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Abstract

We study the dynamic impact of Covid-19, economic mobility, and containment

policy shocks. We use Bayesian panel structural vector autoregressions with daily

data for 44 countries, identified through sign and zero restrictions. Incidence and

mobility shocks raise cases and deaths significantly for two months. Restrictive policy

shocks lower mobility immediately, cases after one week, and deaths after three weeks.

Non-pharmaceutical interventions explain half of the variation in mobility, cases, and

deaths worldwide. These flattened the pandemic curve, while deepening the global

mobility recession. The policy tradeoff is 1 p.p. less mobility per day for 9% fewer

deaths after two months.
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1 Introduction

Covid-19 is the largest risk to human health, lives, and the world economy in modern peace-

time history. Researchers and policy makers around the globe are trying to understand

the evolution of the pandemic, appropriate policy responses, and the associated tradeoffs.

There is a rapidly growing literature on the causes and consequences of the pandemic as

well as the effects of containment policies. Many empirical studies focus on selected drivers,

consequences, or policies in partial equilibrium and over short-time horizons.1 The macroe-

conomic literature, on the other hand, aims at modeling the dynamics of epidemics, health

policy, and economic decisions jointly and over longer horizons, but is largely theoreti-

cal.2 In this paper, we analyze the dynamic interactions between the Covid-19 pandemic,

economic mobility, and containment policy empirically and in general equilibrium, using

Bayesian panel structural vector autoregressions.

Our model comprises three epidemiological variables (cases, deaths, and a containment

policy index) and two economic variables (an economic mobility index and local stock

prices). We face two main challenges. First, we need sufficiently many observations to iden-

tify exogenous variation in each of the variables and to estimate their structural relations

reliably at macroeconomically relevant horizons. Therefore, we use daily data collected

across 44 countries. The large number of observations (about 10,000) allows for identi-

fying the economic-epidemiological dynamics over several months and the cross-sectional

variation provides counterfactual trends. The countries in the sample account for 81% of

worldwide infections and deaths due to Covid-19 and for 72% of global GDP.

The second key challenge is identification of the model as epidemics, economic mobility,

and containment policy are determined simultaneously. We identify three structural shocks

through dynamic sign restrictions: incidence shocks, economic mobility shocks, and con-

tainment policy shocks. Our identification scheme avoids potentially debatable exclusion

restrictions and gives full voice to the data. The first shock accounts for unexpected changes

in the transmissibility of the coronavirus due to, for example, superspreader events, non-

mandatory mask wearing, or hygiene and ventilation. The second shock captures exogenous

1See, among others, Baker, Bloom, Davis, Kost, Sammon and Viratyosin (2020), Harris (2020), Kraemer
et al. (2020), Coven, Gupta and Yao (2020), Gupta, Simon and Wing (2020) or Baek, McCrory, Messer
and Mui (2020).

2See, among others, Atkeson (2020), Eichenbaum, Rebelo and Trabandt (2020), Glover, Heathcote,
Krueger and Ŕıos-Rull (2020) or Acemoglu, Chernozhukov, Werning and Whinston (2020).
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variation in mobility resulting from shifts in economic activity, transportation conditions,

or risk perception. The third shock reflects the varying intensity of non-pharmaceutical

interventions—closing of schools, workplaces, and public transportation as well as restric-

tions on public and private gatherings or outright stay at home orders—for erratic goals or

beliefs of policy makers. Moreover, we identify two residual shocks using zero restrictions to

sharpen inference on the main shocks of interest (Canova and Paustian, 2011) and provide

additional interpretation. As we have both sign and exclusion restrictions, we apply the

flexible approach of Arias, Rubio-Ramı́rez and Waggoner (2018) for implementation.

We quantify the causal dynamic effects of the structural shocks. The impulse responses

to an incidence shock offer a measure of a ‘Covid-19 wave’ as there is no consensus among

policy makers and researchers about this concept. The responses to a policy shock allow

for gauging the effectiveness of non-pharmaceutical interventions and the average delay

before they affect cases and deaths, which is of prime policy importance. Moreover, we

compute variance and historical decompositions to understand the main drivers of the

pandemic and to quantify the importance of policy interventions for economic and health

outcomes. Finally, the empirical model provides a consistent estimate of an important

policy tradeoff during the pandemic: the conflict between flattening the epidemic curve

(reducing morbidity and mortality) and maintaining economic mobility.

We find that the three shocks of main interest all have significant and long-lasting

effects but that their importance differs drastically. An incidence shock of one standard

deviation raises the number of infections and fatalities by more than 15% and lasts for

two months. Economic mobility remains depressed during this time and troughs at –5%.

Policy makers respond swiftly on average and implement non-pharmaceutical containment

measures within a week. Mobility shocks also increase the number of cases and fatalities,

but the effects are small compared to incidence shocks. Finally, an average containment

shock reduces mobility by 12% after one week and mortality by 30% after six weeks. These

results are robust to a large number of sensitivity tests. We change the sample, lag length,

identification strategy, variable definition, among others, and correct for testing capacities,

information effects, and trends.

Forecast error variance decompositions suggest that, at short horizons, incidence shocks

are the main driver of cases and that policy shocks are the dominant source of variation
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in mobility. At longer horizons, policy shocks explain more than one half of the variation

in mobility, cases, and deaths. Mobility shocks play essentially no role for any of the

variables, neither for short nor long horizons. Furthermore, a historical decomposition of

the pandemic curve suggests that the flattening of Covid-19 mortality from mid-April to

August 2020 is mostly and equally driven by restrictive policy shocks and negative incidence

shocks. A similar decomposition of the concurrent worldwide decline in economic mobility

indicates that this was mainly the result of tighter policy, although higher incidence rates

and negative mobility shocks also played a role.

Finally, we compute a dynamic survival ratio that quantifies the policy tradeoff between

flattening the epidemic curve and maintaining economic mobility. The estimate implies that

a policy-induced reduction in economic mobility by an average of one percentage point per

day over two full months lowers Covid-19 mortality by 9% at the end of this horizon.

Our paper relates to two strands in the economic literature on Covid-19. The first set

of papers is empirical and focuses on selected aspects of the relations between Covid-19,

economic activity, and health policy. For example, Baker, Bloom, Davis, Kost, Sammon

and Viratyosin (2020) and Coibion, Gorodnichenko and Weber (2020a) assess the economic

impact of Covid-19. The former authors focus on the U.S. stock market, while the later

concentrate on labor market outcomes. Others study the effect of mobility on the spread

of the disease (Harris, 2020; Kraemer et al., 2020; Coven et al., 2020). Of great interest

is also the impact of containment and closure policies. Gupta, Simon and Wing (2020)

find that stay at home orders lower mobility and Baek, McCrory, Messer and Mui (2020)

show that they increase unemployment significantly. Coibion, Gorodnichenko and Weber

(2020b) identify the causal effect of local lockdowns in the U.S. on households’ spending

and macroeconomic expectations.

The second set of papers studies the interactions between the pandemic, economic activ-

ity, and mitigation policy jointly by using theoretical (quantitative) macroeconomic mod-

els. Atkeson (2020) is among the first to relate the standard epidemiological susceptible-

infected-recovered (SIR) model and the macro-economy, thus stressing the tradeoff that

policy makers face between public health and economic objectives. Eichenbaum, Rebelo

and Trabandt (2020) extend the SIR model by incorporating dynamic feedback between

health and economic decisions and formalize this tradeoff. Glover, Heathcote, Krueger and
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Ŕıos-Rull (2020) and Acemoglu, Chernozhukov, Werning and Whinston (2020), among

others, develop heterogeneous agent models and derive optimal mitigation policies that

balance the costs and benefits of lockdowns for different age groups.

We contribute to the literature by estimating the dynamic causal effects between Covid-

19, economic mobility, and containment policy in general equilibrium. We document three

new stylized facts and quantify a main policy tradeoff of the pandemic. First, containment

policy has a strong lever on the pandemic. Non-pharmaceutical interventions are important

for understanding both short-run and long-run health and economic outcomes. Second,

incidence shocks are especially relevant in the short-run. Third, exogenous variation in

mobility is largely irrelevant for economic-epidemiological dynamics. Finally, the estimated

survival ratio based on the responses to a containment policy shock suggests that to save

9% more lives from Covid-19 we need to sacrifice one percentage point of economic mobility

per day for two months.

2 Empirical model and identification

2.1 The PVAR model and data

We use a panel vector autoregression (PVAR) model that includes the time series of epi-

demic and economic variables by country. Formally, N denotes the number of countries, K

the number of country-specific variables, M the number of exogenous variables, and T the

sample length. The reduced form representation of a stationary PVAR model for country

i = 1, . . . , N , and day t = 1, . . . , T is

yit = Ci +

p∑
l=1

Alyit−l + Dxt + uit (1)

where yit contains K country-specific endogenous variables, yit = (y1,it, . . . , yK,it)
′, Ci is a

K × 1-dimensional matrix of country-specific fixed effects capturing country heterogeneity,

Al is a K × K-dimensional matrix of autoregressive parameters for lag l = 1, . . . , p, D

is a K ×M -dimensional matrix of parameters, and xt is a M × 1-dimensional matrix of

exogenous variables. The K × 1-dimensional vector uit = (u1,it, . . . , uK,it)
′ denotes the

country-specific reduced form error terms.
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The short duration of the pandemic, from an econometric perspective, raises two main

challenges for estimating model (1). First, it essentially precludes using monthly or quar-

terly data as the number of time-series observations would be too low. Second, sole time-

variation in pandemic and economic data might not be sufficient to estimate pandemic

trends as the evolution of Covid-19 without intervention in countries that did intervene is

unknown. To address these challenges, we use daily data and collect them for a large num-

ber of countries. This frequency provides sufficient observations to estimate the dynamic

relationships in (1) over long horizons and the panel dimension adds cross-sectional infor-

mation to determine average trends. Moreover, except for the country-specific constants,

we assume homogeneous coefficients. In the sensitivity analysis, we show that the results

hold in various subgroups of countries.

For each country, we use the following variables in yit: cumulated Covid-19 deaths,

cumulated Covid-19 cases, an economic mobility index, a containment policy index, and

a stock price index for listed small companies. All variables enter the model in log levels,

except for the mobility index, which is already expressed in percentage points and enters

in level. The sample period is 2019-12-31 to 2020-8-17. The starting point corresponds to

the first official Covid-19 case in China. The sample includes all calendar days to maximize

the number of observations as all variables, bar stock prices, are available at this frequency.

We linearly interpolate the latter. To control for uneven reporting and changing mobility

patterns over the week, we add weekday dummies as exogenous variables to the model.

The panel comprises 44 countries, including the U.S., the largest European economies,

Japan, as well as India and Brazil. The set is determined by the joint availability of data

for the endogenous variables. The countries account for 81% of global Covid-19 cases and

deaths as well as 72% of world GDP. Appendix A contains a full list of the countries and

further details on the variables and sources.

Given that we have 220 observations per country and 9680 observations overall, we set

the lag length to p = 14 (two weeks) for two reasons, although conventional information

criteria suggest shorter lags. First, we are interested in deriving predictions for macroeco-

nomically relevant horizons such as 2-3 months. This implies computing impulse response

functions over 60-90 periods, which are typically more reliable with a larger number of lags.

Second, we want to capture the medium-run fluctuations (relative to the sample size) in
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the data, that is, longer lasting deviations from trends. In the sensitivity analysis, we show

that the results are robust to including a linear or quadratic trend as well as to changing the

lag length (to 7- or 21-day lags). In all cases, the VAR process is stable. The eigenvalues

of the companion matrix lie inside the unit circle.

The choice of the endogenous variables is guided by several considerations. The first

four variables are the focus of the paper as they are of primary policy concern. The two

clinical measures reflect mortality and morbidity, thus reflecting the timing and severity of

the pandemic. Moreover, these are the only health data for Covid-19 that are consistently

available across countries at a daily frequency.

Given this frequency, the mobility index is an approximation of economic activity.

Fernández-Villaverde and Jones (2020) show that there is a close relationship between

mobility and GDP or unemployment. Analyzing mobility is also inherently interesting as,

for example, Kraemer et al. (2020) or Harris (2020) suggest that mobility is an important

transmission channel of the virus. We use data provided by Google that count the number

of visits at different places and compare that to a baseline (median weekday for the period

03-01-2020 to 06-02-2020). The indices are anonymized and aggregated location histories

of cellphones with Android system whose users opted-in to this option via their Google

accounts. To obtain an economic mobility index, we compute an unweighted average of the

mobility indices for transit stations (subway, bus, and train), retail & recreation (restau-

rants, shopping centers, movies, among others) and workplaces, as these are most closely

related to economic activity. We smooth the index with a 7-day trailing moving average to

further account for weekend patterns.

The policy index measures the stringency of non-pharmaceutical interventions. We use

indices from the Oxford Covid-19 Government Response Tracker of containment and closure

policies. Specifically, we compute an unweighted average of the indices for school closing,

workplace closing, canceling of public events, restrictions on private gatherings, closing of

public transport, stay at home requirements, and restrictions on internal movement. The

indices have an ordinal scale between 0 (no measure) and 2, 3 or 4 (stricter measures). We

standardize the ordinal indices before averaging. We exclude the index for international

travel controls because it includes screening on airports, which introduces endogeneity as

more testing mechanically raises the number of cases. We show that the results are robust
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to including this index into the aggregate index and to including the number of total tests

into the model to account for varying testing capacities.

We use aggregated mobility and policy indices as we are interested in the big picture at a

national level without distinguishing between alternative types of mobility or containment

policy. Such an analysis would also raise difficult estimation and identification challenges,

which are beyond the scope of the paper. Finally, we include the MSCI small cap index

to measure expectations about local health and economic conditions. The stock prices are

mainly included to help identification, which we describe next.

2.2 Identification of the structural PVAR model

For N countries, the model in equation (1) can be written in compact form as

Yt = AXt + Ut (2)

where Yt is a K×N -dimensional matrix of endogenous variables, with Yt = (y1t, . . . ,yNt),

A aK×(Kp+N+M)-dimensional matrix of parameters, A = (A1, . . . ,Ap,C1, . . . ,CN ,D),

and Xt a (Kp+N +M)×N -dimensional matrix of lagged endogenous and exogenous vari-

ables,

Xt =



y1t−1 · · · yNt−1

...
. . .

...

y1t−p · · · yNt−p

ι · · · ι

xt · · · xt


,

where ι is a N × 1-dimensional vector of ones. The reduced form error terms, Ut =

(u1t, . . . ,uNt), follow a multivariate normal distribution with zero mean and K × K-

dimensional covariance matrix E(uitu
′
it) = Σ and E(uitu

′
jt) = 0.

We can write the structural form of the model described in equation (2) as

B0Yt = BXt + E t (3)

where B0 is a K × K-dimensional matrix of structural contemporaneous relations, B a

K× (Kp+N +M)-dimensional matrix of structural parameters, and E t = (ε1t, ..., εNt) are
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structural shocks with εit ∼ N (0K×1, IK×K). It holds that Ut = B−1
0 E t, Σ = (B0B

′
0)−1,

and A = B−1
0 B.

To solve the identification problem that the structural parameters cannot be recovered

from the reduced form without further assumptions, we impose zero and static sign restric-

tions on the impact matrix, B−1
0 , and dynamic sign restrictions on the structural impulse

responses. The focus of the paper are three types of structural shocks that we aim to

disentangle: incidence, economic mobility, and containment policy shocks. Not only are

these at the center of the academic and public debate, these are also likely the main drivers

of the pandemic and economic mobility worldwide.

First, incidence shocks capture changes in the transmissibility of the virus unrelated to

mobility and containment policy. We think of them as reflecting time-variation in voluntary

human behavior and in the biological characteristics of the virus. The former could be

super spreader events, non-mandatory mask wearing, hygiene (hand washing and surface

disinfection), personal distance keeping, or ventilation. The latter could be a mutation of

the virus and changes in its infectivity.

Second, economic mobility shocks record voluntary shifts in human behavior unrelated

to mitigation policy or the pandemic. Generally, they reflect changes in net aggregate de-

mand. Specifically, they can mirror both fiscal and monetary stimulus as well as variations

in transportation costs, income, employment, the perceived risk of contracting the disease,

and working from home.

Third, containment policy shocks reflect exogenous variation in non-pharmaceutical

interventions. Technically, these are deviations from the average mitigation policy rule.

Economically, they can be interpreted as erratic beliefs of policy makers about the pandemic

or the economy, variation in the goals of policy makers, or changes in the institutional

procedures for dealing with the pandemic; for example, varying degrees of coordination

between local and federal authorities or between policy makers and administrative bodies.

To disentangle the three shocks, we use a minimal set of uncontroversial dynamic sign

restrictions to give full voice to the data. We also use some zero restrictions, but only to pin-

down the remaining two shocks that are not the focus of the paper. Nevertheless, identifying

the latter sharpens inference on the three shocks of interest (Canova and Paustian, 2011)

and labeling them helps to interpret the results. Table 1 shows the restrictions. A zero
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denotes an exclusion restriction; sign restrictions are given by a plus or minus; an asterisk

represents an unrestricted element.

Horizon Horizon 0 Horizon 7
Shock εL εI εM εP εN εL εI εM εP εN

Endogenous variable
Covid-19 deaths + 0 0 0 0 ∗ ∗ ∗ ∗ ∗
Covid-19 cases ∗ + ∗ ∗ 0 ∗ + + – ∗
Economic mobility ∗ ∗ + ∗ 0 ∗ – + – ∗
Containment policy ∗ ∗ ∗ + 0 ∗ + + + ∗
Stock prices ∗ – ∗ ∗ + ∗ – ∗ ∗ ∗

Table 1: Identifying sign and exclusion restrictions. Notes: The table shows the zero and sign
restrictions imposed on the structural impulse responses at horizon 0 (left panel) and horizon 7 (right
panel) used to identify Covid-19 lethality shocks (εL), Covid-19 incidence shocks (εI), economic mobility
shocks (εM ), containment policy shocks (εP ), and news shocks (εN ). The shocks are in columns, the
response of the endogenous variables is in rows. A zero denotes an exclusion restriction, sign restrictions
are given by a plus or minus, and an asterisk represents an unrestricted element.

Regarding the three shocks of main interest, we impose dynamic sign restrictions at

horizon h = 7, that is, one week. They are summarized in the right panel of Table 1. We

discuss the choice of this specific horizon in detail below. In general, the week accounts for

a potentially sluggish response of some of the endogenous variables to some of the shocks.

In the Online Appendix, we show that the results are insensitive to setting h = 14.

First, to identify incidence shocks (εI), we assume that they raise the number of cases,

lower economic mobility and induce tighter policy. The positive response of the contain-

ment index captures the aim of policy makers and health administration authorities to

mitigate the pandemic (if only weakly in some countries). The negative response of mo-

bility reflects both voluntary and mandatory social distancing as cases rise and policy is

tightened. Moreover, we assume that equity prices drop, as investors price the adverse

economic consequences of an escalating pandemic. Second, we assume that positive mo-

bility shocks (εM) raise the number of cases, due to more interpersonal contacts, and the

containment index, as policy makers aim at mitigating the pandemic by reducing mobility

and infections. Third, we impose that restrictive containment policy shocks (εP ) lower mo-

bility and infections since commuting and traveling as well as the number of interpersonal

contacts falls when transportation, schools and work places are closed, public and private

events are restricted, or shelter at home orders are issued.3

3For mobility shocks, we do not specify a restriction on stock prices, which could increase if investors
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Different to the dynamic responses, the impact effects of these shocks are less clear.

Regarding εI-shocks, it is unclear whether policy and/ or mobility should be assumed to

respond immediately. There are countries and times when policy indeed seemed to have

responded to new cases on a daily basis. For example, during the initial phase of the

pandemic in the U.S., there were daily press briefings and policy decisions in the afternoon

that reflected the contemporaneous state of the pandemic and the economy. In other

countries, like Germany, policy coordination between local and federal officials implied that

containment decisions were taken rather on a weekly instead of a daily basis. Similarly,

mobility might contemporaneously react to new cases, but this would probably imply a high

degree of public awareness and quick private decisions. Moreover, if mobility is affected

mainly through policy responses to new cases, this would only show up in the following

days. To reflect this uncertainty around the impact effects of incidence shocks, we impose

only two signs at horizon 0. First, we maintain the normalization to look at positive shocks.

Second, we assume that stock prices respond immediately.4

Regarding mobility shocks, the number of cases could rise contemporaneously if mobility

also means more testing and, in extreme cases, additional immediate infections. However,

due to incubation and reporting lags, it could also take several days before more contacts

show up in new cases. Containment policy is unlikely to respond to mobility directly on

a day-by-day basis and rather responds to the effect of mobility on cases. But a direct

response to mobility cannot safely be ruled out as mobility is known to be a main trans-

mission channel of the virus and, thus, closely watched by policy makers and health officials.

Therefore, at horizon 0 we only normalize the shock to be positive.

For containment policy shocks, we follow the same route. We only impose a plus sign

contemporaneously and leave the responses of cases and mobility unrestricted. On the

one hand, it can be argued that policy affects reported cases only with a delay of several

days because of incubation and testing lags. It takes time to contract the virus, develop

symptoms, go to the doctor, and obtain the test result. On the other hand, some countries

price the pick-up of economic mobility or decrease if they fear the associated policy tightening. Similarly,
we do not assume a stock price response to policy shocks as it is unclear whether investors appreciate the
associated decline in cases or dislike the negative impact of tighter policy on economic mobility.

4By imposing the + upon impact, we essentially identify incidence shocks measured through testing
and reflected in cases, and not incidence shocks in the clinical sense as the actual transmission of the virus
from one person to another. However, the restriction implied by the inequality is actually not particularly
strict in practice as very small (positive) coefficients are allowed.
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back-date cases to the infection day.

Moreover, anticipation could play a role. Typically, containment measures are dis-

cussed publicly before they are implemented. Hence, people could voluntarily change their

behavior in anticipation of future policy changes such that reported cases and mobility

move contemporaneously with the policy index. The literature on fiscal foresight shows

that policy expectations can create non-fundamentalness (Leeper et al., 2013). But this

literature also shows that including forward looking variables into the model solves this

potential problem (Forni and Gambetti, 2010; Beetsma and Giuliodori, 2011). Therefore,

we incorporate local stock prices that capture such expectations. Furthermore, we show

in the Online Appendix that the results hold when using stock prices of large firms or

when adding the two-year government bond yield to incorporate further forward looking

information into the model.

Summarizing, we neither assume nor preclude a recursive structure between cases, mo-

bility, and policy to give as much voice to the data as possible. Moreover, as we impose the

sign restrictions (except for the normalizations) only at h = 7, we are also largely agnostic

about the signs of the impact effects.5 All in all, however, we are not really interested in

qualitative results but in quantifying the size and the persistence of the effects.

To identify the two residual shocks, we use timing restrictions. For the first shock, we set

all elements of row one of B−1
0 except for the first element to zero. This uniquely identifies

the first column. The zeros reflect the delayed response of deaths to the other variables.

In particular, there is a lag between incidence shocks and fatalities due to the incubation

time (about 5 days) and the duration of the disease (between weeks and months) before

death. As mobility and containment shocks affect fatalities through cases, they have at

least the same delayed effect on deaths as incidence shocks. Moreover, deaths are unlikely

to respond to daily changes in stock prices. We label the shock identified in the first column

a lethality shock (εL). It reflects a time-varying case-fatality ratio, given that it captures

changes in deaths net of incidence shocks. We interpret the shock as capturing overwhelmed

health systems, supply shortages of medical equipment, shortages of personnel or, inversely,

medical progress and learning about the treatment of Covid-19 patients.

5The diagonal elements, which we restrict on impact and on h = 7, are not restricted for h = 1, · · · , 6.
Essentially, the responses could also be negative or zero for these horizons, but this is not a pattern we
observe in our results.
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Finally, we identify a generic news shock (εN) by setting the contemporaneous responses

of all variables except stock prices to the shock to zero. These restrictions uniquely identify

the last column of B−1
0 and follow the standard approach in the literature on news-driven

business cycles (Beaudry and Portier, 2014). A priori, we do not specify the nature of the

news although we expect that it will be mostly related to the pandemic, which is the main

theme in financial markets in the sample (Baker et al., 2020). After estimation, we can

inspect the signs of the dynamic responses for h > 0 to attach more interpretation. If the

signs correspond to any of the other sign patterns, this shock likely reflect news about that

other shock. However, the news shock could also be a mixture of anticipated other shocks,

in which case the responses would be insignificant. In any case, in the sensitivity analysis,

we show that the main results do not depend on these zero restrictions.

2.3 Bayesian estimation and inference

To implement these restrictions, let L = (L0, L7)′ denote the matrix collecting the restricted

impulse responses.6 The matrix Sj collects all sign and Zj all exclusion restrictions for the

jth structural shock. The number of rows in Sj and Zj equals the respective number of

restrictions and the number of columns the number of rows in L. The matrices select

an element that is restricted by having one non-zero element in each row (either one for

imposing positive signs or zeros, or minus one for imposing negative signs). The restrictions

are satisfied for j = 1, . . . , K if the following holds:

SjLej > 0 and ZjLej = 0 (4)

where ej denotes a column vector of zeros and one in row j.

To simplify sampling, we follow Arias et al. (2018) and work on the orthogonal reduced

form representation of the model. The lack of identification without sign restrictions implies

that two sets of structural parameters, (B0,B) and (B∗0,B
∗), can have the same reduced

form representation. The two sets of parameters are only observationally equivalent, thus

implying the same reduced form parameters, if and only if B0 = B∗0Q and B = B∗Q where

6The impulse response functions are calculated as Lh = (JA+
h J
′)B−10 , for h = 0, . . . ,H. A+ denotes

the companion matrix of the reduced from model and J = (IK×K ,0K×K(p−1)). For a detailed description
of the calculation see Kilian and Lütkepohl (2017).
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Q is an orthogonal matrix with QQ′ = I. This implies that we can write the model as

Yt = AXt + chol(Σ)QE t. (5)

Then, we obtain the parameters of the structural form as a combination of the reduced

form parameters and the orthogonal matrix Q as B0 = chol(Σ)−1Q−1 and B = B0A.

We use a standard inverse Wishart prior for Σ and a normal prior for A. The prior

distribution over Q|A,Σ is uniform. These prior distributions imply that draws from the

orthogonal reduced form representation come from an agnostic prior conditional on the

zero restrictions and that the structural parameters follow a normal-generalized-normal

distribution if the importance sampler proposed by Arias et al. (2018) is used.7 We target

1000 accepted draws for inference. The results are virtually the same for 10000 draws.

3 Disentangling pandemic, mobility, and policy shocks

This section contains the core results, which are organized as follows. First, we present the

estimated impulse responses to determine the significance and persistence of the effects.

Then, we quantify the dynamic policy tradeoff between flattening the epidemic and atten-

uating the recession curve. Finally, we compute the average and historical importance of

the shocks using forecast error variance and historical decompositions.

3.1 Dynamic effects and policy tradeoff

Figure 1 summarizes the responses to the three structural shocks of main interest. We show

positive shocks of size one standard deviation. The solid lines are the median estimates.

The dark and light shaded areas denote 68% and 90% credible sets, respectively. The first

column contains the effects of an incidence shock. The number of infected persons increases

significantly by 12% upon impact. It rises to 22% in a hump-shaped manner for about two

weeks. Then, it gradually converges back to trend, which it has not yet reached after two

months. The effect is significant for at least one month, depending on the criterion used.

Mortality increases significantly and persistently. The peak effect is 15% and occurs 2-3

7The steps of the importance sampler and details on the prior and posterior distributions are given in
Appendix B. For a more detailed description, we refer the reader to Arias et al. (2018).
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weeks after that of cases, measuring the average duration of fatal disease processes.

The responses of cases and deaths offer a measure of a ‘Covid-19 wave’. This term

features prominently in the public debate but possesses little conceptual or empirical foun-

dation. Our estimates suggest that the typical size of such a wave is an increase of cases

and deaths by about one fifth above trend. The average duration of a wave is 3 months,

with elevated cases in month 1 and 2 and more deaths in month 2 and 3.
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Figure 1: The dynamic effects of incidence, economic mobility and containment policy shocks.
Notes: The figure shows the median response (solid lines) of the endogenous variables to an incidence shock
(first column), a mobility shock (middle column), and a containment policy shock (right column) over 60
days, along with 68% and 90% credible sets (dark and light shaded areas, respectively). The shocks are
normalized to be positive and have size of one standard deviation.

Economic mobility falls immediately but significantly only after a few days. It troughs

at –4 percentage points (p.p.) after a week and then slowly converges to the level where
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it would have been without the shock. It remains significantly depressed for two months.

Policy becomes substantially more restrictive. The index jumps by 5% and increases further

up to 8%. It remains significantly elevated for nearly the full horizon of 60 days, in lockstep

with cases. The policy response suggests that public authorities respond quickly to new

infections and mirror them closely before deciding to ease. Equity prices drop by 1% and

remain below trend for one month, but the effect is significant only for the first week.

The middle column reports the responses to a mobility shock. Economic mobility

increases upon impact by 1 p.p, rises further up to nearly 2 p.p., but then relatively

quickly converges back to its initial level, which it reaches after one month. The number at

peak implies that 2 p.p. more cellphones are recorded at workplaces, transit stations, and

shops than at trend. Despite the short duration of elevated mobility, cases rise significantly

for more than 30 days, eventually decaying. As before, the number of deaths mirrors the

dynamics of cases with some delay and a bit more muted. Policy makers seem not to

respond to economic mobility directly or, at least, it takes them about a week, but then

they tighten policy significantly and persistently in parallel with the rise in infections.

Finally, equity prices drop, probably due to increasing cases. Taken together, while short-

lasting mobility shocks increase Covid-19 morbidity and mortality persistently, the effects

are small (only about 4%) compared to those of incidence shocks (15-20%). This suggests

a minor role for mobility as an exogenous driver of the pandemic.

The right column presents the responses to a containment policy shock. The policy

index increases by 8%. This corresponds to moving, for example, from no stay at home

order to requiring people not to leave their house with exceptions for daily exercise, grocery

shopping, and essential trips; or alternatively to going from no workplace closing to shutting

down (or work from home) some sectors or categories of workers. The policy index falls

back to zero after 12 days. Exogenous variation in mitigation policy is less persistent than

the endogenous response to cases (compare to first column). Despite the short duration of

tighter policy, the effect on morbidity and mortality is strong and long-lived. Cases fall by

up to 34% after one month and fatalities by 30% another three weeks later. Both variables

remain significantly below trend for the entire horizon of two months. This also rationalizes

the drop of the policy index slightly below trend after two weeks. Economic mobility also

falls drastically with a trough of –15% and for a full month. Stock prices drop initially but
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the losses are soon reversed, probably because investors appreciate the lower cases.

The dynamics of cases, deaths, and mobility following the containment policy shock

allows deriving consistent measures of the implied policy tradeoffs between aggregate health

and economic mobility. We define a dynamic health ratio and a dynamic survival ratio.

The are the percentage decline in cases and deaths, respectively, measured by the impulse

response of cases or deaths at horizon h, relative to the economic mobility loss during the

same time, measured as the average response of economic mobility over horizon 1, ..., h.

We use the average mobility loss to account for the phase shifts between mobility, on the

one hand, and morbidity and mortality, on the other hand.

Figure 2 shows the evolution of the ratios over 90 days. The top panel shows the health

ratio. It suggests that the rapid fall in economic mobility following the containment shock

pays off significantly already within a week. After about one month, the ratio implies that,

on average, for each percentage point of foregone daily mobility over this time horizon,

there are 5% fewer cases. The tradeoff is most favorable after two months, with the ratio

peaking at 7%. Thereafter, it falls back to zero gradually.

The bottom panel shows the dynamic survival ratio. Here, it takes roughly three weeks,

according to the 90% credible set, before lower economic mobility is rewarded with fewer

deaths from Covid-19. After two months, the survival ratio is 7% and it peaks at 9%

at horizon 72. After three months, the non-pharmaceutical interventions imply that for

each percentage point loss of daily mobility during that time, mortality from Covid-19 is

8% lower. For the interpretation of these numbers, it is important to bear in mind that

the loss in economic mobility occurs every day (on average). Thus, the cumulative loss is

substantially higher, 27 p.p. after two months.

As the final step in the impulse response analysis, we look at the two residual shocks.

The left column of Figure 3 shows the effects of a lethality shock. By construction, all

variables are allowed to respond contemporaneously. Mortality increases by nearly 10%

upon impact. It keeps on rising for two weeks and then returns to trend, which it has

reached after two months. The strong persistence suggests that it typically takes a long

time to dissolve medical supply shortages. Economic mobility falls significantly for 30 days,

consistent with a higher risk perception and more voluntary social distancing when people

see dramatic pictures of overwhelmed health systems, as in Bergamo, New York, Madrid,
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Figure 2: Dynamic health and survival ratio. Notes: The figure shows the median estimate of the
health ratio in the upper panel and of the survival ratio in lower panel (solid lines) following a restrictive
containment policy shocks over 90 days, along with 68% and 90% credible sets (dark and light shaded
areas, respectively). The ratios measure the reduction in Covid-19 cases or mortality per foregone economic
mobility. They are defined as the percentage decline in cases and deaths, respectively, measured by the
impulse response of that variable at horizon h, relative to the mobility loss during the same time, measured
as the average response of economic mobility over horizon 1, ..., h.

or Sao Paolo. Policy also responds quickly to the reassessment of the threat by tightening.

In line with the decline in mobility and more restrictive policy, infections slowly decrease

and fall below trend after two weeks and through the end of the horizon. Finally, stock

prices increase significantly for nearly two months, indicating a focus of investors on the

falling infections.

The right column of Figure 3 shows the responses to a news shock. The effects are

precisely estimated due to the four zeros in the last column of the impact matrix, which

indicates that these restrictions also help tightening inference on the other shocks. Stock

prices jump up as they price the news immediately by assumption. They remain above

trend for two months. After a few days, cases and deaths fall significantly, economic

mobility increases, and containment policy becomes less restrictive. The responses suggest

a clear interpretation of the type of news reaching the market. The signs correspond to

an expected negative incidence shock. This shock could reflect an anticipated flattening

18



Responses to lethality shock

 

Covid-19 deaths

0 30 60

0

5

10

%

Covid-19 cases

0 30 60

-6

-4

-2

0

%

Economic mobility

0 30 60

-1

-0.5

0

0.5

p
.p

.

Containment policy

0 30 60

-1

0

1

%

Stock prices

0 30 60

days

0

0.2

0.4

%
Responses to news shock

 

Covid-19 deaths

0 30 60

-10

-5

0

%

Covid-19 cases

0 30 60
-15

-10

-5

0

%

Economic mobility

0 30 60
0

0.5

1

1.5

p
.p

.
Containment policy

0 30 60

-4

-2

0
%

Stock prices

0 30 60

days

0

1

2

%

Figure 3: The dynamic effects of lethality and news shocks. Notes: The figure shows the me-
dian response (solid lines) of the endogenous variables to a lethality shock (left column) and to a news
shock (right column) over 60 days, along with 68% and 90% credible sets (dark and light shaded areas,
respectively). The shocks are normalized to be positive and have size of one standard deviation.

of the epidemic curve due to public insights into the transmission of the virus that help

containing it in the future.

The signs rule out a negative containment policy news shock or a positive (in the

mathematical sense) lethality news shock because those two would increase cases (and lower

stock prices). The signs also preclude an expected positive mobility shock because that

would increase cases and the policy index. The interpretation as an anticipated negative

incidence shock is also supported by the sensitivity analysis. There, we show that when

removing the zero restrictions on the middle three elements in the last column, the incidence

news shock is mixed with the incidence shock, while the other shocks are largely unaffected.
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3.2 Average drivers of the pandemic

We now inspect the relevance of the structural shocks for explaining epidemic-economic

dynamics. To quantify their average importance in the sample, we compute forecast error

variance decompositions. They measure the percentage contribution of each shock to the

variance of the endogenous variables. Table 2 shows the decomposition for horizons h =

1, 14, 30, 60, 200, where the last value is used to approximates the long-run variance. The

endogenous variables are in rows and the shocks are in columns.

Shock εL εI εM εP εN

Horizon 1
Covid-19 deaths 100.00 0.00 0.00 0.00 0.00
Covid-19 cases 0.23 79.81 0.23 19.73 0.00
Economic mobility 0.41 17.36 5.85 76.37 0.00
Containment policy 0.19 46.01 1.44 52.36 0.00
Stock prices 0.23 19.34 0.00 13.25 67.18
Horizon 14
Covid-19 deaths 74.74 14.16 0.08 8.55 2.46
Covid-19 cases 0.14 61.02 0.38 29.09 9.37
Economic mobility 0.49 20.83 3.67 74.44 0.57
Containment policy 0.29 49.89 0.38 41.91 7.53
Stock prices 0.73 11.25 1.45 39.95 46.61
Horizon 30
Covid-19 deaths 36.98 32.46 0.42 18.89 11.25
Covid-19 cases 0.21 39.61 0.99 47.47 11.73
Economic mobility 0.42 26.12 2.54 67.96 2.95
Containment policy 0.37 50.79 0.85 34.53 13.47
Stock prices 1.06 8.91 1.93 54.43 33.67
Horizon 60
Covid-19 deaths 10.86 23.04 1.44 52.37 12.29
Covid-19 cases 0.57 28.83 1.37 57.74 11.49
Economic mobility 0.53 28.18 2.15 63.83 5.32
Containment policy 0.90 45.45 1.08 36.43 16.14
Stock prices 1.62 9.00 1.89 55.03 32.45
Horizon 200
Covid-19 deaths 6.79 20.23 1.64 60.25 11.10
Covid-19 cases 1.06 25.97 1.45 60.58 10.94
Economic mobility 0.73 27.90 2.12 63.69 5.56
Containment policy 1.44 43.08 1.11 38.17 16.20
Stock prices 1.76 9.53 1.90 55.96 30.85

Table 2: Forecast error variance decomposition. Notes: The table shows the median forecast error
variance decomposition of the endogenous variables (in rows) for the different type of shocks (in columns)
for the horizons h = 1, 14, 30, 60, 200: Covid-19 lethality shocks (εL), Covid-19 incidence shocks (εI),
economic mobility shocks (εM ), containment policy shocks (εP ) and news shocks (εN ).
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The impact decomposition shows how important it is to avoid a recursive structure be-

tween cases and policy. These variables show strong contemporaneous links. Containment

policy is equally driven by incidence and own shocks. Moreover, 20% of the variation in

cases driven by policy shocks. Another insight from the contemporaneous contributions is

that infections and mitigation policy can largely be treated as exogenous with respect to

economic mobility shocks, which explain less than 2% of policy and essentially none of the

case variability.

Reversely, variation in economic mobility is primarily determined by policy interventions

(76%) at horizon 1. This figure implies that mandated social distancing has a strong – by

far the largest – effect on mobility. Incidence shocks account for most of the remaining

variability in mobility (17%). In contrast, mobility shocks account only for 6%. These

numbers reflect the small increase in mobility in response to own shocks (only 2 p.p. at

peak) and suggest that people do not change their mobility behavior much without strong

reasons. In other words, the pandemic and the non-pharmaceutical interventions strongly

dominate other drivers of mobility in our sample. These findings indicate a more limited

role for voluntary social distancing than in Gupta et al. (2020) who find for the U.S. that

a substantial share of the decline in mobility during the pandemic was a private response.

By construction, mortality responds only to lethality shocks at horizon 1. Stock prices

are driven predominantly by news about infections and by actual incidence shocks (67%

and 19%, respectively), consistent with the pandemic being an important factor for equity

pricing (Baker et al., 2020), but also by policy shocks (13%).

At medium and longer horizons, the low explanatory power of mobility shocks for

the variances of the other variables remains. Incidence shocks lose their importance for

explaining cases, which are more and more driven by containment policy shocks. The

contribution of policy shocks to case fluctuations increases to 30% at horizon 14 and to

61% in the long-run. Consistently, policy shocks also become more and more relevant for

the variance of deaths. At h = 60, they already explain the largest share of this variance

(52%). The portion increases further to 60% at h = 200. In contrast, lethality shocks

explain only 7% of the variance of mortality at this horizon.

Summarizing, the results show two main drivers of the pandemic: incidence/news shocks

and containment shocks. The former explain about one-third of the long-run variation in
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economic mobility, morbidity and mortality. The latter account for roughly 60%. The

numbers indicate that non-pharmaceutical interventions have large effects on health and

economic outcomes.

3.3 Decomposing the epidemic and recession curve

Now, we analyze which shocks flattened or steepened the pandemic curve and the recession

curve by means of historical decompositions. For this, we compute the median contribution

of each structural shock to the daily historically observed fluctuations of mortality and

mobility for each country. Then, we average these estimates over countries to obtain

an approximation of the global dynamics. We focus on Covid-19 deaths to capture the

pandemic curve and on economic mobility to approximate the recession curve. Figure 4

shows the cumulative effect of the structural shocks on demeaned mortality in each point

in time after mid March 2020. We discard the transients to ensure that the approximation

error due to the truncation of the moving average representation has largely faded out.
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Figure 4: Historical decomposition of global Covid-19 deaths. Notes: The figure shows the change
in approximated global Covid-19 deaths and the cumulative effects on these of lethality, incidence/news,
mobility and containment policy shocks.
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The thickest line shows approximated global deaths in log points. There is a sharp in-

crease by 110 points through the end of April 2020. Thereafter, mortality declines steadily.

There are two factors that explain most of the curve. The first is incidence and news

shocks, whose cumulative effects we add (dashed line). These shocks drive up fatalities by

about 30 log points until mid April and keep them elevated until June. Subsequently, a

series of negative shocks flattens the curve. The second main factor are containment policy

shocks (medium thick line). A lack of policy action in face of increasing infections, that

is, a sequence of negative policy shocks, raises mortality by more than 60 points initially.

Thereafter, continuously restrictive containment policy shocks flatten the curve by nearly

50 log points. Toward the end of the sample, reopening policies raise mortality again. Ex-

ogenous reductions in economic mobility (dotted line) lowered mortality at the beginning of

the sample, but positive mobility shocks drove up mortality from May onward as the global

economy recovered. Finally, lethality shocks (thin line) play a minor role throughout.

Figure 5 shows the fitted value of global economic mobility (thick line) and its decom-

position into the cumulative effects of the structural shocks. Mobility falls by 50 log points

from mid-March to mid-April (thick line). Thereafter, it slowly recovers by June, before

falling again as second and third waves cast their shadows on evermore countries. There are

three main drivers of the recession curve. The most important driver is containment policy

shocks (medium thick line). A sequence of negative containment policy shocks during the

early stages of the pandemic held up mobility, although cases were already steeply rising.

On March 11, 2020, there is a sharp turning point, after which decisive non-pharmaceutical

interventions in many countries succeeded in lowering mobility: By April it had decreased

by more than 50 log points on average and remained low throughout May. From June

onward, a relaxation of mandatory social distancing led to a recovery.

Incidence/news shocks (dashed line) and mobility shocks (dotted line) are the other

two main drivers of global mobility. They are roughly equally important. Incidence/news

shocks lower it by about 15 points at the beginning of the pandemic and raise it by 7 log

points from June onward. Negative mobility shocks first deepen the recession by 25 points

and then raise economic mobility by roughly the same amount. Due to the hump-shaped

response of mobility to own shocks (Figure 1), there is a considerable lead of the shocks with

respect to the index. We interpret the sequence of negative mobility shocks at the start
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Figure 5: Historical decomposition of global economic mobility. Notes: The figure shows the
change in approximated global mobility and the cumulative effects on it of lethality, incidence/news,
mobility and containment policy shocks.

of the pandemic as reflecting voluntary distancing because during this episode aggregate

net demand largely held up and energy prices–and hence transportation costs–actually fell.

Finally, lethality shocks are irrelevant for understanding the recession curve (thin line).

Summarizing, the historical decompositions paint a similar picture as the variance de-

compositions. The most important determinant of fluctuations in economic mobility and

mortality are containment policy shocks. The lack of interventions first sustained economic

mobility but raised the epidemic curve. Then, a sharp policy tightening flattened the pan-

demic curve but induced a steep mobility recession. Incidence/news shocks are the other

main driver, while mobility shocks play a minor role except for a few instances.

4 Sensitivity analysis

In this section, we show that the main findings are robust to changes in the model specifica-

tion and identification. We discuss the robustness by means of the responses to incidence,

mobility, and containment policy shocks. Here, we focus on three sensitivity tests that we
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deem most important. In the first two, we change the reduced form model. In the third, we

alter the identification. The Online Appendix contains further variations of the model and

the identification strategy. There, we show that the results are robust to including a linear

trend, the construction of the mobility and stringency index, the lag length, the exclusion

of weekday dummies, using an alternative stock price index, including additional variables,

such as 2-year government bond yields or the number of Covid-19 tests, using February 15,

2020, an as alternative starting date, and different horizons for the sign restrictions as well

as without exclusions restrictions to identify the news shock.

Here, we first estimate the PVAR on subsets of countries to see whether the assumption

of homogeneous slope parameters affects the results. We randomly drawn a subset of 22

countries. Figure 6 shows the impulse responses for the baseline and the alternative sample.

The solid lines and shaded areas depict the estimates of the benchmark specification. The

dashed lines give the estimates based on the random subsample. The latter are close to

the former. Some of the credible sets are wider compared to the baseline; for example, the

sets for the number of cases, the containment policy, and the stock prices to an incidence

shock or a mobility shock. This finding reflects that the number of countries and, hence,

observations is reduced by half, which increases the estimation uncertainty. We also split

the countries into two subgroups based on their alphabetical order or by including every

second country. The results are so similar that we do not report them.

Second, we include a quadratic trend to allow for the possibility that even the high

number of lags does not fully account for the secular movements in data, in particular in

cases and deaths. We stress, however, that all countries in the sample are far away from

their saturation point or herd immunity, which would induce decaying incidence rates even

without voluntary distancing or policy interventions. The quadratic trend may also capture

slowly changing testing capacities. Figure 7 shows the results, again contrasting them with

the baseline. In general, all variables react similarly in both specifications. Some responses,

for example, to a mobility or containment policy shock, level off slightly faster as the trend

removes some of the persistence in the data. This is most visible for cases, where the effects

become insignificant after 30 days, compared to a still significant response after 60 days

in the benchmark specification. The Online Appendix shows that the results are similar

when including a linear trend.
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Responses to incidence shock
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Figure 6: Effects of incidence, economic mobility, and containment policy shocks for a random
subset of countries. Notes: The figure shows the median response (solid lines for the full sample and
bold dashed lines for a random sample of 22 countries) of the endogenous variables to an incidence shock
(first column), a mobility shock (middle column), and a containment policy shock (right column) over 60
days, along with 68% and 90% credible sets (dark and light shaded areas/dashed lines, respectively). The
shocks are normalized to be positive and to have a size of one standard deviation.

Third, we change the horizon on which we impose the sign restrictions, shifting them

from horizon 7 to 0, while retaining the exclusion restrictions (Table 1). Figure 8 shows

the results. The responses to a mobility shock and containment policy shock are virtually

identical to those of the main model. However, under the alternative identification, the

responses to an incidence shock mimic the effects of the policy shock. In other words,

these shocks cannot be properly disentangled, reflecting a general property of identifica-

tion through sign restrictions that often yields uninformative results when the identifying

assumptions are too weak (Kilian and Lütkepohl, 2017; Antoĺın-Dı́az and Rubio-Ramı́rez,

2018). At the other end, when we set the sign restrictions on horizon 10 or 14 instead of

7, thereby restricting the responses more, the credible sets are much tighter (see Online
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Figure 7: Effects of incidence, economic mobility and containment policy shocks with
quadratic trend. Notes: The figure shows the median response (solid lines for the benchmark model and
bold dashed lines for the model with quadratic trend) of the endogenous variables to an incidence shock
(first column), a mobility shock (middle column), and a containment policy shock (right column) over 60
days, along with 68% and 90% credible sets (dark and light shaded areas/dashed lines, respectively). The
shocks are normalized to be positive and have size of one standard deviation.

Appendix). Finally, restricting the responses more than in the baseline by setting all sign

restrictions on both horizons 0 and 7 does not alter the results (see Online Appendix).

5 Conclusions

We use a Bayesian panel model in form of a structural vector autoregression and daily

data for 44 countries to study the impact of Covid-19, economic mobility, and containment

policy shocks. We quantify the persistence of the structural shocks, their importance,

and the policy tradeoff between aggregate health and economic activity consistently in

one model. The countries in the data set cover 81% of global cases and fatalities due to

Covid-19 and 72% of world GDP. Moreover, the high number of observations allows for
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Figure 8: Effects of incidence, economic mobility, and containment policy shocks with impact
restrictions only. Notes: The figure shows the median response (solid lines for the benchmark model
and bold dashed lines for the model with sign restriction at horizon 0) of the endogenous variables to an
incidence shock (first column), a mobility shock (middle column), and a containment policy shock (right
column) over 60 days, along with 68% and 90% credible sets (dark and light shaded areas/dashed lines,
respectively). The shocks are normalized to be positive and have size of one standard deviation.

overcoming the short sample problem and including many lags into the model to estimate

the dynamics reliably at macroeconomically relevant horizons. We identify three structural

shocks—incidence, mobility, and containment policy shocks—through a minimal set of

uncontroversial dynamic sign restrictions.

The empirical framework provides a measure of a ‘Covid-19 wave,’ a prominent but

elusive concept in the public debate. We document that an average incidence shock in-

creases the number of infections significantly for two months and raises mortality by 15%.

In contrast, a typical economic mobility shock, while also increasing infections, raises mor-

tality only by 4%. Restrictive containment policy shocks have the strongest impact on

mortality, lowering it by 20% on average across countries. Consistently, we document that
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non-pharmaceutical interventions are the most important driver of economic mobility, mor-

bidity, and mortality. They explain about 60% of the long-run variance of these variables

on average. Incidence/news shocks explain most of the remainder, while mobility shocks

are unimportant. Furthermore, the results suggest that containment shocks are the dom-

inant factor that flattened the pandemic curve in 2020 but that they are also the main

source of the simultaneous drop in economic mobility. We quantify the implied tradeoff to

guide future policy decisions. The estimates imply that reducing economic mobility by 1

p.p. on average over two full months through tighter policy lowers mortality by 9% at the

end of this period.

All in all, the results indicate that containment policy has a strong lever on both

the pandemic and economic mobility. This, furthermore, suggests that different policy

approaches to dealing with the global health crisis across countries can at least partially

explain the diverse country experiences (Atkeson et al., 2020), that good policy is decisive

for good health outcomes (Fernández-Villaverde and Jones, 2020), and that a large part of

observed changes in economic mobility can be attributed to mandatory social distancing

(Gupta et al., 2020).
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A Data

This appendix describes the data. All data refer to the calendar daily frequency and are down-

loaded through Macrobond. The countries in the analysis are Argentina, Australia, Austria,

Belgium, Brazil, Canada, Chile, Colombia, Czech Republic, Denmark, Estonia, Finland, France,

Germany, Greece, Hong Kong, Hungary, India, Indonesia, Ireland, Israel, Italy, Japan, Lithuania,

Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Russia, Saudi Ara-

bia, Slovenia, South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Turkey, United Arab

Emirates, United Kingdom and United States.

Variable Definition, transformation and original source

Covid-19 cumulative

deaths

Coronavirus Disease (COVID-19) Pandemic, Total Deaths, Aggregate, Stock, World Health

Organization, logarithm

Covid-19 cumulative

cases

Coronavirus Disease (COVID-19) Pandemic, Confirmed Cases, Aggregate, Stock, Confirmed

cases include both laboratory confirmed and clinically diagnosed cases, World Health Orga-

nization, logarithm

Economic mobility in-

dex

Unweighted average of economic activity related mobility indices. These show how visits

and length of stay at different places change compared to a baseline. These changes are

calculated using the same kind of aggregated and anonymized data used to show popular

times for places in Google Maps. Changes for each day are compared to a baseline value for

that day of the week. The baseline is the median value, for the corresponding day of the

week, during the 5-week period Jan 3–Feb 6, 2020. The data start on February 15, 2020. We

set earlier observations to zero in line with the baseline for computing the changes afterwards,

source Google

Mobility, Workplaces, Length of Stay, The Whole Country, Compared to Baseline. Mobility

trends for places of work. 7-day trailing moving average

Mobility, Transit Stations, Length of Stay, The Whole Country, Compared to Baseline.

Mobility trends for places like public transport hubs such as subway, bus, and train stations.

7-day trailing moving average

Mobility, Retail & Recreation, Length of Stay, The Whole Country, Compared to Baseline.

Mobility trends for places like restaurants, cafes, shopping centers, theme parks, museums,

libraries, and movie theaters. 7-day trailing moving average

Containment policy in-

dex

Unweighted average of containment and closure policy indices of the Oxford COVID-19

Government Response Tracker, which systematically collects information on several different

common policy responses that governments have taken to respond to the pandemic, source

University of Oxford, logarithm.

Record closings of schools and universities, Ordinal scale, 0 - No Measures 1 - Recommend

Not Leaving House 2 - Require Not Leaving House with Exceptions for Daily Exercise,

Grocery Shopping & Essential Trips 3 - Require Not Leaving House with Minimal Exceptions

(E.G. Allowed to Leave Only Once Every Few Days, or Only One Person Can Leave at a

Time) No Data - Blank, standardized

Record closings of workplaces, Ordinal scale, 0 - no measures 1 - recommend closing (or

recommend work from home) 2 - require closing (or work from home) for some sectors or

categories of workers 3 - require closing (or work from home) for all-but-essential workplaces

(eg grocery stores, doctors) Blank - no data, standardized

Record cancelling public events, Ordinal scale, 0 - no measures 1 - recommend cancelling 2 -

require cancelling Blank - no data, standardized

Record limits on private gatherings, Ordinal scale, 0 - no restrictions 1 - restrictions on very

large gatherings (the limit is above 1000 people) 2 - restrictions on gatherings between 101-

1000 people 3 - restrictions on gatherings between 11-100 people 4 - restrictions on gatherings

of 10 people or less Blank - no data, standardized
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Record closing of public transport, Ordinal scale, 0 - no measures 1 - recommend closing

(or significantly reduce volume/route/means of transport available) 2 - require closing (or

prohibit most citizens from using it) Blank - no data, standardized

Record orders to shelter-in-place and otherwise confine to the home, Ordinal scale, 0 - no

measures 1 - recommend not leaving house 2 - require not leaving house with exceptions

for daily exercise, grocery shopping, and ’essential’ trips 3 - require not leaving house with

minimal exceptions (eg allowed to leave once a week, or only one person can leave at a time,

etc) Blank - no data, standardized

Record restrictions on internal movement between cities/regions, Ordinal scale, 0 - no mea-

sures 1 - recommend not to travel between regions/cities 2 - internal movement restrictions

in place Blank - no data, standardized

Stock prices Equity Indices, MSCI, Small Cap, Index, Total Return, Local Currency, source MSCI, loga-

rithm

B Algorithm

Stacking the model in equation (2) over T time periods gives

Y = AX + U (6)

with Y = (Y1, . . . ,YT ), X = (X1, . . . ,XT ) and U = (U1, . . . ,UT ). The posterior distribution of

Σ is given by

Σ|Y ∼ IW(S̄, s̄) (7)

S̄ = S0 + (Y −AX) (Y −AX)′

s̄ = NT + s0

where the prior distributions is Σ ∼ IW(S0, s0). The posterior of A is normal:

vec(A)|Σ,Y ∼ N (µ̄, V̄ ) (8)

µ̄ = V̄ −1
[
(X⊗ Σ−1)vec(Y)

]
V̄ =

[
V −1

0 + (XX′ ⊗ Σ−1)
]−1

with prior distribution vec(A) ∼ N (0K(Kp+N+M), V0). We chose the following prior parameters:

S0 = I, s0 = K, and V0 = 10I.

To obtain draws from the structural PVAR model, we use the importance sampler of Arias

et al. (2018). The algorithm has the following steps:

Step 1 Draw Σ and A from the posterior distributions given in equations (7) and (8).

Step 2 Draw an orthogonal matrix Q that satisfies the exclusion restrictions with the following

steps for each j = 1, . . . ,K:

Step 2.1 Draw xj from a standard normal distribution and set x̃j = xj/‖xj‖

Step 2.2 Set qj = Kj x̃j where Kj is a matrix whose columns form an orthonormal basis

of the null space of the matrix Mj = (q1, . . . , qj−1, ZjL)′. Set Q = (q1, . . . , qK).

Step 3 Calculate the structural parameters (B0,B) by B0 = (chol(Σ)Q)−1 and B = B0A.

Re-calculate L with L0Q.

32



Step 4 If (B0,B) satisfy the sign restrictions SjLej > 0 for j = 1, . . . ,K, compute an importance

weight, w, proportional to |det(B0)|−(2K+Kp+M+1)(vol(B0,B))−1 where vol denotes the

volume element conditional on the exclusion restrictions as specified in Arias et al. (2018).

Otherwise, the weight is set to zero.

Step 5 Repeat Step 1 to 4 until the required number of draws is obtained.

Step 6 Re-sample with replacement the required number of draws using normalized importance

weights by executing the following steps:

Step 6.1 Calculate normalized importance sampler weights, w̄, by

w̃iter = min(witer, wmax)

w̄iter =
w̃iter∑Na

iter=1 w̃iter

where iter = 1, . . . , Na and Na denotes the number of accepted draws. The value wmax

is the maximal weight value divided by a scalar ε. The value of ε is chosen such that

the effective sample size,
(∑Na

iter=1witer

)2
/
∑Na

iter=1w
2
iter, as a share of all accepted

draws, Na, is around 0.7.

Step 6.2 Based on w̄, re-sample with replacement and calculate the impulse response

functions for each draw based on B,Q and Σ.

The value of 0.7 for the effective sample size as a share of all accepted draws is based on the

values provided by Arias et al. (2018) for their systems. To arrive at this share, we determine

a maximal possible weight, wmax, to ensure the stability of the sampler. Different values for

the capping of the maximal weights as well as using no capping but a log transformation of the

weights do not change our results. We provide further details regarding the posterior distributions

of the contemporaneous relations in the baseline model and discuss which draws are affected by

the capping in the Online Appendix.

Note that sampling Q introduces a second source of randomness purely due to the random

number generator as opposed to sampling uncertainty driven by the finite number of observations.

The prior on Q is not agnostic in all dimensions as shown by Baumeister and Hamilton (2015,

2018, 2020).
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Abstract

This online appendix contains further results and sensitivity tests of the baseline

model.

A Posterior Distributions

This section presents further details regarding the posterior distributions of the contempo-

raneous relations in the baseline model. Figure 1 shows histograms of the accepted draws

(satisfying the sign and exclusion restrictions, before re-sampling) from the posterior dis-

tribution for each element in the matrix of contemporaneous relations, B−1
0 . The black

vertical lines present the draws which correspond to the largest ten importance sampler

weights. In general, the posterior distributions of all elements show the expected shape

given our identifying restrictions.

In most cases, the largest importance sampler weights are drawn for parameter values

where the majority of draws is allocated, that is, close to the mode of the respective

histogram. The only visible exception are the elements B−1
0.3,4 (policy shock on mobility)

and B−1
0.4,3 (mobility shock on policy). Here, the draws with the largest importance sampler

∗Department of Econometrics, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA
Rotterdam, The Netherlands, camehl@ese.eur.nl
†DIW Berlin (German Institute for Economic Research), Mohrenstraße 58, 10117, Berlin, Germany,

mrieth@diw.de
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weights lean towards zero. On the other hand, in line with the sign restrictions set on

h = 7, the majority of draws favor negative (for B−1
0.3,4) or positive (for B−1

0.4,3) values. We

argue in the main text why the sign restrictions are set on h = 7. Thus, the capping in

the sampler slightly reduces the otherwise relatively high probability that the draws with

the largest importance sampler weights are re-sampled. This reduces the probability for a

zero impact effect for the elements B−1
0.3,4 and B−1

0.4,3. We do not exclude the possibility of

a zero. Setting a strong sign restriction on the element B−1
0.3,4, e.g. B−1

0.3,4 < −5, increases

the efficiency of the sampler (no capping necessary) and does not change our main results.

In contrast, it sharpens the impulse response of economic mobility to a containment policy

shock.

Figure A1: Posterior draws of B−1
0 . The gray bars show the accepted draws (satisfying

the sign and exclusion restrictions) from the posterior distribution for each element in the
matrix of contemporaneous relations, B−1

0 , for the base line models. The black vertical
lines present the draws which obtain the largest ten importance sampler weights.
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B Further sensitivity tests

This Appendix presents further robustness analysis for the baseline model. All graphs below

show the impulse responses to positive incidence shocks, economic mobility shocks and

containment policy shocks of one standard deviation based on the benchmark specification.

Solid lines are the median estimate and shaded areas are the credible sets. In addition,

each figure shows the estimates from an alternative specification using dashed lines. We

change both either the reduced form model or the identification strategy. All in all, the

figures show that the main results hold.

First, we construct three alternative mobility indices: a first one which, in addition to

the base indices also includes the mobility index for grocery and pharmacy, a second one

only consisting of the indices for transit stations and workplaces, and a third one which is

just the mobility index for workplaces. Figure A2 shows the impulse responses when using

the second alternative mobility index (transit stations and workplaces) in comparison to

the ones of the main model. The other indices generate the same patterns (not shown

here). The results are thus robust with respect to the construction of the mobility index.

Second, Figure A3 shows the responses for a model in which we use the stringency index

of the Oxford Covdid-19 Government Response Tracker as the containment policy index.

Third, Figure A4 shows the impulse response for a model including a linear trend.

Fourth, Figure A5 presents the responses for a model including 7 lags. Fifth, Figure A6

shows results for a model with 21 lags. Sixth, Figure A7 summarizes the estimates for a

model without week-day-dummies. Seventh, Figure A8 gives the results using data starting

on 15 February 2020. Eighth, Figure A9 gives the impulse response functions for a model

including as an alternative measure for stock prices MSCI large cap indices. Ninth, Figure

A10 shows the results for the baseline model additionally including 2-year government

bond yields. This model includes 40 countries as for the rest (AE, AR, EE, and LU) the

2-year rate is not available. We order the interest rate variable last in the model and set

contemporaneous exclusion restrictions as the ones imposed for the fifth structural shock

and no restriction on the response of stock prices. Note that when we include the interest

rate, the fifth structural shock cannot be interpreted as a news shock. Tenth, the responses

for a model additionally including a variable on total tests performed are given in Figure

A11. We include total tests as second variable and set the contemporaneous reactions of
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it to all other shocks starting with the incidence shock equal to zero.

Eleventh, the estimates for a model setting restrictions on horizon 0 and 14 are given

in Figure A12. Twelfth, Figure A13 depicts the reactions for a model without exclusion

restrictions to identify the news shock. Since the news shock is technically an expected

negative incidence shock, relaxing the restrictions on it mainly impacts the responses to the

incidence shock. Finally, we do not present the responses of the following specifications but

mention that they are similar to the baseline specification: including a subset of countries

which is obtained by splitting the countries in half based on either alphabetical order or

taking every second country.
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Figure A2: The dynamic effects of incidence, economic mobility and containment policy
shocks with alternative mobility index. Notes: The figure shows the median response
(solid lines for the benchmark model and bold dashed lines for the model of the sensitivity
analysis) of the endogenous variables to an incidence shock (first column), a mobility shock
(middle column) and a containment policy shock (right column) over 60 days, along with
68% and 90% credible sets (dark and light shaded areas/dashed lines, respectively). The
shocks are normalized to be positive and have size of one standard deviation.
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Figure A3: The dynamic effects of incidence, economic mobility and containment policy
shocks with an alternative containment policy index. Notes: The figure shows the median
response (solid lines for the benchmark model and bold dashed lines for the model of the
sensitivity analysis) of the endogenous variables to an incidence shock (first column), a
mobility shock (middle column) and a containment policy shock (right column) over 60
days, along with 68% and 90% credible sets (dark and light shaded areas/dashed lines,
respectively). The shocks are normalized to be positive and have size of one standard
deviation.
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Figure A4: The dynamic effects of incidence, economic mobility and containment policy
shocks including a linear trend. Notes: The figure shows the median response (solid lines
for the benchmark model and bold dashed lines for the model with linear trend) of the
endogenous variables to an incidence shock (first column), a mobility shock (middle column)
and a containment policy shock (right column) over 60 days, along with 68% and 90%
credible sets (dark and light shaded areas/dashed lines, respectively). The shocks are
normalized to be positive and have size of one standard deviation.
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Figure A5: The dynamic effects of incidence, economic mobility and containment policy
shocks with 7 lags. Notes: The figure shows the median response (solid lines for the
benchmark model and bold dashed lines for a model with 7 lags) of the endogenous variables
to an incidence shock (first column), a mobility shock (middle column) and a containment
policy shock (right column) over 60 days, along with 68% and 90% credible sets (dark and
light shaded areas/dashed lines, respectively). The shocks are normalized to be positive
and have size of one standard deviation.
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Figure A6: The dynamic effects of incidence, economic mobility and containment policy
shocks with 21 lags. Notes: The figure shows the median response (solid lines for the
benchmark model and bold dashed lines for a model with 21 lags) of the endogenous
variables to an incidence shock (first column), a mobility shock (middle column) and a
containment policy shock (right column) over 60 days, along with 68% and 90% credible
sets (dark and light shaded areas/dashed lines, respectively). The shocks are normalized
to be positive and have size of one standard deviation.
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Figure A7: The dynamic effects of incidence, economic mobility and containment policy
shocks excluding weekday dummies. Notes: The figure shows the median response (solid
lines for the benchmark model and bold dashed lines for the model of the sensitivity anal-
ysis) of the endogenous variables to an incidence shock (first column), a mobility shock
(middle column) and a containment policy shock (right column) over 60 days, along with
68% and 90% credible sets (dark and light shaded areas/dashed lines, respectively). The
shocks are normalized to be positive and have size of one standard deviation.
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Figure A8: The dynamic effects of incidence, economic mobility and containment policy
shocks starting on 15 Feb 2020. Notes: The figure shows the median response (solid lines
for the benchmark model and bold dashed lines for the model with shorter sample) of
the endogenous variables to an incidence shock (first column), a mobility shock (middle
column) and a containment policy shock (right column) over 60 days, along with 68% and
90% credible sets (dark and light shaded areas/dashed lines, respectively). The shocks are
normalized to be positive and have size of one standard deviation.
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Figure A9: The dynamic effects of incidence, economic mobility and containment policy
shocks including alternative stock prices (large cap). Notes: The figure shows the median
response (solid lines for the benchmark model and bold dashed lines for the model of the
sensitivity analysis) of the endogenous variables to an incidence shock (first column), a
mobility shock (middle column) and a containment policy shock (right column) over 60
days, along with 68% and 90% credible sets (dark and light shaded areas/dashed lines,
respectively). The shocks are normalized to be positive and have size of one standard
deviation.
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Figure A10: The dynamic effects of incidence, economic mobility and containment policy
shocks including additionally an interest rate. Notes: The figure shows the median response
(solid lines for the model of the sensitivity analysis) of the endogenous variables to an
incidence shock (first column), a mobility shock (middle column) and a containment policy
shock (right column) over 60 days, along with 68% and 90% credible sets (dark and light
shaded areas, respectively). The shocks are normalized to be positive and have size of one
standard deviation.
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Figure A11: The dynamic effects of incidence, economic mobility and containment policy
shocks including additionally total tests. Notes: The figure shows the median response
(solid lines for the model of the sensitivity analysis) of the endogenous variables to an
incidence shock (first column), a mobility shock (middle column) and a containment policy
shock (right column) over 60 days, along with 68% and 90% credible sets (dark and light
shaded areas, respectively). The shocks are normalized to be positive and have size of one
standard deviation.
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Figure A12: The dynamic effects of incidence, economic mobility and containment policy
shocks with restrictions on horizon 0 and 14. Notes: The figure shows the median response
(solid lines for the benchmark model and bold dashed lines for the model with alternative
identification horizon) of the endogenous variables to an incidence shock (first column), a
mobility shock (middle column) and a containment policy shock (right column) over 60
days, along with 68% and 90% credible sets (dark and light shaded areas/dashed lines,
respectively). The shocks are normalized to be positive and have size of one standard
deviation.
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Figure A13: The dynamic effects of incidence, economic mobility and containment policy
shocks without imposing exclusion restrictions on the news shock. Notes: The figure shows
the median response (solid lines for the benchmark model and bold dashed lines for the
model of the sensitivity analysis) of the endogenous variables to an incidence shock (first
column), a mobility shock (middle column) and a containment policy shock (right column)
over 60 days, along with 68% and 90% credible sets (dark and light shaded areas/dashed
lines, respectively). The shocks are normalized to be positive and have size of one standard
deviation.
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