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Forest degradation, generally defined as a reduction in the delivery of forest ecosystem

services, can have long-term impacts on biodiversity, climate, and local livelihoods.

The quantification of forest degradation, its dynamics and proximate causes can

help prompt early action to mitigate carbon emissions and inform relevant land use

policies. The Democratic Republic of the Congo is largely forested with a relatively low

deforestation rate, but anthropogenic degradation has been increasing in recent years.

We assess the impact of eight independent variables related to land cover, land use,

infrastructure, armed conflicts, and accessibility on forest degradation, measured by

the Forest Condition (FC) index, a measure of forest degradation based on biomass

history and fragmentation that ranges from 0 (completely deforested) to 100 (intact). We

employ spatial panel models with fixed effects using regular 25 × 25 km units over five

3-year intervals from 2002 to 2016. The regression results suggest that the presence of

swamp ecosystems, low access (defined by high travel time), and forest concessions

are associated with lower forest degradation, while built up area, fire frequency, armed

conflicts result in greater forest degradation. The impact of neighboring units on FC

shows that all variables within the 50 km spatial neighborhood have a greater effect on FC

than the on-site spatial determinants, indicating the greater influence of drivers beyond

the 25 km2 unit. In the case of protected areas, we unexpectedly find that protection in

neighboring locations leads to higher forest degradation, suggesting a potential leakage

effect, while protected areas in the local vicinity have a positive influence on FC. The

Mann-Kendall trend statistic of occurrences of fires and conflicts over the time period

and until 2020 show that significant increases in conflicts and fires are spatially divergent.

Overall, our results highlight how assessing the proximate causes of forest degradation
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with spatiotemporal analysis can support targeted interventions and policies to reduce

forest degradation but spillover effects of proximal drivers in neighboring areas need to

be considered.

Keywords: forest degradation drivers, panel model, conservation, spatial statistics, forest condition, forest

disturbance, conservation planning

INTRODUCTION

The degradation of natural forests is a serious problem
with resonating impacts around the world, from significantly
contributing to greenhouse gas emissions (Simula and Mansur,
2011), biodiversity loss (Foley et al., 2007), reductions in water
regulation (Lele, 2009), and ultimately reducing the ability
of forests to provide ecosystem services linked to food and
goods which sustain local livelihoods (Lambin and Meyfroidt,
2011). Successful implementation of actions to reduce forest
degradation, such as climate-relevant policies for emissions
reduction and nature-based solutions requires prompt, well-
informed, and appropriate actions (Griscom et al., 2017). The
policy decisions based on available information, resources,
socioeconomic conditions, and economic risk play important
roles in how humans manage forests (Angelsen and Kaimowitz,
1999). A thorough understanding and quantification of the
proximate causes and spatial determinants of the degradation,
their magnitude, and spatial extent are needed to prevent
degradation from eventually turning into deforestation (Griscom
et al., 2020).

Deforestation is the result of forest loss or conversion
to alternative land use, while degradation can fundamentally
alter a forest without reducing its area or definition as a
forest (Vásquez-Grandón et al., 2018). The identification of
the proximate causes and spatial determinants of degradation
is complicated by varied temporal time scales, dynamics,
extent, definitions, and perceptions. Although deforestation and
degradation can be closely correlated (Defourny et al., 2011),
they differ fundamentally in terms of definition and impacts on
ecosystem services. The quantification of drivers of deforestation
and degradation is not only important for targeting national
strategies to reduce the emissions from deforestation and
degradation (REDD+), but have wide applications to sustainable
development initiatives supporting local economies as well as
conservation efforts seeking to reverse or slow the significant
downward trends in forest cover and quality (Bernhard et al.,
2020). A proper understanding of the proximate causes and
determinants of degradation is essential for aligning policies
with the appropriate actors (Tegegne et al., 2016), but available
quantitative information on degradation drivers and how they
interact at various scales is still quite limited. Degradation is
often a precursor to deforestation in tropical areas (Gerwing,
2002; Vancutsem et al., 2021). This means that timely and
accurate assessment of degradation risk is of utmost importance
to prevent deforestation before it happens, and to improve and
target mitigation activities.

The causes of forest disturbance are driven by multiple
synergistic factors acting together, rather than single variables

alone (Geist and Lambin, 2002; Megevand, 2013), meaning that
policies and responses need to address a variety of factors and
their interactions. In this study we use spatial panel regressions
to assess the impact of multiple proximate causes and spatial
determinants of forest degradation over time and space in
the Democratic Republic of the Congo (DRC) using a novel
forest condition (FC) metric which estimates a relative index of
degradation from 0 (deforested) to 100 (intact; Shapiro et al.,
2021). Spatial panel models are often used in the field of spatial
econometrics, and assess data in spatial units over multiple
time periods (Elhorst, 2010). We evaluate these patterns in the
DRC, which holds the largest intact tract of tropical forest in
Africa, hosting a wealth of biodiversity in a globally important
carbon sink to mitigate climate change, while also supporting the
livelihoods of millions of people (Molua, 2019). National rates of
deforestation are relatively low, but in the last 10 years has nearly
doubled to about 0.5% per year (FAO, 2020); this trend could
continue with an increasing population dependent on natural
resources, unregulated timber and mineral exploitation, and
conflicts over these resources (KengoumDjiegni et al., 2020). The
DRC is vast, with large variations in the rates of forest loss, which
are due to different demographics, threats, political frameworks,
that require tailored policies and management. Unfortunately,
the extent of forest degradation is still poorly understood in
the DRC but can potentially result in more emissions than
deforestation (Pearson et al., 2014, 2017), particularly under
the high prevalence of resource-based livelihood activities, such
as harvesting for fuelwood, unsustainable bushmeat hunting
which affects natural forest regeneration (Harrison, 2011),
and expansion of small-scale agricultural activities. The lack
of understanding of the causes and determinants of forest
degradation in the DRC is relevant because nearly 30% of total
loss of primary forest between 2000 and 2015 was degraded
before being deforested (Shapiro et al., 2016).

Direct or proximate causes of degradation have been identified
as occupying five main themes: the expansion of commercial and
subsistence agriculture, mining and infrastructure development,
and urban expansion (Hosonuma et al., 2012). A major indirect
cause of forest disturbance in the DRC is extreme poverty, which
affects a majority of the population (World Bank, 2020), is
closely linked to forest dependent behaviors, and is an additional
contributing factor to forest degradation (Nerfa et al., 2020).
This situation is compounded by political instability and an
ongoing humanitarian crisis due to decades of armed conflict that
pushes human activities deeper into the forests (Nackoney et al.,
2014; Butsic et al., 2015; OCHA, 2021). The DRC’s population
is predominantly rural, with a strong reliance on the informal
agricultural sector, which mostly comprises of informal slash
and burn practices (Tyukavina et al., 2018; Molinario et al.,
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2020) associated with increased fire frequency on managed
lands, new clearings and forest edges (Morton et al., 2008; Jiang
et al., 2020). The high reliance on natural resources will likely
increase further due to the rapidly growing population along
with urbanization; the overall population of the DRC is expected
to exceed 100 million by 2035 (Tchatchou et al., 2015). We
select eight variables to represent the five major direct drivers,
and approximate the human impacts on DRC forests using
covariates on built-up area, fire frequency, accessibility, land
use, and presence of armed conflicts. We specifically choose
these variables because they can be monitored over time with
readily available, spatially explicit, consistent, measurable and
repeatable indicators, whereas underlying variables such as the
impacts of policies, socio-economic variables or underlying
market forces are neither spatial in nature nor readily collected
with standard approaches.

As forest degradation is dynamic, so must be the proximate
causes and spatial determinants to capture the variations in time
and space. Spatial econometrics techniques and their application
to conservation and development enable research controlling
spatial and temporal components via spatial panel data, which are
a spatial cross-section of observation repeated over time (Baylis
et al., 2011; Bernhard et al., 2020). The observations in a spatial
panel can be correlated in time (repeated observations that may
be dependent on a previous date) but also in space (neighborhood
interaction; (Molinario et al., 2020). Here, we assess eight
independent covariates over time within a grid of square of 25
× 25 km units. We control for fixed individual site differences
and capture both time variant and time-invariant factors at unit
level to isolate site-specific trends from neighboring or national
trends, hence controlling for characteristics whichmight be auto-
correlated in space and time. We evaluate the spatial panel
models from 2002 to 2016 with the overall aim to provide a
key understanding of the dynamic proximate causes and spatial
determinants of forest disturbance to inform conservation,
spatial planning, and climate mitigation initiatives. We answer
two major research questions:

1. What are the spatial determinants of changes in
forest condition?

2. How do these determinants interact and change over time?

METHODOLOGY

Study Area
This study assesses proximal causes of degradation in the
Democratic Republic of the Congo (DRC), the largest country
in the Congo Basin (Figure 1), which is characterized by
having high forest area and low deforestation (da Fonseca
et al., 2007; de Wasseige et al., 2015), with 60% forest cover
and a deforestation rate of about 0.5% since 2010 (FAO,
2020). The known distribution of forest biomass and its
potential carbon sinks support new economic opportunities
for sustainable development under REDD+ (Xu et al., 2017).
While deforestation is generally low, degradation however has
been estimated to affect large areas (Shapiro et al., 2016) which
are increasing over time (Figure 2; Shapiro et al., 2021). The

forest transition model (Mather, 1992) shows that as countries
develop, the related economic and population growth will likely
elevate pressure on forest resources, notably intensification of
agriculture and urbanization resulting in the increased threat of
accelerating deforestation and forest degradation (DeFries et al.,
2004; Hosonuma et al., 2012).

Data Sources
To quantify and understand human impacts on forests and the
associated determinants of degradation, context and location
is important. The literature regarding deforestation and forest
degradation are often addressed together, citing slash-and-burn
agriculture, collection of charcoal, mining and forest exploitation,
infrastructure development and civil unrest, conflicts as key
proximate causes in DRC (Defourny et al., 2011; Nackoney
et al., 2014; Butsic et al., 2015; Tchatchou et al., 2015). In the
following section, we discuss these key proximate causes of
forest degradation addressed in this study which were selected to
represent the major drivers of degradation via readily available
data sources (Table 1). These are evaluated for each grid unit
for each time period, which is a 3- year interval between 2002
and 2016. We then apply spatial panel regression techniques to
identify the correlates for degradation and build on the concepts
in published literature (Bernhard et al., 2021).

Forest Condition
Forest condition (FC; from Shapiro et al., 2021) is estimated as a
relative index of forest degradation based on a gain/loss approach
to above ground biomass (AGB). To create the FC index we used
morphological pattern analysis (Vogt et al., 2007) on a forest
extent maps to identify core, inner and outer edge and patch
forests using an edge distance of 300m. Using different forest
cover maps over time we re-assess the fragmentation class of
each forest ecosystem type into stable and change classes (Shapiro
et al., 2016). Using the mean AGB of each fragmentation strata
of each forest ecosystem type, we determine the proportion of
remaining AGB of that strata and ecosystem type, where core,
inner intact, and connected forest areas have an FC of 100;
deforested areas have an FC = 0, and degraded or fragmented
forests in between have an FC proportional to the total potential
above ground biomass of intact forest. FC of all tropical dense
forest area is used as the dependent variable to assess the
proximate causes and spatial determinants of degradation over
time. The FC metric was assessed for all dense tropical forests
of the Congo Basin by Shapiro et al. (2021), and do not include
the extensive dry forests. It was derived according to the unique
forest ecosystem types described in Shapiro et al. (2021), from
which we extract for our study area. It is estimated that there are
about 27 million ha of degraded forests in DRC, with the total
degraded area increasing over time (Figure 2).

Fire
Fires are typically infrequent in tropical forests, and most
observations outside of any typical fire season have a human
cause (Morton et al., 2008; Bowman et al., 2011). Anthropogenic
fires occur more often in forest edges (Cochrane, 2001; Benali
et al., 2017) and are a major cause of forest degradation and
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FIGURE 1 | The Democratic Republic of the Congo (DRC), with the capital Kinshasa, divided into 26 provinces, possesses over 100 million ha of tropical forest, of

which about 11 million are swamp forest. Deforestation and degradation is from Shapiro et al. (2016).

deforestation in tropical biomes, which are not adapted to fire
regimes and as a result experience reduced ecosystem resilience,
with higher impacts on biodiversity as well as large greenhouse
gas emissions (Juárez-Orozco et al., 2017; Ramo et al., 2021).
These impacts can potentially increase with warming, drier
climate (Siegert et al., 2001; Malhi et al., 2009). Fires, and
especially multiple burns per year, are associated with agricultural
expansion, especially slash and burn cultivation, which is cited as
the greatest cause of forest disturbance in DRC (Tyukavina et al.,

2018; Molinario et al., 2020), and is also increasing (Cochrane,
2001; Lewis et al., 2015). Fires, more importantly their frequency
are therefore a crucial variable for degradation monitoring and
emissions reduction interventions (Barlow et al., 2012). We use
the latest Fire Information for Resource Management System
(FIRMS; Giglio et al., 2016) dataset, which is the near real
time active fire location product derived from the Moderate
Resolution Imaging Spectrometer (MODIS) sensor thermal
anomalies. We use Google Earth Engine (Gorelick et al., 2017)
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FIGURE 2 | Total degraded forest area of the 20 provinces with highest degradation rates [data from Shapiro et al. (2021)].

to sum all fire detections in each 3-year time interval. We select
all fire detections with a confidence flag >30 at a resolution of
1 km. Fires are summed over all grid cells in the time interval.

Accessibility and Infrastructure
Physical access by humans into forests ecosystems is also an
important driver of forest disturbance (Ferretti-Gallon and
Busch, 2014). In the DRC, the means of access include both
roads and rivers used to access forest areas for bushmeat, logging,

and fuelwood collection, the latter being an essential resource
for local communities and large cities alike and a significant
cause of forest degradation (Chidumayo and Gumbo, 2013). An
estimated 90% of wood harvested in the Congo Basin is destined
for fuelwood, a trend exacerbated by poverty, population growth,
and urbanization (Marien, 2009). Meanwhile, the extirpation of
wild species by unsustainable hunting practices results in forests
devoid of keystone, seed dispersing wildlife which can affect
natural regeneration and resilience while also having significant
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TABLE 1 | Variables evaluated for each forest grid and relevant literature.

Type Variable Expected

effect

Spatial

resolution

Temporal

resolution

Data source References

Forest degradation Forest Condition (FC) Dependent

variable

100m Annual (Giri et al., 2011; Hansen

et al., 2013; Xu et al., 2017;

Philippon et al., 2018)

Grantham et al., 2020;

Shapiro et al., 2021

Human pressure Total number of fires + 1 km Daily MODIS Fire Data (Giglio

et al., 2016)

Barlow et al., 2012; Ramo

et al., 2021

Built-up area in 2,000 and

2015 (km2 )

+ 30m Decadal GHS Human Population

Grid, JRC (Pesaresi et al.,

2016)

Corbane et al., 2017

Total number of conflicts

observed

+ Point Daily ACLED (Clionadh et al.,

2010)

Draulans and Van

Krunkelsven, 2002; Butsic

et al., 2015; Negret et al.,

2019

Travel time (hours) + 100m Time

invariant

Data derived from slope,

elevation, land cover, roads,

and populated area using

methods from Grantham

et al. (2020)

Aguilar-Amuchastegui et al.,

2014; Grantham et al., 2020

Land use Protected areas (km2) – Polygon Annual WWF (Pélissier et al., 2019) Butsic et al., 2015; Leberger

et al., 2020

Forest concessions (km2 ) + Polygon Time

invariant

World Resources Institute/

Direction Inventaire et

Aménagement Forestiers

(DIAF) (World Resources

Institute, 2018)

Zhuravleva et al., 2013

Mining concessions + Polygon Time

invariant

WRI/CAMI Hund et al., 2013; Butsic

et al., 2015

Biophysical Swamp forest – 50m Time

invariant

Swamp Forest Extent

(Dargie et al., 2017)

Miles et al., 2017; Dargie

et al., 2019

We assign the expected effect of each independent variable.

social consequences to local human populations (Harrison, 2011;
Nasi et al., 2011). We developed a travel time dataset, which is the
output of a cost surface model in ArcGIS Pro version 2.7 (ESRI,
2020) derived from a source layer and a cost layer. The latter is
derived from land cover, roads, rivers, elevation, and slope, and
impedance as described in the development of the forest pressure
index (FPI) in Grantham et al. (2020). The source layer was
created from the human settlements obtained from the Global
Human Settlement BUILT dataset for the year 2000 (Corbane
et al., 2018), The cost surface estimates driving speed over roads
and walking speed over various land cover surfaces, which are
decreased with increasing slope and elevation; a navigation speed
approximates travel on waterways as a function of their flow. As
no temporally explicit data are available for road infrastructure,
we can only develop accessibility for a single reference period of
2000, deriving the mean travel time in hours for all grid units.
The BUILT dataset was also used to define the extent of built-up
area per grid unit, using data for 2000 for the first four time steps
and 2015 for the final time step.

Conflicts
Another determinant of degradation is armed conflict, which
can have far-reaching ecological impacts (Machlis and Hanson,
2008). Violent conflicts can result in significant deforestation

and degradation due to movements of refugees and internally
displaced people (IDPs) into forests to escape violence (McNeely,
2003) and also adversely affects wildlife (Daskin and Pringle,
2018). Furthermore, conflicts in the region tend to be in areas of
rich natural resources, such as minerals or forest; these areas are
often inhabited by indigenous groups, which can result in further
conflicts over land rights and acquisitions for resource extraction
(Humphreys et al., 2007). The total number of conflicts recorded
in DRC has been increasing in recent years, notably the violence
against civilians (Figure 3). Conflicts in DRC are persistent in
transboundary regions, which overlap with heavily forested and
protected areas. For example, in the eastern DRC, conflicts
have been a constant issue, especially in the Greater Virunga
Landscape (GVL), which covers a network of 13 protected
areas between DRC, Rwanda, and Uganda. The GVL has seen
protracted conflicts, with periodic spikes over the last three
decades, including ongoing armed rebel group activity based out
of forests and remote areas.

We calculated the conflict variable using the Armed Conflict
Location & Event Data Project (ACLED) database (Clionadh
et al., 2010) which is a collection of real-time data on the
locations, dates, actors, fatalities, and types of reported political
violence and protest events across the world.We use the total sum
of conflicts in each grid unit as our variable, and do not discern
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FIGURE 3 | Recorded conflict events in DRC, broken down by event type (Source: Clionadh et al., 2010).

between the number of fatalities or types of conflicts, as even non-
fatal activities can have the effect of terrorizing and destabilizing
local communities and their livelihood activities (Draulans and
Van Krunkelsven, 2002) and the presence of protests can indicate
civil unrest or political conflicts. Various rebel and armed
groups use systematic and strategic sexual violence as a weapon
of war (van Wieringen, 2020), increasing pressure on local
resources through non-lethal threats and terror, as they depend
on local communities, raid villages and fields, and force local
residents to provide food, payments, or other income to armed
groups (Laudati, 2013). On the other hand, some studies show
that conflict could reduce or prevent deforestation by, at least
temporarily, limiting private sector or extractives sector activity
(Burgess et al., 2015). The armed conflicts caused by the long-
term unrest in eastern DRC are therefore an important variable
to consider in the assessment of the causes and determinants of
forest degradation.

Land Use
The attribution of land use and its change over time is directly
affecting activities on land. We use available data on protected
areas, legal mining and forest concessions to assess the potential
impacts from attributed land use management. The DRC is
extremely rich in minerals, and efforts to extract these are
exerting increasing pressure on unprotected forest and savanna
ecosystems (Edwards et al., 2014). However, recent studies show

the impacts on forests from industrial logging is relatively low
(de Wasseige et al., 2012; Tyukavina et al., 2018). Although
there has been a moratorium on forest concessions and a legal
conversion process in 2002, the impact has been questionable,
with extractive activities occurring regardless (Lawson, 2014).
For this reason, we do not incorporate temporal information into
the forest concessions as data can also be unreliable and may
not be correlated with actual forestry activities. We assess total
area attributed to logging concession regardless of status for each
grid unit.

We source mining data directly from the DRC mining
cadaster. While date information is available for some mining
concessions, the information was also incomplete for many, or
considered to be unreliable due to differences between different
official and commercial data sources. Additionally, the timing
of a particular type of legal mining license might not preclude
illegal or artisanal activities, which may occur before or after the
establishment or end of a legal permissions. Therefore, we do not
account for temporal information of the mining concessions. We
calculate total area (hectares) attributed to mining for each grid
unit for this variable over the entire study period.

We incorporate protected areas, which were recently re-
evaluated in DRC and include the year of establishment (Pélissier
et al., 2019). Several new protected areas were established during
the study period which allows us to assess their potential
impacts (Figure 4). Protected areas downgrading, downsizing,
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and degazettement (PADDD) is present, but occurred mostly in
the late 1950s, prior to our analysis (Forrest et al., 2014). We
calculate total protected area in hectares for each grid unit and
time interval.

Spatial Statistics
We estimated spatial panel regressions for the period from
2002 to 2016, separated into 3-year intervals to evaluate the
impact of drivers in affecting degradation over time, spatial
panel regression models were developed for the study period
of 2002–2016, divided into five intervals of 3 years. Panel
datasets effectively have two dimensions: a spatial dimension,
with multiple temporal panels to assess effects over time
(Vijayamohanan, 2016). The summary statistics of all variables
is presented in Table 2.

The areal units were selected within the primary dense
forested area of DRC, which was divided into 25 × 25 km
grid squares (Figure 5), with data assessed over all 3-year
time intervals between 2002 and 2016, resulting in 2,996
observations in each panel for a total of 14,980 observations. The
decision to use equal-size grid cells as opposed to administrative
boundaries was due to several reasons. First, some of the
administrative boundaries changed substantially over time, in
part due to instability and inconsistency in governance at both
central and local government levels throughout DRC. This
can adversely affect a panel model with the same units over
time and, furthermore, these changes could be associated with
deforestation (Alesina et al., 2019). Additionally, the availability
of forest resources (timber products, bushmeat) is directly related
to the amount of available forest to degrade, therefore different
sized units cannot be adequately accounted for simply by
normalizing area. A consistent grid avoids these pitfalls, but may
lessen any potential impacts in differing governance or power
structures, and therefore addresses the patterns independent of
small administrative units. Given the small size of the grid in
relation to other variables related to land use larger polygons
such as forest concessions or protected areas are likely to
cross neighbor boundaries, which could result in a source of
endogeneity between units.

For each grid cell, the dependent variable, mean FC, and all
independent variables (Table 1) were estimated for each 3-year
time interval. We used zonal statistics to calculate the mean
value for continuous variables, such as accessibility; for area
estimates, such as mining concession area, protected area, forest
concession area, built-up area, and swamp ecosystem area, we
calculated the percent of the grid cell occupied by the respective
variable. All temporally explicit data, such as protected area
and built-up area, were calculated for the relevant time interval.
A Pearson correlation matrix was assessed for all independent
variables to identify multicollinearity. We assess significance at
the 0.005 level using a correlation threshold of 0.5 to identify
correlated variables.

Spatial Panel Regression
We evaluate spatial autocorrelation of the dependent variable
through a non-parametric spatial correlogram of Moran’s I using
GeoDa version 1.18 (Anselin et al., 2005), where a local regression

is used to evaluate correlations for all pairs of observations as
a function of the distance between them (Bjørnstad and Falck,
2001). This provided the information to select the appropriate
structure of the spatial neighborhood that has an influence on
each observation. The spatial weightsmatrix is defined as aN×N
matrix that identifies spatial dependence among the observations
(i.e., the grid cells) across the study area.

The availability of repeated observations on the same
units of a panel model allows the capture of individual-
specific, time-invariant factors affecting the dependent variable
in addition to unobserved effects (Baltagi, 2005). The rationale
behind random effects models is that static differences across
entities are presumed to have influence on the dependent
variable. The random effects (RE) model therefore assumes
that the unobserved time-invariant components of the model
are unrelated (random) to the regressors therefore allowing
the estimation of time-invariant explanatory variables (Greene,
2019). However, the assumption of no correlation between an
unobserved component and the regressors is often unrealistic.
This assumption is relaxed in fixed effects (FE) models that
allow the unobserved random component to be related to the
regressors, which causes all time-invariant explanatory variables
to drop out of the analysis (Wooldridge, 2012). Both models can
apply in certain situations. FEs are preferred when the interest
is in assessing the impact of variables that change over time
and not over observations, such as the number of conflicts and
fire occurrences in our analysis. The RE models are valuable in
situations where key explanatory variables are constant over time,
such as bio- and geophysical variables described in our approach.
We therefore apply both FE and RE models.

We apply spatial considerations to these models by adding
using spatially lagged independent variables to our models. These
spatial lags are the average of the neighborhood according to
the spatial weights matrix without the central cell, in order to
evaluate the local grid and the effect of its neighbors separately
(Anselin and Rey, 2014).

We explored the different model specifications based on data
constraint considerations (e.g., some spatial variables having
only one reference period) and also in an effort (1) to illustrate
the robustness of results to different model specifications;
and (2) to provide complementary results where one model
type has weaknesses. For example, fixed effects regression
cannot include spatial variables without temporal variation (four
out of eight independent variables). Therefore, we use the
random effects to evaluate time and time invariant variables
together. We describe each of the three model types through
Equations 1, 2.

Random effects models incorporate parameters, which are
random and uncorrelated (Equation 1).

yit = βxit + αi + uit + εit (1)

Where yit is the dependent variable of entity i at time t.
β1is the coefficient of variable x, the vector of independent
variables, αiis the individual specific effect potentially correlated
with the independent variables, uit is the between entity error
term, and εit is the within entity error term. Random effects
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FIGURE 4 | Protected areas in DRC have been established since the 1930s, which significant increases in the 70s and early 2000s (Pélissier et al., 2019). Most

protected areas are hunting reserves and domains (names are translated to English). Other category includes scientific, zoological and forestry reserves, as well as

annexes.

TABLE 2 | Summary of variables.

Name Min Max Mean Std. Dev.

Forest condition (fc) 0.10905 100 62.9939 32.1467

Swamp ecosystem area (km2 ) 0 621.5 37.4072 103.8042

Travel time (hours) 0.1924 57.4116 7.9027 7.6073

Forest concession area (km2) 0 625 38.1795 127.5848

Mining concession area (km2 ) 0 625 47.7687 118.7354

Protected areas (km2) 0 625 77.3228 184.0276

Built-up area (km2 ) 0 381.82 3.3940 16.4991

Total # of fires 0 40402 4371.864 5593.546

Total # of conflicts 0 322 0.8893 8.6468

models are typically fitted using generalized least squares
(GLS) which is efficient and unbiased for situations with
heterogeneous variance (Baltagi, 2005). Fixed effects models
fix variables across observations rather than time, as some
variables do not vary over time, or only have few time periods
(Equation 2).

yit = βit ∗ xit + αi + uit (2)

Where yit is the dependent variable of entity i at time
t, αi(i = 1 . . . n) is the unknown intercept for each
entity (n entity-specific intercepts), xit represents one
independent variable, and βit is the coefficient for independent
variable x.

We evaluate the random and fixed effects model with and
without spatial lags. All regression analyses were executed
in Stata (StataCorp, 2019). We assess all four models via
their coefficients and significance, overall, R2, and estimation
of rho, the ratio of individual specific error variance in
relation the entire error variance. We employ the Hausman
statistic to select the preferred model, random effects or
fixed effects.

Trend Analysis of Time Variant Drivers
Based on the outputs of the random effects panel model,
we enrich the analysis by evaluating fires and conflicts over
time, key dynamic determinants with high temporal resolution
to highlight their impacts on forest condition in space and
time. We provide two analyses to demonstrate approaches to
support management efforts such as targeting fire suppression
activities or where resources could be allocated to reduce
armed conflicts.
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FIGURE 5 | The analysis units shown over forest condition (FC) from Shapiro et al. (2021). About 70% of DRC forests remain intact, with an FC of 100.

We assess trends over time using the Mann Kendall trend
(M-K test) statistic (Mann, 1945; Kendall, 1975) to identify areas
where frequency of fires and conflicts are significantly increasing
or decreasing. We apply the space-time modeling tools available
within ArcGIS Pro 2.7 (ESRI, 2020) using the same units as the
panel data. For the case of fires, we use daily data acquired from
2002 to 2020 from FIRMS, summarized within each unit over 4
month time bins, and assess trend using theM-K test statistic.We
perform the same analysis with the ACLED database of conflict

locations from 2000 to 2020, applying the same temporal window
of 4 months (which is selected automatically by the software
based on the distribution of data in time) and using the 25 km2

grid unit.

RESULTS

The spatial correlogram indicated that spatial autocorrelation of
the dependent variable approaches zero at ∼50 km. Thus, we
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settled on the second order rook contiguity neighborhood as the
structure for the spatial weights matrix (in analogy to a chess
board, all grid cells that share a common border are considered
neighbors, as well as the neighbors of the neighbors). Models
using queen contiguity (common borders and common vertices)
case did not significantly change model outputs. We did not
detect substantial multicollinearity with all Pearson correlations
below 0.4 (Table 3).

The results of the random and fixed effects models without
and with spatial lags are presented in Table 4. Because we
use a linear model with no interactions and FC is measured
in percentage, the coefficients can effectively be interpreted as
margins, meaning that for a unit increase in the independent
variable, the coefficient informs the associated %change in mean
FC of the unit. In all models the estimate for rho approaches one,
meaning that nearly all the variance is described by differences
across time, the highest rho is observed in the fixed effects
model with spatial lags. The coefficient directions are mostly
consistent between models, with the exception of protected areas
and mining, which have opposite coefficients in the models
with spatial lags. R2 are higher for random effects models than
fixed effects.

In the random effects models, a greater presence of swamp
forest, higher travel time (lower accessibility) and greater
coverage of forest concessions are associated with increases in
mean FC. Mining concessions are negatively correlated when
assessed without its spatial lag; when the lag is included the
coefficient is positive, and the lag has a larger, negative coefficient
indicating that mining concessions in the neighboring areas
are reducing FC more than those in the local neighborhood.
Protected areas have an unexpected negative effect on mean
FC in models without include spatial lags, however when the
spatial lag is present the locally estimated variable is positively
correlated with FC while the effect of the neighborhood is
negative, indicating potential displacement of disturbances. The
increase in built-up area, number of fires, and conflicts all are
associated with lower forest condition, along with their spatial
lags which all have higher impact on FC. The % built-up variable
is associated with the largest per unit decrease in FC.

For the fixed effects models, all variable coefficients are
significant at the 0.05% significance level. Once again the
protected variable has an opposite sign as expected, and a reverse
coefficient when the spatial lag is considered. Built-up area, fires
and conflicts have significant negative correlation with mean FC
and built-up area has the highest per area unit effect. With the
inclusion of the spatial lag, the coefficient for conflicts lower,
while conflicts in the neighboring area have a stronger negative
effect on FC. In the model with spatial lags, an increase in fires
results in lower FC, and neighboring cells have a smaller relative
impact. The total conflicts in the neighborhood have a greater
influence on FC than the non-spatially lagged variable, indicating
that an increase in conflicts has a further reaching effect in
neighboring areas.

The Hausman test was significant at the 0.005 level, therefore
we reject the null hypothesis and use the fixed effects model
including spatial lags with higher goodness of fit measures for our
major assessments and conclusions.

Temporal Trends of Fire and Conflict
Having addressed the importance of spatially and temporally
variant determinants vs. static ones, we use the high temporal
resolution of two dynamic variables to determine where they
are changing over time to demonstrate the importance of time
variant variables and the resulting policy implications. Conflicts
and fires are the variables with the highest temporal resolution,
and we determine where the greatest increases in fires and
conflicts are occurring. The trends of these variables appear to
be clearly spatially divergent (Figure 6).

Whereas, conflicts and fires were both shown to be negatively
correlated with FC, we note that these variables are increasing
in opposite regions of the country. Conflicts are notably present
in the eastern DRC and have been increasing in the last two
decades, most importantly in North and South Kivu and Ituri
province overlapping with protected areas in the eastern region.
We note a different pattern of changes in fire frequency, which
is decreasing in these three eastern provinces, but increasing in
Tshopo in the central cuvette, and Mai-Ndombe and Equateur
in the western regions. Future research could explore a potential
interaction between these variables, where a greater number of
conflicts could be causing a reduction in fires.

DISCUSSION

The proximate causes and spatial determinants of forest
disturbance and degradation have been often identified in the
literature but are rarely quantitatively assessed. We provide
a spatial panel analysis of drivers of FC, an index of forest
degradation in the DRC using both time variant and time
invariant variables to assess their relative impacts in time and
space. We also assess the synergistic effects of variables and in
concert with the spatial neighborhood to determine the potential
impacts of neighbors. This provides important insight into the
patterns and direct causes of forest disturbance, including the
further reaching impacts of some drivers, the potential leakage
or displacement of impacts by direct threats or land uses, and
informs interventions or policies related to proximal drivers.

A greater area of swamp ecosystem could effectively be
serving as a natural barrier to anthropogenic disturbance locally.
However, an increased swamp area in neighboring areas may
be displacing these threats. The Congo Basin peatland system
is the most extensive swamp system in the world and largely
forested and by nature difficult to penetrate due to peat depth
(Dargie et al., 2017). There are few inhabitants directly in swamp
forests. Forest clearing activities are more cost effective in terra
firme forests, meaning most impacts in swamp ecosystems are
currently limited to small scale sustainable uses (Dargie et al.,
2019). Therefore, human activities are expected to be more
present in areas neighboring swamp ecosystems. The addition of
the spatially lagged swamp area variable to our models indicate
that the natural protection of swamps is local, displaying pressure
on forests in areas neighboring to swamp ecosystems. This
concept of protection might not be permanent, as the effects
of climate change are expected to increase accessibility and
pave the way for more logging to feed increasing demand for
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TABLE 3 | Pearson correlation matrix of independent variables.

Swamp

ecosystem

area (km2)

Travel time

(hours)

Forest

concession

area (km2)

Mining

concession area

(km2)

Protected

areas (km2)

Total # of

fires

Built-up

area (km2)

Swamp ecosystem area (km2 ) 1

Travel time (hours) 0.1165*** 1

Forest concession area (km2) 0.1764*** −0.0063 1

Mining concession area (km2 ) −0.1425*** −0.0300*** −0.1133*** 1

Protected areas (km2) −0.0556*** −0.3320*** −0.0101 −0.0804*** 1

Built-up area (km2 ) −0.0246*** −0.1582*** −0.0267*** 0.0855*** −0.0431*** 1

Total # of fires −0.2078*** −0.4388*** −0.1738*** −0.0885*** −0.0358*** −0.1422*** 1

Total # of conflicts −0.0323*** −0.0705*** −0.0278*** 0.1125*** −0.0127 0.2029*** −0.0088

***p < 0.005.

TABLE 4 | Results of random effects (RE), RE with lags, and fixed effects (FE), FE with lags.

Model

Variable RE RE lags FE FE lags

Swamp ecosystem area (km2 ) 0.0347***

(0.0027)

0.0193***

(0.0063)

Swamp ecosystem area (km2 )

Spatially lagged

−0.0034

(0.0076)

Travel time (hours) 1.913***

(0.0617)

0.6760***

(0.0771)

Travel time (hours)

Spatially lagged

1.6352***

(0.1087)

Forest concession area (km2) 0.0334***

(0.0019)

0.0018

(0.0031)

Forest concession area (km2)

spatially lagged

0.0567***

(0.0049)

Mining concession area (km2 )

Spatially lagged

−0.0140***

(0.0033)

0.0019***

(0.0070)

Mining concession area (km2 )

Spatially lagged

−0.0197***

(0.0070)

Protected areas (km2) −0.0066***

(0.0006)

0.0116***

(0.0015)

−0.0422**

(0.0047)

0.0720***

(0.0082)

Protected areas (km2)

Spatially lagged

−0.0289***

(0.0025)

−0.1755***

(0.0112)

Built-up area (km2 ) −0.2991***

(0.0616)

−0.1239***

(0.0629)

−3.8986***

(0.1918)

−0.3038**

(0.2047)

Built-up area (km2 )

Spatially lagged

−0.9644***

(0.0629)

−12.0822***

(0.3761)

Total number of fires −0.0013***

(0.00005)

−0.0006***

(0.00006)

−0.0009***

(0.00003)

−0.0005***

(0.0006)

Total number of fires

Spatially lagged

−0.0009***

(0.00007)

−0.0007***

(0.00005)

Total number of conflicts −0.0357**

(0.0156)

−0.0128

(0.0143)

−0.0196***

(0.0068)

−0.0073

(0.0006)

Total number of conflicts

Spatially lagged

−0.2928***

(0.0363)

−0.2231***

(0.0154)

Constant 53.0854***

(0.8470)

54.8350***

(1.0310)

69.4510***

(0.7011)

76.4417***

(0.2544)

R2 0.5688 0.6228 0.2142 0.3057

Rho 0.9504 0.9507 0.9799 0.9995

***p < 0.005; **p < 0.05.
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FIGURE 6 | Trends in conflicts (left) and fires (right) assessed by Mann-Kendall trend analysis.

resources. The presence of large oil and gas concessions and some
forest concessions in these peatlands are raising alarms within
the conservation community as these are directly threatening
vast carbon reserves and extraordinary biodiversity, although
these remain at the moment mostly inactive (Miles et al., 2017).
A portion of these swamp forests were placed under formal
protection in 2011 (Pélissier et al., 2019), which could prevent
them from being exploited.

While swamp forests might afford natural protection, the
assessment of formally established protected areas as a spatial
determinant of FC is not as clear. Without considering the effect
of the spatial neighborhood, the presence of protected areas
is unexpectedly negatively correlated with FC. This could be
explained by the context of protected areas in DRC. First, the
establishment of protected areas in DRC were implemented to

represent different ecotypes and protect major faunal population
(Inogwabini et al., 2005), which means they often are located
in intact, inaccessible locations, as demonstrated by the positive
correlation (Pearson correlation coefficient: −0.33) of protected
areas with travel time (Table 3). Although we have temporal
data for protected areas, and several new protected areas were
established in the middle of the study period (Figure 4) the
positive effects of protection could take many more years to
materialize into increased FC. Protected areas in DRC also face
a difficult history, where in some locations, implementation with
support of local and indigenous communities and increased
militarization has limited their acceptance and effectiveness
(Duffy et al., 2019). Additionally, protected areas can be targets
for rebel and armed groups who seek to profit from natural
resources or poaching activities and illegal trade of ivory
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(Draulans and Van Krunkelsven, 2002). The Virungas National
Park for example is one of the oldest parks in Africa, and
remains at the center of one of the longest armed conflicts on
the continent and throughout recent years has served as a base
and hub for a variety of rebel groups. All of these issues are
exacerbated by critical underfunding, which can significantly
reduce effectiveness (Inogwabini et al., 2005). With the inclusion
of the spatial neighborhood, we find a weak positive impact of
protected area, with a greater negative effect from surrounding
protected area. This could show that in the context of a larger
area, protected areas might displace disturbances to 25–50 km
beyond their borders, where they can attract development and
similar activities when local communities benefit from protected
areas, or use its resources, indicating a potential leakage effect
(Sabuhoro et al., 2017; Bernhard et al., 2020).

Many forests remain unexploited inside forest concessions
(for example swamp as described above), therefore the positive
impact of timber concessions on FC is not entirely illogical.
While industrial timber extraction remains a major threat to
forests around the world, this pressure is actually lower in
Africa (Kissinger et al., 2012; Megevand, 2013). The DRC
has the lowest timber production of all Congo Basin nations,
despite having the largest forest area (de Wasseige et al., 2012)
which is a result of conflicts, political instability, and lack of
access and transport (Tchatchou et al., 2015). There are few
large clear-cutting activities, logging is primarily selective, and
damage is limited to areas around logging roads which can
often quickly regenerate (Zhuravleva et al., 2013). It is suggested
that most logging activities in DRC are illegal (Lawson, 2014),
and could therefore be outside of identified concessions, several
of which are in defiance of a 2002 moratorium on new forest
concessions to re-assess their legality, a factor compounded by
major weaknesses in governance.

We find mining concessions to negatively correlate with FC,
but when considered along with its spatial lags, the reverse
correlation exists where the area of local mining concessions
is positively correlated with a decrease in FC, while the spatial
neighborhood is positively correlated. In the context of all
forest changes observed in the region, mining is considered a
rare forest disturbance driver (Tyukavina et al., 2018). Large-
scale mining operations tend to be older and resulted in
deforestation before the time period addressed in this study.
This suggests that current mining activities are less actively
causing deforestation or degradation (Putzel et al., 2011). Larger
established mining concessions also tend to be associated with
higher security (Hönke, 2009), which can displace artisanal or
illegal extractive activities into the spatial neighborhood of our
analysis. It should also be noted that this variable does not include
artisanal mining, or activities which might be pushed outside
concession boundaries. Unfortunately, the only available datasets
for artisanal mining are not based on consistent remote sensing
and are biased in terms of location and time of detection.

Most of the forest disturbance in DRC is due to small scale
agricultural activities dominated by shifting cultivation, which
can be difficult to discern in satellite imagery (Tyukavina et al.,
2018). The travel time, built-up, and fire variables support the
assessment of human activities related to agriculture as these

are associated with repeated fire and ease of access (Morton
et al., 2008). Our data supports the results of Molinario et al.
(2020) which determine that shifting cultivation is the major
cause of primary forest loss in the DRC via slash and burn
activities, with strong effects of proximity to industrial activities.
We identify this via the presence of larger built-up areas (roads,
paths, settlements) which are associated with expansion of the
rural complex, and is quantified here by reduced FC in the 25
× 25 km area. Built-up areas are indicative of greater population
presence, which incurs greater demand on local resources – and
per square kilometer of developed area has the largest impact
on FC. However, population density plays a role, and potentially
at a greater scale than the local neighborhood assessed here,
although few reliable recent census data exist for DRC. For large
cities, the relative influence of the large capital city is difficult to
quantify, but Kinshasa, with its large population is still reliant on
charcoal for energy, coupled with a large appetite for bushmeat
that can impact forests well-beyond the area of our estimated
spatial neighborhood, especially as more roads facilitate wider
access (Behrendt et al., 2013). Larger cities might be located closer
to forests that are already degraded, and easier to further disturb,
while smaller urban centers could be feeding both local demand
and larger urban centers (Molinario et al., 2015). The lack of
detailed population data make the evaluation of human density
difficult to untangle. The model results suggest that the impact
of developing one square kilometer of area for human use on FC
(−0.12) is 10 times larger than protecting the same area (0.01).

The presence of conflicts can affect forests in several ways,
notably through higher pressure on forests for energy resources
such as charcoal, increased illegal logging, mining and hunting
(de Merode et al., 2007). Similar to Butsic et al. (2015), we find
conflicts to be associated with forest disturbances resulting in
lower FC, and the spatial neighborhood has an effect as well. This
result is expected and can be explained by internal displacement
of citizens fleeing unrest and threats, as is often the case in the
Kivu provinces. The number of IDPs in the DRC is estimated to
be over 5 million (UNHCR, 2020), and many more are known to
seek refuge from armed groups in forests, resulting in increased
wildlife poaching and deforestation as a result of this insecurity
(Draulans and Van Krunkelsven, 2002; Nackoney et al., 2014).
Peaks in violent events with increased violence against civilians
occurred between 2009 and 2014 (Figure 3). Refugee influxes
to neighboring Uganda and Rwanda also spiked in 2016/17,
which correlates with the significant upward trend in conflicts
in Nord Kivu (UNHCR, 2020). Unfortunately, the effects of
conflicts can be long lasting on forests, whether via disturbance
or the long-term effects of reduced faunal populations from
overhunting of bushmeat which affect natural regeneration
(Harrison, 2011; Nasi et al., 2011; Nackoney et al., 2014). The
presence of armed conflicts in and around protected areas can
affect their effectiveness, which is a result of the complex impact
of institutions, and lack of resources (de Merode et al., 2007),
indicating another potential interaction explored by Butsic et al.
(2015).

Including spatially lagged elements to our models provides
additional perspective on the far-reaching effects of some
determinants. Higher travel time or lower accessibility of
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neighboring areas indicates a potential functional protection -
whereby forests are protected simply by their inaccessibility by
road, waterway, and land cover type. For example, an increase
of 1 h of accessibility increases mean forest condition by more
than 1.5%. This could speak to engaging the responsibility of
forest concessionaires to limit access to newly opened logging
roads, which can be more effective in limiting access than
protected areas (Sheil et al., 2010) but at the same time
could increase conflicts with local populations and therefore
should be addressed with caution. Limited accessibility in the
neighborhood might also imply that the target cell is less
connected to larger cities or markets. The spatial lags of mining
concessions and protected areas were shown to have the opposite
impacts of the target cell. In the case of protected areas, the
negative correlation, which is explained above, with a low positive
coefficient of neighboring areas could bring some good news for
the wider reaching impacts of protected areas.

The influence of the neighborhood is key in identifying
appropriate policies or interventions and this relationship can
be complex, as local decisions depend on the characteristics and
processes of neighboring areas, and policies themselves can have
positive or negative spillover effects (Robalino and Pfaff, 2012;
Delacote et al., 2016). Considering the predominant subsistence
agriculture, land-use decisions that result in forest degradation
are often made at the household or community levels. Payments
for ecosystem services (PES) can provide successful means to
reduce impacts on forests through economic incentives, however
this needs to be compatible with prevailing land tenure situations
and promote participation, inclusion and compatibility with local
livelihood structures (Barbier and Tesfaw, 2012). Leakage, or
the spatial displacement of activities due to implementation of
policies can affect overall policy success. Our study shows a
strong impact of neighboring areas on local forest condition,
indicating the need to consider local interactions for the strategic
establishment of policies or activities (Robalino and Pfaff, 2012).

Our study period pre-dates most of the PES efforts and
mitigations in DRC, notably via REDD+ projects, which enables
us to establish a historical assessment of drivers and an
understanding of the proximal causes and means to detect forest
degradation. We cannot address every possible proximate or
underlying driver, but specifically those that can be monitored
over time in order to enable prediction or indicators of upcoming
forest disturbance. If we consider the proposal by Combes Motel
et al. (2009) to compensate countries for their deforestation
efforts, while separating structural factors (essentially exogenous
variables such as market forces) from enacted policies, our
approach is complementary, in that it allows to determine the
impact of these policies. For example, if a forest conservation
activity is established, we can determine whether that activity is
associated with increased forest condition, reduced development,
while controlling for spillovers from neighboring areas. Yet,
many of these so-called structural economic variables are difficult
to measure consistently for the DRC, and there are clear elements
which can potentially blur the effective establishment of PES
schemes. Examples include corruption, lack of participation,
leakage, political instability, de-centralized political structures
and lack of adequate reporting – which are difficult to subjectively

evaluate. In order for PES to be successful there needs to be
a robust assessment on the quality of policies, for example,
that ensure transparency, social safeguards of these institutions
(Chhatre et al., 2012), and a clear evaluation of whether the
policies are effective in slowing the course of deforestation.
There also needs to be a clear understanding of context and
current trends and the establishment of accurate reference levels
(Angelsen and Wertz-Kanounnikoff, 2008).

Applying both the random and fixed models demonstrates
the importance of integrating time variant variables in our
assessment. The proximate causes and spatial determinants of
forest disturbance are not stable in time but change along
with other exogenous influences including climate, politics, or
pandemics. Kengoum Djiegni et al. (2020) lament the fact that
an up-to-date drivers analysis, potentially including relative
impacts and spatial pattern was missing from the development
of the national forest reference emissions level (FREL) in 2018.
This spatial panel approach and in particular the comparison
of both random and fixed effects model provides a useful
mechanism to assess the relative impacts of drivers, combining
both time variant and invariant datasets to assess the risk of
forest degradation, which can be updated over time as new data
become available. This is important to determine where specific
interventions should be put in place, and prioritize the best use of
limited funds.

To properly inform land use policies or interventions and to
target resources we need to evaluate the covariates individually
over time and space, which is particularly important in a vast
country such as the DRC. We assess the trends of fires and
conflicts over a time period extending beyond the statistical
modeling and note that these two variables diverge spatially -
there is an increased risk of forest degradation related to armed
conflicts in the east, where fires are decreasing. Meanwhile fire
frequency is increasing in the central cuvette and western portion
of the country, potentially threatening emissions reductions
programs and swamp forest ecosystems. This speaks directly to
the importance of contextual information to guide use policies to
drive change and spatially targeted approaches and interventions
(Tegegne et al., 2016). In the example of REDD+ interventions,
reduction of fires in the context of agricultural practices are a
critical factor to be addressed to secure and manage forest carbon
(Barlow et al., 2012). The information provided here can be
used to design emissions reduction interventions related to fire
that focus on high-risk areas (Holdsworth and Uhl, 1997) by
promoting fire reduction or sustainable, managed or improved
charcoal or biofuels for local energy needs (Megevand, 2013;
Schure et al., 2014).

A number of uncertainties limit our analysis. The FC metric
is dependent on accurate forest and biomass maps, which surely
have a level of inherent error. The global tree cover change
product used to identify loss at edges focuses on identifying
tree cover loss but does not consider natural and anthropogenic
regeneration, which could be occurring. New available datasets
such as the Tropical Moist Forests (TMF) product from
Vancutsem et al. (2021) which include both deforestation
and degradation could provide opportunities for additional
evaluation. Due to the nature of the tree cover loss product,
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the forest condition metric also includes naturally caused forest
changes, although from a remote sensing perspective the causes
of forest disturbance are practically impossible to separate.
The increase in observed conflicts over time could also be
influenced by the increase in social media and connectivity,
which increases the potential information shared and reported
on conflicts in recent years, more than in earlier years. We
have demonstrated the importance of spatial neighborhood, but
our models effectively end at the international border. Clearly,
activities and varying threats in neighboring countries are going
to influence Congolese forests, and these are only touched upon
here. Our approach is transferable and scalable with readily
available data for these identified proximate drivers and allows to
contrast the impacts of land use policies: protected areas, forest
concessions or development in neighboring countries or regions.

We did not include climate factors due to the coarseness
of available datasets, although differences in rainfall and
temperature could drive different types and trends of agricultural
expansion. Next, the size of the grid unit might influence the
outputs of the model. The size we selected, resulting in nearly
3,000 units, is well below the scale of the smallest administrative
unit. Finally, additional variables could improve the model,
including an evaluation of the threat of bushmeat hunting.
The presence of certain crop types, or socio-economic variables
are unfortunately difficult to spatially quantify at this scale
of analysis. Spatially explicit information on poverty indices,
reliance on natural energy sources, information related to diets or
the structure of local economies would be very valuable to assess
the impacts on forests, but is only mostly available at national
scale (Bawa and Dayanandan, 1997). This could be assessed
in more depth via future studies using recently-implemented
national household survey approaches.

CONCLUSIONS

The proximate causes and spatial determinants of forest
disturbance vary greatly in time and space, particularly in a
diverse and vast country like the DRC. Therefore, to successfully
safeguard forests and the people who depend on them, we need
spatially targeted interventions that are informed by sub-national
context. Especially considering limited financial resources for
conservation, landmanagement activities and interventions need
to be implemented where they can be most successful. The
increase in fire frequency in the central and western parts of the
country, which are also heavily forested, should indicate the need
to change where fire suppression activities are targeted. This can
support the implementation of renewable energy for households
or programs that reduce dependence on charcoal.

The importance of spatial neighborhoods for many spatial
determinants are not only important at the local level, but also

inform transboundary considerations. Multi-lateral agreements
between neighboring countries to improve coordination and
diplomacy, particularly in the face of moving threats is essential.
Though once again, context varies. While some regions in
Africa are successfully addressed by “Peace Parks,” which employ
protected areas as a form of peacebuilding, their location and
historical context remains important. While peace tourismmight
be fruitful in some areas, the realities in the eastern DRC
are more complicated and currently muddled by increased
militarization to protect tourists (Trogisch and Fletcher, 2020).
Before we achieve both forest conservation and socioeconomic
development goals for forest adjacent communities, a drastic
reduction in conflicts and better security is needed. While
complicated, conservation peace-building should not be rules
out. This spatio-temporal approach can be replicated at various
scales or extents for transboundary decision support systems to
the support the implementation of these kinds of interventions.

Finally, it is clear that forest disturbances change in dynamic
fashion. The COVID-19 pandemic has demonstrated that
all populations, especially those on the margins of poverty,
are vulnerable to global events. The trends observed in
DRC show little sign of relenting, exacerbated by increases
in violent events. It is increasingly clear that humans rely
on nature for survival and basic needs, it is important to
provide intact and resilient ecosystems to allow communities,
including the impoverished to overcomemore future climate and
economic perturbations.
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