J

j=1
|scij − s̄

c
uj |

Vogiatzoglou 0 ≤ Kj ≤ 2 0 ≤ Ki ≤ 2

(J > 2, I > 2) where: ssij =
eij
ej

and where: scij =
eij
ei

and

s̄sil = 1
J−1

∑J

i
ssil, s̄cuj = 1

I−1

∑I

u
scuj ,

l 6= j u 6= i

Duranton-Puga RDIj = 1∑I

i=1
|ss
ij
−si|

where: ssij =
eij
ej

and si = ei
e

Litzenberger-Sternberg CIij =
ISijIDij
PSij

where ISij =
eij/aj
ei/a

, IDij =
eij/pj
ei/p

and PSij =
eij/bij
ei/bi

Notes: eij and eil equal the employment of industry i in regions j and l, respectively, ei is the total
employment in industry i, euj ist the employment of industry u in region j, ej is the total employment in
region j, e is the total employment in the whole economy, I is the number of industries, J is the number
of regions, aj is the area of region j, a is the total area in the whole economy, pj is the population in
region j, p is the total population, bij is the number of firms of industry i in region j and bi is the
number of firms in industry i.
Compiled from: Farhauer, Kröll (2014); Hoen, Oosterhaven (2006); Hoffmann et al. (2017); Nakamura,
Morrison Paul (2009); O’Donoghue, Gleave (2004); Tian (2013); Schätzl (2000); Störmann (2009)

corresponding indicators. The empirical basis of all those measures is the employment
e in industry i in region j, eij . This employment stock is compared to some reference,
mostly including the total employment in region j, ej , and/or the total employment in
industry i, ei, as well as the all-over employment e. The individual firm level indicators
in Table 6 can be segmented into indicators for agglomeration of one industry due to
localization economies and indicators for the coagglomeration of different industries due
to urbanization economies.

REGION : Volume 6, Number 3, 2019

R16 T. Wieland

Table 6: Coefficients of agglomeration and coagglomeration using individual firm data

Indicator Agglomeration Coagglomeration

Ellison-Glaeser γi =
Gi−(1−

∑J

j=1
s2j)HHI i

(1−
∑J

j=1
s2
j
)(1−HHI i)

γc =
G/(1−

∑J

j=1
s2j)−HHIU−

∑U

i=1
γis

2
i (1−HHI i)

1−
∑U

i=1
s2
i

where: Gi =
∑J

j=1
(scij − sj)

2, where: G =
∑J

j=1
(xj − sj)2,

scij =
eij
ei

, sj =
ej
e

and xj =
∑U

i=1

eij
ei

, sj =
ej
e

, si = ei
e

HHI i =
∑K

k=1
(
eik
ei

)2 and HHIU =
∑U

i=1
s2iHHI i

z-standardization:

zi =
Gi−(1−

∑J

j=1
s2j)HHI i

√
var(Gi)

where: var(Gi) = 2

{
HHI 2

i

[∑J

j=1
s2j

−2
∑J

j=1
s3j + (

∑J

j=1
s2j)

2

]
−∑K

k=1
z4
ik

[∑J

j=1
s2j − 4

∑J

j=1
s3j

+3(
∑J

j=1
s2j)

2

]}
Howard et al. CLab =

∑Ka

k=1

∑Kb

l=1
Ckl

KaKb

XCLab = CLab − CLRNDab

where: Ckl = 1 if firms k and l are located
in the same region and Ckl = 0 otherwise

Notes: eij is the employment of industry i in region j, ei is the total employment in industry i, ej is the
total employment in region j, e is the total employment in the whole economy, eik is the employment of
firm k from industry i, k and l are indices for single firms, I is the number of industries, J is the number
of regions, U is a subset of all I industries (U ≤ I), K is the number of firms and Ka and Kb are the
numbers of firms in industry a and b.

Compiled from: Farhauer, Kröll (2014); Howard et al. (2016); Nakamura, Morrison Paul (2009)

The most popular indicator is the Location Quotient (LQ), which is attributed to
Hoover (1936) and mathematically equivalent to the Revealed Comparative Advantage
(RCA) index, developed by Balassa (1965) in the context of international trade. The LQ
is utilized in many studies (e.g. Bai et al. 2008; Kim 1995) as well as in the OECD Ter-
ritorial Reviews (OECD, 2019). Following O’Donoghue, Gleave (2004) and Tian (2013),
the original formulation can be extended: As the location quotient is not normalized,
there is no cut-off value for defining a cluster, which leads to a standardization of the
computed values via z -transformation. Hoen, Oosterhaven (2006) developed an additive
alternative to the RCA index. The original LQ provides the main mathematical basis for
several indicators developed later, such as the spatial Gini coefficients described below.

Some indicators which are known from the context of regional inequality (see Section
2) are also used for the analysis of agglomeration: A modification of the Gini coefficient
is used for the spatial concentration of industries as well as regional specialization (e.g.
Ceapraz 2008; Wieland, Fuchs 2018). As we can see in the calculation of Ri and Cj , re-
spectively, the spatial Gini coefficient is based on the LQ. Another popular option for an-
alyzing agglomeration is the Hoover coefficient, comparing the structure of an industry/a
region to a reference structure of all industries/regions (e.g. Dixon, Freebairn 2009; Jiang
et al. 2007). Both indicator types range between zero (no specialization/concentration)
and one (total specialization/concentration). Also the Herfindahl-Hirschman index and
its derivates are used to measure concentration, specialization and diversification (e.g.
Duranton, Puga 2000; Goschin et al. 2009; Lehocký, Rusnák 2016).

Another type of specialization/concentration indicator was introduced by Krugman
(1991), originally designed for comparing the specialization of two regions. An extension
of this indicator was established by Midelfart-Knarvik et al. (2000) for the comparison
of regional specialization/industry concentration with respect to the sum or mean of all

REGION : Volume 6, Number 3, 2019

T. Wieland R17

regions/industries (furthermore used e.g. by Haas, Südekum 2005; Vogiatzoglou 2006).
Unlike the Gini- or Hoover-type measures, the Krugman coefficients range between zero
(no specialization/concentration) and two (total specialization/concentration).

The cluster index developed by Litzenberger, Sternberg (2006) goes beyond employ-
ment data and includes additional information about the industry-specific firm size, pop-
ulation density and region size. It is composed of three parts: the relative industrial stock
with respect to industry i and region j, ISij , the relative industrial density, IDij , and
the relative firm size, PSij . All three components are modified location quotients. This
is done to control for small and monostructural regions, which are identified as clusters
otherwise (which is a problem in the original LQ). The cluster index CIij has a potential
range from zero to infinity. This extended indicator is used e.g. by Hoffmann et al. (2017)
for the German food processing industry.

The cluster indicators by Ellison, Glaeser (1997) compare the empirical distribution
of firms to an arbitrary location pattern where agglomeration economies are absent (often
referred to as a dartboard approach). Ellison, Glaeser (1997) differentiate between the
clustering of firms from one industry (agglomeration) due to localization economies and
the clustering of multiple industries (coagglomeration) due to urbanization economies.
Their indices also take into account the industry-specific structure of the firms by includ-
ing the Herfindahl-Hirschman index, HHI i, for the employment concentration in industry
i. This is the reason why individual firm-level data is required for the computation. The
Herfindahl-Hirschman indicator is included to control the raw measures of spatial con-
centration, Gi and G, for firm employment concentration, which occurs especially when
there are just a few firms with many employees. The Ellison-Glaeser (EG) index for
agglomeration, γi, is designed for identifying the clustering of industry i, while the coag-
glomeration index, γc aims at the clustering of a set of U industries, where U ≤ I. Values
of γ equal to zero imply the absence of agglomeration economies, while values above zero
indicate positive effects due to spatial clustering. When γ is negative, firm locations are
less spatially concentrated than expected on condition of the dartboard approach, which
indicates negative agglomeration economies. The EG index is used in several current
regional economic studies (e.g. Dauth et al. 2015, 2018; Yamamura, Goto 2018).

In contrast, Howard et al. (2016) argue that agglomeration economies should not
be analyzed regarding employment but the firms itself. Their colocation index, CLab,
sums the colocation of Ki and Kq firms from two industries, i and q, controlling for all
possible combinations. This colocation measure is compared to a counterfactual location
structure constructed via bootstrapping; specifically the arithmetic mean of a number of
(e.g. 50) random assignments of the regarded firms to the locations. The value of the
resulting excess colocation index, XCLab, ranges between -1 and 1.

4.2 Application in REAT

4.2.1 REAT functions for regional specialization and industry concentration

Table 7 shows the REAT functions for agglomeration measures based on aggregate (em-
ployment) data. All functions require at least information about the employment in
one or more regions j in one or more industries i, eij . The Herfindahl-Hirschman index
(function herf()) for measuring regional diversity is not displayed as it is used exactly
in the same way as described in Section 2, replacing xi with eij .

Location quotients for one region and one or more industries are computed by the
function locq(), including the option for an additive indicator instead of the multiplica-
tive. When calculating the LQ for a set of J regions and I industries, one can use function
locq2(), which is a kind of batch processing extension of locq(). As the dimension of
the Litzenberger-Sternberg cluster index is the same as in the LQ (a single value for
each combination of region j and industry i), the related functions litzenberger() and
litzenberger2() work in the same way. When using locq2() or litzenberger2(),
the user may choose the type of function output: either a matrix with I columns and J
rows or a data frame with I ∗ J rows.

The Hoover-, Gini- and Krugman-type indicators require the same kind of input
data. The hoover() function was already explained in Section 2, as it can be also

REGION : Volume 6, Number 3, 2019

R18 T. Wieland

Table 7: REAT functions for regional specialization and industry concentration

Indicator REAT function Mandatory arguments Optional arguments Output

Hoover LQ/ locq() vectors or single LQ method, Single value or
Balassa RCA values of eij and ei, plot matrix with LQij
incl. extensions single values of

ej and e

locq2() vectors of eij , normalization, matrix or data
industry ID i output type, frame with I ∗ J

and region ID j remove NAs values of LQij

Hoover hoover() vectors of eij remove NAs value: Hj
specialization/ (see Section 2) and reference or Hi
concentration vector ei or ej

Gini gini.spec() vectors eij plot LC value: Gj ,
specialization and ei optional: LC plot

concentration gini.conc() vectors eij plot LC value: Gi,
and ej optional: LC plot

Krugman krugman.spec() vectors eij value: Kjl
specialization (regions j and l) and eil

krugman.conc2() vector eij and matrix value: Kj
(all J regions) or data frame eil

concentration krugman.conc() vectors eij value: Kiu
(industries i and u) and euj

krugman.conc2() vector eij and matrix value: Ki
(all I industries) or data frame euj

All at once:
specialization spec() vectors of eij , remove NAs matrix with Hj , Gj

industry ID i and Kj (columns)
and region ID j for J regions (rows)

concentration conc() vectors of eij , remove NAs matrix with Hi, Gi
industry ID i and Ki (columns)

and region ID j for I industries (rows)

Duranton- durpug() vectors eij value: RDIj
Puga and ei

Litzenberger- litzenberger() single values of value: CIij
Sternberg eij, ei, aj , a,

pj , p, bij and bi

litzenberger2() vectors of eij , output type, matrix or data
industry ID i, remove NAs frame with I ∗ J
region ID j, values of CIij
aj , pj and bij

Source: own compilation.

used for measuring spatial concentration of industries or the specialization of regions
with all-over employment vectors, ei and ej , respectively, as reference distributions. The
spatial Gini coefficients are available through functions gini.spec() for regional spe-
cialization and gini.conc() for spatial concentration. The Krugman coefficients are
divided into functions for the comparison of two regions/industries (krugman.spec()
and krugman.conc(), respectively) and for applying all regions/industries as reference
(krugman.spec2() and krugman.conc2(), respectively). The functions spec() and
conc() are wrapper functions providing a convenient way to compute Hoover, Gini and
Krugman coefficients of a given set of J regions and I industries at once, e.g. originating
from official statistics on regional employment.

Table 8 shows the functions operating on the level of individual firm data. The
Ellison-Glaeser (EG) indices are available through the functions ellison.a() (agglom-
eration index for industry i) and ellison.a2() (agglomeration indices for I industries)
as well as ellison.c() (coagglomeration index for U industries) and ellison.c2() (co-
agglomeration indices for I ∗ I− I industry combinations). All functions require the firm
size (e.g. no. of employees) for the k-th firm from industry i (numeric vector) and the

REGION : Volume 6, Number 3, 2019

T. Wieland R19

Table 8: REAT functions for agglomeration and coagglomeration using firm data

Indicator REAT function Mandatory arguments Optional arguments Output

Ellison-Glaeser ellison.a() vectors of eik, ej visible: value γi,
agglomeration and region ID j invisible: matrix with γi,

Gi, zi, Ki and HHI i

ellison.a2() vectors eik, visible: values γi,
industry ID i and invisible: matrix with γi,

region ID j Gi, zi, Ki and HHI i,
for I industries (rows)

coagglomeration ellison.c() vectors eik, vectors ej and value: γc

industry ID i and U industries
region ID j

ellison.c2() vectors eik, vector ej matrix with γc for
industry ID i and I ∗ I − I industry

region ID j combinations (rows)

Howard et al. howard.cl() firm ID k, value: CLab
colocation industry ID i,

and region ID j,
industries a and b

excess howard.xcl() firm ID k, value: XCLab
colocation industry ID i

and region ID j,
industries a and b,

no. of samples

howard.xcl2() firm ID k, matrix with XCLab for
industry ID i I ∗ I − I industry

and region ID j combinations (rows)

Source: own compilation.

region j the firm is located in. The functions incorporating more than one industry (all
except for ellison.a()) require a vector containing the industry i. The data could e.g.
be stored in a data frame with at least three columns (firm size, region, industry). Like
some of the convergence functions (see Section 3), the EG agglomeration index functions
in REAT also distinguish between a visible and an invisible output: ellison.a() and
ellison.a2() show the value(s) auf γi but return an invisible matrix including the raw
measure of concentration (Gi), the z-standardized results (zi) and the related Herfindahl-
Hirschman index for industry-specific firm concentration (HHI i) as well as the number
of firms in industry i (Ki).

The Howard-Newman-Tarp coagglomeration measure is distributed over the functions
howard.cl() (calculation of the colocation index for one pair of industries a and b),
howard.xcl() (calculation of the excess colocation index for industries a and b) and
howard.xcl2() (calculation of the excess colocation index for I ∗ I− I combinations of I
industries). As this cluster index works with firms instead of employment, we only need
a vector containing the IDs of the firms k, the corresponding industry i and the region
j where the firm is located. When calculating this measure for one pair of industries, the
user must state the IDs of industries a and b. Note that calculation time for this index
increases heavily with the number of firms and/or industries.

4.2.2 Application example 1: Regional specialization of Göttingen

We use the German classification of economic activities (WZ2008) on the level of 21
sections (A-U) for the classification of industries in the following examples (see Table 9).

Starting with a simple example, we analyze the regional specialization of Göttingen, a
city with a population of about 134,000 in Niedersachsen, Germany. The example dataset
Goettingen, which is included in REAT, contains the dependent employees in Göttingen
and Germany for 2008 to 2017 in industries A to R (rows 2 to 16; row 1 contains the
all-over employment). First, we load the data:

REGION : Volume 6, Number 3, 2019

R20 T. Wieland

Table 9: Classification of economic activities in Germany, edition 2008 (WZ 2008)

WZ2008
Code Title

A Agriculture, forestry and fishing
B Mining and quarrying
C Manufacturing
D Electricity, gas, steam and air conditioning supply
E Water supply; sewerage, waste management and remediation activities
F Construction
G Wholesale and retail trade; repair of motor vehicles and motorcycles
H Transportation and storage
I Accommodation and food service activities
J Information and communication
K Financial and insurance activities
L Real estate activities
M Professional, scientific and technical activities
N Administrative and support service activities
O Public administration and defence; compulsory social security
P Education
Q Human health and social work activities
R Arts, entertainment and recreation
S Other service activities
T Activities of households as employers; undifferentiated goods-and services-producing

activities of households for own use
U Activities of extraterritorial organisations and bodies

Source: own compilation based on Statistisches Bundesamt (2008).

data(Goettingen)

Using the REAT function locq(), we calculate a location quotient for Göttingen with
respect to the manufacturing industry (”Verarbeitendes Gewerbe”), which is represented
by letter C:

locq (Goettingen$Goettingen2017[4], Goettingen$Goettingen2017[1],

Goettingen$BRD2017[4], Goettingen$BRD2017[1])

Industry: manufacturing (letter C) in row 4

row 1 = all-over employment

[1] 0.5369

The output is simply the LQ value (LQij , where i is manufacturing and j is Göttingen).
We see that the LQ is very low, indicating that manufacturing is underrepresented in
Göttingen as compared to Germany. Now, we calculate LQ values for all industries
(A-R), including a simple plot (function argument plot.results = TRUE):

locq (Goettingen$Goettingen2017[2:16], Goettingen$Goettingen2017[1],

Goettingen$BRD2017[2:16], Goettingen$BRD2017[1],

industry.names = Goettingen$WZ2008_Code[2:16], plot.results = TRUE,

plot.title = "Location quotients for Göttingen 2017")

all industries (rows 2-16 in the dataset)

The output is a matrix with one row for each industry:

Location quotients

I = 15 industries

LQ

A 0.08407652

BDE 0.40085663

C 0.53687366

F 0.34366928

G 0.74603541

H 0.67117311

REGION : Volume 6, Number 3, 2019

T. Wieland R21

Figure 3: Location quotients for 15 industries in Göttingen

I 0.98141916

J 0.91654277

K 0.82650178

M 1.53027645

N 0.95843423

O 1.03509027

P 2.77790858

Q 1.67459967

R 0.35317012

The result is plotted in Figure 3. The function plots a vertical line at LQij = 1
automatically. This is the (only) reference value for the LQ. It indicates a stock of the
related industry equal to the whole economy. The highest LQ values can be found for
the industries with letters P (education) and Q (health). This is because Göttingen
is mainly characterized by a large university (about 30,000 students) with a university
hospital with about 7,000 employees.

Now, we want to measure the specialization of Göttingen with a single indicator.
First, we simply use the Herfindahl-Hirschman coefficient for both Göttingen and Ger-
many using the function herf():

herf(Goettingen$Goettingen2017[2:16])

[1] 0.127314

herf(Goettingen$BRD2017[2:16])

[1] 0.1104567

The HHI for Göttingen is slightly larger than for Germany, which indicates a higher
specialization (or lower economic diversity) of the region. To combine this information
in one indicator, we calculate the Hoover coefficient of specialization using the function
hoover(), where the reference distribution is the German industry structure:

hoover(Goettingen$Goettingen2017[2:16], ref = Goettingen$BRD2017[2:16])

[1] 0.2254234

We finish our analysis of Göttingen’s regional specialization by calculating both the
Gini and the Krugman coefficient of regional specialization with the same data, using
the REAT functions gini.spec() and krugman.spec(), respectively. Note that, here,

REGION : Volume 6, Number 3, 2019

R22 T. Wieland

we use the Krugman coefficient to compare the industry structure of Göttingen to the
structure of whole Germany (instead of another region within the country, for which this
coefficient was originally formulated):

gini.spec(Goettingen$Goettingen2017[2:16], Goettingen$BRD2017[2:16])

[1] 0.359852

krugman.spec(Goettingen$Goettingen2017[2:16], Goettingen$BRD2017[2:16])

[1] 0.4508469

There seems to be some specialization in Göttingen, but, unfortunately, we do not
have any real reference value to interpret the results.

4.2.3 Application example 2: Identifying clusters in Germany using aggregate data

In this example, we will compute indicators of regional specialization and industry con-
centration for a set of J regions and I industries at once. We load the included test
dataset G.regions.industries containing employment and firms on the level of I = 17
industries (WZ2008 codes B-S) and J = 16 regions (“Bundesländer”) in Germany:

data(G.regions.industries)

The number of employees in the column emp_all includes dependent employees and
self-employed persons. The classification code of industries (see Table 9) can be found
in column ind_code, while the region code (abbreviation of the region’s official name)
is in column region_code. First, we want to detect the spatial concentration of the
17 industries in Germany by calculating Hoover, Gini and Krugman coefficients for all
industries at once, applying the REAT function conc() which is a wrapper function for
the mentioned indicators. We save our output in the matrix object conc_i:

conc_i <- conc (e_ij = G.regions.industries$emp_all,

industry.id = G.regions.industries$ind_code,

region.id = G.regions.industries$region_code)

The output is:

Spatial concentration of industries

I = 17 industries, J = 16 regions

H i G i K i

WZ08-B 0.22959050 0.42334831 0.45675385

WZ08-C 0.09933363 0.17047620 0.26813759

WZ08-D 0.07754576 0.12509360 0.16260016

WZ08-E 0.11972072 0.16742909 0.20369011

WZ08-F 0.07676634 0.15357575 0.16996098

WZ08-G 0.03034962 0.05471323 0.07977056

WZ08-H 0.06006957 0.11921850 0.10076748

WZ08-I 0.05177262 0.09939075 0.11450791

WZ08-J 0.10230712 0.22605802 0.24450967

WZ08-K 0.08982871 0.17610712 0.20565974

WZ08-L 0.09798632 0.16784764 0.17472656

WZ08-M 0.06490185 0.14760918 0.14931991

WZ08-N 0.06714816 0.08575299 0.09053327

WZ08-P 0.03019678 0.05053848 0.07043586

WZ08-Q 0.04679962 0.06170335 0.06406058

WZ08-R 0.09424708 0.16748405 0.17023603

WZ08-S 0.04507988 0.07246697 0.06441360

The function returns a matrix with 17 rows (one for each industry) and three columns:
H i is the Hoover coefficient, G i is the Gini coefficient and K i is the Krugman coeffi-
cient for industry i. We cannot interpret or compare all of these results, but we may pick
out some findings: The strongest spatial concentration is found with respect to mining

REGION : Volume 6, Number 3, 2019

T. Wieland R23

and quarrying (WZ08-B), no matter which indicator is regarded, which may be inter-
preted with “natural advantages” due to the spatial distribution of mineral resources
in Germany. Services (such as retailing) as well as education and health are least con-
centrated, as these industries are bound to regional demand and/or their locations are
regulated by policy and planning authorities.

At a first glance, the three indicators seem to produce similar results. Now, we want
to test the similarity between Hoover, Gini and Krugman coefficients of concentration.
As we saved our result matrix, we now calculate Pearson correlation coefficients (r) for
each pair of indicators using the basic R function cor(), which is implemented in the
stats package (included automatically in any R release). The function is applied to the
three columns of conc_i, producing a 3 ∗ 3 correlation matrix:

cor(conc_i[,1:3])

H i G i K i

H i 1.0000000 0.9676518 0.9527747

G i 0.9676518 1.0000000 0.9681770

K i 0.9527747 0.9681770 1.0000000

As we can see, each combination of the three indicators shows a strong positive cor-
relation (Hi vs. Gi: r ≈ 0.97, Hi vs. Ki: r ≈ 0.95, Gi vs. Ki: r ≈ 0.97). At least in this
context, we may conclude that these indicators are interchangeable. However, we have
to recognize that the analysis presented here is on a large-scale regional level (German
“Bundesländer”) and all of the mentioned indicators are affected by the modifiable areal
unit problem, which means that the results depend on the aggregation unit in the analysis
(see e.g. Dapena et al. 2016 for a discussion of this effect).

Now, we do exactly the same with respect to regional specialization of the 16 regions,
using the same data. Analogously, we use the wrapper function spec() for calculating
Hoover, Gini and Krugman coefficients of regional specialization, also saving the resulting
matrix:

spec_j <- spec (e_ij = G.regions.industries$emp_all,

industry.id = G.regions.industries$ind_code,

region.id = G.regions.industries$region_code)

The output is:

Specialization of regions

I = 17 industries, J = 16 regions

H j G j K j

BB 0.11530353 0.20632682 0.18555259

BE 0.17891265 0.29040841 0.34552331

BW 0.08024011 0.10300695 0.22675612

BY 0.05008135 0.07659148 0.16019603

HB 0.09502615 0.18563500 0.17467291

HE 0.05494422 0.12160142 0.11282696

HH 0.16413456 0.22616814 0.33190321

MV 0.13270849 0.18974606 0.22056868

NI 0.03772799 0.08237225 0.07972852

NW 0.02940091 0.05997505 0.07181569

RP 0.04793147 0.07432361 0.12036513

SH 0.08901907 0.11384295 0.15994524

SL 0.05726933 0.11921727 0.15071159

SN 0.05400855 0.10643512 0.10341280

ST 0.08821395 0.21120287 0.15280711

TH 0.08234046 0.13902924 0.17720208

The strongest specialization can be found in the city states Berlin (BE) and Hamburg
(HH), while Niedersachsen (NI) and Nordrhein-Westfalen (NW) show the lowest values
in all three indicators. As already mentioned in the concentration example, we have to
remember the large-scale aggregation unit. If we used smaller scale units (e.g. counties
like in Section 3.2.2), our results would surely be more differentiated. Again, we check
the correlation between the indicators:

REGION : Volume 6, Number 3, 2019

R24 T. Wieland

cor(spec_j[,1:3])

H j G j K j

H j 1.0000000 0.9179127 0.9322604

G j 0.9179127 1.0000000 0.7907841

K j 0.9322604 0.7907841 1.0000000

Again, we find a strong positive correlation between the Hoover coefficient and both
Gini and Krugman coefficient (Hj vs. Gj : r ≈ 0.92, Hj vs. Kj : r ≈ 0.93), while the
third Pearson correlation coefficient is a little lower, but still showing the same direction
(Gj vs. Kj : r ≈ 0.79).

Now we check for clusters in a combination of a specific industry and a specific region.
First, we calculate location quotients for the dataset G.regions.industries using the
REAT function locq2(). Here, the optional function argument LQ.norm could be used for
computing z-standardized location quotients according to O’Donoghue, Gleave (2004)
(LQ.norm = "OG") or z-standardized values of the natural-logged LQs according to Tian
(2013) (LQ.norm = "T"). However, we produce the original LQs, since we need exactly
the same columns as in the examples above:

locq2(e_ij = G.regions.industries$emp_all,

G.regions.industries$ind_code, G.regions.industries$region_code)

The output is a matrix with J rows and I columns:

Location quotients

I = 17 industries, J = 16 regions

BB BE BW BY HB HE

WZ08-B 2.5314363 0.04030901 0.6607950 0.8078054 0.0000000 0.3735773

WZ08-C 0.6857231 0.37224900 1.3968652 1.1902785 0.7863570 0.8580352

WZ08-D 1.1736475 0.46721079 1.0861988 0.8343784 0.9179718 0.9627955

WZ08-E 1.7945685 1.30128835 0.5896526 0.7137388 1.2393228 0.8532203

WZ08-F 1.5997778 0.77160121 0.9070096 1.0280409 0.6212923 0.8927681

WZ08-G 0.9550127 0.83133221 0.9492523 0.9879826 0.9013193 1.0006321

WZ08-H 1.3212794 0.87982228 0.8189666 0.8664163 1.7692815 1.2208728

WZ08-I 1.0379426 1.35561299 0.9132949 1.0390886 0.9904308 0.9571339

WZ08-J 0.5625876 1.78334039 1.0316114 1.1550764 1.0577107 1.1407078

WZ08-K 0.6529329 0.76630600 0.9329930 1.1058890 0.7825178 1.6710583

WZ08-L 1.1088846 2.13220960 0.7310014 0.8633894 1.3254723 1.1132939

WZ08-M 0.7366238 1.39880205 1.0337139 1.0265993 1.1202532 1.1457770

WZ08-N 1.2571301 1.24261162 0.7977054 0.8486971 1.2938161 1.0525912

WZ08-P 0.9052976 1.38842157 0.9649289 0.9252245 1.0563169 1.0085207

WZ08-Q 1.1540423 1.09329902 0.8695241 0.9079679 0.9544891 0.8980680

WZ08-R 1.0656945 2.55595102 0.8518192 0.8220540 1.3196613 0.8651451

WZ08-S 1.1409373 1.32596177 0.8626829 0.9092125 1.1396616 1.0528184

HH MV NI NW RP SH

WZ08-B 0.6029388 0.6235796 1.4987086 1.4595767 1.0371236 0.5078145

WZ08-C 0.4781934 0.6230156 0.9512438 0.9312325 1.0822678 0.7082513

WZ08-D 0.4332870 1.0118838 0.9932719 1.2139740 0.9349679 1.1248685

WZ08-E 1.1442005 1.5642257 1.0645497 1.0408356 0.9886860 1.0707585

WZ08-F 0.5432163 1.2716537 1.0969756 0.8735506 1.1134885 1.1043449

WZ08-G 1.0654315 0.9485377 1.0758977 1.0612190 1.0111274 1.2456100

WZ08-H 1.4958610 1.1243732 1.0409143 0.9961224 0.9633972 1.0112557

WZ08-I 1.0634066 1.7574637 1.0227196 0.8750205 1.1121264 1.2483966

WZ08-J 1.9266913 0.4751473 0.6716376 0.9830609 0.8122058 0.7496925

WZ08-K 1.5175078 0.5383900 0.9108456 1.0205798 0.8879292 0.8355178

WZ08-L 1.5871838 1.3034074 0.8040270 0.9928161 0.7774500 1.1980553

WZ08-M 1.6293913 0.6897571 0.8693026 1.0366589 0.7764558 0.7905498

WZ08-N 1.2530608 1.2484353 0.9675147 1.0659893 0.8026181 0.9727871

WZ08-P 0.9422739 0.9966228 1.0888054 0.9846351 1.0976178 0.9540262

WZ08-Q 0.8564604 1.2893168 1.0728412 1.0595648 1.0418460 1.1662290

WZ08-R 1.4914564 1.0500685 0.9204586 0.9611539 0.8498053 1.0418794

WZ08-S 0.8055128 1.1158184 0.9965451 1.0283571 1.1658852 1.1455178

REGION : Volume 6, Number 3, 2019

T. Wieland R25

SL SN ST TH

WZ08-B 0.2826284 1.2746172 2.4654331 0.7140637

WZ08-C 1.1752810 0.9867417 0.9297172 1.1849897

WZ08-D 1.1465539 1.0637093 1.2642787 0.8607578

WZ08-E 0.9555581 1.4457486 1.8251853 1.6042935

WZ08-F 0.9016858 1.3794286 1.4104724 1.3481005

WZ08-G 1.0370901 0.8787739 0.9172598 0.8661184

WZ08-H 0.8851047 1.0476688 1.2012430 0.8944907

WZ08-I 0.9111877 0.9496370 0.9020582 0.8644257

WZ08-J 0.7133587 0.7717704 0.4874344 0.6869177

WZ08-K 1.0082983 0.6620719 0.6133933 0.6316347

WZ08-L 0.7018816 1.1395422 1.0111694 0.8511896

WZ08-M 0.8060753 0.8459317 0.6627301 0.6814339

WZ08-N 1.0751749 1.1656467 1.2796548 1.1093251

WZ08-P 0.9147874 0.9658590 0.9798932 0.9710576

WZ08-Q 1.0760969 1.0475595 1.1401680 1.0628602

WZ08-R 0.7631263 1.1419135 0.8329295 0.8582919

WZ08-S 0.8840741 0.9774726 0.9257397 1.0923137

These I ∗ J = 17 ∗ 16 = 272 coefficients are too much information. Thus, we cal-
culate them again using the optional argument LQ.output = "df", which produces a
data frame with I ∗ J rows and three columns (j_region: ID of region j, i_industry:
ID of industry i and LQ: location quotient LQij). We save the results in the object lqs:

lqs <- locq2(e_ij = G.regions.industries$emp_all,

G.regions.industries$ind_code, G.regions.industries$region_code,

LQ.output = "df")

As we forego an inspection of these singe values, the results are not displayed here.
Instead, we only deal with the five highest LQs in our results (the “top five”). We sort
the resulting data frame decreasing and take a look at the first five rows:

lqs_sort <- lqs[order(lqs$LQ, decreasing = TRUE),]

Sort decreasing by size of LQ

lqs_sort[1:5,]

j_region i_industry LQ

33 BE WZ08-R 2.555951

1 BB WZ08-B 2.531436

239 ST WZ08-B 2.465433

28 BE WZ08-L 2.132210

111 HH WZ08-J 1.926691

The highest LQ is found for the arts, entertainment, and recreation sector (WZ08-R)
in the German capital Berlin. Note that this result is congruent with several studies
about the “creative class”, showing a large stock of “creative” employment in Berlin
(e.g. Martin 2015). We also find a strong concentration of mining and quarrying in
two Eastern regions, Brandenburg and Sachsen-Anhalt. Note that the LQ is a relative
measure with respect to the total regional employment as well as the total industry-
specific employment and the employment in the whole economy, not considering other
aspects of industry or spatial structure.

These deficiencies should be overcome with the Litzenberger-Sternberg cluster index,
also taking into account area, population and firm size. This additional data is also
included in our current dataset (columns area_sqkm, pop and firms). The functions
litzenberger() and litzenberger2() work equivalently to locq() and locq2(). To
compute cluster indices for all I ∗J combinations, we use the function litzenberger2():

litzenberger2(G.regions.industries$emp_all,

G.regions.industries$ind_code, G.regions.industries$region_code,

G.regions.industries$area_sqkm, G.regions.industries$pop,

G.regions.industries$firms)

REGION : Volume 6, Number 3, 2019

R26 T. Wieland

Like in locq2(), the default output is a matrix with I rows and J columns:

Litzenberger-Sternberg cluster indices

I = 17 industries, J = 16 regions

BB BE BW BY HB HE

WZ08-B 0.5736692 0.05611505 0.8041813 1.1073446 NaN 0.4745084

WZ08-C 0.1610679 3.24717820 2.6250805 1.2043415 5.119669 1.0603087

WZ08-D 0.2213627 1.37720778 1.7043505 1.4178208 4.172162 0.8541359

WZ08-E 0.8810260 10.14891585 0.8235517 0.6890213 6.705744 1.1427285

WZ08-F 0.7142888 11.36434353 1.2372108 0.9442221 3.498921 1.1225087

WZ08-G 0.2707787 12.10626625 1.3903532 0.9404677 7.136205 1.3361060

WZ08-H 0.4386878 13.26265081 1.0955747 0.7982074 22.656924 1.8358272

WZ08-I 0.2672336 26.60020727 1.4098657 0.9633029 8.481338 1.2880210

WZ08-J 0.1130326 59.24931837 1.4342037 1.2393579 8.683998 1.9024826

WZ08-K 0.1524825 10.28664194 1.4774980 1.1692461 6.650213 2.4739044

WZ08-L 0.2564814 56.65943460 0.9594093 0.8695636 11.839900 1.6099929

WZ08-M 0.1685895 39.30149403 1.5306799 1.0110472 9.410498 1.7302434

WZ08-N 0.4232166 26.91532975 1.0228326 0.7471872 10.796027 1.5265846

WZ08-P 0.2043023 25.30839556 1.3656409 0.9509028 7.322709 1.4627871

WZ08-Q 0.3445630 21.86956483 1.1770297 0.7873877 7.850886 1.2163624

WZ08-R 0.2450932 104.73565741 1.0839767 0.7821779 10.555369 1.0489672

WZ08-S 0.2891132 24.71310833 1.3435576 0.9594882 9.893688 1.5421903

HH MV NI NW RP SH

WZ08-B 2.319611 0.16000177 1.5004530 2.074735 1.1951266 0.3119091

WZ08-C 4.000104 0.11993714 0.5036838 2.010757 0.9646351 0.4008598

WZ08-D 1.679371 0.20954802 0.8848956 2.001708 0.6016715 1.2989105

WZ08-E 11.129156 0.44055556 0.6476797 1.915196 0.8616891 0.8101087

WZ08-F 5.526083 0.45291220 0.6276791 1.656384 0.8973162 0.8055662

WZ08-G 15.627090 0.22665565 0.6898359 2.377365 0.8115817 0.9008287

WZ08-H 44.371836 0.32192237 0.6420146 1.980491 0.7087341 0.7205961

WZ08-I 14.795885 0.59842705 0.6335126 1.731963 1.0572996 1.0361389

WZ08-J 59.720584 0.05895184 0.2905769 2.139796 0.5142953 0.4427180

WZ08-K 26.189623 0.12112900 0.5648050 1.953963 0.7104929 0.5758818

WZ08-L 33.175443 0.25167830 0.5228248 2.223854 0.5349641 0.8587588

WZ08-M 44.433527 0.11657637 0.4440959 2.297308 0.4961611 0.4456119

WZ08-N 23.255195 0.31231467 0.5271293 2.413351 0.5537510 0.7348068

WZ08-P 14.294075 0.24008982 0.7203953 2.022971 0.9704975 0.6937792

WZ08-Q 13.211918 0.38626491 0.6877487 2.260518 0.7770980 0.8426253

WZ08-R 44.256214 0.20066782 0.4508862 2.190752 0.5287290 0.6694273

WZ08-S 14.195156 0.27631480 0.5364848 1.941470 0.7996291 0.9238816

SL SN ST TH

WZ08-B 0.3673090 1.1179110 1.49064630 0.4562730

WZ08-C 1.8348713 1.0311722 0.32128528 0.7892360

WZ08-D 0.9643263 0.4534029 0.29391783 0.2086042

WZ08-E 1.9939461 1.5554125 1.09973945 1.1815726

WZ08-F 1.3245152 1.8167263 0.68075807 1.0313749

WZ08-G 1.7528078 0.7644695 0.31005922 0.4313306

WZ08-H 1.1099151 0.9297053 0.42973342 0.4881643

WZ08-I 1.7871163 0.7119567 0.29998391 0.4012910

WZ08-J 0.8984679 0.4927030 0.08046178 0.2087174

WZ08-K 1.5505928 0.5980588 0.21942805 0.3160432

WZ08-L 0.8170723 0.8226773 0.21044244 0.2886068

WZ08-M 1.0137151 0.6489868 0.15797219 0.2493458

WZ08-N 1.3940298 1.2492658 0.42285503 0.5935329

WZ08-P 1.2331390 0.7800531 0.31406013 0.4389675

WZ08-Q 1.8551266 1.0749000 0.48353914 0.5854787

WZ08-R 0.8477702 0.8666478 0.21562997 0.2919300

WZ08-S 1.6138955 0.8600519 0.34624522 0.5369766

Note that there is a value equal to NaN, which means “not a number”, due to a division
by zero; this is because there is no mining and quarrying (WZ08-B) in Bremen (HB).
However, we take a look at the “top five” again:

REGION : Volume 6, Number 3, 2019

T. Wieland R27

lss <- litzenberger2(G.regions.industries$emp_all,

G.regions.industries$ind_code, G.regions.industries$region_code,

G.regions.industries$area_sqkm, G.regions.industries$pop,

G.regions.industries$firms, CI.output = "df")

lss_sort <- lss[order(lss$CI, decreasing = TRUE),]

lss_sort[1:5,]

j_region i_industry CI

33 BE WZ08-R 104.73566

111 HH WZ08-J 59.72058

26 BE WZ08-J 59.24932

28 BE WZ08-L 56.65943

114 HH WZ08-M 44.43353

Again, we find the largest cluster value for the arts and entertainment sector in
Berlin. Also the other four highest indicators are discovered in the largest city states
Berlin and Hamburg, especially with respect to the information and communication
industry (WZ08-J) and other knowledge-intensive services. Obviously, the results of the
Litzenberger-Sternberg index differ in a noticeable way from those of the LQ, which can
be attributed to the consideration of other spatial aspects, especially controlling for the
size of the regions.

4.2.4 Application example 3: Identifying clusters using micro-data

In our last example about agglomerations, we use the Ellison-Glaeser indices and the
Howard-Newman-Tarp colocation index, which both require individual firm data. As
this kind of micro-data is sensitive and, of course, not available in official statistics, we
have to use fictional data from the textbook by Farhauer, Kröll (2014).

At first, we compute the Ellison-Glaeser agglomeration index for one industry i, γi.
We use the REAT function ellison.a(), which is designed for this purpose and requires
three vectors: the size (employment) of firm k, eik, the IDs of the regions j each firm is
located in, and the total regional employment, ej . The numerical example in Farhauer,
Kröll (2014), Table 14.11, contains ten firms in three regions (Wien, Linz, and Graz).
We simply compile the data from the original table into separate vectors:

region <- c("Wien", "Wien", "Wien", "Wien", "Wien", "Linz",

"Linz", "Linz", "Linz", "Graz")

regions (Austrian cities)

emp_firm <- c(200,650,12000,100,50,16000,13000,1500,1500,25000)

employment of the ten firms

emp_region <- c(500000,400000,100000)

employment of the three regions

Now, we apply ellison.a() to this data:

ellison.a (emp_firm, emp_region, region)

[1] 0.05990628

The EG agglomeration index of γi ≈ 0.06, which is, by the way, the same result as in
the textbook, indicates a stronger clustering than expected from a dartboard approach.
Since this data is fictional, we refrain from interpreting this result.

The REAT package contains the dataset FK2014_EGC, which is compiled from the nu-
merical example in Farhauer, Kröll (2014), Tables 14.14 to 14.17. There are k = 42
firms from I = 4 industries (clothing trade, forestry, textiles dyeing and textiles trade)
in J = 3 regions (1, 2 and 3). We load this example data:

data(FK2014_EGC)

We compute γi for all industries in the dataset. This can be done with the function
ellison.a2(), which requires vectors containing the size of firm k, the corresponding
industry i, and region j. We save the results in the object ega:

REGION : Volume 6, Number 3, 2019

R28 T. Wieland

ega <- ellison.a2 (FK2014_EGC$emp_firm, FK2014_EGC$industry,

FK2014_EGC$region)

Here, we see the output of the function:

Ellison-Glaeser Agglomeration Index

K = 42 firms, I = 4 industries, J = 3 regions

Gamma i

Clothing trade -0.09379384

Forestry 0.16838003

Textiles dyeing -0.08012539

Textiles trade -0.13040134

We see a strong clustering of the forestry industry, which is attributed to localization
economies, but spatial avoidance in the three other industries. The visible output of
ellison.a2() contains the γi values only, but the invisible matrix output also includes
the other information referring to the EG agglomeration index:

ega

Gamma i G i z i K i HHI i

Clothing trade -0.09379384 0.017909653 -0.5025978 11 0.13124350

Forestry 0.16838003 0.088262934 1.3660878 13 0.09240553

Textiles dyeing -0.08012539 0.027764811 -0.3801644 9 0.14559983

Textiles trade -0.13040134 0.002734966 -0.7663541 9 0.12208059

When looking at the forestry industry, we also see a high standardized value (zi ≈
1.37) and a relatively low firm concentration (HHI i ≈ 0.09).

In the next step, we compute the EG coagglomeration index, γc, for the same
data using the function ellison.c(). This function requires the same information as
ellison.a2() plus the total employment in the regarded regions (column emp_region):

ellison.c (FK2014_EGC$emp_firm, FK2014_EGC$industry,

FK2014_EGC$region, FK2014_EGC$emp_region)

[1] 12.0729

Congruent with the calculation in Farhauer, Kröll (2014), the function returns γc ≈
12.07. This value is very large, which indicates urbanization economies in this fictional
example.

If we want to analyze the coagglomeration of industry pairs instead, we may use the
function ellison.c2(), which requires the same data:

ellison.c2 (FK2014_EGC$emp_firm, FK2014_EGC$industry,

FK2014_EGC$region, FK2014_EGC$emp_region)

The output is a matrix with I ∗ I − I rows (one for each industry pair, omitting the
combination of the same industry i):

Ellison-Glaeser Co-Agglomeration Index

K = 42 firms, I = 4 industries, J = 3 regions

Gamma c

Forestry-Clothing trade 1.382257

Textiles dyeing-Clothing trade 2.465609

Textiles trade-Clothing trade 2.067766

Clothing trade-Forestry 1.382257

Textiles dyeing-Forestry 1.570292

Textiles trade-Forestry 1.336020

Clothing trade-Textiles dyeing 2.465609

Forestry-Textiles dyeing 1.570292

Textiles trade-Textiles dyeing 2.294259

Clothing trade-Textiles trade 2.067766

Forestry-Textiles trade 1.336020

Textiles dyeing-Textiles trade 2.294259

REGION : Volume 6, Number 3, 2019

T. Wieland R29

If we want to focus on firm numbers instead of employment size, we may compute the
Howard-Newman-Tarp excess colocation index, which is included in REAT through the
functions howard.cl() for one colocation index for one pair of industries, howard.xcl()
for the corresponding excess colocation index and howard.xcl2() for all combinations of
I ∗ I industries. Subsequent to the numerical example above, we calculate XCLab for all
industry pairs in the dataset FK2014_EGC, where the firm ID of k is stored in the column
firm:

howard.xcl2 (FK2014_EGC$firm, FK2014_EGC$industry,

FK2014_EGC$region)

this takes some seconds

The output has the same structure as the output from ellison.c2():

Howard-Newman-Tarp Excess Colocation Index

K = 42 firms, I = 4 industries, J = 3 regions

XCL

Forestry-Clothing trade 0.01902098

Textiles dyeing-Clothing trade 0.02909091

Textiles trade-Clothing trade 0.02020202

Clothing trade-Forestry 0.02377622

Textiles dyeing-Forestry 0.03282051

Textiles trade-Forestry 0.03589744

Clothing trade-Textiles dyeing 0.02707071

Forestry-Textiles dyeing 0.02666667

Textiles trade-Textiles dyeing 0.02814815

Clothing trade-Textiles trade 0.02101010

Forestry-Textiles trade 0.01743590

Textiles dyeing-Textiles trade 0.03012346

We see that the index by Howard et al. (2016) is structured differently than the
indicators presented above: Although they are based on exactly the same data, the value
for forestry and clothing trade (XCL ≈ 0.019) is not equal to the value for clothing trade
and forestry (XCL ≈ 0.024). Why? The XCLab is the difference between the colocation
index, CLab, and the mean of a set of bootstrap samples, CLRNDab (see Table 6). These
random samples are drawn again each time a XCL value is computed, consequently, also
the XCL value changes.

5 Proximity and accessibility

5.1 Distance-based measures of accessibility and proximity using individual point-level
data

In this chapter, we mix two different concepts of indicators, accessibility and spatial prox-
imity (see Table 10), both frequently used especially in the context of GIS (geographic
information systems). Both concepts are discussed together because they have two as-
pects in common: 1) they are based on the geographical distance between point locations,
in particular, the distance between an origin point i or several origin points (i = 1, ..., n)
and one or more destination points j (j = 1, ...,m), and 2) for the calculation, they
require geocoded (with geographical coordinates) individual point data.

One popular indicator of accessibility is the Hansen accessibility, developed by Hansen
(1959) in the context of land use theory. The basic idea is that “accessibility” equals the
sum of opportunities outgoing from a specific origin i. These opportunities are spread
over a set of m locations (j = 1, ...,m). The summation is weighted with the distance
between i and the j-th location. This distance, no matter how measured (e.g. street
distance, Euclidean distance, driving time) is assumed to be perceived in a nonlinear
way, which is operationalized by a nonlinear distance decay function (a.k.a. distance
impedance function or response function), e.g. power, exponential or logistic. A similar
concept was introduced by Harris (1954) attempting to model the market potential of

REGION : Volume 6, Number 3, 2019

R30 T. Wieland

Table 10: Accessibility and proximity indicators using point-level data

Indicator Non-normalized Normalized

Accessibility/Market potential

Harris Mj =
∑n

i=1
Oid
−1
ij

0 ≤Mj ≤ ∞

Hansen Ai =
∑m

j=1
Ojf(dij) A∗i =

∑m

j=1
Ojf(dij)∑m

j=1
Oj

i 6= j i 6= j
0 ≤ Ai ≤ ∞ 0 ≤ A∗i ≤ 1

where: f(dij) = d−λij or f(dij) = e−λ∗dij

or f(dij) = 1

1+e
−λ1+λ2dij

Proximity

Count within buffer Ni =
∑n

i=1
I(dij ≤ t)

i 6= j

Weighted count within buffer Nw
i =

∑n

i=1
I(dij ≤ t)Oj

i 6= j

Ripley Kt = 1
λ

∑n

i=1

I(dij≤t)
n

Lt =
√

Kt
π

Ht = Lt − t
i 6= j i 6= j i 6= j

E(Kt) = πt2 E(Lt) = t E(Ht) = 0

where: λ = n
A

Notes: dij is the distance from origin location i (i = 1, ..., n) to destination location j (j = 1, ...,m), Oj
is a variable quantifying the size of destination j, t is a maximum search radius and I(dij ≤ t) is the
indicator function taking the value of I = 1 if dij ≤ t, and I = 0 otherwise.
Compiled from: Kiskowski et al. (2009); Krider, Putler (2013); Peña Carrera (2002); Pooler (1987);
Reggiani et al. (2011); Smith (2016)

locations. If we replace the inverse distance weighting in the Harris indicator with another
type of distance weighting, we see that both concepts are mathematically equivalent.
The only difference is that the Harris indicator is conceptualized from the supplier’s
perspective j (e.g. market potential of a retail store) and the Hansen accessibility takes
the demand location i as a starting point (Pooler, 1987; Reggiani et al., 2011). As these
indicators are dimensionless and range from zero to infinity, a normalization with a range
from zero to one can be computed by weighting the results with the opportunities without
distance correction.

This accessibility/potential concept can be used in the regional economic context e.g.
to quantify the over-regional job potential (e.g. Wieland, Fuchs 2018) or the clustering
of point locations of a specific type, such as retail stores (e.g. Larsson, Öner 2014). The
most common application of these indicators may be the context of transport economics
and transport geography (e.g. Albacete et al. 2017).

In the GIS context, spatial proximity can be measured using concentric zones within
a radius of t (buffers) around point i, where the number of the j points within this
radius is counted (Longley et al., 2005). A systematic analysis of spatial proximity
or cluster patterns is possible using Ripley’s K function (Ripley, 1976). It compares
empirical point counts with expected values from a random spatial point process based
on a Poisson distribution. Ripley’s K computes empirical values for each distance band
with a maximum distance of t, which can be compared to the expected value. A more
comprehensible (and linear) interpretation is provided when normalizing the K function
in the form of the L or H function. Also, confidence intervals for the expected values
can be calculated by bootstrapping (Kiskowski et al., 2009; Smith, 2016). All of these
measures are based on a simple indicator function, I(dij ≤ t), which takes the value
of I = 1 if point j is within a distance of t from point i or not (I = 0). Originating
from natural sciences, especially Ripley’s K is frequently used when analyzing location
patterns in spatial economic contexts, such as the clustering of retail stores (e.g. Krider,

REGION : Volume 6, Number 3, 2019

T. Wieland R31

Table 11: REAT functions for accessibility and proximity on the point level

Indicator REAT function Mandatory arguments Optional arguments Output

Distance dist.mat() data frame(s) with start i 6= j data frame with
matrix points i (ID, lat, lon) and from, to, from-to

end points j (ID, lat, lon), and distance dij
distance unit (distance matrix)

Buffer dist.buf() data frame(s) with start i 6= j, sum Oj list with distance
points (ID, lat, lon) and at endpoints matrix (data frame)
end points (ID, lat, lon), and count table

max. distance t, (data frame)
distance unit

Hansen/ hansen() distance matrix (data distance constant, data frame with
Harris frame with start points i max. distance t, origins i and

and end points j as well i 6= j accessibility Ai
as distance dij and Oj),

weighting functions,
parameters λ and γ

Ripley ripley() data frame with points local K values, visible: matrix with t, Kt,
(ID, lat, lon), total area confidence E(Kt), Kt − E(Kt), Lt
A, max. distance t, intervals and Ht for each distance
number of distance no. of samples, interval, invisible: matrix

intervals significance level, (as described above)
plot (K, L or H) and optional: matrices

with local K values and
confidence intervals

Source: own compilation.

Putler 2013) or other types of firms assumed to be connected in a network (e.g. Espa
et al. 2010).

5.2 Application in REAT

5.2.1 REAT functions for accessibility and proximity on the point level

Table 11 shows the REAT functions for the accessibility and proximity methods described
above. A simple Euclidean distance matrix for georeferenced points (data frame with
latitude and longitude) can be calculated using the function dist.mat(). The function
dist.buf() computes a “count points within buffer”, where also a weighting, Oj , can
be summarized (e.g., if the destination points are cities of a given population, one could
count the number of cities within 50 kilometers and their corresponding population).
The latter function uses dist.mat(), thus, it is not necessary to create a distance matrix
before.

The same is the case for the function ripley(), which calculates Ripley’s K function
for georeferenced data (data frame with lat/lon) and a given number of distance intervals
up to a maximum distance of t. The differences between the empirical values, Kt, and
the expected values, E(Kt), as well as the normalizations (Lt and Ht) are calculated
and returned automatically. Optionally, local K values for each distance interval and
corresponding confidence intervals are computed. These confidence intervals are based
on bootstrapping with a given number of samples (default: 100) on a given significance
level (the default value is α = 0.05, which leads to confidence intervals of a range from
α/2 = 2.5% to 1−α/2 = 97.5%). Note that the plot of the K function (or, when desired,
L or H function) provides a graphical and more intuitive interpretation of the analyzed
point pattern, especially when including confidence intervals.

When calculating the Hansen accessibility (or the Harris market potential) with
hansen(), a distance matrix including the opportunities, Oj , is required. This can be, of
course, done with dist.mat() (if straight-line distances are sufficient), but also with any
other software creating distance matrices (and any type of transport costs indicator). In
hansen(), the user may choose between a power, exponential or logistic distance decay
function. Optionally, the normalized Hansen accessibility is returned additionally.

REGION : Volume 6, Number 3, 2019

R32 T. Wieland

5.2.2 Application example 1: Location analysis of medical practices

In the example in Section 2.2.2, we dealt with small-scale regional inequality in health
care in South Lower Saxony, Germany. We have seen that e.g. psychotherapists are more
spatially clustered than general practitioners (GPs). Returning to this topic, we want
to use proximity and accessibility measures for determining the market potential (in the
sense of the Harris model) of these health care locations. Obviously, there are differ-
ent location patterns of general practitioners and psychotherapists. In the related study,
there was evidence that psychotherapists are not just clustered but clustered within some
districts of larger cities (Wieland, Dittrich, 2016). In the German health care planning
system, the market potential of medical practices is the main determinant of the official
authorization to be included into the allocation system of health insurance, while psy-
chotherapists are assumed to need quite larger market areas than GPs (Kassenärztliche
Bundesvereinigung, 2013). Consequently, our research hypothesis is that the population
potential of psychotherapists is larger than that of general practitioners.

We use the same test data as in the mentioned example, containing the health lo-
cations (GoettingenHealth1) and the corresponding settlements (GoettingenHealth2).
We load both R datasets:

data(GoettingenHealth1)

data(GoettingenHealth2)

Table GoettingenHealth1 contains 617 locations, whose ID is stored in the column
location. Columns lat and lon contain the latitude and longitude, respectively, while
the corresponding location type can be found in column type (phys_gen: general prac-
titioners, psych: psychotherapists, pharm: pharmacies). As the following applications
may be time-consuming, we extract the general practitioners from GoettingenHealth1

and draw a random sample of ten doctor’s practices:

physgen <- GoettingenHealth1[GoettingenHealth1$type == "phys_gen",]

general practitioners: column "type" is equal to "phys_gen"

physgen_sample <- physgen[sample(nrow(physgen),10),]

random sampling of ten general practitioners

Now, we want to summarize the population potential of these health locations in a 1,000
meters buffer. We apply the function dist.buf() to the sample data physgen_sample

and sum up the local population of the districts within this distance (column pop in
GoettingenHealth2):

physgen_pot <- dist.buf (physgen_sample, "location", "lat", "lon",

GoettingenHealth2, "district", "lat", "lon", bufdist = 1000,

ep_sum = "pop")

counting all districts within a radius of 1000 meters

and summing the corresponding population

We calculate the arithmetic mean of all ten potentials:

mean2(physgen_pot$count_table$sum_pop)

[1] 8027.7

On average, the ten GP practices have a population potential of about 8,028 inhabi-
tants. One problem related to the buffer technique is the lack of distance weighting: All
origin points up to a given distance are included completely, while all points above 1,000
meters are ignored. Thus, we repeat estimating the population potential using the Hansen
accessibility. At first, we need an origin-destination matrix (distance matrix) from the
origin points to the sampled GP locations. We use the function dist.mat() and merge
the returned distance matrix with the population values from GoettingenHealth2:

REGION : Volume 6, Number 3, 2019

T. Wieland R33

physgen_od <- dist.mat(GoettingenHealth2, "district", "lat", "lon",

physgen_sample, "location", "lat", "lon")

creating OD matrix from all districts to the

sampled general practitioners

physgen_od <- merge (physgen_od, GoettingenHealth2,

by.x = "from", by.y = "district")

merging with GoettingenHealth2 to include the

population values of the districts

Then, we use the function hansen() to calculate the Hansen accessibility (used in
the sense of the Harris market potential model) for each GP location in physgen_od.

The required columns in this dataset are the IDs of the GP locations (to), the IDs
of the districts (from) and the population of the districts (pop) as well as the distances
calculated above (distance). Finally, we have to set a distance weighting (which has an
important influence in all types of spatial interaction models like this). For this purpose,
we fall back on the results of a study by Fülöp et al. (2011): Based on empirical patient’s
choice of doctor, they estimated distance decay functions in spatial interaction models
(Huff model) for several types of physicians. For GPs, an exponential distance decay
function with λ = −0.28 was found to fit the empirical data best. To set a distance
decay function type and the related weighting(s), the function arguments dtype and
lambda must be used. We save the results under the name physgen_hansen:

physgen_hansen <- hansen (physgen_od, "to", "from", "pop",

"distance", dtype = "exp", lambda = -0.28)

calculating Hansen accessibility for the ten

sampled general practitioners

The output of the hansen() function is:

Hansen Accessibility

J = 420 locations with mean attractivity = 1138.486

I = 10 origins with mean transport costs = 28.07581

Attractivity weighting (pow) with Gamma = 1

Distance weighting (exp) with Lambda = -0.28

to accessibility

1 1103 24267.054

2 1171 17629.564

3 1206 9581.732

4 1220 9213.407

5 197 10023.854

6 301 6489.571

7 600 69676.232

8 755 66921.123

9 966 13154.921

10 974 3666.171

Again, we calculate the arithmetic mean of the distance-weighted market potentials:

mean2(physgen_hansen$accessibility)

[1] 23062.36

The average population potential of the ten GPs is equal to 23,063 inhabitants.
As we want to compare the market potential of GPs and psychotherapists, we repeat

the same analysis for them, now in the “fast mode”, leaving out most comments, as the
functions and commands are exactly the same as above, only applied to psychotherapists.

REGION : Volume 6, Number 3, 2019

R34 T. Wieland

psychgen <- GoettingenHealth1[GoettingenHealth1$type == "psych",]

psych_sample <- psychgen[sample(nrow(psychgen),10),]

psych_pot <- dist.buf (psych_sample, "location", "lat", "lon",

GoettingenHealth2, "district", "lat", "lon", bufdist = 1000,

ep_sum = "pop")

mean2(psych_pot$count_table$sum_pop)

[1] 12245.88

The calculation of Hansen accessibility is different from the one for GPs with respect
to the assumed distance reaction of the (potential) clients: For psychotherapists, Fülöp
et al. (2011) found a distance impedance which is considerably smaller than for GPs
(and any other type of doctor), resulting in a weighting parameter of λ = −0.11 in the
exponential decay function:

psych_od <- dist.mat(GoettingenHealth2, "district", "lat", "lon",

psych_sample, "location", "lat", "lon")

psych_od <- merge (psych_od, GoettingenHealth2,

by.x = "from", by.y = "district")

psych_hansen <- hansen (psych_od, "to", "from", "pop",

"distance", dtype = "exp", lambda = -0.11)

Hansen Accessibility

J = 420 locations with mean attractivity = 1138.486

I = 10 origins with mean transport costs = 25.56756

Attractivity weighting (pow) with Gamma = 1

Distance weighting (exp) with Lambda = -0.11

to accessibility

1 1031 43415.63

2 1213 39226.26

3 179 33491.41

4 313 51228.41

5 506 147887.43

6 786 147969.39

7 791 147971.80

8 811 148021.51

9 872 147475.57

10 922 42424.51

mean2(psych_hansen$accessibility)

[1] 94911.19

We see that the average population potential of the sampled psychotherapists on the
1,000 meters buffer level is equal to 12,246 inhabitants, which is about one third more
than for GPs. The Hansen/Harris market potential of psychotherapists of about 94,911
persons is a fourfold increase compared to the GPs. We have to remember that the last
result is not only a matter of location but also due to a lower assumed distance decay.
However, the population potential of the sampled psychotherapists is obviously higher
than the potential of the GPs, which can be attributed to a different location pattern,
where psychotherapists are more clustered within larger city districts.

5.2.3 Application example 2: Clustering of health service providers

We stick to the example of health care locations. As we have found different degrees
of regional inequality with respect to suppliers (Section 2.2.2) and of market potentials

REGION : Volume 6, Number 3, 2019

T. Wieland R35

(Section 5.2.2), we now analyze the clustering patterns of health service providers. In
South Lower Saxony there is nearly the same number of psychotherapists (118) and
pharmacies (120), but we should not expect their location patterns to be similar or
even equal. Following the results above, we hypothesize that psychotherapists are more
spatially clustered than pharmacies (as we already know about clustering with respect to
districts in the former case and we can expect an avoidance tendency in the latter case
due to a high degree of substitutability).

For this analysis, we compute Ripley’s K with the REAT function ripley(). Before
going on, we have to prepare two things: First, we load the required dataset. Then, we
must calculate the total area of the study area manually (here: in square meters).

data (GoettingenHealth1)

area_goe <- 1753000000

area of Landkreis Goettingen (sqm)

area_nom <- 1267000000

area of Landkreis Northeim (sqm)

area_gn <- area_goe+area_nom

Now, we compute Ripley’s K for the pharmacies only, which means processing only
those locations in GoettingenHealth1 which are pharmacies (type == "pharm"). We
set our maximum search radius equal to t = 30000 (function argument t.max), divided
into 300 distance intervals (t.sep), resulting in distance steps of 100 meters. As we
want to check for a significant deviation from a random spatial pattern, we instruct the
function to construct confidence intervals (ci.boot = TRUE) using the default settings
(α = 0.05, 100 bootstrapping samples). We also plot the results (default function ar-
gument: K.plot = TRUE) to inspect our results graphically. Here, we plot Kt, which is
also the default setting (if the user wants to plot Lt or Ht instead, the function argument
Kplot.func has to be changed to “L” or “H”, respectively):

ripley(GoettingenHealth1[GoettingenHealth1$type == "pharm",],

"location", "lat", "lon", area = area_gn, t.max = 30000, t.sep = 300,

K.local = TRUE, ci.boot = TRUE, ci.alpha = 0.05, ciboot.samples = 100,

plot.title = "Ripley’s K: Clustering of pharmacies")

The output is a matrix with six columns and one row for each distance interval.
Thus, we skip the full output here:

Ripley’s K

n = 120 points

t <= K t exp K t Kt-Kt exp L t H t

1 100 31415.93 3355556 3324140 1033.492 933.49238

2 200 125663.71 12583333 12457670 2001.349 1801.34940

3 300 282743.34 25586111 25303368 2853.824 2553.82412

4 400 502654.82 32297222 31794567 3206.326 2806.32580

5 500 785398.16 39008333 38222935 3523.739 3023.73923

...

We repeat the computation of Ripley’s K for the psychotherapists:

ripley(GoettingenHealth1[GoettingenHealth1$type == "psych",],

"location", "lat", "lon", area = area_gn, t.max = 30000, t.sep = 300,

K.local = TRUE, ci.boot = TRUE, ci.alpha = 0.05, ciboot.samples = 100,

plot.title = "Ripley’s K: Clustering of psychotherapists")

REGION : Volume 6, Number 3, 2019

R36 T. Wieland

(a) Pharmacies (n=120) (b) Psychotherapists (n=118)

Figure 4: Plots of the Ripley-K function with confidence intervals

The output is (also truncated):

Ripley’s K

n = 118 points

t <= K t exp K t Kt-Kt exp L t H t

1 100 31415.93 30798621 30767205.2 3131.055 3031.055025

2 200 125663.71 48583740 48458076.6 3932.516 3732.516350

3 300 282743.34 80249928 79967184.8 5054.141 4754.141421

4 400 502654.82 132737719 132235064.2 6500.133 6100.132940

5 500 785398.16 202143062 201357664.2 8021.480 7521.479612

...

The graphical output is shown in Figures 4a (pharmacies) and 4b (psychotherapists),
respectively. The expected value of Kt is plotted as blue line, while the empirical Kt

values are red and the corresponding confidence intervals are colored in green (These
colors are the default values in ripley() and can be changed by the function argu-
ments lcol.exp and lcol.emp, respectively). As we have nearly the same number of
points in both cases within the same field area, a direct comparison seems reasonable.
Obviously, both types of locations show a significant spatial clustering: Also the phar-
macies are more clustered than expected on condition of complete spatial randomness
up to a distance of about 15,000 meters. We have to remember that also the population
is already clustered (see Section 2.2.2) and the spatial distribution of pharmacies may
follow this pattern. However, the clustering of psychotherapists exceeds this level enor-
mously, especially within smaller distances up to about 8,000 meters. In conclusion, the
psychotherapists are more spatially clustered than pharmacies.

6 Analysis and prognosis of regional growth

6.1 Tools and models concerning regional growth

6.1.1 Analyzing regional growth: shift-share analysis and portfolio matrix

Aspects of regional growth have already been discussed in the context of regional conver-
gence in Section 3. The identification of clusters was the topic of Section 4. Combining
some aspects of both, this section presents a collection of tools and models concerning re-
gional growth with respect to industries. Like the indicators in Section 4, these techniques
are of high significance especially in the context of local economic policy and municipal
business promotion activities, aiming at e.g. strengthening a city’s or region’s compet-
itiveness, defining its profile or increasing the number of jobs (Dinc, 2015; Nischwitz
et al., 2017). Inspired by Farhauer, Kröll (2014) and congruent with the mathematical
formulations in Section 4, we calculate on the basis of local/regional employment, eij ,

REGION : Volume 6, Number 3, 2019

T. Wieland R37

(a) Regional growth portfolio (b) Regional growth & specialization port-
folio

Figure 5: Regional economic portfolio matrix

which is the number of employees of industry i in region j. Its growth from time t to time
t + y can be operationalized as an absolute value (∆eij = eijt+y − eijt) or as a relative
growth (∆ergij = eijt+y/eijt) or as a (percentage) growth rate (∆egrij = eijt+y/eijt − 1).

The first technique described is the regional economic portfolio matrix, originating
from the portfolio matrix in marketing, developed by the Boston Consulting Group
(BCG) for the identification of growing and declining business fields of firms (Henderson,
1973). However, this technique can also be applied to several regional economic contexts
(Baker et al., 2002; Howard, 2007). Here, we present a portfolio matrix which compares
the growth in one region with the growth in a superordinate reference region (e.g. whole
economy). When using the matrix in this way, it is a plot of the growth rate with
respect to industry i in the region (∆egrij) on the x axis and the corresponding growth
in the reference region (∆egri) on the y axis (see Figure 5a). The size of the points
for each industry may be the total size of employment in the region (eij) to reflect
the absolute relevance of the i-th industry. The plot is segmented into four quadrants,
differentiated with respect to positive or negative growth rates. As implied by the colors
of the quadrants, they can be interpreted as follows: Quadrant I (top right) contains
the industries growing in both the region and the whole economy (or any other reference
region). Quadrant II (top left) shows all industries growing in the whole economy but
shrinking in the regarded region, which may indicate significant locational handicaps.
Quadrant III (bottom left) includes all industries shrinking in the region as well as in the
whole economy. Quadrant IV (bottom right) shows the special case of “star” industries,
indicating that these industries grow in the regarded region while shrinking in the whole
economy. Note that this segmentation (and the corresponding interpretation) differs
from the original BCG matrix.

Another variant of the portfolio matrix, which was developed in the context of de-
signing the REAT package, is shown in Figure 5b. Combining the aspects of regional
specialization (see Section 4) and regional growth, we can plot the location quotient
as an indicator of local specialization on the x axis, while plotting an industry-specific
growth indicator on the y axis. For identifying “growing” industries, there are at least
three options of operationalization: We can plot the industry-specific regional growth
rate (∆egrij) on the y axis (which is on the x axis in the portfolio matrix in Figure 5a) or
the industry-specific national rate (∆egri) or, if we want to show regional growth in re-
lation to national growth, the quotient of industry-specific regional and national growth
rates (∆egrij /∆e

gr
i). In quadrant I, we see now all industries overrepresented in the re-

gion (in terms of the location quotient) as well as growing on the regional/national level.
Quadrant II shows all industries underrepresented in the region but growing as well. In
quadrants III and IV, we can identify all industries with negative growth rates, which
are underrepresented or overrepresented, respectively.

REGION : Volume 6, Number 3, 2019

R38 T. Wieland

Table 12: Shift-share analysis: Dunn and Gerfin type

Component Dunn-type (absolute) Gerfin-type (index)

∆ej = ejt+y − ejt =

njt,t+y +mjt,t+y + cjt,t+y

Net total shift tt+y = ejt+y − ejt − njt,t+y = tt+y = mjt,t+y cjt,t+y =

ejt+y
ejt
et+y
et

mjt,t+y + cjt,t+y

static (two time periods t and t+ y)

National share njt,t+y = ejt
et+y
et
− ejt njt,t+y = 1 (omitted)

Industrial mix mjt,t+y =
∑I

i=1
eijt

eit+y
ei
− ejt

et+y
et

mjt,t+y =

∑I

i=1
eijt

eit+y
ei

ejt
et+y
et

Regional share cjt,t+y =
∑I

i=1
eijt (

eijt+y
eijt

−
eit+y
eit

) cjt,t+y =

eijt+y
eijt∑I

i=1
eijt

eit+y
ei

dynamic (T time periods, while T > 2)

National share njt,T =
∑T

t=1
ejt

et+1

et
− ejt

Industrial mix mjt,T =
∑T

t=1

∑I

i=1
eijt

eit+1

ei
− ejt

et+1

et

Regional share cjt,T =
∑T

t=1

∑I

i=1
eijt (

eijt+1

eijt
−
eit+1

eit
)

industry-specific

National share nijt,t+y
= eijt

eit+y
eit

− eijt

Regional share cijt,T
= eijt (

eijt+y
eijt

−
eit+y
eit

)

prognosis for time period z

Employment ∆eijt+z = eijt+y (
ePit+z
eit+y

)cjt,t+y

Notes: ejt is the employment in region j at time t, eijt is the employment of industry i in region j
at time t, et is the total employment in the whole economy at time t, eit is the total employment in
industry i, y and z are numbers of time periods added to t (z > y), T is the number of regarded time
periods and I is the number of industries.
Compiled from: Farhauer, Kröll (2014); Haynes, Parajuli (2014); Schätzl (2000); Schönebeck (1996);
Spiekermann, Wegener (2008); Barff, Knight (1988)

A well-established model of regional growth is the shift-share analysis, which is, al-
though developed independently from the portfolio matrix, closely linked to the concept
presented above. The original shift-share analysis was introduced by Dunn Jr. (1960)
and given a theoretical foundation by Casler (1989). Parallelly and independently, Gerfin
(1964) developed a variant of shift-share analysis, which is more popular in the German-
speaking regional economic science. Both concepts have been extended in several ways.
Table 12 shows the basics of shift-share analysis with respect to “Dunn” and “Gerfin”
type. As there are several ways of formulating the shift-share formulae and calling the
particular elements of the shift-share analysis, the description here is based on the math-
ematical formulations in Farhauer, Kröll (2014) and the terms used in Haynes, Parajuli
(2014).

The basic idea of shift-share analysis is the decomposition of regional growth into
components, recognizing that single economic regions are embedded into and influenced
by a larger regional system, normally the whole economy, just called “the nation” here-
inafter: The (employment or e.g. gross value added) growth of industry i in region j
from time t to time t + y can be attributed to 1) a national trend, which means the
economic climate in the whole system of regions, 2) the all-over growth or decline of
the regarded industries and 3) the industry-specific performance of the region, which is
linked to locational advantages or disadvantages. The first component is called national
share and reflects the growth in region j that would have occurred if region j would have
developed exactly as the nation. The second component is the industrial mix, represent-

REGION : Volume 6, Number 3, 2019

T. Wieland R39

ing the aggregated industry-specific growth in region j if the regarded industries would
have developed like in the whole economy, adjusted by the national effect. The third
component is the regional share, which is the “residuum” of the first two components;
this share of growth is attributed to locational advantages (or disadvantages), showing
the regional growth adjusted by national and industry effects (Farhauer, Kröll, 2014;
Haynes, Parajuli, 2014).

The Dunn-type models deal with absolute growth (∆eij or ∆ej), which is the sum of
all shift-share components, and a net total shift, which is the sum of the industrial mix
and the regional share (as these components are region-specific). Thus, this technique
is also called the “difference method”. The Gerfin-type approaches express growth in
terms of indices, while the net total shift for region j is the result of a multiplication
of the industrial mix index and the regional share index, resulting in the alternative
denomination “index method” (Schätzl, 2000).

Several extensions have been developed for the Dunn-type shift-share analysis (Haynes,
Parajuli, 2014). One regular application calculates a shift-share analysis for each indus-
try i in region j (instead of computing components for the whole region), while skipping
the industrial mix effect. A main contribution was the dynamic shift-share analysis by
Barff, Knight (1988). It extended the Dunn model by dealing with growth within a lon-
gitudinal cut of T years. Other extensions of the Dunn-type technique provide a deeper
differentiation of the three components, which are regarded as correlated (e.g. Arcelus
1984; Esteban-Marquillas 1972).

6.1.2 Commercial area prognosis

Also developed independently in the context of German urban planning, a commercial
area prognosis deals with an absolute (assumed) employment growth (∆eij) over T years,
which is used to forecast the required commercial area within a city or region j up to
time T . Note that “commercial area” represents the type of urban area which is used
by specific economic activities, especially industrial plants, and/or designated for this
purpose in municipal land-use plans. This technique is a demand-side approach, as it
derives the required commercial area from the (expected) demand for it (Bonny, Kahnert,
2005). See Table 13 for the calculation of two types of commercial area prognosis based
on employment growth.

The basic model called GIFPRO (German abbreviation for “Gewerbe- und Indus-
trieflächenbedarfsprognose”, roughly translated: prognosis of future demand of commer-
cial area) was developed by Stark et al. (1981). The usual procedure is to estimate –
starting from the current employment – the future industry-specific employment in re-
gion j. This number of employees is weighted by the industry-specific shares of workers
usually located in commercial areas and multiplied by a resettlement rate (sqij percent
of employees from industry i are resettled in one time period) and a relocation rate
(rqij percent of employees from industry i are relocated in one time period) as well as
a reutilization rate (ruij percent of employees from industry i will be located at reused
commercial area). This “commercial area-relevant” employment is weighted with an
areal index, aij (commercial area per employee), to compute the commercial area for
industry i in region j for one time period t. The expected commercial area is summed
over all I industries (Ajt) and, finally, over all T years and I industries (AjT) (Bonny,
Kahnert, 2005; Planungsgruppe MWM, 2009).

A significant extension was developed in the context of establishing a land-use plan
for Dresden: The TBS-GIFPRO (German abbreviation for “Trendbasierte und standort-
spezifische Gewerbe- und Industrieflächenbedarfsprognose”, roughly translated: trend-
based and location-specific prognosis of future demand of commercial area) technique
(Deutsches Institut für Urbanistik GmbH, Spath + Nagel (GbR), 2010). It includes a
stochastic approach for forecasting employment as well as other region-specific data. The
employment prognosis is done using a trend regression model (employment against time)
based on past empirical employment data for region j (mostly from official employment
statistics) which are used for forecasting future employment. For each i industry, a single
regression model is estimated, where the function type is not pre-defined but chosen e.g.
based on the explained variance (R2) and/or plausibility considerations.

REGION : Volume 6, Number 3, 2019

R40 T. Wieland

Table 13: Commercial area prognosis

Prognosis GIFPRO TBS-GIFPRO

Employment eAijt =

[(
eijt0

ai
100

sqij
100

)
+

(
eijt0

ai
100

rqij
100

)]
eAijt =

[(
eijt

ai
100

sqij
100

)
+

(
eijt

ai
100

rqij
100

)]
−
(
eijt0

ruij
100

)
−
(
eijt

ruij
100

)
where: eijt = f(t) = a+ bt or

f(t) = atb or f(t) = aebt or

f(t) =
eMAXij

1+e−a+bt

Areal index pre-defined: aiij empirical estimation: aiij =
Aij
eij

Commercial area Aijt = eAijtaiij

Ajt =
∑I

i=1
Aijt

AjT =
∑I

i=1

∑T

t=1
Aijt

Notes: eAijt is the (expected) number of employees of industry i in region j which is located in commercial

areas at time t, eijt0 is the employment of industry i in region j at start time t0 (empirical value), eijt is
the (expected) employment of industry i in region j at time t, ai is the share of employees in industry i
which is located in commercial areas, sqij is the resettlement rate with respect to industry i in region j in
one time period, rqij is the relocation rate with respect to industry i in region j in one time period, ruij
is the reutilization rate with respect to industry i in region j in one time period, aiij is the areal index
with respect to industry i in region j (commercial area per employee), Aijt is the (expected) commercial
area for industry i in region j at time t, Ajt is the (expected) commercial area in region j at time t and
AjT is the sum of the (expected) commercial area in region j over all T time periods.
Compiled from: Bonny, Kahnert (2005); CIMA Projekt + Entwicklung GmbH et al. (2011); Deutsches
Institut für Urbanistik GmbH, Spath + Nagel (GbR) (2010); Planungsgruppe MWM (2009); Mulligan
(2006); Vallée et al. (2012)

The function may be linear (which seems unrealistic) or not: Deutsches Institut für
Urbanistik GmbH, Spath + Nagel (GbR) (2010) use linear and exponential functions.
However, from the growth perspective, also a logistic function may be applied (see Mul-
ligan 2006 for a discussion of logistic growth with respect to population). If possible, the
areal index and, maybe, other parameters are also estimated empirically for the specific
region j (e.g. via firm-level surveys and/or official statistical data).

6.2 Application in REAT

6.2.1 REAT functions for analyzing and forecasting regional growth

Table 14 shows the functions for the analysis of regional growth as implemented in REAT.
Table 15 presents the functions related to commercial area prognosis. All of these func-
tions require at least current employment data for each industry in the regarded region
j, eij , which may be a single numeric vector or the column of a data frame or matrix.
Another similarity of all mentioned functions is the optional argument of the industry
names (or codes). If no industry names are stated by the user (default function argument:
industry.names = NULL), the industries are numbered consecutively. With respect to
the function output, all regional growth functions distinguish between a visible and an
invisible output (see e.g. Section 3), where the main results are returned automatically
and the details are included in the invisible output (mostly a list with several entries
of type matrix).

The portfolio matrix (growth portfolio and growth-specialization portfolio, respec-
tively) can be plotted using the functions portfolio() and locq.growth(), respec-
tively. The different techniques of shift-share analysis are distributed over five functions
(shift(), shiftd(), shifti(), shiftid() and shiftp()). The usage of portfolio and
shift-share functions is similar: In any case, the user needs industry-specific employment
data for the regarded region and the reference region (e.g. whole economy) for at least
two time periods (e.g. years).

REGION : Volume 6, Number 3, 2019

T. Wieland R41

Table 14: REAT functions for analyzing regional growth

Model REAT function Mandatory arguments Optional arguments Output

Growth portfolio() vectors of eijt and eijt+y point size visible: plot,

portfolio and vectors of eit and factor, invisible: growth
matrix eit+y or matrix/data industry names rates (matrix)

frame with eijt and
eit for T years,

point size (e.g. eijt+y)

Growth and locq.growth() vectors of eijt and eijt+y point size visible: plot,

specialization and vectors of eit and factor, invisible: list with
portfolio eit+y or matrix/data industry names portfolio data

matrix frame with eijt and (matrix), LQij
eit for T years, (matrix) and

point size (e.g. eijt+y) growth rates

(matrix)

Shift-share shift() vectors of eijt and eijt+y , shift-share visible: matrix

analysis vectors of eit and eit+y method with components,

(default: Dunn), invisible: list with
industry names, components (matrix),
plot components, growth (matrix) and

plot portfolio shift method (char),
optional: plot(s)

dynamic shiftd() vectors of eijt0 and eit0 , shift-share visible: matrix
matrix/data frame with method with annual
eijt and eit for T years (default: Dunn), components,

industry names, invisible: list with
plot components, components (matrix),

plot portfolio annual components
(matrix), growth

(matrix) and shift
method (char),

optional: plot(s)

industry- shifti() vectors of eijt and eijt+y , shift-share visible: matrix

specific vectors of eit and eit+y method with industry

(default: Dunn), components,
industry names, invisible: list with
plot components, components (matrix),

plot portfolio industry components
(matrix), growth

(matrix) and shift
method (char),

optional: plot(s)

industry- shiftid() vectors of eijt0 and eit0 , shift-share visible: matrix
specific and matrix/data frame with method with industry
dynamic eijt and eit for T years (default: Dunn), components,

industry names, invisible: list with
plot components, components (matrix),

plot portfolio industry components
(matrix), growth

(matrix) and shift
method (char),

optional: plot(s)

prognosis shiftp() vectors of eijt and eijt+y , industry names, visible: matrix

vectors of eit and eit+y , plot with industry

vector of ePit+z
components,

invisible: list with
industry employment
prognosis (matrix),

components (matrix),
industry components

(matrix), growth
(matrix) and shift

method (char),
optional: plots

Source: own compilation.

REGION : Volume 6, Number 3, 2019

R42 T. Wieland

Table 15: REAT functions for commercial area prognosis

Model REAT function Mandatory arguments Optional arguments Output

GIFPRO gifpro() vectors of eij , ai, vector of ruij , visible: total
sqij , rqij and aiij , industry names, commercial area and

time interval, type of output (optional) annual values,
time base invisible: list with

components (matrices),
annual and all-over

results (list with two
matrices)

TBS-GIFPRO gifpro.tbs() vectors of eijt for T vector of ruij , visible: total
years, ai, sqij , rqij industry names, commercial area and

and aiij , time interval, type of output, (optional) annual values,
time base, trend employment invisible: list with
function types forecast only components (matrices),

annual and all-over
results (list with two
matrices), industry-

specific forecast
model results (list
with I matrices)

Source: own compilation.

All functions for shift-share analysis (except for shift-share prognosis with shiftp())
provide three variants of calculation of the components: The classical Dunn method
(default function argument shift.method="Dunn"), the Dunn extension by Esteban-
Marquillas (1972) (shift.method="Esteban") producing four components instead of
three, and the Gerfin method (shift.method="Gerfin"). When calculating a dynamic
shift-share analysis, the user must choose the function shiftd(). Industry-specific
components are returned by the function shifti(). With shiftid() one can com-
bine both approaches. Here, it is important to recognize that the function structure
allows a combination of e.g. industry-specific and dynamic components while calcu-
lating the components from the Esteban-Marquillas extension of shift-share analysis.
Additionally, the shift-share functions may plot a portfolio matrix (function argument
plot.portfolio = TRUE), allowing portfolio and shift-share analysis at once.

Both functions for commercial area prognosis (gifpro() and gifpro.tbs()) require
vectors of employment data as well as the coefficients for resettlement etc. When fore-
casting commercial area using the trend-specific technique with gifpro.tbs(), the user
needs time series data of previous industry-specific employment and has to specify a
trend function type (linear, power, exponential or logistic) for each industry. The “best”
function type may be examined visually by regarding the employment forecasting out-
put (optional function argument prog.plot = TRUE) and the related R2 values which
is part of the invisible function output. Note that this function uses the REAT function
curvefit(), which is a simple tool for bivariate regression, similar to the curve fitting
functions in other spreadsheet or statistics software.

6.2.2 Application example 1: Analysis of regional growth in Göttingen

Referring to the example in Section 4.2.2, we perform a regional growth analysis for the
German city Göttingen. We use the same dataset Goettingen as before, that contains
industry-specific employment data for Göttingen and Germany from 2008 to 2017. We
load our example data:

data(Goettingen)

In the first step, we want to examine the industry-specific growth in Göttingen visu-
ally. Using the function portfolio(), we plot a regional growth matrix with respect to
the 15 industries (rows 2 to 16). We also set a plot title (argument pmtitle) and axis
labels (arguments pmx and pmy, respectively) as well as industry-specific colors (argument
pcol):

REGION : Volume 6, Number 3, 2019

T. Wieland R43

(a) Growth portfolio matrix for Göttingen (b) Growth-specialization matrix for Göttingen

Figure 6: Portfolio matrix analysis for 15 industries in Göttingen

portfolio (Goettingen$Goettingen2008[2:16],

Goettingen$Goettingen2017[2:16],

Goettingen$BRD2008[2:16], Goettingen$BRD2017[2:16],

psize = Goettingen$Goettingen2017[2:16], psize.factor = 15,

pmtitle = "Growth of 15 industries in Göttingen",

industry.names = Goettingen$WZ2008_Code[2:16],

pmx = "Growth Göttingen 2008-2017 [%]",

pmy = "Growth Germany 2008-2017 [%]",

pcol.border = "grey",

pcol = c("darkgreen", "powderblue", "chocolate", "darkred",

"orange", "cadetblue1", "chartreuse1", "red", "coral",

"coral4", "cyan", "darkcyan", "yellow", "green", "deeppink"),

leg = TRUE, leg.x = -90)

Similarly, we plot a growth-specialization portfolio matrix using locq.growth() with
the same options (colors etc.). On the y axis, we put the industry-specific regional growth
which is stated by the function argument y.axis = "r" (if we would like to see the
national growth instead, we had to set y.axis = "n"; for the quotient of regional and
national growth, use y.axis = "rn"):

locq.growth (Goettingen$Goettingen2008[2:16],

Goettingen$Goettingen2017[2:16],

Goettingen$BRD2008[2:16], Goettingen$BRD2017[2:16],

psize = Goettingen$Goettingen2017[2:16], psize.factor = 15,

y.axis = "r", industry.names = Goettingen$WZ2008_Code[2:16],

pmtitle = "Growth and specialization in Göttingen",

pmx = "Regional specialization Göttingen",

pmy = "Growth Göttingen 2008-2017 [%]", pcol.border = "grey",

pcol = c("darkgreen", "powderblue", "chocolate", "darkred",

"orange", "cadetblue1", "chartreuse1", "red", "coral",

"coral4", "cyan", "darkcyan", "yellow", "green", "deeppink"),

leg = TRUE, leg.x = 0.1)

The resulting growth portfolio matrix is shown in Figure 6a, the growth-specialization
portfolio in Figure 6b. The size of the points (or bubbles) is equal to the current
industry-specific employment (eij) for 2017 (rows 2 to 16 of column Goettingen2017

in the example data), normalized with respect to a maximum point size of 15 (argument
psize.factor = 15). As we can see, the health sector (industry code Q, green bubble)
has the highest absolute relevance, which can be attributed to the local university hos-
pital (see Section 4.2.2). The axes in the growth portfolio are segmented at x = 0 and
y = 0, respectively, which means a differentiation between positive and negative growth.

REGION : Volume 6, Number 3, 2019

R44 T. Wieland

As we can see, most industries have grown from 2008 to 2017 in both the region and the
whole economy (see quadrant I) with similar growth rates. There is one outlier: Industry
R (arts, entertainment, and recreation) shows a regional growth of more than 75 percent,
while the national growth is about 10 percent. Note that we see percentage growth rates
from 2008 to 2017 here (if average growth rates are desired, use the function argument
time.periods).

Looking at the growth-specialization portfolio, we can identify absolute relevance and
growth rate as well as regional specialization of the industries (The colors and bubble
sizes are equal to those in Figure 6a). In quadrant I, we find the industries which
are overrepresented in Göttingen (specialization) and growing at this regional level. As
expected in this university city and related to our results in Section 4.2.2, the “stars”
in Göttingen are education (code P), health (code Q) and professional, scientific and
technical services (code M).

While the portfolio matrix analysis tells us about the industry-specific growth, the
shift-share analysis decomposes this growth into the national, industrial and regional
components. In the first step, we perform a static shift-share analysis in the sense of
Dunn Jr. (1960) for the same data as in the portfolio analysis by applying the function
shift():

shift(Goettingen$Goettingen2008[2:16], Goettingen$Goettingen2017[2:16],

Goettingen$BRD2008[2:16], Goettingen$BRD2017[2:16])

rows 2-6: 15 industries

columns Goettingen2008 and Goettingen2017:

employment Goettingen 2008 and 2017, respectively

columns BRD2008 and BRD2017:

employment Germany 2008 and 2017, respectively

This is our (visible) output:

Shift-Share Analysis

Method: Dunn

Shift-share components

Components

Growth (t1-t) 10411.0000

National share 9178.1916

Industrial mix 2204.8202

Regional share -972.0118

Net total shift 1232.8084

Calculation for 15 industries

Regional employment at time t: 56872, at time t+1:

67283 (10411 / 18.30602 %)

National employment at time t: 27695398, at time t+1:

32164973 (4469575 / 16.13833 %)

In this cross-sectional analysis, we see that the overall employment in Göttingen
increased by 10,411 persons from 2008 to 2017. However, a large share of this growth
is due to the growth in the national economy (njt,t+y ≈ 9, 178 employees), which is
only a bit lower than Göttingen. The industrial mix component (mjt,t+y) shows that
approximately 2,205 additional employees must be attributed to an overrepresentation
of growing industries in Göttingen. The regional share is negative (cjt,t+y ≈ −972),
which indicates locational disadvantages. When interpreting the industrial mix also as a
regional aspect (which seems plausible), we can look at the sum of the industrial mix and
the regional share: The net total shift (tt+y) is equal to 1,233 employees, representing
the growth difference between the region and the whole economy.

We confirm our results using the Gerfin technique. We request it by setting the
argument shift.method of the shift() function equal to "Gerfin":

shift(Goettingen$Goettingen2008[2:16], Goettingen$Goettingen2017[2:16],

Goettingen$BRD2008[2:16], Goettingen$BRD2017[2:16],

shift.method = "Gerfin")

REGION : Volume 6, Number 3, 2019

T. Wieland R45

The output is:

Shift-Share Analysis

Method: Gerfin

Shift-share components

Components

Industrial mix 1.0333810

Regional share 0.9857591

Net total shift 1.0186647

Calculation for 15 industries

Regional employment at time t: 56872, at time t+1:

67283 (10411 / 18.30602 %)

National employment at time t: 27695398, at time t+1:

32164973 (4469575 / 16.13833 %)

In the index method, there is no national share component (implicitly, it is equal to
one), thus, we only take a look at the industrial mix and the regional share as well as
the net total shift. The industrial mix component is above one (njt,t+y ≈ 1.03), showing
a more advantageous sector structure in Göttingen compared to Germany. While the
regional share in the Dunn-type shift-share analysis was negative, this component in the
Gerfin analysis is slightly below one (cjt,t+y ≈ 0.99), indicating locational disadvantages.

These traditional techniques only regard the overall growth with respect to cross-
sectional data. To gain a deeper insight and take into account also seasonal effects,
we perform a dynamic shift-share analysis in the sense of Barff, Knight (1988) which
distinguishes between the 15 industries simultaneously. This can be done via the REAT

function shiftid(), requiring data for the initial time period and at least for two fol-
lowing periods. In the Goettingen dataset, the rows 2 to 16 represent the industries
and the columns represent the years (2008 to 2017). Data for the regarded region and
the whole economy is arranged successively. We also use the industry codes in column
WZ2008_Code. In this function, we have to define the start and end periods explicitly:

shiftid(Goettingen$Goettingen2008[2:16], Goettingen[2:16,3:12],

Goettingen$BRD2008[2:16], Goettingen[2:16,13:22],

time1 = 2008, time2 = 2017,

industry.names = Goettingen$WZ2008_Code[2:16])

columns 3-12: employment in Göttingen 2009-2017

columns 13-22: employment in Germany 2009-2017

The result is:

Dynamic Shift-Share Analysis

Method: Dunn

Shift-share components

A BDE C F G

Growth (t1-t) -3.000000 29.00000 -1117.0000 -255.0000 -51.0000

National share 6.103502 -9.46377 254.5217 160.0638 561.7436

Regional share -9.103502 38.46377 -1371.5217 -415.0638 -612.7436

Net total shift -9.103502 38.46377 -1371.5217 -415.0638 -612.7436

H I J K M

Growth (t1-t) 524.0000 470.00000 274.00000 -465.000000 2229.000

National share 368.2053 515.03493 286.32383 6.356612 1821.392

Regional share 155.7947 -45.03493 -12.32383 -471.356612 407.608

Net total shift 155.7947 -45.03493 -12.32383 -471.356612 407.608

N O P Q R

Growth (t1-t) 1178.0000 268.0000 1272.0000 4211.000 363.00000

National share 977.9869 167.9118 1138.5383 3556.692 47.50353

Regional share 200.0131 100.0882 133.4617 654.308 315.49647

Net total shift 200.0131 100.0882 133.4617 654.308 315.49647

REGION : Volume 6, Number 3, 2019

R46 T. Wieland

Calculation for 15 industries

Regional employment at time t: 56872, at time t+1:

67283 (10411 / 18.30602 %)

National employment at time t: 27695398, at time t+1:

32164973 (4469575 / 16.13833 %)

The visible output is a matrix containing one row for each component (the number of
components depends on the selected shift-share method, here: Dunn) and I columns (one
for each industry). As we calculate industry-specific components, there is no industrial
mix effect, which means that the calculations are on the level of single industries. Again,
we detect large absolute growth for industries P (education) and Q (health) (see Table
9). Interestingly, this growth can be mainly attributed to effects in the whole economy.
The corresponding regional shares are small but positive, showing locational advantages
with respect to these industries in Göttingen.

The logic of shift-share analysis can also be regarded in two other examples: If in-
dustry C (manufacturing) had developed as in the national trend, the absolute growth
in Göttingen would be equal to 255 employees. In fact, there was a decline of 1,117 em-
ployees, resulting in a negative regional share of -1,372 employees, indicating locational
disadvantages with respect to the manufacturing sector. The opposite is true for the
industries with code BDE (including electricity, gas, water supply, etc.): The absolute
growth of 29 employees would not have occurred if this sector had developed as in the
whole economy (negative national share equal to -9 employees). The residuum (regional
share) is equal to 38 employees, indicating a trend contrary to the national.

6.2.3 Application example 2: Commercial area prognosis for Göttingen

Using the same data, we now perform a commercial area prognosis for Göttingen. We
load our data:

data(Goettingen)

When using the GIFPRO-based commercial area prognosis techniques, several param-
eters have to be defined (employment shares in commercial areas ai, resettlement rate
sqij , relocation rate rqij and areal index aiij ; a reutilization rate ruij is optional, thus,
we ignore the reutilization of commercial area in this example). These parameters have
to be defined for each industry. In our example, we use the employment shares as well
as the resettlement and relocation rates from Deutsches Institut für Urbanistik GmbH,
Spath + Nagel (GbR) (2010). Note that some sectors are, per definition, not located
within commercial areas (e.g. agriculture), resulting in an employment share of ai = 0.
As we want to reuse the sets of parameters, we save them as single numeric vectors:

ca_share <- c(0, 0, 100, 90, 70, 100, 10, 20, 20, 20, 20, 0, 0, 0, 0)

industry-specific shares of employees in commercial areas

sq_quote <- c(0.77, 0.77, 0.15, 0.15, 0.77, 0.15, 0.77, 0.77,

0.77, 0.77, 0.77, 0.77, 0.77, 0.77, 0.77)

industry-specific resettlement quote

rq_quote <- rep(0.7, 15)

industry-specific relocation quote (0.7 for each of the 15 industries)

area_index <- c(0, 0, 200, 75, 250, 250, 50, 100, 100, 100, 100,

50, 50, 50, 50)

industry-specific area index (sqm commercial area per employee)

Now, we compute the traditional commercial area prognosis using the gifpro() func-
tion and the Goettingen data as well as the parameters defined above. We forecast the
commercial area for five years (tinterval = 5). Our base is 2017 (time.base = 2017),
as this is the last year empirical data is available for. We save the (invisible) output in
the list object gifpro_goettingen:

gifpro_goettingen <- gifpro (e_ij = Goettingen$Goettingen2017[2:16],

a_i = ca_share, sq_ij = sq_quote, rq_ij = rq_quote, tinterval = 5,

ai_ij = area_index, time.base = 2017,

industry.names = Goettingen$WZ2008_Code[2:16], output = "full")

REGION : Volume 6, Number 3, 2019

T. Wieland R47

As we have set output = "full", the visible function output contains overall as well
as annual values:

GIFPRO

Method: GIFPRO

Employment and commercial area changes (allover)

Employment Commercial Area

Sum 1113.8785 212981.94

Average 222.7757 42596.39

Employment and commercial area changes (per time unit)

Employment CommercialArea

2018 222.7757 42596.39

2019 222.7757 42596.39

2020 222.7757 42596.39

2021 222.7757 42596.39

2022 222.7757 42596.39

Calculation for 15 industries

In all 15 industries, 1,114 new employees are predicted for the year 2022, resulting in
212,928 square meters required for new commercial area. As the employment prognosis
is not based on (nonlinear) trend regression but on constant growth, the absolute em-
ployment growth and the required commercial area are equal in each year (223 employees
and 42,596 sqm, respectively).

The object gifpro_goettingen contains a list called components containing the
single components of prognosis as well as the results already shown in the visible output
(results). To understand the GIFPRO technique and the related REAT function, we
take a look at the single components:

gifpro_goettingen$components

$resettlement

2018 2019 2020 2021 2022

A 0.00000 0.00000 0.00000 0.00000 0.00000

BDE 0.00000 0.00000 0.00000 0.00000 0.00000

C 11.81100 11.81100 11.81100 11.81100 11.81100

F 1.80090 1.80090 1.80090 1.80090 1.80090

G 38.00489 38.00489 38.00489 38.00489 38.00489

H 3.72150 3.72150 3.72150 3.72150 3.72150

I 1.73327 1.73327 1.73327 1.73327 1.73327

J 3.12928 3.12928 3.12928 3.12928 3.12928

K 2.67806 2.67806 2.67806 2.67806 2.67806

M 12.18910 12.18910 12.18910 12.18910 12.18910

N 7.50750 7.50750 7.50750 7.50750 7.50750

O 0.00000 0.00000 0.00000 0.00000 0.00000

P 0.00000 0.00000 0.00000 0.00000 0.00000

Q 0.00000 0.00000 0.00000 0.00000 0.00000

R 0.00000 0.00000 0.00000 0.00000 0.00000

$relocation

2018 2019 2020 2021 2022

A 0.0000 0.0000 0.0000 0.0000 0.0000

BDE 0.0000 0.0000 0.0000 0.0000 0.0000

C 55.1180 55.1180 55.1180 55.1180 55.1180

F 8.4042 8.4042 8.4042 8.4042 8.4042

G 34.5499 34.5499 34.5499 34.5499 34.5499

H 17.3670 17.3670 17.3670 17.3670 17.3670

I 1.5757 1.5757 1.5757 1.5757 1.5757

J 2.8448 2.8448 2.8448 2.8448 2.8448

K 2.4346 2.4346 2.4346 2.4346 2.4346

REGION : Volume 6, Number 3, 2019

R48 T. Wieland

M 11.0810 11.0810 11.0810 11.0810 11.0810

N 6.8250 6.8250 6.8250 6.8250 6.8250

O 0.0000 0.0000 0.0000 0.0000 0.0000

P 0.0000 0.0000 0.0000 0.0000 0.0000

Q 0.0000 0.0000 0.0000 0.0000 0.0000

R 0.0000 0.0000 0.0000 0.0000 0.0000

$reuse

2018 2019 2020 2021 2022

A 0 0 0 0 0

BDE 0 0 0 0 0

C 0 0 0 0 0

F 0 0 0 0 0

G 0 0 0 0 0

H 0 0 0 0 0

I 0 0 0 0 0

J 0 0 0 0 0

K 0 0 0 0 0

M 0 0 0 0 0

N 0 0 0 0 0

O 0 0 0 0 0

P 0 0 0 0 0

Q 0 0 0 0 0

R 0 0 0 0 0

$employment

2018 2019 2020 2021 2022

A 0.00000 0.00000 0.00000 0.00000 0.00000

BDE 0.00000 0.00000 0.00000 0.00000 0.00000

C 66.92900 66.92900 66.92900 66.92900 66.92900

F 10.20510 10.20510 10.20510 10.20510 10.20510

G 72.55479 72.55479 72.55479 72.55479 72.55479

H 21.08850 21.08850 21.08850 21.08850 21.08850

I 3.30897 3.30897 3.30897 3.30897 3.30897

J 5.97408 5.97408 5.97408 5.97408 5.97408

K 5.11266 5.11266 5.11266 5.11266 5.11266

M 23.27010 23.27010 23.27010 23.27010 23.27010

N 14.33250 14.33250 14.33250 14.33250 14.33250

O 0.00000 0.00000 0.00000 0.00000 0.00000

P 0.00000 0.00000 0.00000 0.00000 0.00000

Q 0.00000 0.00000 0.00000 0.00000 0.00000

R 0.00000 0.00000 0.00000 0.00000 0.00000

As we defined some industries as not relevant for commercial areas (ai = 0), they do
not contribute any employees neither resettled nor relocated (such as A - agriculture, B
- mining and quarrying or R - arts, entertainment, and recreation). We see that e.g. in
the manufacturing sector (code C), there is an annual increase of about 12 employees
attributed to resettlement and 55 employees related to relocation each year (see row
3 in resettlement and relocation, respectively). As we ignored the reutilization of
commercial area, the matrix containing the commercial area-relevant employment related
to reutilization (reuse) contains only zeros. The sum of all three components is stored
in the fourth matrix, employment. There is an annual increase of nearly 67 employees
in the manufacturing sector. The contents of the results list is the same as shown in
the visible output.

In the next step, we apply the trend-based commercial area prognosis (TBS-GIFPRO)
to the Goettingen data. In the gifpro.tbs() function, we use the employment data
from 2008 to 2017 (columns 3 to 12), and assume an exponential function for employ-
ment prognosis (function argument prog.func, repeating the argument "exp" for each
industry). The employment prognosis is plotted (prog.plot = TRUE), showing all 15
plots in one (plot.single = FALSE):

REGION : Volume 6, Number 3, 2019

T. Wieland R49

Figure 7: Employment prognosis for 15 industries in Goettingen (TBS-GIFPRO)

gifpro.tbs (e_ij = Goettingen[2:16,3:12],

a_i = ca_share, sq_ij = sq_quote, rq_ij = rq_quote, tinterval = 5,

prog.func = rep("exp", nrow(Goettingen[2:16,3:12])),

ai_ij = area_index, time.base = 2008,

industry.names = Goettingen$WZ2008_Code[2:16],

prog.plot = TRUE, plot.single = FALSE, output = "full")

The visible function output is similar to the output above:

GIFPRO

Method: TBS-GIFPRO

Employment and commercial area changes (allover)

Employment CommercialArea

Sum 1139.6592 216012.46

Average 227.9318 43202.49

Employment and commercial area changes (per time unit)

Employment CommercialArea

2018 224.9565 42945.53

2019 226.2904 43054.76

2020 227.7755 43182.97

2021 229.4169 43330.70

2022 231.2199 43498.50

Calculation for 10 industries

The resulting plot containing the employment forecasting functions is shown in Figure
7. The black vertical lines divide the plots into the esimation segment (2008 to 2017) and
the prognosis segment (2018 to 2022). Four function types are supplied: linear (blue),
power (green), exponential (yellow) and logistic (red). Note that a linear trend seems
unrealistic as it implies continuous growth and may result in negative employment if
the slope is negative. At this point, we should normally discuss and find the “best”

REGION : Volume 6, Number 3, 2019

R50 T. Wieland

forecasting model for each industry and rerun our analysis a few times. In our example,
we skip this step and just take a look at the prognosis functions: In most cases, an
exponential growth (or decline) seems to be an appropriate approximation. The power
functions (green lines) are nearly invisible as their data fit is nearly the same as that
of the exponential functions. Thus, we could choose them instead. In our case, the
exponential function seems sufficient.

As expected, a nonlinear industry growth results in a nonlinear overall employment
growth and, consequently, the commercial area-relevant employment also grows in a
nonlinear way. As we can see from the gifpro.tbs() output, employment increases by
about 228 employees per year on average and by about 1,140 employees over the five years
regarded (2018 to 2022). The annual commercial area required ranges from 42,946 sqm
(2018) to 43,499 sqm (2022), all in all 216,012 sqm up to 2022. In our case, the estimated
commercial area exceeds the prognosis derived from the simple GIFPRO analysis, which
can be attributed to the positive differences between the exponential prognosis and a
linear prognosis (see Figure 7). We skip the inspections of the components, which could
be addressed by saving the results in an object (list), as we did in the first GIFPRO
example.

7 Final remarks

This paper has shown how R and specifically the package REAT can be used for regional
economic analysis. It should be noted that this package aims at width with respect
to the treated analysis subjects rather than depth. The subsections provide the basic
analysis methods regarded as most important from the package developer’s point of view
(with respect to usage in current papers and discussion in current textbooks as well as
application in own research projects), while there are several other approaches as well as
extensions of the basic methods. A more detailed survey of the common methods can be
found in the cited literature, especially in review articles (e.g. Nakamura, Morrison Paul
2009; Portnov, Felsenstein 2010) and textbooks (e.g. Farhauer, Kröll 2014).

Finally, we have to keep in mind that this package (like nearly any other free software)
was developed in a non-commercial context (and published under the GNU General
Public License). All functions have been tested several times using various real data and
single functions have already been used in a few research projects. However, there is no
warranty that all functions always work perfectly. Like nearly any other R package, REAT
is continuously refined, which means extending functions as well as correcting errors.
This requires attentive usage and, of course, constructive feedback from the package
users. It can be easily transmitted using the contact information on the CRAN package
website.

REGION : Volume 6, Number 3, 2019

T. Wieland R51

References

Albacete X, Olaru D, Paül V, Biermann S (2017) Measuring the accessibility of public
transport: A critical comparison between methods in Helsinki. Applied Spatial Analysis
and Policy 10[2]: 161–188. CrossRef.

Allington NF, McCombie J (2007) Economic Growth and Beta-Convergence in the East
European Transition Economies. In: Arestis P, Baddeley M, McCombie J (eds), Eco-
nomic Growth. Edward Elgar publishing, Cheltenham, 200–222

Arcelus FJ (1984) An extension of shift-share analysis. Growth and Change 15[1]: 3–8.
CrossRef.

Bai CE, Tao Z, Tong YS (2008) Bureaucratic integration and regional specialization in
China. China Economic Review 19[2]: 308–319. CrossRef.

Baker P, von Kirchbach F, Mimouni M, Pasteels JM (2002) Analytical Tools for En-
hancing the Participation of Developing Countries in the Multilateral Trading System
in the Context of the Doha Development Agenda. Aussenwirtschaft 57[3]: 343–372.
https://EconPapers.repec.org/RePEc:usg:auswrt:2002:57:03:343-372

Balassa B (1965) Trade Liberalisation and “Revealed” Comparative Advantage. The
Manchester School 33[2]: 99–123. CrossRef.

Barff RA, Knight PL (1988) Dynamic shift-share analysis. Growth and Change 19[2]:
1–10. CrossRef.

Barro RJ, Sala-i Martin X (2004) Economic Growth (2nd ed.). MIT Press

Bonny HW, Kahnert R (2005) Zur Ermittlung des Gewerbeflächenbedarfs. Raum-
forschung und Raumordnung 63[3]: 232–240

Capello R, Nijkamp P (2009) Introduction: Regional growth and development theories in
the twenty-first century - recent theoretical advances and future challenges. In: Capello
R, Nijkamp P (eds), Handbook of Regional Growth and Development Theories. 1–18

Casler SD (1989) A Theoretical Context for Shift and Share Analysis. Regional Stud-
ies 23[1]: 43–48. CrossRef.

Ceapraz IL (2008) The Concepts of Specialisation and Spatial Concentration and the
Process of Economic Integration: Theoretical Relevance and Statistical Measures. The
Case of Romania’s Regions. Romanian Journal of Regional Science 2[1]: 68–93

Charles-Coll JA (2011) Unterstanding Income Equality: Concept, Causes and Manage-
ment. International Journal of Economics and Management Science 1[3]: 17–28

CIMA Projekt + Entwicklung GmbH, NIW Niedersächsisches Institut für Wirtschafts-
forschung, NORD/LB Regionalwirtschaft, Planquadrat Dortmund GbR (2011) Gewer-
beflächenkonzeption für die Metropolregion Hamburg (GEFEK). Research report

Cracau D, Durán Lima JE (2016) On the Normalized Herfindahl-Hirschman Index: A
Technical Note. International Journal on Food System Dynamics 7[4]: 382–386

Damgaard C, Weiner J (2000) Describing inequality in plant size or fecundity. Ecol-
ogy 81[4]: 1139–1142. CrossRef.

Dapena AD, Fernández Vázquez E, Rubiera Morollón F (2016) The role of spatial scale in
regional convergence: the effect of MAUP in the estimation of β-convergence equations.
The Annals of Regional Science 56[2]: 473–489. CrossRef.

Dauth W, Fuchs M, Otto A (2015) Standortmuster in Westdeutschland: Nur wenige
Branchen sind räumlich stark konzentriert. IAB Kurzbericht 16/2015, Institut für
Arbeitsmarkt- und Berufsforschung. http://doku.iab.de/kurzber/2015/kb1615.

pdf

REGION : Volume 6, Number 3, 2019

https://doi.org/10.1007/s12061-015-9177-8
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-2257.1984.tb00719.x
https://doi.org/10.1016/j.chieco.2006.11.005
https://EconPapers.repec.org/RePEc:usg:auswrt:2002:57:03:343-372
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9957.1965.tb00050.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-2257.1988.tb00465.x
https://doi.org/10.1080/00343408912331345272
http://doku.iab.de/kurzber/2015/kb1615.pdf
http://doku.iab.de/kurzber/2015/kb1615.pdf

R52 T. Wieland

Dauth W, Fuchs M, Otto A (2018) Long-run processes of geographical concentration
and dispersion: Evidence from Germany. Papers in Regional Science 97[3]: 569–593.
CrossRef.

Deutsches Institut für Urbanistik GmbH, Spath + Nagel (GbR) (2010) Stadten-
twicklungskonzept Gewerbe für die Landeshauptstadt Potsdam. Research re-
port, Landeshauptstadt Potsdam. https://www.potsdam.de/sites/default/files/
documents/STEK_Gewerbe_Langfassung_2010.pdf

Dinc M (2015) Introduction to Regional Economic Development. Major Theories and
Basic Analytical Tools. Elgar

Dixon R, Freebairn J (2009) Trends in Regional Specialisation in Australia. Australasian
Journal of Regional Studies 15[3]: 281–296

Doran J, Jordan D (2013) Decomposing European NUTS2 regional inequality from 1980
to 2009: National and European policy implications. Journal of Economic Stud-
ies 40[1]: 22–38. CrossRef.

Dunn Jr. ES (1960) A Statistical and Analytical Technique for Regional Analysis. Papers
in Regional Science 6[1]: 97–112. CrossRef.

Duranton G, Puga D (2000) Diversity and Specialisation in Cities: Why, Where and
When Does it Matter? Urban Studies 37[3]: 533–555. CrossRef.

Ellison G, Glaeser E (1997) Geographic Concentration in U.S. Manufacturing Industries:
A Dartboard Approach. Journal of Political Economy 105[5]: 889–927

Espa G, Arbia G, Giuliani D (2010) Measuring industrial agglomeration with inhomo-
geneous K-function: the case of ICT firms in Milan (Italy). Department of Economics
Working Papers 1014, Department of Economics, University of Trento, Italia

Esteban-Marquillas JM (1972) I. A reinterpretation of shift-share analysis. Regional and
Urban Economics 2[3]: 249 – 255. CrossRef.

Farhauer O, Kröll A (2014) Standorttheorien. Regional- und Standortökonomik in The-
orie und Praxis (2nd ed.). Springer, Heidelberg

Fujita M, Krugman P, Venables A (2001) The Spatial Economy: Cities, Regions, and
International Trade (1st ed.), Volume 1. The MIT Press

Fülöp G, Kopetsch T, Schöpe P (2011) Catchment areas of medical practices and the
role played by geographical distance in the patient’s choice of doctor. The Annals of
Regional Science 46[3]: 691–706. CrossRef.

Furceri D (2005) Beta and sigma convergence: A mathematical relation of causality.
Economics Letters 89[2]: 212–215. CrossRef.

Gerfin H (1964) Gesamtwirtschaftliches Wachstum und regionale Entwicklung. Kyk-
los 17[4]: 565–593. CrossRef.

Gini C (1912) Variabilità e Mutuabilità. Contributo allo Studio delle Distribuzioni e delle
Relazioni Statistiche. Cuppini

Gluschenko K (2018) Measuring regional inequality: to weight or not to weight? Spatial
Economic Analysis 13[1]: 36–59. CrossRef.

Goecke H, Hüther M (2016) Regional Convergence in Europe. Intereconomics 51[3]:
165–171. CrossRef.

Goschin Z, Constantin D, Roman M, Ileanu B (2009) Regional specialization and geo-
graphic concentration of industries in Romania. South-Eastern Europe Journal of Eco-
nomics 1[1]: 99–113. https://ojs.lib.uom.gr/index.php/seeje/article/view/

5536

REGION : Volume 6, Number 3, 2019

https://onlinelibrary.wiley.com/doi/abs/10.1111/pirs.12271
https://www.potsdam.de/sites/default/files/documents/STEK_Gewerbe_Langfassung_2010.pdf
https://www.potsdam.de/sites/default/files/documents/STEK_Gewerbe_Langfassung_2010.pdf
https://doi.org/10.1108/01443581311283484
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1435-5597.1960.tb01705.x
https://doi.org/10.1016/0034-3331(72)90033-4
https://doi.org/10.1007/s00168-009-0347-y
https://doi.org/10.1016/j.econlet.2005.05.026
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-6435.1964.tb01842.x
10.1080/17421772.2017.1343491
https://doi.org/10.1007/s10272-016-0595-x
https://ojs.lib.uom.gr/index.php/seeje/article/view/5536
https://ojs.lib.uom.gr/index.php/seeje/article/view/5536

T. Wieland R53

Haas A, Südekum J (2005) Spezialisierung und Branchenkonzentration in Deutschland:
Regionalanalyse. IAB-Kurzbericht 1/2005. http://hdl.handle.net/10419/158181

Habánik J, Hošták P, Kútik J (2013) Economic and social disparity development within
regional development of the Slovak Republic. Economics and Management 18[3]: 457–
464. CrossRef.

Hansen WG (1959) How Accessibility Shapes Land Use. Journal of the American Insti-
tute of Planners 25[2]: 73–76. CrossRef.

Harris CD (1954) The Market as a Factor in the Localization of Industry in the United
States. Annals of the Association of American Geographers 44[4]: 315–348

Haynes KE, Parajuli J (2014) Shift-share analysis: decomposition of spatially integrated
systems. In: Handbook of Research Methods and Applications in Spatially Integrated
Social Science. Elgar, 315–344. CrossRef.

Heinemann M (2008) Messung und Darstellung von Ungleichheit. Working Paper Se-
ries in Economics 108, University of Lüneburg, Institute of Economics. https:

//EconPapers.repec.org/RePEc:lue:wpaper:108

Henderson BD (1973) The Experience Curve - Reviewed. IV. The Growth Share Matrix or
The Product Portfolio. Reprint 135. https://www.bcg.com/documents/file13904.

pdf

Herfindahl OC (1950) Concentration in the U.S. Steel Industry. Colombia University
Press

Hirschman AO (1945) National Power and the Structure of Foreign Trade. Publications
of the Bureau of Business and Economic Research. University of California Press

Hoen AR, Oosterhaven J (2006) On the measure of comparative advantage. The Annals
of Regional Science 40[3]: 677–691. CrossRef.

Hoffmann J, Hirsch S, Simons J (2017) Identification of spatial agglomerations in the
German food processing industry. Papers in Regional Science 96[1]: 139–162. Cross-
Ref.

Hoover EM (1936) The Measurement of Industrial Localization. The Review of Eco-
nomics and Statistics 18[4]: 162–171

Howard D (2007) A regional economic performance matrix – an aid to regional economic
policy development. Journal of Economic and Social Policy 11[2]: article 4. https:

//EconPapers.repec.org/RePEc:usg:auswrt:2002:57:03:343-372

Howard E, Newman C, Tarp F (2016) Measuring industry coagglomeration and identi-
fying the driving forces. Journal of Economic Geography 16[5]: 1055–1078

Huang Y, Leung Y (2009) Measuring Regional Inequality: A Comparison of Coefficient of
Variation and Hoover Concentration Index. The Open Geography Journal 2[1]: 25–34.
CrossRef.

Jiang L, Guan M, Tian J (2007) On Chinese Regional Specialization and Industry Con-
centration. In: 2007 International Conference on Machine Learning and Cybernetics,
Volume 6, 3396–3400

Kabacoff RI (2017) Quick-R: Data Types. Manual. https://www.statmethods.net/

input/datatypes.html

Kassenärztliche Bundesvereinigung (2013) Die neue Bedarfsplanung. Grundlagen, In-
strumente und regionale Möglichkeiten. Brochure. https://www.kbv.de/media/sp/

Instrumente_Bedarfsplanung_Broschuere.pdf

REGION : Volume 6, Number 3, 2019

http://hdl.handle.net/10419/158181
10.5755/j01.em.18.3.4203
https://doi.org/10.1080/01944365908978307
https://doi.org/10.4337/9780857932976.00025
https://EconPapers.repec.org/RePEc:lue:wpaper:108
https://EconPapers.repec.org/RePEc:lue:wpaper:108
https://www.bcg.com/documents/file13904.pdf
https://www.bcg.com/documents/file13904.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/pirs.12171
https://onlinelibrary.wiley.com/doi/abs/10.1111/pirs.12171
https://EconPapers.repec.org/RePEc:usg:auswrt:2002:57:03:343-372
https://EconPapers.repec.org/RePEc:usg:auswrt:2002:57:03:343-372
https://www.statmethods.net/input/datatypes.html
https://www.statmethods.net/input/datatypes.html
https://www.kbv.de/media/sp/Instrumente_Bedarfsplanung_Broschuere.pdf
https://www.kbv.de/media/sp/Instrumente_Bedarfsplanung_Broschuere.pdf

R54 T. Wieland

Kim S (1995) Expansion of Markets and the Geographic Distribution of Economic Activi-
ties: The Trends in U. S. Regional Manufacturing Structure, 1860–1987. The Quarterly
Journal of Economics 110[4]: 881–908. CrossRef.

Kiskowski MA, Hancock JF, Kenworthy A (2009) On the Use of Ripley’s K-function and
its Derivatives to Analyze Domain Skriderize. Biophysical Journal 97[4]: 1095–1103.
CrossRef.

Kohn W, Öztürk R (2013) Statistik für Ökonomen. Datenanalyse mit R und SPSS (2nd
ed.). Springer Gabler

Krider R, Putler DS (2013) Which Birds of a Feather Flock Together? Clustering and
Avoidance Patterns of Similar Retail Outlets. Geographical Analysis 45[2]: 123–149.
CrossRef.

Krugman P (1979) Increasing returns, monopolistic competition, and international trade.
Journal of International Economics 9[4]: 469–479. CrossRef.

Krugman P (1991) Geography and trade. MIT Press

Larsson JP, Öner Ö (2014) Location and co-location in retail: a probabilistic approach
using geo-coded data for metropolitan retail markets. The Annals of Regional Sci-
ence 52[2]: 385–408. CrossRef.

Lehocký F, Rusnák J (2016) Regional specialization and geographic concentration: ex-
periences from Slovak industry. Miscellanea Geographica – Regional Studies on Devel-
opment 20[3]: 5–13. https://www.degruyter.com/downloadpdf/j/mgrsd.2016.20.
issue-3/mgrsd-2016-0011/mgrsd-2016-0011.pdf

Lessmann C (2005) Regionale Disparitäten in Deutschland und ausgesuchten OECD-
Staaten im Vergleich. ifo Dresden berichtet 3/2005: 25–33

Lessmann C (2014) Spatial inequality and development - Is there an inverted-U relation-
ship? Journal of Development Economics 106: 35–51. CrossRef.

Lessmann C (2016) Regional inequality and internal conflict. German Economic Re-
view 17[2]: 157–191. CrossRef.

Lessmann C, Seidel A (2017) Regional inequality, convergence, and its determinants – a
view from outer space. European Economic Review 92: 110–132. CrossRef.

Litzenberger T, Sternberg R (2006) Der Clusterindex – eine Methodik zur Identi-
fizierung regionaler Cluster am Beispiel deutscher Industriebranchen. Geographische
Zeitschrift 94[2]: 209–224

Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2005) Geographical Information
Systems and Science (2nd ed.). Wiley

Lorenz MO (1905) Methods of measuring the concentration of wealth. Publications of
the American Statistical Association 9[70]: 209–219. CrossRef.

Martin C (2015) Kreative Klasse 2015. Kreativität als entscheidender Faktor für
wirtschaftlichen Erfolg: Entwicklungen und Ausprägungen in Deutschland. Research
report. https://www.kreativ-sta.de/wp-content/uploads/2017/10/agiplan_

Kreative_Klasse_2015_Studie.pdf

Midelfart-Knarvik K, Overman H, Redding S, Venables A (2000) The Location of Euro-
pean Industry. European Economy - Economic Papers 142

Moga LM, Constantin DL (2011) Specialization and Geographic Concentration
of the Economic Activities in the Romanian Regions. Journal of Applied
Quantitative Methods 6[2]: 12–21. https://pdfs.semanticscholar.org/aa9d/

365d6a8ef4c3585595c8ba03fe373ab02010.pdf

REGION : Volume 6, Number 3, 2019

https://dx.doi.org/10.2307/2946643
10.1016/j.bpj.2009.05.039
10.1111/gean.12005
https://doi.org/10.1016/0022-1996(79)90017-5
https://doi.org/10.1007/s00168-014-0591-7
https://www.degruyter.com/downloadpdf/j/mgrsd.2016.20.issue-3/mgrsd-2016-0011/mgrsd-2016-0011.pdf
https://www.degruyter.com/downloadpdf/j/mgrsd.2016.20.issue-3/mgrsd-2016-0011/mgrsd-2016-0011.pdf
https://doi.org/10.1016/j.jdeveco.2013.08.011
10.1111/geer.12073
https://doi.org/10.1016/j.euroecorev.2016.11.009
https://doi.org/10.2307/2276207
https://www.kreativ-sta.de/wp-content/uploads/2017/10/agiplan_Kreative_Klasse_2015_Studie.pdf
https://www.kreativ-sta.de/wp-content/uploads/2017/10/agiplan_Kreative_Klasse_2015_Studie.pdf
https://pdfs.semanticscholar.org/aa9d/365d6a8ef4c3585595c8ba03fe373ab02010.pdf
https://pdfs.semanticscholar.org/aa9d/365d6a8ef4c3585595c8ba03fe373ab02010.pdf

T. Wieland R55

Mulligan GF (2006) Logistic Population Growth in the World’s Largest Cities. Geo-
graphical Analysis 38[4]: 344–370. CrossRef.

Mussini M (2017) Decomposing Changes in Inequality and Welfare Between EU Regions:
The Roles of Population Change, Re-Ranking and Income Growth. Social Indicators
Research 130[2]: 455–478. CrossRef.

Myrdal G (1957) Economic theory and under-developed regions. G. Duckworth

Nakamura R, Morrison Paul C (2009) Measuring agglomeration. In: Capello R, Nijkamp
P (eds), Handbook of Regional Growth and Development Theories. Elgar, 305–328

Nischwitz G, Böhme R, Fortmann F (2017) Kommunale Wirtschaftsförderung in Bremen:
Handlungsrahmen, Programme und Wirkungen. Schriftenreihe Institut Arbeit und
Wirtschaft 23/2017. http://hdl.handle.net/10419/172756

O’Donoghue D, Gleave B (2004) A Note on Methods for Measuring Industrial Agglom-
eration. Regional Studies 38[4]: 419–427. CrossRef.

OECD (2019) OECD Territorial Reviews. Website. https://www.oecd-ilibrary.

org/fr/urban-rural-and-regional-development/oecd-territorial-reviews_

19900759

Palan N (2017) Konzentrations- und Ungleichheitsindizes: ein methodischer Überblick
sowie ein empirischer Vergleich anhand der Textilindustrie. Zeitschrift für Wirtschafts-
geographie 61[3-4]: 135–155. CrossRef.

Peña Carrera L (2002) Tracing accessibility over time: two swiss case studies. Technical
report. http://hdl.handle.net/2099.1/6327

Petrakos G, Psycharis Y (2016) The spatial aspects of economic crisis in Greece. Cam-
bridge Journal of Regions, Economy and Society 9[1]: 137–152. CrossRef.

Planungsgruppe MWM (2009) Flächennutzungsplanung Gemeinde Wachtberg - Fach-
beitrag Arbeiten. Report. http://www.wachtberg.de/imperia/md/content/

cms127/gemeindeentwicklung/fnp-fb-arbeiten-24-02-2009.pdf

Pooler J (1987) Measuring geographical accessibility: a review of current approaches and
problems in the use of population potentials. Geoforum 18[3]: 269 – 289. CrossRef.

Porter ME (1990) The Competitive Advantage of Nations. Free Press

Portnov BA, Felsenstein D (2005) Measures of Regional Inequality for Small Countries.
In: Felsenstein D, Portnov B (eds), Regional Disparities in Small Countries. 47–62.
CrossRef.

Portnov BA, Felsenstein D (2010) On the suitability of income inequality measures for
regional analysis: Some evidence from simulation analysis and bootstrapping tests.
Socio-Economic Planning Sciences 44[4]: 212–219. CrossRef.

Puente S (2017) Regional convergence in Spain: 1980-2015. Research report. Economic
Bulletin 3/2017, Banco de Espana

R Core Team (2018a) R: A Language and Environment for Statistical Computing. Soft-
ware, Vienna, Austria. https://www.R-project.org/

R Core Team (2018b) The R Manuals. Manual. https://cran.r-project.org/

manuals.html

Reggiani A, Bucci P, Russo G (2011) Accessibility and Impedance Forms: Empirical
Applications to the German Commuting Network. International Regional Science
Review 34[2]: 230–252. CrossRef.

Ricardo D (1821) On the Principles of Political Economy and Taxation (3rd ed.). Mc-
Master University Archive for the History of Economic Thought

REGION : Volume 6, Number 3, 2019

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1538-4632.2006.00690.x
https://doi.org/10.1007/s11205-015-1184-2
http://hdl.handle.net/10419/172756
https://www.oecd-ilibrary.org/fr/urban-rural-and-regional-development/oecd-territorial-reviews_19900759
https://www.oecd-ilibrary.org/fr/urban-rural-and-regional-development/oecd-territorial-reviews_19900759
https://www.oecd-ilibrary.org/fr/urban-rural-and-regional-development/oecd-territorial-reviews_19900759
http://hdl.handle.net/2099.1/6327
https://dx.doi.org/10.1093/cjres/rsv028
http://www.wachtberg.de/imperia/md/content/cms127/gemeindeentwicklung/fnp-fb-arbeiten-24-02-2009.pdf
http://www.wachtberg.de/imperia/md/content/cms127/gemeindeentwicklung/fnp-fb-arbeiten-24-02-2009.pdf
https://doi.org/10.1016/0016-7185(87)90012-1
https://doi.org/10.1007/3-540-27639-4_4
https://doi.org/10.1016/j.seps.2010.04.002
https://www.R-project.org/
https://cran.r-project.org/manuals.html
https://cran.r-project.org/manuals.html

R56 T. Wieland

Ripley BD (1976) The second-order analysis of stationary point processes. Journal of
Applied Probability 13[2]: 255–266. CrossRef.

RStudio Team (2016) RStudio: Integrated Development Environment for R. Software,
RStudio, Inc., Boston, MA. http://www.rstudio.com/

Schmidt H (1997) Konvergenz wachsender Volkswirtschaften. Theoretische und em-
pirische Konzepte sowie eine Analyse der Produktivitätsniveaus westdeutscher Regio-
nen, Volume 152 of Wirtschaftswissenschaftliche Beiträge. Springer

Schönebeck C (1996) Wirtschaftsstruktur und Regionalentwicklung : theoretische und
empirische Befunde für die Bundesrepublik Deutschland, Volume 75 of Dortmunder
Beiträge zur Raumplanung Blaue Reihe. IRPUD

Schätzl L (2000) Wirtschaftsgeographie 2: Empirie (3rd ed.). Schöningh

Smith TE (2016) Notebook on Spatial Data Analysis. Technical report. http://www.

seas.upenn.edu/~ese502/#notebook

Spiekermann K, Wegener M (2008) Modelle in der Raumplanung I: 4. Input-Output-
Modelle. Presentation, Lecture “Modelle in der Raumplanung” WS 2008/2009. http:
//www.spiekermann-wegener.de/mir/pdf/MIR1_4_111108.pdf

Stark KD, Velsinger P, Bauer M, Bonny HW, Kricke J, Schwetlick D, Striedel HD
(1981) Flächenbedarfsberechnung für Gewerbe- und Industrieansiedlungsbereiche: GIF-
PRO. Number 4.029 in Schriftenreihe Landes- und Stadtentwicklungsforschung des
Landes Nordrhein-Westfalen. ILS, Dortmund

Statistisches Bundesamt (2008) German Classification of Economic Activities, Edition
2008. Dataset (XLS). https://www.destatis.de/DE/Methoden/Klassifikationen/
GueterWirtschaftklassifikationen/klassifikationWZ08englisch.xls

Störmann W (2009) Regionalökonomik. Theorie und Praxis. Oldenbourg, Munich

Taylor JK, Cihon C (2004) Statistical Techniques for Data Analysis (2nd ed.). Taylor
and Francis

Theil H (1967) Economics and information theory. North-Holland

Tian Z (2013) Measuring agglomeration using the standardized location quotient with a
bootstrap method. Journal of Regional Analysis and Policy 43[2]: 186–197

Vallée D, Witte A, Brandt T, Bischof T (2012) Bedarfsberechnung für die Darstellung von
Allgemeinen Siedlungsbereichen (ASB) und Gewerbe- und Industrieansiedlungsbere-
ichen (GIB) in Regionalplänen. Research report, Staatskanzlei des Landes Nordrhein-
Westfalen. https://www.wirtschaft.nrw/sites/default/files/asset/document/
lep_nrw_flaechenbedarf_endbericht_endfassung_04122012.pdf

Vogiatzoglou K (2006) Increasing agglomeration or dispersion? Industrial specialization
and geographic concentration in NAFTA. Journal of Economic Integration 21[2]: 379–
396

von Neumann J, Kent RH, Bellinson HR, Hart BI (1941) The Mean Square Successive
Difference. The Annals of Mathematical Statistics 12[2]: 153–162. CrossRef.

Weddige-Haaf K, Kool C (2017) Determinants of regional growth and convergence in
Germany. Discussion paper. Discussion Paper Series 17-12, Utrecht University School
of Economics

Wieland T (2019) REAT: Regional Economic Analysis Toolbox. R package version 3.0.1.
Software. https://CRAN.R-project.org/package=REAT

REGION : Volume 6, Number 3, 2019

https://doi.org/10.2307/3212829
http://www.rstudio.com/
http://www.seas.upenn.edu/~ese502/#notebook
http://www.seas.upenn.edu/~ese502/#notebook
http://www.spiekermann-wegener.de/mir/pdf/MIR1_4_111108.pdf
http://www.spiekermann-wegener.de/mir/pdf/MIR1_4_111108.pdf
https://www.destatis.de/DE/Methoden/Klassifikationen/GueterWirtschaftklassifikationen/klassifikationWZ08englisch.xls
https://www.destatis.de/DE/Methoden/Klassifikationen/GueterWirtschaftklassifikationen/klassifikationWZ08englisch.xls
https://www.wirtschaft.nrw/sites/default/files/asset/document/lep_nrw_flaechenbedarf_endbericht_endfassung_04122012.pdf
https://www.wirtschaft.nrw/sites/default/files/asset/document/lep_nrw_flaechenbedarf_endbericht_endfassung_04122012.pdf
https://doi.org/10.1214/aoms/1177731746
https://CRAN.R-project.org/package=REAT

T. Wieland R57

Wieland T, Dittrich C (2016) Bestands- und Erreichbarkeitsanalyse regionaler Gesund-
heitseinrichtungen in der Gesundheitsregion Göttingen. Research report, Georg-
August-Universität Göttingen, Geographisches Institut, Abteilung Humangeographie.
http://webdoc.sub.gwdg.de/pub/mon/2016/3-wieland.pdf

Wieland T, Fuchs H (2018) Regionalökonomische Disparitäten im Spiegel von Raum-
typisierungen. Ein Konzept zur Identifikation strukturell benachteiligter Gebiete in
Südtirol (Italien). Standort - Zeitschrift für Angewandte Geographie 42[3]: 152–163.
CrossRef.

Williamson JG (1965) Regional Inequality and the Process of National Development: A
Description of the Patterns. Economic Development and Cultural Change 13[4]: 1–84

Yamamura S, Goto H (2018) Location patterns and determinants of knowledge-intensive
industries in the Tokyo Metropolitan Area. Japan Architectural Review 1[4]: 443–456.
CrossRef.

Young AT, Higgins MJ, Levy D (2008) Sigma Convergence versus Beta Convergence:
Evidence from U.S. County-Level Data. Journal of Money, Credit and Banking 40[5]:
1083–1093. CrossRef.

c© 2019 by the author. Licensee: REGION – The Journal of ERSA, European
Regional Science Association, Louvain-la-Neuve, Belgium. This article is distri-

buted under the terms and conditions of the Creative Commons Attribution, Non-Commercial
(CC BY NC) license (http://creativecommons.org/licenses/by-nc/4.0/).

REGION : Volume 6, Number 3, 2019

http://webdoc.sub.gwdg.de/pub/mon/2016/3-wieland.pdf
https://doi.org/10.1007/s00548-018-0542-0
https://onlinelibrary.wiley.com/doi/abs/10.1002/2475-8876.12039
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1538-4616.2008.00148.x
http://creativecommons.org/licenses/by-nc/4.0/

Volume 6, Number 3, 2019, 17–37 journal homepage: region.ersa.org
DOI: 10.18335/region.v6i3.276

Demonstrating the utility of machine learning innova-
tions in address matching to spatial socio-economic ap-
plications∗

Sam Comber1

1 University of Liverpool, Liverpool, United Kingdom

Received: 16 August 2019/Accepted: 30 December 2019

Abstract. The last decade has heralded an unprecedented rise in the number, frequency
and availability of data sources. Yet they are often incomplete, meaning data fusion is
required to enhance their quality and scope. In the context of spatial analysis, address
matching is critical to enhancing household socio-economic and demographic character-
istics. Matching administrative, commercial, or lifestyle data sources to items such as
household surveys has the potential benefits of improving data quality, enabling spatial
data visualisation, and the lowering of respondent burden in household surveys. Typically
when a practitioner has high quality data, unique identifiers are used to facilitate a direct
linkage between household addresses. However, real-world databases are often absent of
unique identifiers to enable a one-to-one match. Moreover, irregularities between the text
representations of potential matches mean extensive cleaning of the data is often required
as a pre-processing step. For this reason, practitioners have traditionally relied on two
linkage techniques for facilitating matches between the text representations of addresses
that are broadly divided into deterministic or mathematical approaches. Deterministic
matching consists of constructing hand-crafted rules that classify address matches and
non-matches based on specialist domain knowledge, while mathematical approaches have
increasingly adopted machine learning techniques for resolving pairs of addresses to a
match. In this notebook we demonstrate methods of the latter by demonstrating the
utility of machine learning approaches to the address matching work flow. To achieve
this, we construct a predictive model that resolves matches between two small datasets of
restaurant addresses in the US. While the problem case may seem trivial, the intention of
the notebook is to demonstrate an approach that is reproducible and extensible to larger
data challenges. Thus, in the present notebook, we document an end-to-end pipeline
that is replicable and instructive towards assisting future address matching problem cases
faced by the regional scientist.

1 Introduction

Our overarching objective is to demonstrate how machine learning can be integrated into
the address matching work flow. By definition, address matching pertains to the process
of resolving pairs of records with a spatial footprint. While geospatial matching links the
geometric representations of spatial objects, address matching typically involves linking
the text-based representations of address pairs. The utility of address matching, and

∗This paper is available as computational notebook on the REGION webpage.

17

18 S. Comber

record linkage in general, lies in the ability to unlock attributes from sources of data that
cannot be linked by traditional means. This is often because the datasets lack a common
key to resolve a join between the address of a premise. Two example applications of
address matching uses include: the linkage of historical censuses across time for exploring
economic and geographic mobility across multiple generations (Ruggles et al. 2018), and
exploring how early-life hazardous environmental exposure, socio-economic conditions,
or natural disasters impact the health and economic outcomes of individuals living in
particular residential locations (Cayo, Talbot 2003, Reynolds et al. 2003, Baldovin et al.
2015).

For demonstrative purposes, we rely on small a set of addresses from the Fodors and
Zagat restaurant guides that contain 112 matched addresses for training a predictive
model that resolves address pairs to matches and non-matches. In a real-world application,
training a machine learning model on a small sample of matched addresses could be used
to resolve matches between the remaining addresses of a larger dataset. While we use the
example of restaurant addresses, these could easily be replaced by addresses from a far
less trivial source and the work flow required to implement the address matching exercise
would remain the same. Therefore, it is the intention of this guide to provide insight on
how the work flow of a supervised address matching work flow proceeds, and to inspire
interested users to scale the supplied code to larger and more interesting problems.

2 Packages and dependencies

[1]: %matplotlib inline

import os

import uuid

import warnings

from IPython.display import HTML

load external libraries

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import jellyfish

import recordlinkage as rl

import seaborn as sns

from postal.parser import parse_address # CRF parser

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import cross_validate, train_test_split

from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix

configure some settings

np.random.seed(123)

sns.set_style('whitegrid')
pd.set_option('display.max_colwidth', -1)

warnings.simplefilter(action='ignore', category=FutureWarning)

def hover(hover_color="#add8e6"):

return dict(selector="tbody tr:hover",

props=[("background-color", "%s" % hover_color)])

table CSS

styles = [

#table properties

dict(selector=" ",

props=[("margin","0"),

("font-family",'"Helvetica", "Arial", sans-serif'),
("border-collapse", "collapse"),

("border","none"), ("border-style", "hidden")]),

dict(selector="td", props = [("border-style", "hidden"),

("border-collapse", "collapse")]),

#header color

dict(selector="thead",

props=[("background-color","#a4dbc8")]),

REGION : Volume 6, Number 3, 2019

S. Comber 19

#background shading

dict(selector="tbody tr:nth-child(even)",

props=[("background-color", "#fff")]),

dict(selector="tbody tr:nth-child(odd)",

props=[("background-color", "#eee")]),

#header cell properties

dict(selector="th",

props=[("text-align", "center"),

("border-style", "hidden"),

("border-collapse", "collapse")]),

hover()

]

3 Data loading, cleaning and segmentation

To begin our exercise we specify the file location that contains the entirety of the 112
Zagat and Fodor matched address pairs. This file can be downloaded from the dedicated
Github repository that accompanies the paper (https://github.com/SamComber/address -
matching workflow) using the wget command.

[2]: ! wget https://raw.githubusercontent.com/SamComber/address_matching_workflow/master/

...zagat_fodor_matched.txt

[2]: --2019-12-21 09:11:31-- https://raw.githubusercontent.com/SamComber/address_matching_

workflow/master/zagat_fodor_matched.txt

Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 199.232.56.133

Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|199.232.56.133|:443

... connected.

HTTP request sent, awaiting response... 200 OK

Length: 19939 (19K) [text/plain]

Saving to: ‘zagat_fodor_matched.txt’

zagat_fodor_matched 100%[===================>] 19.47K --.-KB/s in 0.03s

2019-12-21 09:11:32 (670 KB/s) - ‘zagat_fodor_matched.txt’ saved [19939/19939]

[3]: f = 'zagat_fodor_matched.txt'

Address matching is principally a data quality challenge. Similar to other areas of
data analysis, when the quality of input data to the match classification is low, the output
generated will typically be of low accuracy (Christen 2012). Problematically, most address
databases we encounter in the real world are inconsistent, are missing of several values,
and lack standardisation. Thus, a first step in the address matching work flow is to
increase the quality of input data. In this way we increase the accuracy, completeness
and consistency of our address records, which increases the ease in which they can be
linked by the techniques we apply later on. Typically this stage begins by parsing the
text representations of addresses into rows of a dataframe.

[4]: # load matched addresses, remove comment lines and reshape into two columns

data = pd.read_csv(f, comment='#',
header=None,

names=['address']).values.reshape(-1, 2)

matched_address = pd.DataFrame(data, columns=['addr_zagat', 'addr_fodor'])

[5]: print('{} matched addresses loaded.'.format(matched_address.shape[0]))
matched_address.head(10).style.set_table_styles(styles)

REGION : Volume 6, Number 3, 2019

https://github.com/SamComber/address_matching_workflow
https://github.com/SamComber/address_matching_workflow

20 S. Comber

Table 1: Output produced by code 5

addr zagat addr fodor

0 Arnie Morton’s of Chicago 435 S. La Cienega Arnie Morton’s of Chicago 435 S. La Cienega
Blvd. Los Angeles 90048 310-246-1501 Blvd. Los Angeles 90048 310/246-1501
Steakhouses American

1 Art’s Deli 12224 Ventura Blvd. Studio City Art’s Delicatessen 12224 Ventura Blvd.
91604 818-762-1221 Delis Studio City 91604 818/762-1221 American

2 Bel-Air Hotel 701 Stone Canyon Rd. Bel Air Hotel Bel-Air 701 Stone Canyon Rd. Bel Air
90077 310-472-1211 Californian 90077 310/472-1211 Californian

3 Cafe Bizou 14016 Ventura Blvd. Sherman Cafe Bizou 14016 Ventura Blvd. Sherman
Oaks 91423 818-788-3536 French Bistro Oaks 91423 818/788-3536 French

4 Campanile 624 S. La Brea Ave. Los Angeles Campanile 624 S. La Brea Ave. Los Angeles
90036 213-938-1447 Californian 90036 213/938-1447 American

5 Chinois on Main 2709 Main St. Santa Mo- Chinois on Main 2709 Main St. Santa Mo-
nica 90405 310-392-9025 Pacific New Wave nica 90405 310/392-9025 French

6 Citrus 6703 Melrose Ave. Los Angeles Citrus 6703 Melrose Ave. Los Angeles
90038 213-857-0034 Californian 90038 213/857-0034 Californian

7 Fenix at the Argyle 8358 Sunset Blvd. W. Fenix 8358 Sunset Blvd. West Hollywood
Hollywood 90069 213-848-6677 French (New) 90069 213/848-6677 American

8 Granita 23725 W. Malibu Rd. Malibu Granita 23725 W. Malibu Rd. Malibu
90265 310-456-0488 Californian 90265 310/456-0488 Californian

9 Grill The 9560 Dayton Way Beverly Hills Grill on the Alley 9560 Dayton Way Los
90210 310-276-0615 American (Traditional) Angeles 90210 310/276-0615 American

[5]: 112 matched addresses loaded.

Output in Table 1

A series of data cleaning exercises will then modify the data in ways that support the
application of the linkage techniques. This might involve writing data cleaning scripts
that convert all letters to lowercase characters, delete leading and trailing whitespaces,
remove unwanted characters and tokens such as punctuation, or using hard-coded look-up
tables to find and replace particular tokens. All together coding these steps contributes
towards a standard form between the two address databases the user is attempting to
match. This is important because standards between the two sources of address data
under consideration will typically differ due to different naming conventions.

In the following cell blocks, we execute these steps by standardising our addresses.
More specifically, we remove non-address components, convert all text to lower case and
remove punctuation and non-alphanumeric characters.

[6]: # our rows contain non-address components such as phone number and

restaurant type so lets parse these using regular expressions into new columns

zagat_pattern = r"(?P<address>.*?)(?P<phone_number>\b\d{3}\-\d{3}\-\d{4}\b)(?

...P<category>.*$)"

fodor_pattern = r"(?P<address>.*?)(?P<phone_number>\b\d{3}\/\d{3}\-\d{4}\b)(?

...P<category>.*$)"

matched_address[["addr_zagat", "phone_number_zagat", "category_zagat"]] =

...matched_address["addr_zagat"].str.extract(zagat_pattern)

matched_address[["addr_fodor", "phone_number_fodor", "category_fodor"]] =

...matched_address["addr_fodor"].str.extract(fodor_pattern)

[7]: # standardise dataframe by converting all strings to lower case

matched_address = matched_address.applymap(lambda row : row.lower() if type(row) ==

... str else row)

remove punctuation and non-alphanumeric characters

matched_address['addr_zagat'] = matched_address['addr_zagat'].str.replace('[^\w\s]',’’)
matched_address['addr_fodor'] = matched_address['addr_fodor'].str.replace('[^\w\s]','')

REGION : Volume 6, Number 3, 2019

S. Comber 21

3.1 Segmentation of address string into field columns

After removing unwanted characters and tokens, our next step is to segment the entire
address string into tagged attribute values. Addresses rarely come neatly formatted into
sensible fields that identify each component, and so segmentation is a vital and often
overlooked stage of the work flow. For example, an address might come in an unsegmented
format such as “19 Water St. New York 11201”. Our objective is then to segment (or
label) this address into the appropriate columns for street number, street name, city and
postcode. When we segment both sets of addresses from the datasets we intend to link,
we build well-defined output fields that are suitable for matching.

In our case we use a statistical segmentation tool called Libpostal which is a Con-
ditional Random Fields (CRFs) model trained on OpenStreetMap addresses. Before
using the Python bindings, users are required to install the Libpostal C library first
(see https://github.com/openvenues/pypostal#installation for installation instructions).
CRFs are popular methods in natural language processing (NLP) for predicting sequence
of labels across sequences of text inputs. Unlike discrete classifiers, CRFs model the
probability of a transition between labels on “neighbouring” elements, meaning they take
into account past and future address field states into the labelling of addresses into address
fields. This mitigates a limitation of segmentation models such as hidden markov models
(HMMs) called the label bias problem: “transitions leaving a given state to compete only
against each other, rather than against all transitions in the model” (Lafferty et al. 2001).
Take, for example, the business address for “1st for Toys, 244 Ponce de Leon Ave. Atlanta
30308”. A naive segmentation model would incorrectly parse “1st” as a property number,
whereas it actually completes the business name “1st for Toys”, leading to an erroneous
sequence of label predictions. When a CRFs has parsed “1st” and reaches the second
token, “for”, the model scores an l × l matrix where l is the maximal number of labels
(or address fields) that can be assigned by the CRFs. In L, lij reflects the probability of
the current word being labelled as i and the previous word labelled j (Diesner, Carley
2008). In a CRFs model, when the parser reaches the actual property number, “244”,
high scoring in the matrix indicates the current label should be a property number, and
the previous label revised to a business name. For a more detailed account, see Comber,
Arribas-Bel (2019).

To segment each address, we apply the parse_address function row-wise for both
the Zagat and Fodors addresses. This generates a list of tuples (see below code block
for an example of the first two addresses from the Zagat dataset) that we convert into
dictionaries before finally reading these into a pandas dataframe.

[8]: [[('arnie mortons of chicago', 'house'),
('435', 'house_number'),
('s la cienega blvd', 'road'),
('los angeles', 'city'),
('90048', 'postcode')],

[('arts deli', 'house'),
('12224', 'house_number'),
('ventura blvd', 'road'),
('studio city', 'city'),
('91604', 'postcode')]]

[8]: [[('arnie mortons of chicago', 'house'),
('435', 'house_number'),
('s la cienega blvd', 'road'),
('los angeles', 'city'),
('90048', 'postcode')],

[('arts deli', 'house'),
('12224', 'house_number'),
('ventura blvd', 'road'),
('studio city', 'city'),
('91604', 'postcode')]]

REGION : Volume 6, Number 3, 2019

https://github.com/openvenues/pypostal#installation

22 S. Comber

[9]: # parse address string using libpostal CRF segmentation tool

addr_zagat_parse = [parse_address(addr, country='us') for addr in

... matched_address.addr_zagat]

addr_fodor_parse = [parse_address(addr, country='us') for addr in

... matched_address.addr_fodor]

convert to pandas dataframe

addr_zagat_parse = pd.DataFrame.from_records([{k: v for v, k in row} for row in

... addr_zagat_parse]).add_suffix('_zagat')
addr_fodor_parse = pd.DataFrame.from_records([{k: v for v, k in row} for row in

... addr_fodor_parse]).add_suffix('_fodor')

vertical join of CRF-parsed addresses between both dataframes

matched_address = matched_address.join(addr_zagat_parse).join(addr_fodor_parse)

Given we know the match status of our training data, we can safely join the records
back together once we have successfully segmented them. Moreover, as we know the
match status in advance, we can assign unique IDs that we will use later to create a
binary variable for indicating whether an address pair is matched or non-matched.

[10]: # create unique ID for matched addresses, these will be used later to create a match

status

uids = [str(uuid.uuid4()) for i in matched_address.iterrows()]

the following two lines will assign the same uid to both columns, thus facilitating

a match

addr_zagat_parse['uid'], addr_fodor_parse['uid'] = uids, uids

match_ids = pd.DataFrame({'zagat_id' : addr_fodor_parse['uid'], 'fodor_id' :

... addr_fodor_parse['uid']})

[11]: # join match ids to main dataframe

matched_address = matched_address.join(match_ids)

preview of our parsed dataframe with uids assigned

matched_address.head().style.set_table_styles(styles)

[11]: Output in Table 2

4 Creation of candidate address pairs using a ‘full index’

Once our addresses have met a particular standard of quality and are segmented into the
desired address fields, the next step requires us to create candidate pairs of addresses that
potentially resolve to the same address. In record linkage, this step is typically called
indexing or blocking, and is required to reduce the number of address pairs that are
compared. In doing so we remove pairs that are unlikely to resolve to true matches. To
demonstrate the utility of blocking and why it is so important to address matching, we
first create a full index which creates all possible combinations of address pairs. More
concretely, a full index generates the Cartesian product between both sets of addresses.
Conditional on the size of both dataframes, full blocking is highly computationally
inefficient, and in our case we create 112 × 112 = 12544 candidate links; this has a
complexity of O(n2). We demonstrate the full index method to motivate the desire for
practitioners to implement more sophisticated blocking techniques.

4.1 Full index

Below, we instantiate an Index class before specifying the desired full index method for
generating pairs of records. We then create the Cartesian join between the Zagat and
Fodor addresses which creates a MultiIndex that links every Zagat address with every
Fodor address.

REGION : Volume 6, Number 3, 2019

S. Comber 23

T
a
b

le
2
:

O
u

tp
u

t
p

ro
d

u
ce

d
b
y

co
d

e
1
1

N
r

a
d
d
r
za
g
a
t

a
d
d
r
fo
d
o
r

p
h
o
n
e
n
u
m
-

ca
te
g
o
ry

za
g
a
t

p
h
o
n
e
n
u
m
-

ca
te
g
o
ry

fo
d
o
r

ci
ty

za
g
a
t

ci
ty

d
is
t-

b
er

za
g
a
t

b
er

fo
d
o
r

ri
ct

za
g
a
t

0
a
rn
ie

m
o
rt
o
n
s

a
rn
ie

m
o
rt
o
n
s

3
1
0
-2
4
6
-1
5
0
1

st
ea
k
h
o
u
se
s

3
1
0
/
2
4
6
-1
5
0
1

a
m
er
ic
a
n

lo
s
a
n
g
el
es

n
a
n

o
f
ch
ic
a
g
o
4
3
5

o
f
ch
ic
a
g
o
4
3
5

s
la

ci
en

eg
a

s
la

ci
en

eg
a

b
lv
d
lo
s
a
n
g
e-

b
lv
d
lo
s
a
n
g
e-

le
s
9
0
0
4
8

le
s
9
0
0
4
8

1
a
rt
s
d
el
i
1
2
2
2
4

a
rt
s
d
el
ic
a
te
s-

8
1
8
-7
6
2
-1
2
2
1

d
el
is

8
1
8
/
7
6
2
-1
2
2
1

a
m
er
ic
a
n

st
u
d
io

ci
ty

n
a
n

v
en
tu
ra

b
lv
d

se
n
1
2
2
2
4
v
en

-
st
u
d
io

ci
ty

tu
ra

b
lv
d
st
u
-

9
1
6
0
4

d
io

ci
ty

9
1
6
0
4

2
b
el
a
ir

h
o
te
l

h
o
te
l
b
el
a
ir

3
1
0
-4
7
2
-1
2
1
1

ca
li
fo
rn
ia
n

3
1
0
/
4
7
2
-1
2
1
1

ca
li
fo
rn
ia
n

n
a
n

n
a
n

7
0
1
st
o
n
e
ca
n
-

7
0
1
st
o
n
e
ca
n
-

y
o
n
rd

b
el

a
ir

y
o
n
rd

b
el

a
ir

9
0
0
7
7

9
0
0
7
7

3
ca
fe

b
iz
o
u

ca
fe

b
iz
o
u

8
1
8
-7
8
8
-3
5
3
6

fr
en

ch
b
is
tr
o

8
1
8
/
7
8
8
-3
5
3
6

fr
en

ch
sh
er
m
a
n
o
a
k
s

n
a
n

1
4
0
1
6
v
en
tu
ra

1
4
0
1
6
v
en

tu
ra

b
lv
d
sh
er
m
a
n

b
lv
d
sh
er
m
a
n

o
a
k
s
9
1
4
2
3

o
a
k
s
9
1
4
2
3

4
ca
m
p
a
n
il
e
6
2
4

ca
m
p
a
n
il
e
6
2
4

2
1
3
-9
3
8
-1
4
4
7

ca
li
fo
rn
ia
n

2
1
3
/
9
3
8
-1
4
4
7

a
m
er
ic
a
n

lo
s
a
n
g
el
es

n
a
n

s
la

b
re
a
av
e

s
la

b
re
a
av
e

lo
s
a
n
g
el
es

lo
s
a
n
g
el
es

9
0
0
3
6

9
0
0
3
6

C
o
n
ti
n
u
ed

(a
d
d
it
io
n
a
l
co
lu
m
n
s)

o
n
n
ex
t
pa
ge

REGION : Volume 6, Number 3, 2019

24 S. Comber

T
a
b
le

2
–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

N
r

h
o
u
se

za
g
a
t

h
o
u
se

n
u
m
-

p
o
st
co
d
e
za
g
a
t

ro
a
d
za
g
a
t

su
b
u
rb

za
g
a
t

ci
ty

fo
d
o
r

ci
ty

d
is
t-

h
o
u
se

fo
d
o
r

b
er

za
g
a
t

ri
ct

fo
d
o
r

0
a
rn
ie

m
o
rt
o
n
s

4
3
5

9
0
0
4
8

s
la

ci
en

eg
a
b
lv
d

n
a
n

lo
s
a
n
g
el
es

n
a
n

a
rn
ie

m
o
rt
o
n
s

o
f
ch
ic
a
g
o

o
f
ch
ic
a
g
o

1
a
rt
s
d
el
i

1
2
2
2
4

9
1
6
0
4

v
en
tu
ra

b
lv
d

n
a
n

st
u
d
io

ci
ty

n
a
n

a
rt
s
d
el
ic
a
te
s-

se
n

2
b
el
a
ir

h
o
te
l

7
0
1

9
0
0
7
7

st
o
n
e
ca
n
y
o
n
rd

n
a
n

n
a
n

n
a
n

h
o
te
l
b
el
a
ir

b
el

a
ir

3
ca
fe

b
iz
o
u

1
4
0
1
6

9
1
4
2
3

v
en
tu
ra

b
lv
d

n
a
n

sh
er
m
a
n
o
a
k
s

n
a
n

ca
fe

b
iz
o
u

4
ca
m
p
a
n
il
e

6
2
4

9
0
0
3
6

s
la

b
re
a
av
e

n
a
n

lo
s
a
n
g
el
es

n
a
n

ca
m
p
a
n
il
e

N
r

h
o
u
se

n
u
m
-

p
o
st
co
d
e-

ro
a
d
fo
d
o
r

st
a
te

fo
d
o
r

su
b
u
rb

fo
d
o
r

b
er

fo
d
o
r

fo
d
o
r

0
4
3
5

9
0
0
4
8

s
la

ci
en

eg
a
b
lv
d

n
a
n

n
a
n

1
1
2
2
2
4

9
1
6
0
4

v
en
tu
ra

b
lv
d

n
a
n

n
a
n

2
7
0
1

9
0
0
7
7

st
o
n
e
ca
n
y
o
n
rd

n
a
n

n
a
n

b
el

a
ir

3
1
4
0
1
6

9
1
4
2
3

v
en
tu
ra

b
lv
d

n
a
n

n
a
n

4
6
2
4

9
0
0
3
6

s
la

b
re
a
av
e

n
a
n

n
a
n

N
r

za
g
a
t
id

fo
d
o
r
id

0
9
9
b
b
cd

0
3
-c
e4
5
-4
0
b
5
-9
0
7
f-
4
7
f5
a
e1
6
a
e2
9

9
9
b
b
cd

0
3
-c
e4
5
-4
0
b
5
-9
0
7
f-
4
7
f5
a
e1
6
a
e2
9

1
1
b
1
e1
ee
1
-c
8
8
0
-4
7
2
2
-a
b
a
a
-4
ec
4
4
c7
d
9
4
a
6

1
b
1
e1
ee
1
-c
8
8
0
-4
7
2
2
-a
b
a
a
-4
ec
4
4
c7
d
9
4
a
6

2
f2
5
4
8
f6
8
-2
3
2
6
-4
7
0
6
-b
d
c1
-d
b
fc
2
6
5
ec
b
f3

f2
5
4
8
f6
8
-2
3
2
6
-4
7
0
6
-b
d
c1
-d
b
fc
2
6
5
ec
b
f3

3
9
3
6
6
8
7
e2
-1
1
6
1
-4
ec
d
-9
8
c3
-b
5
a
c6
2
0
d
8
7
7
6

9
3
6
6
8
7
e2
-1
1
6
1
-4
ec
d
-9
8
c3
-b
5
a
c6
2
0
d
8
7
7
6

4
2
0
a
0
5
0
0
6
-d
0
8
e-
4
2
4
5
-b
0
1
4
-a
b
2
d
0
f5
5
2
6
6
2

2
0
a
0
5
0
0
6
-d
0
8
e-
4
2
4
5
-b
0
1
4
-a
b
2
d
0
f5
5
2
6
6
2

REGION : Volume 6, Number 3, 2019

S. Comber 25

[12]: indexer = rl.Index()

indexer.full()

create cartesian join between zagat and fodor restaurant addresses

candidate_links = indexer.index(matched_address.city_zagat, matched_address.city_fodor)

[12]: WARNING:recordlinkage:indexing - performance warning - A full index can result in large

number of record pairs.

[13]: # this creates a two-level multiindex, so we name addresses from the zagat and fodor

databases, respectively.

candidate_links.names = ['zagat', 'fodor']

print('{} candidate links created using full indexing.'.format(len(candidate_links)))

[13]: 12544 candidate links created using full indexing.

In practice, a full index creates a dataframe with 12,544 rows and thus creates candidate
address pairs between every possible combination of address from both the Zagat and
Fodor datasets. Once we generate this dataframe of potential matches, we create a match
status column and assign a 1 to actual matched addresses and 0 to non-matches based on
the unique IDs created earlier.

[14]: # lets create a function we can reuse later on

def return_candidate_links_with_match_status(candidate_links):

we return a vector of label values for both the zagat and fodor restaurant

IDs from the multiindex

zagat_ids = candidate_links.get_level_values('zagat')
fodor_ids = candidate_links.get_level_values('fodor')

now we create a new dataframe as long as the number of candidate links

zagat = matched_address.loc[zagat_ids][['city_zagat', 'house_zagat',\
'house_number_zagat', 'road_zagat',\
'suburb_zagat', 'zagat_id']]

fodor = matched_address.loc[fodor_ids][['city_fodor','house_fodor',\
'house_number_fodor', 'road_fodor',\
'suburb_fodor', 'fodor_id']]

vertically concateate addresses from both databases

candidate_link_df = pd.concat([zagat.reset_index(drop=True),

... fodor.reset_index(drop=True)], axis=1)

next we create a match status column that we will use to train a machine

learning model

candidate_link_df['match_status'] = np.nan

assign 1 for matched, 0 non-matched

candidate_link_df.loc[candidate_link_df['zagat_id'] ==

... candidate_link_df['fodor_id'], 'match_status'] = 1.

candidate_link_df.loc[~(candidate_link_df['zagat_id'] ==

... candidate_link_df['fodor_id']), 'match_status'] = 0.

return candidate_link_df

candidate_link_df = return_candidate_links_with_match_status(candidate_links)

4.2 Creation of comparison vectors from indexed addresses

To resolve addresses into matches and non-matches we generate comparison vectors
between each candidate address pair. Each element of this comparison vector is a
similarity metric used to assess the closeness of two address fields. In our case, we use
Jaro-Winkler similarity because it has been observed to perform best on attributes
containing named values (e.g., property names, street names, or city names) (Christen

REGION : Volume 6, Number 3, 2019

26 S. Comber

2012, Yancey 2005). The Jaro similarity of two given address components a1 and a2 is
given by

jaro sim =

{
0 if m = 0
1
3 (m
|a1| + m

|a2| + m−t
m) otherwise

where |ai| is the length of the address component string ai, m is the number of matching
characters, and t is the number of transpositions required to match the two address
components. We will create a function that makes use of the jellyfish implementation
of Jaro-winkler similarity. Several other string similarity metrics are available and are
optimised for particular use cases and data types. See Chapter 5 of Christen (2012) for
an excellent overview.

[15]: def jarowinkler_similarity(s1, s2):

conc = pd.concat([s1, s2], axis=1, ignore_index=True)

def jaro_winkler_apply(x):

try:

return jellyfish.jaro_winkler(x[0], x[1])

raise error if fields are empty

except Exception as err:

if pd.isnull(x[0]) or pd.isnull(x[1]):

return np.nan

else:

raise err

apply row-wise to concatenated columns

return conc.apply(jaro_winkler_apply, axis=1)

Before applying Jaro-Winkler similarity we need to choose columns that were seg-
mented in both the Zagat and Fodor datasets.

[16]: # lets take a look at the columns we have available

candidate_link_df.columns

[16]: Index(['city_zagat', 'house_zagat', 'house_number_zagat', 'road_zagat',
'suburb_zagat', 'zagat_id', 'city_fodor', 'house_fodor',
'house_number_fodor', 'road_fodor', 'suburb_fodor', 'fodor_id',
'match_status'],

dtype='object')

As we can only match columns that were parsed in both address datasets, this means
we lose two columns, city_district_zagat and state_fodor, that were parsed by the
CRF segmentation model. Once we observe which address fields are common to both
datasets, we create so-called comparison vectors from candidate address pairs of the Zagat
and Fodor datasets. Each element of the comparison vector represents the string similarity
between address fields contained in both databases. For example, city_jaro describes
the string similarity between the columns city_zagat and city_fodor. Looking at the
first two rows of our comparison vectors dataframe, a city_jaro value of 1.00 implies an
exact match whereas a value of 0.4040 implies a number of modifications are required to
match the two city names, and so these are less likely to correspond to a match.

[17]: # create a function for building comparison vectors we can reuse later

def return_comparison_vectors(candidate_link_df):

candidate_link_df['city_jaro'] = jarowinkler_similarity(candidate_link_df.

...city_zagat, candidate_link_df.city_fodor)

candidate_link_df['house_jaro'] = jarowinkler_similarity(candidate_link_df.

...house_zagat, candidate_link_df.house_fodor)

candidate_link_df['house_number_jaro'] = jarowinkler_similarity(candidate_link_df.

...house_number_zagat, candidate_link_df.house_number_fodor)

REGION : Volume 6, Number 3, 2019

S. Comber 27

Table 3: Output of code 17

city jaro house jaro house number jaro road jaro suburb jaro match status

0 1 1 1 1 0 1
1 0.40404 0.568301 0 0.629085 0 0
2 0 0.482143 0 0.674077 0 0
3 0.626263 0.502778 0.511111 0.629085 0 0
4 1 0.45463 0 0.831493 0 0

candidate_link_df['road_jaro'] = jarowinkler_similarity(candidate_link_df.

...road_zagat, candidate_link_df.road_fodor)

candidate_link_df['suburb_jaro'] = jarowinkler_similarity(candidate_link_df.

...suburb_zagat, candidate_link_df.suburb_fodor)

now we build a dataframe that contains the jaro-winkler similarity between the

address components and the matching status

comparison_vectors = candidate_link_df[['city_jaro', 'house_jaro',\
'house_number_jaro','road_jaro',\
'suburb_jaro', 'match_status']]

set NaN values to 0 so the comparison vectors can work with the applied classifiers

comparison_vectors = comparison_vectors.fillna(0.)

return comparison_vectors

comparison_vectors = return_comparison_vectors(candidate_link_df)

lets preview this dataframe to build some intution as to how it looks

comparison_vectors.head().style.set_table_styles(styles)

[17]: Output in Table 3

4.3 Classification and evaluation of match performance

Once we obtain comparison vectors for each candidate address pair, we frame our approach
as a binary classification problem by resolving the vectors into matches and non-matches.
As the Zagat and Fodors dataframe has labels that describe our address pairs as matched,
we use supervised classification to train a statistical model, a random forest, to classify
address pairs with an unknown match status into matches and non-matches. As a
reminder, a random forest is generated using a multitude of decision trees during training
which then outputs the mode of the match status decision for the individual trees.

In practice, we initialize a random forest object and split our comparison_vectors

dataframe into features containing our Jaro-Winkler string similarity features, X, and a
vector used to predict match status of the addresses, y.

[18]: # create a random forest classifier that uses 100 trees and number of cores equal to

those available on machine

rf = RandomForestClassifier(n_estimators = 100,

Due to small number of features (5) we do not limit

depth of trees

max_depth = None,

max number of features to evaluate split is

sqrt(n_features)

max_features = 'auto',
n_jobs = os.cpu_count())

define metrics we use to assess the model

scoring = ['precision', 'recall', 'f1']
folds = 10

extract the jaro-winkler string similarity and match label

X = comparison_vectors.iloc[:, 0:5]

y = comparison_vectors['match_status']

REGION : Volume 6, Number 3, 2019

28 S. Comber

To evaluate the performance of our built classification model, we use 10-fold cross-
validation meaning the performance measures are averaged across the test sets used
within the 10 folds. We use three metrics that are commonly used to evaluate machine
learning models. Recall measures the proportion of address pairs that should have been
classified, or recalled, as matched (Christen 2012). The precision (or, equivalently, the
positive predictive value) calculates the proportion of the matched address pairs that are
classified correctly as true matches (Christen 2012). Finally, the F1 score reflects the
harmonic mean between precision and recall. Our cross-validation exercise is executed in
the following cell.

[19]: # 10-fold cross-validation procedure

scores = cross_validate(estimator = rf,

X = X,

y = y,

cv = folds,

scoring = scoring,

return_train_score = False)

[20]: print('Mean precision score is {} over {} folds.'.format(np.round(np.

...mean(scores['test_precision']), 4), folds))

print('Mean recall score is {} over {} folds.'.format(np.round(np.

...mean(scores['test_recall']), 4), folds))

print('Mean F1 score is {} over {} folds.'.format(np.round(np.

...mean(scores['test_f1']), 4), folds))

[20]: Mean precision score is 0.9546 over 10 folds.

Mean recall score is 0.928 over 10 folds.

Mean F1 score is 0.9383 over 10 folds.

Overall, the high precision value implies that 95% of true positives are successfully
disambiguated from false positives. Moreover, our recall value implies that 93% of all
potential matches were successfully returned, with the remaining 7% of correct matches
incorrectly labelled as false negatives. Given the high values in both of these metrics, the
accompanying F1 score is equally high.

5 Creation of candidate address pairs by blocking on zipcode

While a Cartesian product could be useful in a linkage exercise where we have a very small
number of matched addresses, in production environments more sophisticated techniques
are generally required to create candidate address links. This is particularly the case when
we have a large number of addresses. Thus, blocking is typically introduced to partition
the set of all possible address comparisons to within mutually exclusive blocks. If we
let b equal the number of blocks, we reduce the complexity of the comparison exercise

to O(n2

b), which is far more computationally tractable than the full index method used
above.

When deciding which column to use as a blocking key we generally need pay attention
to two main considerations. Firstly, we pay attention to attribute data quality. Typically
when identifying a blocking key, we choose a key that has a low number of missing
values. This is because choosing a key with many missing values forces a large number of
addresses into a block where the key is an empty value, which may lead to many misclas-
sified address matches. And secondly we pay attention to the frequency distribution
of attribute values. We optimise towards a uniform distribution of values, as typically
skewed distributions that result in some values occurring very frequently mean that these
values will dominate the candidate pairs of address generated.

These considerations are addressed in the following two code blocks.

REGION : Volume 6, Number 3, 2019

S. Comber 29

Figure 1: Figure generated by code 22

[21]: print("Missing postcodes for Zagat addresses: {}. \n

Missing postcodes for Fodor addresses: {}.".format(matched_address.postcode_zagat.

...isnull().sum(), matched_address.postcode_fodor.isnull().sum()))

[21]: Missing postcodes for Zagat addresses: 1.

Missing postcodes for Fodor addresses: 0.

[22]: # check distribution of postcode blocks

pc_dist = matched_address.groupby('postcode_fodor').size().to_frame().
...rename(columns={0:'n_addresses'})

f, ax = plt.subplots(1, figsize=(10,6))

sns.kdeplot(pc_dist.n_addresses.values, color='g', shade=True, legend=False)

ax.set_xlabel('Number of addresses in postcode block ($\mu = {}$, $\sigma = {}$).'
.format(np.mean(pc_dist.n_addresses), np.round(np.std(pc_dist.n_addresses),

2)), size=15)

plt.show()

[22]: Output in Figure 1

The postcode attribute looks like a sensible choice of blocking key because it contains
just one missing value and there are very low numbers of candidate address compar-
isons within each block. As you can see in the output below, when we use a more
sophisticated indexing technique we generate a far lower number of candidate address
comparisons. In fact, we create only 1014 candidate address links despite adding synthetic
non-matches (discussed below). Overall, our introduction of blocking substantially lowers
the computational requirement of the linkage task.

5.1 Creation of synthetic non-matched addresses

To make this exercise more realistic, let’s also create 112 synthetic non-matches so we
have 224 addresses in total. This will also be important for training our machine learning
technique to learn the representations of non-matched addresses in addition to matches.
In this case we use the FEBRL data set generator script generate.py to create an
artificially generated dataset (see http://users.cecs.anu.edu.au/ Peter.Christen/Febrl/febrl-
0.3/febrldoc-0.3/node70.html). The script uses Python 2.7, so we read the output as
JSON so the user does not have to rely on an external input. We do this in keeping with

REGION : Volume 6, Number 3, 2019

http://users.cecs.anu.edu.au/~Peter.Christen/Febrl/febrl-0.3/febrldoc-0.3/node70.html
http://users.cecs.anu.edu.au/~Peter.Christen/Febrl/febrl-0.3/febrldoc-0.3/node70.html

30 S. Comber

a self-contained notebook but describe the steps required to reproduce the non-matches
below.

The synthetic non-matches are essentially random permutations of the matched
addresses. These are constructed on the basis of frequency tables for each address field
that count the occurrence of particular values. For example, the first row of a frequency
table for a house number would look like:

<house_number_attribute_value>,<frequency_of_occurence>.

[23]: # first we need columns from the zagat and fodor databases to create random addresses

zagat_cols = ['city_zagat', 'house_number_zagat',\
'house_zagat', 'suburb_zagat',\
'road_zagat', 'postcode_zagat']

fodor_cols = ['city_fodor', 'house_number_fodor',\
'house_fodor', 'suburb_fodor',\
'road_fodor','postcode_fodor']

create a directory for address component frequencies

if not os.path.exists('freqs'):
os.makedirs('freqs')

create distributions of address components for both datasets that will be used to

create fake addresses

for cols in [zagat_cols, fodor_cols]:

for col in cols:

freq = matched_address[col].value_counts().reset_index()

freq.to_csv('freqs/{}_freq.csv'.format(col), index=False, header=False)

The script generate.py takes six parameters that are used to create non-matched
addresses. The first argument demarcates the number of original records to be generated;
the second specifies the number of duplicate records from the original to be generated;
and the third, fourth and fifth arguments define the maximal number of duplicate records
that will be created based on one original record, the maximum number of modifications
introduced to the address field, and the maximum number of modifications introduced
to the address, respectively. The final parameter is used to enter which probability
distribution will be to create duplicate records – i.e. uniform, poisson, or zipf. In our case
we are only interested in building synthetic non-matches (and not duplicates), so we set
the number of original records to be built as 112, the number of duplicates generated as 0,
and leave the number of modifications introduced by the recommended default settings.

In addition, for each address field, users are asked to define a dictionary inside
generate.py that outlines the probability for particular modifications. This includes
setting the probability of modifications such as misspellings, insertions, deletions, substi-
tutions and transpositions of word and characters. An example dictionary for the house
number address field is given below where we set the file path to the word frequency CSV
generated above:

[24]: house_number_dict = {'name':'house_number',
'type':'freq',

'char_range':'digit',
'freq_file':'freqs/house_number_fodor_freq.csv',
'freq_file':'freqs/house_number_zagat_freq.csv',

'select_prob':0.20,
'ins_prob':0.10,
'del_prob':0.16,
'sub_prob':0.54,

'trans_prob':0.00,
'val_swap_prob':0.00,
'wrd_swap_prob':0.00,
'spc_ins_prob':0.00,
'spc_del_prob':0.00,

'miss_prob':0.00,
'new_val_prob':0.20}

REGION : Volume 6, Number 3, 2019

S. Comber 31

Damerau (1964) finds the proportions of typographical errors are typically spread as
substitutions (59%), deletions (16%), transpositions (2%), insertions (10%) and multiple
errors (13%). For this reason we broadly align our dictionary probabilities with these
findings. After defining sensible probabilities for modifications, we execute the following
scripts on a terminal which will create a file, zagat_synthetic_addresses.csv and
fodor_synthetic_addresses.csv consisting of synthetic addresses from the Zagat and
Fodor datasets, respectively.

For simplicity we generate our non-matches using all the data at once. However,
in a real-world application, we might wish to create non-matches within each zipcode
block one at a time. This would create more realistic synthetic non-matches. This is
because non-matched addresses would be constructed from the frequency tables of each
zipcode block, meaning each non-match would share more commonality to actual matched
addresses. In practice, this would improve the predictive power of our classification model
to disambiguate between candidate address pairs that have very subtle differences yet are
still matched or non-matched.

[25]: # ! python2 generate.py zagat_synthetic_addresses.csv 112 0 4 2 2 poisson

[25]:
Create 112 original and 0 duplicate records

Distribution of number of duplicates (maximal 4 duplicates):

[(1, 0.0), (2, 0.375), (3, 0.75), (4, 0.9375)]

Step 1: Load and process frequency tables and misspellings dictionaries

Step 2: Create original records

Step 2: Create duplicate records

Step 3: Write output file

End.

[26]: # ! python2 generate.py fodor_synthetic_addresses.csv 112 0 4 2 2 poisson

[26]:
Create 112 original and 0 duplicate records

Distribution of number of duplicates (maximal 4 duplicates):

[(1, 0.0), (2, 0.375), (3, 0.75), (4, 0.9375)]

Step 1: Load and process frequency tables and misspellings dictionaries

Step 2: Create original records

Step 2: Create duplicate records

Step 3: Write output file

End.

We then read these synthetic non-matches into a dataframe.

[27]: # read parsed synthetic addresses

synthetic_zagat_address = pd.read_csv('zagat_synthetic_addresses.csv').
...add_suffix('_zagat').drop(columns=['rec_id_zagat'])
synthetic_fodor_address = pd.read_csv('fodor_synthetic_addresses.csv').
...add_suffix('_fodor').drop(columns=['rec_id_fodor'])

REGION : Volume 6, Number 3, 2019

32 S. Comber

set uids for synthetic addresses

synthetic_zagat_address['zagat_id'] = [str(uuid.uuid4()) for i in

...synthetic_zagat_address.iterrows()]

synthetic_fodor_address['fodor_id'] = [str(uuid.uuid4()) for i in

...synthetic_fodor_address.iterrows()]

join synthetic zagat and fodor addresses vertically

synthetic_non_matches = synthetic_zagat_address.join(synthetic_fodor_address)

remove whitespace from column names and attributes

synthetic_non_matches = synthetic_non_matches.rename(columns = lambda x : x.strip())

synthetic_non_matches = synthetic_non_matches.applymap(lambda x : x.strip() if

...type(x) == str else x)

Now we have generated synthetic non-matches, we need to join these back to our
dataframe of matched addresses. As the above steps require external scripts we provide the
JSON required to reconstruct the synthetic dataframe in the dedicated Github repository.
This can be read by executing the cell below which uses the pd.read_json function.

[28]: ! wget https://raw.githubusercontent.com/SamComber/address_matching_workflow/master/

...synthetic_addresses.json

[28]: --2019-12-21 09:11:11-- https://raw.githubusercontent.com/SamComber/address_matching_

workflow/master/synthetic_addresses.json

Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 199.232.56.133

Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|199.232.56.133|:443

... connected.

HTTP request sent, awaiting response... 200 OK

Length: 29098 (28K) [text/plain]

Saving to: ‘synthetic_addresses.json’

synthetic_addresses 100%[===================>] 28.42K --.-KB/s in 0.02s

2019-12-21 09:11:11 (1.16 MB/s) - ‘synthetic_addresses.json’ saved [29098/29098]

[29]: f = 'synthetic_addresses.json'

synthetic_non_matches = pd.read_json(f)

In the cell below we join our matched addresses with our synthetic non-matches,
creating a dataframe of 224 address pairs.

[30]: # align columns of matched_address dataframe for horizontal join

matched_address = matched_address[['house_zagat', 'house_number_zagat', 'road_zagat',
... 'suburb_zagat', 'city_zagat', 'postcode_zagat','zagat_id', 'house_fodor',
... 'house_number_fodor', 'road_fodor', 'suburb_fodor', 'city_fodor', 'postcode_fodor',
... 'fodor_id']]

horizontal join between matched addresses and synthetic non-matches

matches_with_non_matches = pd.concat([matched_address, synthetic_non_matches],

... ignore_index=True)

print('{} address pairs created consisting of {} matches and {} synthetic non-matches.'.
...format(matches_with_non_matches.shape[0], matched_address.shape[0],

... synthetic_non_matches.shape[0]))

[30]: 224 address pairs created consisting of 112 matches and 112 synthetic non-matches.

REGION : Volume 6, Number 3, 2019

S. Comber 33

5.2 Blocking on postcode attribute

With our matches and synthetic non-matches assembled into a dataframe with 224 address
pairs, we can proceed to block on postcode values to create mutually exclusive address
partitions. Thus, for every unique postcode value, a dataframe (or block) will be created
in which candidate address pairs will be matched and non-matched based on attributes
of their comparison vectors.

The following code block creates a MultiIndex that links together the IDs of addresses
that are within the same zipcode block.

[31]: indexer = rl.Index()

block on postcode attribute

indexer.block(left_on='postcode_zagat', right_on='postcode_fodor')
candidate_links = indexer.index(matches_with_non_matches, matches_with_non_matches)

this creates a two-level multiindex, so we name addresses from the zagat and fodor

databases, respectively.

candidate_links.names = ['zagat', 'fodor']

print('{} candidate links created using the postcode attribute as a blocking key.'.
...format(len(candidate_links)))

[31]: 1014 candidate links created using the postcode attribute as a blocking key.

We follow the same work flow as before and create comparison vectors for every 1014
candidate address links.

[32]: candidate_link_df = return_candidate_links_with_match_status(candidate_links)

comparison_vectors = return_comparison_vectors(candidate_link_df)

Following this, we train our random forest on the comparison vectors and match status
labels. We use a 75/25 split for our train and test data.

[33]: X = comparison_vectors.iloc[:, 0:5]

y = comparison_vectors.match_status

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

create a random forest classifier that uses 100 trees and number of cores equal to

those available on machine

rf = RandomForestClassifier(n_estimators = 100,

Due to small number of features (5) we do not limit

depth of trees

max_depth = None,

max number of features to evaluate split is

sqrt(n_features)

max_features = 'auto',
n_jobs = os.cpu_count())

predict match status of unseen address pairs

y_pred = rf.fit(X_train, y_train).predict(X_test)

5.3 Classification and evaluation of match performance

Having fit our random forest on the training data we can now assess the model under
the number of metrics we introduced earlier. We can also produce a confusion matrix
which shows true negatives in the top-left quadrant, false positives in the top-right, false
negatives in the bottom-left and true positives in the bottom-right. At first glance, the

REGION : Volume 6, Number 3, 2019

34 S. Comber

Figure 2: Figure generated by code 34

findings from the evaluation metrics below may seem counter-intuitive, especially as the
results of the classification exercise using the full index performed better. However, it
is pertinent to remind ourselves that we trained our classification model on matched
address only, which reflected an idealised but unrealistic scenario. In the results below
we introduced synthetic non-matches which reflected a scenario that a user is more likely
to encounter in a real-world address matching exercise.

In the following code block we generate evaluation metrics and a confusion matrix for
evaluating match performance.

[34]: print('Precision score: {}.'.format(np.round(precision_score(y_test, y_pred), 4)))

print('Recall score: {}.'.format(np.round(recall_score(y_test, y_pred), 4)))

print('F1 score: {}.'.format(np.round(f1_score(y_test, y_pred), 4)))

f,ax = plt.subplots(1, figsize=(10,6))

f.set_tight_layout(False)

fontsize=12

sns.heatmap(confusion_matrix(y_test, y_pred),

ax=ax,

annot=True,

annot_kws={'fontsize': 16},

cmap='Greens',
fmt='g')

ax.set_yticklabels(['Match', 'Non-match'], fontsize=fontsize)

ax.set_xticklabels(['Non-match', 'Match'], fontsize=fontsize);

ax.set_ylabel('True label', fontsize=fontsize)

ax.set_xlabel('Predicted label', fontsize=fontsize)

ax.xaxis.labelpad = 18

ax.yaxis.labelpad = 18

plt.show();

[34]: Precision score: 0.8519.

Recall score: 0.8846.

F1 score: 0.8679.

Output in Figure 2

Overall, our precision value implied 85% of true positives were correctly separated
from false positives, and our recall value indicated that 88% of all true address matches
were successfully retrieved, with the remaining 12% incorrectly classified as non-matches.

REGION : Volume 6, Number 3, 2019

S. Comber 35

Figure 3: Output generated by code 35

With our model now fitted and tested, we could extend its use to predict the match status
of unseen address pairs. As an example application, if we had a small sample of matched
addresses that belonged to a larger set of unmatched addresses, we could use our trained
predictive model to match the remaining addresses in the dataset. This would work so
long as the textual representations of addresses used in the prediction stage follow a
similar structure to those addresses used to train the classification model.

Before we conclude, a benefit of using ensemble methods such as random forest
classifiers is that we can return an indication of how useful and valuable each feature
was in the construction of each decision tree. In a practical application, extracting a
measure of feature importance might be a useful step in pruning redundant features from
the comparison vectors. This might be a useful step in lowering computation times as we
decrease the number of address field comparisons required to evaluate candidate address
pairs.

Thus, in the following code block we rank feature importance of particular address
fields to the match classification.

[35]: # extract feature importances from random forest classifier

feature_importance_to_match = rf.feature_importances_

calculate standard deviation of feature importances across trees

std = np.std([tree.feature_importances_ for tree in rf.estimators_], axis=0)

indices = np.argsort(feature_importance_to_match)[::-1]

plot importances alongside feature labels

plt.figure(figsize=(10,6))

plt.title("Feature importances of address attributes to match", size=15)

plt.bar(range(X_train.shape[1]), feature_importance_to_match[indices],

color="#3CB371", yerr=std[indices], align="center")

feature_labs = X_train.columns[np.argsort(feature_importance_to_match)[::-1]].values

plt.xticks(range(X_train.shape[1]), feature_labs, size=12)

plt.xlim([-1, X_train.shape[1]])

plt.show()

[35]: Output in Figure 3

In our case, and as one might expect, the restaurant’s house number, house_number_jaro
is the most important feature used for resolving candidate pairs of addresses into a match
while the suburb, suburb_jaro, is the least important feature and so could possibly be
removed as an address field from the comparison step.

REGION : Volume 6, Number 3, 2019

36 S. Comber

6 Conclusion

Address matching is a data enrichment process that is increasingly required in wide-
ranging, real-world applications. For example, matching between census, commercial
or lifestyle records has the potential benefit of improving data quality, enabling spatial
data visualisation and joining data that would otherwise remain isolated in data silos.
In absence of unique identifiers for directly linking data, practitioners have typically
relied on statistical linkage methods for matching addresses. Linking address datasets
in this way has the potential to unlock attributes that one would be unable to access
in circumstances where no primary keys exist to join the two datasets. Thus, in this
notebook, we documented the steps required to execute the work flow for an address
matching exercise that utilised new and recent innovations in machine learning. While
the dataset we used was low volume, the intention of the notebook was to demonstrate an
approach that is reproducible within a self-contained environment, and which might be
adapted by the interested user to larger data challenges. Training a predictive model to
link restaurant addresses may seem a trivial problem to solve, but these addresses could
easily be replaced by more meaningful address records in areas such as public health and
socio-economic mobility studies. Therefore, the core contribution of this notebook sought
to equip the regional scientist with skills necessary to extend the address matching work
flow to their own (and far more interesting) use cases.

REGION : Volume 6, Number 3, 2019

S. Comber 37

References

Baldovin T, Zangrando D, Casale P, Ferrarese F, Bertoncello C, Buja A, Marcolongo A,
Baldo V (2015) Geocoding health data with geographic information systems: A pilot
study in northeast Italy for developing a standardized data-acquiring format. Journal
of Preventive Medicine & Hygiene 56: 88–94

Cayo R, Talbot TO (2003) Positional error in automated geocoding of residential addresses.
International Journal of Health Geographics 2: 1–10

Christen P (2012) Data matching: Concepts and techniques for record linkage, entity
resolution, and duplicate detection. Springer, New York, NY

Comber S, Arribas-Bel D (2019) Machine learning innovations in address matching: A
practical comparison of word2vec and CRFs. Transactions in GIS 23: 334–348

Damerau F (1964) A technique for computer detection and correction of spelling errors.
Commununications of the ACM 7: 171–176. CrossRef.

Diesner J, Carley M (2008) Conditional random fields for entity extraction and ontological
text coding. Computational and Mathematical Organization Theory 14: 248–262

Lafferty J, McCallum A, Pereira F (2001) Conditional random fields: Probabilistic
models for segmenting and labelling sequence data. In: Brodley CE, Danyluk AP
(eds), Proceedings of the 18th International Conference on Machine Learning. Morgan
Kaufmann, San Francisco, CA, 282–289

Reynolds P, Behren JV, Gunier R, Goldberg D, Hertz A, Smith D (2003) Childhood
cancer incidence rates and hazardous air pollutants in California: An exploratory
analysis. Environmental Health Perspectives 111: 663–668

Ruggles S, Fitch C, Roberts E (2018) Historical census record linkage. Annual Review of
Sociology 44[1]: 19–37

Yancey W (2005) Evaluating string comparator performance for record linkage. Research
report series, statistics #2005-05, Bureau of the Census, Washington, DC

© 2019 by the authors. Licensee: REGION – The Journal of ERSA, European
Regional Science Association, Louvain-la-Neuve, Belgium. This article is distri-

buted under the terms and conditions of the Creative Commons Attribution, Non-Commercial
(CC BY NC) license (http://creativecommons.org/licenses/by-nc/4.0/).

REGION : Volume 6, Number 3, 2019

https://doi.org/10.1145/363958.363994
http://creativecommons.org/licenses/by-nc/4.0/

Volume 7, Number 2, 2020, R15–R46 journal homepage: region.ersa.org
DOI: 10.18335/region.v7i2.295

A reproducible notebook to acquire, process and
analyse satellite imagery: Exploring long-term urban
changes

Meixu Chen, Dominik Fahrner, Daniel Arribas-Bel, Francisco Rowe1

1 University of Liverpool, Liverpool, UK

Received: 22 December 2019/Accepted: 1 December 2020

Abstract. Satellite imagery is often used to study and monitor changes in natural
environments and the Earth surface. The open availability and extensive temporal
coverage of Landsat imagery has enabled to monitor changes in temperature, wind,
vegetation and ice melting speed for a period of up to 46 years. Yet, the use of satellite
imagery to study cities has remained underutilised in Regional Science, partly due to the
lack of a practical methodological approach to capture data, extract relevant features
and monitor changes in the urban environment. This notebook offers a framework to
demonstrate how to batch-download high-resolution satellite imagery; and enable the
extraction, analysis and visualisation of features of the built environment to capture
long-term urban changes.

Key words: satellite imagery, image segmentation, urbanisation, cities, urban change,
computational notebooks

1 Introduction

Sustainable urban habitats are a key component of many global challenges. Efficient
management and planning of cities are pivotal to all 17 UN Sustainable Development
Goals (SDGs). Over 90% of the projected urban population growth by 2050 will occur in
less developed countries (United Nations 2019). Concentrated in cities, this growth offers
an opportunity for social progress and economic development but it also imposes major
challenges for urban planning. Prior work on urbanisation has identified the benefits of
agglomeration and improvements in health and education, which tend to outweigh the
costs of congestion, pollution and poverty (Glaeser, Henderson 2017). Yet research has
remained largely focused on Western cities (e.g. Burchfield et al. 2006), developing a good
understanding of urban areas in high-income, developed countries (Glaeser, Henderson
2017). Much less is known about the long-term evolution of urban habitats in less
developed countries. Analysis of historical census data exist exploring changes at discrete
points over time such as slum detection (e.g. Giada et al. 2003, Kit, Lüdeke 2013, Kohli
et al. 2016). Less applications can be identified tracking changes in urban settings over a
continuous temporal scale (Ibrahim et al. 2020). This gap is partly due to the lack of
comprehensive and consistent data sources capturing the long-term dynamics of urban
structures in less developed countries.

R15

R16 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Cities in Asia provide a unique setting to explore the challenges triggered by rapid
urbanisation. The share of urban population in Asia is currently at a turning point
transitioning to exceed the share of rural population. Currently Asia is home to over
53% of the urban population globally and the share of urban population is projected
to increase to 66% by 2050 (United Nations 2019). Developing tools to monitor and
understand the past and current urbanisation process is key to guide appropriate urban
planning and policy strategies.

Recent technological developments can help overcome the paucity in spatially-detailed
urban data in less developed countries. The combination of geospatial technology, cheap
computing and new machine learning algorithms has ushered in an age of new forms of
data, producing brand new data sets and repurposing existing sources. Satellite imagery
represents a key source of information. Photographs from the sky have existed for decades,
but their use in the context of socioeconomic urban research has been limited. Image data
has been hard to process and understand for social scientists. Yet recent developments
in machine learning and artificial intelligence have made images computable and turned
these data into brand new information to be explored by quantitative urban researchers.
Further, satellite data has become more abundant and openly accessible in the past
decade, and offers new possibilities for data exploration through increasing spatial and
temporal resolution. This, together with more computational power being available,
allows to process these data in an efficient and meaningful way.

This notebook illustrates an easy-to-use analytical framework based on Python tools
which enables batch download, image feature extraction, analysis and visualisation of
high-resolution satellite imagery to capture long-term urban changes. Our purpose is
to fill in the absence of a systematic and reproducible framework to acquire, process
and analyse satellite imagery in urban built environment related to the field of Regional
Science. The source of satellite data and administrative boundaries data are from NASA’s
Landsat satellite programme and ArcGIS Online. The Python libraries used in this
notebook are the following:

• Landsat images in Google Cloud Storage: The Google Cloud Storage is accessed
using an API to download Landsat imagery (version used: 0.4.9)

• Matplotolib:A Python 2D plotting library which produces publication quality figures
in a variety of hardcopy formats and interactive environments across platforms.

• Numpy: Adding support for large, multi-dimensional arrays and matrices, along
with a large collection of high-level mathematical functions

• Pandas: Provides high-performance, easy-to-use data structures and data analysis
tools

• GeoPandas: Python library that simplifies working with geospatial data (version
used: 0.6.2)

• Folium: Python library that enables plotting interactive maps using leaflet (version
used: 0.10.0)

• Glob: Unix style pathname pattern expansion

• GDAL: Library for geospatial data processing (version used: 2.4.4)

• Landsat578: Simple Landsat imagery download tool

• L8qa: Landsat processing toolbox (version used: 0.1.1)

• Rasterio: Library for raster data processing (version used: 1.1.3)

• Scikit-image: Collection of algorithms for image processing

• Wget: Pure python download utility (version used: 3.2)

• OpenCV: Library for image processing

• scikit-learn: Machine learning in Python. Simple and efficient tools for data mining
and data analysis.

REGION : Volume 7, Number 2, 2020

https://cloud.google.com/storage/docs/public-datasets/landsat
https://matplotlib.org/contents.html
https://docs.scipy.org/doc/
https://pandas.pydata.org/pandas-docs/stable/
http://geopandas.org/
http://folium.readthedocs.io/en/latest/
https://docs.python.org/2/library/glob.html
https://gdal.org/
https://github.com/dgketchum/Landsat578
https://github.com/mapbox/rio-l8qa/blob/master/README.md
https://rasterio.readthedocs.io/en/stable/
http://scikit-image.org/docs/dev/
https://pypi.org/project/wget/
https://pypi.org/project/opencv-python/
https://scikit-learn.org/stable/index.html

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R17

We can import them all as follows:

[1]: %matplotlib inline

#load external libraries

import matplotlib.pyplot as plt

from matplotlib import colors

import pandas as pd

import numpy as np

import geopandas as gpd

import folium

import os, shutil

import glob

import gdal

import wget

from landsat import google_download

from google_download import GoogleDownload

from l8qa.qa import write_cloud_mask

import rasterio

import rasterio as rio

from rasterio import merge

from rasterio.plot import show

from rasterio.mask import mask

from skimage import io,exposure, transform,data

from skimage.color import rgb2hsv, rgb2gray

from skimage.feature import local_binary_pattern

from sklearn.cluster import KMeans

import matplotlib.cm as cm

from sklearn import preprocessing

from rasterio.enums import Resampling

import seaborn as sns

import itertools

wdir= os.getcwd()

The remainder of this paper is structured as follows. The next section introduces the
Landsat satellite imagery, study area Shanghai, and process on how to batch download
and pre-process satellite data. Section 3 proposes our methods to extract different features
including colour, texture, vegetation and built-up from imagery. Section 4 performs a
clustering method on the extracted features, and section 5 interprets the results and gain
insights from them. Finally, section 6 concludes by providing a summary of our work and
avenues for further research using our proposed framework.

2 Data and Study Area

2.1 Landsat Imagery

We draw data from the NASA’s Landsat satellite programme. It is the longest standing
programme for Earth observation (EO) imagery (NASA 2019). Landsat satellites have
been orbiting the Earth for 46 years providing increasingly higher resolution imagery.
Landsat Missions 1-3 offer coarse imagery of 80m covering the period from 1972 to
1983. Landsat Missions 4-5 provides images of 30m resolution covering the period from
1983 to 2013 and Landsat Missions 7-8 are currently collecting enhanced images at 15m
capturing Cirrus and Panchromatic bands, in addition to the traditional RGB, Near-,
Shortwave-Infrared, and Thermal bands. The Landsat 6 mission was unsuccessful due
to the transporting rocket not reaching orbit. Landsat imagery is openly available and
offers extensive temporal coverage stretching for 46 years. Table 1 provides a summary
overview of the operation, revisit time and image resolution for the Landsat programme,
with other Earth observation satellite missions being shown in Table 2.

Additional Earth observation programmes exist. These programmes also offer freely
accessible imagery at a higher resolution.

2.2 Study Area

In this analysis, we examine urban changes in Shanghai, China. Shanghai has experienced
rapid population growth. Between 2000 and 2010, Shanghai’s population rose by 7.4

REGION : Volume 7, Number 2, 2020

R18 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 1: Overview of Landsat missions, their revisit time and spatial resolution

Mission Operational time Revisit time Resolution

Landsat 1 1972-1978 18 d 80 m
Landsat 2 1975-1982 18 d 80 m
Landsat 3 1978-1983 18 d 80 m
Landsat 4 1983-1993 16 d 30 m
Landsat 5 1984-2013 16 d 30 m
Landsat 7 1999-present 16 d 15 m
Landsat 8 2013-present 16 d 15 m

Table 2: Overview of other Earth observation satellites, their revisit time and spatial
resolution

Provider Programme Operational time Revisit time Resolution

European Sentinel 2015-present 5 d 10m
Space Agency
Planet Labs Rapideye 2009-present 4/5 d to daily up to 0.8 m

PlanetscopeSkysat
NASA Orbview 3 2003-2007 <3 d 1-4 m
NASA EO-1 2003 -2017 – 10-30 m

million from 16.4 million to 23.8 million. It has an annual growth rate of 3.8 percent
over 10 years. While the pace of population expansion has been less acute, Shanghai’s
population has continued to grow. In 2018, an estimated 24.24 million people were living
in Shanghai experiencing a population expansion of approximately 8 million since 2010.
The city is therefore a well suited example to explore long-term changes in urbanisation.

To extract satellite imagery, a first step is to identify the shape of the geographical area
of interest. To this end, we use a polygon shapefile (https://www.arcgis.com/home/item.-
html?id=105f92bd1fe54d428bea35eade65691b). These polygons represent the Shanghai
metropolitan area, so they include the city centre and surrounding areas. These polygons
will be used as a bounding box to identify and extract relevant satellite images. We need
to ensure the shapefile is in the same coordinate reference system (CRS) as the satellite
imagery (WGS84 or EPSG:4326).

[2]: # Specify the path to your shapefile

directory = os.path.dirname(wdir)

shp = ’shang_dis_merged/shang_dis_merged.shp’

[3]: # Certify that the shapefile is in the right coordinate system, otherwise reproject

it into the right CRS

def shapefile_crs_check(file):

global bbox

bbox = gpd.read_file(file)

crs = bbox.crs

data = crs.get("init", "")

if ’epsg:4326’ in data:

print(’Shapefile in right CRS’)

else:

bbox = bbox.to_crs({’init’:’epsg:4326’})

f,ax = plt.subplots(figsize=(5,5))

plt.title(’Fig.1: Shapefile of Shanghai urban area’,y= -0.2)

bbox.plot(ax=ax)

[4]: shapefile_crs_check(shp)

[4]: Shapefile in right CRS

image/png<Figure size 360x360 with 1 Axes>

The world reference system (WRS) from NASA is a system to identify individual
satellite imagery scenes using path-row tuples instead of absolute latitude/longitude

REGION : Volume 7, Number 2, 2020

https://www.arcgis.com/home/item.html?id=105f92bd1fe54d428bea35eade65691b
https://www.arcgis.com/home/item.html?id=105f92bd1fe54d428bea35eade65691b

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R19

Figure 1: Shapefile of Shanghai urban area

coordinates. The latitudinal centre of the image corresponds to the row, the longitudinal
centre to the path. This system allows to uniformly catalogue satellite data across multiple
missions and provides an easy to use reference system for the end user. It is necessary
to note that the WRS was changed between Landsat missions, due to a difference in
swath patterns of the more recent Landsat satellites (NASA 2019). The WRS1 is used
for Landsat missions 1-3 and the WRS2 for Landsat missions 4,5,7,8. In order to obtain
path-row tuples of relevant satellite images for an area of interest (AOI), it is necessary to
intersect the WRS shapefile (either WRS1 or WRS2, depending on the Landsat satellite
you would like to obtain data from) with the AOI shapefile. The resulting path-row tuples
will later be used to locate and download the corresponding satellite images from the
Google Cloud Storage. The output of the intersection between WRS and AOI files can
be visualised using an interactive widget. The map below shows our area of interest in
purple and the footprints of the relevant Landsat images on top of an OpenStreetMap
basemap.

[5]: # Donwload the WRS 2 file to later intersect the shapefile with the WRS path/row

tuples to identify relevant Landsat scenes

#

def sat_path():

url = ’https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/

...s3fs-public/atoms/files/WRS2_descending_0.zip’

Create folder for WRS2 file

if os.path.exists(os.path.join(’Landsat_images’,’wrs2’)):

print(’folder exists’)

else:

os.makedirs(os.path.join(’Landsat_images’,’wrs2’))

WRS_PATH = os.path.join(’Landsat_images’,’WRS2_descending_0.zip’)

LANDSAT_PATH = os.path.dirname(WRS_PATH)

The WRS file is only needed once thus we add this loop

if os.path.exists(WRS_PATH):

print(’File already exists’)

Downloads the WRS file from the URL given and unzips it

else:

wget.download(url, out = LANDSAT_PATH)

shutil.unpack_archive(WRS_PATH, os.path.join(LANDSAT_PATH, ’wrs2’))

[6]: %%time

WARNING: this will take time the first time it’s executed

depending on your connection

sat_path()

REGION : Volume 7, Number 2, 2020

R20 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

[6]: folder exists

File already exists

Wall time: 1e+03 mu s

[7]: # Intersect the shapefile with the WRS2 shapefile to determine relevant path/row tuples

def get_pathrow():

global paths,rows,path,row, wrs_intersection

wrs=gpd.GeoDataFrame.from_file(os.path.join(’Landsat_images’,’wrs2’,

’WRS2_descending.shp’))

wrs_intersection=wrs[wrs.intersects(bbox.geometry[0])]

paths,rows=wrs_intersection[’PATH’].values, wrs_intersection[’ROW’].values

for i, (path,row) in enumerate(zip(paths,rows)):

print(’Image’, i+1, ’ -path:’, path, ’row:’, row)

[8]: get_pathrow()

[8]: Image 1 -path: 118 row: 38

Image 2 -path: 119 row: 38

[9]: # Visualise the output of the intersection with the shapefile using Folium

Get the center of the map

xy = np.asarray(bbox.centroid[0].xy).squeeze()

center = list(xy[::-1])

Select a zoom

zoom = 8

Create the most basic OSM folium map

m = folium.Map(location = center, zoom_start = zoom, control_scale=True)

Add the bounding box (bbox) GeoDataFrame in red using a lambda function

m.add_child(folium.GeoJson(bbox.__geo_interface__, name = ’Area of Interest’,

style_function = lambda x: {’color’: ’purple’, ’alpha’: 0}))

loc = ’Fig 2.: Landsat satellite tiles that cover the Area of Interest’

title_html = ’’’

<figcaption align="center" style="font-size:12px">{}</figcaption>

’’’.format(loc)

m.get_root().html.add_child(folium.Element(title_html))

Iterate through each polygon of paths and rows intersecting the area

for i, row in wrs_intersection.iterrows():

Create a string for the name containing the path and row of this Polygon

name = ’path: %03d, row: %03d’ % (row.PATH, row.ROW)

Create the folium geometry of this Polygon

g = folium.GeoJson(row.geometry.__geo_interface__, name=name)

Add a folium Popup object with the name string

g.add_child(folium.Popup(name))

Add the object to the map

g.add_to(m)

m

[9]: text/html<folium.folium.Map at 0x1f0ea0d7dd8>

[10]: +fvtextcolorcomment_color# Display number of images and Path/Row of the image

for i, (path,row) in enumerate(zip(paths,rows)):

print(’Image’, i+1, ’ -path:’, path, ’row:’, row)

[10]: Image 1 -path: 118 row: 38

Image 2 -path: 119 row: 38

Note that here you have two options: 1) continuing and executing the code reported in
the next two sections on data donwload and image cropping, or 2) skipping these sections
and proceeding to the image mosaicing sections. We recommend 2) as the processing of
unzipping every folder may take long causing the JupyterLab instance to crash.

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R21

Figure 2: Landsat satellite tiles that cover the Area of Interest

2.3 Data download and pre-processing

We now have relevant path and row tuples for our area of analysis. So we can proceed to
download satellite images, which are stored on the Google Cloud. To download images, we
specify certain parameters: time frame, cloudcover in percentage (0-100 %) and satellite
mission (1-5,7,8). The here used Landsat578 API automatically searches the Google
Cloud for scenes with the specified parameters and downloads matching images. In order
to search the Google Cloud for relevant images, a list of available needs to be downloaded
when the code is run for the first time. The list provides basic information of the satellite
images and since Landsat data acquisition is ongoing, is updated continuously. Thus, if
data from the latest acquisition date is required, it is recommended to re-download the
file list before running the code.

We use satellite imagery from a Landsat 5 scene taken in 1984 and a Landsat 8
taken in 2019 to determine neighbourhood changes over time. Landsat 5 scenes can be
obtained from two different sensors, the Multispectral Scanner System and the Thematic
Mapper, which provide 4 and 7 bands, respectively. The Multispectral Scanner System
(MSS) is used in Landsat 1-3 and was superseded by the Thematic Mapper (TM). The
MSS provides a green and red band (Band numbers: 1,2) and two infrared bands (Band
numbers: 3,4), while the TM provides bands covering red, blue and green (Band numbers:
1,2,3), near-infrared (Band numbers: 4), short-wave infrared (Band numbers: 5,7) and
thermal infrared (6). Each downloaded scene contains all bands with one image per
band. The different bands can then be stacked in order to highlight various Earth surface
processes. In this exercise, scenes from the MSS and TM are downloaded, but only data
from the TM is used for analysis.

The Operational Land Imager (OLI) aboard Landsat 8 provides multispectral bands
(bands 1-7 and 9) with a resolution of 30 metres and a panchromatic band (band 8)
with a resolution of 15 metres (Barsi et al. 2014a). The Thermal Infrared Sensor (TIRS)
provides thermal infrared images (bands 10 and 11) with a resolution of 100 meters (Barsi
et al. 2014b). The Landsat 8 satellite has a swath width of 185 km for the OLI and
TIRS instruments, so one scene usually captures the extent of a city. In other cases, the
geographical area of interest may extend beyond one image so that multiple images may
be needed (Barsi et al. 2014b, Knight, Kvaran 2014). Given the revisit time of 16 days,
usually cloud free images can be retrieved for most cities on a bi-weekly or monthly basis
(Roy et al. 2014). The folder and filename of each scene provides information about the
satellite, instrument, path/row tuple and date.

Table 3 and Table 4 show which general information of the downloaded scenes can be
inferred from the folder and file names of each individual scene:

REGION : Volume 7, Number 2, 2020

R22 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 3: Overview of folder naming convention for Landsat images

Parameter Meaning

L Landsat
X Sensor (“C”=OLI/TIRS combined, “O”=OLI-only, “T”=TIRS-only,

“E”=ETM+, “T”=TM, “M”=MSS)
PPP WRS path
RRR WRS row
YYYY Year
DDD Julian day of year
GSI Ground station identifier
VV Archive version number

Note: Folder names are structured as LXPPPRRRYYYYDDDGSIVV

Table 4: Overview of file naming convention for Landsat images

Parameter Meaning

L Landsat
X Sensor (“C”=OLI/TIRS combined, “O”=OLI-only, “T”=TIRS-only,

“E”=ETM+, “T”=TM, “M”=MSS)
SS Satellite (“0””=Landsat 7, “08”=Landsat 8)
LLL Processing correction level (L1TP/L1GT/L1GS)
PPP WRS path
RRR WRS row
YYYYMMDD Acquisition year, month, day
yyyymmdd Processing year, month, day
CC Collection number (01, 02, . . .)
TX Collection category (“RT”=Real-Time, “T1”=Tier 1, “T2”=Tier 2)

Note: File names are structured as LXSS LLLL PPPRRR YYYYMMDD yyyymmdd CC TX

2.3.1 Landsat imagery download

We will now download two Landsat satellite images, one from 1984 and one from 2019.
The starting year was chosen due to the increase in spatial resolution to 30 metres with
Landsat 4, whereas the end year was chosen at random. The specific dates were selected
as the cloud cover was below 5%, ensuring an unobstructed view of the urban area.

[11]: # Download Tile list from Google - only needs to be done when first running the code

NOTE this cell is using the ! magic, which runs command line processes from a Jupyter

notebook. Make sure the ‘landsat‘ tool, from the ‘landsat578‘ package is installed

and available

Path to index file

Index_PATH = os.path.join(directory ’/index.csv.gz’)

if os.path.exists(Index_PATH):

print(’File already exists’)

else:

!landsat --update-scenes yes

[12]: # Define Download function to acquire scenes from the Google API

def landsat_download(start_date, end_date, sat,path,row,cloud,output):

g=GoogleDownload(start=start_date, end=end_date, satellite=sat, path=path,

...row=row, max_cloud_percent=cloud, output_path=output)

g.download()

[13]: # Specify start/end date (in YYYY-MM-DD format), the cloud coverage of the image (in %)

and the satellite you would like to acquire images from (1-5,7,8). In this case we

acquire a recent scene from Landsat 8 with a cloud coverage of 5 %.

start_date = ’2019-01-01’

end_date = ’2019-02-20’

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R23

cloud = 5

satellites = [8]

output = os.path.join(directory ’/Lansat_images/’)

[14]: # Loop through the specified satellites for each path and row tuple

for sat in satellites:

for i, (path,row) in enumerate(zip(paths,rows)):

print(’Image’, i+1, ’ -path:’, path, ’row:’, row)

landsat_download(start_date, end_date,sat,path,row,cloud,output)

[15]: # The above step is repeated to acquire a Landsat 5 scene from 1984 with 5 % cloud

coverage.

start_date = ’1984-04-22’

end_date = ’1984-04-24’

cloud = 5

satellites = [5]

output = os.path.join(directory ’/Lansat_images/’)

[16]: # Loop through the specified satellites for each path and row tuple

for sat in satellites:

for i, (path,row) in enumerate(zip(paths,rows)):

print(’Image’, i+1, ’ -path:’, path, ’row:’, row)

landsat_download(start_date, end_date,sat,path,row,cloud,output)

[17]: # Delete Scenes that were acquired using the MSS:

outdir = os.listdir(output)

for i in outdir:

if ’LM’ in os.path.basename(i):

try:

shutil.rmtree(os.path.abspath(os.path.join(output,os.path.basename(i))))

except OSError as e:

print ("Error: %s - %s." % (e.filename, e.strerror))

2.3.2 Image Cropping

Satellite imagery is large. The size per image can easily equate to 1 GB. It often makes the
data processing and analysis computationally expensive. Cropping the obtained scenes to
the relevant region of the image enables faster processing and analysing by significantly
reducing the size of the input.

[18]: # Define cropping function using command line gdalwarp.

Note: The BQA band is the quality assessment band, which has a different no data

value (1) than the other bands (0), which makes it necessary to us a different

croping function.

def crop(inraster,outraster,shape):

!gdalwarp -cutline {shape} -srcnodata 0 -crop_to_cutline {inraster} {outraster}

def crop_bqa(inraster,outraster,shape):

!gdalwarp -cutline {shape} -srcnodata 1 -crop_to_cutline {inraster} {outraster}

[19]: # Loop through every folder and a create an image cropped to the extent of the shapefile

save it with the original name and the extension _Cropped

for t in range(0,12):

for filename in glob.glob((output/́**/*_B{}.tif’).format(t), recursive=True):

inraster = filename

outraster = filename[:-4] ’_Cropped.tif’

crop(inraster, outraster, shp)

for filename in glob.glob(output/́**/*.tif’):

if ’BQA.TIF’ in i:

inraster = i

outraster = i[:-4] ’_Cropped.tif’

crop_bqa(inraster,outraster,shp)

2.3.3 Image mosaic

As indicated above, a single Landsat scene may not cover the full extent of a city due to
the satellite’s flight path as can be observed from the interactive map. Creating a mosaic
of two or more images is thus often needed to produce a single image that covers the
entirety of the area under analysis.

REGION : Volume 7, Number 2, 2020

R24 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

[20]: # Read in the relevant Landsat 8 files

output = ’Landsat_images/’

images = sorted(os.listdir(output))

dirpath1 = os.path.join(output, images[0])

dirpath2 = os.path.join(output, images[1])

mosaic_n = os.path.join(output,’Mosaic/’)

search = ’L*_Cropped.tif’

query1 = os.path.join(dirpath1,search)

query2 = os.path.join(dirpath2,search)

files1 = glob.glob(query1)

files2 = glob.glob(query2)

files1.sort()

files2.sort()

if os.path.exists(mosaic_n):

print(’Output Folder exists’)

else:

os.makedirs(mosaic_n)

[21]: # Match bands together and create a mosaic. Since the BQA band and the cloudmask have

different denominations than the other bands, these images have to be merged

together separately.

def mosaic_new(scene1,scene2):

src_mosaic =[]

string_list=[]

for i,j in zip(scene1,scene2):

for k in range(1,12):

string_list.append(’B{}_Cropped’.format(k))

for l in range(0,11):

if string_list[l] in os.path.basename(i) and os.path.basename(j):

src1 = rasterio.open(i)

src2 = rasterio.open(j)

src_mosaic = [src1,src2]

mosaic,out_trans = rasterio.merge.merge(src_mosaic)

out_meta = src1.meta.copy()

out_meta.update({"driver": "GTiff", ’height’:mosaic.shape[1],

’width’:mosaic.shape[2],’transform’:out_trans})

outdata = os.path.join(mosaic_n,’B{}_mosaic.tif’.format(l))

with rasterio.open(outdata,’w’,**out_meta) as dest:

dest.write(mosaic)

Mosaic Quality Assessment Band

if ’BQA_Cropped’ in os.path.basename(i) and os.path.basename(j):

bqa1 = rasterio.open(i)

bqa2 = rasterio.open(j)

bqa_mosaic = [bqa1,bqa2]

mosaic_,out_trans = rasterio.merge.merge(bqa_mosaic,nodata=1)

out_meta = bqa1.meta.copy()

out_meta.update({"driver": "GTiff", ’height’:mosaic_.shape[1],

’width’:mosaic_.shape[2],’transform’:out_trans})

outdata = os.path.join(mosaic_n,’BQA_mosaic.tif’)

with rasterio.open(outdata,’w’,**out_meta) as dest:

dest.write(mosaic_)

Mosaic of Cloudmask

search = ’cloudmask.tif’

query3 = os.path.join(dirpath1,search)

query4 = os.path.join(dirpath2,search)

files3 = glob.glob(query3)

files4 = glob.glob(query4)

for i,j in zip(files3,files4):

if ’cloudmask’ in os.path.basename(i)and os.path.basename(j):

cloudmask1 = rasterio.open(i)

cloudmask2 = rasterio.open(j)

cloud_mosaic = [cloudmask1,cloudmask2]

mosaic_c,out_trans = rasterio.merge.merge(cloud_mosaic,nodata=1)

out_meta = cloudmask1.meta.copy()

out_meta.update({"driver": "GTiff", ’height’:mosaic_c.shape[1],

’width’:mosaic_c.shape[2],’transform’:out_trans})

outdata = os.path.join(mosaic_n,’Cloudmask_mosaic.tif’)

with rasterio.open(outdata,’w’,**out_meta) as dest:

dest.write(mosaic_c)

[22]: mosaic_new(files1,files2)

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R25

[23]: # Read in the relevant files for the Landsat 5 scenes

images = sorted(os.listdir(output))

dirpath_o1 = os.path.join(output, images[2])

dirpath_o2 = os.path.join(output, images[3])

mosaic_o = os.path.join(output,’Mosaic_old/’)

query_o1 = os.path.join(dirpath_o1,search)

query_o2 = os.path.join(dirpath_o2,search)

files_o1 = glob.glob(query_o1)

files_o2 = glob.glob(query_o2)

files_o1.sort()

files_o2.sort()

if os.path.exists(mosaic_o):

print(’Output Folder exists’)

else:

os.makedirs(mosaic_o)

[24]: # Match bands together and create a mosaic. Since the BQA band and the cloudmask have

different denominations than the other bands, these images have to be merged together

separately.

def mosaic_old(scene_o1,scene_o2):

src_mosaic =[]

string_list=[]

for i,j in zip (scene_o1,scene_o2):

for k in range(1,8):

string_list.append(’B{}_Cropped’.format(k))

for l in range(0,7):

if string_list[l] in os.path.basename(i) and os.path.basename(j):

src1 = rasterio.open(i)

src2 = rasterio.open(j)

src_mosaic = [src1,src2]

mosaic,out_trans= rasterio.merge.merge(src_mosaic)

out_meta = src1.meta.copy()

out_meta.update({"driver": "GTiff", ’height’:mosaic.shape[1],

’width’:mosaic.shape[2],’transform’:out_trans})

outdata = os.path.join(mosaic_o,’B{}_mosaic.tif’.format(l))

with rasterio.open(outdata,’w’,**out_meta) as dest:

dest.write(mosaic)

Mosaic Quality Assessment Band

if ’BQA_Cropped’ in os.path.basename(i) and os.path.basename(j):

bqa1 = rasterio.open(i)

bqa2 = rasterio.open(j)

bqa_mosaic = [bqa1,bqa2]

mosaic_,out_trans= rasterio.merge.merge(bqa_mosaic,nodata=1)

out_meta = bqa1.meta.copy()

out_meta.update({"driver": "GTiff", ’height’:mosaic_.shape[1],

’width’:mosaic_.shape[2],’transform’:out_trans})

outdata = os.path.join(mosaic_o,’BQA_mosaic.tif’)

with rasterio.open(outdata,’w’,**out_meta) as dest:

dest.write(mosaic_)

Mosaic of Cloudmask

search = ’cloudmask.tif’

query_o3= os.path.join(dirpath_o1,search)

query_o4 = os.path.join(dirpath_o2,search)

files_o3 = glob.glob(query_o3)

files_o4 = glob.glob(query_o4)

for i,j in zip(files_o3,files_o4):

if ’cloudmask’ in os.path.basename(i)and os.path.basename(j):

cloudmask1 = rasterio.open(i)

cloudmask2 = rasterio.open(j)

cloud_mosaic = [cloudmask1,cloudmask2]

mosaic_c,out_trans= rasterio.merge.merge(cloud_mosaic,nodata=1)

out_meta = cloudmask1.meta.copy()

out_meta.update({"driver": "GTiff", ’height’:mosaic_c.shape[1],

’width’:mosaic_c.shape[2],’transform’:out_trans})

outdata = os.path.join(mosaic_o,’Cloudmask_mosaic.tif’)

with rasterio.open(outdata,’w’,**out_meta) as dest:

dest.write(mosaic_c)

[25]: mosaic_old(files_o1,files_o2)

REGION : Volume 7, Number 2, 2020

R26 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

2.3.4 Natural-colour (True-colour) composition

Our downloaded data from Landsat 8 and Landsat 5 have different band designations.
Combining different satellite bands are useful to identify features of the urban environment:
vegetation, built-up areas, ice and water. We create a standard natural-colour composition
image using Red, Green and Blue satellite bands. This colour composition best reflects
the natural environment. For instance, trees are green; snow and clouds are white; and
water is blue. Landsat 8 has 11 bands with bands 4, 3 and 2 corresponding to Red, Green
and Blue respectively. Landsat 5 has 7 bands with bands 3, 2 and 1, corresponding to Red,
Green and Blue. We perform layer stacking to produce a true colour image composition
to gain understanding of the local area before extracting and analysing features of the
urban environment.

[26]: # Normalise the bands to so that they can be combined to a single image

def normalize(array):

"""Normalizes numpy arrays into scale 0.0 - 1.0"""

array_min, array_max = array.min(), array.max()

return ((array - array_min)/(array_max - array_min))

[27]: # Adjust the intensity of each band for visualisation.

This is a way of rescaling each band by clipping the pixels that are outside the

specified range to the range we defined. By adjusting the gamma, we change the

brightness of the image with gamma >1 resulting in a brighter image. However

there are more complex methods such as top of the atmosphere corrections, which

subtracts any atmospheric interference from the image.

For the purpose of this notebook, this way is sufficient.

def rescale_intensity(image):

p2, p98 = np.percentile(image, (0.2, 98))

img_exp = exposure.rescale_intensity(image, in_range=(p2, p98))

img_gamma = exposure.adjust_gamma(img_exp, gamma=2.5,gain=1)

return(img_gamma)

[28]: # Downsample image resolution with factor 0.5 for displaying purposes.

def downsample(file):

downscale_factor=0.5

data = file.read(1,

out_shape=(

file.count,

int(file.height * downscale_factor),

int(file.width * downscale_factor)

),

resampling=Resampling.bilinear

)

scale image transform

transform = file.transform * file.transform.scale(

(file.width / data.shape[-1]),

(file.height / data.shape[-2])

)

return data

[29]: # Use rasterio to open the Red, Blue and Green bands of the mosaic image from 1984

to create an RGB image

NOTE: The Mosaic names do not correspond to the actual band designations as

python starts counting at 0!

with rasterio.open(’Landsat_images/Mosaic_old/B0_mosaic.tif’) as band1_old:

b1_old=downsample(band1_old)

with rasterio.open(’Landsat_images/Mosaic_old/B1_mosaic.tif’) as band2_old:

b2_old=downsample(band2_old)

with rasterio.open(’Landsat_images/Mosaic_old/B2_mosaic.tif’) as band3_old:

b3_old=downsample(band3_old)

[30]: # Normalise the bands so that they can be combined to a single image

red_old_n = normalize(b3_old)

green_old_n = normalize(b2_old)

blue_old_n = normalize(b1_old)

Apply the function defined before to make more natural-looking image

red_adj = rescale_intensity(red_old_n)

green_adj = rescale_intensity(green_old_n)

blue_adj = rescale_intensity(blue_old_n)

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R27

Figure 3: True colour Landsat image of the Shanghai urban area from 1984

Stack the three different bands together

rgb_2 = np.dstack((red_adj,green_adj,blue_adj))

Visualise the true color image

fig,ax = plt.subplots(figsize=(10,10))

ax.imshow(rgb_2)

plt.title(’Fig.3: True color Landsat image of the Shanghai urban area from 1984’,

y=-0.1, fontsize=12)

plt.show()

plt.close()

del rgb_2,b1_old,b2_old,b3_old,red_adj,green_adj,blue_adj

[30]: image/png<Figure size 720x720 with 1 Axes>

[31]: # Use rasterio to open the Red, Blue and Green bands of the mosaic image from 2019

to create an RGB image

NOTE: The Mosaic names do not correspond to the actual band designations as

python starts counting at 0!!

with rasterio.open(’Landsat_images/Mosaic/B1_mosaic.tif’) as band2_new:

b2_new = downsample(band2_new)

with rasterio.open(’Landsat_images/Mosaic/B2_mosaic.tif’) as band3_new:

b3_new = downsample(band3_new)

with rasterio.open(’Landsat_images/Mosaic/B3_mosaic.tif’) as band4_new:

b4_new = downsample(band4_new)

[32]: # Normalise the bands so that they can be combined to a single image

red_new_n = normalize(b4_new)

green_new_n = normalize(b3_new)

blue_new_n = normalize(b2_new)

Apply the function defined before to make more natural-looking image

red_rescale = rescale_intensity(red_new_n)

green_rescale = rescale_intensity(green_new_n)

blue_rescale = rescale_intensity(blue_new_n)

Stack the three different bands together

rgb = np.dstack((red_rescale, green_rescale, blue_rescale))

Here we adjust the gamma (brightness) for the stacked image to achieve a more

natural looking image.

rgb_adjust = exposure.adjust_gamma(rgb, gamma = 1.5, gain=1)

Visualise the true color image

fig,ax = plt.subplots(figsize=(10,10))

REGION : Volume 7, Number 2, 2020

R28 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Figure 4: True colour Landsat image of the Shanghai urban area from 2019

ax.imshow(rgb_adjust)

plt.title(’Fig.4: True color Landsat image of the Shanghai urban area from 2019’,

y=-0.1, fontsize=12)

plt.show()

plt.close()

del rgb,red_new_n,green_new_n,blue_new_n,red_rescale,green_rescale,blue_rescale,

rgb_adjust

[32]: image/png<Figure size 720x720 with 1 Axes>

When comparing the true colour Landsat satellite images in Figures 3 and 4, the
urbanisation of Shanghai between 1984 and 2019 is apparent. In the following steps, we
will analyse and quantify these urban changes.

3 Feature extraction

Since the above two maps show that urban neighbourhoods of Shanghai have undergone
dramatic changes over time in colour, texture, greenery, buildings, etc., the next stage is
to gain valuable information out of satellite images and interpret these changes. Since the
images we have downloaded are on a city-wide scale, which covers more than a thousand
kilometre spatial resolution and less detailed. Therefore, feature extraction is performed to
get a reduced representation of the initial image but informative and sufficiently accurate
for subsequent analysis and interpretation.

We examine four sets of features based on the above two true colour maps and
the scale, where the colour, texture, greenery, and buildings changed a lot during the
past 25 years in Shanghai. Specifically, colour and texture features extracted from true
colour imagery (i.e. RGB bands composition represented by bands 1-3 and bands 2-4
in 1984 and 2019), and vegetation features and built-up features extracted from Red,
near infrared (NIR) and shortwave infrared (SWIR) bands, represented by bands 3-5
and bands 4-6 in 1984 and 2019. More detailed information about the meaning of each
band can be found at https://www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-
use-my-research?qt-news science products=0#qt-news science products. In this analysis,
colour features measure the colour moments of true colour imagery to interpret colour
distribution; texture features apply LBP (Local binary patterns) texture spectrum model
to show spatial distribution of intensity values in an image; vegetation features calculate
the NDVI (Normalised difference vegetation index) to capture the amount of vegetation,
and built-up features calculate NDBI (Normalised difference built-up index) to highlight
artificially constructed areas.

REGION : Volume 7, Number 2, 2020

https://www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-use-my-research?qt-news_science_products=0#qt-news_science_products
https://www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-use-my-research?qt-news_science_products=0#qt-news_science_products

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R29

Figure 5: Spatial distribution of all administrative divisions of Shanghai

The administrative divisions of Shanghai have experienced tremendous changes in the
last tens of years (Ministry of Civial Affairs of the People’s Republic of China 2018), thus,
we will conduct feature extraction of imagery on the current administrative boundaries to
explore if satellite imagery can be used to reflect and interpret urban changes. The figure
below shows the spatial distribution of each administrative area with relative labels in
Shanghai.

[33]: # read administritive boundary shapefile of Shanghai

poly = gpd.read_file(shp)

f, ax = plt.subplots(1, figsize = (9,9))

poly.plot(ax = ax)

create a new colomn, in order to plot polygon labels (i.e. name) in the map

poly[’coords’]=poly[’geometry’].apply(lambda x:x.representative_point().coords[:])

poly[’coords’]=[coords[0] for coords in poly[’coords’]]

for idx, row in poly.iterrows():

ax.annotate(text=row[’Name’],xy=row[’coords’],va=’center’,ha=’center’,alpha = 0.8,

fontsize = 8)

plt.axis(’equal’)

plt.axis(’off’)

f.suptitle(’Fig.5: Spatial distribution of all administrative divisions of Shanghai’,

y=-0.1,fontsize = 12)

[33]: Text(0.5, -0.1, ’Fig.5: Spatial distribution of all administrative divisions of

Shanghai’)

image/png<Figure size 648x648 with 1 Axes>

Figure 5 shows that administrative divisions of ‘Chongming’ in the north appear three
geometries. Therefore, it is necessary to check if they belong to a single administrative
unit.

[34]: poly.loc[poly[’Name’]== ’Chongming’,’Name’]

[34]: 0 Chongming

3 Chongming

5 Chongming

Name: Name, dtype: object

Chongming administrative division consist of three separate geometries, which may
confuse our further analysis. As a result, we dissolved these geometries into a single
geometric feature and take a look at the new dataset. The below table shows that the
Chongming administrative division now consists of multipolygons which includes all
polygons as a whole.

REGION : Volume 7, Number 2, 2020

R30 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

[35]: # Dissolve geometries with the identical names together

poly = poly.dissolve(by = ’Name’).reset_index()

Have a look at the name of all administritive unit and we can see that chongming

districts have been dissolved into a single administritive unit

poly[’Name’].values

[35]: array([’Baoshan’, ’Changning’, ’Chongming’, ’Fengxian’, ’Hongkou’,

’Huangpu’, ’Jiading’, ’Jinshan’, ’Minhang’, ’Pudong New’, ’Putuo’,

’Qingpu’, ’Songjiang’, ’Xuhui’, ’Yangpu’, ’Zhabei’], dtype=object)

3.1 Image processing

Further pre-processing of satellite imagery is needed before feature extraction. This
pre-processing involves three steps:

1. Masking (cropping) of raster files (i.e., Blue, Green, Red, Nir and SWIR bands)
into each administrative district polygon;

2. Image enhancement to improve the quality and content of the original image; and,

3. Band stacking based on each neighbourhood unit.

[36]: # open raster files

file_list_old = sorted(glob.glob(’Landsat_images/Mosaic_old’ "/*.tif",recursive = True))

files_old = [rio.open(filename) for filename in file_list_old]

[37]: file_list = sorted(glob.glob(’Landsat_images/Mosaic’ "/*.tif"))

files = [rio.open(filename) for filename in file_list]

Before cropping all raster files into each polygon in the vector file (i.e. Shanghai
administrative area shapefile), we have to ensure they have the same coordinate reference
system (CRS). Once matched, the cropping process is prepared to go.

[38]: poly.crs

[38]: {’init’: ’epsg:4326’}

[39]: # check the crs of one band of satellite imagery

files[0].crs

[39]: CRS.from_epsg(32651)

[40]: # reproject the vector file to make it consistent with raster files

poly = poly.to_crs(’EPSG:32651’)

[41]: # get each neighbourhood geographic boundary based on administritive area data

geo = [poly.__geo_interface__[’features’][i][’geometry’]

for i in range(len(poly))]

[42]: # clip R,G,B bands separately by each poly, so get pixel values in each poly and save

them into a list

out_image = [[] for i in range(5)]

img_old = [[] for i in range(5)]

x: Blue,Green,Red,NIR and SWIR bands, y: 16 polygons from vertor file

for x,y in itertools.product(range(5),range(len(geo))):

out_image[0] means masked Blue band polygon

out_image[x].append(mask(files_old[0:5][x], [geo[y]], crop=True))

image enhancement: normalisation and Histogram Equalization

img_old[x].append(exposure.equalize_hist(normalize(out_image[x][y][0][0])))

del out_image,files_old

[43]: # clip R,G,B bands separately by each poly, so get pixel values in each poly and save

them into a list

out_image = [[] for i in range(5)]

img_new = [[] for i in range(5)]

x: Blue,Green,Red,NIR and SWIR bands, y: 16 polygons from vertor file

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R31

for x,y in itertools.product(range(5),range(len(geo))):

out_image[0] means masked Blue band polygon

out_image[x].append(mask(files[0:5][x], [geo[y]], crop=True))

image enhancement: normalisation and Histogram Equalization

img_new[x].append(exposure.equalize_hist(normalize(out_image[x][y][0][0])))

del out_image,files

[44]: # have a look at the pixel values of one geographic area in blue band

img_new[0][0]

[44]: array([[0.48515378, 0.48515378, 0.48515378, ..., 0.48515378, 0.48515378,

0.48515378],

[0.48515378, 0.48515378, 0.48515378, ..., 0.48515378, 0.48515378,

0.48515378],

[0.48515378, 0.48515378, 0.48515378, ..., 0.48515378, 0.48515378,

0.48515378],

...,

[0.48515378, 0.48515378, 0.48515378, ..., 0.48515378, 0.48515378,

0.48515378],

[0.48515378, 0.48515378, 0.48515378, ..., 0.48515378, 0.48515378,

0.48515378],

[0.48515378, 0.48515378, 0.48515378, ..., 0.48515378, 0.48515378,

0.48515378]])

[45]: # stack R,G,B bands together for later feature extraction

bb = [img_old[0][x].astype(np.float) for x in range(len(geo))]

bg = [img_old[1][x].astype(np.float) for x in range(len(geo))]

br = [img_old[2][x].astype(np.float) for x in range(len(geo))]

[46]: rgb_old = [np.dstack((br[x],bg[x],bb[x])) for x in range(len(geo))]

[47]: bb = [img_new[0][x].astype(np.float) for x in range(len(geo))]

bg = [img_new[1][x].astype(np.float) for x in range(len(geo))]

br = [img_new[2][x].astype(np.float) for x in range(len(geo))]

[48]: rgb_new = [np.dstack((br[x],bg[x],bb[x])) for x in range(len(geo))]

3.2 Colour features

Colour features are used to extract the characteristics of colours from satellite imagery.
A commonly used method to extract colour features is to compute colour moments of
an image. Colour moments provide a measurement of colour similarity between images
(Keen 2005). Basically, colour probability distributions of an image are characterised by
a range of unique moments. The mean, standard deviation and skewness these three
central moments are generally used to identify colour distribution. Here we extract
colour features on HSV (Hue, Saturation and Value) colour space because it corresponds
to human vision and has been widely used in computer vision. HSV colour space can
be converted from RGB colour channels, Hue represents the colour portion, saturation
represents the amount of grey in a particular colour (0 is grey), and Value represents the
brightness of the colour (0 is black). Therefore, the true-colour imagery is characterised
by a total of nine moments - three moments for each HSV channel in the same units.

[49]: # interpret the color probability distribution by computing low order color

moments(1,2,3)

def color_moments(img):

if img is None:

return

Convert RGB to HSV colour space

img_hsv = rgb2hsv(img)

Split the channels - h,s,v

h, s, v = [img_hsv[:,:,i] for i in [0,1,2]]

Initialize the colour feature

color_feature = []

N = h.shape[0] * h.shape[1]

The first central moment - average

h_mean = np.mean(h) # np.sum(h)/float(N)

s_mean = np.mean(s) # np.sum(s)/float(N)

v_mean = np.mean(v) # np.sum(v)/float(N)

REGION : Volume 7, Number 2, 2020

R32 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 5: Partial colour features identified in 1984

Name h mean s mean v mean h std s std v std h skew s skew v skew

Baoshan 0.27216 0.05208 0.64415 0.32709 0.07246 0.18531 0.35671 0.09006 0.19945
Changning 0.22141 0.05156 0.65989 0.28837 0.07518 0.17446 0.33080 0.09250 0.18763
Chongming 0.15381 0.01739 0.74231 0.27216 0.03563 0.10235 0.33292 0.05118 0.12060
Fengxian 0.33961 0.11292 0.60576 0.32194 0.12281 0.24362 0.34723 0.14439 0.25767
Hongkou 0.24951 0.06370 0.65073 0.30983 0.08744 0.18781 0.34797 0.10619 0.20013

color_feature.extend([h_mean, s_mean, v_mean])

The second central moment - standard deviation

h_std = np.std(h) # np.sqrt(np.mean(abs(h - h.mean())**2))

s_std = np.std(s) # np.sqrt(np.mean(abs(s - s.mean())**2))

v_std = np.std(v) # np.sqrt(np.mean(abs(v - v.mean())**2))

color_feature.extend([h_std, s_std, v_std])

The third central moment - the third root of the skewness

h_skewness = np.mean(abs(h - h.mean())**3)

s_skewness = np.mean(abs(s - s.mean())**3)

v_skewness = np.mean(abs(v - v.mean())**3)

h_thirdMoment = h_skewness**(1./3)

s_thirdMoment = s_skewness**(1./3)

v_thirdMoment = v_skewness**(1./3)

color_feature.extend([h_thirdMoment, s_thirdMoment, v_thirdMoment])

return color_feature

[50]: # create and initialize a data table to store colour feastures

color_mom_old = pd.DataFrame(color_moments(rgb_old[0]))

add the rest columns by assigning 9 color moments in each poly

for i in range(1,len(rgb_old)):

color_mom_old[i]= color_moments(rgb_old[i])

i = i+1

[51]: # create and initialize a data table

color_mom_new = pd.DataFrame(color_moments(rgb_new[0]))

add the rest columns by assigning 9 color moments in each poly

for i in range(1,len(rgb_new)):

color_mom_new[i]= color_moments(rgb_new[i])

i = i+1

[52]: # Data manipulation

color_old_var = color_mom_old.T

assign column names

color_old_var.columns =

[’h_mean’,’s_mean’,’v_mean’,’h_std’,’s_std’,’v_std’,’h_skew’,’s_skew’,’v_skew’]

set geographic name as index

color_old_var= color_old_var.set_index(poly.Name)

[53]: color_new_var = color_mom_new.T

color_new_var.columns =

[’h_mean’,’s_mean’,’v_mean’,’h_std’,’s_std’,’v_std’,’h_skew’,’s_skew’,’v_skew’]

color_new_var= color_new_var.set_index(poly.Name)

As we have created two new tables for colour features in the year 1984 and 2019, it
would be helpful to have a view of the tables and see how they look like. Table 5 and Table
6 show nine variables (column) representing colour features within five administrative
division of Shanghai (row).

[54]: # check the information of colour feature

color_old_var.head().style.set_caption(’Table 5: Partial colour features

... identified in 1984’)

[54]: text/html<pandas.io.formats.style.Styler at 0x1f0ed9c4be0>

[55]: color_new_var.head().style.set_caption(’Table 6: Partial colour features

... identified in 2019’)

[55]: text/html<pandas.io.formats.style.Styler at 0x1f081f31518>

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R33

Table 6: Partial colour features identified in 2019

Name h mean s mean v mean h std s std v std h skew s skew v skew

Baoshan 0.23107 0.03587 0.63894 0.29785 0.05205 0.18019 0.33678 0.06787 0.19559
Changning 0.23185 0.03129 0.64924 0.30469 0.04847 0.16700 0.34439 0.06297 0.18248
Chongming 0.15731 0.01647 0.74240 0.28250 0.03184 0.10177 0.34529 0.04336 0.11980
Fengxian 0.29554 0.08620 0.60543 0.30273 0.09770 0.24360 0.32939 0.11570 0.25723
Hongkou 0.23994 0.03758 0.63861 0.30383 0.05505 0.18294 0.33962 0.07055 0.19762

3.3 Texture features

To extract texture features, we use a Local Binary Pattern (LBP) approach. LBP searches
for pixels adjacent to a central point and tests whether these surrounding pixels are
greater or less than the central pixel and generate a binary classification (Pedregosa et al.
2011) (https://scikit-image.org/docs/dev/auto examples/features detection/plot local bi-
nary pattern.html)). In theory, eight adjacent neighbour pixels in greyscale are set to
compare with one central pixel value by 3 * 3 neighbourhood threshold, and consider
the result as 1 or 0 (Ojala et al. 1996). Thus, these eight surrounding binary numbers
correspond to LBP code for the central pixel value, determining the texture pattern of
that threshold. Texture features are then the distribution of a collection of LBPs over an
image.

[56]: # convert a RGB image into Grayscale,which takes less space for analysis

gray_images_old = [rgb2gray(rgb_old[i]) for i in range(len(rgb_old))]

gray_images_new = [rgb2gray(rgb_new[i]) for i in range(len(rgb_new))]

[57]: # settings for LBP

radius = 1 # radius = 1 refers to a 3*3 patch/window scale

n_points = 8 * radius # the number of circularly symmetric neighbour set points

method = ’uniform’ # finer quantization of the angular space which is gray scale and

rotation invariant

lbps_old = [local_binary_pattern(gray_images_old[i],n_points,radius,method)

... for i in range(len(rgb_old))]

lbps_new = [local_binary_pattern(gray_images_new[i],n_points,radius,method)

... for i in range(len(rgb_new))]

[58]: # n_bins are the same in each neighbourhood

n_bins = int(lbps_old[0].max()+1)

define a function to count the number of points in a given bin of LBP distribution

histogram

def count_hist(x):

return np.histogram(lbps_old[x].ravel(),density=True, bins=n_bins,range=(0, n_bins))

Assign counts to a new list, return the higtogram vector features in this cell(polygon)

hist_features_old = [count_hist(i)[0] for i in range(len(rgb_old))]

[59]: # Extract texture features of another year based on same method

n_bins = int(lbps_new[0].max()+1)

def count_hist(x):

return np.histogram(lbps_new[x].ravel(),density=True, bins=n_bins,range=(0, n_bins))

Assign counts to a new list, return the higtogram vector features in this cell(polygon)

hist_features_new = [count_hist(i)[0] for i in range(len(rgb_new))]

Same with operations on colour features, this time we build two new tables (Table
7 and 8) for texture features, with each row present administrative division and each
column represent texture feature.

[60]: # The histogram features are the texture features

texture_old_var = pd.DataFrame([hist_features_old[a] for a in range(len(rgb_old))])

texture_old_var.columns = [’LBP’+ str(i) for i in range(n_bins)]

texture_old_var = texture_old_var.set_index(poly.Name)

Have a look at the table with texture features of administrive division of

Shanghai in 1984

texture_old_var.head().style.set_caption(’Table 7: Partial texture features

... identified in 1984’)

REGION : Volume 7, Number 2, 2020

https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html
https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html

R34 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 7: Partial texture features identified in 1984

Name LBP0 LBP1 LBP2 LBP3 LBP4 LBP5 LBP6 LBP7 LBP8 LBP9

Baoshan 0.03509 0.04196 0.04071 0.06839 0.07839 0.06748 0.04034 0.04110 0.52005 0.06648
Changning 0.03609 0.04608 0.04196 0.05979 0.06004 0.06442 0.03754 0.04339 0.53942 0.07129
Chongming 0.02582 0.02995 0.02176 0.03406 0.03958 0.03679 0.02404 0.02916 0.70944 0.04941
Fengxian 0.05551 0.06647 0.05123 0.07200 0.07377 0.07393 0.05291 0.06510 0.38211 0.10698
Hongkou 0.04202 0.05056 0.04354 0.05933 0.05676 0.07072 0.03969 0.04649 0.51043 0.08047

Table 8: Partial texture features identified in 2019

Name LBP0 LBP1 LBP2 LBP3 LBP4 LBP5 LBP6 LBP7 LBP8 LBP9

Baoshan 0.04306 0.04774 0.04077 0.05862 0.06808 0.05681 0.03741 0.04557 0.52419 0.07777
Changning 0.04264 0.05012 0.03767 0.05137 0.05842 0.06153 0.03524 0.04708 0.53945 0.07648
Chongming 0.02547 0.02964 0.02333 0.03522 0.04762 0.03641 0.02359 0.02865 0.70442 0.04565
Fengxian 0.05121 0.06105 0.05288 0.08141 0.09716 0.07923 0.05152 0.06044 0.36993 0.09517
Hongkou 0.04703 0.05417 0.04294 0.05439 0.05501 0.06805 0.03879 0.04894 0.50732 0.08335

[60]: text/html<pandas.io.formats.style.Styler at 0x1f081ebe630>

[61]: # The histogram features are the texture features

texture_new_var = pd.DataFrame([hist_features_new[a] for a in range(len(rgb_new))])

texture_new_var.columns = [’LBP’ str(i) for i in range(n_bins)]

texture_new_var = texture_new_var.set_index(poly.Name)

Have a look at the table with texture features of administrive division of

Shanghai in 2019

texture_new_var.head().style.set_caption(’Table 8: Partial texture features

... identified in 2019’)

[61]: text/html<pandas.io.formats.style.Styler at 0x1f081ebeac8>

3.4 Vegetation and built-up features

Vegetation features and built-up features can be measured by calculating fundamental
NDVI and NDBI indices in each administrative area respectively. The Normalized
Difference Vegetation Index (NDVI) is a normalized index, using Red and NIR bands
to display the amount of vegetation (NASA 2000). The use of NDVI maximizes the
reflectance properties of vegetation by minimizing NIR and maximizing the reflectance in
the red wavelength. The measure is used to distinguish vegetation in regions, as more
vegetation will affect the ratio of visible light absorbed and near-infrared light reflected.
The formula is as follows:

NDVI = (NIR − Red)/(NIR + Red)

The output value of this index is between -1.0 and 1.0. Close to 0 represents no
vegetation, close to 1 indicates the highest possible density of green leaves, and close to -1
indicates water bodies.

The Normalized Difference Built-up Index (NDBI) uses the NIR and SWIR bands
to highlight artificially constructed areas (built-up areas) where there is a typically a
higher reflectance in the shortwave infrared region than the near infrared region (Zha
et al. 2003). The index is a ratio type that reduces the effects of differences in terrain
illumination and atmospheric effects. The formula is as follows:

NDBI = (SWIR − NIR)/(SWIR + NIR)

Also, the output value of this index is between -1 to 1. Higher values represent built-up
areas whereas negative values represent water bodies.

After calculating these two indices, vegetation features and built-up features can be
measured by calculating average values of index values within each administrative area.

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R35

Table 9: Partial vegetation and built-up features identified in 1984

Name veg mean builtup mean

Baoshan -0.002218 0.000611
Changning -0.002147 0.000582
Chongming -0.000805 0.000190
Fengxian -0.007201 0.001499
Hongkou -0.004648 -0.000313

3.4.1 Vegetation features

[62]: # identify red and NIR band to each neighbourhood unit in 1984

red_old, nir_old = img_old[2],img_old[3]

Calculate ndvi, assign 0 to nodata pixels

ndvi_old = [np.where((nir_old[i] red_old[i])==0, 0,

(nir_old[i]-red_old[i])/(nir_old[i] red_old[i]))

for i in range(len(poly))]

[63]: # identify red and NIR band to each neighbourhood unit in 1984

red_new, nir_new = img_new[2],img_new[3]

Calculate ndvi, assign 0 to nodata pixels

ndvi_new = list(map(lambda i: np.where((nir_new[i] red_new[i])==0, 0,

(nir_new[i]-red_new[i])/(nir_new[i] red_new[i])),

list(range(len(poly)))

))

[64]: veg_old_var = pd.DataFrame([np.mean(ndvi_old[i]) for i in range(len(poly))],

index = poly.Name, columns = [’veg_mean’])

[65]: veg_new_var = pd.DataFrame([np.mean(ndvi_new[i]) for i in range(len(poly))],

index = poly.Name, columns = [’veg_mean’])

3.4.2 Built-up features

[66]: # identify red and NIR band to each neighbourhood unit in 1984

nir_old, swir_old = img_old[3],img_old[4]

Calculate ndvi, assign 0 to nodata pixels

ndbi_old = [np.where((nir_old[i] swir_old[i])==0., 0,

(swir_old[i] - nir_old[i])/(nir_old[i] swir_old[i]))

for i in range(len(poly))]

[67]: # identify red and NIR band to each neighbourhood unit in 1984

nir_new, swir_new = img_new[3],img_new[4]

Calculate ndvi, assign 0 to nodata pixels

ndbi_new = list(map(lambda i: np.where((nir_new[i] swir_new[i])==0., 0,

(swir_new[i] - nir_new[i])/(nir_new[i] swir_new[i])),

list(range(len(poly)))

))

[68]: builtup_old_var = pd.DataFrame([np.mean(ndbi_old[i]) for i in range(len(poly))],

index = poly.Name, columns = [’builtup_mean’])

[69]: builtup_new_var = pd.DataFrame([np.mean(ndbi_new[i]) for i in range(len(poly))],

index = poly.Name, columns = [’builtup_mean’])

Table 9 and Table 10 created as shown below contain both vegetation features (NDVI)
and builtup features (NDBI), with the mean value of vegetation features and built-up
features (two columns) calculated at each administrative division (row).

[70]: veg_built_old = pd.concat([veg_old_var,builtup_old_var], axis = 1)

veg_built_old.head().style.set_caption(’Table 9: Partial vegetation and built-up

... features identified in 1984’)

[70]: text/html<pandas.io.formats.style.Styler at 0x1f081e1b1d0>

REGION : Volume 7, Number 2, 2020

R36 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 10: Partial vegetation and built-up features identified in 2019

Name veg mean builtup mean

Baoshan -0.001801 0.001938
Changning -0.001515 0.000774
Chongming -0.000705 0.000318
Fengxian -0.008185 -0.000408
Hongkou -0.002057 -0.000277

[71]: veg_built_new = pd.concat([veg_new_var,builtup_new_var], axis = 1)

veg_built_new.head().style.set_caption(’Table 10: Partial vegetation and built-up

... features identified in 2019’)

[71]: text/html<pandas.io.formats.style.Styler at 0x1f0ed9c4828>

4 Feature clustering

Now we have four types of features: colour, texture, vegetation and built-up area for
Shanghai in 1984 and 2019. These features are the embodiment of urban changes and
vary greatly due to rapid urbanisation and development. Therefore, the subsequent task
is to identify systematic patterns from these integrated features for analysis of urban
changes, such as whether several administrative areas share similar patterns. A clustering
method is required within this context to group these geographical divisions that are
similar within each other but different between them. Considering the ease of computation
and fast implementation, we use generalised and the most popular k-means clustering
to identify representative types of neighbourhoods based on multiple features. K-means
clustering partitions the data by creating k groups of equal variance, minimising the
within-cluster sum of squares (Pedregosa et al. 2011). We can perform K-means using
the package scikit-learn, which is a powerful machine learning package for Python.

[72]: # merge all features together

features_old_var = pd.concat([color_old_var,texture_old_var,veg_old_var,

builtup_old_var], axis = 1)

features_old_var.head().style.set_caption(’Table 11: Four types of features

... (21 in total) identified in 1984’)

[72]: text/html<pandas.io.formats.style.Styler at 0x1f0ed9c4908>

[73]: # merge all features together

features_new_var = pd.concat([color_new_var,texture_new_var,veg_new_var,

builtup_new_var], axis=1)

features_new_var.head().style.set_caption(’Table 12: Four types of features

... (21 in total) identified in 2019’)

[73]: text/html<pandas.io.formats.style.Styler at 0x1f081f31438>

Table 11 and Table 12 reveal the integrated 21 features across our four sets of image
features and their differences at geographical division in magnitude between 1984 and
2019. Since k-means clustering is one of the machine learning algorithms, which generally
expect data transformation for preprocessing before fitting the algorithm. We therefore
use one of the most popular rescale methods to standardise these features to lie between
0 and 1 based on MinMaxScaler() function in scikit-learn package. The motivation of this
method relies on the robustness to very small standard deviation. This preprocess ensures
individual features of dataset have the same scale that standard normally distributed.

[74]: # Last preprocessing step before machine learning: data rescaling

min_max_scaler = preprocessing.MinMaxScaler()

np_scaled = min_max_scaler.fit_transform(features_old_var)

oldvar_scale = pd.DataFrame(np_scaled)

oldvar_scale.columns = features_old_var.columns

REGION : Volume 7, Number 2, 2020

https://scikit-learn.org/stable/modules/preprocessing.html#standardization-or-mean-removal-and-variance-scaling

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R37

Table 11: Four types of features (21 in total) identified in 1984

Name h mean s mean v mean h std s std v std h skew

Baoshan 0.272161 0.052081 0.644148 0.327094 0.072457 0.185309 0.356713
Changning 0.221412 0.051564 0.659894 0.288368 0.075177 0.174455 0.330803
Chongming 0.153807 0.017394 0.742309 0.272162 0.035627 0.102347 0.332916
Fengxian 0.339613 0.112915 0.605758 0.321941 0.122805 0.243621 0.347226
Hongkou 0.249526 0.063704 0.650725 0.309825 0.087439 0.187805 0.347968

Name s skew v skew LBP0 LBP1 LBP2 LBP3 LBP4

Baoshan 0.090057 0.199446 0.035093 0.041960 0.040705 0.068394 0.078389
Changning 0.092504 0.187627 0.036086 0.046078 0.041956 0.059792 0.060040
Chongming 0.051184 0.120603 0.025822 0.029946 0.021757 0.034058 0.039580
Fengxian 0.144392 0.257670 0.055508 0.066468 0.051230 0.072002 0.073767
Hongkou 0.106194 0.200131 0.042018 0.050562 0.043542 0.059326 0.056759

Name LBP5 LBP6 LBP7 LBP8 LBP9 veg mean builtup mean

Baoshan 0.067483 0.040339 0.041101 0.520053 0.066483 -0.002218 0.000611
Changning 0.064422 0.037538 0.043385 0.539416 0.071285 -0.002147 0.000582
Chongming 0.036787 0.024035 0.029158 0.709444 0.049413 -0.000805 0.000190
Fengxian 0.073928 0.052907 0.065099 0.382110 0.106981 -0.007201 0.001499
Hongkou 0.070718 0.039691 0.046490 0.510429 0.080465 -0.004648 -0.000313

[75]: min_max_scaler = preprocessing.MinMaxScaler()

np_scaled = min_max_scaler.fit_transform(features_new_var)

newvar_scale = pd.DataFrame(np_scaled)

newvar_scale.columns = features_new_var.columns

Above two steps are the results of data transformation in 1984 and 2019. To identify
robust and consistent clustering results, we merge them into a single one based on their
common geographical units (see Table 13). The column names ended with ‘ x’ and ‘ y’
represent features extracted in 1984 and 2019, respectively. This table is the one prepared
for the final k-mean clustering analysis. The dominant parameter in k-means clustering is
the number of clusters (i.e., k), determining the optimal numbers of clusters is therefore a
fundamental issue. We select a direct and popular elbow method as an example to assess
the resulting partitions, testing nine different solutions varying k from 2 to 10. Basically,
the idea of elbow method is to define clusters to minimise the total intra-cluster variation
or total within-cluster sum of square (WSS). The optimal number can be determined by
plotting the curve of WSS according to different k clusters and the location of a bend is
considered as an indicator of the appropriate number for k.

[76]: merged_var = pd.merge(oldvar_scale, newvar_scale, left_index = True, right_index = True)

merged_var.head().style.set_caption(’Table 13: Integrated preprocessed features

... identified in 1984 and 2019 seperately’)

[76]: text/html<pandas.io.formats.style.Styler at 0x1f081e1b6d8>

[77]: # elbow analysis

cluster_range = range(2, 11)

cluster_errors = []

for num_clusters in cluster_range:

clusters = KMeans(num_clusters)

clusters.fit(merged_var)

cluster_errors.append(clusters.inertia_)

clusters_df = pd.DataFrame({ "num_clusters":cluster_range,

"cluster_errors": cluster_errors })

plt.figure(figsize=(12,6))

plt.title(’Fig.6: Elbow method to determine the optimal k for k-mean clustering’,y=-0.2)

plt.plot(clusters_df.num_clusters, clusters_df.cluster_errors, marker = "o")

[77]: [<matplotlib.lines.Line2D at 0x1f0817c2550>]image/png<Figure size 864x432 with 1 Axes>

REGION : Volume 7, Number 2, 2020

R38 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 12: Four types of features (21 in total) identified in 2019

Name h mean s mean v mean h std s std v std h skew

Baoshan 0.231070 0.035865 0.638941 0.297847 0.052048 0.180189 0.336779
Changning 0.231849 0.031294 0.649237 0.304689 0.048471 0.167002 0.344394
Chongming 0.157306 0.016473 0.742402 0.282495 0.031843 0.101771 0.345289
Fengxian 0.295539 0.086197 0.605431 0.302731 0.097695 0.243596 0.329388
Hongkou 0.239944 0.037582 0.638613 0.303830 0.055047 0.182938 0.339615

Name s skew v skew LBP0 LBP1 LBP2 LBP3 LBP4

Baoshan 0.067866 0.195591 0.043059 0.047740 0.040768 0.058617 0.068075
Changning 0.062974 0.182483 0.042641 0.050118 0.037668 0.051370 0.058422
Chongming 0.043360 0.119800 0.025468 0.029637 0.023332 0.035217 0.047621
Fengxian 0.115702 0.257234 0.051206 0.061050 0.052882 0.081410 0.097157
Hongkou 0.070552 0.197624 0.047032 0.054172 0.042940 0.054392 0.055014

Name LBP5 LBP6 LBP7 LBP8 LBP9 veg mean builtup mean

Baoshan 0.056809 0.037410 0.045565 0.524189 0.077767 -0.001801 0.001938
Changning 0.061528 0.035235 0.047082 0.539452 0.076482 -0.001515 0.000774
Chongming 0.036412 0.023590 0.028650 0.704424 0.045649 -0.000705 0.000318
Fengxian 0.079233 0.051521 0.060437 0.369931 0.095174 -0.008185 -0.000408
Hongkou 0.068051 0.038789 0.048937 0.507320 0.083353 -0.002057 -0.000277

Figure 6: Elbow method to determine the optimal k for k-mean clustering

Figure 6 indicates that 2 and 6 (i.e. knee in the plot) can be the optimal numbers of k
clusters for the features extracted from both years of satellite imagery. Considering the
context of the paper, the number of 6 is finally assigned to k to fit the kmeans clustering
model, varying labels are subsequently matched to features dataset.

[78]: np.random.seed(0)

k = 6

cls = pd.Series(KMeans(n_clusters=k, max_iter = 1000, n_init = 1000,

random_state = 24).fit_predict(merged_var))

After implementing k-means clustering on our constructed dataset, the label of each
cluster is assigned to the last columns of data for further interpretation (as shown in
Table 14).

[79]: # Assign the each cluster number to the merged data

merged_var = merged_var.assign(lbls=cls)

merged_var.index = features_old_var.index

last columns represent class labels

merged_var.head().style.set_caption(’Table 14: Assign cluster number to each

... administritive area’)

[79]: text/html<pandas.io.formats.style.Styler at 0x1f081e58550>

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R39

T
ab

le
13

:
In

te
gr

at
ed

p
re

p
ro

ce
ss

ed
fe

a
tu

re
s

id
en

ti
fi

ed
in

1
9
8
4

an
d

2
0
1
9

se
p

er
a
te

ly

h
m
ea
n
x

s
m
ea
n
x

v
m
ea
n
x

h
st
d
x

s
st
d
x

v
st
d
x

h
sk
ew

x
s
sk
ew

x
v
sk
ew

x
L
B
P
0
x

L
B
P
1
x

L
B
P
2
x

L
B
P
3
x

L
B
P
4
x

0
0
.6
3
6
9
7
5

0
.3
5
9
6
9
4

0
.2
8
1
1
4
4

1
.0
0
0
0
0
0

0
.4
2
2
4
6
5

0
.5
8
0
1
2
1

1
.0
0
0
0
0
0

0
.4
1
7
0
5
3

0
.5
6
8
1
9
8

0
.2
8
6
0
4
3

0
.3
2
8
9
4
3

0
.5
8
8
4
9
4

0
.7
1
7
5
2
3

0
.8
3
7
8
5
3

1
0
.3
6
3
8
4
3

0
.3
5
4
3
3
4

0
.3
9
6
4
5
0

0
.2
9
5
0
1
8

0
.4
5
3
6
6
4

0
.5
0
4
2
2
0

0
.0
0
0
0
0
0

0
.4
4
3
3
0
5

0
.4
8
3
0
2
8

0
.3
1
6
6
7
7

0
.4
4
1
7
1
6

0
.6
2
7
3
4
6

0
.5
3
7
7
7
2

0
.4
4
1
7
1
0

2
0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
8
1
5
4
7

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

3
1
.0
0
0
0
0
0

0
.9
9
0
5
3
0

0
.0
0
0
0
0
0

0
.9
0
6
1
8
3

1
.0
0
0
0
0
0

0
.9
8
7
8
7
2

0
.6
3
3
8
6
0

1
.0
0
0
0
0
0

0
.9
8
7
8
0
6

0
.9
1
5
9
2
3

1
.0
0
0
0
0
0

0
.9
1
5
3
9
7

0
.7
9
2
9
2
1

0
.7
3
8
0
5
2

4
0
.5
1
5
1
5
3

0
.4
8
0
2
2
6

0
.3
2
9
3
0
2

0
.6
8
5
6
3
1

0
.5
9
4
3
2
9

0
.5
9
7
5
7
2

0
.6
6
2
4
8
0

0
.5
9
0
1
8
3

0
.5
7
3
1
3
7

0
.4
9
9
7
0
4

0
.5
6
4
4
6
7

0
.6
7
6
6
0
1

0
.5
2
8
0
3
4

0
.3
7
0
8
7
1

L
B
P
5
x

L
B
P
6
x

L
B
P
7
x

L
B
P
8
x

L
B
P
9
x

v
eg

m
ea
n
x

b
u
il
tu
p
m
ea
n
x

h
m
ea
n
y

s
m
ea
n
y

v
m
ea
n
y

h
st
d
y

s
st
d
y

v
st
d
y

h
sk
ew

y

0
0
.6
1
3
0
5
5

0
.5
6
4
7
1
6

0
.3
3
2
2
9
8

0
.7
1
4
9
3
7

0
.0
3
2
8
2
9

0
.6
4
7
6
5
2

0
.7
6
6
9
9
5

0
.4
4
2
1
9
5

0
.2
7
8
1
2
3

0
.3
0
1
0
6
1

0
.4
6
3
1
2
3

0
.3
0
8
2
2
1

0
.5
4
7
5
3
1

0
.5
0
4
9
4
2

1
0
.5
5
1
9
3
3

0
.4
6
7
7
0
7

0
.3
9
5
8
5
0

0
.7
4
4
0
8
2

0
.0
4
2
0
6
3

0
.6
5
4
8
9
9

0
.7
6
4
4
8
0

0
.4
4
6
8
6
0

0
.2
1
2
5
6
0

0
.3
7
0
6
1
6

0
.6
5
9
6
0
3

0
.2
5
4
0
0
2

0
.4
5
5
4
5
8

0
.7
7
3
7
7
1

2
0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.7
9
0
9
4
1

0
.7
3
0
0
8
5

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
2
2
3
0
7

0
.0
0
2
0
0
6

0
.0
0
0
0
0
0

0
.8
0
5
3
3
8

3
0
.7
4
1
7
8
4

1
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.5
0
7
3
1
0

0
.1
1
0
7
1
2

0
.1
4
2
2
4
3

0
.8
4
4
8
8
4

0
.8
2
8
6
6
7

1
.0
0
0
0
0
0

0
.0
7
4
6
7
7

0
.6
0
3
3
7
0

1
.0
0
0
0
0
0

0
.9
9
0
2
5
2

0
.2
4
4
0
5
6

4
0
.6
7
7
6
6
9

0
.5
4
2
2
7
0

0
.4
8
2
2
3
7

0
.7
0
0
4
5
1

0
.0
5
9
7
1
8

0
.4
0
1
2
0
0

0
.6
8
6
0
4
4

0
.4
9
5
3
9
2

0
.3
0
2
7
5
5

0
.2
9
8
8
4
2

0
.6
3
4
9
1
3

0
.3
5
3
6
6
6

0
.5
6
6
7
2
8

0
.6
0
5
0
8
3

s
sk
ew

y
v
sk
ew

y
L
B
P
0
y

L
B
P
1
y

L
B
P
2
y

L
B
P
3
y

L
B
P
4
y

L
B
P
5
y

L
B
P
6
y

L
B
P
7
y

L
B
P
8
y

L
B
P
9
y

v
eg

m
ea
n
y

b
u
il
tu
p
m
ea
n
y

0
0
.3
3
8
7
4
7

0
.5
4
1
8
3
7

0
.5
2
6
2
2
1

0
.4
7
2
2
7
4

0
.5
4
8
1
4
2

0
.5
0
6
5
6
1

0
.4
1
0
5
0
1

0
.4
0
6
2
2
0

0
.4
9
4
8
0
1

0
.4
9
9
4
8
7

0
.7
2
6
8
6
6

0
.0
6
0
8
4
8

0
.8
5
6
4
5
1

1
.0
0
0
0
0
0

1
0
.2
7
1
1
2
6

0
.4
4
8
1
2
9

0
.5
1
3
8
9
4

0
.5
3
4
3
1
2

0
.4
5
0
6
8
6

0
.3
4
9
6
8
6

0
.2
1
6
7
6
7

0
.5
0
0
2
0
9

0
.4
1
6
9
2
6

0
.5
4
4
2
9
1

0
.7
4
9
9
9
5

0
.0
5
8
4
1
5

0
.8
9
3
8
5
0

0
.6
9
9
1
8
1

2
0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
7
4
2
3

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.5
8
1
4
3
5

3
1
.0
0
0
0
0
0

0
.9
8
2
5
3
3

0
.7
6
6
4
9
2

0
.8
1
9
5
0
0

0
.9
2
8
9
3
6

1
.0
0
0
0
0
0

0
.9
9
4
1
4
1

0
.8
5
2
8
1
1

1
.0
0
0
0
0
0

0
.9
3
8
6
2
9

0
.4
9
3
0
9
7

0
.0
9
3
8
2
7

0
.0
2
0
2
7
4

0
.3
9
3
9
0
3

4
0
.3
7
5
8
8
0

0
.5
5
6
3
7
4

0
.6
4
3
3
8
3

0
.6
4
0
0
6
2

0
.6
1
6
4
1
2

0
.4
1
5
1
1
1

0
.1
4
8
3
7
4

0
.6
3
0
1
0
1

0
.5
4
4
1
5
3

0
.5
9
9
0
5
4

0
.7
0
1
3
0
2

0
.0
7
1
4
3
2

0
.8
2
2
8
4
4

0
.4
2
7
5
3
8

REGION : Volume 7, Number 2, 2020

R40 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

5 Interpretation

To understand the analysis result, the mean of each feature across each cluster can be
calculated to uncover the feature differences among clusters. A categorical bar-plot shown
below presents how the average of all features changed between 1984 and 2019. Besides,
a choropleth map is created to visualise the spatial distribution of categories/clusters by
varying colours.

[80]: # calculate the mean of features for each class

k6_mean = merged_var.groupby(’lbls’).mean()

k6_mean.style.set_caption(’Table 15: Mean values of each feature at each cluster for

... different years’)

[80]: text/html<pandas.io.formats.style.Styler at 0x1f081654b00>

Table 15 displays the mean values of all features in two years at varying groups.
For more interpretability, a few data munging steps are required to generate visual
representations.

[81]: # Rearrange our data in a way that every row is one feature in a class

k6_mean = k6_mean.stack()

k6_mean.head()

[81]: lbls

0 h_mean_x 0.803863

s_mean_x 0.749195

v_mean_x 0.146109

h_std_x 0.895068

s_std_x 0.749907

dtype: float64

[82]: # convert multi-indices into single index

k6_mean = k6_mean.reset_index()

renmae the columns

k6_mean = k6_mean.rename(columns = {’lbls’: ’Class’,’level_1’: ’Features’, 0: ’Values’})

rename feature names in Feature column

old = k6_mean.loc[k6_mean[’Features’].str.contains(’x’) == True, :]

new = k6_mean.loc[k6_mean[’Features’].str.contains(’y’) == True, :]

add a new column to represent time

old = old.assign(Time = 1984)

new = new.assign(Time = 2019)

remove ’_x’ and ’_y’ in the table to make feature names for both years are the same

old[’Features’] = old[’Features’].str.replace(’_x’, ’’)

new[’Features’] = new[’Features’].str.replace(’_y’, ’’)

[83]: # create a new dataframe to store the mean of each feature each cluster with time

data = pd.concat([old,new])

data.head().style.set_caption(’Table 16: Tidy table represents mean values of features

... for each cluster at different years’)

[83]: text/html<pandas.io.formats.style.Styler at 0x1f08cee1d68>

Table 16 reveals different categorical information, with each row represents the number
of class, the feature name, the mean value of the feature and the year when the feature is
extracted. We can then visualise this table in the bar-plot in Figure 7 to understand the
pattern from image features.

[84]: # visualise the distribution of mean values by features, class and time

g = sns.catplot(data = data, x = ’Features’, y = ’Values’,row = ’Class’,

hue = ’Time’,kind = ’bar’, aspect = 5, height = 3, palette = ’Accent’)

g.fig.suptitle(’Fig.7: Visual representation of patterns extracted from k-mean

... clustering’, y = -0.1, fontsize = 18)

[84]: Text(0.5, -0.1, ’Fig.7: Visual representation of patterns extracted from k-mean

clustering’)

image/png<Figure size 1141.5x1296 with 6 Axes>

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R41

T
ab

le
14

:
A

ss
ig

n
cl

u
st

er
n
u

m
b

er
to

ea
ch

a
d

m
in

is
tr

a
ti

v
e

a
re

a

N
a
m
e

h
m
ea

n
x

s
m
ea

n
x

v
m
ea

n
x

h
st
d
x

s
st
d
x

v
st
d
x

h
sk
ew

x
s
sk
ew

x
v
sk
ew

x
L
B
P
0
x

L
B
P
1
x

L
B
P
2
x

L
B
P
3
x

L
B
P
4
x

B
a
o
sh

a
n

0
.6
3
6
9
7
5

0
.3
5
9
6
9
4

0
.2
8
1
1
4
4

1
.0
0
0
0
0
0

0
.4
2
2
4
6
5

0
.5
8
0
1
2
1

1
.0
0
0
0
0
0

0
.4
1
7
0
5
3

0
.5
6
8
1
9
8

0
.2
8
6
0
4
3

0
.3
2
8
9
4
3

0
.5
8
8
4
9
4

0
.7
1
7
5
2
3

0
.8
3
7
8
5
3

C
h
a
n
g
n
in
g

0
.3
6
3
8
4
3

0
.3
5
4
3
3
4

0
.3
9
6
4
5
0

0
.2
9
5
0
1
8

0
.4
5
3
6
6
4

0
.5
0
4
2
2
0

0
.0
0
0
0
0
0

0
.4
4
3
3
0
5

0
.4
8
3
0
2
8

0
.3
1
6
6
7
7

0
.4
4
1
7
1
6

0
.6
2
7
3
4
6

0
.5
3
7
7
7
2

0
.4
4
1
7
1
0

C
h
o
n
g
m
in
g

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
8
1
5
4
7

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

F
en

g
x
ia
n

1
.0
0
0
0
0
0

0
.9
9
0
5
3
0

0
.0
0
0
0
0
0

0
.9
0
6
1
8
3

1
.0
0
0
0
0
0

0
.9
8
7
8
7
2

0
.6
3
3
8
6
0

1
.0
0
0
0
0
0

0
.9
8
7
8
0
6

0
.9
1
5
9
2
3

1
.0
0
0
0
0
0

0
.9
1
5
3
9
7

0
.7
9
2
9
2
1

0
.7
3
8
0
5
2

H
o
n
g
k
o
u

0
.5
1
5
1
5
3

0
.4
8
0
2
2
6

0
.3
2
9
3
0
2

0
.6
8
5
6
3
1

0
.5
9
4
3
2
9

0
.5
9
7
5
7
2

0
.6
6
2
4
8
0

0
.5
9
0
1
8
3

0
.5
7
3
1
3
7

0
.4
9
9
7
0
4

0
.5
6
4
4
6
7

0
.6
7
6
6
0
1

0
.5
2
8
0
3
4

0
.3
7
0
8
7
1

N
a
m
e

L
B
P
5
x

L
B
P
6
x

L
B
P
7
x

L
B
P
8
x

L
B
P
9
x

v
eg

m
ea

n
x

b
u
il
tu

p
m
ea

n
x

h
m
ea

n
y

s
m
ea

n
y

v
m
ea

n
y

h
st
d
y

s
st
d
y

v
st
d
y

h
sk
ew

y

B
a
o
sh

a
n

0
.6
1
3
0
5
5

0
.5
6
4
7
1
6

0
.3
3
2
2
9
8

0
.7
1
4
9
3
7

0
.0
3
2
8
2
9

0
.6
4
7
6
5
2

0
.7
6
6
9
9
5

0
.4
4
2
1
9
5

0
.2
7
8
1
2
3

0
.3
0
1
0
6
1

0
.4
6
3
1
2
3

0
.3
0
8
2
2
1

0
.5
4
7
5
3
1

0
.5
0
4
9
4
2

C
h
a
n
g
n
in
g

0
.5
5
1
9
3
3

0
.4
6
7
7
0
7

0
.3
9
5
8
5
0

0
.7
4
4
0
8
2

0
.0
4
2
0
6
3

0
.6
5
4
8
9
9

0
.7
6
4
4
8
0

0
.4
4
6
8
6
0

0
.2
1
2
5
6
0

0
.3
7
0
6
1
6

0
.6
5
9
6
0
3

0
.2
5
4
0
0
2

0
.4
5
5
4
5
8

0
.7
7
3
7
7
1

C
h
o
n
g
m
in
g

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.7
9
0
9
4
1

0
.7
3
0
0
8
5

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
2
2
3
0
7

0
.0
0
2
0
0
6

0
.0
0
0
0
0
0

0
.8
0
5
3
3
8

F
en

g
x
ia
n

0
.7
4
1
7
8
4

1
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.5
0
7
3
1
0

0
.1
1
0
7
1
2

0
.1
4
2
2
4
3

0
.8
4
4
8
8
4

0
.8
2
8
6
6
7

1
.0
0
0
0
0
0

0
.0
7
4
6
7
7

0
.6
0
3
3
7
0

1
.0
0
0
0
0
0

0
.9
9
0
2
5
2

0
.2
4
4
0
5
6

H
o
n
g
k
o
u

0
.6
7
7
6
6
9

0
.5
4
2
2
7
0

0
.4
8
2
2
3
7

0
.7
0
0
4
5
1

0
.0
5
9
7
1
8

0
.4
0
1
2
0
0

0
.6
8
6
0
4
4

0
.4
9
5
3
9
2

0
.3
0
2
7
5
5

0
.2
9
8
8
4
2

0
.6
3
4
9
1
3

0
.3
5
3
6
6
6

0
.5
6
6
7
2
8

0
.6
0
5
0
8
3

N
a
m
e

s
sk
ew

y
v
sk
ew

y
L
B
P
0
y

L
B
P
1
y

L
B
P
2
y

L
B
P
3
y

L
B
P
4
y

L
B
P
5
y

L
B
P
6
y

L
B
P
7
y

L
B
P
8
y

L
B
P
9
y

v
eg

m
ea

n
y

b
u
il
tu

p
m
ea

n
y

lb
ls

B
a
o
sh

a
n

0
.3
3
8
7
4
7

0
.5
4
1
8
3
7

0
.5
2
6
2
2
1

0
.4
7
2
2
7
4

0
.5
4
8
1
4
2

0
.5
0
6
5
6
1

0
.4
1
0
5
0
1

0
.4
0
6
2
2
0

0
.4
9
4
8
0
1

0
.4
9
9
4
8
7

0
.7
2
6
8
6
6

0
.0
6
0
8
4
8

0
.8
5
6
4
5
1

1
.0
0
0
0
0
0

1
C
h
a
n
g
n
in
g

0
.2
7
1
1
2
6

0
.4
4
8
1
2
9

0
.5
1
3
8
9
4

0
.5
3
4
3
1
2

0
.4
5
0
6
8
6

0
.3
4
9
6
8
6

0
.2
1
6
7
6
7

0
.5
0
0
2
0
9

0
.4
1
6
9
2
6

0
.5
4
4
2
9
1

0
.7
4
9
9
9
5

0
.0
5
8
4
1
5

0
.8
9
3
8
5
0

0
.6
9
9
1
8
1

1
C
h
o
n
g
m
in
g

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
7
4
2
3

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.5
8
1
4
3
5

2
F
en

g
x
ia
n

1
.0
0
0
0
0
0

0
.9
8
2
5
3
3

0
.7
6
6
4
9
2

0
.8
1
9
5
0
0

0
.9
2
8
9
3
6

1
.0
0
0
0
0
0

0
.9
9
4
1
4
1

0
.8
5
2
8
1
1

1
.0
0
0
0
0
0

0
.9
3
8
6
2
9

0
.4
9
3
0
9
7

0
.0
9
3
8
2
7

0
.0
2
0
2
7
4

0
.3
9
3
9
0
3

3
H
o
n
g
k
o
u

0
.3
7
5
8
8
0

0
.5
5
6
3
7
4

0
.6
4
3
3
8
3

0
.6
4
0
0
6
2

0
.6
1
6
4
1
2

0
.4
1
5
1
1
1

0
.1
4
8
3
7
4

0
.6
3
0
1
0
1

0
.5
4
4
1
5
3

0
.5
9
9
0
5
4

0
.7
0
1
3
0
2

0
.0
7
1
4
3
2

0
.8
2
2
8
4
4

0
.4
2
7
5
3
8

1

REGION : Volume 7, Number 2, 2020

R42 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

T
ab

le
1
5
:

M
ea

n
va

lu
es

o
f

ea
ch

fea
tu

re
a
t

ea
ch

clu
ster

fo
r

d
iff

eren
t

years

lb
ls

h
m
ea

n
x

s
m
ea

n
x

v
m
ea

n
x

h
std

x
s
std

x
v
std

x
h
sk
ew

x
s
sk
ew

x
v
sk
ew

x
L
B
P
0
x

L
B
P
1
x

L
B
P
2
x

L
B
P
3
x

L
B
P
4
x

0
0
.8
0
3
8
6
3

0
.7
4
9
1
9
5

0
.1
4
6
1
0
9

0
.8
9
5
0
6
8

0
.7
4
9
9
0
7

0
.8
3
4
3
3
0

0
.6
3
3
3
2
2

0
.7
2
0
2
4
9

0
.8
2
3
0
0
5

0
.4
5
4
3
8
9

0
.5
6
5
9
4
6

0
.8
2
1
5
2
8

0
.9
7
3
2
2
0

0
.9
4
9
1
4
1

1
0
.4
2
6
1
9
5

0
.3
8
1
6
6
4

0
.3
8
4
9
5
5

0
.5
4
3
4
9
4

0
.4
8
1
6
8
6

0
.5
2
3
4
8
6

0
.4
5
0
6
0
1

0
.4
7
8
5
8
6

0
.5
0
4
1
4
9

0
.3
8
2
8
4
9

0
.4
4
4
5
4
3

0
.5
7
4
5
4
5

0
.5
1
0
7
9
5

0
.4
0
8
6
1
3

2
0
.1
1
3
0
9
7

0
.0
8
8
4
7
0

0
.8
3
7
3
0
5

0
.2
1
0
9
3
9

0
.1
1
8
4
7
8

0
.1
2
7
1
5
1

0
.3
1
6
5
0
6

0
.1
0
7
5
3
4

0
.1
2
4
4
6
9

0
.0
7
0
3
0
1

0
.0
8
9
8
5
0

0
.1
6
2
6
2
4

0
.1
3
9
9
4
5

0
.0
8
9
3
1
7

3
0
.9
4
9
8
5
6

0
.9
9
5
2
6
5

0
.0
0
4
5
5
9

0
.8
7
6
4
1
5

0
.9
9
1
0
4
8

0
.9
9
3
9
3
6

0
.6
7
6
3
8
7

0
.9
7
5
6
8
8

0
.9
9
3
9
0
3

0
.8
8
2
7
1
7

0
.9
5
7
5
6
2

0
.9
5
7
6
9
9

0
.8
7
3
8
6
7

0
.7
9
8
2
4
0

4
0
.7
2
1
4
7
8

0
.9
7
9
4
7
5

0
.1
1
4
0
1
7

0
.5
6
7
5
2
8

0
.9
9
8
7
6
2

0
.9
3
3
6
1
9

0
.2
4
4
5
5
7

0
.9
7
1
7
9
6

0
.9
2
5
7
9
1

1
.0
0
0
0
0
0

0
.9
9
0
2
7
3

0
.8
4
5
7
2
6

0
.6
6
8
6
7
1

0
.4
0
7
6
0
5

5
0
.4
7
1
7
1
9

0
.4
2
7
6
2
2

0
.3
7
3
3
5
8

0
.6
3
4
7
7
3

0
.5
5
4
2
0
7

0
.5
5
9
0
6
2

0
.5
5
4
3
9
1

0
.5
6
0
4
2
6

0
.5
3
4
5
5
5

0
.4
2
6
2
1
2

0
.5
0
2
6
5
4

0
.6
4
7
7
5
2

0
.5
1
6
1
2
6

0
.3
4
5
3
7
4

lb
ls

L
B
P
5
x

L
B
P
6
x

L
B
P
7
x

L
B
P
8
x

L
B
P
9
x

v
eg

m
ea

n
x

b
u
iltu

p
m
ea

n
x

h
m
ea

n
y

s
m
ea

n
y

v
m
ea

n
y

h
std

y
s
std

y
v
std

y
h
sk
ew

y

0
0
.7
1
4
1
8
8

0
.7
6
7
0
2
5

0
.5
6
7
4
1
5

0
.6
0
3
6
7
1

0
.0
6
2
7
5
7

0
.3
3
6
4
7
6

0
.9
6
4
0
2
1

0
.6
2
1
4
2
3

0
.5
8
2
9
8
9

0
.1
2
5
3
7
8

0
.6
2
1
1
4
5

0
.6
2
1
7
5
0

0
.7
8
1
0
6
3

0
.4
6
6
9
7
5

1
0
.4
9
1
3
6
8

0
.4
8
0
1
6
9

0
.4
1
5
9
2
4

0
.7
4
7
5
3
3

0
.0
4
5
7
8
4

0
.5
7
9
3
2
5

0
.7
8
2
7
3
2

0
.4
0
0
4
5
9

0
.2
3
3
5
6
2

0
.3
7
0
7
4
6

0
.4
4
9
3
2
5

0
.2
7
9
2
1
0

0
.4
7
9
7
2
6

0
.5
2
0
6
1
0

2
0
.1
1
4
7
2
6

0
.1
4
0
0
3
4

0
.0
8
3
0
1
8

0
.9
4
1
0
7
0

0
.0
0
9
1
3
7

0
.7
3
9
3
2
6

0
.7
6
8
4
7
4

0
.0
8
1
7
3
4

0
.0
4
2
8
0
1

0
.8
3
5
5
2
3

0
.1
4
4
0
2
2

0
.0
6
2
3
2
6

0
.1
1
4
2
5
6

0
.7
5
7
3
3
2

3
0
.8
7
0
8
9
2

0
.9
9
6
5
1
6

0
.9
4
3
7
0
7

0
.4
9
5
6
0
1

0
.1
0
6
9
4
6

0
.0
7
1
1
2
1

0
.8
0
8
6
8
0

0
.9
1
4
3
3
3

0
.8
4
9
3
6
1

0
.0
8
7
7
6
4

0
.5
3
9
9
0
9

0
.8
4
5
2
3
2

0
.9
9
5
1
2
6

0
.1
2
2
0
2
8

4
0
.8
4
7
0
4
9

0
.8
1
9
9
1
2

0
.9
6
1
7
1
3

0
.5
3
8
4
4
2

0
.1
1
4
0
7
1

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.8
8
3
4
7
1

0
.5
2
9
2
1
5

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.5
4
6
8
3
2

0
.8
7
1
7
7
9

0
.6
9
8
4
8
8

5
0
.2
9
9
7
6
8

0
.5
2
8
1
6
5

0
.5
6
8
0
0
6

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.5
4
9
4
8
9

0
.7
3
3
9
7
7

0
.4
2
8
8
1
6

0
.2
0
7
9
3
2

0
.3
2
9
3
5
8

0
.4
3
5
9
1
7

0
.2
4
6
7
7
8

0
.5
0
5
7
6
7

0
.4
0
9
7
5
5

lb
ls

s
sk
ew

y
v
sk
ew

y
L
B
P
0
y

L
B
P
1
y

L
B
P
2
y

L
B
P
3
y

L
B
P
4
y

L
B
P
5
y

L
B
P
6
y

L
B
P
7
y

L
B
P
8
y

L
B
P
9
y

v
eg

m
ea

n
y

b
u
iltu

p
m
ea

n
y

0
0
.6
2
9
1
4
2

0
.7
6
8
8
3
6

0
.5
5
9
7
1
4

0
.5
8
5
2
0
6

0
.7
6
0
9
5
5

0
.8
4
1
4
9
2

0
.8
3
8
1
5
7

0
.7
2
2
8
3
0

0
.7
9
4
0
9
3

0
.6
5
2
1
7
2

0
.6
0
0
3
5
0

0
.0
7
0
4
0
1

0
.7
1
4
0
1
6

0
.8
3
5
8
3
2

1
0
.3
0
0
6
7
1

0
.4
7
0
7
6
6

0
.4
6
5
9
5
8

0
.4
5
1
2
7
7

0
.5
1
0
3
4
8

0
.4
4
6
9
1
3

0
.3
0
9
0
6
0

0
.4
7
0
5
1
4

0
.4
6
6
2
7
8

0
.4
6
6
2
8
2

0
.7
4
8
7
8
2

0
.0
5
3
4
4
3

0
.8
5
2
0
3
5

0
.6
2
2
8
5
4

2
0
.0
7
7
1
9
6

0
.1
1
4
2
1
8

0
.0
5
0
6
0
0

0
.0
5
4
1
9
4

0
.1
4
0
3
8
4

0
.1
7
2
0
6
0

0
.1
5
8
4
8
6

0
.1
4
7
8
8
5

0
.1
1
5
3
3
9

0
.0
5
4
2
1
5

0
.9
3
9
6
4
2

0
.0
0
6
6
1
9

0
.9
5
9
4
2
1

0
.5
7
2
2
8
0

3
0
.8
7
0
6
9
9

0
.9
9
1
2
6
6

0
.8
8
3
2
4
6

0
.9
0
9
7
5
0

0
.9
6
4
4
6
8

0
.9
4
0
4
7
0

0
.8
0
8
6
5
6

0
.8
6
3
4
0
4

0
.9
8
7
5
7
3

0
.9
6
9
3
1
5

0
.4
8
8
0
8
9

0
.1
0
4
2
9
2

0
.0
1
0
1
3
7

0
.1
9
6
9
5
2

4
0
.5
7
5
9
0
3

0
.8
6
6
9
1
7

0
.9
8
1
2
8
5

0
.9
0
5
5
7
5

0
.9
0
7
5
5
7

0
.6
6
0
8
4
0

0
.4
8
7
0
1
5

1
.0
0
0
0
0
0

0
.9
5
0
0
3
3

0
.9
1
3
0
2
7

0
.5
2
1
4
2
9

0
.1
0
7
4
8
5

0
.7
1
3
3
0
9

0
.9
8
6
1
3
9

5
0
.2
8
0
9
3
0

0
.4
9
9
2
0
5

0
.6
2
1
6
2
6

0
.5
2
5
6
5
9

0
.5
7
0
1
8
9

0
.4
1
6
5
7
2

0
.1
1
6
0
7
2

0
.2
2
1
3
2
4

0
.4
4
5
8
4
2

0
.7
1
8
3
6
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.8
9
5
1
1
2

0
.5
6
8
9
8
8

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R43

Figure 7: Visual representation of patterns extracted from k-mean clustering

[85]: # plot clustering results for two different years

f, ax = plt.subplots(1, figsize=(10, 12))

plot cluster results

poly = poly.drop(’coords’, axis = 1)

poly.assign(lbls=cls)\

.plot(column=’lbls’, categorical=True, linewidth=1, alpha=0.5, ax=ax,

legend = True,cmap = ’Accent’, edgecolor = ’black’)

add labels for geographical units

poly[’coords’]=poly[’geometry’].apply(lambda x:x.representative_point().coords[:])

poly[’coords’]=[coords[0] for coords in poly[’coords’]]

for idx, row in poly.iterrows():

ax.annotate(text=row[’Name’],xy=row[’coords’],va=’center’,ha=’center’,

alpha = 0.8, fontsize = 10)

plt.title(’Fig.8: Spatial distribution of classification results’, y=-0.01)

remove axes and set aspect ratio so that the data units are the same in every direction

ax.axis(’off’)

ax.axis(’equal’)

[85]: (290053.0696196473, 407301.6741094636, 3389866.639388826, 3533566.430983904)

image/png<Figure size 720x864 with 1 Axes>

REGION : Volume 7, Number 2, 2020

R44 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 16: Tidy table represents mean values of features for each cluster at different years

Class Features Values Time

0 0 h mean 0.803863 1984
1 0 s mean 0.749195 1984
2 0 v mean 0.146109 1984
3 0 h std 0.895068 1984
4 0 s std 0.749907 1984

Figure 8: Spatial distribution of classification results

From Figures 7 and 8 we can see a few striking differences across clusters, or classes.
For class 4, only one administrative area (i.e. Huangpu area) is grouped, displayed in the
middle of north-east areas. The mean values for this class are mostly high in both years
except a couple of features such as v mean, LBP4 and LBP9 features. The brightness
(v mean) for this area is highly low and it became completely black over time. H mean
value is high in both years, demonstrating that the dominating colour is blue, which
represent water. This corresponds to the famous area of The Bund, with its river skyline,
which is part of this polygon. The vegetation built-up features indicate that this area
has experienced a remarkable change, from more vegetation and few buildings to less
vegetation and completely constructed/urbanisation.

Class 0 and Class 1 are relatively consistent compared to other classes, implying that
the urban areas in purple and green colours almost remained unchanged during the past
35 years. Besides, these two classes have similar transformation such as more vegetation
coverage and less buildings for the current year of 2019. However, Class 0 has more
brightness and more green colour based on v mean, h mean and veg mean features, and
Class 1 has higher h mean, h std, h skew and built-up mean, implying these two areas
have water covered and were highly constructed.

Class 2 distributed at north and middle-west areas in the map, which is extremely
diverse and unique among all categories. It has the highest brightness features and LBP8
texture features, while the rest mean values of colour and texture features are highly
low, especially for LBP9 where almost zero values in both years. The values for h mean,
s mean and v mean display that the primary colour for these areas is red with little grey
and much brightness, representing that these areas include more bare ground or soil
and thus probably rural areas. Adversely, Class 5 has zero values for LBP8 but highest

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R45

values for LBP9 in both years. It contains only one administrative area (i.e. Zhabei area),
surrounded by Class 4 and Class 0. Similarly, the area in Class 5 has more vegetation
but slightly less built-up areas over the past years. Class 3 contains two areas distributed
at the south and surrounded by Class 1 from the map. The feature values in Class 3 are
mostly extremely high, while the veg mean and built-up mean for current year are the
least, thus indicating that these areas have more water over the time.

6 Conclusion

Urbanisation has significantly changed the interaction between humans and the surround-
ing environment, which poses new challenges in a multitude of fields including construction
and city planning, hazard mitigation or disease control. It is essential to quantify and
assess urbanisation over time to enable policy makers and planners to make informed
decisions about future urban changes. The sustainability of urban spaces will become
particularly important in the light of future climate change. Satellite imagery could play
a vital role in assessing cities for their livability by i.e. quantifying the greenspace to built
environment ratio. This notebook shows the potential of open source satellite imagery to
exploring urban changes and proposes a simple method framework for automatic data
collection and features extraction to determine urbanisation over time using Python as a
tool.

References

Barsi JA, Lee K, Kvaran G, Markham BL, Pedelty JA (2014a) The spectral response of
the Landsat-8 operational land imager. Remote Sensing 6: 10232–10251. CrossRef.

Barsi JA, Schott JR, Hook SJ, Raqueno NG, Markham BL, Radocinski RG
(2014b) Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration.
Remote Sensing 6: 11607–11626. CrossRef.

Burchfield M, Overman HG, Puga D, Turner MA (2006) Causes of sprawl: A portrait
from space. The Quarterly Journal of Economics 121: 587–633. CrossRef.

Giada S, De Groeve T, Ehrlich D, Soille P (2003) Information extraction from very high
resolution satellite imagery over Lukole refugee camp, Tanzania. International Journal
of Remote Sensing 24: 4251–4266. CrossRef.

Glaeser E, Henderson JV (2017) Urban economics for the developing world: An introduc-
tion. Journal of Urban Economics 98: 1–5. CrossRef.

Ibrahim MR, Haworth J, Cheng T (2020) Understanding cities with machine eyes: A
review of deep computer vision in urban analytics. Cities 96. CrossRef.

Keen N (2005) Color moments. School of informatics, University of Edinburgh

Kit O, Lüdeke M (2013) Automated detection of slum area change in Hyderabad, In-
dia using mulittemporal satellite imagery. Journal of Photogrammetry and Remote
Sensing 83: 130–137. CrossRef.

Knight EJ, Kvaran G (2014) Landsat-8 operational land imager design, characterization
and performance. Remote Sensing 6: 10286–10305. CrossRef.

Kohli D, Sliuzas R, Stein A (2016) Urban slum detection using texture and spatial metrics
derived from satellite imagery. Journal of Spatial Science 61: 405–426. CrossRef.

Ministry of Civial Affairs of the People’s Republic of China (2018) Change of administrative
divisions at or above the county level. Available at: http://202.108.98.30/description?-
dcpid=1 [Accessed 10 Oct. 2019]

NASA (2000) Normalized difference vegetation index (NDVI). Available at: https://earth-
observatory.nasa.gov/features/MeasuringVegetation/measuring vegetation 2.php [Ac-
cessed 30 Oct. 2019]

REGION : Volume 7, Number 2, 2020

https://doi.org/10.3390/rs61010232
https://doi.org/10.3390/rs61111607
https://doi.org/10.1162/qjec.2006.121.2.587
https://doi.org/10.1080/0143116021000035021
https://doi.org/10.1016/j.jue.2017.01.003
https://doi.org/10.1016/j.cities.2019.102481
https://doi.org/10.1016/j.isprsjprs.2013.06.009
https://doi.org/10.3390/rs61110286
https://doi.org/10.1080/14498596.2016.1138247
http://202.108.98.30/description?dcpid=1
http://202.108.98.30/description?dcpid=1
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php

R46 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

NASA (2019) Landsat science. Available at: https://landsat.gsfc.nasa.gov/ [Accessed 10
Sep. 2019]

Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with
classification based on feature distributions. Pattern Recognition 19: 51–59. CrossRef.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J (2011) Scikit-learn: Machine learning
in Python. Journal of machine learning research 12: 2825–2830

Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen RG, Anderson MC, Helder D,
Irons JR, Johnson DM, Kennedy R, Scambos TA, Schaaf CB, Schott JR, Sheng Y,
Vermote EF, Belward AS, Bindschadler R, Cohen WB, Gao F, Hipple JD, Hostert P,
Huntington J, Justice CO, Kilic A, Kovalskyy V, Lee ZP, Lymburner L, Masek JG,
McCorkel J, Shuai Y, Trezza R, J. Vogelmann J, R.H. Wynne RH, Zhu Z (2014) Landsat-
8: Science and product vision for terrestrial global change research. Remote sensing of
Environment 145: 154–172. CrossRef.

United Nations (2019) World urbanization prospects 2018: Highlights. United Nations,
Department of Economic and Social Affairs, Population Division (ST/ESA/SER.A/421)

Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically
mapping urban areas from TM imagery. International Journal of Remote Sensing 24:
583–594. CrossRef.

c© 2020 by the authors. Licensee: REGION – The Journal of ERSA, European
Regional Science Association, Louvain-la-Neuve, Belgium. This article is distri-

buted under the terms and conditions of the Creative Commons Attribution, Non-Commercial
(CC BY NC) license (http://creativecommons.org/licenses/by-nc/4.0/).

REGION : Volume 7, Number 2, 2020

https://landsat.gsfc.nasa.gov/
https://doi.org/10.1016/0031-3203(95)00067-4
https://doi.org/10.1016/j.rse.2014.02.001
https://doi.org/10.1080/01431160304987
http://creativecommons.org/licenses/by-nc/4.0/

Volume 6, Number 3, 2019, 53–69 journal homepage: region.ersa.org
DOI: 10.18335/region.v6i3.277

Exploring long-term youth unemployment in Europe
using sequence analysis: A reproducible notebook
approach∗

Nikos Patias1

1 University of Liverpool, Liverpool, UK

Received: 28 August 2019/Accepted: 17 January 2020

Abstract. Youth unemployment is an important factor influencing the lifetime earnings
and future job prospects of individuals, often resulting in deterioration in their health
and well-being. Youth unemployment in Europe has been affected by the financial crisis
of 2008. However, the magnitude of these effects varied across European countries. The
objective of this notebook is to identify representative trajectories of youth unemployment
change in Europe from 2008 to 2018. This notebook provides a self-contained research
workflow that is fully reproducible and transparent. My findings suggest that northern
Europe has high concentration of regions with stable low youth unemployment while
southern Europe has high concentration of regions with stable high youth unemployment.
Identifying key patterns of youth unemployment change among European countries can
provide useful insights that help to understand migration patterns originating from the
more “disadvantaged” regions to more “advantaged” ones, or beyond. Finally, I hope
that data and regional scientists can benefit by the functionalities offered in this notebook
and use it as a complementary guide for analysing their own data.

Key words: sequence analysis, unemployment, Europe, regional inequalities, repro-
ducible research

1 Introduction

Youth unemployment is an important factor influencing the lifetime earnings and future
job prospects of individuals, often resulting in deterioration in their health and well-being
(Bell, Blanchflower 2011, O’Reilly et al. 2015). The effects of financial crisis of 2008 on
youth unemployment were prominent and varied across European countries and regions.
The European average for youth unemployment culminated in 2012 to more than 20%,
but there were countries that scored much higher (i.e. more than 50% in Greece and
more that 30% in Bulgaria and Italy) (Dietrich 2012). However, regional variations can
help to contextualise and analyse patterns of youth unemployment more effectively (Pop
et al. 2019). Understanding and tracking the evolution of regions that faced high levels
of unemployment can help in planning future policies, as today’s youth are going to be
in the workforce for the next 50 years. Finally, the trajectories of youth unemployment
change across regions (i.e. whether they have successfully recovered or not) and can be

∗This paper is available as computational notebook on the REGION webpage.

53

54 N. Patias

linked to patterns of regional resilience against economic crises. In this notebook, I use a
sequence analysis approach to identify representative trajectories of youth unemployment
change by NUTS 2 regions in Europe from 2008 to 2018.

The idea of using reproducible analyses in computational research has a growing
number of advocates (Peng 2011, Sandve et al. 2013, Rule et al. 2019). The development
of computational notebooks such as R and Jupyter notebooks, allow scientists to incorpo-
rate code, documentation, graphs and text in a single document. Consequently, more
than ever before, computational research has become more open, transparent and fully
replicable. Peng (2011) developed a reproducibility spectrum to highlight the importance
of incorporating publication standards text with linked code and data to achieve the “gold
standard of reproducibility”. The spectrum begins from the traditional static publications,
which are not reproducible. They become more reproducible when code and data are
incorporated in the publication. Finally, the full replication is achieved when linked and
executable code and data are included. As Peng (2011) highlights, data is an integral part
of reproducible research and should be clearly documented within the workflow. However,
researchers often neglect to provide adequate information on the datasets used. As a result,
other researchers have difficulties on replicating this piece of research. Linked datasets
through direct web-links or Application Programming Interfaces (APIs) when available,
contribute to the transparency of the research, by explicitly pointing the end-user to the
source of information described in a research project.

The objective of this notebook is to identify key representative trajectories of youth
unemployment change in Europe from 2008 to 2018. In the present notebook I provide a
self-contained research workflow that is fully reproducible and transparent. Moreover, I
make use of the functionalities offered by computational notebooks written in R markdown
such as direct access to online tabular/spatial datasets, manipulation and linkage between
these datasets as well as interactive plots/maps. Finally, this notebook aims to provide
the sufficient tools that a data or regional scientist needs to perform similar types of
analysis.

2 Packages and Dependencies

This section is used to report all the packages and dependencies required to run this
notebook which are vital components of reproducible research. By reporting the R version
under which I created this notebook and the packages used will ensure its replicability.

Firstly, is important to report the R version used in this notebook by running the
following line of code.

[1]: # to get the version of R used in the notebook

paste("The R Version used in this notebook is", getRversion())

[1]: ## [1] "The R Version used in this notebook is 3.5.1"

I then specify the CRAN repository where the packages have been downloaded from.

[2]: # Define the CRAN repository for this session

r_rep = getOption("repos")

r_rep["CRAN"] = "http://cran.us.r-project.org"

options(repos = r_rep)

And install/load the packages required to run this notebook. Please note that the
installation stage is required only the first time you run this notebook.

[3]: # These are the packages required to run this notebook

First should be installed

install.packages("eurostat")

install.packages("rvest")

install.packages("knitr")

install.packages("rgdal")

install.packages("countrycode")

install.packages("dplyr")

install.packages("reshape2")

install.packages("ggplot2")

install.packages("TraMineR")

install.packages("cluster")

REGION : Volume 6, Number 3, 2019

N. Patias 55

install.packages("factoextra")

install.packages("RColorBrewer")

install.packages("leaflet")

install.packages("plotly")

And then should be loaded

library(eurostat)

library(rvest)

library(knitr)

library(rgdal)

library(countrycode)

library(dplyr)

library(reshape2)

library(ggplot2)

library(TraMineR)

library(cluster)

library(factoextra)

library(RColorBrewer)

library(leaflet)

library(plotly)

Finally, I create a list of the available packages in my R environment and report the
version of each package used.

[4]: # Create a list with all the available packages in my R environment

pkg_used <- available.packages()

[5]: # For every package print the version of the package, the version of R that depends

on and the packages that imports

paste("eurostat Version is:", pkg_used["eurostat", "Version"])

paste("rvest Version is:", pkg_used["rvest", "Version"])

paste("knitr Version is:", pkg_used["knitr", "Version"])

paste("rgdal Version is:", pkg_used["rgdal", "Version"])

paste("countrycode Version is:", pkg_used["countrycode", "Version"])

paste("dplyr Version is:", pkg_used["dplyr", "Version"])

paste("reshape2 Version is:", pkg_used["reshape2", "Version"])

paste("ggplot2 Version is:", pkg_used["ggplot2", "Version"])

paste("TraMineR Version is:", pkg_used["TraMineR", "Version"])

paste("cluster Version is:", pkg_used["cluster", "Version"])

paste("factoextra Version is:", pkg_used["factoextra", "Version"])

paste("RColorBrewer Version is:", pkg_used["RColorBrewer", "Version"])

paste("leaflet Version is:", pkg_used["leaflet", "Version"])

paste("plotly Version is:", pkg_used["plotly", "Version"])

[5]: ## [1] "eurostat Version is: 3.4.20002"

[1] "rvest Version is: 0.3.5"

[1] "knitr Version is: 1.27"

[1] "rgdal Version is: 1.4-8"

[1] "countrycode Version is: 1.1.0"

[1] "dplyr Version is: 0.8.3"

[1] "reshape2 Version is: 1.4.3"

[1] "ggplot2 Version is: 3.2.1"

[1] "TraMineR Version is: 2.0-14"

[1] "cluster Version is: 2.1.0"

[1] "factoextra Version is: 1.0.6"

[1] "RColorBrewer Version is: 1.1-2"

[1] "leaflet Version is: 2.0.3"

[1] "plotly Version is: 4.9.1"

In this notebook, I have installed the latest versions of the packages used. I understand
that the analysis can be run by using previous versions too. However, using the versions
of the packages as reported here ensures the reader that this notebook will run without
any errors.

Now that all the packages have been correctly installed it is useful to provide a brief
overview of the main functionalities of each package.

eurostat This package allows access to Eurostat data through their API.

rvest This package is used to scrape data from web pages.

knitr This package provides better visualisation of the results within the notebook (i.e.
table formatting).

REGION : Volume 6, Number 3, 2019

56 N. Patias

rgdal This package is used to read, merge and manipulate geospatial datasets.

countrycode This package is used to convert country codes (i.e. ISO 3166) to country
names.

dplyr This package is used for more effective dataframes’ manipulation.

reshape2 This package is used to reshape tables from wide to long format and vice versa.

ggplot2 This package is used for creating plots.

TraMineR This is the package is used to perform sequence analysis.

cluster This package is used to perform cluster analysis.

factoextra This package provides the functionalities to assess the optimal number of
clusters.

RColorBrewer This package provides colour palettes to be used in maps.

leaflet This package is used for interactive mapping.

plotly This package is used for interactive plotting in conjuction with ggplot2.

3 Data and Methods

3.1 Data

Eurostat (https://ec.europa.eu/eurostat/data/database) has a large database providing a
wide range of available datasets in varying geographies and time frames. In this notebook,
I analyse youth unemployment in Europe from 2008 to 2018. Eurostat captures youth
unemployment by measuring the percentage of “Young people neither in employment
nor in education and training (NEET rates)”. This dataset is available from 2000 to
2018 at NUTS 2 regions (more information on NUTS classification can be found at
https://ec.europa.eu/eurostat/web/nuts/background). Eurostat defines youth unemploy-
ment either people aged 15-24 or 18-24 and are unemployed. In this study, I consider
the percentage of people aged between 18 and 24. The original dataset used in this note-
book can be accessed following https://ec.europa.eu/eurostat/web/products-datasets/-
/edat lfse 22. Eurostat has created its own R package (https://cran.r-project.org/web/-
packages/eurostat/index.html) to allow access in the database through an API with
a comprehensive documentation (https://ropengov.github.io/eurostat/index.html) and
tutorial (http://ropengov.github.io/eurostat/articles/eurostat tutorial.html). In order to
make the most of the functionalities offered by a notebook as well as enable researchers
to replicate this approach I make use of Eurostat’s API to access the dataset analysed in
this notebook.

I first search for the datasets referring to young unemployed people.

[6]: # search information about the datasets that are related to young unemployed people

kable(head(search_eurostat("Young people neither in employment")))

[6]: Output in Table 1

Of the available datasets, I am interested in the first on this list with code edat_lfse_22.
I specified my request to 11 time periods. Starting from the most current year (i.e. 2018)
and going back to 2008. I also specified that I want total percentages (i.e. both male and
female - sex = "T") and finally the age group that covers people aged from 18 to 24.

[7]: # Specify the ID of the dataset required

id <- "edat_lfse_22"

Request of the dataset

young_unempl <- get_eurostat(id, filters = list(lastTimePeriod=11, sex = "T",

age = "Y18-24"), time_format = "num")

REGION : Volume 6, Number 3, 2019

https://ec.europa.eu/eurostat/data/database
https://ec.europa.eu/eurostat/web/nuts/background
https://ec.europa.eu/eurostat/web/products-datasets/-/edat_lfse_22
https://ec.europa.eu/eurostat/web/products-datasets/-/edat_lfse_22
https://cran.r-project.org/web/packages/eurostat/index.html
https://cran.r-project.org/web/packages/eurostat/index.html
https://ropengov.github.io/eurostat/index.html
http://ropengov.github.io/eurostat/articles/eurostat_tutorial.html

N. Patias 57

Table 1: Available datasets from Eurostat related to youth unemployment

last update last table data data
title code type of data structure change start end values

Young people neither in employment nor in education edat lfse 22 dataset 01.07.2019 13.08.2019 2000 2018 NA
and training by sex and NUTS 2 regions (NEET rates)

Young people neither in employment nor in education edat lfse 29 dataset 01.07.2019 13.08.2019 2000 2018 NA
and training by sex, age and degree of urbanisation
(NEET rates)

Young people neither in employment nor in education hlth de030 dataset 21.03.2019 21.03.2019 2011 2011 NA
and training by type of disability, sex and age

Young people neither in employment nor in education edat lfse 20 dataset 01.07.2019 13.08.2019 2000 2018 NA
and training by sex, age and labour status (NEET rates)

Young people neither in employment nor in education edat lfse 23 dataset 25.04.2019 13.08.2019 2004 2018 NA
and training by sex, age and citizenship (NEET rates)

Young people neither in employment nor in education edat lfse 28 dataset 25.04.2019 13.08.2019 2004 2018 NA
and training by sex, age and country of birth
(NEET rates)

I also make use of a spatial dataset to enable use of an interactive map to facilitate better
presentation of results. To achieve that, I have downloaded NUTS 2 regions shapefile from
the second version of Eurostat’s spatial database (https://ec.europa.eu/eurostat/cache/-
GISCO/distribution/v2/). Eurostat provides the spatial data as a bulk download, so I first
unzip the file and then select the shapefile that matches the tabular data that I have already
downloaded. The name of the dataset “NUTS RG 60M 2016 4326 LEVL 2.shp.zip” is
self-explanatory showing that the spatial data is projected in the World Geodetic System
of 1984 (i.e. WGS84 or EPSG:4326) for NUTS 2 regions in 2016.

[8]: # Specify the url that links to the zipped spatial datasets

url = "http://ec.europa.eu/eurostat/cache/GISCO/distribution/v2/nuts/download/

...ref-nuts-2016-60m.shp.zip"

Download the file

download.file(url, basename(url))

Unzip the bulk file

unzip(basename(url))

Unzip the specific shapefile needed

unzip(paste0(getwd(), "/NUTS_RG_60M_2016_4326_LEVL_2.shp.zip"))

Read in the shapefile

geodata <- readOGR(dsn = getwd(), layer = "NUTS_RG_60M_2016_4326_LEVL_2")

Eurostat provides only country codes, which is not always helpful when presenting
results. For this reason, I used the R package countrycode (https://cran.r-project.org/-
web/packages/countrycode/index.html) to convert country codes to country names. While
in general, the European commission uses ISO 3166-1 alpha-2 codes, there are two
exceptions. Greece is reported as “EL” (rather than “GR”) and United Kingdom as “UK”
(rather than “GB”). Thus, I recoded these two countries manually.

[9]: # Create a new column for country names

geodata@data$cntr_name <- countrycode(geodata@data$CNTR_CODE, "iso2c", "country.name")

Because European commission uses EL for Greece (in ISO 3166-1 alpha-2 codes is GR)

and UK for United Kingdom (in ISO 3166-1 alpha-2 codes is GB) I should replace these

two countries manually

geodata@data$cntr_name <- ifelse(geodata@data$CNTR_CODE=="EL","Greece",

ifelse(geodata@data$CNTR_CODE=="UK", "United Kingdom", geodata@data$cntr_name))

3.2 Methods

This notebook aims to identify representative trajectories of youth unemployment change
across NUTS 2 regions in Europe. The methodological workflow followed here is similar to
Patias et al. (2020) that analyses trajectories of neighbourhood change in Great Britain.
Sequence analysis is a method that analyses sequences of categorical variables, and
extracts information on their structure and evolution. Sequence analysis has its origins in
biology, where it is used to analyse DNA sequences (Sanger et al. 1977). It can also be
applied to analyse longitudinal individual-level family, migration and career trajectories
(Brzinsky-Fay 2007, Rowe et al. 2017a,b). This method is also used on neighbourhood
trajectory mining in the United States to identify patterns of socioeconomic change over

REGION : Volume 6, Number 3, 2019

https://ec.europa.eu/eurostat/cache/GISCO/distribution/v2/
https://ec.europa.eu/eurostat/cache/GISCO/distribution/v2/
https://cran.r-project.org/web/packages/countrycode/index.html
https://cran.r-project.org/web/packages/countrycode/index.html

58 N. Patias

a period of time (Delmelle 2016). The key component of sequence analysis method is
the optimal matching analysis which is used to measure pairwise dissimilarities between
sequences and identifies “types of sequence patterns” (Studer, Ritschard 2016). In this
notebook sequence analysis is used in a spatio-temporal concept assessing how youth
unemployment in European regions (i.e. spatial) has changed from 2008 to 2018 (i.e.
temporal). Sequence analysis has been used as it is a method capable of capturing
multiple dimensions of spatio-temporal processes namely incidence, duration, timing and
sequencing. The youth unemployment data downloaded from Eurostat is expressed in
percentages (by NUTS 2 regions). Sequence analysis can be applied to categorical data,
hence I had to classify the regions’ youth unemployment percentages into quintiles so that
they can be treated as categories. In this way, the multiple dimensions of spatio-temporal
processes of youth unemployment change can be systematically measured. Thus, it
explicitly captures for each region:

• The number of times in a particular quintile (i.e. incidence);

• The time span in a particular quintile (i.e. duration);

• The year at occurrence of change from one quintile to another (i.e. timing); and

• The chronological order of transitions between quintiles (i.e. sequencing).

The key stages followed in this notebook are described below with links to the particular
sub-sections which provide some further technical clarifications:

1. Data pre-processing, by classifying NUTS 2 regions into quintiles based on the
percentage of youth unemployment in each year from 2008 to 2018 (regions with
the lowest % youth unemployment belong to the 1st quintile and regions with the
highest % youth unemployment belong to the 5th quintile).

2. Create a sequence object based on the quintile each region belongs to in every year
(i.e. from 2008 to 2018).

3. Measuring sequence dissimilarity based on substitution costs which is the proba-
bility of transitioning from one quintile to another (i.e. higher transition rate from
1st quintile to 5th quintile rather than from 2nd quintile to 1st quintile). The
substitution costs between quintiles i and j are calculated based on Equation (1).

4. Using the substitution costs calculated in the previous stage, I built a dissimilarity
matrix including every pair of sequences. In this notebook I have used the Optimal
Matching (OM) algorithm. The algorithm substitutes the elements of each sequence
based on their substitution costs which in turn is the OM distance between each
pair of sequences.

5. In the last stage I produce I typology of youth unemployment trajectories using the
resulting dissimilarity matrix from stage 4. Partitioning Around Medoids (PAM)
clustering algorithm is used for the classification of sequences

SubsCostsi,j = 2− p(i|j)− p(j|i) (1)

where p(i|j) is the transition rate between quintiles i and j. For the sequence analysis I have
used R package TraMineR (https://cran.r-project.org/web/packages/TraMineR/index.html)
which provides all the required functionalities.

4 Data Analysis

As shown in Figure 1, the average percentage of young people who are neither in
employment nor in education and training in Europe increased from 16% in 2008 to 18.5%
in 2012, followed by a decrease in 2018 (i.e. at around 15%). The results suggest that
on average, regions show patterns of resilience against financial crises and that policies

REGION : Volume 6, Number 3, 2019

https://cran.r-project.org/web/packages/TraMineR/index.html

N. Patias 59

Notes: Data from Eurostat, calculations by the author

Figure 1: European % average of young people neither in employment nor in education
and training

targeting the decrease of youth unemployment have proven efficient. However, not all
regions follow the same patterns.

This section of the notebook aims to provide an understanding on long-term youth
unemployment patterns in NUTS 2 regions in Europe but also to guide the reader on the
analytical process of sequence analysis and the functionalities offered by computational
notebooks. Each of the following five sub-sections will present in detail each of the steps
followed for the production of the results.

[10]: # I change the years from numbers to characters so to be recongised as categorical

rather than continuous variable

young_unempl$time <- as.character(young_unempl$time)

Create a plot by showing the European % average of young people neither in employment

nor in education and training

young_unempl %>%

group_by(time) %>%

summarise_all(mean, na.rm = TRUE) %>%

ggplot()

geom_bar(aes(x = time, y = values), stat = "identity", fill = "coral2")

labs(title = "European average % of young unemployed people",

x = "Years",

y = "% of young people",

caption = "Data downloaded from Eurostat\ncalculations made by the author")

theme_minimal()

theme(axis.text.x = element_text(angle = 45, hjust = 1))

[10]: Output in Figure 1

4.1 Data pre-processing

While the datasets provided by Eurostat are in clean format, they almost always require
some data pre-processing. Here, there are three main tasks required to bring the data in
the required format to proceed with the analysis. First, to subset the dataset to have
only the NUTS 2 regions (the original dataset also includes country and NUTS 1 data).
Second, to calculate the quintiles that every NUTS 2 region belongs to in every year.
Third, to re-format the dataset from a long (each region represented in multiple rows –
one for every year) to a wide format (each region represented by a single row and there
are multiple columns containing the yearly young unemployment rates).

In coding terms, the first task is to calculate the number of characters of all geography
codes and store them in a new column. I then create a subset of the dataset with only
NUTS 2 regions which are those that contain four characters (i.e. the first two represent
the country name followed by two numbers represent the NUTS 2 region).

REGION : Volume 6, Number 3, 2019

60 N. Patias

Table 2: Preview of the data that will be used in sequence analysis

sex age training wstatus unit geo n char 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2 T Y18-24 NO FE NO NFE NEMP PC AT12 4 2 2 1 2 1 1 2 1 1 1 1
3 T Y18-24 NO FE NO NFE NEMP PC AT13 4 2 2 2 2 2 2 2 3 3 2 3
5 T Y18-24 NO FE NO NFE NEMP PC AT22 4 1 2 1 1 1 1 1 1 1 1 1
6 T Y18-24 NO FE NO NFE NEMP PC AT31 4 1 1 1 1 1 1 1 1 1 1 1
8 T Y18-24 NO FE NO NFE NEMP PC AT33 4 1 1 1 1 1 1 1 1 1 1 1

10 T Y18-24 NO FE NO NFE NEMP PC BE10 4 5 4 4 4 4 4 4 4 4 4 4

[11]: # Create a new column to store the number of characters of the geography

young_unempl$n_char <- nchar(as.character(young_unempl$geo))

Subset only the NUTS 2 regions - their geography code contains 4 characters

young_unempl_NUTS2 <- young_unempl %>%

filter(n_char == 4)

The next task is to calculate quintiles by year for each region based on their % of
youth unemployment. This was done by looping through each year.

[12]: # Calculate quintiles by year

It is good to specify the filter function to be used from dplyr function to avoid

error messages

quant_data <- NULL

for (var in unique(young_unempl_NUTS2$time)) {

young_unempl_NUTS2_temp <- young_unempl_NUTS2 %>%

dplyr::filter(time == var) %>%

mutate(quintiles = ntile(values, 5))

quant_data <- rbind(quant_data,young_unempl_NUTS2_temp)

}

The final task is to keep only the column containing the quintiles (the actual percentages
will not be used in the rest of this notebook). The dataset will then be re-formatted to a
wide format where each region will be represented by a single row. For each region there
are multiple columns containing the corresponding yearly young unemployment quintiles.
Finally, I delete all the rows that contain missing values. This is important as there are
regions that have “gaps” in their data availability, meaning that there is no data in at
least one year between 2008 and 2018. These regions are ignored in this analysis to speed
up computational time and to have consistency across sequences.

[13]: # I delete the column inlcuding the % as I will use the quintiles from now on in the

analysis

quant_data <- subset(quant_data, select = -values)

Re-format the data from long to wide format

This means that every row will represent a region and every column represents a year

quant_data_wide <-

dcast(quant_data,

sex age training wstatus unit geo n_char ~ time,

value.var = ’quintiles’)

We remove rows that do not have values in at least one year so we have consistency

between sequences

quant_data_wide <- na.omit(quant_data_wide)

Have a look at the dataset

kable(head(quant_data_wide))

[5]: Output in Table 2

4.2 Sequence object

Creating a sequence object is the initial point of sequence analysis. In this notebook I
pass a subset of the columns of the dataset that contain the quintile values. Practically,
it means that I create a sequence of quintiles from 2008 to 2018 which are from the 8th
to 18th column for each region. As I have already mentioned, I have used the R package
TraMineR (https://cran.r-project.org/web/packages/TraMineR/index.html). For more
detailed information on sequence analysis and all the functionalities, please refer to the
user guide (http://mephisto.unige.ch/pub/TraMineR/doc/TraMineR-Users-Guide.pdf)
which provides detailed information on all the functionalities of the package.

REGION : Volume 6, Number 3, 2019

https://cran.r-project.org/web/packages/TraMineR/index.html
http://mephisto.unige.ch/pub/TraMineR/doc/TraMineR-Users-Guide.pdf

N. Patias 61

Table 3: Substitution costs between quintiles

1 2 3 4 5

1 0.000000 1.694604 1.985533 2.000000 2.000000
2 1.694604 0.000000 1.591372 1.960797 2.000000
3 1.985533 1.591372 0.000000 1.654430 2.000000
4 2.000000 1.960797 1.654430 0.000000 1.752492
5 2.000000 2.000000 2.000000 1.752492 0.000000

[14]: # Create the sequence object using only the quintiles that every region belongs

seq_obj <- seqdef(quant_data_wide[,8:18])

4.3 Measuring sequence dissimilarity

A key element of sequence analysis is to calculate “distances” between each pair of
sequences that can be used later for the Optimal Matching analysis. These distances are
a measure based on how similar two sequences are. There are two components related to
these distances. First is the insertion/deletion (indel) cost which is used when the length
of sequences is not the same. This is the cost of deleting or inserting a state in a sequence
so all the sequences have the same length. On this notebook, the time period covered
is the same for every region (i.e. from 2008 to 2018) so the sequence length is fixed, an
11-state long sequence. Hence this step is not required.

The second component for calculating “distances” between each pair of sequences
is to calculate the substitution costs for transforming one state (i.e. one quintile group)
to another. Substitution costs can be theory-driven or empirically-driven (Salmela-Aro
et al. 2011). Theory-driven costs are usually used when researchers define costs based
on pre-determined concepts. Thus, the costs between states are solely dependent on
the researchers’ choices (i.e. how “far” is one state from another). On the other hand,
empirically-driven costs are based on the observed transitions between states. Hence,
two states are closer when there are more observed transitions between them. In this
notebook I follow the empirically-driven approach as I intend to explicitly consider the
observed transitions between states (i.e. quintile groups here).

By following the empirically-driven approach, there are two options to calculate
substitution costs. The first is to assign a constant value for substituting sequence states
(i.e. quintiles). The second option is to calculate transition rates which are the probabilities
of transitioning from one state to another (between quintiles in this notebook). These
transition rates are then used to calculate the substitution costs as shown in Equation
(1). In this analysis, I have used transition rates (i.e. method = "TRATE") because it is
important to capture the higher probability of transitioning between 1st and 2nd quintile
compared to 1st and 5th quintile. By assigning a constant value, this information would
have been missed. For more detailed information on substitution costs please refer again
to the TraMineR user guide (http://mephisto.unige.ch/pub/TraMineR/doc/TraMineR-
Users-Guide.pdf).

Table 3 shows the substitution costs of this study. It is clear from the table that the
probability of transitioning between 1st and 2nd quintile is higher than transitioning from
1st to 5th quintile. Hence, the substitution cost from 1st to 2nd is lower than the 1st to
5th. This information will then be used in the next step – the Optimal Matching.

[15]: # Calculate substistution costs

subs_costs <- seqsubm(seq_obj, method = "TRATE")

Print the substitution costs

kable(subs_costs)

[5]: Output in Table 3

REGION : Volume 6, Number 3, 2019

http://mephisto.unige.ch/pub/TraMineR/doc/TraMineR-Users-Guide.pdf
http://mephisto.unige.ch/pub/TraMineR/doc/TraMineR-Users-Guide.pdf

62 N. Patias

Figure 2: Within sum of squares to access optimal clustering solution

4.4 Dissimilarity matrix

The dissimilarity matrix is a symmetric matrix between all the regions. The matrix is
populated by calculating the difference of the sequences between every pair of regions and
is symmetrical because each row and column represents a NUTS 2 region (as it happens in
any distance matrix). Each region consists of an 11-state long sequence (i.e. from 2008 to
2018). As in the previous stages there are different options to compare sequences. In this
notebook I have used the simple Optimal Matching algorithm which uses the substitution
costs between the quintiles and aggregates them for every pair of sequences. ‘Dynamic
Hamming’ distance is an alternative method of Optimal Matching which calculates
different substitution costs for every time period, assuming that the probabilites of
transitioning between different states significantly change over time. Another variant of
Optimal Matching is the ’Optimal Matching of Transition Sequences’ that accounts for
the sequencing of states by explicitly considering their order. In this notebook I have
used the simple Optimal Matching algorithm as the aim of the notebook is to present how
sequence analysis can be applied to the context of exploring youth unemployment change
without making any assumptions that the timing or the ordering of states is considered
more important which other Optimal Matching methods can explicitly capture. Studer,
Ritschard (2016) provide a good review of different variants of Optimal Matching.

Hence, using the Optimal Matching method a dissimilarity matrix between all NUTS
2 regions has been built based on the substitution costs shown in Table 3. Lower costs
mean that sequences are more similar, while larger costs mean that they are different.
Hence, it is an abstract distance matrix, showing how “close” two sequences are.

[16]: # Calculate the distance matrix

seq.OM <- seqdist(seq_obj, method = "OM", sm = subs_costs)

4.5 Classification of sequences

The final analytical step is to classify the sequences based on their similarities. There is a
wide range of clustering algorithms to choose from, when it comes to object classifica-
tion. Here, the Partitioning Around Medoids (PAM) clustering method was selected for
classifying sequences. The PAM algorithm is similar to k-means, but is considered more
robust (Kaufman, Rousseuw 1991). A dissimilarity matrix can be used as an index. The
algorithm iterates to minimize the sum of dissimilarities within clusters, compared to
k-means that aims to minimize the sum of squared Euclidean distances. PAM is based on
finding k representative objects or medoids among the observations and then k clusters
(that should be defined as in k-means) are created to assign each observation to its nearest
medoid. There are different fit statistics to assess optimal clustering solutions.

REGION : Volume 6, Number 3, 2019

N. Patias 63

Figure 3: Average silhouette width to access optimal clustering solution

[17]: # Assess different clustering solutions to specify the optimal number of clusters

fviz_nbclust(seq.OM, cluster::pam, method = "wss")

[17]: Output in Figure 2

[18]: # Assess different clustering solutions to specify the optimal number of clusters

fviz_nbclust(seq.OM, cluster::pam, method = "silhouette")

[18]: Output in Figure 3

In this notebook I have used two fit statistics (see Figures 2 and 3) to assess various
clustering solutions. The focus of this notebook is not to demonstrate the differences
between fit statistics. Thus, I will not get into more detail on what every measure means.
However, a useful tutorial can be found at https://rstudio-pubs-static.s3.amazonaws.-
com/455393 f20bacf1329a49dab40eb393308b33eb.html. In short, they show how well
separated each cluster is compared to other clusters (see Figure 2) but also how “compact”
the observations are within each cluster (see Figure 3). The fit statistics here show that
the optimal clustering solution is four clusters.

[19]: # Run clustering algorithm with k = 4

pam.res <- pam(seq.OM, 4)

Having classified the sequences, it is then important to visualise the results to under-
stand differences between the groups. Figure 4 and 5 show the four resulting transition
patterns of young unemployment in NUTS 2 regions based on the quintiles they belonged
from 2008 to 2018. In Figure 4 each line represents a region, each colour a quintile group
and the x-axis represents each year. Figure 5 displays the year-specific distribution of each
sequence group. Finally, the y-axis in Figure 4 represents the total number of sequences
within each sequence group, while in Figure 5 it represents the distribution of sequences
that belong to each sequence group at thus it ranges from 0 to 1.

[20]: # Assign the cluster group into the tabular dataset

quant_data_wide$cluster <- pam.res$clustering

Then rename clusters

quant_data_wide$cluster <- factor(quant_data_wide$cluster, levels=c(1, 2, 3, 4),

labels=c("Stable Low youth unemployment",

"Stable Moderate youth unemployment",

"Increasingly High youth unemployment",

"Stable High youth unemployment"))

For convenience and better communication of the results I assigned names to the four
groups starting from the top left plot as:

REGION : Volume 6, Number 3, 2019

https://rstudio-pubs-static.s3.amazonaws.com/455393_f20bacf1329a49dab40eb393308b33eb.html
https://rstudio-pubs-static.s3.amazonaws.com/455393_f20bacf1329a49dab40eb393308b33eb.html

64 N. Patias

Figure 4: Individual sequences by sequence group

• Group 1 . . . Stable Low youth unemployment

• Group 2 . . . Stable Moderate youth unemployment

• Group 3 . . . Increasingly High youth unemployment

• Group 4 . . . Stable High youth unemployment

[21]: # Plot of individual sequences split by sequence group

seqIplot(seq_obj, group = quant_data_wide$cluster, ylab = "Number of sequences")

[21]: Output in Figure 4

[22]: # Distribution plot by sequence group

seqdplot(seq_obj, group = quant_data_wide$cluster, border=NA,

ylab = "Distribution of sequences")

[22]: Output in Figure 5

The results of this analysis mainly show patterns of stability in terms of youth
unemployment. Group 1 contains regions that are in the lowest quintile, which means
they have the lowest youth unemployment ratios over time. Group 4 is exactly the
opposite of group 1, containing the regions that belong to the highest quintile over time
(highest youth unemployment ratios). Group 2 consists of regions that classified either
in the 2nd or 3rd quintile in the last 10 years. Finally, group 3 consists of regions that
initially (i.e. 2008) belonged to 3rd, 4th, 5th and few on the 2nd quintile but gradually
transformed to the 4th quintile, thus now having a higher percentage of young unemployed
people.

5 Exploring spatio-temporal trends of youth unemployment in Europe

Youth unemployment as a socioeconomic phenomenon is of main concern in European
policy. Thus, it is important to visualise the findings of this notebook, so that they can be

REGION : Volume 6, Number 3, 2019

N. Patias 65

Figure 5: Distribution plot by sequence group

easily explored by the reader. To achieve this, I linked the results of the sequence analysis
to the NUTS 2 region geographies so to create an interactive map. I then calculated the
frequency of each trajectory group in every European country and created an interactive
plot. In this way, the results are more accessible to everyone interested1.

The map (see Figure 6) offers the opportunity to hover over the regions. Then by
clicking on any region, information on the trajectory group, the region name and the
country name is shown. The interactive plot (see Figure 7) offers an overview of the
frequencies of trajectory groups across European countries. By hovering over the plot,
one can observe the exact frequency of each group. It also offers the opportunity to zoom
in on particular countries and to manually navigate through the graph (i.e. pan option
on the toolbox on the right top of the plot). Finally, by clicking on the legend, particular
group(s) can be selected to be shown.

[23]: # Merge the spatial to the tabular dataset which includes the cluster names

map_data <- merge(geodata, quant_data_wide, by.x="FID", by.y="geo", all.x=TRUE)

Figures 6 and 7 show spatio-temporal variations of youth unemployment within
and across European countries. As illustrated in the map, Mediterranean and Balkan
countries (i.e. Greece, Italy, Spain, Turkey, Bulgaria and Romania) have stable high youth
unemployment over time. On the other hand, northern countries and central European
countries (i.e. Norway, Sweden, Netherlands, Germany, Austria and Switzerland) have
stable low youth unemployment over time. Finally, the majority of central European
countries and the United Kingdom have followed moderate levels of youth unemployment
change. However, there are regional differences highlighting that socioeconomic inequalities
are not only apparent between countries but also within their national boundaries. There
is a clear split between the stable high youth unemployment in south Italy compared
to lower but still increasingly high youth unemployment in the north. Spain has three
tiers, split geographically, where the more northern the region, the lower the youth
unemployment level. A similar pattern appeared in the United Kingdom, where northern
regions have higher youth unemployment levels than southern regions over time.

1The interactive figures are included in the HTML-version of the paper or can be generated from the
Rmd-file.

REGION : Volume 6, Number 3, 2019

66 N. Patias

Figure 6: Interactive map of youth unemployment trajectories in NUTS 2 from 2008 to
2018

When looking in more detail at some major metropolitan regions, we can observe
deviations from their neighbouring regions. Bucharest and Sofia seem to have lower
unemployment levels compared to adjacent regions in Romania and Bulgaria respectively.
On the other hand, while Belgium has moderate or low levels of youth unemployment
on average, Brussels, its biggest city and capital, has stable higher youth unemployment.
Austria follows similar pattern where the country has on average high concentration
of ‘stable low youth unemployment’ regions but its biggest city (and capital) Vienna
is classified as ‘stable high youth unemployment’. This highlights that higher levels of
socioeconomic inequalities and more disadvantaged groups are often aggregated in large
metropolitan areas.

[24]: # Create a map showing the distribution of sequence clusters

Specify the colour palette

myColors <- rev(brewer.pal(4,"RdYlGn"))

pal <- colorFactor(myColors, domain = unique(map_data$cluster))

Create the initial background map, zooming in Europe

colourmap <- leaflet() %>%

addTiles() %>%

setView(lat = 55, lng = 1, zoom = 3)

Create the interactive map showing the sequence clusters

colourmap %>%

addPolygons(data = map_data,

fillColor = ~pal(cluster),

weight = 0.2,

opacity = 0.8,

color = "white",

dashArray = "3",

fillOpacity = 0.7,

popup = paste("Cluster: ", map_data$cluster, "
",

"NUTS 2 Name: ", map_data$NUTS_NAME, "
",

"Country Name: ", map_data$cntr_name, "
"),

highlight = highlightOptions(

weight = 5,

color = "#666",

dashArray = "",

REGION : Volume 6, Number 3, 2019

N. Patias 67

Figure 7: Distribution of youth unemployment trajectories across Europe from 2008 to
2018

fillOpacity = 0.7,

bringToFront = TRUE)) %>%

addLegend(pal = pal,

values = map_data$cluster,

na.label = "Missing data",

position = "bottomleft",

title = "Youth unemployment trajectories by NUTS 2 in Europe")

[24]: Output in Figure 6

[25]: # Calculate country summary statistics

freq_reg <- map_data@data %>%

group_by(cntr_name, cluster) %>%

summarise(n = n()) %>%

mutate(freq = n / sum(n))

[26]: # reformat the data to order them by clusters frequency

data_wide <- dcast(freq_reg, cntr_name ~ cluster, value.var="freq")

data_wide <- data_wide[order(-data_wide$‘Stable Low youth unemployment‘,

-data_wide$‘Stable Moderate youth unemployment‘,

-data_wide$‘Increasingly High youth unemployment‘,

-data_wide$‘Stable High youth unemployment‘),]

Create a bar plot for country distribution of clusters

distribution_plot <- ggplot()

geom_bar(aes(y=freq, x=cntr_name, fill=cluster), data=freq_reg, stat="identity")

labs(title = "Distribution of youth unemployment trajectories across Europe",

x = "Countries", y = "Proportion", fill = "")

theme_minimal()

theme(axis.text.x=element_text(angle = 90, hjust = 1))

scale_x_discrete(limits=c(data_wide$cntr_name))

scale_fill_brewer(palette="RdYlGn", na.value = "grey64", direction = -1)

Set an interactive mode to the plot

ggplotly(distribution_plot)

[26]: Output in Figure 7

REGION : Volume 6, Number 3, 2019

68 N. Patias

6 Conclusion

Sequence analysis offers the opportunity to understand long-term socioeconomic trends
over various levels of geographic regions. Clustering regions that follow similar socioe-
conomic trajectories can guide local, regional, national or European policy making by
identifying and reducing the socioeconomic segregation of disadvantaged population
groups. The first aim of this notebook was to highlight (NUTS 2) regions in Europe that
maintain high, moderate or low youth unemployment levels, as well as regions that have
transitioned from one level to another over the last decade. The findings of this notebook
showed that northern Europe has high concentrations of regions with stable low youth
unemployment, while southern Europe has high concentrations of regions with stable
high youth unemployment. It is observed that southern countries struggled to adapt to
the financial crisis of 2008. These findings can be used as a starting point to understand
migration patterns that originated from these “disadvantaged” regions within or outside
European boundaries. The second aim of this notebook was to provide a self-contained
reproducible and transparent analytical workflow. This aim was achieved by providing
detailed steps for successful data manipulation and make use of sequence analysis which
is not a commonly used method in regional studies. Hence, I hope that data and regional
scientists can benefit from the functionalities offered in the notebook and use it as a
complementary guide when analysing their own data.

Acknowledgment

I would like to acknowledge the useful and constructive feedback received from my PhD
supervisor Dr. Francisco Rowe throughout this research project. I would also like to
thank my fellow PhD students at the University of Liverpool Krasen Samardzhiev and
Patrick Ballantyne as well as the two anonymous reviewers for their useful comments on
earlier versions of the notebook.

References

Bell DNF, Blanchflower DG (2011) Young people and the great recession. Oxford Review
of Economic Policy 27[2]: 241–267. CrossRef.

Brzinsky-Fay C (2007) Lost in transition? Labour market entry sequences of school
leavers in Europe. European Sociological Review 23[4]: 409–422. CrossRef.

Delmelle EC (2016) Mapping the DNA of urban neighborhoods: Clustering longitudinal
sequences of neighborhood socioeconomic change. Annals of the American Association
of Geographers 106[1]: 36–56. CrossRef.

Dietrich H (2012) Youth unemployment in Europe – Theoretical considerations and
empirical findings. Friedrich ebert stiftung, bonn

Kaufman L, Rousseuw PJ (1991) Finding groups in data: An introduction to cluster
analysis. Vol. 47. 2. CrossRef.

O’Reilly J, Eichhorst W, Gábos A, Hadjivassiliou K, Lain D, Leschke J, McGuinness S,
Kureková LM, Nazio T, Ortlieb R, Russell H, Villa P (2015) Five characteristics of
youth unemployment in Europe: Flexibility, education, migration, family legacies, and
EU policy. SAGE Open 5[1]: 1–19. CrossRef.

Patias N, Rowe F, Cavazzi S (2020) A scalable analytical framework for spatio-temporal
analysis of neighborhood change: A sequence analysis approach. In: Kyriakidis P,
Hadjimitsis D, Skarlatos D, Mansourian A (eds), Geospatial Technologies for Local and
Regional Development. Springer International Publishing, Cham, 223–241. CrossRef.

Peng RD (2011) Reproducible research in computational science. Science 334[6060]:
1226–1227. CrossRef.

REGION : Volume 6, Number 3, 2019

https://doi.org/10.1093/oxrep/grr011
https://doi.org/10.1093/esr/jcm011
https://doi.org/10.1080/00045608.2015.1096188
https://doi.org/10.2307/2532178
https://doi.org/10.1177/2158244015574962
https://doi.org/10.1007/978-3-030-14745-7_13
https://doi.org/10.1126/science.1213847

N. Patias 69

Pop A, Kotzamanis B, Muller E, McGrath J, Walsh K, Peters M, Girejko R, Dietrich C
(2019) YUTRENDS – Youth unemployment: Territorial trends and regional resilience.
ESPON, Luxemburg

Rowe F, Casado-Dı́az JM, Mart́ınez-Bernabéu L (2017a) Functional labour market areas
for Chile. REGION 4[3]: R7–R9. CrossRef.

Rowe F, Corcoran J, Bell M (2017b) The returns to migration and human capital
accumulation pathways: Non-metropolitan youth in the school-to-work transition.
Annals of Regional Science 59[3]: 819–845. CrossRef.

Rule A, Birmingham A, Zuniga C, Altintas I, Huang C, Knight R, Moshiri N, Nguyen
MH (2019) Ten simple rules for writing and sharing computational analyses in Jupyter
Notebooks. PLoS Computational Biology 15[7]. CrossRef.

Salmela-Aro K, Kiuru N, Nurmi J, Eerola M (2011) Mapping pathways to adulthood
among finnish university students: Sequences, patterns, variations in family- and
work-related roles. Advances in Life Course Research 16[1]: 25–41. CrossRef.

Sandve GK, Nekrutenko A, Taylor J, Hovig E (2013) Ten simple rules for reproducible
computational research. PLoS Computational Biology 9[10]. CrossRef.

Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors.
Proceedings of the National Academy of Sciences 74[12]: 5463–5467. CrossRef.

Studer M, Ritschard G (2016) What matters in differences between life trajectories: A
comparative review of sequence dissimilarity measures. Journal of the Royal Statistical
Society. Series A: Statistics in Society 179[2]: 481–511. CrossRef.

c© 2019 by the authors. Licensee: REGION – The Journal of ERSA, European
Regional Science Association, Louvain-la-Neuve, Belgium. This article is distri-

buted under the terms and conditions of the Creative Commons Attribution, Non-Commercial
(CC BY NC) license (http://creativecommons.org/licenses/by-nc/4.0/).

REGION : Volume 6, Number 3, 2019

https://doi.org/10.18335/region.v4i3.199
https://doi.org/10.1007/s00168-016-0771-8
https://doi.org/10.1371/journal.pcbi.1007007
https://doi.org/10.1016/j.alcr.2011.01.003
https://doi.org/10.1371/journal.pcbi.1003285
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1111/rssa.12125
http://creativecommons.org/licenses/by-nc/4.0/

Volume 7, Number 1, 2020, 21–34 journal homepage: region.ersa.org
DOI: 10.18335/region.v7i1.282

Teaching on Jupyter – Using notebooks to accelerate
learning and curriculum development

Jonathan Reades1

1 King’s College London, London, United Kingdom

Received: 7 October 2019/Accepted: 5 January 2020

Abstract. The proliferation of large, complex spatial data sets presents challenges
to the way that regional science and geography more widely is researched and taught.
Increasingly, it is not ‘just’ quantitative skills that are needed, but computational ones.
However, the majority of undergraduate programmes have yet to offer much more than
a one off ‘GIS programming’ class since such courses are seen as challenging not only
for students to take, but for staff to deliver. Using the evaluation criterion of minimal
complexity, maximal flexibility, interactivity, utility, and maintainability, we show how the
technical features of Jupyter notebooks particularly when combined with the popularity
of Anaconda Python and Docker enabled us to develop and deliver a suite of three
‘geocomputation’ modules to Geography undergraduates, with some progressing to data
science and analytics roles.

1 Introduction

The growth of data from sources that are both ‘accidental, open, and everywhere’ (Arribas
Bel 2014), and characterised by volume, velocity, variety, and questions of veracity
(Gorman 2013) has opened up new possibilities, and challenges, for researchers. This, in
turn, calls for new conceptual, methodological, and technical approaches since ‘acquiring
data is no longer a strongly limiting factor to completing analytical tasks’ (Bowlick,
Wright 2018), working with it is. It is not particularly important whether these skills are
framed as an informed empirical social science (Ruppert 2013) or as a computational social
science (Lazer et al. 2009); authoritative reviews of the social sciences and humanities
by The British Academy (2012), and of human geography by the Economic and Social
Research Council (Ley et al. 2013), have concluded that many graduates are poorly
prepared to engage with this world of ‘big data’. The Royal Society (2019) has called for
curriculum change at Higher Education Institutions (HEIs) with a view to encouraging
interdisciplinarity and the effective integration of data science skills.

This presents something of a problem for a nascent ‘geographic data science’ (Singleton,
Arribas Bel 2019) of the sort that regional science, and regional studies and geography
more widely, require since a surprisingly large number of university programmes continue
to teach proprietary, mostly point-and-click software. So many students’ principal
exposure to quantitative methods, let alone computational ones, comes in a standalone
‘quantitative methods module’ that provides little in the way of meaningful interaction
with the underlying issues of spatial data and spatial data analysis at scale. And while
the issue may be particularly acute for students in the U.K. (Johnston et al. 2014),
even in more technically-oriented countries there is often not much more on offer than a

21

22 J. Reades

straightforward ‘GIS course’ (Wikle, Fagin 2014). Consequently, students progressing to
higher levels of study or the professional realm often find that ‘the skills least developed
in undergraduate GIS courses are those related to programming and computer science’
(Bowlick et al. 2017).

2 Dependencies

This notebook requires the GeoJSON labextension to be installed in JupyterLab. All
other packages should be part of a default Python 3 installation.

3 Context

The long history of computers in geography has not been without controversy (Arribas
Bel, Reades 2018, Barnes 2013, Cresswell 2014, Johnston et al. 2014), although many have
actively engaged with recent developments (e.g. Torrens 2010) and expect impacts on the
very fabric of the discipline (González Bailón 2013). So although our experience with
teaching computational skills using Jupyter notebooks is clearly rooted in the ‘geography
of geography’ (Bradbeer 1999) in the sense that we speak to particular challenges here in
the U.K., it is part and parcel of a wider skills gap at the undergraduate level in general.
In short, too few students are gaining the skills needed to engage with this deluge of
data or to take advantage of cutting-edge tools developed outside of the field, either as
researchers or as end-users in the public or private sectors (Singleton 2014).

This is where we believe that the pedagogical potential of Project Jupyter (Kluyver
et al. 2016) is revolutionary: reflecting on our experience of trying to roll out exactly
this type of programme, we seek to highlight the transformative potential of notebooks
for student and researcher development. Jupyter removes significant barriers to teaching
by providing a flexible and familiar interface that hides, or even postpones indefinitely,
some of the complexity of managing local programming language installations whilst
also allowing instructors to provide rich media and contextual information next to the
code where it is needed the most. Making coding accessible is not simply about allowing
students to ‘hack away’ at data, it can actually help students to better understand spatial
analytic methods by linking concepts to code as Xiao’s outstanding text on algorithms
demonstrates (Xiao 2016).

3.1 Teaching Programming to Non Programmers

Given the interaction effects between pedagogical and subsequent practice, it is therefore
worth placing the challenge of teaching programming in the context of the shifting
terrain for quantitative research and researcher development. These challenges start
early: many students already demonstrate what Spronken-Smith (2013) calls ‘equation
phobia’: “students not linking numbers, and problems with visualisation of quantities.”
Hodgen et al. (2014) suggest just some of the reasons for this: limited prior knowledge
and attainment; time elapsed since last study of maths; a failure to see relevance; and the
wide range of attainment levels within each cohort (Hodgen et al. 2014). Whatever its
origins, a general lack of confidence and/or competence creates a feedback loop fuelling
further avoidance (Chapman 2010).

In the context of maths instruction Macdonald, Bailey (2000) have also noted the
challenge inherent in delayed gratification given that ‘maths is the tool, not the goal.’
Given the apparent gulf between print('Hello world.') and being able to write useful
analytical code, the issue is no less serious in programming. There is no reason why
the familiarity of so-called ‘Digital Natives’ with computers should have any bearing on
their understanding of how they actually work; indeed, today’s students may well be
more detached from the underlying processes – metaphorical and actual – thanks to ‘the
sophistication of modern Graphical User Interfaces’ (Muller, Kidd 2014). In the long
run, programming requires an ability to envision and manipulate abstract entities such
as data structures sitting, in turn, on top of additional layers of abstraction such as the
application and its state(s), the file system and its structure(s), the operating system and
even the underlying hardware.

REGION : Volume 7, Number 1, 2020

https://github.com/jupyterlab/jupyter-renderers
https://jupyter.org/

J. Reades 23

Figure 1: Barron Stone memorably demonstrates for and while loops (Stone 2013)

There are many differing views of how programming should be taught (Pears et al.
2007), though we come down firmly on the side of Lukkarinen, Sorva (2016) that there
are advantages to ‘contextualising programming practice in the field of application’. In
general, it seems that introductory programming courses should strive simultaneously for
richness and simplicity: richness in the ‘constructs’ associated with programming, and
simplicity in terms of the foundation being laid (Lukkarinen, Sorva 2016). Unfortunately,
the expertise of teachers is not always a plus for effective teaching (Chapman 2010) since
concepts that seem intuitive and are easily connected to a range of related problems by
the instructor may yield no such benefit to the novice. As we developed our teaching
materials, we found that videos created by other learners could, at times, capture student
attention more effectively than our own demonstrations; for example, Stone’s instructional
video for students at Rice University on the difference between for and while loops, shown
in Figure 1. Using Jupyter notebooks this kind of content can be embedded directly in
the task explanation.

3.2 Course Structure

The work reported here draws on methodological and pedagogical research conducted over
the past five years in the Department of Geography at King’s College London; it seeks
both to position learning to code as essential to further student and staff development,
and to examine the reasons why Jupyter notebooks have been selected as the best means
of achieving this goal. As such, this research is necessarily caught up in a wider debate
about quantitative skills amongst students; however, our undergraduate ‘pathway’ in
Geocomputation & Spatial Analysis (which could be understood as an optional ‘minor’ in
the North American tradition) seeks to go beyond the kinds of statistical skills training
encouraged by funders (see brief discussion in Johnston et al. 2014) and to tackle these
in conjunction with computational skills. We want to take students with a variety of
social, economic, ethnic, and computational backgrounds and cultivate in (and with)
them an appreciation of, and ability to undertake, interdisciplinary work with a strong
computational element (see Mir et al. 2017, for a discussion of the CS+X format).

Based on our own experience, we felt that shoe horning exposure to ‘computational
geography’ into a single module – as seems to occur in many American programmes
(Bowlick et al. 2017) – would only reinforce student aversion to such approaches, so we
opted to ‘unpack’ the concepts across three modules:

1. Geocomputation

2. Spatial Analysis and Modelling, and

3. Applied Geocomputation.

REGION : Volume 7, Number 1, 2020

https://www.youtube.com/watch?v=9AJ0uoxtdCQ
https://www.kcl.ac.uk/geography
https://www.kcl.ac.uk/
https://github.com/kingsgeocomp/geocomputation
https://github.com/kingsgeocomp/spatial-analysis
https://github.com/kingsgeocomp/applied_gsa

24 J. Reades

These modules must be taken in sequence, the preceding module acting as a pre-requisite
for admission to the next, although students are free to exit the sequence at any time.
We also provide an optional ‘Code Camp’ (Reades et al. 2019) to be undertaken over
the summer before the first module begins so that students begin the term familiar with
basic concepts: variables, lists/arrays, dictionaries/hashes, and functions/subroutines,
provided they have done the work.

3.3 Contextualised Computing

To our knowledge, there is no other undergraduate programme like it with important
differences in both style and substance from what would be covered in an Economics,
Statistics, or Computer Science (CS) degree in terms of its spatial and applied focus. In
this sense, the modules are an extended test of ‘contextualised computing’ instruction (see
Lukkarinen, Sorva 2016, for a review) which seeks to emphasise relevance to ‘real-world’
applications and to avoid “general CS content, such as how one might go about sorting
an array of any type for an unspecified purpose” (Lukkarinen, Sorva 2016). We also
recognise, however, that “contextualized computing education cannot help students learn
more in less time” (Guzdial 2010) and that the transferrable aspects of this learning need
to be emphasised: in our case we try to highlight how the same approach can be applied
to human and physical geography problems.

Consequently, wherever possible these exercises are grounded in spatial examples, even
where these are very simple indeed, on the basis that connecting them to the learner’s
existing knowledge and interests will improve retention at the introductory level (Guzdial
2010). For example, a notebook on dictionaries (taken from Reades et al. 2019) can
start with creating and querying a phone book of national emergency numbers where the
student has to replace the ??? in eNumbers = { ??? } with functioning Python code:

[1]: eNumbers = {

'IS': 112,

'US': 911

}

print(f"The Icelandic emergency number is {eNumbers['IS']}")

print(f"The American emergency number is {eNumbers['US']}")

[1]: The Icelandic emergency number is 112

The American emergency number is 911

Students then progress towards a task involving a dictionary-of-dictionaries:

[2]: cityData = {

'London': {

'population': 8673713,

'location': [51.507222, -0.1275],

'country': 'UK'

},

'Paris': {

'population': 2140526,

'location': [48.8567, 2.3508],

'country': 'FR'

}

}

for city, data in cityData.items():

print(f"The population of {city} ({data['location'][0]:0.3f}ºN,

{data['location'][1]:0.3f}ºE) is {data['population']:,}")

[2]: The population of London (51.507ºN, 0.128ºE) is 8,673,713

The population of Paris (48.857ºN, 2.351ºE) is 2,140,526

This work is building towards a GeoJSON example in which they have to complete
missing attributes in order to show a marker centred on the university’s central London
campus. Since GeoJSON is essentially a dictionary-of-dictionaries, this is a good test of
their understanding, but with Jupyter they receive immediate feedback on this because
GeoJSON can be embedded directly into the notebook: an interactive web map shows up

REGION : Volume 7, Number 1, 2020

https://zenodo.org/record/3474043

J. Reades 25

as soon as they’ve run the code, reinforcing the contextual aspect – that this is all about
geography – of their learning.

[3]: # King’s College London’s coordinates...

What format are they in? Does it seem appropriate?

How would you convert them back to numbers if you

needed to do so?

longitude = '-0.11596798896789551'

latitude = '51.51130657591914'

Notice how we set up a data type and location

here where it’s easy to see where the lat/long

values are being used we could also use these

in a loop as a _template_ for creating many points

from a data file! Notice too that it’s a dictionary

containing a mix of string and list values...

the_geometry = {

"type": "Point",

"coordinates": [longitude, latitude],

}

Now we set up the larger ’data file’ this is harder

to read but is *still* basically a dictionary! A

’collection’ implies more than one feature, and in this

case the list of ’features’ is nothing more than a list

of dictionaries so that our data stays in order!

the_position = {

"type": "FeatureCollection",

"features": [

{

"type": "Feature",

"properties": {

"marker-color": "\#7e7e7e",

"marker-size": "medium",

"marker-symbol": "building",

"name": "KCL"

},

"geometry": the_geometry

}

]

}

And show the points on an interactive map!

You don’t need to know what’s happening here *yet*, but

see if you can make sense of the main elements...

try:

from IPython.display import GeoJSON

from IPython.display import display

import json

parsed = json.loads(str(the_position).replace("\'", "\""))

display(GeoJSON(parsed))

except ImportError:

print("You seem to be missing either the GeoJSON extension or json library.")

[3]: The output is shown in Figure 2

4 How We Reached Jupyter

Since the pathway pushes students both conceptually and technically, finding ways to
take the deployment and management of the software stack out of the picture has been
a priority. Our review of the pedagogical literature and practical experience gained
in the private and HEI sectors—including several failures during the first few years
of teaching—led us to the ultimate conclusion that a useful geospatial programming
environment should possess the following characteristics:

Minimal Complexity : it does not require students to load and learn a new Operating
System or large number of new applications/platforms at the same time as they are

REGION : Volume 7, Number 1, 2020

26 J. Reades

Figure 2: Output of code 3

learning to code; it should also be reasonably ‘performant’ on a mix of student and
HEI hardware.

Maximal Flexibility : it is simple, if not always easy, to configure and install on a
range of hardware, but is not ‘sandboxed’ or ‘packaged’ in ways that constrain our
freedom to install what we need to teach effectively.

Interactivity : it allows us to keep commentary, ‘rich’ media, and other scaffolding
material together with the code so that students can move between code and
explanations easily, and can add their own annotations as needed.

Utility : it supports life-long learning by providing a ‘real world’ development environ-
ment that would be both familiar, and accessible, to students after graduation in
personal and professional contexts.

Maintainability : it can be easily updated by the instructor(s) and supports version
control and easy distribution mechanisms.

These five features can, at times, appear to cut against each other: maximal flexibility
and minimal complexity are difficult to reconcile since the former tends to expose more
‘options’ to the user, while the latter seeks to mask those same options. However, a strong
advantage of Jupyter is that it meets all of these criteria to some extent, and in most
cases meets them fully!

4.1 Pretty Walled Gardens

The desired set of features ruled out commonly-used proprietary platforms: at the time
we began developing the curriculum, MATLAB was still a de facto standard for many but
its pricing and sandboxing approach made it both less flexible and less useful for students
once they graduated and lost access to the HEI license. Like Etherington (2016), we were
therefore attracted by the fact that Python presented ‘no financial or hardware obstacles
to teaching’ and that, consequently, “students [would] always be able to use their Python
programming skills...” Etherington (2016). However, in developing the early iterations of
the course we also, again like Etherington (2016), encountered significant challenges in
‘getting a working installation of Python together with its associated geospatial packages’.

We discovered that the existing, IT-supported Enthought Canopy Python distribution
provided few of geospatial libraries, and that updating it with packages from outside
of their ‘walled garden’ caused all manner of issues. This situation was not entirely
unexpected since geospatial analysis is not a key component of Enthought’s offering to
universities; however, the challenges of keeping up with the state-of-the-art are such that
additional barriers to software update management are undesirable. Indeed, the pace
of change in the field can be gauged from Wise’s review of ‘geospatial technologies’ in
U.K. universities (Wise 2018): it not only questions the utility of ‘free’ programmes
(presumably meaning Free Open Source Software, or FOSS) which now dominate in the
data sciences and in many research projects, but it also contains not a single mention of
programming—in Python or any other language.

REGION : Volume 7, Number 1, 2020

J. Reades 27

4.2 The Wrong Kind of Flexibility

Like Muller, Kidd (2014), who sought to ‘debug geographers’ with an introduction to a
holistic computing context alongside programming skills tout court, we next attempted to
provide our students with virtualised Linux desktop systems in the belief that this would
empower them not only with a better understanding of what was going on ‘under the
hood’ but also with a computer on which they could experiment without fear of damaging
their existing installation. For good measure, we included other useful analytics tools
such as the latest version of QGIS with all of the ‘bindings’ for low-level packages such as
GDAL (the Geospatial Data Abstraction Layer).

Using VMWare and Ubuntu 16 LTS with a full Python installation configured largely
‘by hand’ provided us with a fully FOSS ‘solution’ that students could take with them
and update in the future as they gained confidence in using such software. However, we
soon found that in-memory and on-disk bottlenecks, together with students’ tendency to
actually try to install Ubuntu’s suggested updates and render their systems inoperable,
made this a profoundly alienating and frustrating experience. For students already
working hard to master the basics of programming, having to ‘drop’ into the Terminal in
order to resolve installation errors when they were used to seamless updates on their host
operating systems simply represented an unnecessary hassle that detracted from the real
focus of the modules: learning to use code to perform spatial analyses.

4.3 Escape Velocity

While we had been tinkering with different Linux and Python distributions, a set of three
connected developments had been transforming the landscape for teaching:

1. A few academics who had taken very different approaches began, rather bravely, to
publish their teaching methods and materials freely for others to use (e.g. Arribas
Bel 2019);

2. Data scientists not only adopted Python en masse, driving the rapid development
of new analytical and visualisation libraries (e.g. pandas, seaborn, bokeh), but
they had also quickly settled on the use of a then-novel technology called ‘iPython
notebooks’ to widely share their tutorials online;

3. Since many of these data scientists were paid by firms interested in moving their
work into production systems as smoothly and quickly as possible, this also led to
improvements in the way that Python distributions and notebooks were managed.

Rather unexpectedly, the kinds of practical problems that data scientists were trying
to solve mirrored quite closely the kinds of challenges that we, as teachers, were trying to
solve in terms of being able to replicate installations across multiple systems and share
code/commentary quickly and easily.

The iPython platform ultimately gained the ability to run other programming lan-
guages and was rebranded ‘Project Jupyter’, but this means that it has become a viable,
general purpose teaching platform. So although the term ‘Virtual Learning Environment’
(VLE) is typically understood to refer to a full-featured, client-server system such as
Moodle or Blackboard (see Britain 1999), it could also apply to Jupyter: not only does
it have a client/server architecture (with the web-based interface allowing the server to
run locally or on a remote system with no discernible difference to the student), but it
has been progressively enriched with tools for grading and other common teaching tasks.
Although we are not yet making full use of these new features, it is clear that Jupyter is
well on its way to becoming an important teaching platform.

5 Discussion

Perhaps the single greatest benefit of working with Jupyter notebooks is that development
is not being driven by educational needs: this is a full-featured development environment
used day-in and day-out by professional software developers and large firms such as Netflix

REGION : Volume 7, Number 1, 2020

https://jupyter.org/

28 J. Reades

(Ufford et al. 2018). So, unlike both expensive proprietary systems that are rarely used
by small or innovative firms, and instructional systems whose functionality is limited
to teaching purposes, students are able to seamlessly progress from learning to code, to
competent coders, and on to practicing data scientists (as a few of our students have
done), using a single environment. This is a platform with the capacity to grow with the
student, following them out of the ‘ivory tower’ and into gainful employment.

An additional benefit flowing from the professional use of Jupyter is that many
researchers, not least the others included in this special issue, use notebooks as a normal
part of their research practice; this allows lecturers to remain abreast of technical
developments on the platform without ‘updating my installation’ being a separate overhead
in a congested working week. This pattern of usage is in sharp contrast to tools – such
as SPSS or ArcGIS – that are less-used by active researchers but often still taught in
standalone modules, with the quality and timeliness of teaching materials often suffering
accordingly. Jupyter breaches the historical divide between computational research and
teaching, not only allowing students to benefit from active research, but also for research
to build on student outputs (see, for example Reades et al. 2019).

5.1 Cloning Around

Jupyter becomes particularly powerful when combined with other recent developments in
the management and distribution of computing platforms. Anaconda Python’s enhanced
support for the configuration of virtual environments (in essence, multiple distributions
of Python on the same system) allows specific versions of Python and sets of required
libraries to be specified in a simple text file following the ‘Yet Another Markup Language’
(YAML) standard. The code below downloads and prints out part of the YAML file that
we use to configure both student machines and our Docker container (about which more
below); here the virtual environment is named gsa2019:

[4]: import urllib

url = 'https://raw.githubusercontent.com/kingsgeocomp/gsa_env/gsa2019/gsa.yml'

with urllib.request.urlopen(url) as resp:

file = resp.read().decode('utf8').split('\n')

Don’t output everything...

to_print = list(range(0,5)) list(range(39,48)) list(range(110,116))

print("=" * 50)

for line in to_print:

print(file[line])

print("=" * 50)

[4]: ==

OVERVIEW

This YAML script will attempt to install a Python virtual environment able to

support the requirements of all three of King’s College London’s ’Geocomputation’

pathway in the BA/BSc Geography programme.

#

CONFIGURATION PARAMETERS

name: gsa2019

channels:

- conda-forge

- defaults

dependencies:

- python=3.7

- pip

- git

- xlrd

- xlsxwriter

- pip:

- six

#- git\+http://github.com/sevamoo/SOMPY#egg=sompy # Doesn’t run in Python3

- git\+http://github.com/kingsgeocomp/SOMPY#egg=sompy

==

The use of YAML configuration files makes it easier to install a teaching instance of

REGION : Volume 7, Number 1, 2020

https://yaml.org/

J. Reades 29

Python and to expose this as a named ‘iPython kernel’. The connection between virtual
environments and kernels allows researchers to manage multiple research and teaching
installations of Python on the same system, to access them through the same Jupyter
interface, and to do so without changes to one Python installation impacting any others.

5.2 Docking Safely

The emergence of containerisation platforms such as Docker now makes it much simpler to
distribute a pre-configured virtual machine1 (such as a pre-packaged teaching or research
environment) that will run on almost any host operating system: Mac, Windows, or
Linux. Because the virtual machines are fully specified at the time of creation, students
can download and install a working version with one command, while instructors can be
confident that every student is working with the same version of every library. This year
we provided students with a Docker image that leveraged the work of Arribas Bel (2019)
but that had been customised to provide only the features that we wished to teach.

The combined popularity of Python and Docker has led to the creation of novel,
web-based platforms such as Binder (mybinder.org); these take notebooks stored on the
GitHub code-sharing web site to build a Docker image serving those notebooks on Binder’s
servers. Students may now learn to code without installing any software whatsoever.
Local installation can be deferred to the point at which specialist requirements or load on
the server require it. In a stroke, one of the most pernicious barriers to entry, needless
technical issues associated with installation and configuration of programming software,
has been eliminated.

5.3 Houston, We Have a Problem

Of course, no single solution is without drawbacks and Jupyter is no exception. It is worth
noting that there are quite specific technical, conceptual, and development issues raised
by Jupyter that are difficult to circumvent without both know-how and some careful
thinking about assessment and teaching. The principal technical challenge relates to user
permissions on managed machines (e.g. in computer clusters) since Python, Jupyter, and
Docker all struggle to different degrees with ‘locked down’ Windows systems. Indeed,
Docker does not currently run at all without administrator privileges. We worked closely
with university-level IT staff to install and provision Anaconda Python and Jupyter.
Provision of the YAML configuration script assisted with both installation and isolation
of our teaching environment from their existing installation, easing institutional barriers
to adoption.

From a teaching standpoint, an additional issue is that Git – the dominant version
control software that we use to manage and share notebook changes – sees notebooks in a
way that means just re-running code registers as a local modification of the file that needs
to be committed to the version control system. So although ‘GitHub’ provides support
for the online display of Jupyter notebooks, the use of Git can lead to a large number
of essentially meaningless commits. This can make tracking meaningful content changes
over time more difficult, and it means that we’ve shied away from teaching students about
version control on the basis that they may not perceive the value of commits that seem
to record little of value.

A final and rather unexpected disbenefit was uncovered the year after we moved from
the Spyder IDE to Jupyter: weaker student understanding of execution flow. Unlike
a traditional script that clearly executes from top-to-bottom (typically in its entirety),
Jupyter notebooks freely intermingle code blocks and text/rich media blocks allowing –
and even encouraging – the user both to jump between widely separated blocks without
executing intervening code and to edit and re-run earlier blocks. This leads to: a) difficult-
to-diagnose bugs because the code looks like it should execute properly but doesn’t, and
b) to a weaker student understanding of system ‘state’ in terms of instantiated variables,
loaded libraries, and available functions. We typically seek to cultivate this understanding
by stressing that the real test, whether directly assessed or not, of whether their code

1It should be noted that, technically, Docker containers are not virtual machines in the traditional
sense.

REGION : Volume 7, Number 1, 2020

https://www.docker.com/
https://mybinder.org/
https://github.com/
https://github.com/kingsgeocomp/gsa_env/blob/master/gsa.yml
https://git-scm.com/
https://github.com/
https://www.spyder-ide.org/

30 J. Reades

Table 1: Evaluating Jupyter

Pros Cons

Minimal Com-
plexity

Deploying a full geographic data sci-
ence ‘stack’ requires installing one appli-
cation (Docker or Anaconda Python)
and running two lines of code in a
Terminal/Shell to install and configure
Jupyter, its dependencies, and the ana-
lytical libraries. Environment requires
no configuration.

Persistent challenges with student un-
derstanding of file system interaction
and paths. Some confusion around mul-
tiple Python instances manifesting as
different ‘kernels’ in notebooks.

Maximal Flexi-
blity

Combination of Binder, Docker, and
Anaconda Python allows us to install
on nearly any hardware/operating sys-
tem mix. Docker uses same YAML con-
figuration script as Anaconda Python
so maintaining compatibility and consis-
tency is straightforward.

Students cannot update Docker con-
tainers and do not gain understanding
of package management or dependency
conflict resolution.

Interactivity Students can view/edit/add rich media,
code, and other content directly within
the Jupyter notebook environment. Tex-
tual and graphical outputs from code
cells in notebooks are saved between
restarts of Jupyter.

Students do not develop a strong under-
standing of execution flow and system
state.

Utility Growth of Jupyter has made it the ‘tool
of choice’ for data scientists, and stu-
dents are able to continue working with
a fully functioning development environ-
ment. Students can edit installation and
configuration scripts incrementally, as
expertise grows.

Relative ease of installation may not pre-
pare students for managing their own de-
velopment and production environments.
Students remain unfamiliar with IDEs
and code-completion.

Maintainabili-
ty

Docker and Anaconda update mech-
anisms are straightforward. GitHub
works well for distribution, previewing,
and (to a lesser extent) version control.

Nature of notebooks makes it harder for
instructors to track incremental changes
in version control, and for students to
see value of such an approach.

‘works’ is that a notebook can be run in full (Restart Kernel and Run All Cells)
without user intervention.

We should note that, in the absence of an Integrated Development Environment
(IDE), students are unlikely to benefit from test suites and other tools that support
developer best-practice. However, such an approach can also have the effect of deterring
new students by pushing back the point at which they appear to be achieving anything
concrete: “Because learning in computer science and programming is challenged by
numerous barriers, students need to be motivated about the purpose, value, and utility of
concepts within course work” (Bowlick et al. 2017) So while knowledge of professional
tools and practices is desirable, we nonetheless feel that these kinds of ideas and issues are
best tackled when students have progressed further with their studies and are motivated
to tackle more abstract challenges.

6 Conclusion: Back Here on Earth

In order to understand why the practical benefits of teaching with Jupyter notebooks
outweigh the technical and conceptual challenges encountered, it is worth returning to the
evaluation criteria outlined near the start of this work. Table 1 summarises the pros and
cons observed across the five dimensions identified by our review of the state-of-the-art
nearly six years ago.

From this, the principal technical recommendation is that a flexible mix of platforms
should be used to deliver Jupyter-based learning. We recommend Binder to deliver
foundational material using few non-core Python libraries, and now strongly recommend
that students use Docker in subsequent modules. However, a critical issue is that Windows
10 Home Edition does not support Docker, and it is therefore still necessary to support
direct installation of Anaconda Python and associated configuration of the ‘kernel’ using a

REGION : Volume 7, Number 1, 2020

https://www.anaconda.com/distribution/

J. Reades 31

YAML text file. We are also investigating the use of a containerised JupyterHub running
on our own hardware: this would allow students to mimic using Binder while benefiting
from the ability to save work and make full use of Python’s capabilities. All of the code
supporting these configurations is available as a Github repository, as is Arribas-Bel’s
resource.

6.1 And Back to the Future

A failure to engage directly with computational approaches and tools poses long-term
risks: while ours ‘has always been a following discipline’ (Burton 1963), what is new is
that other disciplines have now taken an interest in cities and regions (O’Sullivan, Manson
2015). Ruppert (2013) warns, “if social scientists do not step forward, then computational
social science risks becoming the exclusive domain of . . . computing scientists” (Ruppert
(2013). However, there is also an enormous opportunity for students equipped with
both domain knowledge and programming skills to act as ‘knowledge brokers’ (Bowlick,
Wright 2018). As Mir et al. (2017) note: “truly transformative work at the intersection
of computing and . . . other disciplines requires . . . people with heterogeneous skill-sets
(both computational and non-computational) who, despite their differences in training,
can work collaboratively.” In other words, facing the future requires both translators and
explorers: individuals who understand the broader terrains across which knowledge moves
and the frontiers at which new knowledge is generated.

We have also come to believe that the use of Jupyter-like platforms in non-STEM
disciplines may have a role to play in addressing a deeper problem: the widening par-
ticipation challenge in computationally-oriented disciplines such as data science (The
Royal Society 2019). A particular contribution is these other disciplines’ capacity to
provide an applied context for computational training that helps to motivate further
study and engagement (see Bort et al. 2015, for a creative application in literary studies).
It should not be the responsibility of Geography and allied fields to plug the so-called
‘leaky pipeline’ (Berryman 1983), but they may yet create novel pathways for a more
diverse cohort of students to enter computationally intensive fields. Such an outcome
would not only be to the benefit of Computer Science, it would very much be to the
benefit of an innovative Regional Science as well.

Acknowledgements

This work builds on the input of many – staff and students – to the Geocomputation
and Spatial Analysis pathway at King’s College London; however, I wish to particularly
acknowledge the critical contributions of Dr. James Millington, Michele Ferretti, Dr. Chen
Zhong, and Dr. Yijing Li. Finally, Dr. Arribas-Bel has donated many hours of his time –
directly and by example – to helping me to develop and migrate our teaching environment.

References

Arribas Bel D (2014) Accidental, open and everywhere: Emerging data sources for the
understanding of cities. Applied Geography 49: 45–53. CrossRef.

Arribas Bel D (2019) A course on geographic data science. The Journal of Open Source
Education 2: 42. CrossRef.

Arribas Bel D, Reades J (2018) Geography and computers: Past, present, and future.
Geography Compass e12403

Barnes T (2013) Big data, little history. Dialogues in Human Geography 3: 297–302

Berryman S (1983) Who will do science? Trends, and their causes in minority and female
representation among holders of advanced degrees in science and mathematics. A special
report. Rockefeller Foundation, New York, NY

REGION : Volume 7, Number 1, 2020

https://github.com/conjuring
https://github.com/kingsgeocomp/gsa_env/
https://github.com/darribas/gds_env
https://github.com/jamesdamillington/
https://github.com/miccferr
https://github.com/daisy8738
https://github.com/daisy8738
https://github.com/aolifodaisy
https://github.com/darribas/
https://doi.org/10.1016/j.apgeog.2013.09.012
https://doi.org/10.21105/jose.00042

32 J. Reades

Bort H, Czarnik M, Brylow D (2015) Introducing computing concepts to non majors: A
case study in gothic novels. Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, 132–137. ACM. CrossRef.

Bowlick F, Goldberg D, Bednarz S (2017) Computer science and programming courses in
geography departments in the United States. The Professional Geographer 69: 138–150.
CrossRef.

Bowlick F, Wright D (2018) Digital data centric geography: Implications for geography’s
frontier. The Professional Geographer 70: 687–694. CrossRef.

Bradbeer J (1999) Barriers to interdisciplinarity: Disciplinary discourses and student
learning. Journal of Geography in Higher Education 23: 381–396. CrossRef.

Britain S (1999) A framework for pedagogical evaluation of virtual learning environments.
Report, Joint Information Systems Committee. https://www.webarchive.org.uk/way-
back/archive/20140613220103/http://www.jisc.ac.uk/media/documents/program-
mes/jtap/jtap-041.pdf

Burton I (1963) The quantitative revolution and theoretical geography. The Canadian
Geographer/Le Géographe Canadien 7: 151–162. CrossRef.

Chapman L (2010) Dealing with maths anxiety: How do you teach mathematics in
a geography department? Journal of Geography in Higher Education 34: 205–213.
CrossRef.

Cresswell T (2014) Déjà vu all over again: Spatial science, quantitative revolutions and
the culture of numbers. Dialogues in Human Geography 4: 54–58

Etherington T (2016) Teaching introductory GIS programming to geographers using an
open source python approach. Journal of Geography in Higher Education 40: 117–130.
CrossRef.

González Bailón S (2013) Big data and the fabric of human geography. Dialogues in
Human Geography 3: 292–296. CrossRef.

Gorman S (2013) The danger of a big data episteme and the need to evolve geographic
information systems. Dialogues in Human Geography 3: 285–291. CrossRef.

Guzdial M (2010) Does contextualized computing education help? ACM Inroads 1: 4–6.
CrossRef.

Hodgen J, McAlinden M, Tomei A (2014) Mathematical transitions: A report on the
mathematical and statistical needs of students undertaking undergraduate studies in
various disciplines. Report, The Higher Education Academy

Johnston R, Harris R, Jones K, Manley D, Sabel C, Wang W (2014) Mutual misunder-
standing and avoidance, misrepresentations and disciplinary politics: Spatial science
and quantitative analysis in (United Kingdom) geographical curricula. Dialogues in
Human Geography 4: 3–25. CrossRef.

Kluyver T, Ragan Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K,
Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C, Jupyter
Development Team (2016) Jupyter notebooks – a publishing format for reproducible
computational workflows. In: Loizides F, Schmidt B (eds), Positioning and power in
academic publishing: Players, agents and agendas. IOS Press, 97–90

Lazer D, Pentland A, Adamic L, Aral S, Barabási A, Brewer D, Christakis N, Contractor
N, Fowler J, Gutmann M, Jebara T, King G, Macy M, Roy D, Van Alstyne M (2009) Life
in the network: The coming age of computational social science. Science 323: 721–723.
CrossRef.

REGION : Volume 7, Number 1, 2020

https://doi.org/10.1145/2676723.2677308
https://doi.org/10.1080/00330124.2016.1184984
https://doi.org/10.1080/00330124.2018.1443478
https://doi.org/10.1080/03098269985326
https://www.webarchive.org.uk/wayback/archive/20140613220103/http://www.jisc.ac.uk/media/documents/programmes/jtap/jtap-041.pdf
https://www.webarchive.org.uk/wayback/archive/20140613220103/http://www.jisc.ac.uk/media/documents/programmes/jtap/jtap-041.pdf
https://www.webarchive.org.uk/wayback/archive/20140613220103/http://www.jisc.ac.uk/media/documents/programmes/jtap/jtap-041.pdf
https://doi.org/10.1111/j.1541-0064.1963.tb00796.x
https://doi.org/10.1080/03098260903208277
https://doi.org/10.1080/03098265.2015.1086981
https://doi.org/10.1177/2043820613515379
https://doi.org/10.1177/2043820613513394
https://doi.org/10.1145/1869746.1869747
https://doi.org/10.1177/2043820614525706
https://doi.org/10.1126/science.1167742

J. Reades 33

Ley D, Braun B, Domosh M, Elliott S, Le Heron R, Peake L, Willekens F, Yeoh B (2013) In-
ternational benchmarking review of UK human geography. Report, Economic and Social
Research Council, in partnership with the Royal Geographical Society (with IBG) and
the Art and Humanities Research Council. https://esrc.ukri.org/files/research/research-
and-impact-evaluation/international-benchmarking-review-of-uk-human-geography/

Lukkarinen A, Sorva J (2016) Classifying the tools of contextualized programming
education and forms of media computation. Proceedings of the 16th Koli Calling
International Conference on Computing Education Research, 51–60. ACM. CrossRef.

Macdonald R, Bailey C (2000) Integrating the teaching of quantitative skills across the
geology curriculum in a department. Journal of Geoscience Education 48: 482–486.
CrossRef.

Mir D, Mishra S, Ruvolo P, Pollock L, Engen S (2017) How do faculty partner while
teaching interdisciplinary CS+X courses: Models and experiences. Journal of Computing
Sciences in Colleges 32: 24–33

Muller C, Kidd C (2014) Debugging geographers: Teaching programming to non computer
scientists. Journal of Geography in Higher Education 38: 175–192. CrossRef.

O’Sullivan D, Manson S (2015) Do physicists have geography envy? and what can
geographers learn from it? Annals of the Association of American Geographers 105:
704–722. CrossRef.

Pears A, Seidman S, Malmi L, Mannila L, Adams E, Bennedsen J, Devlin M, Paterson
J (2007) A survey of literature on the teaching of introductory programming. ACM
SIGCSE Bulletin 39: 204–223. CrossRef.

Reades J, De Souza J, Hubbard P (2019) Understanding urban gentrification through
machine learning. Urban Studies 56: 922–942. CrossRef.

Reades J, Ferretti M, Millington J (2019) Code camp: 2019. Github repository, King’s
College London

Ruppert E (2013) Rethinking empirical social sciences. Dialogues in Human Geography 3:
268–273. CrossRef.

Singleton A (2014) Learning to code. Geographical Magazine 77

Singleton A, Arribas Bel D (2019) Geographic data science. Geographical Analysis: 1–15.
CrossRef.

Spronken-Smith R (2013) Toward securing a future for geography graduates. Journal of
Geography in Higher Education 37: 315–326. CrossRef.

Stone B (2013) Differences between for & while loops (in Python). Video, YouTube.
https://www.youtube.com/watch?v=9AJ0uoxtdCQ

The British Academy (2012) Society counts. Report, The British Academy, https://www.-
thebritishacademy.ac.uk/sites/default/files/BA Position Statement - Society Counts.pdf

The Royal Society (2019) Dynamics of data science skills: How can all sectors benefit
from data science talent? Report, The Royal Society, https://royalsociety.org/-/me-
dia/policy/projects/dynamics of data science/dynamics of data science skills report.pdf

Torrens P (2010) Geography and computational social science. GeoJournal 75: 133–148.
CrossRef.

Ufford M, Pacer M, Seal M, Kelley K (2018) Beyond interactive: Notebook innova-
tion at Netflix. Blog post, Netflix, https://netflixtechblog.com/notebook-innovation-
591ee3221233. [last checked: 3 October 2019]

REGION : Volume 7, Number 1, 2020

https://esrc.ukri.org/files/research/research-and-impact-evaluation/international-benchmarking-review-of-uk-human-geography/
https://esrc.ukri.org/files/research/research-and-impact-evaluation/international-benchmarking-review-of-uk-human-geography/
https://doi.org/10.1145/2999541.2999551
https://doi.org/10.5408/1089-9995-48.4.482
https://doi.org/10.1080/03098265.2014.908275
https://doi.org/10.1080/00045608.2015.1039105
https://doi.org/10.1145/1345375.1345441
https://doi.org/10.1177/0042098018789054
https://doi.org/10.1177/2043820613514321
https://doi.org/10.1111/gean.12194
https://doi.org/10.1080/03098265.2013.794334
https://www.youtube.com/watch?v=9AJ0uoxtdCQ
https://www.thebritishacademy.ac.uk/sites/default/files/BA%20Position%20Statement%20-%20Society%20Counts.pdf
https://www.thebritishacademy.ac.uk/sites/default/files/BA%20Position%20Statement%20-%20Society%20Counts.pdf
https://royalsociety.org/-/media/policy/projects/dynamics-of-data-science/dynamics-of-data-science-skills-report.pdf
https://royalsociety.org/-/media/policy/projects/dynamics-of-data-science/dynamics-of-data-science-skills-report.pdf
https://doi.org/10.1007/s10708-010-9361-y
https://netflixtechblog.com/notebook-innovation-591ee3221233
https://netflixtechblog.com/notebook-innovation-591ee3221233

34 J. Reades

Wikle T, Fagin T (2014) GIS course planning: A comparison of syllabi at US college and
universities. Transactions in GIS 18: 574–585. CrossRef.

Wise N (2018) Assessing the use of geospatial technologies in higher education teaching.
European Journal of Geography 9

Xiao N (2016) GIS Algorithms: Theory and Applications for Geographic Information
Science & Technology. Research Methods. SAGE. CrossRef.

© 2020 by the authors. Licensee: REGION – The Journal of ERSA, European
Regional Science Association, Louvain-la-Neuve, Belgium. This article is distri-

buted under the terms and conditions of the Creative Commons Attribution, Non-Commercial
(CC BY NC) license (http://creativecommons.org/licenses/by-nc/4.0/).

REGION : Volume 7, Number 1, 2020

https://doi.org/10.1111/tgis.12048
https://doi.org/10.4135/9781473921498
http://creativecommons.org/licenses/by-nc/4.0/

	Background
	The Issue
	Introduction
	The OSMnx Examples Repository
	The Computational Environment
	Street Network Analysis with OSMnx
	Calculating Network Indicators
	Visualizing Street Centrality
	Network Routing
	Downloading/Modeling Networks in Other Ways
	Downloading Other Infrastructure Types

	Conclusion
	Appendix
	Introduction
	Modelling approach
	Continuous spatial heterogeneity
	Choosing the distribution
	Correlated spatially random parameters and observed variations around the mean
	Estimation

	Packages and dependencies
	Application using Rchoice in R: Self-assessed health status
	Ordered Probit model with spatially homogeneous parameters
	Ordered Probit models with spatial random coefficients
	Correlated parameters
	Region-specific coefficients

	Conclusion
	Introduction
	Concentration, dispersion and regional disparities
	Indicators of concentration and dispersion
	Application in REAT
	REAT functions for concentration and dispersion indicators
	Application example: Small-scale regional disparities in health care provision

	Regional convergence
	The concept of beta and sigma convergence
	Application in REAT
	REAT functions for beta and sigma convergence
	Application example: Beta and sigma convergence in Germany on the county level

	Specialization of regions and spatial concentration of industries
	Indicators of regional specialization and industry concentration
	Application in REAT
	REAT functions for regional specialization and industry concentration
	Application example 1: Regional specialization of Göttingen
	Application example 2: Identifying clusters in Germany using aggregate data
	Application example 3: Identifying clusters using micro-data

	Proximity and accessibility
	Distance-based measures of accessibility and proximity using individual point-level data
	Application in REAT
	REAT functions for accessibility and proximity on the point level
	Application example 1: Location analysis of medical practices
	Application example 2: Clustering of health service providers

	Analysis and prognosis of regional growth
	Tools and models concerning regional growth
	Analyzing regional growth: shift-share analysis and portfolio matrix
	Commercial area prognosis

	Application in REAT
	REAT functions for analyzing and forecasting regional growth
	Application example 1: Analysis of regional growth in Göttingen
	Application example 2: Commercial area prognosis for Göttingen

	Final remarks
	Introduction
	Packages and dependencies
	Data loading, cleaning and segmentation
	Segmentation of address string into field columns

	Creation of candidate address pairs using a `full index'
	Full index
	Creation of comparison vectors from indexed addresses
	Classification and evaluation of match performance

	Creation of candidate address pairs by blocking on zipcode
	Creation of synthetic non-matched addresses
	Blocking on postcode attribute
	Classification and evaluation of match performance

	Conclusion
	Introduction
	Data and Study Area
	Landsat Imagery
	Study Area
	Data download and pre-processing
	Landsat imagery download
	Image Cropping
	Image mosaic
	Natural-colour (True-colour) composition

	Feature extraction
	Image processing
	Colour features
	Texture features
	Vegetation and built-up features
	Vegetation features
	Built-up features

	Feature clustering
	Interpretation
	Conclusion
	Introduction
	Packages and Dependencies
	Data and Methods
	Data
	Methods

	Data Analysis
	Data pre-processing
	Sequence object
	Measuring sequence dissimilarity
	Dissimilarity matrix
	Classification of sequences

	Exploring spatio-temporal trends of youth unemployment in Europe
	Conclusion
	Introduction
	Dependencies
	Context
	Teaching Programming to Non Programmers
	Course Structure
	Contextualised Computing

	How We Reached Jupyter
	Pretty Walled Gardens
	The Wrong Kind of Flexibility
	Escape Velocity

	Discussion
	Cloning Around
	Docking Safely
	Houston, We Have a Problem

	Conclusion: Back Here on Earth
	And Back to the Future

