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Abstract. This document provides a brief introduction to models with spatial hetero-
geneity using a random parameter approach. Specifically, this paper shows how this
modelling strategy can be used to capture and model spatial heterogeneity and locally
varying coefficients for different latent structure. To show the main advantages of this
modeling strategy, the Rchoice package (Sarrias 2016) in R is used. The examples will be
focused on the ordered probit model with spatially varying coefficients using self-assessed
health status as the dependent variable.

1 Introduction

Regional scientists, as well as many social researchers concerned on spatial relationships,
analyze how the reciprocal geographical interaction of social agents generates spatial
autocorrelation, affecting the bias and efficiency of standard econometric estimators.
After Anselin (1988), a large number of papers dealt with the spatial autocorrelation
using spatial versions of standard linear regression models, namely Spatial Autoregresive
Regression (SAR) or Spatial Error Model (SEM) and even recent contributions extend the
analysis toward Spatial Panel Data (Kelejian, Prucha 1998, 1999, Elhorst 2014). However,
spatial interaction also is manifested through spatially varying coefficients referred to
as: “structural instability over space, in the form of different response functions or
systematically varying parameters” (Anselin 1988). In spite of the relevance of the
concept, the evolution and development of econometric models that attempt to capture
and model spatial heterogeneity has not been as euphoric as those focused on the spatial
autocorrelation. The few attempts to capture this heterogeneity can be summarized by
the spatial expansion method (SEM) (Casetti 1972), Geographically Weighted Regression
(GWR) (Brunsdon et al. 1998) or assuming that the local relationship varies randomly
over geographical space, a method also known as the Random Coefficient Model (RCM)
(Swamy 1971). Each one of these methods enable estimation of model parameters locally,
or they allow model parameter to vary as a function of location1.

The three methods presented above share an important limitation: they require
aggregating the variables at the location level. Therefore, we are prevented from using
data at the individual level and capturing the spatial heterogeneity, simultaneously. This
raises concerns about the misleading conclusions that can be derived at the individual
level by using aggregate variables known as the ecological fallacy problem (Robinson
1950). A potential solution for this constraint is provided by multilevel modeling2. This

1For further review see for example Fotheringham, Brunsdon (1999).
2For other quantitative methods that avoid the ecological fallacy problem see Withers (2001).
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approach separates the effect of personal and place characteristics to investigate the
extent and nature of spatial variation in individual outcome measures (Goldstein 1987).
The main drawback of multilevel modeling is that usually the random coefficients are
assumed to be normally distributed. This makes the estimation process easier, but creates
other problems. For example, this assumption implies that some locations might have
positive or negative coefficients, whether or not this is true. In practice, this implies
that occasionally researchers find sign reversals that are counterintuitive and difficult to
explain. Furthermore, the domain of the normal distribution is (−∞,+∞), which results
in unreliable extreme coefficients and high coefficient variability. Those problems have
also been found when applying the GWR approach (Jetz et al. 2005)3.

This study focusses on models with spatially varying coefficients using simulation as
in Sarrias (2019) and Train (2009). This modeling strategy is intended to complement
the existing approaches by using variables at the micro level – overcoming the problem
associated with spatial aggregation – and by adding flexibility and realism to the potential
domain of the coefficient on the geographical space. Spatial heterogeneity is modelled by
allowing the parameters associated with each observed variable to vary “randomly” across
space according to some distribution g(·). However, it is not known how the parameters
vary across space. All that is known is that they vary locally with population probability
density function (pdf) g(·), which is assumed to be well behaved and continuous.

To show the main advantages of this modeling strategy, the Rchoice package (Sarrias
2016) in R is used. The examples will be focused on the ordered probit model with
spatially varying coefficients using self-assessed health status as the dependent variable.

The remainder of this paper is organized as follows. Section 2 discusses the modelling
approach for incorpo-rating continuous spatial heterogeneity using a random parameter
approach. The main R packages needed for the examples are described in Section 3.
The example using Rchoice package in R is presented in Section 4. Finally, Section 5
concludes.

2 Modelling approach

2.1 Continuous spatial heterogeneity

Consider the following structural model:

y∗ci = xxx′ciβββc + εci c = 1, . . . , C; i = 1, . . . , nc (1)

βββc ∼ g(βββc)

where y∗ci is a latent (unobserved) process for individual i in geographical area c (e.g,
region, city, country, census track) that we are trying to explain; xxxci is a K × 1 vector of
individual and regional variables; and εi is the error term4. It is assumed that the vector
(yci,xxx

′
ci,βββ

′
c)
′ is independently and identically distributed. The conditional probability

density function of the latent process, f∗(yic|xxxci, εεεc), is determined once the nature of the
observed yci and the population pdf of εi is known. For example, if the observed yci is
binary and εi is normal distributed, we obtain the traditional probit model. But if εi is
distributed as logistic, then we obtain the binary logit model. Due to space restrictions,
the applied example in this study will focus on the ordered model.

The key element in the structural model is βββc. The notation implies that coefficients
are associated with region c, representing those region-specific partial correlations on the
latent dependent variable. Thus, all individuals located in the same region have the same
coefficient, but there exists inter-spatial heterogeneity, i.e., the coefficients vary across
regions but not within the region.

3There are some interesting extensions that have been recently developed. For example, Dong et al.
(2015) extend the traditional multilevel models to incorporate spatial interaction effects at different level
units. Dong et al. (2018) extend the GWR for ordinal categorical responses. Bayesian spatially varying
coefficient models have been also suggested by Finley (2011) and Gelfand et al. (2003).

4Throughout this work I will use location unit, region, or geographical area interchangeably to refer
to the subindex c.
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However, we do not know how these parameters vary across regions. All we know is
that they vary locally with population pdf g(βββc). Once g(βββc) is specified, we might have
a fully parametric or a semi-parametric spatially random parameter model.

2.2 Choosing the distribution

Continuous spatial heterogeneity is introduced by assuming that the parameters vary
“randomly” across regions according to some pre-specified “continuous” distribution. The
pdf of the spatially random coefficients in the population is g(βββc|θθθ), where θθθ represents,
for example, the mean and variance of βββc. The goal for the researcher is to estimate θθθ.

The distribution of the spatially random parameters can in principle take any shape.
The researcher has to choose a priori the distribution according to his beliefs of the
domain and boundedness of the coefficients.

Therefore, some prior theoretical knowledge of the spatial structure being modeled
may lead to a more appropriate choice of the distribution. Below, some continuous
distributions and their implications are discussed.

Normal Distribution: The normal distribution is by far the most widely used distri-
bution for the spatially random parameters. The density of the normal parameter
has mean β and standard deviation σβ , so that θθθ = (β, σβ)′. Thus, the coefficient
for each region can be written as βc = β + σβηc, where ηc ∼ N(0, 1). An important
feature of the normal density is its unboundedness. This implies that every real
number has a positive probability of being drawn. Thus, specifying a given coefficient
to follow a normal distribution is equivalent to making the a priori assumption that
there is a proportion of regions with positive coefficients and another proportion
with negative ones. As an illustration, consider a normally distributed coefficient
with population parameters β = 0.5 and σβ = 1. The proportion of regions with
positive coefficients is approximately Φ(β/σβ) · 100 ≈ 70%. This last fact makes
this distribution quite suitable when the researcher assumes that the effect of xk on
y∗ can have both signs depending in the local context of each region. For example,
there exists an extensive literature that uses the city population as a proxy for
urbanization economies (see for example Duranton, Puga 2004). However, in some
regions, a large population may suggest agglomeration economies, while in others,
it may suggest congestion effects (Ali et al. 2007). In other words, βc for the
population density can take positive or negative values across space. The normal
distribution can be also used as an initial exploratory analysis to determine the
domain of a coefficient. For example, if the estimated parameters are β̂ = 2 and
σ̂β = 1, this implies that approximately Φ(β̂/σ̂β) · 100 ≈ 98% of the regions in the
sample have a positive coefficient. Therefore, the researcher may be more inclined
to choose a distribution with just a positive real domain. One major disadvantage
of the normal distribution is that it has infinite tails, which might result in some
regions having implausible extreme coefficient values.

Triangular Distribution: This is a continuous probability distribution with probability
density function shaped like a triangle. The advantage of this distribution is that
it has a definite upper and lower limit, so its tails are shorter than the normal
distribution and we avoid extreme coefficients that may result for some regions.
The density of a triangular distribution with mean β and spread sβ is zero beyond
the range (β − sβ , β + sβ), rises linearly from β − sβ to β, and drops linearly to
β + sβ . The parameters θθθ = (β, sβ)′ are estimated.

Uniform Distribution: In this case the parameter for each location is equally likely
to take on any value in some interval. Suppose that the spread of the uniform
distribution is sβ , such that the parameter is uniformly distributed from β − sβ
to β + sβ . Then the parameter can be constructed as βc = β + sβ(2uc − 1) where
uc ∼ U [0, 1] and the parameters θθθ = (β, sβ) are estimated. The new random draw
(2uc − 1) is distributed as U [−1,+1], therefore multiplying by sβ gives a uniformly
distributed parameter ± s (Train 2009, Hensher, Greene 2003). The standard
deviation of the uniform distribution can be derived from the spread by dividing sβ

REGION : Volume 7, Number 1, 2020
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by
√

3. Note also that the uniform distribution with a [0, 1] bound is very suitable
when there exists spatial heterogeneity in a dummy variable. For this case the
restriction is β = sβ = 1/2.

The normal, triangular and uniform distributions permit positive and negative coeffi-
cients. However, as I discussed above, the coefficient may present spatial heterogeneity
but only in the positive or negative domain. For example, we may be confident that the
coefficient for xk is positive for all regions, but still there may exist spatial heterogeneity
around the mean. Some widely used distributions with domain in the positive numbers
are the log-normal, truncated normal, and Johnson Sb distribution5.

Log-normal Distribution: The support of the log-normal distribution is (0,∞). For-
mally, the coefficient for each region is specified as βc = exp(β + σβηc) where
ηc ∼ N(0, 1). The parameters β and σβ , which represent the mean and standard
deviation of log(βc), are estimated. The median, mean, and standard deviation

of βc are exp(βc), exp(βc + σ2
β/2) and mean ×

√
exp(σ2

β)− 1, respectively (Revelt,

Train 1998, Train 2009). The main drawback of the log-normal distribution is that
it has a very long right-hand tail. This means that we might find regions with
unreasonable extreme positive coefficients.

Truncated Normal Distribution: The domain of this distribution is (0,∞) if the
normal distribution is truncated below at zero. The parameter for each region is
created as βc = max(0, β + σβηc) where ηc ∼ N(0, 1) with the share below zero
massed at zero equal to Φ(−β/σβ). A normal distribution truncated at 0 can be
useful when the researcher has a priori belief that for some regions the marginal
latent effect of the variable is null. The parameters θθθ = (β, σβ) are estimated.

Johnson Sb Distribution: The Sb distribution gives coefficients between 0 and 1, which
is also very suitable for dummy variables. The parameter for region c is computed as

βc =
exp(β+σβηc)

1+exp(β+σβηc)
where ηc ∼ N(0, 1) and the parameters β and σβ are estimated.

The mean, variance, and shape are determined by the mean and variance of β+σβηc
which is a normal distributed parameter. If the analyst needs the coefficient to be
between 0 and k, then the variable can be multiplied by k. The logic behind this is
the following. Since βc × xic ranges between [0, 1], then βc × k × xic is the same
as k[0, 1] = [0, k]. The advantage of the Johnson Sb is that it can be shaped like
log-normal distribution, but with thinner tails below the bound.

For any distribution, all the information about the unobserved spatial heterogeneity
is captured by the spread or standard deviation parameter. For example, a significant
standard deviation would reveal a spatially non-stationary relationship, and the higher
the standard deviation the higher the unobserved spatial heterogeneity in the parameters.
Finally, it is worth noting that if only the constant is assumed to be random, then the
model is reduced to the random effect model also known as the spatially constant random
parameter in the multilevel context (Jones 1991). If nc = 1 for all C, then the model is
reduced to the RCM.

2.3 Correlated spatially random parameters and observed variations around the mean

The random parameters can be generalized to include correlation across the parameters.
For example, we may be interested in whether regions with greater (lower) β1 have also
greater (lower) values for β2. If it is true, we would say that both effects are positively
correlated within regions. Furthermore, it is likely that the association between y∗ci
and xci is modified by unmeasured regional effects or region-specific unobserved factors.
Therefore, by allowing the constant and the slope parameter to be correlated we might
be able to identify whether those unobserved factors and the effect of xci are positively
or negatively associated.

5If some coefficient is expected a priori to be negative for all the regions, one might create the negative
of the variable and then include this new variable in the estimation. This “trick” allows the coefficient to
be negative without imposing a sign change in the estimation procedure (Train 2009).
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As an illustration of the usefulness of the correlated parameters, Wheeler, Tiefelsdorf
(2005) raise the awareness of the potential dependencies (correlation) among the local
regression coefficients associated with different exogenous variables in the GWR context.
They use a GWR approach to explain the white male bladder cancer mortality rates in
the 508 States Economic Areas of the United States. Using the population density and
smoking as covariates, they find that those regions with high smoking parameter also have
a low population density parameter. As they state, the important question is whether
this negative correlation is real or an artifact of the statistical method. By allowing the
parameters to be explicitly correlated, we are able to test whether the correlation among
the parameters is in fact significant6.

For simplicity of the notation, consider that the coefficients are distributed across
space following a multivariate normal distribution, βββc ∼ MVN(βββ,ΣΣΣ). In this case, the
coefficient can be written as:

βββc = βββ +LLLηηηc,

where ηηηc ∼ N(000, III), and LLL is the lower-triangular Cholesky factor of ΣΣΣ such that
LLLLLL′ = var(βββc) = ΣΣΣ. When the off-diagonal elements of LLL are zero, the parameters
are independently normal distributed. If we assume that the model has only one covariate
and the constant, then the extended form of the spatially random coefficient vector is

(
αc
βc

)
=

(
α
β

)
+

(
σαα 0
σβα σββ

)(
ηcα
ηcβ

)
βββc = βββ +LLLηηηc,

where:

LLLLLL′ =

(
σαα 0
σβα σββ

)(
σαα σβα

0 σββ

)
=

(
σ2
αα σαασβα

σβασαα σ2
βα + σ2

ββ

)
= ΣΣΣ

If we need correlated parameters with positive domain, we might create a log-normal
distributed parameter. For instance, if we need βc to be log-normal distributed, then we
can transform it in the following way:

βc = exp(β + σβαηcα + σββηcβ)

Observed spatial heterogeneity – or deterministic spatial heterogeneity – can be
also accommodated in the random parameters by including region-specific covariates.
Specifically, the vector of random coefficient is:

βββc = βββ + πππzzzc +LLLηηηc (2)

where zzzc is a set of M characteristics of region c that influences the mean of the spatial
random coefficients, and ΠΠΠ is a K ×M matrix of additional parameters. The conditional
mean becomes E(βββc|zzzc) = βββ + ΠΠΠzzzc. The main drawback of this modeling strategy – and
any type of spatial heterogeneity in the form of unobserved spatial heterogeneity – is that
it assumes that the coefficients are drawn from some univariate or multivariate distribution
and no attention is paid to the location of the regions (Fotheringham, Brunsdon 1999).
However, the previous model can be very useful to consider regions’ location explicitly
in the random parameters if zzzc includes any function of the geographical coordinates
(uuuc, vvvc). Thus, if zzzc = h(uuuc, vvvc), where h() is any function, and ηηηc = 000, then the model
collapses into the Casetti’s spatial expansion method.

6Those readers interested in modelling both spatial dependence and spatial heterogeneity are referred
to Dong et al. (2016). They develop a spatial random slope multilevel modeling approach to account for
the within-group dependence among individuals in the same area and the spatial dependence between
areas simultaneously.
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2.4 Estimation

Let yyyc = {yi1, yi2, . . . , yin} be the sequence of choices for all individuals in region c,
where nc is the total number of individuals in that region. Assuming that individuals
are independent across regions, the joint probability density function, given βββc, can be
written as

Pr(yyyc|XXXc,βββc) =

nc∑
i=1

f∗(yic|xxxic,βββc), (3)

because, conditional on βββc, the observations are independent. Since βββc is common for
individuals living in the region c, within each region individuals are not independent.
Thus, the unconditional pdf of yyyc given XXXc will be the weighted average of the conditional
probability evaluated over all possible values of βββ, which depends on the parameters of
the distribution of βββc:

Pc(θθθ) = f(yyyc|XXXc, θθθ) =

∫
βββc

[
Nc∏
i=1

f∗(yic|xxxic,βββc, θθθ)

]
g(βββc)dβββc, (4)

The unconditional probability has no closed form solution, therefore the log-likelihood
function is difficult to compute. However, we can simulate this probability and use
the simulated maximum likelihood in order to estimate θθθ (Gourieroux, Monfort 1997,
Hajivassiliou, Ruud 1986, Stern 1997, Train 2009)7. In particular, Pc(θθθ) is approximated
by a summation over randomly chosen values of βββc. For a given value of the parameters
θθθ, a value of βββc is drawn from its distribution. Using this draw of βββc, Pc(θθθ) is calculated.
This process is repeated for many draws, and the average over the draws is the simulated
probability. Formally, the simulated probability for region c is

P̃c(θθθ) =
1

R

R∑
r=1

Nc∏
i=1

P̃icr(θθθ) (5)

where P̃icr is the probability for individual i in region c evaluated at the rth draw of βββc,
and R is the total number of draws. Then, the simulated log-likelihood function is:

logLs =

C∑
c=1

log

[
1

R

R∑
r=1

Nc∏
i=1

P̃icr(θθθ)

]
(6)

Lee (1992), Gourieroux, Monfort (1991) and Hajivassiliou, Ruud (1986) derive the
asymptotic distribution of the simulated maximum likelihood (SML) estimator based
on smooth probability simulators with the number of draws increasing with sample size.
Under regularity conditions, the estimator is consistent and asymptotically normal. When
the number of draws, R, rises faster than the square root of the number of observations,
the estimator is asymptotically equivalent to the maximum likelihood estimator. It is
worth noting that, even though the simulated probability is an unbiased estimate of the
true probability, the log of the simulated probability with fixed number of repetitions
is not an unbiased estimate of the log of the true probability. This bias in the SML
decreases as the number of draws increases (see for example Gourieroux, Monfort 1997,
Revelt, Train 1998).

One main limitation of these modeling strategies is that the performance of the
maximum likelihood estimators may not be accurate or satisfactory when the number of
individuals per region is large. The problem is that the log-likelihood function involves
the integration or summation over a term involving the product of the probabilities
for all the individuals in each location c. Borjas, Sueyoshi (1994) were the first in
noticing this problem in the context of the probit model with random effects and using
Gauss quadrature. Lee (2000) also gives more insights about this problem. For example,

7Other methods can be used in order to approximate the integrals. For example, Gauss-Hermite
quadrature procedure is another numerical method widely used. However, it has been documented that
for models with more than 3 random parameters SML performs better. Bayesian estimation is also
suitable for continuous spatial heterogeneity. See for example Hashiguchi, Tanaka (2014).
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assuming a sample of 500 individuals per group – or regions in our case – with a likelihood
contribution of 0.5 per observation, Borjas, Sueyoshi (1994) show that the value of the
integrand can be as small as exp(500× ln(0.5)) ≈ exp(−346.6), which is below the existing
absolute value for a computer. A consequence of this might be larger standard errors,
explosive estimates and/or a singular Hessian. In the worst scenario, the computation
will overflow, that is, it will exceed the computer’s capacity to compute the value and the
maximization procedure will stop. This issue should be borne in mind when applying
these methods8.

3 Packages and dependencies

The main R packages used in the examples are the following:

Rchoice: This is the main package to estimate Binary, Poisson, and Ordered Models
with Random parameters.

foreign: This package is used to read data in different formats (Stata, SPSS, etc).

car: This package will allow us to perform linear hypotheses.

lmtest: This package has generic functions that allow to perform likelihood ratio tests
for nested models.

All these packages can be installed using the install.packages() function.

4 Application using Rchoice in R: Self-assessed health status

4.1 Ordered Probit model with spatially homogeneous parameters

Suppose we are interested in the determinants of individuals’ subjective evaluation of
health. We assume that the health status of individual i in municipality c, hic, follows
an underlying continuous but latent health process h∗ic based on a linear combination of
individual and municipal covariates given by:

h∗ic = xxx′icβββ + εic (7)

where xxxic is a vector of individual and municipal characteristics; εic ∼ N(0, σ) is the
error term, but since the scale of h∗ic is not identified, we normalized σ = 1. Note that
this model assumes that the partial correlation between the latent health status and the
covariates follows a spatially stationary process.

As typical in ordered models, we do not observe h∗ci, but we instead observe the
self-assessed health status (SAH) for each individual, hic, which ranges between 1 (very
bad health) and 5 (very good health) in our sample. The link between hic and h∗ic is the
following:

hic =


1 if κ0 < h∗ic < κ1
2 if κ1 < h∗ic < κ2
...
5 if κ4 < h∗ic < κ5

where it is assumed that κ0 = −∞ and κ5 =∞ to cover the entire real line. Since having
a constant is useful in our model to accommodate random effects, we set x1ic ≡ 1 for all
i = 1, . . . , N . Therefore, for identification we set κ1 ≡ 0.

To estimate an ordered probit model with spatially homogeneous coefficients, we will
use the Rchoice package which is loaded using the library() function:

[1]: > # Load package

> library("Rchoice")

8For other estimation methods, such as Bayesian estimation of multi-level models, see for example
Bürkner (2018).
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Now, we load the dataset sah.chile. This dataset comes from the 2013 National
Socioeconomic Characteri-zation Survey (CASEN) from Chile. CASEN is a national,
population-based survey which is representative at the municipal level and is carried out
by the Ministry of Planning (MIDEPLAN) to describe the socioeconomic situation as
well as the impact of social programs on the living conditions of the Chilean Population9.

In the following lines, the dataset in Stata format is downloaded. Then, the SAH
variable (dependent variable) is recoded into 5 categories:

[2]: > # Load data set and recode SAH variable

> library("foreign") # package to load datasets

> library("car") # package with recode function

> data <- read.dta("https://msarrias.weebly.com/uploads/3/7/7/8/37783629/sah.chile.dta")

> data$sah2 <- recode(data$shealth, "1= 1; 2 = 2; 3 = 3; 5:6 = 4; 7 = 5")

The vector xxxic includes the following controls at the individual level:

linch: log of household income.

agen: age in years / 10.

hsizen: household size / 10.

edun: years of schooling / 10.

male: =1 for men.

dcivil1: =1 if the individual is married.

dlstatus2: =1 if the individual is unemployed.

Some continuous variables are divided by 10 to improve convergence speed of the SML
process and avoid singularities in the Hessian matrix.

In addition, a set of dummy variables indicating the self-perception of pollution and
environmental problems is used. The dummy variables are obtained from the response to
the question: “What problems related to pollution and environmental degradation do you
identify in your neighbourhood or location”. Based on the answer, dummy variables were
created for the following problems:

noise: noise pollution.

airpol: air pollution.

watpol: water pollution.

vispol: visual pollution.

waspol: garbage (rubbish) in the neighborhood.

The variables at the municipality level are:

lmdinc: log of median income (proxy for development).

lpop: log of population (size effect).

The following command lines show how to estimate the traditional ordered probit
model. For other models such as the Binary (Logit and Probit) and Poisson model see
Sarrias (2016)Sarrias (2016).

[3]: > # Ordered probit model

> oprobit <- Rchoice(sah2 ~ linch + agen + hsizen + edun + male +

+ dcivil1 + dlstatus2 +

+ noise + airpol + watpol + vispol + waspol +

+ lmdinc + lpop,

+ family = ordinal("probit"),

+ data = data)

> summary(oprobit)

9Chile has 346 municipalities of which 324 are representative in CASEN 2013.
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[3]: ##

## Model: ordinal

## Model estimated on: Tue Jan 07 10:31:58 2020

##

## Call:

## Rchoice(formula = sah2 ~ linch + agen + hsizen + edun + male +

## dcivil1 + dlstatus2 + noise + airpol + watpol + vispol +

## waspol + lmdinc + lpop, data = data, family = ordinal("probit"),

## method = "bfgs")

##

##

## Frequencies of categories:

## y

## 1 2 3 4 5

## 0.01087 0.01359 0.02897 0.64523 0.30133

## The estimation took: 0h:0m:5s

##

## Coefficients:

## Estimate Std. Error z-value Pr(>|z|)

## kappa.1 0.341698 0.022434 15.231 < 2e-16 ***

## kappa.2 0.720961 0.027012 26.690 < 2e-16 ***

## kappa.3 3.015915 0.031564 95.548 < 2e-16 ***

## constant -0.290407 0.481404 -0.603 0.546342

## linch 0.132595 0.014377 9.223 < 2e-16 ***

## agen -0.212654 0.008214 -25.889 < 2e-16 ***

## hsizen 0.242645 0.060359 4.020 5.82e-05 ***

## edun 0.211808 0.028537 7.422 1.15e-13 ***

## male 0.154095 0.019058 8.086 6.66e-16 ***

## dcivil1 -0.028142 0.021246 -1.325 0.185316

## dlstatus2 -0.093728 0.046169 -2.030 0.042347 *

## noise -0.139891 0.026745 -5.231 1.69e-07 ***

## airpol -0.084563 0.026219 -3.225 0.001259 **

## watpol -0.120485 0.037756 -3.191 0.001417 **

## vispol -0.069064 0.060747 -1.137 0.255573

## waspol -0.041040 0.027421 -1.497 0.134482

## lmdinc 0.147852 0.043400 3.407 0.000658 ***

## lpop -0.016493 0.009016 -1.829 0.067359 .

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Optimization of log-likelihood by BFGS maximization

## Log Likelihood: -13020

## Number of observations: 16188

## Number of iterations: 190

## Exit of MLE: successful convergence

The argument family = ordinal("probit") indicates that an ordered probit model
will be estimated. If the user wants an ordered logit model the argument should be
family = ordinal("logit"). For other models, see help(Rchoice).

The results show that household income and education increase the probability of
reporting better health status, whereas age decreases it. Men are more likely to report
better health than women and being unemployed is detrimental for health. At the
neighborhood level, noise, air, and water pollution reduce health perception and vispol
and waspol apparently do not matter for health. The coefficient for the logarithm of
population for each municipality, which is intended to capture agglomeration effects, is
negative but weakly significant, whereas the level of development is positively correlated
with individuals’ health evaluation.

4.2 Ordered Probit models with spatial random coefficients

The standard ordered probit model does not allow for spatial heterogeneity in the coeffi-
cients. In this section, we estimate an Ordered Probit with Spatial Random Parameters
(OPSRP) model. To reduce excessive computing time, we will only assume that the
variables at the level of municipalities and neighborhood vary across space.

The first and more difficult task is to choose the distribution for each of them. As
explained by Hensher, Greene (2003), distributions are essentially arbitrary approximations
to the real behavioral profile. The researcher chooses a specific distribution because he has
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a sense that the “empirical truth” is somewhere in their domain. The most widely used
distribution in the empirical literature is the normal distribution due to its properties. If
unobserved spatial heterogeneity is viewed as the sum of small random influences, then
the central limit theorem can be invoked to justify the normality assumption Greene,
Hensher (2010). Moreover, the normal distribution is unbounded, and therefore every
real number has a positive probability of being drawn. Thus, specifying a given coefficient
to follow a normal distribution is equivalent to making a priori assumption that both
positive and negative coefficients exits across space (Sarrias 2019).

This last property is very appealing in our case, since theoretically we might observe
municipalities with positive and negative sign for the population coefficient. For instance,
municipalities with a positive coefficient might be characterized for having positive urban
externalities that outweigh the negative ones. In those municipalities, inhabitants, on
average, enjoy better health through local positive urban externalities. If the coefficient
is negative, the opposite might be expected.

A OPSRP model with normally distributed parameters is estimated as follows:

[4]: > # Spatial random parameter model

> ran_1 <- Rchoice(sah2 ~ linch + agen + hsizen + edun + male + dcivil1 + dlstatus2 +

+ noise + airpol + watpol + vispol + waspol +

+ lmdinc + lpop,

+ family = ordinal(’probit’),

+ data = data,

+ ranp = c(noise = "n", airpol = "n", watpol = "n", vispol = "n",

+ waspol = "n", lmdinc = "n", lpop = "n"),

+ panel = TRUE,

+ index = "idc",

+ R=30,

+ method = "bfgs")

> summary(ran_1)

[4]: ##

## Model: ordinal

## Model estimated on: Tue Dec 31 09:11:29 2019

##

## Call:

## Rchoice(formula = sah2 ~ linch + agen + hsizen + edun + male +

## dcivil1 + dlstatus2 + noise + airpol + watpol + vispol +

## waspol + lmdinc + lpop, data = data, family = ordinal("probit"),

## ranp = c(noise = "n", airpol = "n", watpol = "n", vispol = "n",

## waspol = "n", lmdinc = "n", lpop = "n"), R = 30, panel = TRUE,

## index = "idc", method = "bfgs", iterlim = 2000)

##

##

## Frequencies of categories:

## y

## 1 2 3 4 5

## 0.01087 0.01359 0.02897 0.64523 0.30133

## The estimation took: 0h:9m:48s

##

## Coefficients:

## Estimate Std. Error z-value Pr(>|z|)

## kappa.1 0.3417117 0.0162495 21.029 < 2e-16 ***

## kappa.2 0.7209893 0.0209411 34.429 < 2e-16 ***

## kappa.3 3.0170292 0.0268859 112.216 < 2e-16 ***

## constant -0.2905344 0.4958543 -0.586 0.557925

## linch 0.1310569 0.0143865 9.110 < 2e-16 ***

## agen -0.2132221 0.0082107 -25.969 < 2e-16 ***

## hsizen 0.2425766 0.0604009 4.016 5.92e-05 ***

## edun 0.2116421 0.0285525 7.412 1.24e-13 ***

## male 0.1540426 0.0190620 8.081 6.66e-16 ***

## dcivil1 -0.0281834 0.0212486 -1.326 0.184717

## dlstatus2 -0.0937187 0.0462089 -2.028 0.042545 *

## mean.noise -0.1399619 0.0269286 -5.198 2.02e-07 ***

## mean.airpol -0.0845976 0.0264687 -3.196 0.001393 **

## mean.watpol -0.1205199 0.0379779 -3.173 0.001507 **

## mean.vispol -0.0690556 0.0611251 -1.130 0.258585

## mean.waspol -0.0410117 0.0276460 -1.483 0.137953

## mean.lmdinc 0.1463353 0.0445929 3.282 0.001032 **

## mean.lpop -0.0180293 0.0091612 -1.968 0.049067 *
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## sd.noise 0.0986997 0.0261224 3.778 0.000158 ***

## sd.airpol 0.0986787 0.0254373 3.879 0.000105 ***

## sd.watpol 0.0994208 0.0398379 2.496 0.012573 *

## sd.vispol 0.0998332 0.0688382 1.450 0.146987

## sd.waspol 0.0988309 0.0273009 3.620 0.000295 ***

## sd.lmdinc 0.0050337 0.0008714 5.776 7.64e-09 ***

## sd.lpop 0.0012177 0.0011066 1.100 0.271156

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Optimization of log-likelihood by BFGS maximization

## Log Likelihood: -11320

## Number of observations: 16188

## Number of iterations: 391

## Exit of MLE: successful convergence

## Simulation based on 30 Halton draws

The argument ranp indicates which variables are random in the formula and their
distributions. In this example, all the random variables are assumed to be normally
distributed using "n". The remaining distribution discussed in Section 2.2 can be used
using the following shorthands:

• Triangular = "t",

• Uniform = "u",

• Truncated normal = "cn",

• Log-normal = "ln",

• Johnson’s Sb = = "sb".

The number of draws for the simulation of the probability is set using the argument R.
To keep the estimation time manageable, we use 30 draws for each individual. However,
consistency of the SML requires a higher number of draws (see for example Train 2009).

The argument index is a string indicating the id for the municipalities in the data,
whereas panel=TRUE allows for the spatial structure of the sample.

The previous model assumes that the coefficients has the following form:

βk = β̄k + σkvir

where vir ∼ N(01). Thus, the coefficients with the mean. and sd. prefix represent the

estimated mean, ˆ̄β, and standard deviation, σ̂, for variable k, respectively. If σk = 0,
then there is no evidence of systematical variation for regression coefficient over space.
The output shows that there is evidence of spatial heterogeneity for most of the variables,
except for vispol and lpop.

To test the joint hypothesis of coefficient homogeneity across space we can perform a
Likelihood Ratio test using lrtest function from lmtest package.

[5]: > # Testing spatial heterogeneity

> library("lmtest")

> lrtest(oprobit, ran_1)

[5]: ## Likelihood ratio test

##

## Model 1: sah2 ~ linch + agen + hsizen + edun + male + dcivil1 + dlstatus2 +

## noise + airpol + watpol + vispol + waspol + lmdinc + lpop

## Model 2: sah2 ~ linch + agen + hsizen + edun + male + dcivil1 + dlstatus2 +

## noise + airpol + watpol + vispol + waspol + lmdinc + lpop

## #Df LogLik Df Chisq Pr(>Chisq)

## 1 18 -13018

## 2 25 -11318 7 3400.6 < 2.2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The test rejects the null hypothesis providing empirical evidence of spatial heterogeneity
for those variables.
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Since the parameters are allowed to vary across space following a normal distribution,
we can also compute the proportion of municipalities with positive coefficients using

Φ( ˆ̄β/σ̂). For example, for noise and lmdinc the results are:

[6]: > # Computing proportions

> pnorm(coef(ran_1)["mean.noise"] / coef(ran_1)["sd.noise"])

[6]: ## mean.noise

## 0.07808686

[7]: > pnorm(coef(ran_1)["mean.lmdinc"] / coef(ran_1)["sd.lmdinc"])

[7]: ## mean.lmdinc

## 1

Thus, we can say that for 100% of the municipalities development is positively
correlated with individuals’ health, whereas for around 8% of the municipalities, higher
noise pollution increases health. This last result can be true or an artifact of the normality
assumption.

4.3 Correlated parameters

The previous model specifies the coefficients to be independently distributed, while one
would expect correlation. To show this, the model ran_1 we will be estimated but
assuming that the spatially random coefficients are correlated adding the argument
correlation = TRUE:

[8]: > # Spatially random parameters with correlated coefficients

> ran_2 <- Rchoice(sah2 ~ linch + agen + hsizen + edun + male + dcivil1 +

+ dlstatus2 + noise + airpol + watpol + vispol + waspol +

+ lmdinc + lpop,

+ family = ordinal("probit"),

+ data = data,

+ ranp = c(noise = "n", airpol = "n", watpol = "n", vispol = "n",

+ waspol = "n", lmdinc = "n", lpop = "n"),

+ panel = TRUE,

+ index = "idc",

+ R=30,

+ method = "bfgs",

+ correlation = TRUE)

> summary(ran_2)

[8]: ##

## Model: ordinal

## Model estimated on: Tue Dec 31 09:21:06 2019

##

## Call:

## Rchoice(formula = sah2 ~ linch + agen + hsizen + edun + male +

## dcivil1 + dlstatus2 + noise + airpol + watpol + vispol +

## waspol + lmdinc + lpop, data = data, family = ordinal("probit"),

## ranp = c(noise = "n", airpol = "n", watpol = "n", vispol = "n",

## waspol = "n", lmdinc = "n", lpop = "n"), R = 30, correlation = TRUE,

## panel = TRUE, index = "idc", method = "bfgs", iterlim = 2000)

##

##

## Frequencies of categories:

## y

## 1 2 3 4 5

## 0.01087 0.01359 0.02897 0.64523 0.30133

## The estimation took: 0h:9m:36s

##

## Coefficients:

## Estimate Std. Error z-value Pr(>|z|)

## kappa.1 0.3412626 0.0180952 18.859 < 2e-16 ***

## kappa.2 0.7195420 0.0226625 31.750 < 2e-16 ***

## kappa.3 3.4970489 0.0294076 118.917 < 2e-16 ***

## constant -0.2901421 0.5322664 -0.545 0.585680

## linch 0.1457106 0.0149581 9.741 < 2e-16 ***

## agen -0.2696671 0.0086621 -31.132 < 2e-16 ***

## hsizen 0.2440816 0.0629962 3.875 0.000107 ***

## edun 0.2202293 0.0300012 7.341 2.12e-13 ***
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## male 0.1579018 0.0199386 7.919 2.44e-15 ***

## dcivil1 -0.0361313 0.0222373 -1.625 0.104204

## dlstatus2 -0.0930049 0.0482324 -1.928 0.053822 .

## mean.noise -0.1446350 0.0281478 -5.138 2.77e-07 ***

## mean.airpol -0.0855360 0.0275906 -3.100 0.001934 **

## mean.watpol -0.1204861 0.0399076 -3.019 0.002535 **

## mean.vispol -0.0689847 0.0636902 -1.083 0.278751

## mean.waspol -0.0371335 0.0288215 -1.288 0.197609

## mean.lmdinc 0.1607965 0.0478379 3.361 0.000776 ***

## mean.lpop 0.0069806 0.0101792 0.686 0.492860

## sd.noise.noise 0.0050271 0.0333140 0.151 0.880055

## sd.noise.airpol 0.0058448 0.0324393 0.180 0.857013

## sd.noise.watpol 0.0539982 0.0478928 1.127 0.259539

## sd.noise.vispol 0.0739318 0.0776348 0.952 0.340943

## sd.noise.waspol 0.0182864 0.0331744 0.551 0.581483

## sd.noise.lmdinc 0.0618425 0.0086254 7.170 7.51e-13 ***

## sd.noise.lpop -0.0813180 0.0105174 -7.732 1.07e-14 ***

## sd.airpol.airpol 0.0160025 0.0319875 0.500 0.616881

## sd.airpol.watpol 0.0559519 0.0459907 1.217 0.223760

## sd.airpol.vispol 0.0816862 0.0775592 1.053 0.292245

## sd.airpol.waspol 0.0208368 0.0330971 0.630 0.528979

## sd.airpol.lmdinc 0.0434195 0.0084910 5.114 3.16e-07 ***

## sd.airpol.lpop -0.0588680 0.0102640 -5.735 9.73e-09 ***

## sd.watpol.watpol 0.0628180 0.0456531 1.376 0.168826

## sd.watpol.vispol 0.0818528 0.0779919 1.050 0.293946

## sd.watpol.waspol 0.0233655 0.0330245 0.708 0.479244

## sd.watpol.lmdinc 0.0408594 0.0085428 4.783 1.73e-06 ***

## sd.watpol.lpop -0.0505877 0.0103099 -4.907 9.26e-07 ***

## sd.vispol.vispol 0.0850337 0.0779709 1.091 0.275457

## sd.vispol.waspol 0.0187284 0.0330837 0.566 0.571331

## sd.vispol.lmdinc 0.0471032 0.0083197 5.662 1.50e-08 ***

## sd.vispol.lpop -0.0644627 0.0100842 -6.392 1.63e-10 ***

## sd.waspol.waspol 0.0224287 0.0329135 0.681 0.495591

## sd.waspol.lmdinc 0.0491523 0.0082301 5.972 2.34e-09 ***

## sd.waspol.lpop -0.0642418 0.0099655 -6.446 1.15e-10 ***

## sd.lmdinc.lmdinc 0.0353881 0.0082862 4.271 1.95e-05 ***

## sd.lmdinc.lpop -0.0450126 0.0099427 -4.527 5.98e-06 ***

## sd.lpop.lpop 0.0002568 0.0011373 0.226 0.821375

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Optimization of log-likelihood by BFGS maximization

## Log Likelihood: -11210

## Number of observations: 16188

## Number of iterations: 315

## Exit of MLE: successful convergence

## Simulation based on 30 Halton draws

It is important to note that the output prints the elements of the lower-triangular
Cholesky factor LLL. The variance-covariance matrix, ΣΣΣ, can be extracted using the vcov

function in the following way:

[9]: > # Obtain Sigma

> vcov(ran_2, what = "ranp", type = "cov", se = TRUE)

[9]: ##

## Elements of the variance-covariance matrix

##

## Estimate Std. Error z-value Pr(>|z|)

## v.noise.noise 2.5271e-05 3.3494e-04 0.0754 0.93986

## v.noise.airpol 2.9382e-05 2.3810e-04 0.1234 0.90179

## v.noise.watpol 2.7145e-04 1.7934e-03 0.1514 0.87969

## v.noise.vispol 3.7166e-04 2.4696e-03 0.1505 0.88037

## v.noise.waspol 9.1927e-05 6.3478e-04 0.1448 0.88486

## v.noise.lmdinc 3.1089e-04 2.0673e-03 0.1504 0.88046

## v.noise.lpop -4.0879e-04 2.7200e-03 -0.1503 0.88053

## v.airpol.airpol 2.9024e-04 1.0858e-03 0.2673 0.78923

## v.airpol.watpol 1.2110e-03 2.4984e-03 0.4847 0.62788

## v.airpol.vispol 1.7393e-03 3.7015e-03 0.4699 0.63843

## v.airpol.waspol 4.4032e-04 1.0616e-03 0.4148 0.67829

## v.airpol.lmdinc 1.0563e-03 2.4234e-03 0.4359 0.66293

## v.airpol.lpop -1.4173e-03 3.2248e-03 -0.4395 0.66029
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## v.watpol.watpol 9.9925e-03 9.2513e-03 1.0801 0.28009

## v.watpol.vispol 1.3705e-02 9.7826e-03 1.4009 0.16124

## v.watpol.waspol 3.6211e-03 3.6712e-03 0.9863 0.32397

## v.watpol.lmdinc 8.3355e-03 4.0026e-03 2.0825 0.03730 *

## v.watpol.lpop -1.0863e-02 5.2619e-03 -2.0644 0.03898 *

## v.vispol.vispol 2.6069e-02 2.4122e-02 1.0807 0.27982

## v.vispol.waspol 6.5591e-03 5.8208e-03 1.1268 0.25981

## v.vispol.lmdinc 1.5469e-02 7.5381e-03 2.0521 0.04016 *

## v.vispol.lpop -2.0443e-02 9.9442e-03 -2.0558 0.03981 *

## v.waspol.waspol 2.1683e-03 2.9746e-03 0.7289 0.46604

## v.waspol.lmdinc 4.9749e-03 3.5556e-03 1.3992 0.16176

## v.waspol.lpop -6.5438e-03 4.7027e-03 -1.3915 0.16407

## v.lmdinc.lmdinc 1.3266e-02 1.8869e-03 7.0309 2.052e-12 ***

## v.lmdinc.lpop -1.7439e-02 2.3778e-03 -7.3341 2.232e-13 ***

## v.lpop.lpop 2.2946e-02 3.0048e-03 7.6365 2.243e-14 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The estimated coefficients represent the variance and covariance of the randomly dis-
tributed parameters. Their standard errors are estimated using the Delta Method. To
obtain the standard deviations for the random parameters, one might use the following
code:

[10]: > # Obtain standard deviations

> vcov(ran_2, what = "ranp", type = "sd", se = TRUE)

[10]: ##

## Standard deviations of the random parameters

##

## Estimate Std. Error z-value Pr(>|z|)

## noise 0.0050271 0.0333140 0.1509 0.88006

## airpol 0.0170365 0.0318660 0.5346 0.59291

## watpol 0.0999627 0.0462737 2.1602 0.03075 *

## vispol 0.1614594 0.0746999 2.1614 0.03066 *

## waspol 0.0465651 0.0319403 1.4579 0.14487

## lmdinc 0.1151790 0.0081909 14.0617 < 2e-16 ***

## lpop 0.1514789 0.0099181 15.2730 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Finally, the correlation matrix for the estimated coefficients is:

[11]: > # Obtain correlation matrix of estimated coefficients

> vcov(ran_2, what = "ranp", type = "cor")

[11]: ## noise airpol watpol vispol waspol lmdinc

## noise 1.0000000 0.3430771 0.5401842 0.4578971 0.3927053 0.5369247

## airpol 0.3430771 1.0000000 0.7110814 0.6323119 0.5550469 0.5383007

## watpol 0.5401842 0.7110814 1.0000000 0.8491072 0.7779253 0.7239690

## vispol 0.4578971 0.6323119 0.8491072 1.0000000 0.8724090 0.8317965

## waspol 0.3927053 0.5550469 0.7779253 0.8724090 1.0000000 0.9275751

## lmdinc 0.5369247 0.5383007 0.7239690 0.8317965 0.9275751 1.0000000

## lpop -0.5368276 -0.5492089 -0.7173734 -0.8358492 -0.9277189 -0.9995225

## lpop

## noise -0.5368276

## airpol -0.5492089

## watpol -0.7173734

## vispol -0.8358492

## waspol -0.9277189

## lmdinc -0.9995225

## lpop 1.0000000

The results show, for example, that noise pollution is positively correlated with other
forms of pollution. Therefore, in those municipalities where noise pollution is detrimental
to health, so are the other forms of pollution. It is also important to note that the
municipalities where noise has a negative effect are also municipalities where lower
development and higher population impact negatively the self-perception of health status.
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4.4 Region-specific coefficients

In the applied literature it is very common to map the region-specific estimates to display
the spatial heterogeneity for certain coefficients. This cannot be done using just the
distribution of the parameters across regions, g(βββc|θθθ). The population distributions give
us just the average affect, βββ, and the spatial variation around this mean, σβββ , when in fact
we would like to know where each region’s βββc lies in g(βββc|θθθ). We might be able to find
the likely location of a given region on the heterogeneity distribution by moving from the
conditional to the unconditional distribution (Revelt, Train 2000, Brunsdon et al. 1999,
Sarrias 2019). Using Bayes’ theorem, we obtain:

f(βββc|yyyc,XXXc, θθθ) =
f(yyyc|XXXc,βββc)g(βββc|θθθ)

f(yyyc|XXXc, θθθ)
=

f(yyyc|XXXc,βββc)g(βββc|θθθ)∫
βββc
f(yyyc|XXXc,βββc)g(βββc|θθθ)dβββc

(8)

where f(βββc|yyyc,XXXc, θθθ) is the distribution of the regional parameters βββc conditional on the
sequence of choices of all the individuals in region c, whereas g(βββc|θθθ) is the unconditional
distribution. The conditional expectation of βββc is given by

β̄ββc = E [βββc|yyyc,XXXc, θθθ] =

∫
βββc
βββcf(yyyc|XXXc,βββc)g(βββc|θθθ)dβββc∫

βββc
f(yyyc|XXXc,βββc)g(βββc|θθθ)dβββc

(9)

This expectation gives us the conditional mean of the distribution of the spatially random
parameter. The simulator for this expectation is:

ˆ̄βββc = Ê
[
βββc|yyyc,XXXc, θ̂θθ

]
=

1
R

∑R
r=1 β̂ββcr

∏nc
i=1 f

∗(yci|xxxci, β̂ββcr)
1
R

∑R
r=1

∏nc
i=1 f

∗(yci|xxxci, β̂ββcr)
(10)

This estimator is the region-specific estimate, and can be computed in Rchoice using
effect.Rchoice function and plotted using the function plot. In the following lines
the municipality’s coefficient for all the random parameters is plotted using a kernel
approximation:

[12]: > # Plot municipality-specific coefficient

> par(mfrow = c(3, 3))

> plot(ran_2, par = "noise", type = "density", main = "Noise Pol.")

> plot(ran_2, par = "airpol", type = "density", main = "Air Pol.")

> plot(ran_2, par = "watpol", type = "density", main = "Water Pol.")

> plot(ran_2, par = "vispol", type = "density", main = "Visual Pol.")

> plot(ran_2, par = "waspol", type = "density", main = "Garbage Pol.")

> plot(ran_2, par = "lmdinc", type = "density", main = "Development")

> plot(ran_2, par = "lpop", type = "density", main = "Population")

[12]: Output reproduced in Figure 1

The red area under the kernel distribution illustrates the proportion of municipalities
with a positive conditional mean. The most relevant result is that size (lpop) seems to be
a positive externality for almost 50% of the municipalities, evidencing substantial spatial
heterogeneity. This important result is obscured by the traditional ordered probit model.

We might also plot the 95% confidence interval for the conditional means of airpol
and noise for the first 50 municipalities by typing:

[13]: > # Plot region-specific confidence intervals.

> par(mfrow = c(1, 2))

> plot(ran_2, par = "airpol", ind = TRUE, id = 1:50, ylab = "Municipalities")

> plot(ran_2, par = "noise", ind = TRUE, id = 1:50, ylab = "Municipalities")

[13]: Output reproduced in Figure 2

In terms of consistency of the regional-specific estimates, it is expected that ˆ̄βββc
p→ βββc as

nc →∞. That is, if we have more information about the choices made by the individuals
in each region, then we are in better position to identify where each region coefficient lies
on g(βββc) (see for example Train 2009, Revelt, Train 2000, Sarrias, Daziano 2018).
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Figure 1: Plot of municipality-specific coefficients

Figure 2: Plot of region-specific confidence intervals

5 Conclusion

This paper contributes to the literature of spatial econometric models that deal with
spatially non-stationary process by assuming unobserved heterogeneity. This modelling
approach has been widely used in discrete choice modeling, but it can also be implemented
to capture and model observed and unobserved spatial heterogeneity. One of the main
advantages of this modelling approach is that allows the analyst to include variables
at the individual level, which mitigate the ecological fallacy problem, and to add more
flexibility regarding the shape and boundedness of the coefficients.

Spatial heterogeneity is represented by some distribution g(βββc), which can take any
continuous shape, and the analyst must choose the distribution a priori. The choice of
the distribution may be guided by theoretical reasons regarding the domain and bound of
the coefficients. It also discussed some extensions that can be useful in order to take into
consideration the geographical location of the regions, as well as the spatial correlation
of the parameters. Although the unobserved spatial heterogeneity using continuous
distributions has very appealing features, the probability for each region does not have a
closed form solution. Therefore, we need to simulate this probability and estimate the
parameters using SML, which can be very costly in terms of computational time.

REGION : Volume 7, Number 1, 2020
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This study also shows how the Rchoice package can be used to estimate this type of
models. To do so, we provide a simple example for ordered probit models, focusing on
how the determinants of individuals’ self-assessed health status might vary across space.

This work can be extended in different ways. First, one of the main concerns and
limitations of the model is that the estimation requires computing the product of the
probabilities for all individuals in a given region. Thus, if the number of individuals
is too high, the estimation method may run into numerical difficulties. To overcome
this problem some of the two methods proposed by Lee (2000) can be studied under
the spatial context. These methods alleviate the numerical problems by interchanging
the inner product with the outer summation. Another possible extension is to study
the behavior of the parameters with small and large samples using Bayesian and EM
algorithms. Finally, more empirical applications are needed in order to understand the
strengths and weaknesses for estimating models with locally varying coefficients using
unobserved heterogeneity.
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